FPGA Accelerator for Homomorphic Encrypted
Sparse Convolutional Neural Network Inference

Yang Yang', Sanmukh R. Kuppannagari', Rajgopal Kannan? and Viktor K. Prasanna

1

!Department of Electrical and Computer Engineering, University of Southern California
2US Army Research Lab
Email: {yyang172, kuppanna, prasanna}@usc.edu, rajgopal.kannan.civ@mail.mil

Abstract—Homomorphic Encryption (HE) is a promising so-
lution to the increasing concerns of privacy in machine learning.
But HE-based CNN inference remains impractically slow. Prun-
ing can significantly reduce the compute and memory footprint of
CNNs. However, homomorphic encrypted Sparse Convolutional
Neural Networks (SCNN) have vastly different compute and
memory characteristics compared with unencrypted SCNN. Sim-
ply extending the design principles of existing SCNN accelerators
may offset the potential acceleration offered by sparsity. To
realize fast execution, we propose an FPGA accelerator to
speedup the computation of linear layers, the main computational
bottleneck in HE SCNN batch inference. First, we analyze the
memory requirements of various linear layers in HE SCNN
and discuss the unique challenges. Motivated by the analysis,
we present a novel dataflow specially designed to optimize HE
SCNN data reuse coupled with an efficient scheduling policy
that minimizes on-chip SRAM access conflicts. Leveraging the
proposed dataflow and scheduling algorithm, we demonstrate
the first end-to-end acceleration of HE SCNN batch inference
targeting CPU-FPGA heterogeneous platforms. For a batch of
8K images, our design achieves up to 5.6 x speedup in inference
latency compared with the CPU-only solution for widely studied
6-layer and 11-layer HE CNNs.

Index Terms—FPGA acceleration, homomorphic encryption,
sparse neural networks, parallel computing

I. INTRODUCTION

Homomorphic Encryption (HE) provides a promising solu-
tion for privacy-preserving machine learning. In HE, the client
provides encrypted data to a cloud server, on which the com-
putation is performed without decrypting the data [1]. During
encryption, the unencrypted input data is transformed into high
degree polynomial representation. All the HE computations are
carried out over a polynomial ring with a large modulus (up to
several hundreds of bits [2]). While HE offers strong privacy
guarantees for CNN inference in public cloud [3], [4], it comes
at a high cost: inference using HE CNN is orders of magnitude
slower than inference on unencrypted data [5]. The primary
bottleneck in HE CNN batch inference acceleration is the high
computation complexity and the large memory usage of the
linear layers (convolutional and fully-connected layers) [3],
[6], [7]. As reported in [6], more than 93% of the inference
time is spent on the linear layers in a 11-layer CNN.

Standard (unencrypted) CNN models are typically pruned
to produce Sparse CNNs (SCNN) with reduced compute and
memory footprint [8], [9]. While accelerating SCNNs for
unencrypted data is well studied [10], [11], little work has
been done on accelerating SCNN inference for Homomorphic

Encrypted data. Using SCNN models on HE data offers a
straightforward approach to reduce the number of homomor-
phic operations. However, due to the overheads imposed by the
encryption process that lead to a significantly larger activation
memory footprint, the inference latency for HE SCNNs is still
significant.

Figure 1 shows the size of one input B Lomemerbric Encryped
tile of the convolutional layers in Cryp- 108
toNets [6] for a batch size of 8192,
where an input tile is defined as the
amount of data required to compute
one output. With HE, the size increases
substantially to a few hundreds MiB
(Section II). As the encrypted input tile is too large to be
completely stored in on-chip SRAM, data reuse is critical
to amortize the overhead of DRAM data transfers. Also, the
unstructured sparsity of parameters in different output channels
that convolve the same encrypted input tile poses a challenge
for optimizing data reuse. Using the same dataflows that are
used to design sparse accelerators for unencrypted data (e.g.,
input or output stationary [12]) can lead to suboptimal designs.
Faster CryptoNets [13] is the first work that successfully
implements HE SCNN on a multi-core CPU. Due to the lack
of optimized dataflow, their design cannot fully exploit the
data reuse in HE. The inference incurs high latency. The fine
grained parallel computing capability of FPGA makes it an
attractive platform to accelerate HE. However, the scarcity of
FPGA resources (e.g., on-chip SRAM) necessitates non-trivial
approaches to create efficient designs.

To enable efficient HE SCNN batch inference, we propose
an FPGA accelerator to speed up the time consuming portion
of the computation (i.e., linear layers). We first analyze the
large memory footprint of the activations in HE SCNN batch
inference, which is significantly different from the unencrypted
SCNN. Motivated by the analysis, we propose a novel dataflow
specially designed to optimize HE computation of linear
layers. By rearranging the processing order of the polynomials
in the ciphertext, the proposed dataflow allows more output
polynomials along the channel dimension to be stored in the
on-chip SRAM, thereby improving data reuse. Coupled with
the dataflow, we propose a maximum bipartite matching based
scheduling algorithm to minimize pipeline stalls due to spar-
sity. The scheduling algorithm assumes no sparsity structure
in the neural network parameters. An FPGA accelerator is

108

10%
[
102 ||

conv0 convl

Fig. 1. Input tile size.

Input Tile [KiB]

designed to support the proposed dataflow and scheduling
algorithm for various linear layers in HE SCNN. The key
contributions of this paper are:

e We provide a comprehensive analysis of the memory
requirement of HE SCNN batch inference to identify the
bottleneck and data reuse opportunity in the linear layers.
The analysis effectively shows that HE SCNN is vastly
different from its unencrypted counterpart and requires a
different accelerator design.

« We propose a novel dataflow by rearranging the pro-
cessing order of the polynomials in the ciphertext. This
dataflow improves the data reuse using the on-chip
SRAM and reduces DRAM data transfers.

« We design a maximum bipartite matching based schedul-
ing algorithm for the irregular on-chip polynomial buffer
access due to sparsity. Compared with the commonly used
approach where the scheduling is based on the order of
the non-zero indices, the proposed algorithm significantly
reduces pipeline stalls and inference latency.

o We design an FPGA accelerator using high-level syn-
thesis based on the proposed dataflow and scheduling
algorithm. The accelerator can be programmed to process
various linear layers in HE SCNN.

o We demonstrate the first end-to-end acceleration of HE-
SCNN batch inference targeting CPU-FPGA heteroge-
neous platforms. For a batch of 8K images, our design
achieves up to 5.6x speedup in inference latency com-
pared with the CPU-only solution for widely used 6-layer
and 11-layer CNN models.

II. BACKGROUND
A. Homomorphic Encryption

In this paper, we use the BFV scheme [14]. The analysis
and acceleration techniques can also be applied to other HE
schemes (e.g. CKKS [15]). In BFV, cleartext is first encoded as
a plaintext polynomial (pt), which is then encrypted as a pair
of ciphertext polynomials ¢t = (cg,c1). After homomorphic
computation, the output ciphertext is decrypted to plaintext
and decoded to cleartext. There are three parameters in BFV:
N, t and @), where N is a power-of-two number that defines
the degree of plaintext and ciphertext polynomials, ¢ is the
plaintext modulus and @) is the ciphertext modulus. Let R =
Z[X]/(X™N +1), a plaintext is a polynomial in the ring R; =
R/tR with coefficients from Z, i.e., integers modulo ¢. The
ciphertext space is R%, = (R/QR)?, which means a pair
of polynomials with coefficients from Zg. BFV supports the
following HE arithmetic:

e pt-ct add: The addition of plaintext m and ciphertext
(co, c1) is ciphertext (co +m, cy).

o ct-ct add: The addition of ciphertext (cg,co1) and
(c1,0,¢1,1) 8 (co,0 + €1,0,€1,0 + €1,1)-

e ct scaling: The result of multiplying ciphertext (cg, 1)
with a scalar k is ciphertext (k- co, k- ¢1).

e pt-ct mult: The multiplication of plaintext m and cipher-
text (co,c1) is (m - co,m - c1).

o ct-ct mult: The multiplication of two ciphertext consists
of multiple steps, including polynomial multiplications
and relinearization. As the acceleration of ct-ct mult is
not the focus of this paper, we omit the details and refer
the reader to [14].

The BFV parameters are determined by the security require-
ment. Typically N is in the range of 29 to 2! [2]. ¢ is chosen
based on the range of the data during computation. HE requires
ciphertext modulus () to be hundreds of bits depending on
the multiplicative depth of the function to be evaluated [2],
which is expensive to process. The Residue Number System
(RNS) variant of the BFV scheme [14] enables representing a
ciphertext polynomial with log Q-bit coefficients as multiple
polynomials with narrower coefficients. Let () be a product
of r co-primes @ = H::1 g;- A polynomial in R can be
represented as r polynomials, where the coefficients of the i-th
polynomial are from Z,,. HE operations are carried out on the
RNS representation (r polynomials) in parallel. A limitation of
the BFV scheme is that the number of HE operations is limited
due to noise accumulation [16]. Bootstrapping can reset the
noise and enable Fully Homomorphic Encryption computation.
As the number of HE operations is known apriori in HE CNNs,
bootstrapping can be avoided in accordance with several other
works [3], [4], [5], [6], [13], [17].

B. Homomorphic Encrypted CNN Batch Inference

HE only supports addition and multiplication on polynomi-
als. Thus, implementation of HE CNN requires: (i) transform-
ing linear layers into polynomial operations, and (ii) devising
alternate methods to compute non-linear layers (e.g. ReLU).
For (ii), two approaches are typically adopted: Hybrid HE
CNN [4], [18], [19] uses other secure computation techniques
such as multi-party computation to compute non-linear layers
while linear layers are performed by HE. However, Hybrid
HE suffers from heavy communication cost between server
and client [4], [20], [21]. To mitigate this issue, HE-only
CNN approximates the non-linear layers using low degree
polynomials, in which case the inference can be computed
solely on the server [3], [6], [22]. Although most HE-only
CNNss are not deep, they can still obtain competitive inference
accuracy [6], [23], [24] and are applicable in many cases of
interest [25], [26], [27], [28]. In this paper, we demonstrate an
end-to-end acceleration of HE-only CNN.

For (i), we use the CNN to HE CNN transformation used
in works such as [3], [17], [6]. Under this transformation,
inference is carried out on batches of images to fully utilize
the parallelism offered by polynomial operations. We denote
Rin,s Win, Cin, as the height, width and number of channels
of the input tensor, hoy¢, Wout, Cour as the dimensions of
the output tensor. We use f to represent the convolution
filter window. Given the polynomial degree N, N images of
size h;, X w;, X ¢;, are batched together and packed into
hin X Wi X ¢ plaintext polynomials: elements at the same
coordinates across the /N images are packed into a single
plaintext. Then, the plaintext is encrypted into ciphertext. In
this transformation, the parameters (filters) are not encrypted.

= 4 scalar

X, X - ct scaling X X, X X, =
T T 1hrT—7 1 T=T—T77 T 1
(oslXiofxag) - [| [Xoaxaalxaaf .. Puxs) | [Xos|xas|Xag| - Putd l
il L -1
! T T3 T 1
1 X, ct-ct L
R L e R _ add <7
: T —_— = cg; r polynomials
1 Xor1 = —
el aa>in ve Mgy - I,
Lt=L—— "]

1.
-— ;_ _I} ¢y r polynomials
LI =) B

Homomorphic Encrypted Sparse Convolution

H
' H
N -
1 Sin [Xaa%; 5l%; 5
!] - Y12
1 X1,00X1,2[X1,4)1] <in | 0 19 Cout
1 H < 7 Viily, 4 "
X1,6/X1,8<1.10],] 1,01 2 .
: Batch & L7 YaolY13) 5
) Bate 1,12JX1,14X1,16] ® oo Cout ==
1 s::e = |Yus[y1o N
1
1 o 7
1 S IXo,1X XE c,,.r 0,100 3 Cout 05|
1 =« 2o,
H Xo,0{X0,2|X0,4/;, 00l O |o Z_|yos 0.4} 1
H —)
1 X0,6{X0,8f<0.10,] dbed Y0,0/Y0,3) 1
: 0,120, 14/X0, 16| Yo.6/Y0,9
: Input Parameters Output
1
'

Corresponding Unencrypted Sparse Convolution

Fig. 2. Sparse convolution implementation in HE with the SIMD packing scheme.

Thus, convolution with a f2 X ¢;;, X Cout filter w is performed
by taking each element of w and scaling the input polynomials
using ct scaling and accumulating to the output polynomial
using ct-ct add. Computation over the polynomials are applied
on all the N elements in a SIMD fashion. Fully-connected (fc)
layers can be expressed using 1 -1 convolution [29], thus we
use the construction of convolution to represent both conv and
fc layers. We use the following notations to describe the input
and output of a linear layer in HE CNN:

e T is the n-th element of the m-th input sample. yy,
is the corresponding output element. Both z,,, ,, and ¥, »,
represent unencrypted data.

o X, is the input ciphertext of the ¢-th element. It encrypts
a plaintext vector (polynomial) of [z¢;, %14, ..., TN ;]. In
addition, X; ; defines the j-th polynomial in ciphertext
X; under RNS representation (0 < j <2-r). Y;and Y] ;
are the corresponding output ciphertext and polynomial.

e w is the unencrypted convolution filter.

Linear layers are implemented by HE as the following:

« Conv and fc layer can be expressed as Y; = >, w; - X;.
w; is a parameter from the convolution filter.

« Pooling layer. Only linear pooling (e.g. average pooling)
is supported by HE. For example, an average pooling of
size 2- 2 can be expressed as Y; = S, X, /4.

Sparsity in Homomorphic Encrypted CNNs: Pruning is
applied to the conv and fc layers of a CNN. After pruning,
w turns into a sparse tensor. Figure 2 illustrates the HE
sparse convolution that is accelerated in this paper. The left
part shows the HE convolution and the right part shows the
corresponding convolution in the unencrypted space. They
both compute one output from each sample. HE convolution
follows the same computation as the unencrypted convolution.
The key differences are: 1) The input (X;) and output (Y;) of
the convolution are ciphertext represented in RNS using 2 - r
polynomials. 2) Multiplication between X; and parameters is
achieved using ct scaling: coefficient-wise modular multipli-
cation between the 2 - r polynomials and the parameter. 3)
Partial sum accumulation is performed using ct-ct add.

III. MEMORY REQUIREMENT AND DATAFLOW ANALYSIS

We adopt the magnitude-based unstructured pruning algo-
rithm from [8] to obtain parameter sparsity and train two
widely studied HE-CNNs for image classification: a 6-layer

CNN for MNIST (CNN-6) and an 11-layer CNN for CIFAR-
10 (CNN-11) [25], [6], [3], [13], [17]. The architecture of
the two models is shown in Table I and Table II. The non-
linear activation functions are approximated using degree-2
polynomials (y = ax? + bz + ¢) which can be computed using
HE multiplications and additions [3], [6], [13], [20], [22]. Co-
efficients (a, b, c) are learnt through stochastic gradient descent
during training. Because BFV only allows integer modular
computations, fractional parameters of each layer are scaled
up by a common factor A and rounded to integers [3], [17]. We
empirically choose 8-bit of precision for the parameters of both
models based on the study in [17]. Compared with the baseline
— the dense models of HE CNN, CNN-6 and CNN-11 have
little to no test accuracy drop when they are pruned to 90%
and 50% sparsity respectively. The sparse CNN-6 achieves
the same test accuracy as the original network (98.8%). The
test accuracy drop of the sparse CNN-11 is only 0.4% (from
77.1% to 76.7%). Our sparse models achieve comparable test
accuracy to the prior works [3], [13], [17].

TABLE I
CNN-6 FOR MNIST

Layer Input Shape Configuration
conv(28 x 28 x 1 5 filters of size 5 X 5 X 1
act0 14 x14 x5 Square
convl 14 x14 x5 50 filters of size 5 X 5 X 5
actl 5% 5 x50 Square
fcO 5 X 5 x50 100 outputs
fcl 1 x 100 10 outputs
TABLE I
CNN-11 FOR CIFAR-10
Layer Input Shape Configuration
conv(32 x32x%x3 32 filters of size 3 X 3 X 3
act0 32 X 32 x 32 Degree-2 polynomial
pool0 32 x 32 x 32 Average 2 X 2 pooling
convl 16 x 16 x 32 64 filters of size 3 x 3 x 32
actl 16 X 16 x 64 Degree-2 polynomial
pooll 16 x 16 x 64 Average 2 X 2 pooling
conv2 8 X 8 X 64 128 filters of size 3 x 3 x 64
act2 8 X 8 x 128 Degree-2 polynomial
pool2 8 X 8 x 128 Average 2 X 2 pooling
fcO 4 x4 x128 256 outputs
fcl 1 x 256 10 outputs

Achieving speedup in inference latency requires overcoming
several fundamental challenges. First, the intrinsic overheads
imposed by the encryption lead to a significantly larger
memory footprint for HE SCNNs. Since the encrypted input
tiles are too large to be completely stored on-chip, data reuse
becomes essential to amortize the overhead of DRAM data
transfers. Concomitantly, the uneven sparsity of parameters in

different output channels that convolve the same encrypted
input poses a challenge for optimizing data reuse. Finally,
the scarcity of DSP and on-chip SRAM resources necessi-
tates non-trivial approaches to avoid bottlenecks that impact
inference latency. We tackle the above challenges through a
dataflow specially designed to optimize HE SCNN data reuse
coupled with an efficient scheduling policy that minimizes
pipeline stalls in order to achieve true low latency inference.
To motivate our optimized dataflow, resource allocation and
pipeline scheduling algorithm, we first analytically quantify
the memory overhead of HE SCNN.

A. Memory Requirement Analysis

We analyze the memory footprint of the linear layers in
CNN-6 and CNN-11 using batch size of N. A ciphertext is
composed of 2. degree-N polynomials, where r is determined
by the RNS representation (Q = [[;_, ¢;). Each coefficient in
the polynomials is a log g; bits integer. The size (bytes) of a
ciphertext is bytesqs = 2 -1 - N - bytescocs ficient- The input
activation memory footprint is therefore h;, - w;y, - ¢ip, - bytes ..
The memory footprint of the parameters is 2 Ccout + Cin -
bytes_per_param - (1 — sparsity).

B HE Input Act. [Unencrypted Act. [l Parameters
CNN-6 CNN-11

Io 02||‘2J|| |Io.20

convd convl fc0 fe1

3

107

10°
5.00
0.84 I []

conv0 convl conv2 fc0 fcl

Fig. 3. Memory footprint of various linear layers in CNN-6 and CNN-11.

3
i

)
>

3
>

3

Memory Footprint [KiB]
3

Memory Footprint [KiB]

We choose HE parameters to ensure at least 91-bit secu-
rity [2], [30]. The polynomial degree (/N) of the plaintext
and the ciphertext is 8192. The ciphertext modulus (Q) is
218-bit (r = 5) and 304-bit (r = 7) wide for CNN-6 and
CNN-11 respectively. Each ¢; is represented using a 64-bit
integer. bytes_per_param is 8 bytes. Figure 3 shows the
memory footprint of various linear layers. Pooling layers in
CNN-11 are not shown due to space limitation but they
have similar footprint. As a comparison we also show the
corresponding activation size before encryption. The memory
footprint of HE activations can increase by one to two orders
of magnitude after encryption. For unencrypted CNN, one can
use a smaller batch size to reduce the memory footprint. Due
to the polynomial representation, reducing the batch size in HE
CNN does not lead to any memory footprint reduction. As a
result, an input tile (i.e. f2 - ¢, ciphertext) that produces one
output ranges from 17 MiB to 180 MiB, far exceeding the on-
chip SRAM capacity in the state-of-the-art FPGAs [31], [32].
In contrast, the parameter size is quite small after pruning.

B. Dataflow Analysis

As, in convolution, outputs in different output channels
convolve the same data, an input tile could be read from
DRAM many times. Reusing input ciphertext as many times
as possible once they are loaded into the on-chip SRAM is
crucial for reducing the inference latency. Different dataflows

have distinct data movement patterns, which imply different
reuse opportunities. Unencrypted CNN accelerators can be
classified into a taxonomy of five dataflows [12]. Mapping
these dataflows to HE SCNN leads to inefficient designs. Here
we discuss mapping the input stationary [33] and output sta-
tionary [34] dataflows to HE. Other dataflows in the taxonomy
require either multicasting the input activations or duplicating
the partial sums across PEs. They are not practical for HE
because the large size of input/output ciphertext would make
the on-chip SRAM requirement too high. All the dataflows
are used to compute 1-1 - ¢,y outputs. To compute the entire
output tensor, the same dataflow is repeated hyy - Woyr times.

HE Input Stationary (Dataflow #1): We store m polyno-
mials from [7] input ciphertext on-chip and stream the coy¢
partial sum ciphertext, where m is a design time parameter
and is determined based on on-chip SRAM capacity. Only the
input ciphertext that are indexed by non-zero parameters are
loaded. A partial sum ciphertext is reused for at most [|
times. Then, it is written back to DRAM and a new partial
sum is read from DRAM. Input ciphertext are read once and
reused for up to ¢,y times.

HE Output Stationary (Dataflow #2): m partial sum
polynomials from [%] output ciphertext are kept in on-
chip SRAM until all the computations to produce m outputs
are finished. The input ciphertext, indexed by the non-zero
parameters, are streamed from DRAM. This process repeats
until the c¢,,; output ciphertext are computed. This dataflow
avoids storing and re-loading partial sums back and forth by
reusing them for up to f? - ¢;,, times. The input ciphertext,
however, is read from DRAM for up to [27:ut] times.

While Dataflow #1 and Dataflow #2 are standard dataflows,
they offer limited data reuse for HE SCNN. Due to RNS
polynomial representation, the number of activation ciphertext
that can be stored on-chip is very small in these dataflows,
which severely reduces the data reuse. We tackle this challenge
by introducing an HE Optimized Dataflow, which aims to
improve data reuse by rearranging the processing order of
polynomials in HE convolution.

HE Optimized Dataflow (Dataflow #3): With RNS rep-
resentation, 2 - r polynomials in a ciphertext can be pro-
cessed independently [35], i.e., the first polynomial of each
output ciphertext only depends on the first polynomial of
the corresponding input ciphertext. Unlike the aforementioned
dataflows, this dataflow computes the i-th polynomial of all
the output ciphertext first before processing the (i + 1)-th
polynomial of the output ciphertext (1 <7 < 2- 7). m partial
sum polynomials, one for each output ciphertext, are fixed on-
chip to produce m output polynomials. After the computation,
the next set of m output polynomials are processed and so
on. By reordering the computation of polynomials in the
ciphertext, this dataflow allows the input ciphertext to be
reused for up to m times, greater than Dataflow #2 by a factor
of 2-r. Each output ciphertext is still written to DRAM once.

Figure 4 uses an example to illustrate the 3 dataflows, where
a 2 - 2 convolution is performed and c;;, = 1,Cout = 4,m =
4,r = 2. In Dataflow #1, polynomials from Y; are read from

and written to DRAM 4 times to produce the output. Dataflow
#2 stores Y; to DRAM once but loads X; to on-chip SRAM for
up to 4 times (depending on the sparsity). Dataflow #3, being
the most optimal one among the three, can fully reuse the
polynomials in X;. Hence, this dataflow loads X; and stores
Y, for at most 1 time.

Input Act.
(Polynomials)

on-chip SRAM (streaming)

e bbbl o
—n—
PE PE PE PE
(Polynomials) ? =) 5]
— Sparse

—N—o Output

(a) HE sparse convolution (c) Dataflow #2

on-chip SRAM (streaming) [on-chip SRAM (streaming)]
[Yool [Yoa] [Yoo] [Yos] Xo,0 X1,0 Xa0 X3.0
PE PE PE PE PE PE PE E
[x] [x [x] [x [x] [
Xao Xz
(b) Dataflow #1 (d) Dataflow #3

Fig. 4. Dataflow for the computation of linear layers in HE SCNN.

We quantitatively analyze the impact of the 3 dataflows
on the DRAM data transfers. We use the HE parameters
discussed in Section III-A. We choose m = 8 as the resources
required by the dataflows are within the scope of possible
implementation on an FPGA. As Figure 5 shows, Dataflow #1
almost always incurs the largest amount of data transfers due
to the additional write traffic from partial sums. For layers that
have large c,q¢, Dataflow #3 avoids a substantial amount of
data transfers due to the increase in data reuse. This motivates
us to design a hardware accelerator for Dataflow #3.

® Dataflow #1 @ Dataflow #2 Dataflow #3

CNN-6
25 4000

CNN-11

20
15
10

©
=3
=3
=)

2000

1000

Data Transfer [GiB]
Data Transfer [GiB]

conv0 conv1 conv2 fcO fe1

Fig. 5. Off-chip data transfer for different dataflows.

conv0 convl fc0 fe1

IV. HARDWARE DESIGN
A. Accelerator Architecture

We design a fully pipelined FPGA accelerator optimized
for Dataflow #3, as shown in Figure 6. The accelerator has an
array of m Processing Elements (PEs). Each PE is responsible
for computing one or more output ciphertext from different
output channels. All the PEs run in lock-step and process the
n-th polynomial in each ciphertext (1 < n < 2-r). The PEs
are connected to k Polynomial Buffers (Poly Buffers) using a
crossbar, where each buffer stores different input polynomials
in the input tile. Both m and & are determined at design time.
The Sequencer module runs a state machine to coordinate
between the Poly Buffers and the PEs. At the start of a linear
layer computation, k£ polynomials are loaded into the Poly
Buffers. Non-zero parameters along with information on which
Poly Buffer to access (Buffer ID) are transferred to the Sparse
Params Buffer. Then each PE fetches the input polynomials
based on the Buffer IDs and sends them to the MAC array. To
improve performance and reduce design complexity, we adopt
a static scheduling microarchitecture, in which the fetching of
the k£ input polynomials and the order of accesses from the
PEs are pre-determined offline using a scheduling algorithm

(Section IV-B). After all the PEs have consumed the %k input
polynomials, the Sequencer initiates the Poly Buffers to fetch
the next set of k input polynomials. The PEs write m output
polynomials back to DRAM once they are generated and
repeat this process for [W] times.

DRAM —
Poly. Buffer EE Mod MACs. I-(>
g e
c
c m Parallel
k BL;fers g : t PEs
7]
-Po ly. Buffer | c [PE, Toawacs >
e
Poly. Buffer Params
A
[Sequencer |

Fig. 6. HE SCNN accelerator architecture.

Polynomial Buffer and PE: Our PE exploits coefficient-
wise parallelism by processing [coefficients per cycle, where [
is determined at design time. Figure 7(a) shows the data layout
of polynomials in the Poly Buffer, which is implemented using
URAM. Each entry of the buffer stores [coefficients. There
are 2 - N/l entries in each buffer to store two polynomials
(double buffered). Figure 7(b) shows the microarchitecture of
the PE. A PE has a Sparse Params Buffer, an Input Coefficient
Fetcher, an Output Buffer and a MAC array of size [. The
Sparse Params Buffer stores the non-zero parameters and the
corresponding Buffer IDs. The output buffer is sized to store
two polynomials, one that is being processed and the other
that is being transferred to DRAM. Each PE operates on the
sparse parameters and input polynomials in the order defined
by Dataflow #3. An output polynomial is produced after all the
non-zero parameters and the corresponding input polynomials
are multiplied and accumulated. Using the Buffer IDs, a
polynomial from one of the Poly Buffers is streamed into a
PE at the rate of [coefficients per cycle. At the same time, [
coefficients are distributed to the ! modular MAC units every
cycle. An offline scheduling algorithm is executed to determine
how many polynomials to read and the corresponding Buffer
IDs in each iteration. This information is programmed to the
State Machine in each PE at the beginning of layer execution.
The State Machine keeps track of the progress of the execution
and communicates with the Sequencer after producing each
output polynomial.

1 coefficients

Sparse
Params

/1 |URAM...| URAM

Entries Output (}

Buffer

1 coefficients
1 coefficients

(a) Polynomial Buffer (b) PE Architecture
Fig. 7. Architecture of the Polynomial Buffer and the PE.

wvyay

B. Polynomial Buffer Access Scheduling

The uneven distribution of sparse parameters poses chal-
lenges in terms of Poly Buffer access. Figure 8(a) shows an
example of the irregular polynomial accesses to produce the n-
th polynomials in the output ciphertext. Node X; ,, represents
an input polynomial (0 < i < f? - ¢;,). Node Y, represents
an output polynomial (0 < j < cpye). A connection from X ,,
to Y; ,, means the output j has a non-zero parameter at index 4.

Figure 8(b) shows a scheduling instance of Figure 8(a) when
mapping onto the proposed accelerator (m = 2,k = 4). We
keep m output polynomials stationary in m PEs and process k
input polynomials at a time. For every m output polynomials,
there are up to [£ : | scheduling instances. Given m parallel
PEs, at worst, one Poly Buffer needs to send the coefficients to
all m PEs in the same cycle, which violates the single access
principle of URAM [31]. Therefore only one PE can access
the buffer while other PEs have to be stalled and the stall
duration can be as long as N/l cycles.

—————act. poly. for non-zero parameters———— Buffer 0 Buffer 1 Buffer2 Buffer 3

© & & ©

PEO PE1

——Cout polynomials——

(a) Irregular Access of Polynomials (b) Mapping to Accelerator
Fig. 8. Graph representation of the irregular input polynomial access and its

mapping to our accelerator.

A commonly used scheduling policy is to issue the Poly
Buffer reads based on the index order of the non-zero pa-
rameters. We call this Index Order scheduling. However, this
approach can lead to significant stalls when node X, has
large degrees. We propose an algorithm to reduce pipeline
stalls due to multiple PEs accessing the same Poly Buffer.
The proposed scheduling algorithm is aimed to maximize the
number of non-stalled PEs every cycle. The key idea of our
scheduling algorithm is that we want to group the accesses
from the PEs such that in each cycle they access different
Poly Buffers. We formulate this scheduling algorithm as a
Maximum Bipartite Matching (MBM) problem between
node X; , and node Yj ,,.

Algorithm 1: Maximum bipartite matching based
Polynomial Buffer access scheduling

Input: Sparse parameters P.
Output: Set S = {s1, 52, ..., Sp, ...} for scheduling.
1 for i <~ 0 to ¢,y by m do

2 c_out_range of this iteration is from ¢ to ¢ +m

3 indices < get_unique_indices(P, c_out_range)

4 for j < 0 to len(indices) by k do

5 input_range of this iteration is from j to j+ k
6 Construct bipartite graph B using P,

c_out_range, input_range

7 while there are remaining edges in B do

8 s < get_edges_max_bipartite_matching(B)
9 S.append(s)

10 Delete s from B

11 end

12 end
13 end

The proposed algorithm is shown in Algorithm 1. For every
m output polynomials, we first find the input polynomials
that have at least one non-zero parameter associated with it
(Line 1-3). Only these input polynomials are streamed into
the Poly Buffers. Each loop iteration in Line 4 works on a
new scheduling instance, which can be viewed as a bipartite

graph similar to Figure 8(b). We construct a unit scheduling
set s, = {(Xa,Y3), ... (Xor, Yp)} that satisfies the following
constraints: (1) Elements in s, have distinct X;, and Y},
nodes. This implies that only one Poly Buffer is read by
one PE during this unit of schedule. (2) For each pair of
(Xin,Yjn) in sp, there must exist an edge from X ,, to Y ,,.
(3) The length of pairs in s, cannot exceed m. This reflects the
fact that at most m PEs are busy. Each set s, represents N/l
cycles of read access from m PEs. Using MBM, we find a set
that can cover most PEs, thereby achieving high parallelism.
We find all the units of scheduling by iteratively running the
MBM algorithm for a scheduling instance (Line 7-11). After
each iteration, the matching edges are removed from the bipar-
tite graph. A scheduling instance is fully scheduled when the
bipartite graph B becomes empty. Then the algorithm moves
to the next scheduling instance and repeats. The output of
Algorithm 1, scheduling set S = {s1, s2, ..., Sp, ...}, contains
the unit scheduling sets to produce 1-1-c,,+ output ciphertext.
Note that the 2-7 polynomials within a ciphertext can reuse the
same S. S is used by the Sequencer and the State Machines
of the PEs to control the fetching of input polynomials and
the order of access. For each trained HE CNN, this algorithm

is only run once as a preprocessing step.

Scheduling Instance
Filter 0

Output of the Two Scheduling Algorithms
PE 0 Access Pattern PE 1 Access Pattern

Param Poly. valid | Param [Poly. valid | Param
ldx | ButferiD Index_| Buffer ID Index_| B
4 [Idx Order 0 - - 1 4

7 2 Schedule 4 0 1 5

1
0 3 0 B B 1 7
%7 1 7 2 0 B
1 .

Filter 1 10 3)
Param Poly. -_—
Idx | Buffer iD

4 0
5 1
7 2

bl

oly.
D

olelo|E

PE 0 Access Pattern PE 1 Access Pattern

axim valid | Param | Poly.
Bipartite idex

valid | Param [Poly.
Buffer ID. Index | Buffer ID

Matching

Scheule 1 4 0 1 s 1
1 7 2 1 4 0

1 10 3 1 7 2

Fig. 9. Comparing the Index Order scheduling and the Maximum Bipartite
Matching scheduling based on Figure 8(b).

Figure 9 shows the output of Index Order scheduling and
MBM scheduling based on Figure 8(b). Each row in the output
tables on the right represents a unit scheduling set. Only the
rows with valid = 1 should be included by the scheduling
set. For instance, the first unit scheduling set of the Index
Order scheduling is s; = {(4,1)} while the MBM algorithm
produces s; = {(4,0),(5,1)}. With Index Order scheduling,
each PE is stalled 2 times, which can lead to 2 - N/I stall
cycles. Using the MBM scheduling, the PEs are not stalled
during the execution of this convolution.

V. EXPERIMENTS
A. Experimental Setup

We implement our design on a CPU-FPGA heterogeneous
platform. The target platform has an AMD Ryzen 3990X CPU,
which has 64 cores (128 threads) running at 2.9 GHz. A Xilinx
U200 FPGA [31] is connected to the CPU via the PCI-E Gen3
x16 interface. The FPGA has 1182K LUTs, 2364K FFs, 35
MB on-chip SRAM and 6840 DSPs. 64 GB of DRAM is
attached to the FPGA, providing a peak bandwidth of 77 GB/s.
We partition the HE SCNN inference into two parts: the linear
layers are accelerated on the FPGA and the activation layers
are executed on the host CPU. Data is copied between CPU

and FPGA through the PCI-E interface. The FPGA accelerator
is implemented using Vitis high-level synthesis v2020.2 [36].
The activation layers are implemented using Microsoft SEAL
library v3.6 [30] and OpenMP v4.5.

Applications. We use CNN-6 and CNN-11, two widely
studied HE optimized CNNs [3], [6], [17], [13], as the target
models for benchmarking. They are pruned to 90% and 50%
sparsity as described in Section III. The one-time setup cost
for generating the MBM scheduling is 1.47s and 9.71s for
CNN-6 and CNN-11 respectively. The inference is performed
on batches of images with batch size of 8§192.

TABLE III
ACCELERATOR ARCHITECTURE CONFIGURATIONS.
Config Num PEs Num Poly. PE MAC
(m) Buffers (k) Array Size (1)
Accel-L 8 8 8
Accel-M 4 4 8
Accel-S 2 2 8

Accelerator configurations. Table III summarizes the ar-
chitecture configurations. We evaluate three configurations,
ranging from Accel-L (Large), Accel-M (Medium) to Accel-S
(Small). They are targeted at FPGA devices that have different
resource availability. Previous study [37] showed that the
effective DRAM bandwidth can be improved by increasing the
DRAM burst length. Because MAC array size (1) is directly
related to the DRAM burst length in our design, we choose
! = 8 in all the configurations.

B. Accelerator Performance

1) Linear Layer Execution Time: We compare the execu-
tion time of Index Order scheduling and Maximum Bipartite
Matching (MBM) scheduling. Figure 10 shows the execution
time of various linear layers. The top 3 sub-figures show
the performance of CNN-6 while the bottom 3 sub-figures
present the performance of CNN-11. CNN-6 is a much easier
task than CNN-11, therefore the execution time is much
shorter. Comparing different accelerator configurations, Accel-
L achieves significantly lower latency especially for layers
that have high computational demand (e.g., convl and conv2
in CNN-11). The MBM scheduling algorithm gives a con-
sistent performance improvement across all the linear layers,
providing a speedup of up to 35%. The improvement from the
MBM algorithm increases in accelerators with more PEs and
Polynomial Buffers. The reason behind this gap is that it is
more difficult to find the same number of matching edges as
m and k decrease.

Pooling layer is intrinsically memory bound as there is no
data reuse. Thus, the execution time is mostly determined by
the data transfer from FPGA DRAM to the accelerator. Our
accelerators achieve 1.4s, 0.6s and 0.3s for pool0, pooll and
pool2 layers in CNN-11 respectively.

2) End-to-end Inference: The computation of the activation
functions are performed on the CPU. We exploit thread-level
parallelism (OpenMP) by partitioning the activation tensor
across different CPU threads. Data is copied between FPGA
DRAM and host DRAM before and after each activation

M Index Order Scheduling [Bipartite Matching Scheduling
CNN-6 on Accel-L CNN-6 on Accel-M

Speedup
CNN-6 on Accel-S

0.4 10% 06 8% 06 4%
B f 3 g
& 03 8% _ 2 / 6% . & 4] 3%
° E go4 Keo4 S
F 02 5% & 4% S F 2% &
3
5 L, 8§02 2 & £ 02 " 8
3 01 00023 3% & 3 00028 “% & 3 0003a 1% 2
<] 0.0021 2 B 0.0027 Q 0.0033
i 00 0% W00 —FE-EE 0% 0.0 0%
N
S50 @ R S
CNN-11 on Accel-L CNN-11 on Accel-M CNN-11 on Accel-S
80 40% _100 30% 125 15%
2 2 (Y| 2
2 60 30% _ 275 2100
< % %
E40 20% 5 §50 e e
g s P S i o
S S S
8 L8 8 10% § §°° 5% B
3520 004z 10% & 525 0.052 2 325 0.055 a
0 (2] 7]
2] 0.031] 0.042] 0.049
3o = 0% o 0% o 0%
SIS S LIS & S I e
& & & & & & &

Fig. 10. Comparing the scheduling algorithms for conv and fc layers in CNN-
6 and CNN-11.

layer. The end-to-end inference time breakdown on Accel-L
is shown in Table IV. The results of Accel-M and Accel-S
have similar trend. For CNN-11, the linear layers are still the
primary bottleneck after acceleration, taking 80% of the run
time. CNN-6 has less computational demand in linear layers.
Activation layers and linear layers have similar run time after
acceleration.

TABLE IV
INFERENCE TIME BREAKDOWN OF CNN-6 AND CNN-11 ON ACCEL-L.
CNN-6 CNN-11

0.639s [42.2%]
0.734s [48.5%]

0.140s [9.3%]
1.513s

98.384s [80.1%]
21.657s [17.6%]

2.771s [2.3%]
122.813s

Linear Layers
Activation Layers
CPU/FPGA
Data Transfer
Latency (8K images)

To better understand the performance difference between
FPGA and CPU, we implemented the linear layers of CNN-
6 and CNN-11 on the CPU using OpenMP (64 threads). For
a fair comparison, we use two CPU baselines: one performs
CNN-6 and CNN-11 inference without pruning, another uses
the same sparse models as the CPU-FPGA design. Figure 11
summarizes the speedups offered by Accel-L, using the CPU
dense implementation as the baseline (1x). Accel-L consis-
tently outperforms the two CPU implementations across all the
layers. Compared to the CPU dense (sparse) implementations,
Accel-L achieves a network level speedup of 9.5x (2.1x)
and 9.9%x (5.6x) for CNN-6 and CNN-11 respectively. The
speedup offered by the Index Order scheduling based de-
signs demonstrates the effectiveness of the specially designed
dataflow for HE SCNN.

3) Sensitivity to CNN Sparsity: Apart from the sparse
parameters obtained from CNN-6 and CNN-11, it is also
important that the scheduling algorithm can perform efficiently
for other sparsity patterns. Similar to [33], we randomly
generate the parameters of the conv and fc layers in CNN-
11 at different sparsity levels. Figure 12 shows the results on
Accel-L. On the x-axis we sweep the sparsity from 10% to
70%, on the y-axis is the total inference time of CNN-11. The
MBM scheduling algorithm consistently outperforms the Index
Order scheduling. The improvement increases as the sparsity
level drops, reaching a 60% improvement at 10% sparsity.
At higher sparsity levels, there are less Poly Buffer access
conflicts to begin with, thus the benefit of MBM scheduling

is less pronounced.

B CPU Dense Accel-L w/ Index Order Scheduling
B CPU Sparse M Accel-L w/ Bipartite Matching Scheduling
CNN-6

lia

1 Network

2
20
15

10
OJL.I

conv0 convl

Speedup

5
5

CNN-11
15

L

com0 convl conv2 fc0 fe1 Network

Speedup

Fig. 11. Conv, fc and network speedup using CPU dense implementation as
the baseline.

Index Order Scheduling @ Bipartite Matching Scheduling

250
200
150
100

50

Inference Time [sec] ®

10% 30% 50% 70%
Sparsity
Fig. 12.

C. Accelerator Resource Consumption

Inference latency of CNN-11 with various sparsity.

The resource utilization of Accel-L, Accel-M and Accel-S
are listed in Table V. URAMs are heavily used in our design
to store the polynomials in a double buffered manner. Due to
the modular arithmetic, each MAC unit in the MAC array uses
36 DSPs, which is significantly greater than the MAC unit for
unencrypted computation. The fully-connected crossbar brings
additional complexity to the design, which can incur frequency
drop with larger number of PEs.

TABLE V
ACCELERATOR RESOURCE CONSUMPTION ON FPGA.

LUT FF BRAM URAM DSP Freq.
Accel-L 360K 424K 698 264 2320 175 MHz
Accel-M 287K 406K 622 132 1168 200 MHz
Accel-S 265K 391K 585 66 592 250 MHz

D. Comparison with State-of-the-art

Multicore CPU. CryptoNets [3] proposed the first CNN
using HE. It performs inference on a batch of 8K images and
achieves a latency of 570s for dense CNN-6. CryptoDL [6]
reduces the dense CNN-6 latency to 139.6s. A CNN model
that has similar architecture to dense CNN-11 is also evaluated
by CryptoDL and the inference latency is 11,686s. Faster
CryptoNets (FCryptoNets) uses pruning and quantization to
reduce HE operations. It does not use SIMD packing and thus
the effective batch size is 1. FCryptoNets achieves a latency
of 39.2s (22,372s) per image for sparse CNN-6 (CNN-11).
NGraph-HE2 [19] improves the dense CNN-6 latency to 2.05s
using a batch of 4K images. GPU. HCNN [17] uses NVIDIA
V100 GPU to accelerate HE CNN inference on a batch of 8K
images. HCNN obtained an inference latency of 5.1s and 304s
for dense CNN-6 and CNN-11 respectively.

To the best of our knowledge, our paper is the first attempt to
study the FPGA acceleration of HE CNN with batch inference.
The evaluation results demonstrate that the proposed design
can achieve a low latency of 1.5s and 122.8s for sparse CNN-
6 and CNN-11 on the target CPU-FPGA platform.

VI. RELATED WORK

CryptoNets [3] was the first work to enable HE CNN
inference. CryptoDL [6] further explored using polynomial
approximation as activations to enable deeper CNNs (e.g.,
CNN-11). HCNN [17] implemented the first GPU acceleration
of batch inference of HE CNN [3]. Cheetah [5] and [38]
focus on the acceleration of linear layers for single image
inference with a different HE encoding scheme from this paper.
Their designs accelerate dense CNNs, applying their designs
to sparse CNNs will result in significant overhead as unneces-
sary computations are not skipped. F1 [39] proposed ASIC
acceleration of BGV scheme. Their design was evaluated
on a simulator assuming extremely high memory bandwidth.
Prior FPGA implementations [40], [41], [42] accelerate HE
primitives (multiplication/addition) and do not consider the
data layout and reuse in HE CNN. Naively using these designs
for HE SCNN inference will result in excessive off-chip data
transfers as the data reuse is not exploited. CryptoPIM [43]
accelerates NTT and does not provide the design of other
HE operations that are required for end-to-end inference. Tian
et al. [44] proposed analytical models of FPGA accelerated
HE CNN, while many implementation details are ignored.
In contrast, we propose a practical implementation. Faster
CryptoNets [13] was the first work that combines sparsity with
HE CNN. Although using an inefficient encoding scheme and
targeting at CPU platform, this work shows the viability of
leveraging sparsity to speedup HE CNN inference.

VII. CONCLUSION

In this paper, we performed a thorough analysis to show the
bottlenecks and data reuse opportunities of the linear layers
in HE Sparse CNN (SCNN) batch inference. Motivated by
the analysis, we proposed a novel dataflow by rearranging
the processing order of the polynomials in the ciphertext.
This dataflow improves the data reuse of input ciphertext
and reduces off-chip data transfers. To mitigate the pipeline
stalls caused by sparse input polynomial accesses, we designed
a maximum bipartite matching based algorithm to enable
efficient access of polynomials from parallel PEs. We adopted
the proposed dataflow and scheduling algorithm to design an
FPGA accelerator that can be programmed to process various
linear layers in HE SCNN. We demonstrated end-to-end
HE SCNN batch inference on a CPU-FPGA heterogeneous
platform. Compared to CPU-only solutions, our accelerator
achieves up to 5.6x speedup in inference latency on widely
studied 6-layer and 11-layer HE CNNs.

VIII. ACKNOWLEDGEMENT

This work has been sponsored by the U.S. National Science
Foundation under grant number SaTC-2104264. Equipment
grant by Xilinx is greatly appreciated.

[5]

[6]

[7]
[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

REFERENCES

C. Gentry, “Fully homomorphic encryption using ideal lattices,” in
Proceedings of the Forty-First Annual ACM Symposium on Theory of
Computing. Association for Computing Machinery, 2009.

M. Albrecht, M. Chase, H. Chen, and et al, “Homomorphic encryption
security standard,” Tech. Rep., 2018.

N. Dowlin, R. Gilad-Bachrach, K. Laine, K. Lauter, M. Naehrig, and
J. Wernsing, “Cryptonets: Applying neural networks to encrypted data
with high throughput and accuracy,” ser. ICML’16.

P. Mishra, R. Lehmkuhl, A. Srinivasan, W. Zheng, and R. A. Popa,
“Delphi: A cryptographic inference service for neural networks,” in 29th
USENIX Security Symposium (USENIX Security 20).

B. Reagen and et al, “Cheetah: Optimizing and accelerating homo-
morphic encryption for private inference,” in 2021 IEEE International
Symposium on High-Performance Computer Architecture (HPCA), 2021.
E. Hesamifard, H. Takabi, and M. Ghasemi, “Cryptodl: towards deep
learning over encrypted data,” in Annual Computer Security Applications
Conference (ACSAC 2016), Los Angeles, California, USA.

K. Garimella, N. K. Jha, Z. Ghodsi, S. Garg, and B. Reagen, “Cryptonite:
Revealing the pitfalls of end-to-end private inference at scale,” 2021.
M. Zhu and S. Gupta, “To prune, or not to prune: Exploring the efficacy
of pruning for model compression,” in 6th International Conference on
Learning Representations, 2018.

S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep
neural network with pruning, trained quantization and huffman coding,”
in 4th International Conference on Learning Representations, Y. Bengio
and Y. LeCun, Eds., 2016.

M. Zhu, T. Zhang, Z. Gu, and Y. Xie, “Sparse tensor core: Algorithm and
hardware co-design for vector-wise sparse neural networks on modern
gpus,” ser. MICRO ’52, 2019.

S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and
W. J. Dally, “Eie: Efficient inference engine on compressed deep neural
network,” in ISCA’2016.

V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient processing of
deep neural networks: A tutorial and survey,” Proceedings of the IEEE,
vol. 105, no. 12, pp. 2295-2329, 2017.

E. Chou, J. Beal, D. Levy, S. Yeung, A. Haque, and L. Fei-Fei, “Faster
cryptonets: Leveraging sparsity for real-world encrypted inference,”
2018.

J.-C. Bajard, J. Eynard, M. A. Hasan, and V. Zucca, “A full rns variant of
fv like somewhat homomorphic encryption schemes,” in Selected Areas
in Cryptography — SAC 2016, R. Avanzi and H. Heys, Eds., 2017.

J. H. Cheon, K. Han, A. Kim, M. Kim, and Y. Song, “A full rns
variant of approximate homomorphic encryption,” in Selected Areas in
Cryptography — SAC 2018, C. Cid and M. J. Jacobson Jr., Eds. Cham:
Springer International Publishing, 2019, pp. 347-368.

C. Gentry, “A fully homomorphic encryption scheme,” 2009, phD
Dissertation 2009.

A. QaisarAhmadAlBadawi, J. Chao, and et al, “Hcnn, the first homomor-
phic cnn on encrypted data with gpus,” IEEE Transactions on Emerging
Topics in Computing.

C. Juvekar, V. Vaikuntanathan, and A. Chandrakasan, “Gazelle: A low
latency framework for secure neural network inference,” in Proceedings
of the 27th USENIX Conference on Security Symposium, ser. SEC’18.
USA: USENIX Association, 2018.

F. Boemer and et al, “Ngraph-he2: A high-throughput framework for
neural network inference on encrypted data,” in Proceedings of the 7th
ACM Workshop on Encrypted Computing and Applied Homomorphic
Cryptography, ser. WAHC’19, 2019.

T. Gale and et al, “Sisyphus: A cautionary tale of using low-degree
polynomial activations in privacy-preserving deep learning,” in 2021
ACM Conference on Computer and Communications Security (Work-
shop), 2021.

F. Boemer, R. Cammarota, D. Demmler, T. Schneider, and H. Yalame,
“Mp2ml: A mixed-protocol machine learning framework for private
inference,” ser. PPMLP’20. New York, NY, USA: Association for
Computing Machinery, 2020.

F. Boemer, Y. Lao, R. Cammarota, and C. Wierzynski, “Ngraph-he: A
graph compiler for deep learning on homomorphically encrypted data,”
in Proceedings of the 16th ACM International Conference on Computing
Frontiers, ser. CF 19, 2019.

(23]

[24]

[25]

[26]

[35]
(36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

R. Dathathri, B. Kostova, O. Saarikivi, W. Dai, K. Laine, and M. Musu-
vathi, “Eva: An encrypted vector arithmetic language and compiler for
efficient homomorphic computation,” ser. PLDI 2020, 2020.

R. Dathathri, O. Saarikivi, H. Chen, K. Laine, K. Lauter, S. Maleki,
M. Musuvathi, and T. Mytkowicz, “Chet: An optimizing compiler for
fully-homomorphic neural-network inferencing,” ser. PLDI 2019, 2019.
A. Brutzkus, R. Gilad Bachrach, and O. Elisha, “Low latency privacy
preserving inference,” in Proceedings of the 36th International Confer-
ence on Machine Learning, 2019.

N. Tajbakhsh, J. Y. Shin, S. R. Gurudu, R. T. Hurst, C. B. Kendall, M. B.
Gotway, and J. Liang, “Convolutional neural networks for medical image
analysis: Full training or fine tuning?” IEEE transactions on medical
imaging, May 2016.

D. Syed, S. S. Refaat, and O. Bouhali, “Privacy preservation of data-
driven models in smart grids using homomorphic encryption,” Informa-
tion, vol. 11, no. 7, p. 357, 2020.

R. Miotto, F. Wang, S. Wang, X. Jiang, and J. T. Dudley, “Deep
learning for healthcare: review, opportunities and challenges,” Briefings
in bioinformatics, vol. 19, no. 6, pp. 1236-1246, 2018.

S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catanzaro,
and E. Shelhamer, “cudnn: Efficient primitives for deep learning,” 2014.
“Microsoft SEAL (release 3.6),” https://github.com/Microsoft/SEAL,
Nov. 2020, microsoft Research, Redmond, WA.

Xilinx, “Xilinx UltraScale+ FPGAs,”
https://www.xilinx.com/products/boards-and-kits/alveo/u200.html.

Intel, “Stratix 10 MX FPGAs,” https://www.intel.com/content/www/us/
en/products/programmable/sip/stratix-10-mx.html.

A. Parashar, M. Rhu, and et al, “Scnn: An accelerator for compressed-
sparse convolutional neural networks,” in 2017 ACM/IEEE 44th Annual
International Symposium on Computer Architecture (ISCA), 2017.

Z. Du, R. Fasthuber, T. Chen, P. Ienne, L. Li, T. Luo, X. Feng, Y. Chen,
and O. Temam, “Shidiannao: Shifting vision processing closer to the
sensor,” in 2015 ACM/IEEE 42nd Annual International Symposium on
Computer Architecture (ISCA), 2015, pp. 92-104.

D. Pei, A. Salomaa, and C. Ding, Chinese remainder theorem: applica-
tions in computing, coding, cryptography. World Scientific, 1996.
Xilinx, “Xilinx Vitis Development Platform,”
https://www.xilinx.com/products/design-tools/vitis.html.

C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Optimizing
fpga-based accelerator design for deep convolutional neural networks,”
ser. FPGA ’15.

T. Ye, S. Kuppannagari, R. Kannan, and V. Prasanna, “Performance
modeling and fpga acceleration of homorphic encrypted convolution,”
in 2021 International Conference on Field Programmable Logic and
Applications (FPL), 2021.

N. Samardzic, A. Feldmann, A. Krastev, S. Devadas, R. Dreslinski,
C. Peikert, and D. Sanchez, F1: A Fast and Programmable Accelerator
for Fully Homomorphic Encryption. New York, NY, USA: Association
for Computing Machinery, 2021.

S. Sinha Roy, F. Turan, K. Jarvinen, F. Vercauteren, and I. Verbauwhede,
“Fpga-based high-performance parallel architecture for homomorphic
computing on encrypted data,” in 2019 IEEE International Symposium
on High Performance Computer Architecture (HPCA), 2019.

M. S. Riazi, K. Laine, B. Pelton, and W. Dai, “Heax: An architecture
for computing on encrypted data,” ser. ASPLOS ’20.

V. Migliore, C. Seguin, M. M. Real, V. Lapotre, A. Tisserand,
C. Fontaine, G. Gogniat, and R. Tessier, “A high-speed accelerator for
homomorphic encryption using the karatsuba algorithm,” ACM Trans.
Embed. Comput. Syst., vol. 16, no. 5s, 2017.

H. Nejatollahi, S. Gupta, M. Imani, T. S. Rosing, R. Cammarota,
and N. Dutt, “Cryptopim: In-memory acceleration for lattice-based
cryptographic hardware,” in 2020 57th ACM/IEEE Design Automation
Conference (DAC), 2020.

T. Ye, R. Kannan, and V. K. Prasanna, “Accelerator design and per-
formance modeling for homomorphic encrypted cnn inference,” in 2020
IEEE High Performance Extreme Computing Conference (HPEC), 2020.

