
NTTGen: A Framework for Generating Low Latency NTT
Implementations on FPGA

Yang Yang
yyang172@usc.edu

University of Southern California
Los Angeles, California, USA

Sanmukh R. Kuppannagari
kuppanna@usc.edu

University of Southern California
Los Angeles, California, USA

Rajgopal Kannan
rajgopal.kannan.civ@mail.mil
US Army Research Lab-West
Los Angeles, California, USA

Viktor K. Prasanna
prasanna@usc.edu

University of Southern California
Los Angeles, California, USA

ABSTRACT
Homomorphic encryption (HE) is a promising technique to ensure
the security and privacy of applications in the cloud. Number Theo-
retic Transform (NTT) is a key operation in HE-based applications.
HE requires vastly different NTT parameters to meet the perfor-
mance and security requirements of applications. The increasing
compute capabilities and flexibility of FPGAs make them attrac-
tive to accelerate NTT. However, programming FPGA still involves
hardware design expertise and significant development effort. To
close the gap, we propose NTTGen, a framework to automatically
generate low latency NTT designs targeting HE-based applications.
NTTGen takes application parameters, latency and hardware re-
source constraints as input, determines the design parameters, and
produces synthesizable Verilog code as output. Low latency NTT
implementations are obtained by varying the data, pipeline and
batch parallelism. NTTGen utilizes streaming permutation network
to reduce the interconnect complexity between stages in the NTT
computation. The framework supports two types of NTT cores
to perform modular arithmetic, the key computation in NTT: a
low latency and resource efficient NTT core for a specific class of
prime moduli and a general purpose NTT core for other primes. We
further develop a design space exploration flow to identify the hard-
ware design parameters of an optimal design. We evaluate NTTGen
by generating designs for various NTT parameters. The designs
result in up to 2.9× improvement in latency over the state-of-the-art
FPGA implementations.

CCS CONCEPTS
• Computer systems organization → Parallel architectures; •
Security and privacy→ Security in hardware.

KEYWORDS
Number Theoretic Transform, Parallel Computing, FPGA Accelera-
tion

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CF’22, May 17–19, 2022, Torino, Italy
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9338-6/22/05.
https://doi.org/10.1145/3528416.3530225

ACM Reference Format:
Yang Yang, Sanmukh R. Kuppannagari, Rajgopal Kannan, and Viktor K.
Prasanna. 2022. NTTGen: A Framework for Generating Low Latency NTT
Implementations on FPGA. In 19th ACM International Conference on Com-
puting Frontiers (CF’22), May 17–19, 2022, Torino, Italy. ACM, New York, NY,
USA, 10 pages. https://doi.org/10.1145/3528416.3530225

1 INTRODUCTION
Homomorphic Encryption (HE) is a promising technique to ad-
dress data privacy in cloud computing. It allows computation on
encrypted data directly [8, 15]. However, computation on homo-
morphic encrypted data is orders of magnitude slower than com-
putation on unencrypted data [34]. Number Theoretic Transform
(NTT) is one of the most computationally expensive operations in
HE [20, 34]. NTT is a specialized form of Discrete Fourier Trans-
form in which the computations are performed in a finite integer
field. It takes a degree 𝑁 polynomial as input and uses the powers
of the 𝑁𝑡ℎ root of unity modulo a prime as twiddle factors to per-
form modular arithmetic operations. The output of NTT is also a
polynomial of degree 𝑁 . 𝑁 is a power-of-two and typically ranges
from 210 to 217 [2]. For Residue Number System (RNS) variant of
HE schemes, one NTT with large modulus is represented as 𝑛𝑝
numbers of independent NTTs, one for each RNS basis [11]. Ta-
ble 1 shows the NTT parameters used in previous works. These
parameters can differ vastly depending on the use cases.

The fine grained parallel computing capabilities of FPGAs make
them an attractive platform to accelerate NTT. Nevertheless, pro-
gramming FPGA using hardware description language or high-level
synthesis still requires extensive hardware knowledge and a long
development cycle [13, 31]. Several designs are proposed to oper-
ate on fixed NTT parameters [24, 38, 42]. Porting these designs to
different parameters involves time-consuming RTL programming.
Therefore, it is desirable to have a framework to generate optimized
designs for various NTT use cases without worrying about the
FPGA implementation details.

It is non-trivial to develop a framework that can generate low
latency designs for various NTT parameters. NTT algorithm re-
quires complex data access patterns between computation stages.
Purposely designed memory layout and fully connected crossbar
are often used to perform the permutation [28, 35], which are not
only expensive to implement in hardware but also difficult for
automation in the generation of optimized designs. The modular

https://doi.org/10.1145/3528416.3530225
https://doi.org/10.1145/3528416.3530225

CF’22, May 17–19, 2022, Torino, Italy Yang Yang, et al.

arithmetic operations in NTT are costly in both hardware resources
and latency. Using prime moduli that satisfy certain properties can
significantly reduce the hardware complexity in modular reduc-
tion [42]. In addition, different levels of parallelism can be exploited
in NTT. Identifying the optimal parallelization strategy under ap-
plication and resource constraints is crucial for low latency NTT
designs. Existing frameworks [9, 28, 29, 35] not only do not consider
all the aforementioned trade-offs but also require users to specify
hardware design parameters manually.

Table 1: NTT Parameters of Previous Works
Works HE scheme 𝑁 𝑛𝑝 prime size
[21, 34] BFV 211 − 216 1 60 bits
[6, 11, 35] RNS-CKKS 211 − 214 2 − 15 30 − 60 bits

[18, 22,
24]

Bootstrap-
pable

RNS-CKKS
214 − 217 21 − 42 45 − 62 bits

Motivated by the challenges, we propose NTTGen, a hardware
generation framework for low latency NTT designs targeting HE-
based applications. The inputs to the framework are the application
parameters (polynomial degree and prime moduli), latency and
hardware resource constraints (bandwidth, available BRAM/DSP
resources). The output of the framework is Verilog code of la-
tency optimized NTT designs. NTTGen produces designs at various
scales by exploiting parallelism tailored to NTT algorithm: data and
pipeline parallelism – folding in the NTT parallel I/O dimension
and computation stage dimension – are used to accelerate NTT
for a given prime modulus, batch parallelism is employed for com-
puting RNS-based NTTs. NTTGen utilizes Streaming Permutation
Network (SPN) [10] to overcome the challenge due to the complex
access patterns within NTT. SPN avoids the expensive crossbars
and can be easily generalized to any permutation stride. For certain
types of primes known as the generalized Mersenne primes [39],
NTTGen uses a novel low latency NTT core to perform modular
arithmetic. NTTGen selects between this low latency NTT core
and a general purpose one based on the prime moduli. We fur-
ther develop a performance model which identifies the optimized
hardware design parameters. The key contributions of this paper
are:
• We propose a hardware generation framework, NTTGen,
to accelerate NTT computation on FPGA. The generated
design is optimized for HE-based applications that avoid
computationally expensive bootstrapping.
• Our framework utilizes SPN to avoid complex memory lay-
out and expensive interconnect. SPN is extended to support
data access patterns in various NTT stages at runtime.
• NTTGen supports both a general purpose and a low latency
NTT core optimized for generalized Mersenne primes. It
selects the appropriate one based on the prime moduli at
design time.
• NTTGen achieves low latency by varying data, pipeline and
batch parallelism. We develop a performance model which
enables design space exploration to identify the design pa-
rameters that satisfy the user requirements.
• We demonstrate our framework by generating NTT designs
with various NTT settings. The designs achieve up to 2.9×

improvement in latency over the state-of-the-art FPGA im-
plementations.

2 BACKGROUND
2.1 NTT in Homomorphic Encryption
NTT reduces the complexity of multiplying two polynomials of
degree 𝑁 from 𝑂 (𝑁 2) to 𝑂 (𝑁 log𝑁) [1]. Algorithm 1 shows the
NTT algorithm. Each iteration of the outermost loop is called a
stage. There are log𝑁 stages in total, and each stage has 𝑁 /2 in-
dependent instances of modular arithmetic (Line 9 − 12) that can
be computed in parallel. The key computations in NTT include
modular multiplication, addition and subtraction. Note that Inverse
NTT (INTT) has almost identical computational patterns [26] and
can be supported by the same hardware. In this paper, we focus
on NTT, but the design can be directly applied to INTT. The NTT
parameters are determined by the Homomorphic Encryption (HE)
scheme and the security requirement. Typically 𝑁 is in the range
of 210 to 217 [2]. HE requires modulus 𝑄 to be up to hundreds of
bits depending on the multiplicative depth of the function to be
evaluated [2], which is expensive to process. The Residue Number
System variant of HE schemes [3] enables representing a polyno-
mial with log𝑄-bit coefficients as 𝑛𝑝 polynomials with narrower
coefficients, where 𝑄 is the product of 𝑛𝑝 co-primes 𝑄 =

∏𝑛𝑝

𝑖=1 𝑝𝑖 .
An NTT over 𝑄 is equivalent to 𝑛𝑝 independent NTTs over 𝑝𝑖 .

Algorithm 1: Number Theoretic Transform
Input: Coefficients 𝐴 = (𝐴[0], 𝐴[1], ..., 𝐴[𝑁 − 1]) and

twiddle factors in bit-reversed order
𝜙 = (𝜙 [0], 𝜙 [1], ..., 𝜙 [𝑁 − 1])

Output: 𝐴← NTT(𝐴) in bit-reversed order
1 𝑡 ← 𝑁

2 for (𝑚 ← 1;𝑚 ≤ 𝑁 ;𝑚 ← 2𝑚) do
3 𝑡 ← 𝑡/2
4 for (𝑖 ← 0; 𝑖 < 𝑚; 𝑖 ← 𝑖 + 1) do
5 𝑗1 ← 2 · 𝑖 · 𝑡
6 𝑗2 ← 𝑗1 + 𝑡 − 1
7 𝑆 ← 𝜙 [𝑚 + 𝑖]
8 for (𝑗 ← 𝑗1; 𝑗 ≤ 𝑗2; 𝑗 ← 𝑗 + 1) do
9 𝑈 ← 𝐴[𝑗]

10 𝑉 ← 𝑆 · 𝐴[𝑗 + 𝑡]
11 𝐴[𝑗] ← 𝑈 +𝑉 mod 𝑞
12 𝐴[𝑗 + 𝑡] ← 𝑈 −𝑉 mod 𝑞
13 end
14 end
15 end

The encryption noise is accumulated over each homomorphic
operation [17]. If the noise exceeds a threshold, decryption becomes
impossible [12, 16]. HE schemes of this type are called Leveled HE
(LHE). Bootstrapping can reset the noise and enable Fully Homo-
morphic Encryption (FHE) computation. However, bootstrapping
requires very large 𝑁 and 𝑛𝑝 , therefore it is less commonly used in
practice [7, 14, 21, 37]. Although NTTGen can support any batch

NTTGen: A Framework for Generating Low Latency NTT Implementations on FPGA CF’22, May 17–19, 2022, Torino, Italy

size (𝑛𝑝), and thus, can support FHE applications that use bootstrap-
ping, we focus on optimizing NTT for HE-based applications that
avoid bootstrapping. Our objective is to obtain low latency NTT
implementation with “small" batch sizes, i.e. 𝑛𝑝 ≤ 20.

2.2 Comparison between NTT and FFT
The structure of the NTT algorithm is similar to the Fast Fourier
Transform (FFT), but they have completely different basic com-
putations. NTT performs modular arithmetic over a finite ring of
integers, which is more complex than the floating point opera-
tions in FFT. Modular arithmetic can be costly due to the additional
multiplication and/or division involved. Barrett and Montgomery
reductions [4, 30] are two ways to mitigate this problem. In FFT,
twiddle factors can be re-used when batching and executing mul-
tiple N-point FFTs together. In contrast, twiddle factors needed
for NTT grow proportionally with the number of prime moduli
(𝑛𝑝). Therefore, existing methods in FFT cannot be applied to NTT
directly.

3 RELATED WORK
Many recent works [24, 32, 33, 38, 41, 42] have been proposed on
FPGA acceleration of NTT for fixed parameters. Kim et al. [24] fo-
cused on NTT in RNS-CKKS with bootstrapping [18], optimizations
in their design are not directly applicable for other schemes that
require a smaller polynomial degree or number of prime moduli.
Customized memory layout was often used to enable parallel and
conflict-free memory access between NTT stages [24, 28, 29, 33, 35,
38]. However, these designs require costly all-to-all connections
between the NTT cores and the intermediate data buffer. A systolic
array approach for NTT acceleration was presented in [32]. Data
parallelism in the NTT algorithm is not explored and computation
inside each NTT stage is serialized. Tian et al. [41] used SPN to
accelerate NTT on FPGA. By fully unrolling all the NTT stages in
hardware and using dedicated SPN in each stage, the SPN in their
design only supports a fixed access pattern. In addition, the NTT
core used in [41] is restricted to one special prime number, which
limits its use in HE-based applications. In [9, 28, 29, 35], the authors
proposed parameterized NTT implementations on FPGA. Paral-
lelization across NTT stages and batch dimension is not explored.
Customizing the NTT cores for different use cases is not considered.
In addition, these designs require users to specify the hardware
design parameters manually, which may lead to suboptimal designs
for those who are not familiar with FPGA. Several works have
developed fast NTT implementations using GPUs and ASICs. Lee
et al. exploited an efficient algorithm strategy for GPU to avoid
warp divergence and improve parallelism [25]. The authors in [22]
proposed on-the-fly root generation to reduce GPU memory band-
width for RNS-CKKS with bootstrapping. F1 [36] vectorized NTT
using two-dimensional decomposition. But this approach requires
extra matrix transposition steps.

Modular Multiplication is the key operation in NTT. The modu-
lar reduction algorithm proposed in [27] allows the output to be
slightly greater than the modulus. This optimization avoids divi-
sion operations, but requires additional long latency multiplications.
The modular multiplication in HEAX requires pre-computations
depending on the twiddle factors, which consumes more on-chip

memory [35]. Authors in [42] designed an architecture for a specific
prime that avoids any multiplication in the modular reduction. Kim
et al. [23] used primes with low hamming weight to reduce the
latency in Barrett reduction [4].

4 FRAMEWORK OVERVIEW
4.1 NTTGen Workflow
NTTGen abstracts away the hardware design details and only ex-
poses high level parameters to users. Figure 1 illustrates the work-
flow of our design automation framework. NTTGen takes the appli-
cation parameters and resource constraints as inputs. Application
parameters are specified by:
• Latency (L𝑚𝑎𝑥): The desired latency upper bound in 𝜇𝑠 to
perform one batch of NTT operations.
• Polynomial degree (𝑁): Polynomial degree for number the-
oretic transform. Our framework supports any polynomial
degree at design time.
• List of prime moduli (𝑛𝑝): The size of each prime modulus
determines the data width of the NTT hardware. The length
of the list is the batch size.

Hardware resource constraints are specified by:
• DSP (D𝑚𝑎𝑥) and BRAM (B𝑚𝑎𝑥) constraints: DSP and BRAM
resources that can be used by the NTT hardware.
• I/O bandwidth (BW𝑚𝑎𝑥): Available bandwidth of the target
NTT design. The bandwidth is used to stream in and out the
polynomials.
• Metadata: Platform related metadata such as FPGA platform,
bit width of DSP and memory size per BRAM.

Using these inputs, the design space exploration in NTTGen
(Section 6) determines the design parameters (Section 4.2) that can
meet the constraints. NTTGen then generates Verilog code of the
optimized NTT designs based on the hardware templates.

NTTGen

Design Space Exploration

Synthesizable Accelerator

Hardware Generator

NTTGen Output

User Inputs

NTTGen

Application

Parameters

Resource

Constraints

Hardware

Templates

Figure 1: NTTGen workflow.

4.2 Design Parameters
NTT algorithmic and architecture settings are exposed as parame-
ters in the hardware templates, allowing the same architecture to
support various NTT parameters. Input and output coefficients are
folded and processed in a streaming manner to satisfy I/O band-
width constraint and to reduce resource consumption. The follow-
ing parameter values are generated by the design space exploration
at design time to customize our architecture:
• Data Parallelism (𝑑𝑝): This parameter determines the number
of coefficients being processed per cycle in every NTT stage
(2 ≤ 𝑑𝑝 ≤ 𝑁). Larger 𝑑𝑝 reduces latency but requires more

CF’22, May 17–19, 2022, Torino, Italy Yang Yang, et al.

I/O bandwidth and hardware resources. 𝑑𝑝 is restricted to
be a power-of-two.
• Pipeline Parallelism (𝑝𝑝): This parameter determines the
unrolled NTT stages in the hardware (1 ≤ 𝑝𝑝 ≤ log𝑁).
Higher unrolling increases the pipeline depth and reduces
latency (Section 5), but consumes more resources.
• Batch Parallelism (𝑏𝑝): For a given batch size (𝑛𝑝), this param-
eter determines how many NTTs in the batch are executed
concurrently. In order to achieve low latency, we fix this
parameter to 𝑛𝑝 in the design space exploration.

5 HARDWARE ARCHITECTURE
5.1 Architecture Overview
The diverse NTT parameters and various constraints in HE-based
applications require a scalable architecture. NTTGen is the first
to simultaneously exploit three levels of parallelism, 𝑏𝑝 , 𝑑𝑝 and
𝑝𝑝 , in one architecture. Figure 2 depicts the proposed architecture.
A design consists of 𝑏𝑝 instances, each instance is fully pipelined
and performs NTT for one prime modulus. There are 𝑝𝑝 number
of Super Pipelines per instance connected directly without any in-
termediate buffers. A degree 𝑁 polynomial is streamed through
the Super Pipelines of each instance at the rate of 𝑑𝑝 coefficients
per cycle. Inside each Super Pipeline, 𝑑𝑝/2 numbers of NTT Cores
read the twiddle factors and perform the innermost loop compu-
tation (Line 9 − 12 in Algorithm 1). We tackle the challenge of the
convoluted access patterns in NTT algorithm using the Streaming
Permutation Network (SPN). SPN permutes coefficients based on
the stride of a given NTT stage. Muxes are used to route coefficients
from the last Super Pipeline back to the first Super Pipeline. This is
required when a Super Pipeline is reused by more than one NTT
stage (𝑝𝑝 < log𝑁). With this architecture, NTTGen can generate
a wide spectrum of NTT implementations ranging from resource
efficient designs to low latency designs.

pp

bp

Super Pipeline

SPN
dp/2 NTT

CoresFirst input

From last pipe

Final output

To first pipe
dp

Super Pipeline

SPN
dp/2 NTT

Cores

dp

Super Pipeline Super Pipeline

Twiddle Factor

Memory

Twiddle Factor

Memory

Figure 2: Hardware architecture of NTTGen.

5.2 NTT core
Each NTT core receives two coefficients as inputs and generates
two coefficients as outputs. The key operation of NTT core is the
modular multiplication. It performs modulo 𝑞 after multiplying one
of the coefficients with the twiddle factor, where 𝑞 is one of the 𝑛𝑝
prime moduli. Efficient modular multiplication is critical in order to
achieve low latency in NTT implementations. Leveraging certain
properties of special primes can greatly simplify the reduction logic
and lower the latency, but it limits the prime moduli to choose from.
Depending on the HE scheme and use case, there are additional
restrictions in selecting the primemoduli. For instance, it is common
to choose modulus with similar value in the RNS-CKKS scheme [11].

NTTGen provides the flexibility to implement two types of NTT
cores. The general purpose NTT core can process any prime num-
ber while the low latency NTT core is optimized to accelerate
generalized Mersenne primes [39]. If all the 𝑛𝑝 prime moduli are
generalized Mersenne primes, the low latency NTT core is used,
otherwise NTTGen falls back to using the general purpose NTT
core.

5.2.1 General purpose NTT core. The general purpose NTT core
first computes the modular multiplication between one of the in-
put coefficients and the twiddle factor. Then it performs modular
addition and subtraction between the multiplication result and the
other input coefficient to produce the two output coefficients. We
use Barrett reduction algorithm [19] to implement modular mul-
tiplication. This algorithm includes three integer multiplications.
The first multiplication is a full width multiplication and multi-
plies two input operands. The other two are additional half width
multiplications for Barrett reduction. Similar to [23], our design is
fully pipelined and can process two coefficients every cycle. The
downside of this NTT core is that the additional half width multipli-
cations add extra latency. For example, to perform 28-bit modular
multiplication, it needs 12 cycles with 12 27 × 18 DSPs. 4 cycles are
spent on the full width multiplication and 8 cycles are spent on the
two half width multiplications. After the modular multiplication,
the modular addition and subtraction can be done in parallel.

5.2.2 Low latency NTT core. The low latency NTT core is designed
to optimize generalized Mersenne primes in the form of 2𝑖 ± 2𝑗 ± 1,
where 𝑖 and 𝑗 are positive integers. Modular reduction of such
primes, i.e., division in mod 𝑞 operation, can be implemented using
a fixed number of less expensive modular operations (additions
and subtractions) [39]. The input operands of these operations are
extracted by selecting and shifting a range of bits from the result of
the full width multiplication. Each generalized Mersenne prime has
an associated modular reduction weight matrix, which specifies
the bit-range for all the operands and the corresponding modular
operation. Details on calculating the weight matrix can be found
in [39]. Figure 3 shows the number of Mersenne primes for various
operation counts and prime sizes. There is a limit in terms of how
many primes can be used, but this does not make the NTT hardware
less applicable for HE. For instance, 6 20-bit primes can be reduced
using 4 operands (3 modular operations). More primes are available
if allowing more modular operations.

10 20 30 40 50 60

prime size (bits)

0

2

4

6

8

10

to
ta

l
n
u
m

 o
f

o
p
e
ra

n
d
s
 f

o
r

re
d
u
c
ti

o
n

num of
primes

1

2

3

4

5

6

7

Figure 3: Distribution of generalized Mersenne primes with
various reduction operands and bit-width.

Using this property, we design a resource efficient and low la-
tency NTT core, as shown in Figure 4(b). The difference between

NTTGen: A Framework for Generating Low Latency NTT Implementations on FPGA CF’22, May 17–19, 2022, Torino, Italy

this NTT core and the general purpose NTT core lies in the modular
multiplication module. After the full width multiplication, a modu-
lar reduction tree is used to replace the two half width multipliers.
This reduces DSP resource usage and latency. The reduction tree is
implemented using a binary tree of two input adders in hardware,
where each node indicates a modular add/sub operation and each
edge represents an operand. The result of the modular reduction
tree is sent to the Mod Add and Mod Sub modules to generate the
output coefficients. For these special primes, NTTGen computes
the weight matrix offline, identifies each modular operation and
uses that to determine the input and depth of the reduction tree.
The bit selection information is programmed into the reduction
configuration table. To perform the same 28-bit modular multiplica-
tion, if the number of modular operations required is 4 (reduction
tree depth is 2), the design only takes 6 cycles with 4 27 × 18 DSPs.

Data Path

d
p

-to
-d

p

c
o

n
n

e
c

tio
n

 n
e

tw
o

rk

Memory dp-2

Memory dp-1

Memory 0

Memory 1

Memory 2

Memory dp-3

d
p

-to
-d

p

c
o

n
n

e
c

tio
n

 n
e

tw
o

rk

Spatial SpatialTemporal

Low Latency NTT Core

Twiddle Factors Memory

Mod Reduction

Tree

Reduction

Config Table

Mod

Add

Mod

Sub

Full Mult

Shift

Registers

Twiddle Factors

Selector

Control Unit

Routing

Table

Routing

Table

Address

Generator

x0

x1

y0

y1

(a) Streaming Permutation Network (b) Low Latency NTT Core

To other NTT Cores…

Figure 4: Architecture of (a) streaming permutation network,
(b) special-purpose NTT core.

5.3 Twiddle Factor Memory
The Twiddle Factor Memory module stores the twiddle factors
which are used by the NTT cores in each Super Pipeline. At stage 𝑖 ,
only 2𝑖 unique values of twiddle factors are used in Algorithm 1.
Since there are 𝑑𝑝/2 NTT cores, 𝑑𝑝/2 unique twiddle factors are
accessed per cycle in the worst case. Therefore we pack 𝑑𝑝/2 twid-
dle factors together and store them in BRAMs such that they can
be accessed in parallel. Figure 5 shows the twiddle factors memory
layout for 𝑝𝑝 = 1 designs, i.e., the Twiddle Factor Memory stores
all the factors. One row is read out each time and stored in the row
buffer. The Selector module then picks the right twiddle factor for
each NTT core.

… BRAMBRAMBRAMBRAM

w[0] w[dp/2-1]

w[dp/2] w[dp - 1]

w[N-dp/2] w[N - 1]

T
w

id
d

le
 F

a
c

to
r

S
e

le
c

to
r

Row 0

Row 1

… … To NTT

Cores

R
o

w
 B

u
ff

e
r

Figure 5: Twiddle factors memory layout with 𝑝𝑝 = 1.

5.4 Streaming Permutation Network (SPN)
Accessing all the coefficients every cycle requires a significant
amount of bandwidth. For instance, to supply coefficients to an
NTT module with 𝑁 = 1024, 𝑛𝑝 = 1 and 64-bit per coefficient,
the hardware has to support at least 819 GB/s bandwidth even
at 100 MHz frequency. Increasing 𝑁 and 𝑛𝑝 further increases the
bandwidth. To mitigate this problem, coefficients are folded and

sent over 𝑁 /𝑑𝑝 cycles. But folding complicates the irregular strided
access pattern of NTT even more. Folding requires coefficients to
be permuted not only within the same cycle (spatial permutation)
but also across different cycles (temporal permutation). Existing de-
signs use complex memory layout and expensive crossbar to ensure
conflict free parallel access [28, 33, 35]. Generating the memory ac-
cess patterns with various 𝑑𝑝 and 𝑝𝑝 is both costly and non-trivial.
NTTGen uses SPN [10] as the basis to perform data permutation.
In order to meet the requirements of the proposed architecture, we
improve the functionality of SPN by supporting access patterns in
multiple NTT stages at runtime. SPN uses a folded version of Benes
multi-stage routing network [5], which reduces the interconnect
cost and memory layout complexity. For completeness, we include
a brief overview of the SPN in this paper. More details can be found
in [10].

The SPN can achieve arbitrary permutation [10]. It has three
subnetworks – two spatial permutation networks and one temporal
permutation network, as shown in Figure 4(a). Spatial permuta-
tion shuffles the coefficients that are received in the same cycle
whereas temporal permutation rearranges the coefficients across
different cycles. A spatial permutation network, as illustrated in
Figure 6(a), uses 2 × 2 switches to recursively compose a 𝑑𝑝-to-𝑑𝑝
connection. Temporal permutation is achieved by issuing reads and
writes to 𝑑𝑝 dual-port memory using independently pre-computed
addresses. Figure 6(b) shows an example of stride 4 permutation
by the temporal network. Each column is written in parallel. After
4 cycles, coefficients with stride 4 are read out from the buffers
concurrently. The control signals come from the Routing Tables
and Address Generator. Routing Tables are used to program the
switches. Address Generator sends out read and write addresses for
temporal permutation. The overall execution of SPN is as follows:𝑁
coefficients stream through the first spatial permutation network in
𝑁 /𝑑𝑝 cycles, then the data are written into the 𝑑𝑝 memory blocks.
After a fixed delay, 𝑑𝑝 coefficients are read out every cycle and
permuted again by the second spatial permutation network.

…

(a) Spatial Network (b) Temporal Network

2x2 Switch

Control

…

Upper dp/2 x dp/2

Network

Lower dp/2 x dp/2

Network

2x2 Switch

2x2 Switch

2x2 Switch

X0 X7 X10 X13

X1 X4 X11 X14

X2 X5 X8 X15

X3 X6 X9 X12

Buffer 0

Buffer 1

Buffer 2

Buffer 3

Write in Parallel Read in Parallel

Control

Figure 6: Architecture of SPN. (a) 𝑑𝑝-to-𝑑𝑝 spatial network.
(b) Temporal network that performs stride 4 permutation.

Extension to SPN: The original SPN only provided support for
a fixed permutation pattern at runtime. But the SPN in one Super
Pipeline could be handling the permutation of multiple NTT stages
when 𝑝𝑝 < log𝑁 . We extend the SPN to support this by offline
pre-computing the Routing Tables and Address Generators for all
the NTT stages that one SPN needs to process. At runtime, a state
machine is added in the Control Unit. The state machine tracks the
progress of the NTT and selects the corresponding routing tables
and address generator to generate the required control signals.

Compared to a naive crossbar interconnect, which requires𝑂 (𝑑𝑝2)
connections, each spatial permutation network has (𝑑𝑝/2) · log𝑑𝑝

CF’22, May 17–19, 2022, Torino, Italy Yang Yang, et al.

2×2 switches. The downside of SPN is an increased latency in per-
mutation. By trading off latency with hardware resources, the SPN
asymptotically has lower complexity. The design space exploration
in NTTGen finds the trade-off point such that the generated SPN
can meet the latency and resource constraints.

6 DESIGN SPACE EXPLORATION
6.1 Performance Modeling
Latency (L): The overall latency is the sum of execution time
for all the NTT stages, which consists of SPN latency and NTT
core latency. Each spatial permutation network in the SPN has
log𝑑𝑝 cycles delay and the latency of the temporal network can be
calculated based on the permutation stride. General purpose NTT
core has a fixed latency. The prime moduli have an impact on the
latency of the low latency NTT core as they determine the depth
of the reduction tree.
DSP resources (D): DSP consumption depends on the NTT core
type. For the low latency NTT core, only one full width multiplier
is needed (Section 5.2.2). In contrast, the general purpose NTT core
requires two additional half width multipliers (Section 5.2.1). The
number of DSPs in a design is

D = 𝑏𝑝 · 𝑝𝑝 · 𝑑𝑝/2 · 𝑑𝑐𝑜𝑟𝑒 (1)

The factor 𝑑𝑐𝑜𝑟𝑒 refers to the number of DSPs in one NTT core.
There are 𝑑𝑝/2 NTT cores per Super Pipeline.
BRAM resources (B): Each SPN has 𝑑𝑝 buffers. Each row of the
buffer stores one coefficient and there are 𝑁 /𝑑𝑝 rows. Each SPN
buffer requires multiple BRAMs to be chained horizontally and/or
vertically. Horizontal chaining is needed when bit-width per coeffi-
cient exceeds the bits per row of a BRAM (bits_bram_row). Vertical
chaining is used when 𝑁 /𝑑𝑝 is greater than the number of rows
per BRAM (bram_rows). The BRAM consumption per SPN (B𝑠𝑝𝑛)
is

B𝑠𝑝𝑛 = ⌈𝑏𝑖𝑡𝑠_𝑐𝑜𝑒 𝑓 𝑓 𝑖𝑐𝑖𝑒𝑛𝑡
𝑏𝑖𝑡𝑠_𝑏𝑟𝑎𝑚_𝑟𝑜𝑤 ⌉ · ⌈

𝑁

𝑑𝑝 · 𝑏𝑟𝑎𝑚_𝑟𝑜𝑤𝑠 ⌉ · 𝑑𝑝 (2)

The first term calculates the BRAM instances for each buffer to
supply bits_coefficient bits per cycle. The second term estimates
the BRAM instances given the depth of each buffer. bram_rows
and bits_bram_row are the BRAM aspect ratio. NTTGen uses two
BRAM configurations: 1𝐾 rows by 36 bits per row or 2𝐾 rows by
18 bits per row. Each Super Pipeline also uses BRAMs to store the
twiddle factors in one or more NTT stages. Stage 𝑖 has 2𝑖 unique
twiddle factors. The twiddle factors are laid out in memory in a
2-D fashion where the number of factors per row is determined by
𝑑𝑝 (Section 5.3). The BRAM resources for the twiddle factors (B𝑡 𝑓)
per Super Pipeline is modeled similarly to Equation 2. The total
number of BRAMs in a design is

B = 𝑏𝑝 · 𝑝𝑝 · (B𝑠𝑝𝑛 + B𝑡 𝑓) (3)

I/O bandwidth (BW): In L period of time, 𝑏𝑝 polynomials of
degree 𝑁 are loaded from and stored to the external memory re-
spectively. The required I/O bandwidth is

BW = 2 · 𝑏𝑝 · 𝑁 · 𝑏𝑦𝑡𝑒𝑠_𝑐𝑜𝑒 𝑓 𝑓 𝑖𝑐𝑖𝑒𝑛𝑡L (4)

6.2 Design Space Exploration
The design space exploration (DSE) uses the performance model
(Section 6.1) to evaluate design candidates. DSE assumes that the
generated NTT designs operate at a fixed frequency. Having a
high frequency (𝑓𝑚𝑎𝑥) assumption in DSE produces more candi-
date designs for synthesis, place and route. But some designs may
exceed the latency upper bound if the 𝑓𝑚𝑎𝑥 after implementation
is lower than the assumed frequency. On the contrary, having a
low frequency assumption may miss valid designs. By default, we
empirically use 250 MHz as the target frequency to include more
potentially valid design candidates.

The DSE determines the type of the NTT core based on the list
of prime moduli. To generate design candidates, DSE enumerates
possible values of 𝑑𝑝 and 𝑝𝑝 . 𝑑𝑝 is iterated in power-of-two steps
(2 ≤ 𝑑𝑝 ≤ 256). We limit the maximum 𝑑𝑝 to 256 as we observed
significant frequency reduction when 𝑑𝑝 > 256. 𝑝𝑝 is iterated
from 1 to log𝑁 . DSE computes L, D, B and BW for each design
candidate. If a design candidate satisfies all the constraints against
L𝑚𝑎𝑥 , D𝑚𝑎𝑥 , B𝑚𝑎𝑥 and BW𝑚𝑎𝑥 , it is added to the list of valid
designs for synthesis and place-and-route.

7 EXPERIMENTS AND RESULTS
7.1 Experimental Setup
We use NTTGen to generate a wide range of NTT designs based on
HE use cases (Table 1). We select polynomial degrees (𝑁) from 210
to 214, number of primes (𝑛𝑝) between 1 and 21 and prime size from
28-bit to 52-bit. We assume that the input and output polynomials
are stored in the DRAM. We run post place-and-route simulations
to report latency, our main performance metric. The latency is
defined as the duration from loading the input polynomials from
DRAM to storing the results to DRAM. We compare the measured
latency with the DSE projected latency to validate the effectiveness
of NTTGen. We further analyze the impact of various application
and design parameters on latency and hardware resources.

Our FPGA designs are synthesized and place-and-routed using
Xilinx Vivado 2020.2. To illustrate the adaptability of NTTGen,
the experiments are conducted on 3 FPGAs: XCU200, Virtex-7
XC7VX690 and XCU280 [40]. We use XCU200 as the primary plat-
form for NTTGen evaluation and the other two FPGAs for compar-
ison with the state-of-the-art implementations. Table 2 summarizes
the breakdown of resources of each FPGA.

Table 2: Summary of FPGA Resources

FPGA LUT FF BRAM DSP External
Bandwidth

XCU200 1182K 2364K 2160 6840 78 GB/s
XC7VX690 433K 866K 1470 3600 78 GB/s
XCU280 1304K 2607K 2016 8490 460 GB/s

7.2 Framework Evaluation
To demonstrate NTTGen’s effectiveness to generate designs at
various scales, we perform design space exploration by placing
constraints on DSP and BRAM resources. We measure the latency
of all the design candidates produced by NTTGen given a latency
upper bound. We discuss the results for 𝑛𝑝 = 4 and 30-bit prime

NTTGen: A Framework for Generating Low Latency NTT Implementations on FPGA CF’22, May 17–19, 2022, Torino, Italy

moduli in this section. Other batch sizes and prime bit widths show
similar results. Table 3 shows the 30-bit prime moduli used by
the low latency NTT core. We vary the constraint on the amount
of DSP and BRAM resources the hardware can use, from 20% to
100% of the total resources on XCU200. Figure 7(a) and Figure 7(b)
show the designs using the low latency NTT core with 𝑁 = 4096
and 𝑁 = 8192 respectively. The star (★) represents the latency
target and the dots (•) indicate the latency of the design candidates.
Figure 7(c) and Figure 7(d) show the same configuration using the
general purpose NTT core. The latency of the generated designs
matches closely with the projections from design space exploration
(DSE). Since very few designs run at higher than 250 MHz after
place-and-route, setting a 250 MHz frequency in the DSE does not
miss many valid designs. Designs with large 𝑑𝑝 and/or 𝑝𝑝 tend to
achieve lower frequency, as a result they may exceed the latency
upper bound. The general purpose NTT core consumes more DSP
resources and has longer latency, therefore there are fewer valid
designs in Figure 7(c) and Figure 7(d).

Generated DesignsTarget Generated DesignsTarget

Generated DesignsTarget Generated DesignsTarget

(a) (b)

(c) (d)

Figure 7: Achieved latency of the generated designs. (a) 𝑁 =

4096, low latency NTT core. (b) 𝑁 = 8192, low latency NTT
core. (c) 𝑁 = 4096, general purpose NTT core. (d) 𝑁 = 8192,
general purpose NTT core.

Table 3: Moduli Used by the Low Latency NTT Core

30-bit Prime Reduction
Tree Depth 52-bit Prime Reduction

Tree Depth

230 − 29 − 1 2 252 − 212 + 1 3
230 − 216 − 1 3 252 − 219 − 1 2
230 − 218 − 1 3 252 − 220 + 1 3
230 − 218 + 1 3 252 − 247 − 1 4

7.3 Sensitivity Analysis on Design Parameters
We evaluate the impact of latency by varying 𝑁 , 𝑑𝑝 and 𝑝𝑝 . We use
𝑛𝑝 = 4 in this set of experiments. In Figure 8(a), we show various
designs with 𝑝𝑝 = 2 and vary 𝑑𝑝 and 𝑁 to measure latency. We
observe close to linear latency reduction as 𝑑𝑝 increases for a given
𝑁 . The effect of 𝑝𝑝 is shown in Figure 8(b). 𝑑𝑝 is fixed at 16 in this
case. Note that 𝑝𝑝 can reduce latency only when the permutation

and computation latency of all the Super Pipelines is less than𝑁 /𝑑𝑝
(Section 5.1). After that it has no impact on latency. Therefore its
impact on latency is less effective than 𝑑𝑝 .

(a) Data Parallelism Evaluation (b) Pipeline Parallelism Evaluation

dp=8 dp=16 dp=32 dp=64 pp=1 pp=2 pp=3 pp=4

N=2048 N=4096 N=8192 N=2048 N=4096 N=8192

Figure 8: 𝑑𝑝 and 𝑝𝑝 performance evaluation using special-
purpose NTT core.

In Figure 9, we show the I/O bandwidth needed for each de-
sign reported in Figure 8. We assume that the twiddle factors are
pre-loaded to the on-chip SRAM and only the input and output
polynomials incur DRAM traffic. This is the combined bandwidth
of the entire batch (𝑛𝑝 = 4). The DRAM bandwidth demand goes
up as 𝑑𝑝 and 𝑝𝑝 are increased. This is simply because the latency
is reduced while the total data to be transferred does not change
with the values of 𝑑𝑝 and 𝑝𝑝 . Bandwidth requirements for all the
designs is well within the available bandwidth of the target FPGA.

7.4 Impact of SPN and NTT Cores
7.4.1 SPN. SPN is one of the key building blocks in our architec-
ture. We evaluate the resource consumption of SPN using param-
eters 𝑁 = 4096, 𝑛𝑝 = 2, 𝑝𝑝 = 1 and 52 bits prime modulus. These
parameters correspond to the design configuration in [35]. Three
experiments are conducted by setting 𝑑𝑝 = 16, 32, 64. Table 5 shows
the comparison results. The resource consumption in [35] is de-
rived by deducting the resources used by the NTT cores from the
total resources of the NTT module. As evident from the table, the
logarithmic interconnect in SPN reduces the LUT and FF resource
consumption significantly.

(a) (b)

FPGA Peak BW FPGA Peak BW

Figure 9: I/O bandwidth of various designs. (a) Required band-
width when varying 𝑑𝑝. (b) Required bandwidth when vary-
ing 𝑝𝑝.

In Figure 10, we show the latency impact of SPN by varying 𝑑𝑝 .
As discussed in Section 5.4, SPN trades-off interconnect complexity
by increasing latency. The latency increases with the permuta-
tion stride. This is because earlier received coefficients need to be

CF’22, May 17–19, 2022, Torino, Italy Yang Yang, et al.

Table 4: Comparison with State-of-the-art FPGAWorks

Work [41]
This paper
𝑑𝑝 = 32
𝑝𝑝 = 10

[38]
This paper
𝑑𝑝 = 4
𝑝𝑝 = 2

[35]
This paper
𝑑𝑝 = 32
𝑝𝑝 = 5

Device Virtex-7 Virtex-7 XCZU9 XCU200 Stratix10a XCU200
𝑁 1024 1024 4096 4096 8192 8192
𝑛𝑝 1 1 6 6 4 4

moduli bit width 28 28 30 30 52 52
𝑘LUT 95 206 64 54.1 569 1,107
𝑘FF 104 159 25 56.2 1,549 1,002
DSP 640 640 200 288 1,280 1,920
BRAM 80 80 400 84 2,900 1,600

Freq [MHz] 215 210 200 250 300 220
Latency [𝜇s] 0.9 1.1 73 24.7 6.0 4.5
aStratix10 FPGAs use 20K bits per M20k (BRAM) and 27 × 27 per DSP. Xilinx FPGAs use 32K bits per BRAM and 27 × 18 DSP.

Table 5: Interconnect Resource Comparison
𝑑𝑝 Design LUT FF BRAM

16 SPN 7,013 10,415 16
[35] 19,808 46,543 16

32 SPN 16,836 23,505 32
[35] 34,809 95,453 32

64 SPN 36,496 55,212 64
[35] 76,188 185,853 64

Figure 10: Latency of SPN in different permutation strides.
Varying 𝑑𝑝 from 32 to 128. 52-bit per input and output coeffi-
cients are used.

buffered in the temporal network until all the coefficients with the
proper stride arrive. Tuning the architecture parameters 𝑑𝑝 and 𝑝𝑝
can help bring down the latency. By using DSE, we can strike a
balance between SPN latency overhead and resource consumption.

7.4.2 NTT Core. We evaluate the resource consumption and the
latency of the two proposed NTT cores. The low latency NTT
core uses the prime moduli in Table 3. We perform experiments
on standalone NTT cores without twiddle factor memory. The
results are shown in Table 6. Since the experiment is conducted
on a standalone NTT core, the achieved frequency is higher than
the integrated designs with SPN and multiple NTT cores. The low
latency NTT core is more resource efficient with regard to DSPs
but consumes slightly more LUTs due to the additional modular
adders (Section 5.2.2). The latency of the low latency core is also
lower due to less pipeline stages.

Table 6: Evaluation of NTT Cores

30-bit
Low

Latency

30-bit
General
Purpose

52-bit
Low

Latency

52-bit
General
Purpose

LUT 1123 1081 2074 1837
FF 679 920 1237 1682
DSP 4 12 6 17

Latency 9 cycles 14 cycles 12 cycles 19 cycles
Frequency 400 MHz 400 MHz 400 MHz 400 MHz

7.5 Comparison with state-of-the-art
To the best of our knowledge, there are no frameworks for NTT
acceleration on FPGA or GPU. We compare the designs generated
by NTTGen with various baseline designs which are optimized
for fixed parameters. We generate each design using a comparable
FPGA device. Designs with similar NTT application parameters
and resource consumption as the baselines are reported to make
a fair comparison with regard to latency. It is not difficult to find
enough generalized Mersenne primes for 𝑛𝑝 = 1 and 𝑛𝑝 = 4 use
cases (Table 3), therefore we use the low latency NTT core in these
cases. For the other cases, the general purpose NTT core is used.

Comparison with FPGA implementations: Table 4 summa-
rizes the comparison results. Tian et al. [41] accelerate NTT on
FPGA and develop a highly optimized "point design". It achieves
better latency than NTTGen for a small set of NTT parameters.
For the specific case shown in Table 4, it fully unrolls all the NTT
stages in hardware, their approach is not generalizable to produce
efficient implementations for various application parameters and
hardware constraints. To reduce resource consumption, the NTT
core in [41] is restricted to one specific prime number, which se-
verely limits its applicability in HE. HEAX [35] is limited to 𝑝𝑝 = 1
and the specialization of NTT core is not explored. Having multiple
Super Pipelines lowers the latency because separate NTT cores
can be used for different NTT stages to avoid pipeline stall. Low
latency NTT core further reduces the latency (Section 5.2.2). We
observe 1.3× improvement in latency compared with HEAX. A
low resource design with 𝑛𝑝 = 6 is proposed in [38]. Our frame-
work produces a design that achieves 2.9× improvement in latency.

NTTGen: A Framework for Generating Low Latency NTT Implementations on FPGA CF’22, May 17–19, 2022, Torino, Italy

While all the baselines are specifically designed for the given param-
eters, NTTGen is a general framework and does not optimize the
hardware architecture for specific NTT parameters. The NTTGen
auto-generated designs outperform the baselines by up to 2.9×.

Table 7: Comparison with State-of-the-art GPUWork
Work [22] This paper
Device Titan V XCU280
(𝑁 , 𝑛𝑝) (16384, 21) (16384, 21)

moduli bit width 60 52
Freq [MHz] 1200 180

External Bandwidth [GB/s] 653 460
Latency [𝜇s] 44.1 39.6

Compute Efficiency 35.5% 67.3%
Norm. Number of NTTs

Computed per Unit Bandwidth 1 1.58

Comparison with GPU implementation: Table 7 lists the
comparison. Note that the implementation in [22] is only optimized
for bootstrappable HE use cases while NTTGen is applicable for
a variety of other application parameters (Table 1). Our FPGA de-
sign uses 𝑑𝑝 = 32 and 𝑝𝑝 = 1. We estimate the GPU compute
efficiency (percentage to peak performance) based on Algorithm 4
in [22]. Each butterfly operation needs 20 32-bit integer operations.
Thus the entire NTT algorithm needs 0.096 GOPs (in 44.1 𝜇s) while
the peak throughput of the GPU (int32) is 6.14 TOPs/s. Memory
efficiency is defined as the number of NTTs computed per unit
bandwidth. Although the GPU offers higher compute and external
bandwidth, our design has lower latency and achieves much better
compute and memory efficiency. This is owing to the customization
of the on-chip memory for twiddle factors, utilization of a dedi-
cated dataflow and elimination of global synchronizations that are
required in the GPU baseline.

8 CONCLUSION
In this paper, we presented a framework for generating low latency
NTT implementations on FPGA. NTTGen exploits data, pipeline
and batch level parallelism to optimize latency subject to resource
constraints. Unlike previous works, NTTGen uses the streaming
permutation network to tackle the challenge of complex access pat-
tern in NTT algorithm. We proposed a novel NTT core for a special
class of prime moduli to reduce latency. A design space exploration
tool was developed to automatically identify the optimal design
parameters. The designs generated by NTTGen result in up to 2.9×
improvement in latency over state-of-the-art.

ACKNOWLEDGMENTS
This work has been sponsored by the U.S. National Science Founda-
tion under grant number SaTC-2104264. Equipment grant by Xilinx
is greatly appreciated.

REFERENCES
[1] Alfred V. Aho and John E. Hopcroft. 1974. The Design and Analysis of Computer

Algorithms (1st ed.). Addison-Wesley Longman Publishing Co., Inc., USA.
[2] Martin Albrecht, Melissa Chase, Hao Chen, and et al. 2018. Homomorphic En-

cryption Security Standard. Technical Report.

[3] Jean-Claude Bajard, Julien Eynard, M. Anwar Hasan, and Vincent Zucca. 2017. A
Full RNS Variant of FV Like Somewhat Homomorphic Encryption Schemes. In
Selected Areas in Cryptography – SAC 2016, Roberto Avanzi and Howard Heys
(Eds.).

[4] Paul Barrett. 1987. Implementing the Rivest Shamir and Adleman Public Key
Encryption Algorithm on a Standard Digital Signal Processor. In Proceedings on
Advances in Cryptology—CRYPTO ’86 (Santa Barbara, California, USA). Springer-
Verlag, Berlin, Heidelberg, 311–323.

[5] V. E. Beneš. 1964. Optimal rearrangeablemultistage connecting networks. The Bell
System Technical Journal 43, 4 (1964), 1641–1656. https://doi.org/10.1002/j.1538-
7305.1964.tb04103.x

[6] Fabian Boemer and et al. 2019. NGraph-HE2: A High-Throughput Framework
for Neural Network Inference on Encrypted Data. In Proceedings of the 7th ACM
Workshop on Encrypted Computing and Applied Homomorphic Cryptography
(London, United Kingdom) (WAHC’19).

[7] Joppe W. Bos, Wouter Castryck, Ilia Iliashenko, and Frederik Vercauteren. 2017.
Privacy-Friendly Forecasting for the Smart Grid Using Homomorphic Encryp-
tion and the Group Method of Data Handling. In Progress in Cryptology -
AFRICACRYPT 2017, Marc Joye and Abderrahmane Nitaj (Eds.). Springer In-
ternational Publishing, Cham, 184–201.

[8] Florian Bourse, Michele Minelli, Matthias Minihold, and Pascal Paillier. 2018. Fast
Homomorphic Evaluation of Deep Discretized Neural Networks. In Advances
in Cryptology – CRYPTO 2018 (Lecture Notes in Computer Science, Vol. 10993).
Springer, 483–512. https://doi.org/10.1007/978-3-319-96878-0_17

[9] Joël Cathébras, Alexandre Carbon, Peter Milder, Renaud Sirdey, and Nicolas
Ventroux. 2018. Data Flow Oriented Hardware Design of RNS-based Polyno-
mial Multiplication for SHE Acceleration. IACR Transactions on Cryptographic
Hardware and Embedded Systems (Aug. 2018), 69–88.

[10] R. Chen and V. K. Prasanna. 2015. Automatic generation of high throughput
energy efficient streaming architectures for arbitrary fixed permutations. In 2015
25th International Conference on Field Programmable Logic and Applications (FPL).
1–8.

[11] Jung Hee Cheon, Kyoohyung Han, Andrey Kim, Miran Kim, and Yongsoo Song.
2019. A Full RNS Variant of Approximate Homomorphic Encryption. In Selected
Areas in Cryptography – SAC 2018, Carlos Cid and Michael J. Jacobson Jr. (Eds.).
Springer International Publishing, Cham, 347–368.

[12] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. 2016. Homomor-
phic Encryption for Arithmetic of Approximate Numbers. Cryptology ePrint
Archive, Report 2016/421. https://eprint.iacr.org/2016/421.

[13] Jason Cong, Peng Wei, Cody Hao Yu, and Peng Zhang. 2018. Automated Ac-
celerator Generation and Optimization with Composable, Parallel and Pipeline
Architecture (DAC ’18). Association for Computing Machinery, New York, NY,
USA. https://doi.org/10.1145/3195970.3195999

[14] Christoph Dobraunig and et al. 2018. Rasta: A Cipher with Low ANDdepth and
Few ANDs per Bit. In Advances in Cryptology – CRYPTO 2018, Hovav Shacham
and Alexandra Boldyreva (Eds.). Springer International Publishing, Cham.

[15] Nathan Dowlin, Ran Gilad-Bachrach, Kim Laine, Kristin Lauter, Michael Naehrig,
and John Wernsing. 2016. CryptoNets: Applying Neural Networks to Encrypted
Data with High Throughput and Accuracy. In Proceedings of the 33rd International
Conference on International Conference on Machine Learning - Volume 48 (New
York, NY, USA) (ICML’16). JMLR.org, 201–210.

[16] Junfeng Fan and Frederik Vercauteren. 2012. Somewhat Practical Fully Ho-
momorphic Encryption. Cryptology ePrint Archive, Report 2012/144. https:
//eprint.iacr.org/2012/144.

[17] Craig Gentry. 2009. A Fully Homomorphic Encryption Scheme. PhD Dissertation
2009.

[18] Kyoohyung Han and Dohyeong Ki. 2020. Better Bootstrapping for Approximate
Homomorphic Encryption. In Topics in Cryptology – CT-RSA 2020, Stanislaw
Jarecki (Ed.). Springer International Publishing.

[19] Darrel Hankerson, Alfred J. Menezes, and Scott Vanstone. 2003. Guide to Elliptic
Curve Cryptography. Springer-Verlag, Berlin, Heidelberg.

[20] Wonkyung Jung, Eojin Lee, Sangpyo Kim, Keewoo Lee, Namhoon Kim, Chohong
Min, Jung Hee Cheon, and Jung Ho Ahn. 2020. HEAANDemystified: Accelerating
Fully Homomorphic Encryption Through Architecture-centric Analysis and
Optimization. arXiv:2003.04510 [cs.DC]

[21] Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan. 2018.
GAZELLE: A Low Latency Framework for Secure Neural Network Inference.
In Proceedings of the 27th USENIX Conference on Security Symposium (SEC’18).
USENIX Association, USA.

[22] S. Kim, W. Jung, J. Park, and J. Ahn. 2020. Accelerating Number Theoretic
Transformations for Bootstrappable Homomorphic Encryption on GPUs. In 2020
IEEE International Symposium on Workload Characterization (IISWC).

[23] S. Kim, K. Lee, W. Cho, J. H. Cheon, and R. A. Rutenbar. 2019. FPGA-based
Accelerators of Fully Pipelined Modular Multipliers for Homomorphic Encryp-
tion. In 2019 International Conference on ReConFigurable Computing and FPGAs
(ReConFig).

[24] S. Kim, K. Lee, W. Cho, Y. Nam, J. H. Cheon, and R. A. Rutenbar. 2020. Hardware
Architecture of a Number Theoretic Transform for a Bootstrappable RNS-based

https://doi.org/10.1002/j.1538-7305.1964.tb04103.x
https://doi.org/10.1002/j.1538-7305.1964.tb04103.x
https://doi.org/10.1007/978-3-319-96878-0_17
https://eprint.iacr.org/2016/421
https://doi.org/10.1145/3195970.3195999
https://eprint.iacr.org/2012/144
https://eprint.iacr.org/2012/144
https://arxiv.org/abs/2003.04510

CF’22, May 17–19, 2022, Torino, Italy Yang Yang, et al.

Homomorphic Encryption Scheme. In 2020 IEEE 28th Annual International Sym-
posium on Field-Programmable Custom Computing Machines (FCCM). 56–64.

[25] Wai-Kong Lee, Sedat Akleylek, Wun-She Yap, and Bok-Min Goi. 2019. Accel-
erating Number Theoretic Transform in GPU Platform for qTESLA Scheme. In
Information Security Practice and Experience.

[26] Patrick Longa and Michael Naehrig. 2016. Speeding up the Number Theoretic
Transform for Faster Ideal Lattice-Based Cryptography. In Cryptology and Net-
work Security, Sara Foresti and Giuseppe Persiano (Eds.). Springer International
Publishing, Cham, 124–139.

[27] Patrick Longa and Michael Naehrig. 2016. Speeding up the Number Theo-
retic Transform for Faster Ideal Lattice-Based Cryptography. Cryptology ePrint
Archive, Report 2016/504. https://eprint.iacr.org/2016/504.

[28] A. C. Mert, E. Karabulut, E. Öztürk, E. Savaş, M. Becchi, and A. Aysu. 2020. A Flexi-
ble and Scalable NTT Hardware : Applications fromHomomorphically Encrypted
Deep Learning to Post-Quantum Cryptography. In 2020 Design, Automation and
Test in Europe Conference Exhibition.

[29] Ahmet Can Mert, Erdinç Öztürk, and Erkay Savaş. 2020. FPGA implementa-
tion of a run-time configurable NTT-based polynomial multiplication hardware.
Microprocessors and Microsystems 78 (2020), 103219.

[30] Peter L. Montgomery. 1985. Modular multiplication without trial division. Math.
Comp. 44 (1985), 519–521.

[31] Razvan Nane and et al. 2016. A Survey and Evaluation of FPGA High-Level
Synthesis Tools. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems (2016).

[32] H. Nejatollahi, S. Shahhosseini, R. Cammarota, and N. Dutt. 2020. Exploring
Energy Efficient Quantum-resistant Signal Processing Using Array Processors. In
ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP).

[33] Rogério Paludo and Leonel Sousa. 2021. Number Theoretic Transform Archi-
tecture suitable to Lattice-based Fully-Homomorphic Encryption. In 2021 IEEE
32nd International Conference on Application-specific Systems, Architectures and

Processors (ASAP).
[34] Brandon Reagen, Wooseok Choi, Yeongil Ko, Vincent Lee, Gu-Yeon Wei, Hsien-

Hsin S. Lee, and David Brooks. 2020. Cheetah: Optimizing and Accelerating
Homomorphic Encryption for Private Inference. arXiv:2006.00505 [cs.CR]

[35] M. Sadegh Riazi, Kim Laine, Blake Pelton, and Wei Dai. 2020. HEAX: An Ar-
chitecture for Computing on Encrypted Data. In Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming Languages
and Operating Systems (Lausanne, Switzerland) (ASPLOS ’20). Association for
Computing Machinery, New York, NY, USA, 1295–1309.

[36] Nikola Samardzic, Axel Feldmann, Aleksandar Krastev, Srinivas Devadas, Ronald
Dreslinski, Christopher Peikert, and Daniel Sanchez. 2021. F1: A Fast and Pro-
grammable Accelerator for Fully Homomorphic Encryption. In MICRO-54: 54th
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO ’21).

[37] SEAL 2020. Microsoft SEAL (release 3.6). https://github.com/Microsoft/SEAL.
Microsoft Research, Redmond, WA.

[38] S. Sinha Roy, F. Turan, K. Jarvinen, F. Vercauteren, and I. Verbauwhede. 2019.
FPGA-Based High-Performance Parallel Architecture for Homomorphic Comput-
ing on Encrypted Data. In 2019 IEEE International Symposium on High Performance
Computer Architecture (HPCA).

[39] Jerome A. Solinas. 1999. Generalized Mersenne Numbers. Technical Report.
[40] Xilinx. [n.d.]. Xilinx UltraScale+ FPGAs.

https://www.xilinx.com/products/boards-and-kits/alveo.html.
[41] Tian Ye, Yang Yang, Sanmukh R. Kuppannagari, Rajgopal Kannan, and Viktor K.

Prasanna. 2021. FPGA Acceleration of Number Theoretic Transform. In High
Performance Computing, Bradford L. Chamberlain, Ana-Lucia Varbanescu, Hatem
Ltaief, and Piotr Luszczek (Eds.).

[42] N. Zhang, B. Yang, C. Chen, S. Yin, S. Wei, and L. Liu. 2020. Highly Efficient
Architecture of NewHope-NIST on FPGA using Low-Complexity NTT/INTT.
IACR Transactions on Cryptographic Hardware and Embedded Systems 2020 (Mar.
2020), 49–72.

https://eprint.iacr.org/2016/504
https://arxiv.org/abs/2006.00505
https://github.com/Microsoft/SEAL

	Abstract
	1 Introduction
	2 Background
	2.1 NTT in Homomorphic Encryption
	2.2 Comparison between NTT and FFT

	3 Related Work
	4 Framework Overview
	4.1 NTTGen Workflow
	4.2 Design Parameters

	5 Hardware Architecture
	5.1 Architecture Overview
	5.2 NTT core
	5.3 Twiddle Factor Memory
	5.4 Streaming Permutation Network (SPN)

	6 Design Space Exploration
	6.1 Performance Modeling
	6.2 Design Space Exploration

	7 Experiments and Results
	7.1 Experimental Setup
	7.2 Framework Evaluation
	7.3 Sensitivity Analysis on Design Parameters
	7.4 Impact of SPN and NTT Cores
	7.5 Comparison with state-of-the-art

	8 Conclusion
	Acknowledgments
	References

