
DEEP INITIALIZATION FOR GUARANTEED UNIMODULAR
QUADRATIC PROGRAMMING

Amrutha Varshini Ramesh

Department of Computer Science,
University of British Columbia, Canada

Mojtaba Soltanalian

ECE Department,
University of Illinois at Chicago, USA

ABSTRACT

In this work, we study a deep learning-based initialization
approach for unimodular quadratic programs (UQPs), that are
concerned with the maximization of a quadratic form over a set
of complex unimodular vectors. UQPs have shown prevalent
presence in many signal processing and design problems such
as in wireless communications and active sensing. Stemming
from their NP-hard nature, prior works on UQPs have focused
on proposing approximate solutions that generally traded-off
speed for obtaining theoretically sound approximations. With
the aim of improving the computational efficiency of existing
UQP solvers and equipped with highly-scalable deep learn-
ing frameworks as a backbone, we propose a novel hybrid
solver, which we refer to as Deep-INIT. The proposed data-
driven initialization approach makes use of deep learning to
automatically learn “good” initializations for an underlying
model-based solver called MERIT, that provides strong op-
timality guarantees for UQP solutions; thereby, speeding up
an existing optimality-certificate producing solver for UQPs.
In fact, apart from achieving a significant speed-up over the
underlying UQP solver, a fundamental characteristic of Deep-
INIT is that it preserves the guarantees that emerge from the
model-based solver. Our numerical results reaffirm the speed-
up potential that Deep-INIT offers.

Index Terms— Complex quadratic programming, deep
learning, non-convex optimization, optimality guarantees.

1. INTRODUCTION

Optimal signal design for signal transmission plays an impor-
tant role in improving the overall performance of active sensing
and communication systems. Specifically, unimodular signals
(also known as constant-modulus signals) are used to help max-
imize the signal-to-noise ratio (SNR) of such systems while
maintaining an optimal (i.e., unity) peak-to-average-power ra-
tio (PAR). For instance, radar systems widely use unimodular
signals to satisfy their transmission requirements and perform
effective range compression [1, 2]. Due to such a wide ap-
plicability of unimodular signals in practice, many works in

This work was supported in part by the NSF Grant ECCS-1809225.
Correspondence: avramesh@cs.ubc.ca

the past have studied communication or sensing performance
optimization over unimodular signals, usually through uni-
modular quadratic programming (UQP), and have developed
computational algorithms to efficiently compute their solutions
or approximate them [1, 3–16]. A UQP is often formulated
as a maximization of a quadratic form over a set of complex
unimodular vectors; more precisely,

max
s∈Ωn

sHRs (1)

where R ∈ Cn×n is a given Hermitian matrix, and s is a
complex unimodular vector, with each element lying on the
unit circle Ω = {s : |s| = 1}. This problem can be shown
to be NP-hard in general by applying a reduction from a well-
known NP-complete matrix partitioning problem [7].

1.1. Approximate Solutions to UQP

As mentioned earlier, several approximation methods have
been studied for solving UQPs. Such methods carefully con-
struct reformulations of the UQP problem (1) in such a way
that they may result in approximate solutions are guaranteed to
be somewhat close to the true UQP solution. As a result, they
may come with strong theoretical properties, usually in the
form of sub-optimality guarantees. One of the popular meth-
ods for approximating UQP solutions is semidefinite relaxation
(e.g. [6–16]), which are shown to have a sub-optimality guar-
antee of π/4. The associated sub-optimality is defined as:
γ = vSDR/vopt, where γ is the sub-optimality coefficient,
and vSDR and vopt denote the objective values at the obtained
solution from SDR and at the global optimum.

1.2. MERIT for UQP

Recently, another work provided an iterative solution to UQPs,
referred to as MERIT [1], or monotonically error-bound im-
proving technique for mathematical optimization, leading to
tighter sub-optimality guarantees than those offered by SDR.
MERIT aims to successively approximate (and get closer to)
the original UQP problem instance and its global optimum
of interest via constructing a sequence of problem instances
whose corresponding global optima are readily known. No-
tably, the authors of [1] were able show that the MERIT solu-
tion for UQP enjoys data-dependent sub-optimality guarantees,

which in most cases are better than the a priori known analyti-
cal guarantees.

Since this work will rely heavily on the MERIT formula-
tion, we present some of the required details in the following.
The authors of [1] begin their study by defining a convex cone
K(s) of all input matrices R for which a given s is the global
optimizer of the UQP. Then, they develop an approximate
characterization of K(s), using two other convex cones Cs and
C(Vs), where: 1) Cs represents the convex cone of all matri-
ces for which s is the dominant eigenvector, and, 2) C(Vs)
represents a convex cone of matrices V s = D� (ssH) where
D is any real-valued symmetric matrix with non-negative off-
diagonal entries. Specifically, [1] derives the following relation
addressing the accuracy of this characterization:

R + α0ss
H = Qs + Ps = (Q1 + P1)� ssH (2)

where Qs ∈ Cs, Ps ∈ C(Vs), 1 is the all-one vector, � de-
notes the Hadamard product operator, and α0 ≥ 0. The vector
s that satisfies (2) is guaranteed to be the global optimum of
the UQP associated with R when α0 = 0, and a local optimum
when α0 > 0. Note that the smaller the α0, the stronger the
characterization.

In the case of α0 = 0, one deals with the following opti-
mization problem:

min
s∈Ωn,Q1∈C∞,P1∈C(V1)

||R− (Q1 + P1)� ssH︸ ︷︷ ︸
,Rs

||F (3)

The MERIT algorithm, solves (3) by first optimizing for Q1

and P1, which is a convex problem and then uses power
method-like iterations [1, 4] to approximate s with the optimal
Q1 and P1 that have been obtained. In the case of α0 > 0,
MERIT finds the local optimum discussed below (2) iteratively
by defining R′ = R + α0ss

H for increasing values of α0

(found using a bisection algorithm) and solving the objective
(3) with R = R′. The obtained value of α0 is then used
to provide data-dependent sub-optimality guarantees, given
as [1]:

γ =
sHRs

sHRss
= 1− α0n

2

sHRss
.

where n is the length of s.

1.3. Contributions of This Work

There is a strong need for UQP solvers that are both computa-
tionally efficient and reliable. In recent years, deep learning-
based methods have been deployed in an overwhelming num-
ber of engineering applications. However, because of their
black-box nature, they are generally devoid of the theoretical
advantages that model-based methods often provide [19, 20].
As discussed before, this work aims to speed-up the exist-
ing model-based methods while preserving their theoretical
properties. In order to achieve this goal, we focus on a smart
initialization of MERIT through deep learning, thus preserving
the advantages that comes with MERIT while making it faster.

Fig. 1: MERIT initialized by Deep-INIT is well-positioned to successfully
approach a local optimum of the problem in fewer number of iterations
than what MERIT typically requires when it employs a random initialization.
The “closeness” between a sub-problem and the original problem instance is
measured using a matrix distance measure d; see e.g., (6).

2. DEEP-INIT FOR UQP

The central idea behind smart initialization for our problem is
that the number of iterations required by MERIT depends on
the proximity of the initial sub-problem to the original problem
instance. Recall that, in each iteration, a new sub-problem
is created by MERIT that is closer to the original problem
instance than the sub-problem constructed in the previous
iteration. Therefore, one could potentially speed up MERIT
by starting with a sub-problem that is closer to the original
problem instance as illustrated in Fig. 1.

Herein, we will achieve this goal by re-parameterizing the
initial values of the MERIT variables s and Q1 using warm-
start auxiliary parameters [W1,W2]. Let Q0

1 and s0 denote
the initial values of Q1 and s, respectively, that will be used
by MERIT. Suppose Qrand

1 is a random initial value of Q1

in C(V1) and srand
1 is a random unimodular vector. We let

Q0
1 = W1Q

rand
1 , s0 = ej arg(W2srand

1). Given this chose of
parameters, MERIT will use a value for P1 that is given as
P0

1 = |R|�Rc+, where Rc = cos(arg(R)−arg(s0(s0)H)).
For any new UQP instance, the learned Θ , [W1,W2] can
be used to “warm-start” the optimization problem (3).

We hypothesize that after training, the sub-problem con-
structed using the “warm-started” parameters is more likely
to be closer to the original problem instance than a random
initialization. The reason for this is that our learned weights
reshape the distribution of Q0

1 and s0
1, in a way that make

them more likely to be close to the true Q1 and s. Our nu-
merical experiments show that this is indeed the case, even
without making any assumptions on the problem instance or
the training data, such as similarity between training and test
distributions.

To the best of our knowledge, our work is one of the first
few that proposes a data-driven initialization scheme to accel-
erate a model-based algorithm. Similar initialization methods
have been studied for other non-convex problems in the litera-
ture [21–24]. Although the method introduced in this work is
tailor-made for UQPs, the proposed technique can serve as a
general recipe for many optimization problem in which proper

Fig. 2: An illustration of the training architecture of the proposed Deep-INIT
model. The top figure shows the high-level architecture of Deep-INIT training.
The image at the bottom gives more details about the MERIT layer. Here,
Φphase denotes one iteration of the internal MERIT optimizaion process over s.

initialization could potentially speed-up convergence. We now
outline the new deep architecture and training details.

2.1. The Deep-INIT Architecture

The training architecture of Deep-INIT is presented in Fig. 2.
The input parameters to the Deep-INIT training pipeline are a
collection of training data points {(Ri, si)}. Then, for each
(Ri, si), the MERIT parameters P 0

1, s
rand
1 ,Qrand

1 are randomly
generated within their respective constraint sets. The initial
layer generates improved MERIT parameters for training by
multiplying (random initializations of) Q and s with weights
Θ = [W 1,W 2]. Next, we have k MERIT layers for a given
Ri, which is used to compute the loss function (discussed
below) in the loss layer.

Loss Function for Training: The training for “warm-
starting” MERIT can be formulated by the following objective:

min
Θ

min
P1,Q1,s

`(fk(R),R, s) (4)

s.t. Q0
1 = W1Q

rand
1 ; s0 = exp(j arg(W2s

rand
1))

where fk(R) is the MERIT approximation of the matrix R at
the kth iteration (thus truncating the number of iterations to
exactly k) and `(.) is a specific loss function introduced below.

Note that one can easily evaluate fk(R) by looking at the
MERIT objective in (3). To form our loss function, motivated
by the MERIT objective, we define the functions `1(.) and
`2(.) as follows:

`1(Θ) = ||R−fk(R)||F ; `2(Θ) = |Ψ(s)−Ψ(s0)|2, (5)

where Ψ(x) = xHRx represents the original UQP objective.
In the above, while `1(.) promotes learning initializations that

Algorithm 1 for Training Data Generation

1: Input: Σ ∈ Rn×n diagonal matrix with positive entries
in decreasing order

2: Randomly generate s1 ∈ Ωn

3: Generate an orthogonal basis U with s1 as its first column
4: Construct R1 ← UΣUH

5: Return (R1, s1)

Algorithm 2 for Training Data Generation

1: Input: (R1, s1) pair obtained from Algorithm 1
2: Randomly generate s2 ∈ Ωn

3: Compute s0 = s∗1 � s2; R2 = R1 � s0s
H
0

4: Return (R2, s2)

are closer to the original UQP problem instance, the function
`2(.) further ensures that the learned solutions ultimately lead
to a good UQP solution as well. In our experiments, we define
the loss function `(.) to be a convex combination of two losses
`1(.) and `2(.), where λ ∈ (0, 1) is the mixing parameter:
`(Θ) = (1− λ)`1(Θ) + λ`2(Θ).

Training data: Due to the unavailability of any benchmark
datasets, in this section, we use a technique to synthetically
generate training data for Deep-INIT. The proposed approach
relies on a characterization of the UQP problem instances
whose global optima are readily known or could be computed
quite efficiently. There are already families of such problems
introduced in [1]; in particular, we base our first method of
data generation on Theorem 2 (see Algorithm 1), and then use
Theorem 1 to further enrich the set of problems that is used
for training (see Algorithm 2).

2.2. Inference

At the time of execution and testing, we are given a new
matrix Rtest and we are required to predict the UQP solution
corresponding to Rtest. In order to recover the optimal s, we
run the full MERIT algorithm where Q1 and s are initialized
using the learned weights Θ. In our experiments, we observe
that the learned weights glean sufficient clues on the sub-
problem structure of MERIT, helping us to “jump ahead” in
the iterative sequence of MERIT.

A key feature of the proposed Deep-INIT algorithm is that
it is able to preserve the optimality guarantees provided by the
MERIT algorithm [1] during inference—as observed below.

3. NUMERICAL RESULTS

In this section, we will empirically validate our hypothesis that
the weights learned through the Deep-INIT model is able to
significantly reduce the number of iterations, and thus, speed-
up the optimization process.

3.1. Experimental Setup

We conduct two numerical experiments to verify the effective-
ness of our proposed Deep-INIT model and training procedure
for approximating UQPs. Experiment 1 is used to validate
the speed-up benefits of Deep-INIT. Experiment 2 tests our
hypothesis that the warm-start initializations that Deep-INIT
provides, creates sub-problems that are closer to the original
problem instance than the initial random initializations.

We evaluate the MERIT truncated function fk(.) by run-
ning the optimization over P1 and Q1 with k times. At each
iteration, the function runs the local optimization over s for t
sub-iterations. In our experiments, we set k = 3 and t = 10
during training, to achieve the desired results.

Metrics. We define the following two metrics:

1. Iteration reduction ratio (η): Let nv and nd denote
the number of iterations required by MERIT in the case of a
random initialization and the case of initialization with Deep-
INIT, to converge to a local optimum for a given UQP problem
instance. Then η is defined as: η = nv−nd

nv
. For instance, if

Deep-INIT does not reduce the number of iterations, η will
assume a zero value.

2. Wall-clock time (t): Measures the time taken (in sec-
onds) by MERIT in each case.

Experiment 1. We first train our Deep-INIT model with syn-
thetic data generated using Algorithm 1 and Algorithm 2. In
particular, we generated random positive definite input matri-
ces. We generated 500 data points for training and 50 data
points for inference with dimensionality d ∈ {8, 16, 24, 32},
creating a total of four variations. For each variation, we ran
the training and testing 10 different times and recorded the
mean and standard deviation of our metrics.

Experiment 2. For this experiment, we fix d = 8 and generate
10 different training (with 500 data points) and test (with 50
data points) sets. For each set, we first train the Deep-INIT
algorithm and obtain the warm-start initializations (Q1, s). Us-
ing these values, we run one iteration of MERIT. Additionally,
we run one iteration of MERIT with the random initializa-
tion. In both cases, we measure the approximation strength,
measured as the difference between the constructed and true
R. Assuming R′ denotes the contructed version of R, we
measure the problem-instance construction strength (δ) via the
criterion:

δ(R,R′) = ||R−R′||F . (6)

3.2. Discussion

From Table 1, we can observe that, across all variations, Deep-
INIT achieves a significant speed-up over vanilla MERIT, with-
out sacrificing the quality of optimization guarantees.

The scatter plot in Fig. 3 may be interpreted as follows.
The y−axis represents the values of δ for MERIT initialized

50 52 54 56 58 60 62

50

52

54

56

58

60

62

(a) N = 8

260 280 300 320

250

260

270

280

290

300

310

320

(b) N = 16

650 700 750 800
650

700

750

800

(c) N = 24

1350 1400 1450 1500

1350

1400

1450

1500

(d) N = 32

Fig. 3: Scatter plot of problem-instance construction gap δ of vanilla
MERIT vs MERIT initialized by Deep-INIT, measured for matrix sizes
N ∈ {8, 16, 24, 32}, after running one iteration of MERIT. The results
are plotted for 10 different tests in each case.

N η (%) γDeep-INIT γMERIT tDeep-INIT tMERIT

8 15±6 0.989 0.987 0.33±0.04 0.43
16 19±5 0.954 0.949 17.7±2.64 22.62
24 14±6 0.93 0.924 51.54±4.4 54.8
32 18±7 0.9 0.9 149.18±6 195.47

Table 1: Performance of Deep-INIT’s warm-start over 10 trials, measured by
percentage reduction in the number of required MERIT iterations and wall-
clock time. Here, N denotes the matrix size, or equivalently, the dimension of
each sample point.

by Deep-INIT and x−axis denotes the values of δ for vanilla
MERIT (i.e. initialized at random). If δ for Deep-INIT is
smaller overall than MERIT, then we expect to see more points
below the diagonal reference line on the scatter plot. This is
indeed what we observe from the plots.

4. CONCLUSION

In this work, we developed a smart initialization scheme for
the parameters of a guaranteed UQP solver. Our proposed
algorithm, Deep-INIT, learns the proper initialization for the
parameters of a model-based solver for UQP, called MERIT.
With the learned initialization, Deep-INIT helps MERIT to
provably converge to a locally optimal solution for UQP, in a
fewer number of iterations and less time. We also proposed a
data generation algorithm for obtaining training data to train
our Deep-INIT architecture.

5. REFERENCES

[1] M. Soltanalian and P. Stoica, “Designing unimodular
codes via quadratic optimization,” IEEE Transactions on
Signal Processing, vol. 62, no. 5, pp. 1221–1234, 2014.

[2] P. Stoica, J. Li, and Y. Xie, “On probing signal design for
MIMO radar,” IEEE Transactions on Signal Processing,
vol. 55, no. 8, pp. 4151–4161, 2007.

[3] S. Ragi, E. K. Chong, and H. D. Mittelmann,
“Polynomial-time methods to solve unimodular quadratic
programs with performance guarantees,” IEEE Transac-
tions on Aerospace and Electronic Systems, vol. 55, no. 5,
pp. 2118–2127, 2018.

[4] M. Soltanalian, B. Tang, J. Li, and P. Stoica, “Joint de-
sign of the receive filter and transmit sequence for active
sensing,” IEEE Signal Processing Letters, vol. 20, no. 5,
pp. 423–426, 2013.

[5] S. Ragi, E. K. Chong, and H. D. Mittelmann, “Heuristic
methods for designing unimodular code sequences with
performance guarantees,” in 2017 IEEE International
Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2017, pp. 3221–3225.

[6] J. Jaldén, C. Martin, and B. Ottersten, “Semidefinite
programming for detection in linear systems-optimality
conditions and space-time decoding,” in 2003 IEEE In-
ternational Conference on Acoustics, Speech, and Sig-
nal Processing, 2003. Proceedings.(ICASSP’03)., vol. 4.
IEEE, 2003, pp. IV–9.

[7] S. Zhang and Y. Huang, “Complex quadratic optimiza-
tion and semidefinite programming,” SIAM Journal on
Optimization, vol. 16, no. 3, pp. 871–890, 2006.

[8] A. T. Kyrillidis and G. N. Karystinos, “Rank-deficient
quadratic-form maximization over m-phase alphabet:
Polynomial-complexity solvability and algorithmic de-
velopments,” in 2011 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 2011, pp. 3856–3859.

[9] S. Verdú, “Computational complexity of optimum mul-
tiuser detection,” Algorithmica, vol. 4, no. 1-4, pp. 303–
312, 1989.

[10] W.-K. Ma, B.-N. Vo, T. N. Davidson, and P.-C. Ching,
“Blind ml detection of orthogonal space-time block
codes: Efficient high-performance implementations,”
IEEE Transactions on Signal Processing, vol. 54, no. 2,
pp. 738–751, 2006.

[11] T. Cui and C. Tellambura, “Joint channel estimation and
data detection for ofdm systems via sphere decoding,”
in IEEE Global Telecommunications Conference, 2004.
GLOBECOM’04., vol. 6. IEEE, 2004, pp. 3656–3660.

[12] S. Boyd, S. P. Boyd, and L. Vandenberghe, Convex opti-
mization. Cambridge university press, 2004.

[13] M. X. Goemans and D. P. Williamson, “Improved approx-
imation algorithms for maximum cut and satisfiability
problems using semidefinite programming,” Journal of
the ACM (JACM), vol. 42, no. 6, pp. 1115–1145, 1995.

[14] A. De Maio, Y. Huang, M. Piezzo, S. Zhang, and A. Fa-
rina, “Design of optimized radar codes with a peak to
average power ratio constraint,” IEEE Transactions on
Signal Processing, vol. 59, no. 6, pp. 2683–2697, 2011.

[15] Z.-Q. Luo, W.-K. Ma, A. M.-C. So, Y. Ye, and S. Zhang,
“Semidefinite relaxation of quadratic optimization prob-
lems,” IEEE Signal Processing Magazine, vol. 27, no. 3,
pp. 20–34, 2010.

[16] A. M.-C. So, J. Zhang, and Y. Ye, “On approximating
complex quadratic optimization problems via semidefi-
nite programming relaxations,” Mathematical Program-
ming, vol. 110, no. 1, pp. 93–110, 2007.

[17] C. G. Tsinos and B. Ottersten, “An efficient algorithm
for unit-modulus quadratic programs with application in
beamforming for wireless sensor networks,” IEEE Signal
Processing Letters, vol. 25, no. 2, pp. 169–173, 2017.

[18] F. Jiang, J. Chen, and A. L. Swindlehurst, “Estimation in
phase-shift and forward wireless sensor networks,” IEEE
transactions on signal processing, vol. 61, no. 15, pp.
3840–3851, 2013.

[19] Ö. Aslan, X. Zhang, and D. Schuurmans, “Convex deep
learning via normalized kernels,” in Advances in Neural
Information Processing Systems, 2014, pp. 3275–3283.

[20] V. Ganapathiraman, Z. Shi, X. Zhang, and Y. Yu, “In-
ductive two-layer modeling with parametric bregman
transfer,” in International Conference on Machine Learn-
ing, 2018, pp. 1636–1645.

[21] P. Netrapalli, P. Jain, and S. Sanghavi, “Phase retrieval
using alternating minimization,” IEEE Transactions on
Signal Processing, vol. 63, no. 18, pp. 4814–4826, 2015.

[22] A. Agarwal, A. Anandkumar, P. Jain, P. Netrapalli, and
R. Tandon, “Learning sparsely used overcomplete dic-
tionaries,” in Conference on Learning Theory, 2014, pp.
123–137.

[23] A. Agarwal, A. Anandkumar, P. Jain, and P. Netrapalli,
“Learning sparsely used overcomplete dictionaries via al-
ternating minimization,” SIAM Journal on Optimization,
vol. 26, no. 4, pp. 2775–2799, 2016.

[24] Y. Chen and E. Candes, “Solving random quadratic sys-
tems of equations is nearly as easy as solving linear
systems,” in Advances in Neural Information Processing
Systems, 2015, pp. 739–747.

	 Introduction
	 Approximate Solutions to UQP
	 MERIT for UQP
	 Contributions of This Work

	 Deep-INIT for UQP
	 The Deep-INIT Architecture
	 Inference

	 Numerical Results
	 Experimental Setup
	 Discussion

	 Conclusion
	 References

