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Abstract. The patch manifold of a natural image has a low dimensional struc-

ture and accommodates rich structural information. Inspired by the recent

work of the low-dimensional manifold model (LDMM), we apply the LDMM
for regularizing X-ray computed tomography (CT) image reconstruction. This

proposed method recovers detailed structural information of images, signifi-

cantly enhancing spatial and contrast resolution of CT images. Both numer-
ically simulated data and clinically experimental data are used to evaluate

the proposed method. The comparative studies are also performed over the

simultaneous algebraic reconstruction technique (SART) incorporated the to-
tal variation (TV) regularization to demonstrate the merits of the proposed

method. Results indicate that the LDMM-based method enables a more accu-
rate image reconstruction with high fidelity and contrast resolution.

1. Introduction. X-ray computed tomography (CT) is a major imaging modal-
ity in medical, security, and industrial applications. The filtered back-projection
(FBP) is an efficient and robust method for x-ray CT image reconstruction [10],
but it generates strong noise and artifacts in the cases of low-dose or incomplete
datasets. Extensive efforts have been made to improve image quality for practical
purposes [9, 19, 6]. Iterative methods incorporate prior information of images, and
offer distinct advantages over the analytic methods in cases of noisy and few-view
data. The statistical iterative methods model the statistics of photons to improve
the reconstructed image quality from the low-dose acquisitions [6, 20]. Recently,
the compressive sensing (CS) approach [3, 4] is applied for the image reconstruc-
tion from less measurements than that required by the Nyquist-Shannon sampling
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theorem. Based on the CS theory, image reconstruction algorithms were developed
for various problems of CT image reconstruction to improve image quality and re-
duce radiation dose, such as total variation (TV) regularization [19, 20], prior image
constrained compressed sensing (PICCS) [5], nonlocal mean (NLM) [1, 9], and dic-
tionary learning (DL) [21]. TV is a typical sparse transform for an image, and is a
popular regularization form for image reconstruction due to its ability to preserve
image edges. However, it is effective only for reconstruction of piecewise constant
images and would over-smoothen textured regions, which may sacrifice important
details. PICSS could be seen as a generalization of the TV regularization method.
It incorporates a preliminary reconstructed image into CS reconstruction technique
to achieve more accurate image reconstruction [5]. NLM exploits a high degree of
redundancy of an image for de-noising [1]. The similarity is derived from intensity
differences between neighboring patches of pixels or voxels. A non-linear filter can
be used to reduce image noise by updating each pixel value with a weighted av-
erage of its neighbors according to the similarity of involved patches. DL builds
adaptive sparse representation elements from a training set of images, and utilizes
domain knowledge at a deeper level [21]. The dictionary tends to capture local im-
age features effectively and helps image denoising and feature inference. However,
the structural differences between a true image and training images could affect the
image reconstruction quality.

The idea of the proposed X-ray CT image reconstruction method is inspired
by a recent method called the low-dimensional manifold model (LDMM) [14, 16].
Using the image patches discussed in nonlocal methods [2], the LDMM interprets
image patches as a point cloud sampled in a low-dimensional manifold embedded
in a high dimensional ambient space, which provides a new way of regularization
by minimizing the dimension of the corresponding image patch manifold. This can
be explained as a natural extension of the idea of low-rank regularization for linear
objects to data with more complicated structures [7]. Moreover, the authors in [14]
elegantly find that the point-wisely defined manifold dimension can be computed as
a Dirichlet energy of the coordinate functions on the manifold, whose corresponding
boundary value problem can be further solved by a point integral method proposed
in [14]. The LDMM performs very well in image imprinting and super-resolution.
The patch manifold of images is generally a low dimensional structure, and ac-
commodates rich structural information [16]. With the LDMM prior knowledge on
images, this proposed method significantly enhances contrast resolution of image
reconstruction.

In this paper, LDMM-based regularization method is proposed for CT image
reconstruction. The LDMM-based reconstruction method is to maximize the data
fidelity and minimize the manifold dimensionality, which is performed using the
Bregman iteration [15] by updating the patch manifold structure iteratively. By a
standard variational approach, the regularization model of image reconstruction can
be reduced to the Laplace-Beltrami equations over a point cloud, which is solved
using the point integral method [11].

The rest of the paper is organized as follows. In section 2, we provide a de-
tailed description for the CT image reconstruction based on LDMM. A numerical
reconstruction algorithm is presented based on Bregman iteration. In section 3, we
perform the image reconstruction using numerical simulation data and the clinical
raw projection data to evaluate the proposed LDMM-based image reconstruction
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method. In addition, we also conduct comparative studies with popular simulta-
neous algebraic reconstruction technique (SART) with TV method to present the
merits of the proposed method. After that, we conclude the paper in the last section.

2. Image reconstruction method. In this section, we first review the statistical
model of x-ray CT imaging. After that, we discuss the proposed method of CT
image reconstruction based on LDMM and its numerical algorithm.

2.1. Statistical model for X-ray CT imaging. In x-ray CT imaging, the num-
ber ξ of x-ray photons recorded by a detector element is a random variable, which
obeys a Poisson distribution [10]:

(1) p(ξ = yi) =
ȳyi

yi!
exp(−ȳi)

The expectation value of x-ray photons along a path ` from x-ray source to i-th
detector element obeys Beer-Lambert law:

(2) ȳi = bi exp

(
−
∫
`

µ(~r)d`

)
where bi is the number of x-ray photons detected by i-th detector element in the
blank scanning (without any object in the beam path), and µ(~r) is the linear at-
tenuation coefficient of the object. To implement the numerical computation, Eq.
(2) can be discretized as,

(3) ȳi = bi exp(−Aiµ)

where µ is a vector composed of pixel values on image of linear attenuation coef-
ficients, and Ai is the weighting coefficients of the pixel values on i-th beam path.
Since data are independent between detectors, the likelihood function for x-ray
photons probability distribution on detectors is defined by,

(4) P (Y |µ) =

N∏
i=1

ȳyi

yi!
exp(−ȳi)

where Y = (y1, y2, · · · , yN )T . According to the Bayesian rule: p(µ|Y )p(Y ) =
(Y |µ)p(µ), the image reconstruction task can be implemented by maximizing a
posteriori (MAP) distribution p(µ|Y ), which is equivalent to the following min-
imization problem in term of the monotonic property of the natural logarithm
[20, 12]:

(5) µ = arg min

(
N∑
i=1

[ȳi − yi log(ȳi)] +R(µ)

)
where r(µ) = − ln(p(µ)) is a regularization term expressing the prior knowledge
about the attenuation image µ , and N is the total number of x-ray beam paths.
In the context, we propose to use the low-dimension of an image as prior knowledge
to conduct the image reconstruction, which is discussed in the next section. After
inserting Eq. (3) in Eq. (5), a second-order approximation is applied to simplify
the complicated optimization to a quadratic optimization:

(6) µ = arg min

[
N∑
i=1

bi
2

(Aiµ− yi)2 +R(µ)

]
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2.2. Image reconstruction based on LDMM. The classical image restoration
models mainly focus on local properties of the objective image, such as smoothness
and jumps. Image features can be further enhanced due to its possible repetitive
patterns non-locally. The nonlocal based image restoration methods [2] extract and
match non-local repetitive structures of images using image patches. An essential
observation of nonlocal methods is that images can be restored by enhancing similar
patterns which may not lie in nearby regions of the original image domain. There-
fore, comparing with the direct regularization methods on the image domain, the
quality of image restoration can be usually improved using nonlocal methods. For
instance, nonlocal based variational methods [2, 8, 22] and nonlocal based wavelet
frame based methods demonstrate outstanding image restoration results [17].

Figure 1. The patch manifold of a CT image (left) and the corre-
sponding dimension function of the patch manifold with patch size
16× 16 (right).

Let µ denote an image containing m × n pixels: µ = {µ(i, j) | 1 ≤ i ≤ m, 1 ≤
j ≤ n} , and P(i0,j0)(I) denotes an image patch centering at (i0, j0) with size of
2s1s2, namely, P(i0,j0)(I) = {I(i, j) | i0 − s1 ≤ i < i0 + s, j0 − s2 ≤ j < j0 + s2}.
An image is decomposed into a set of patches. These patches can be overlapping or
nonoverlapping. Let P(µ) denote the patch transformation which maps any given
image I to be the set of image patches. P(µ) can be also viewed as a point set
in Rd with a dimension of d = 2s1 × s2 . It samples a low dimensional manifold
M(µ) embedded in Rd, which is called the patch manifold of µ [14, 16]. The patch
manifold is low dimensional for many natural images, such as X-ray CT images.
A patch manifold can be constructed directly from an image using patching size
2s1 × 2s2. As an example illustrated in the right image of Fig. 1, we construct
a patch manifold of a CT image using patching size 16 × 16 and color-code its
piecewise dimension on the image to show the variation of the manifold dimension.
More recently, [14] proposes to regularize the dimension of the patch manifoldM(µ)
for image restoration. Inspired by [14], we use the dimension of the patch manifold
as a regularization term to seek the dimension of its patch manifold as small as
possible such that detail structure information can be magnified for the CT image
reconstruction. Therefore, the optimization model Eq. (6) is reformulated for the
measurement data fidelity and the manifold dimensional quantification:

(7) µ = arg min
µ

[
λ

2

N∑
i=1

bi(Aiµ− yi)2 +

∫
M

dim(M(µ))(x)dx

]
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where dim(M(µ))(x) denotes the dimension of the patch manifold M(µ) of an
image µ at x, a point in M(µ) ⊂ Rd. The patch manifold of a nature image may
be a set of several manifolds with different dimensions, corresponding to different
patterns of the image. In [14], the authors elegantly demonstrate that the dimension
of the patch manifold for an image µ at given patch x can be calculated by the
coordinate function,

(8) dim(M(µ))(x) =

d∑
i=1

|∇Mαi(x)|2

where αi is the embedding coordinate function defined by αi(x) = xi for any x =
(x1, x2, · · · , xd) ∈M ⊂ Rd. Combining Eqs. (7) and (8), we obtain
(9)

arg min
µ,M⊂Rd

[
λ

2

N∑
i=1

bi(Aiµ− yi)2 +

d∑
i=1

‖∇Mαi(x)‖2L2(M)

]
, s.t. P(µ) ⊂M

whereM is a manifold embedded in Rd, and P(µ) is the patch set of image µ. Note
that the dimension formula (8) holds point-wisely for the embedding manifolds.
The above regularization is actually the L1 norm of the local dimension. The
optimization (9) can be solved by alternating direction method similar as the one
proposed in [14]. In other words, given an estimation of the manifold Mn and an
estimation of image µn satisfying P(µn) ⊂Mn, the coordinate functions α = {αi}
and an updated image µ are computed through the following optimization.
(10)

arg min
µ,α

[
λ

2

N∑
i=1

bi(Aiµ− yi)2 +

d∑
i=1

‖∇Mαi(x)‖2L2(M)

]
, s.t. α(P(µn)) = P(µ)

From the reconstructed coordinates α, the manifold M is further updated by
Mn+1 = {(α1(x), · · · , αd(x)) | x ∈ Mn}. This process is iterated until conver-
gence of iterative procedure. Given the manifoldM, the optimization problem (10)
can be solved to compute the coordinate functions αi(i = 1, 2, · · · , d) and update
the image µ using the Bregman iteration [15]. Mathematically, we have:

αn+1,k+1 = arg min
α

[
d∑
i=1

‖∇Mnαi(x)‖2L2(Mn) + β‖α(P(µn))− P(µn+1,k) +Qk‖2F

](11a)

µn+1,k+1 = arg min
µ

[
λ

2

N∑
i=1

bi(Aiµ− yi)2 + β‖αk+1(P(µn))− P(µ) +Qk‖2F

](11b)

Qk+1 = Qk +αn+1,k+1(P(µn))− P(µk+1)

(11c)

where α(P(µ)) = (α1(P(µ)), · · · , αd(P(µ)))T . In the Bregman iteration, Eq. (11b)
can be reduced to a qudratic minimization, which can be solved using the conju-
gate gradient (CG) method to produce the exact solution after a finite number
of iterations. The optimization (11a) can be solved for each coordinate function
αi(i = 1, · · · , d) separately. Applying the standard variation method, Eq. (11a) is
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equivalent to solving following Laplace-Beltrami equation.

(12)

{
−∆Mu(x) + β

∑
y∈Ω δ(x− y)(u(y)− v(y)) = 0, x ∈M
∂u
∂~n (x) = 0, x ∈ ∂M

whereM =Mn, u represents any αi, ~n is the out normal ofM with the boundary
∂M and Ω = P(µn). Recently, the point integral method has been proposed to
solve Laplace-Beltrami equation over a point cloud [3]. The main idea of the point
integral method is to apply following integral approximation for the differential term
in Laplace-Beltrami equation:
(13)∫
M

∆Mu(y)Rt(x,y)dy ≈ −1

t

∫
M

(u(x) − u(y))Rt(x,y)dy + 2

∫
∂M

∂u(y)

∂~n
Rt(x,y)dy

where Rt(x,y) are kernel functions given as follows,

(14) Rt(x,y) = Ctexp(−
‖x− y‖2

4t
)

where Ct is a normalizing factor. Using the integral approximation (13), following
integral equation can be obtained to approximate the Laplace-Beltrami equation,

(15)

∫
M

(u(x)− u(y))Rt(x,y)dy + tβ
∑
y∈Ω

Rt(x, y)(u(y)− u(y)) = 0

The integral equation (15) can be further discretized into a matrix equation over
the point set using quadrature rule [14]:

(16)

{
(L+ β̄W )U = β̄WV

L = D −W

where β̄ = tNβ
|M| , W = (Rt(xi,xj))i,j=1,··· ,N is the weight matrix, D =

diag({
∑
j

wij}1,··· ,N ) and V = P(µk) − Qk . Thus, the optimization (11a) can

be solved based on the matrix equation (16). The detailed formulation and alter-
nating minimization steps for solving Eq. (10) are described in the flowchart for
Algorithm 1.

Algorithm 1

Initialize an initial image µ, Q0 = 0 and set parameters λ and β.
while the current solution is not converged do
1.Compute the weight matrix W = {wij} from the patch image P (µk) and
let weight wij = Rt(xi,xj), and the matrices L = D −W ,D = diag(di), di =∑
j wij .

2.Solve the linear systems:

{
(L+ β̄W )U = β̄WV

V = P(µk)−Qk
3.Update µ by solving the problem:
4.Update: Qk+1 = Qk + U − P (µk+1)

end while
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3. Numerical experiments. In the section, we test the proposed LDMM-based
reconstruction method with numerical simulation and real experimental datasets
obtained on a GE clinical CT scanner. We constructed a patch manifold of an
image with a patch size of 1616 by shifting 8 pixels. In addition, we also perform
the comparative studies with the state of the art method, the simultaneous algebraic
reconstruction technique (SART) with a total variation (TV) [18], to demonstrate
the merits of the proposed method. All numerical computations in this section are
implemented by MATLAB in a PC with 16G RAM and 2.8GHz CPU.

3.1. Simulation data. A phantom was adapted from a CT slice to evaluate the
proposed algorithms. Data acquisitions are simulated with polychromatic x-ray
source operated at 120 kVp/5mAs dose for the x-ray imaging. The radius of the
scanning trajectory was 53.852cm. The source-to-detector distance was 94.6746 cm.
540 projections are uniformly acquired over a 360-degree angular range. 765 de-
tector elements are equiangular distributed on each projection view. The phantom
is discretized into a 512× 512 matrix. We choose the regularization parameters as
λ = 0.3 and β = 0.15. The x-ray imaging process was simulated to generate pro-
jection data according to the x-ray propagation forward model, the polychromatic
Beer-Lambert law. The projection datasets were corrupted by Poisson noise to sim-
ulate real x-ray imaging experiments. We performed the image reconstruction using
the proposed LDMM-based image reconstruction and the simultaneous algebraic re-
construction technique (SART) with a total variation (TV), respectively. Results
show that the LDMM-based method is able to produce more accurate image recon-
struction with high fidelity and detailed features than the SART+TV method that
would over-smoothen textural pattern in reconstructed image. We calculated the
peak-to-noise ratio (PSNR) and structural similarity (SSIM) for the reconstructed
image, and obtained PSNR of 52.42 and SSIM of 0.9940 for the LDMM-based re-
construction, and PSNR of 39.53 and SSIM of 0.9911 for the SART+TV method.
Fig. 2 shows a comparison between the reconstructed images and the ground truth.
Fig. 3 presents the comparison of profiles along the horizotal and vertical midlines
in the phantom and reconstructed images.

(a) (b, PSNR 52.42, SSIM 0.9940) (c, PSNR 39.59, SSIM 0.9911)

Figure 2. Comparison of image reconstruction. (a) Ground truth
CT images, (b) the reconstructed image using the LDMM-based
method, and (c) the reconstructed image using SART with TV.

Inverse Problems and Imaging Volume 13, No. 3 (2019), 449–460
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(a) (b)

(c) (d)

Figure 3. Profiles of reconstructed image. (a) The profiles along
the vertical midlines in the phantom and image reconstructed
by LDMM-based reconstruction method, (b) the profiles along
the horizontal midlines in the phantom and image reconstructed
by LDMM-based reconstruction method. (c) The profiles along
the vertical midlines in the phantom and image reconstructed
by SART+TV reconstruction method, and (d) the profiles along
the horizontal vertical midlines in the phantom and image recon-
structed by SART+TV reconstruction method.

Figure 4. The
sinogram simu-
lated from Cat-
Sim.

3.2. Low dose data. A realistic phantom
adapted from a human CT slice is used to
evaluate the proposed algorithms. We use an
computer-assisted tomography simulation (Cat-
Sim) software [13], which was developed by GE
Global Research Center, to simulate x-ray imag-
ing for the phantom. CatSim incorporates poly-
chromaticity, realistic quantum and electronic
noise models, finite focal spot size and shape, fi-
nite detector cell size, and detector cross-talk for
the simulation of real x-ray imaging. All acqui-
sitions are simulated with polychromatic x-ray
source operated at 120 kVp and 0.2mSv dose
for the low dose x-ray imaging. The radius of
the scanning trajectory is 54.1cm. Source-to-
detector distance is 94.9cm. 888 detector ele-
ments are equiangular distributed on each pro-
jection view. 984 projections are uniformly acquired over a 360-degree angular
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range, generating the sinogram, as shown in Fig. 6. The phantom is discretized
into a 512 × 512 matrix. We choose the regularization parameters as λ = 0.3 and
β = 0.3. We performed the image reconstruction respectively using the proposed
LDMM-based image reconstruction and SART +TV, which achieve PSNR of 18.72
and SSIM of 0.79 for the LDMM-based reconstruction method, and PSNR of 18.69
and SSIM of 0.74 for the SART+TV method. Results show that the LDMM-based
image reconstruction method had a better contrast resolution of the reconstructed
image than the SART+TV method, as shown in Fig. 5.

(a) (b) (c)

Figure 5. Comparison of CT reconstruction. (a) Ground truth
CT images, (b) the reconstructed image using the LDMM-based
image reconstruction method, and (c) the reconstructed image us-
ing SART with TV.

Figure 6. The sino-
gram measured from a
clinical x-ray CT scan-
ner.

3.3. Clinical data. A clinical CT raw
projection dataset obtained from GE
Healthcare was used to evaluate the
LDMM-based image reconstruction method.
After appropriate preprocessing for the
projection data, we obtained a set of fan-
beam sinogram, as shown in Fig. 6. In the
x-ray imaging, the field of view (FOV) is
of a 25 cm radius, and the radius of the
scanning trajectory is 54.1cm. Source-to-
detector distance is 94.9cm. 984 projec-
tions are uniformly acquired over a 360-
degree angular range. 888 detector ele-
ments with 1.024mm pitch were equiangu-
lar distributed on a projection view. The
image matrix was of 512× 512 pixels. We
choose the regularization parameters as
λ = 0.2 and β = 0.5. We conducted the
image reconstruction from the sinogram
using the proposed LDMM-based recon-
struction method. For comparison, the FBP method and the SART with TV reg-
ularization were applied as well to perform the image reconstruction from same
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projection dataset. Results show that the LDMM-based image reconstruction out-
performs the other two reconstruction methods, as shown in Fig. 7. The LDMM-
based method well preserves structural information especially texture features of
the reconstructed image. The SART with TV iteration method was suitable to
reconstruct high contrast images, whereas it would over-smoothen textured regions
in medical images, resulting in the loss of details. FBP keeps the structural infor-
mation, but it produced noisy image.

Figure 7. Comparison of CT image reconstructions from clinical
CT raw data. (a) The reconstructed image using the LDMM-based
method, (b) the reconstructed image using SART with TV, and (c)
the reconstructed image using FPB.

4. Discussions and conclusion. The major contribution in this paper is to pro-
pose an image reconstruction method aided by the regularization of a low dimen-
sional manifold model (LDMM). The patch manifold of a natural image is generally
with a low dimensional structure, and accommodates rich structural information.
LDMM regularization method well recovers structural information of images, and
promises substantially to increase spatial and contrast resolution of the image re-
construction. The comparison between the proposed method and the representa-
tive the SART with TV methods has been performed to illustrate the merits of
the LDMM-based reconstruction approach. The raw datasets from a clinical CT
scanner have been used to evaluate the performance of the image reconstruction
methods. Results show that the regularization method of low dimensional mani-
fold is an efficient and robust image reconstruction technique, and well preserves
image edges and structural details of the reconstructed image comparing to the
state of the art SART with TV image reconstruction. The iterative algorithm
also incorporates prior knowledge, and account for photon statistics at a low dose
level. Major computational cost is matrix-vector multiplication operations in the
LDMM-based image reconstruction. Because matrix-vector multiplication is well

Inverse Problems and Imaging Volume 13, No. 3 (2019), 449–460
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computed parallel, the computational speed of the proposed iterative method can be
significantly improved by parallel programming. This LDMM-based image recon-
struction approach is very promising for medical imaging and other applications.
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