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1. Introduction

Recovering low-rank matrices from given incomplete linear measurements

plays an important role in many problems such as image and video process-

ing [1], model reduction [2], phase retrieval [3], molecular conformation [4, 5, 6],

localization in sensor networks [7, 8], dimensionality reduction [9], recommender

systems [10] as well as solving PDEs on manifold-structured data represented

as incomplete distance [11], just to name a few. A natural framework to the

low-rank recovery problem is rank minimization under linear constraints. How-

ever, this problem is NP-hard [12] and thus motivates alternative solutions. A

series of theoretical papers [13, 14, 15, 16, 12] showed that the NP-hard rank

minimization problem for matrix completion can be obtained by solving the

following convex nuclear norm minimization problem:

minimize
X∈Rn×n

‖X‖∗

subject to Xi, j = Mi, j (i, j) ∈ Ω (1)
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where ‖X‖∗ denotes the nuclear norm defined as the sum of the singular values

of X, and Ω ⊂ {(i, j)|i, j = 1, ..., n}, |Ω| = m, denotes a random set that consists

of the sampled indices. The remarkable fact is that, under certain conditions, the

underlying low-rank matrix can be reconstructed exactly with high probability

from only O(nr log2(n)) uniformly random measurements. The idea to use the

nuclear norm as an approximation of the rank function was first discussed in

[2]. Loosely, minimizing the sum of singular values will likely lead to a solution

with many zero singular values resulting a low rank matrix. One generalization

of the matrix completion problem in [15] considers measurements with respect

to a symmetric orthonormal basis and gives comparable theoretical guarantees

based on the elegant dual certificate analysis. In particular, it shows that the

true low rank matrix can be recovered with high probability from O(nr log2(n))

uniformly random measurements.

The starting point and inspiration for this work was our recent work in

[17] which studies a matrix completion problem with respect to a specific non-

orthogonal basis. In this paper, we consider the matrix completion problem

with respect to any non-orthogonal basis. Given a general unit-norm basis

{wα}Lα=1 which spans an L dimensional subspace S of Rn×n, the nuclear norm

minimization program for this general matrix completion problem is provided

by

minimize
X∈S

‖X‖∗

subject to 〈X ,wα〉 = 〈M ,wα〉 α ∈ Ω (2)

where Ω denotes a random set sampling the basis indices. We are interested in

the following two problems.

1. Could we obtain comparable recovery guarantees for the general matrix

completion problem?

2. If the answer to (1) is affirmative, what conditions are needed on the basis

{wα} and Ω?
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The main goal of this paper is a theoretical analysis of these two problems. We

start by discussing few examples which show how the problem naturally arises

in several applications.

Euclidean Distance Geometry Problem.. Given partial information on pairwise

distances, the Euclidean distance geometry problem is concerned with construct-

ing the configuration of points. The problem has applications in diverse areas

[4, 5, 9, 7, 11]. Formally, consider a set of n points in an r-dimensional space

P = {p1,p2, ...,pn}T ∈ Rn×r. Let D = [d2
i,j ] denote the squared Euclidean

distance matrix. The inner product matrix, also known as the Gram matrix

and defined as Xi,j = 〈pi ,pj〉, is a positive semidefinite matrix of rank r.

A minor analysis reveals that D and X can be related in the following way:

Di,j = Xi,i + Xj,j − 2Xi,j . For r � n, consider the following nuclear norm

minimization program to recover X.

minimize
X∈Rn×n

‖X‖∗

subject to Xi,i + Xj,j − 2Xi,j = Di,j (i, j) ∈ Ω (3)

X · 1 = 0 ; X = XT ; X ∈ S+

In the above program, S+ denotes the set of positive semidefinite matrices and

the constraint X ·1 = 0 fixes the translation ambiguity. The above minimization

problem can be equivalently interpreted as a general matrix completion problem

with respect to some operator basis wα.

minimize
X∈S

‖X‖∗

subject to 〈X ,wα〉 = 〈M ,wα〉 ∀α ∈ Ω (4)

where wα = 1
2 (eα1, α1

+ eα2, α2
− eα1, α2

− eα2, α1
) and S = {X ∈ Rn×n | X =

XT &X ·1 = 0}∩S+ with S+ denoting the set of positive semidefinite matrices.

The constant 1
2 is a normalization constant and eα1, α2 is a matrix whose entries

are all zero except a 1 at the (α1, α2)-th entry. It can be verified that {wα}Lα=1,

L = n(n−1)
2 , is a non-orthogonal basis for the linear space {X ∈ Rn×n | X =
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XT &X · 1 = 0}. Theoretical analysis of this problem was recently conducted

by the authors of this paper in [17] and in fact inspired this work.

Spectrally Sparse Signal Reconstruction.. The problem of signal reconstruction

has many important practical applications. When the underlying signal is as-

sumed to be sparse, the theory of compressive sensing states that the signal

can be recovered by solving the convex l1 minimization problem [18]. In [1],

the authors consider the recovery of spectrally sparse signal x ∈ Rn of known

order r where r � n. Let H : Cn → Cn1×n2 be the linear operator that maps a

vector z ∈ Cn to a Hankel matrix Hz ∈ Cn1×n2 with n+ 1 = n1 + n2. Denote

the orthonormal basis of n1 × n2 Hankel matrices by {Hα}n1×n2
α=1 . After some

analysis, the reconstruction problem is formulated as low-rank Hankel matrix

completion problem [1].

find Hz subject to rank(Hz) = r PΩ(Hz) = PΩ(Hx)

PΩ is the sampling operator defined as: PΩ(Z) =
∑
α∈Ω〈Z ,Hα〉Hα where Ω

is the random set that consists of the sampled Hankel basis. For the case where

r is not specified, one can consider the following nuclear norm minimization

problem.

minimize
X∈Rn1×n2

‖X‖∗

subject to 〈X ,Hα〉 = 〈M ,Hα〉 ∀α ∈ Ω (5)

where X = Hz and M = Hx. (5) is now in the form of a general matrix

completion problem.

Signal Recovery Under Quadratic Measurements.. Given a signal x ∈ Rn, con-

sider quadratic measurements of the form ai = 〈x ,wi〉 with some vector

wi ∈ Rn. Given that m random measurements are available, it is of inter-

est to determine if the underlying signal can be recovered. Using the lifting

idea in [19], the signal recovery problem can be written as the following nuclear
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norm minimization problem.

minimize
X∈Rn×n

‖X‖∗

subject to 〈X ,Wα〉 = 〈M ,Wα〉 ∀α ∈ Ω (6)

X = XT ; X � 0

Above Wα = wαw
∗
α and Ω is the random set that consists of the indices of the

sampled vectors. In the case that ai are sampled independently and uniformly

at random on the unit sphere, the above minimization problem is the well known

PhaseLift problem [3]. One can consider a general case where the assumption

is simply that the wi’s are structured and form a basis. The framework intro-

duced in this paper allows, under certain conditions, to state results about the

uniqueness of this general recovery problem.

Weighted Nuclear Norm minimization.. The usual assumption in matrix com-

pletion is uniform random measurements. In the case of general sampling mod-

els, it has been argued that the nuclear norm minimization is not a suitable

approach [20]. An alternative which has been argued to promote more accurate

low rank solutions [19, 21] is the weighted nuclear norm minimization [22, 20].

The general weighted nuclear norm minimization problem is given by

minimize ‖RXC‖∗

subject to 〈X ,wα〉 = 〈M ,wα〉 ∀α ∈ Ω (7)

where R and C, diagonal matrices with positive diagonal entries, scale the rows

and columns of X respectively. If the basis matrices {wα} are the canonical

basis, the resulting problem is the standard matrix completion problem. In the

context of the movie recommendation problem, the work in [20] demonstrates

that the weighted nuclear minimization obtains better prediction accuracy than

the unweighted nuclear norm minimization. For this case, the scaling matrices R

and C reflect the non-uniform weight assumed to different users and different

movies. Motivated by these considerations, we consider the general nuclear

norm minimization problem where the basis matrices are sampled uniformly at

5



random but with a prior on uncertainty of the underlying matrix modeled by

the scaling matrices R and C. Introducing the matrix Y = RXC, the above

minimization problem can equivalently be rewritten as follows.

minimize ‖Y ‖∗

subject to 〈Y ,R−1wαC
−1〉 = 〈M ,R−1wαC〉 ∀α ∈ Ω (8)

M is the weighted ground matrix M defined as M = RMC. This is a general

matrix completion problem with respect to the basis R−1wαC
−1. It can be ver-

ified that the set {R−1wαC
−1} is a basis. Of interest is the following question:

What kind of choices for R and C lead to successful recovery algorithms?

Challenges. The minimization problem in (2) has random linear constraints

which can be expressed as L(X) where L is the appropriate linear operator.

Using the work in [12], one approach to show uniqueness of the general matrix

completion problem is to check if L obeys the restricted isometry property (RIP)

condition. Our basis are structured and deterministic and so in general the RIP

condition does not hold. As an example, consider the nuclear norm minimization

program in (4) for the Euclidean distance geometry problem. We choose any

(i, j) /∈ Ω and construct a matrix X with Xi,j = Xj,i = Xi,i = Xj,j = 1 and

zero everywhere else. One can easily check that L(X) = 0 which shows that the

RIP condition does not hold. The general matrix completion problem resembles

the matrix completion problem with respect to a symmetric orthonormal basis

first considered in [15]. However, the basis {wα}Lα=1 in the general matrix

completion problem are not necessarily orthogonal. One solution is to employ

any of the basis orthogonalization algorithms and consider the minimization

problem in the new orthonormal basis. This solution however is not useful since

the measurements can not be treated as independent in the new basis. As such,

the lack of orthogonality mandates an alternative analysis to show that the

general matrix completion problem admits a unique solution.

Related work. The compressive sensing (CS) problem considers the solution of

an undetermined linear system Ax = b with the prior that the underlying vec-
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tor x is sparse. A series of works [18, 23, 24, 25] have shown that if A is well

conditioned, expressed using for instance the restricted isometry property (RIP)

or the coherence condition, m = O(s log n) measurements suffice to recover the

sparse solution x with very high probability. With the measurement vectors,

rows of the matrix A, sampled from some random distribution, the conven-

tional CS problem is the isotropic CS problem where the covariance matrix of

the measurements is proportional to the identity matrix. If the isotropy con-

dition does not hold, the standard results are not directly applicable. With

that, the anisotropic compressive sensing problem has been studied in [26, 27].

The general matrix completion problem with respect to a non-orthogonal basis

can be seen as analogue of anisotropic compressive sensing. Another line of

work that relates to ours is structured matrix completion where model priors

are integrated in the underlying matrix to be recovered. In [28], the authors

consider the problem of recovering a spectrally sparse signal given some time

domain samples. They propose an algorithm “ Enhanced Matrix Completion”

that first transforms the data matrix into its enhanced form employing a Hankel

structure and then applies matrix completion on the enhanced form. In [29],

this approach was further generalized using a low-rank interpolation approach

allowing it to be used for the recovery of a broad class of signals. In addition to

theoretical results on signal recovery, the work therein shows strong empirical

results that validate that the structured matrix completion model outperforms

conventional CS based signal recovery algorithms. A related problem is [15]

where the author generalizes the standard matrix completion problem to any

symmetric orthonormal basis.

The main technical difference in this paper compared to the aforementioned

previous works is that the sampling operator, central to the analysis of the

matrix completion problem, is not self adjoint. In particular, a common step

in the analysis of matrix completion algorithms is the isometry condition which

considers a spectral norm bound on PTRΩPT − PT where P is a projection on

a certain subspace T and RΩ is the sampling operator. In the general matrix
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completion setting, this spectral bound does not hold as the sampling operator

is no longer self adjoint. A natural alternative is a spectral norm bound on

PTR∗ΩRΩPT − PT. It turns out that standard concentration inequality based

arguments obtain suboptimal probability of success for this bound and can only

be made optimal under very stringent conditions on the non-orthogonal basis.

The main technical novelty of this paper is replacing this bound by a minimum

eigenvalue bound on the operator λmin (PT FΩ PT) where FΩ is a restricted frame

operator. This idea along with the dual certificate approach [13] was employed,

for a specific application of the distance geometry problem, in our previous work

[17]. Much inspired by this work, we were interested in generalizing the result

to any non-orthogonal basis. The current paper is a culmination of this effort.

To our knowledge, the first work that uses a dual basis approach is the work in

[30]. Therein, the authors study the compressive sensing problem in a general

transform domain and provide theoretical guarantees. The problem we study in

this paper can be seen as a direct analogue of this work for matrix completion.

The techniques in [30] consider the CS setting. A direct translation of these

results requires a suitable bound on ||PTR∗ΩRΩPT − PT||. As remarked earlier,

this bound can not be realized for the general matrix completion problem and

requires an alternative approach.

Contributions. In this paper, under suitable sampling conditions, a dual basis

approach is used to show that the general matrix completion problem admits a

unique solution. Introducing a dual basis to wα, denoted by zα, ensures that

the measurements 〈X ,wα〉 in (2) are compatible with expansion coefficients

of M . Based on the framework of the dual basis approach, we show that the

minimization problem recovers the underlying matrix under suitable conditions.

Two main contributions of this paper are as follows.

1. A dual basis approach is used to prove a uniqueness result for the general

matrix completion problem. The main result shows that if the number of

random measurements m is of order O(nr log2 n), under certain assump-

tions, the nuclear norm minimization program recovers the underlying
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low-rank solution with very high probability. A key part of our proof uses

the operator Chernoff bound. This part of the proof based on the Chernoff

bound is simple and might find use in other problems.

2. An important condition, named the correlation condition, is introduced.

This condition determines whether the nuclear norm minimization pro-

gram succeeds for a given general matrix completion problem. The cor-

relation condition could hold for deterministic measurements and more

importantly can be checked in polynomial time.

Outline. The outline of the paper is as follows. Section 2 introduces the cor-

relation condition and discusses the dual basis approach. The proof of the

main result is presented in section 3. The key components of the proof can

be described as follows. The general matrix completion problem is a convex

minimization problem for which a sufficient condition to optimality is the KKT

condition. We will use a dual certificate Y , satisfying certain conditions, to

certify that the general matrix completion problem admits a unique minimizer.

The construction of Y follows the elegant golfing scheme proposed in [15]. The

bulk of the theoretical work then focuses on using this scheme and proving that

the conditions hold with very high probability. The implication of the proof is

that there is a unique solution to the general matrix completion problem with

very high probability. Section 4 concludes the work.

Notation. The notations used in the paper are summarized in Table 1.

x Vector ‖X‖F Frobenius norm
X Matrix ‖X‖∞ sup‖v‖∞=1 ‖Xv‖∞
X Operator ‖X‖ sup‖v‖2=1 ‖Xv‖2
XT Transpose ‖X‖∗ Nuclear norm

Tr(X) Trace ‖A‖ sup‖X‖F=1 ‖AX‖F .

〈X ,Y 〉 Trace(XTY ) λmax, λmin Maximum, Minimum eigenvalue
1 A vector or matrix of ones Sgn X Usign (Σ)V T ; here [U ,Σ,V ] = svd(X)
0 A vector or matrix of zeros Ω, I Random sampled set, Universal set

Table 1: Notations
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2. Matrix Completion Problem under a Non-orthogonal Basis

In this section, we introduce a new condition referred as a correlation con-

dition for low-rank matrix completion in a non-orthogonal basis. We will also

discuss a dual basis formulation which plays an important role in our main

result.

2.1. Correlation Parameter

We consider an L dimensional subspace S ⊂ Rn×n as the feasible set of

the general matrix completion. We allow L ≤ n2 such as the case where the

feasible solutions naturally satisfy linear constraints. Given a complete set of

unit-norm basis {wα}Lα=1 of the subspace S, any X ∈ S can be determined

if one specifies all the measurements {〈X ,wα〉}Lα=1. The problem studied in

this paper considers the case where we have random access to a few of these

measurements. Leaving the precise notion of “a few” for later, we consider the

following question: Are there non-orthogonal basis for which the matrix com-

pletion framework, learning from few measurements, still works? In this paper,

we note that as long as a certain condition, named correlation condition, on the

basis matrices is satisfied, the sample complexity of low rank matrix completion

with respect to non-orthogonal basis is of the same order as sample complex-

ity of low rank matrix completion with respect to an orthogonal basis. In the

specific case of the general matrix completion problem, the goal is to rigor-

ously show that, under certain conditions, a low rank matrix can be recovered

from few random non-orthogonal measurements. The intuitive arguments above

motivate the following correlation condition which loosely informs how far the

non-orthogonal basis is from an orthonormal basis.

Definition 1. The unit-norm basis {wα ∈ Rn×n}Lα=1 has correlation parameter
µ if there is a constant µ ≥ 0 such that the following two equations hold∥∥∥∥∥ 1

n

∑
α

wT
αwα − I

∥∥∥∥∥ ≤ µ &

∥∥∥∥∥ 1

n

∑
α

wαw
T
α − I

∥∥∥∥∥ ≤ µ (9)

Intuitively, the above definition describes that the operators 1
n

∑
αw

T
αwα

and 1
n

∑
αwαw

T
α are nearly isometric to the identity operator. To understand
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the correlation condition, we first establish certain properties and follow by

computing the correlation condition of certain basis matrices.

Lemma 1. [Properties and examples of correlation condition] Given a unit-
norm basis {wα ∈ Rn×n}Ln=1 with correlation parameter µ, the following state-
ments hold:

a. The correlation parameter is bounded above by n, that is, µ ≤ max(1, Ln ).

b. If the correlation condition holds, it follows that

λmax

(
L∑
α=1

wT
αwα

)
≤ (µ+ 1)n & λmax

(
L∑
α=1

wαw
T
α

)
≤ (µ+ 1)n

c. If {wα}Ln=1 is an orthonormal basis L = n2, the correlation condition
holds with µ = 0.

d. For the basis matrices in the Euclidean distance geometry problem, the
correlation condition holds with µ = 1.

Proof.

1. For positive semidefinite matrices A and B, the norm inequality ‖A −
B‖ ≤ max(‖A‖, ‖B‖) holds. Let A = 1

n

∑
αw

T
αwα and let B = I. Ap-

plying the triangle inequality, it follows that
∥∥ 1
n

∑
αw

T
αwα

∥∥ ≤ 1
n

∑
α ||wT

α || ||wα|| ≤
L
n . Therefore,

∥∥ 1
n

∑
αw

T
αwα − I

∥∥ ≤ max(n, 1) = n. An analogous argu-

ment obtains
∥∥ 1
n

∑
αwαw

T
α − I

∥∥ ≤ max(1, Ln ). Hence, µ ≤ max(1, Ln )
as desired. It should be remarked that the theoretical analysis requires
µ = O(1).

2. Note that λmax

(∑L
α=1 w

T
αwα

)
= ‖

∑L
α=1 w

T
αwα−nI+nI‖ ≤ ‖

∑L
α=1 w

T
αwα−

nI‖+‖nI‖ = (µ+1)n. A similar argument results λmax

(∑L
α=1 wαw

T
α

)
≤

(µ+ 1)n.

3. For an orthonormal basis in S = Rn×n, the completeness relation states

that
∑n2

α=1 wαw
T
α =

∑n2

α=1 w
T
αwα = nI. The proof of this fact is stan-

dard. For ease of reference, a proof is included in Lemma 6. Using the
completeness relation, it follows that the correlation condition holds with
µ = 0.

4. For the Euclidean distance geometry problem, the basis are symmetric so
it suffices to consider 1

n

∑
αw

2
α. A short calculation results 1

n

∑
αw

2
α =

1
2n (nI − 11T ). The correlation condition bound amounts to finding the
operator norm of 1

2‖I+ 1
n11T ‖. Since the maximum eigenvalue of 1

n11T is
1, 1

2‖I+ 1
n11T ‖ = 1. Hence, for the Euclidean distance geometry problem,

the correlation condition holds with µ = 1.
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An advantage of the correlation condition is its computational complexity.

The computational complexity of checking the correlation condition is at most

O(n3). As such, given a measurement operator, it can easily be checked whether

it satisfies the correlation condition or not. If the result is positive, the analysis

in this paper can be applied. If the correlation condition does not hold, no

conclusion can be made.

2.2. Dual basis formulation

For the general matrix completion problem in (2), the measurements are

in the form 〈X ,wα〉. If wα is orthonormal, X can be expanded as X =∑
α〈X ,wα〉wα where 〈X ,wα〉 are the expansion coefficients. However, for

non-orthogonal basis, this expansion does not hold. Since the measurements

are inherent to the problem, the ideal expansion will be of the form X =∑
α〈X ,wα〉zα. The idea of the dual basis approach is to realize this form with

the implication that the expansion coefficients match the random measurements.

This approach is briefly summarized below and we refer the interested reader

to [30] where the dual basis approach is first considered in the context of the

general compressive sensing problem. The work in [17] uses the dual basis

approach in the context of the context of matrix completion problem in the

context of the Euclidean distance geometry problem. Given the basis {wα}Lα=1

of S, we define the matrix H as Hα, β = 〈wα ,wβ〉 and write H−1
α, β as Hα, β .

After minor analysis, it is straightforward to check zα =
∑
βH

α, βwβ is a dual

basis satisfying 〈zα ,wβ〉 = δα, β . We note the following relations which will

be used in later analysis, H = W TW , H−1 = ZTZ and Z = WH−1 where

W = [w1,w2, ...,wL] and Z = [z1, z2, ...,zL] denote the matrix of vectorized

basis matrices and vectorized dual basis matrices respectively. The sampling

operator, a central operator in the analysis of the general matrix completion

problem, is defined as follows.

RΩ : X ∈ S −→ L

m

∑
α∈Ω

〈X ,wα〉zα (10)
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The sampling model, for the set Ω, is uniform random with replacement from

I = {1, · · · , L}. The size of Ω is denoted by m and the scaling factor
L

m
is simply

for convenience of analysis. The adjoint operator of the sampling operator also

appears in the analysis and has the following form.

R∗Ω : X ∈ S −→ L

m

∑
α∈Ω

〈X , zα〉wα (11)

Using the sampling operator RΩ, we can write (2) as follows.

minimize
X∈S

‖X‖∗

subject to RΩ(X) = RΩ(M) (12)

Another operator which appears in the analysis is the restricted frame operator

defined as follows.

FΩ : X ∈ S −→ L

m

∑
α∈Ω

〈X ,wα〉wα (13)

It can be readily verified that the restricted frame operator is self-adjoint and

positive semidefinite.

Coherence.. One can not expect to have successful reconstruction for an arbi-

trary matrix M , in particular, when M has very few non-zero expansion coeffi-

cients. Thus, the notion of coherence is introduced in [13] to guarantee successful

completion. Consider the singular value decomposition of M =
∑r
k=1 λkukv

T
k .

Let’s write U = span {u1, ...,ur}, U⊥ = span{ur+1, ...,un} as the orthogonal

complement of U, V = span {v1, ...,vr} and V⊥ = span{vr+1, ...,vn} as the

orthogonal complement of V. Projections onto these spaces appear frequently

in the analysis and can be summarized as follows. Let PU and PV denote the

orthogonal projections onto U and V respectively. PU⊥ and PV⊥ are defined

analogously. Define T = {UΘT + ΘV T : Θ ∈ Rn×r} to be the tangent space of

the rank r matrix in Rn×n at M . The orthogonal projection onto T is given by

PTX = PUX + XPV − PUXPV (14)
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It then follows that PT⊥X = X − PTX = PU⊥XPV⊥ . We define a coherence

condition as follows.

Definition 2. The aforementioned rank r matrix M ∈ Rn×n has coherence ν
with respect to unit-norm basis {wα}α∈I if the following estimates hold

max
α∈I

∑
β∈I
〈PT wα ,wβ〉2 ≤ ν

r

n
(15)

max
α∈I

∑
β∈I
〈PT zα ,wβ〉2 ≤ cvν

r

n
(16)

max
α∈I
〈wα ,UV T 〉2 ≤ ν r

n2
(17)

where {zα}α∈I is the dual basis of {wα}α∈I and cv is a constant satisfying
cv ≥ λmax(H−1)‖H−1‖∞.

Remark 1. Since the above coherence conditions are a central part of the analy-
sis, we consider equivalent simplified forms. We start with a bound on ‖PT wα‖2F
using (15) and Lemma 8 which results

λmin(H) ‖PT wα‖2F ≤ max
α∈I

∑
β∈I
〈PT wα ,wβ〉2 ≤ ν

r

n
=⇒ ‖PT wα‖2F ≤ λmax(H−1) ν

r

n

Next, using the above inequality, the following bound for ‖PT zα‖F follows.

‖PT zα‖F ≤
∑
β∈I
‖Hα, β PT wβ‖F =

∑
β∈I
|Hα, β | ‖PT wβ‖F ≤ ‖H−1‖∞

√
λmax(H−1)

√
νr

n

It should be noted that the analysis presented in this paper requires that ‖H−1‖∞
is at most O(1). Finally, we use the previous inequality and (17) to derive a
bound for 〈zα ,UV T 〉2.

〈zα ,UV T 〉2 = 〈
∑
β∈I

Hα, βwβ ,UV T 〉2 ≤ max
β∈I
〈wβ ,UV T 〉2

∑
β∈I
|Hα, β |

2

≤ ‖H−1‖2∞
νr

n2

The coherence conditions can now be summarized as follows.

max
α∈I
‖PT wα‖2F ≤ λmax(H−1) ν

r

n
(18)

max
α∈I
‖PT zα‖2F ≤ ‖H−1‖2∞ λmax(H−1) ν

r

n
(19)

max
α∈I
〈zα ,UV T 〉2 ≤ ‖H−1‖2∞

νr

n2
(20)
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The coherence parameter is indicative of concentration of information in the

ground truth matrix. If the underlying matrix has low coherence, each mea-

surement is equally informative as the other. On the other hand, if a matrix

has high coherence, it means that the information is concentrated on few mea-

surements.

Sampling Model.. For the general matrix completion problem, the basis ma-

trices are sampled uniformly at random with replacement. The advantage of

this model is that the sampling process is independent. This property is crucial

since our analysis uses concentration inequalities for i.i.d matrix valued random

variables. A disadvantage of this sampling process is that the same measure-

ment could be repeated and the analysis needs to account for the number of

duplicates.

3. Main Result and Proof

The main result of this paper shows that the nuclear norm minimization

program for the general matrix completion problem in (12) recovers the under-

lying matrix with very high probability. A precise statement is stated in the

theorem below.

Theorem 1. Let M ∈ Rn×n be a matrix of rank r that obeys the coher-
ence conditions (15), (16) and (17) with coherence ν and satisfies the corre-
lation condition (9) with correlation parameter µ. Define C as follows: C =

max

(
λmax(H−1)3, cv,

(µ+ 1)‖H−1‖∞
min( (µ+ 1)‖H−1‖∞, 1

4 )2

)
with parameter cv from (16)

and ‖H−1‖∞ = O(1). Assume m measurements, {〈M ,wα〉}α∈Ω, are sampled
uniformly at random with replacement. For β > 1, if

m ≥ log2

(
4
√

2L
λmax(H)

λmin(H)

√
r

)
nr

(
48
[
Cν +

n

Lr

][
β log(n) + log

(
4 log2

(
4
√

2L
λmax(H)

λmin(H)

√
r

))])
(21)

the solution to (12) is unique and equal to M with probability at least 1−n−β.

Since the general matrix completion problem in (12) is convex, the optimizer

can be characterized using the KKT conditions. A compact and simple form

of these conditions is derived in [13]. With this, a brief outline of the proof is

15



as follows. The proof is divided into two main parts. In the former part, we

show that if the aforementioned optimality conditions hold, then M is a unique

solution to the minimization problem. The latter and main part of the proof

is concerned with showing that, under certain assumptions, these conditions do

hold with very high probability. The implication of this is that, for a suitable

choice of m, M is a unique solution for the general matrix completion problem.

Our proof adapts arguments from [15, 17]. Few remarks on the difference of

our proof to the matrix completion proofs in [15, 16] and our previous work [17]

are in order.

1. The operator RΩ is not self-adjoint. The main implication of this is that

the operator PTRΩPT, an important operator in matrix completion anal-

ysis, is no longer isometric to PT. It turns out the appropriate operator

to consider is PTR∗ΩRΩPT where the goal is to show that this operator is

nearly isometric to PT. However, this approach is not amenable to sim-

ple analysis. In this work, the main argument is based on showing that

the minimum eigenvalue of the operator PTFΩPT is bounded away from

zero with very high probability. To prove this fact, the operator Chernoff

bound is employed. The interpretation of this bound is that, restricted to

the space T, the operator PTFΩPT is full rank. If the measurement basis

is orthogonal, FΩ = RΩ, the implication is that the operator PTRΩPT on

T is invertible. With this, PTFΩPT can be understood as the operator

analogue of PTRΩPT for non-orthogonal measurements.

2. The measurement basis is non-orthogonal. Since we use the dual basis

approach, the spectrum of the matrices H and H−1 become important.

However, since we do not work with a fixed basis, all the constants are

unknown. This is particularly relevant and presents some challenge in the

use of concentration inequalities and will be apparent in later analysis.

For the matrix completion problem, with measurement basis eij , the theoretical

lower bound of O(nrν log n) was established in [14]. Note that, if C = O(1) and

µ = O(1), Theorem 1 requires on the order of nrν log2 n measurements which

16



is only log(n) factor away from the optimal lower bound. The order of Theorem

1 is also the same order as those used in [15, 16]. These works consider the low

rank recovery problem with any orthogonal basis and the matrix completion

problem respectively. Before the proof of main result, we illustrate Theorem 1

on two of the examples discussed in the introduction.

Euclidean Distance Geometry Problem: A matrix completion formula-

tion and theoretical analysis of the Euclidean distance geometry problem ap-

pears in [17]. Using the existing analysis in [17], L = n(n−1)
2 , λmax(H−1) ≤ 4,

λmin(H−1) = 1
8n and ‖H−1‖∞ = 8. The constant cv, which satisfies cv ≥

λmax(H−1)‖H−1‖∞, is set to 32. Using Lemma 1(d), the correlation condi-

tion for the Euclidean Distance Geometry Problem holds with µ = 1. Using

Theorem 1, it can be seen that the number of samples needed to recover the

underlying low rank Gram matrix for the Euclidean distance geometry problem

is O(nrν log2 n).

Spectrally Sparse Signal Reconstruction: For simplicity, consider the case

n1 = n2 = n. For this problem, the orthonormality of the Hankel basis implies

that H = I. Therefore, λmax(H−1) = λmin(H−1) = ‖H−1‖∞ = 1 and L = n2.

The correlation condition holds trivially with µ = 0. The number of samples

needed to cover the underlying low rank matrix is O(nrν log2 n).

Remark 2. It should be remarked that the minimum number of samples noted
in Theorem 1 can be lowered, the constants could be improved, if one is work-
ing with explicit basis. The analysis presented here is generic and does not
assume specific structure of the basis. Where the latter is readily available, most
inequalities appearing in the technical details can be tightened lowering the sam-
ple complexity. For instance, if the basis is orthonormal as in the problem of
spectrally sparse signal construction, the analysis in [15] gives tight results. In
general, for explicit basis with some structure, one can adopt the analysis in this
paper and improve certain bounds.

Now we return to the main proof. For ease, the proof is structured into

several intermediate results. The starting result is Theorem 2 which shows that

17



if certain conditions hold, M is a unique solution to (12).

Theorem 2. For any X ∈ S, let ∆ = X −M denote the deviation from the
true low rank matrix M . ∆T and ∆T⊥ denote the orthogonal projection of ∆
to T and T⊥ respectively. For any given Ω with |Ω| = m, the following two
statements hold.

(a). If ‖∆T‖F ≥
√

2L
λmax(H−1)

λmin(H−1)
‖∆T⊥‖F and λmin (PT FΩ PT) > 1

2λmin(H),

then RΩ∆ 6= 0.

(b). If ‖∆T‖F <
√

2L
λmax(H−1)

λmin(H−1)
‖∆T⊥‖F for ∆ ∈ kerRΩ, and there exists a

Y ∈ range R∗Ω satisfying,

‖PTY − SgnM‖F ≤
1

4

√
1

2L

λmin(H−1)

λmax(H−1)
and ‖PT⊥Y ‖ ≤

1

2
(22)

then ‖X‖∗ = ‖M + ∆‖∗ > ‖M‖∗.

Theorem 2(a) states that, for “large” ∆T, any deviation from M is not in the

null space of the operator. Theorem 2(b) states that, for “small” ∆T, deviations

from M increase the nuclear norm. The theorem at hand is deterministic and at

this stage no assumptions are made on the construction of the set Ω. As long as

the assumptions of the theorem are satisfied, the theorem will hold true. After

proving the theorem, we proceed to argue that the conditions in the theorem

hold with very high probability. This will require certain sampling conditions

and a suitable choice of m = |Ω|.

3.1. Proof of Theorem 2

Proof of Theorem 2(a). First, observe that ‖RΩ ∆‖F = ‖RΩ ∆T+RΩ ∆T⊥‖F ≥
‖RΩ ∆T‖F − ‖RΩ ∆T⊥‖F . Since we want to show that RΩ∆ 6= 0, the observa-
tion leads to considering a lower bound for ‖RΩ ∆T‖F and an upper bound for
‖RΩ ∆T⊥‖F . For any X, ‖RΩ X‖2F can be bounded as follows.

‖RΩ X‖2F = 〈X ,R∗ΩRΩ X〉 =
L2

m2

∑
β∈Ω

∑
α∈Ω

〈X ,wα〉〈X ,wβ〉〈zα , zβ〉 =
L2

m2

∑
β∈Ω

∑
α∈Ω

〈X ,wα〉〈X ,wβ〉Hα, β

where the last inequality uses the fact that 〈zα , zβ〉 = Hα, β . The min-max
theorem applied to the above equation results

L2

m2
λmin(H−1)

∑
α∈Ω

〈X ,wα〉2 ≤ ‖RΩ X‖2F ≤
L2

m2
λmax(H−1)

∑
α∈Ω

〈X ,wα〉2

(23)
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Setting X = ∆T⊥ and using the right inequality above, we obtain

‖RΩ ∆T⊥‖2F ≤
L2

m2
λmax(H−1)

∑
α∈Ω

〈∆T⊥ ,wα〉2 ≤ m
L2

m2

λmax(H−1)

λmin(H−1)
‖∆T⊥‖2F

(24)
where the last inequality uses the fact that

∑
α∈I〈X ,wα〉2 ≤ λmax(H)‖X‖2F

(Lemma 8 in Appendix A) and the constant m bounds the maximum number
of repetitions for any given measurement. Analogously, setting X = ∆T and
using the left inequality in (23), we obtain

‖RΩ ∆T‖2F ≥
L2

m2
λmin(H−1)

∑
α∈Ω

〈∆T ,wα〉2 =
L

m
λmin(H−1)〈∆T ,FΩ ∆T〉

(25)
The next step considers the projection onto T of the restricted frame operator
and applies the min-max theorem resulting the following inequality.

‖RΩ ∆T‖2F ≥
L

m
λmin(H−1)〈∆T ,FΩ ∆T〉 =

L

m
λmin(H−1)〈∆T ,PT FΩ PT ∆T〉

≥ L

m
λmin(H−1)λmin(PT FΩ PT) ‖∆T ‖2F

(26)

Above, the first equality follows since PT is self adjoint and evidently ∆T ∈ T.
The inequality in (26) can be reduced further using the assumption λmin (PT FΩ PT) >
1
2λmin(H) in the theorem resulting

‖RΩ ∆T‖2F >
L

2m
λmin(H−1)λmin(H) ‖∆T ‖2F (27)

Finally, use the inequalities in (24) and (27) and the assumption in the theorem
to show that ‖RΩ ∆‖F > 0 as follows.

‖RΩ ∆‖F >
√

L

2m
λmin(H−1)λmin(H) ‖∆T ‖F −

L√
m

√
λmax(H−1)

λmin(H−1)
‖∆T⊥‖F

≥
√

L

2m
λmin(H−1)λmin(H)

(√
2L
λmax(H−1)

λmin(H−1)

)
‖∆T⊥‖F −

L√
m

√
λmax(H−1)

λmin(H−1)
‖∆T⊥‖F = 0

This concludes proof of Theorem 2(a).

Proof of Theorem 2(b). Let X = M +∆ be a feasible solution to (12) with the

condition that ‖∆T‖F <
√

2Lλmax(H−1)
λmin(H−1) ‖∆T⊥‖F and ∆ ∈ kerRΩ. The goal

now is to show that, for any X that satisfies these assumptions, the nuclear
norm minimization is violated meaning that ‖X‖∗ = ‖M + ∆‖∗ > ‖M‖∗.
The proof of this fact makes use of the dual certificate approach in [15]. The
idea is to endow a certain object, named a dual certificate Y , with certain
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conditions so as to ensure that any X satisfying the earlier made assumptions
is not a solution to (12). It then becomes a task to construct the certificate
which satisfies the preset conditions. For ease of later reference, we start with
the former task reproducing a proof, with minor changes, in section 2E of [15].
First, using the duality of the spectral norm and the nuclear norm, note that
there exists a Λ ∈ T⊥ with ||Λ|| = 1 such that 〈Λ ,PT⊥ (∆)〉 = ||PT⊥ (∆)||∗.
Second, using the characterization of the subgradient of the nuclear norm [31],
∂‖M‖∗ = {SgnM + Γ | Γ ∈ T⊥ & ‖PT⊥ Γ‖ ≤ 1}. With this, it can be readily
verified that SgnM + Λ is a subgradient of ||M ||∗ at M . Mathematically, we
have ‖M+∆‖∗ ≥ ||M ||∗+〈SgnM+Λ ,∆〉. Using the condition Y ∈ range R∗Ω
which implies 〈Y ,∆〉 = 0 in the previous inequality, we obtain

‖M + ∆‖∗ ≥ ||M ||∗ + 〈SgnM + Λ ,∆〉
= ||M ||∗ + 〈SgnM + Λ− Y ,∆〉
= ||M ||∗ + 〈SgnM − PT Y ,∆T〉+ ||∆T⊥ ||∗ − 〈PT⊥Y ,∆T⊥〉

The third equality follows using the earlier choice of Λ and the fact that
SgnM ∈ T (from Lemma 7 in Appendix A). Finally, we apply the assump-
tions of the theorem to the last equation above to obtain

‖M + ∆‖∗ ≥ ||M ||∗ + 〈SgnM − PT Y ,∆T〉+ ||∆T⊥ ||∗ − 〈PT⊥Y ,∆T⊥〉

≥ ||M ||∗ −
1

4

√
1

2L

λmin(H−1)

λmax(H−1)
‖∆T‖F + ‖∆T⊥‖∗ −

1

2
‖∆T⊥‖∗

≥ ||M ||∗ −
1

4

√
1

2L

λmin(H−1)

λmax(H−1)
‖∆T‖F +

1

2
‖∆T⊥‖F

> ||M ||∗ −
1

4

√
1

2L

λmin(H−1)

λmax(H−1)

(√
2L
λmax(H−1)

λmin(H−1)
‖∆T⊥‖F

)
+

1

2
‖∆T⊥‖F

= ||M ||∗ +
1

4
‖∆T⊥‖F

It can be concluded that ‖M + ∆‖∗ > ‖M‖∗ as desired.

Next, we state and prove a corollary which shows that M is a unique solution

to (12) if the deterministic assumptions of Theorem 2 hold.

Corollary 1. If the conditions of Theorem 2 hold, M is a unique solution to
(12).

Proof. Define ∆ = X −M for any X ∈ S. Using Theorem 2(a), RΩ ∆ 6= 0

if ‖∆T‖2F ≥
(√

2L
λmax(H−1)

λmin(H−1)
‖∆T⊥‖F

)2

. It then suffices to consider the case

‖∆T‖2F <

(√
2L
λmax(H−1)

λmin(H−1)
‖∆T⊥‖F

)2

for ∆ ∈ kerRΩ. For this case, using

the proof of Theorem 2(b), ‖X‖∗ > ‖M‖∗. Therefore, M is the unique solution
to (12).
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3.2. Proof of Theorem 1

Using the corollary above, if the two conditions in Theorem 2 hold, it follows

that M is a unique solution to (12). The first condition in Theorem 2(a)

is the assumption that λmin (PT FΩ PT) > 1
2λmin(H). This will ensure that

the minimum eigenvalue of the operator PT FΩ PT is bounded away from zero.

Using the operator Chernoff bound in [32] restated below, Lemma 2 addresses

the assumption.

Theorem 3 (Chernoff bound in [32]). Consider a finite sequence {Lk} of in-
dependent, random, self-adjoint operators, acting on matrices in Rn×n, that
satisfy

Lk � 0 and ‖Lk‖ ≤ R almost surely

Compute the minimum eigenvalue of the sum of the expectations,

µmin := λmin

(∑
k

E[Lk]

)

Then, we have

Pr

[
λmin

(∑
k

Lk

)
≤ (1− δ)µmin

]
≤ n

[
exp(−δ)

(1− δ)1−δ

]µmin
R

for δ ∈ [0, 1]

For δ ∈ [0, 1], using Taylor series of log(1 − δ), note that (1 − δ) log(1 − δ) ≥

−δ + δ2

2 . This results the following simplified estimate.

Pr

[
λmin

(∑
k

Lk

)
≤ (1− δ)µmin

]
≤ n exp

(
−δ2 µmin

2R

)
for δ ∈ [0, 1]

Lemma 2. Consider the operator PT FΩ PT : T → T. With κ = mn
Lr , the

following estimate holds.

Pr

(
λmin (PT FΩ PT) ≤ 1

2
λmin(H)

)
≤ n exp

(
−λmin(H)2κ

8ν

)
Proof. Recall the restricted frame operator FΩ =

∑
α∈Ω

L
m 〈X ,wα〉wα. For

X ∈ T, PT FΩ PT X can be equivalently represented as follows.

PT FΩ PT X =
∑
α∈Ω

L

m
〈X ,PT wα〉 PT wα

Let Lα = L
m 〈· ,PT wα〉 PT wα denote the operator in the summand. Since

Lα is positive semidefinite, the operator Chernoff bound can be used. The
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bound requires estimate of an upper bound R of the spectrum norm of Lα and
µmin = λmin(

∑
β∈ΩE[Lβ]). First, we estimate R as follows.∥∥∥∥ Lm 〈· ,PT wα〉 PT wα

∥∥∥∥ =
L

m
‖PT wα‖2F ≤

L

m
λmax(H−1)

νr

n

The last inequality follows from the coherence estimate in (18). With this, set

R =
L

m
λmax(H−1)

νr

n
. Next, we consider the estimate of µmin by first evaluating∑

β∈ΩE[Lβ].

∑
β∈Ω

E[Lβ] =
∑
β∈Ω

[∑
α∈I

1

m
〈· ,PT wα〉 PT wα

]
=
∑
α∈I
〈· ,PT wα〉 PT wα

For any X ∈ T, 〈X ,
∑
β∈Ω

E[Lβ](X)〉 can be lower bounded as follows.

〈X ,
∑
β∈Ω

E[Lβ](X)〉 =
∑
β∈I
〈X, wβ〉2 ≥ λmin(H)‖X‖2F

with the last inequality following from Lemma 8 in Appendix A. The varia-
tional characterization of the minimum eigenvalue, along with the fact that∑
α∈ΩE[Lα] is a self-adjoint operator, implies that the minimum eigenvalue of∑
α∈ΩE[Lα] is at least λmin(H). With this, set µmin = λmin(H). The final

step is to apply the operator Chernoff bound with R = L
mλmax(H−1)νrn and

µmin = λmin(H). Setting δ = 1
2 , λmin (PT FΩ PT) > 1

2λmin(H) with probability
of failure at most p1 given by

p1 = n exp

(
−λmin(H)2κ

8ν

)
This concludes the proof.

Lemma 2 shows that λmin (PT FΩ PT) > 1
2λmin(H) holds with probability at

least 1− p1 where the probability of failure is at most p1 = n exp
(
− κ

8ν

)
with

κ =
mn

Lr
.

In what follows, the conditions in Theorem 2(b) are analyzed. The statement

there assumes the existence of a certain dual certificate Y that satisfies the con-

ditions in (22). In [15], David Gross devised a novel scheme, the golfing scheme,

to construct the dual certificate Y . Before showing the scheme, some notations

are in order: 1) The random set Ω is partitioned into l batches. The i-th batch,

denoted Ωi, contains mi elements with

l∑
i=1

mi = m. 2) For a given batch, the
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sampling operator can be defined as follows Ri =
L

mi

∑
α∈Ωi

〈X ,wα〉zα. The

inductive scheme is shown below.

Q0 = sgn M , Yi =

i∑
j=1

R∗jQj−1, Qi = sgn M − PTYi, i = 1, ..., l (28)

The main idea of the remaining analysis is to employ the golfing scheme and

certify that the conditions in (22) hold with very high probability. In the analysis

of the golfing scheme, the initial task is to show that the first condition in (22)

holds. This requires a probabilistic estimate of ‖PTR∗ΩPTX − PTX‖F ≥ t for

a fixed matrix X ∈ S and will be addressed in Lemma 3 to follow shortly. The

proof of the lemma relies on the vector Bernstein inequality in [15]. We use a

slightly modified version of this inequality which is stated below.

Theorem 4 (Vector Bernstein inequality). Let x1, ...,xm be independent zero-
mean vector valued random variables. Assume that max

i
‖xi‖2 ≤ R and

∑
iE[‖xi‖22] ≤

σ2. For any t ≤ σ2

R , the following estimate holds.

Pr

[ ∥∥∥∥∥
m∑
i=1

xi

∥∥∥∥∥
2

≥ t
]
≤ exp

(
− t2

8σ2
+

1

4

)
,

Lemma 3. Given an arbitrary fixed X ∈ S, for t ≤ 1 with κ = mn
Lr , the

following estimate holds.

Pr (‖PTR∗ΩPTX−PTX‖F ≥ t‖X‖F ) ≤ exp

(
− t2κ

8
(
λmax(H−1)‖H−1‖∞ν + n

Lr

) +
1

4

)
(29)

Proof. In what follows, with out loss of generality, we assume ‖X‖F = 1. Using
the dual basis expansion, PTR∗ΩPTX − PTX can be represented as follows.

PTR∗ΩPTX − PTX =
∑
α∈Ω

[
L

m
〈PTX , zα〉PT wα −

1

m
PTX

]
(30)

The summand, denoted Yα, can be written as Yα = Xα−E[Xα]. Since E[Yα] =
0, it satisfies the condition for the vector Bernstein inequality and we proceed to
consider appropriate bounds for ‖Yα‖F and E[‖Yα‖2F ]. First, we bound ‖Yα‖F
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making use of the coherence conditions (18) and (19).

‖Yα‖F =

∥∥∥∥ Lm 〈PTX , zα〉 PT wα −
1

m
PTX

∥∥∥∥
F

≤
∥∥∥∥ Lm 〈PTX , zα〉PT wα

∥∥∥∥
F

+

∥∥∥∥ 1

m
PTX

∥∥∥∥
F

≤ L

m
max
α∈I
‖PT wα‖F max

α∈I
‖PT zα‖F +

1

m

≤ 1

m

(
L

n
λmax(H−1)‖H−1‖∞νr + 1

)
Therefore, setR = 1

m

(
L
nλmax(H−1)‖H−1‖∞νr + 1

)
. To upper bound E[‖Yα‖2F ],

we start with the definition of E[‖Yα‖2F ] and proceed as follows.

E[‖Yα‖2F ] = E

[
L2

m2
〈PTX , zα〉2‖PT wα‖2F +

1

m2
‖PTX‖2F −

2L

m2
〈PTX , zα〉〈PTX ,wα〉

]
= E

[
L2

m2
〈PTX , zα〉2‖PT wα‖2F

]
+

1

m2
‖PTX‖2F −

2

m2
〈
∑
α∈I
〈PTX ,wα〉zα ,PTX〉

= E

[
L2

m2
〈PTX , zα〉2‖PT wα‖2F

]
− 1

m2
‖PTX‖2F

≤ L

m2
max
α∈I
‖PT wα‖2F

∑
α∈I
〈PTX , zα〉2 +

1

m2

≤ L

m2
λmax(H−1)2 νr

n
+

1

m2
≤ L

m2
λmax(H−1)‖H−1‖∞

νr

n
+

1

m2

Above, the second inequality results from the coherence conditions (18) and (19)
and application of Lemma 8. With this, set σ2 = 1

m

(
L
nλmax(H−1)‖H−1‖∞νr + 1

)
.

To conclude the proof, we apply the vector Bernstein inequality with the spec-

ified R and σ. For t ≤ σ2

R = 1, with κ = mn
Lr , the following estimate holds.

Pr (‖PTR∗ΩPTX−PTX‖F ≥ t) ≤ exp

(
− t2κ

8
(
λmax(H−1)‖H−1‖∞ν + n

Lr

) +
1

4

)
(31)

Next, it will be argued that the golfing scheme (28) certifies the conditions

in (22) with very high probability. In particular, we have the following lemma.

Lemma 4. Yl obtained from the golfing scheme (28) satisfies the conditions in

(22) with failure probability which is at most p =

l∑
i=1

p2(i) + p3(i) + p4(i) where

p2(i) = exp

(
− κi

32
(
λmax(H−1)‖H−1‖∞ν + n

Lr

) +
1

4

)
, p3(i) = 2n exp

(
−3 min

(
(µ+ 1)‖H−1‖∞, 1

4

)2
κi

8(µ+ 1)‖H−1‖2∞ν

)

and p4(i) = n2 exp

(
− 3κi

32
(
cvν + n

Lr

)) with ki =
min

Lr
.
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Proof. In what follows, we repeatedly make use of the fact that Qi ∈ T since
sgn M ∈ T (see Lemma 7 in Appendix A). The main idea for showing that
the first condition in (22) holds relies on a recursive form of Qi which can be
derived as follows.

Qi = sgn M − PT

 i∑
j=1

R∗jQj−1

 = sgn M − PT

i−1∑
j=1

R∗jQj−1 +R∗iQi−1


= sgn M − PT

i−1∑
j=1

R∗jQj−1 − PTR∗iQi−1 = sgn M − PTYi−1 − PTR∗iQi−1

= Qi−1 − PTR∗iQi−1 = (PT − PTR∗iPT)Qi−1 (32)

The first condition in (22) is a bound on ‖(PT − PTR∗lPT)Ql−1‖F = ‖Ql‖F .
Using Lemma 3 with t2,i = 1

2 , ‖(PT−PTR∗iPT)Qi−1‖ < t2,i‖Qi−1‖F holds with
failure probability at most

p2(i) = exp

(
− κi

32
(
λmax(H−1)‖H−1‖∞ν + n

Lr

) +
1

4

)

where κ =
min

Lr
. Using the recursive formula in (32) repeatedly, ‖Qi‖F can be

upper bounded as follows.

‖Qi‖F <

(
i∏

k=1

t2,k

)
‖Q0‖F = 2−i

√
r (33)

Setting l = log2

(
4
√

2L
λmax(H)

λmin(H)

√
r

)
, the first condition in (22) is now satisfied.

It can be concluded that, using a union bound on the failure probabilities p2(i),

‖Ql‖F <
√
r2−l =

1

4

√
1

2L

λmin(H−1)

λmax(H−1)
holds with failure probability that is at

most
∑l
i=1 p2(i). This implies that the first condition in (22) also holds with

the same failure probability.
Next, we consider the second condition in (22) which requires a bound on

‖PT⊥Yl‖. First, note that ‖PT⊥Yl‖ = ‖PT⊥
∑l
j=1R∗jQj−1‖ = ‖

∑l
j=1 PT⊥R∗jQj−1‖ ≤∑l

j=1 ‖PT⊥R∗jQj−1‖. As such, in what follows, the focus will be finding a suit-
able bound for ‖PT⊥R∗jQj−1‖. This will be analyzed in Lemma 5 in Appendix
A. A key element in the proof of Lemma 5 is an assumption on the size of
maxβ |〈Qi , zβ〉|. For ease of notation in further analysis, let η(Qi) be defined
as: η(Qi) = maxβ |〈Qi , zβ〉|. The assumption is that, at the i-th step of the

golfing scheme, η(Qi)
2 ≤ ‖H−1‖2∞

ν

n2
c2i where c2i is an upper bound for ‖Qi‖2F ,

‖Qi‖2F ≤ c2i . The idea is to argue that this assumption holds with very high
probability. To show this, assume that η(Qi) ≤ t4,i with failure probability
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p4(i). Setting t4,i = 1
2η(Qi−1) and applying the inequality η(Qi) ≤ t4,i recur-

sively results

η(Qi)
2 ≤ 2−2η(Qi−1)2 ≤ 2−2iη(sgnM)2 ≤ 2−2i‖H−1‖2∞

νr

n2
= ‖H−1‖2∞

ν

n2
(2−2ir)

where the last inequality follows from the coherence estimate in (20). It can
now be concluded that, noting (33), the inequality above ensures that η(Qi)

2 ≤
‖H−1‖2∞

ν

n2
c2i with ci = 2−i

√
r. The failure probability p4(i) follows from

Lemma 9, noting that η(Qi) = η(Qi−1 − PTR∗iQi−1), and is given by

p4(i) = n2 exp

(
− 3κj

32
(
cvν + n

Lr

)) ∀i ∈ [1, l]

Having justified the assumption on the size of η(Qi), a key part of Lemma 9, we
now consider certifying the second condition in (22). Assume that ‖PT⊥R∗jQj−1‖ <
t3,jcj−1, with ‖Qj−1‖F ≤ cj−1 = 2−(j−1), holds with failure probability p3(j).

Fixing t3,j = min

(
(µ+ 1)‖H−1‖∞√

r
,

1

4
√
r

)
, Lemma 5 gives

p3(j) = 2n exp

(
−3 min

(
(µ+ 1)‖H−1‖∞, 1

4

)2
κj

8(µ+ 1)‖H−1‖2∞ν

)

where κj =
mjn

Lr
. ‖PT⊥Yl‖ can now be upper bounded as follows.

‖PT⊥Yl‖ ≤
l∑

k=1

‖PT⊥R∗kQk−1‖ <
l∑

k=1

t3,kck−1 ≤
1

4
√
r

l∑
k=1

ck−1 =
1

4
√
r

l∑
k=1

√
r2−(k−1) <

1

2

Applying the union bound over the failure probabilities, ‖PT⊥Yl‖ < 1
2 holds

true with failure probability which is at most
∑l
j=1[p3(j) + p4(j)]. With the

same failure probability, the second condition in (22) holds true.

Lemma 5 will be proved shortly using the Bernstein inequality in [33] which

is restated below for convenience.

Theorem 5 (Bernstein inequality). Consider a finite sequence {Xi} of inde-
pendent, random matrices with dimension n. Assume that

E[Xi] = 0 and ‖Xi‖ ≤ R ∀i

Let the matrix variance statistic of the sum σ2 be defined as

σ2 = max

(∥∥∥∥∥∑
i

E[XT
i Xi]

∥∥∥∥∥ ,
∥∥∥∥∥∑

i

E[XiX
T
i ]

∥∥∥∥∥
)
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For all t ≥ 0,

Pr

[ ∥∥∥∥∥∑
i

Xi

∥∥∥∥∥ > t

]
≤


2n exp

(
− 3t2

8σ2

)
t ≤ σ2

R

2n exp

(
− 3t

8R

)
t ≥ σ2

R

(34)

Lemma 5. Consider a fixed matrix G ∈ T. Assume that maxβ 〈G , zβ〉2 ≤
‖H−1‖2∞ ν

n2 c
2 with c set as ‖G‖2F ≤ c2. Then, with κj =

mjn

Lr
, the following

estimate holds for all t ≤ (µ+ 1)‖H−1‖∞√
r

.

Pr (‖PT⊥R∗jG‖ ≥ t c) ≤ 2n exp

(
− 3t2κjr

8(µ+ 1)‖H−1‖2∞ν

)

Proof of Lemma 5. Using the dual basis representation, PT⊥R∗jG =
∑
α∈Ωj

L

mj
〈G , zα〉PT⊥wα.

The summand, denoted Xα, has zero expectation since G ∈ T. With this,
the zero mean assumption for Bernstein inequality is satisfied. Next, we con-
sider suitable estimates for R and σ2. The latter necessitates an estimate for
max(‖E[XαX

T
α ]‖, ‖E[XT

αXα]‖). First, we bound ‖E[XαX
T
α ]‖. Since XαX

T
α =

L2

m2
j

〈G , zα〉2(PT⊥wα)(PT⊥wα)T , using Lemma 10 in Appendix A and the fact

that wαw
T
α is positive semidefinite, ‖E[XαX

T
α ]‖ can be upper bounded as fol-

lows.

∥∥E[XαX
T
α ]
∥∥ ≤ L

m2
j

max
‖ϕ‖2=1

∑
α∈I
〈G , zα〉2〈ϕ ,wαw

T
αϕ〉 ≤

L

m2
j

max
α∈I
〈zα ,G〉2 max

‖ϕ‖2=1
〈ϕ ,

(∑
α∈I

wαw
T
α

)
ϕ〉

Using the correlation condition, in particular Lemma 1(b), ‖
∑
α∈I wαw

T
α‖ ≤

(µ+ 1)n, we obtain

∥∥E[XαX
T
α ]
∥∥ ≤ L (µ+ 1)n

m2
j

max
α∈I
〈zα ,G〉2 ≤

L (µ+ 1)n

m2
j

‖H−1‖2∞
ν

n2
c2

An analogous calculation and reasoning as above yields
∥∥E[XT

αXα]
∥∥ ≤ L (µ+1)n

m2
j
‖H−1‖2∞ ν

n2 c
2.

Therefore, using triangle inequality, set

σ2 =
L (µ+ 1)

mj
‖H−1‖2∞

ν

n
c2

To complete the proof, it remains to estimate R.

‖Xα‖ ≤
L

mj
|max
α∈I
〈zα ,G〉| ‖PT⊥wα‖ ≤

L

mj
‖H−1‖∞

√
ν

n
c (35)
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Two pertinent cases have to be considered. If ν ≥ 1

r
, ‖Xα‖ ≤

L

mj
‖H−1‖∞

ν
√
r

n
c =

R1 and if ν <
1

r
, ‖Xα‖ ≤

L

mj
‖H−1‖∞

√
ν

n
c = R2. Note that

σ2

R1
=

(µ+ 1)‖H−1‖∞c√
r

and
σ2

R2
=

(µ+ 1)‖H−1‖∞c√
r

. To conclude the proof, we apply the Bernstein

inequality. An application of the Bernstein inequality results the following esti-
mate.

Pr(‖PT⊥R∗jG‖ ≥ t) ≤ 2n exp

(
− 3t2κjr

8(µ+ 1)‖H−1‖2∞νc2

)
(36)

for all t ≤ (µ+ 1)‖H−1‖∞c√
r

with κj =
mjn

Lr
. This concludes the proof of

Lemma 5.

Next, it will be argued that M is a unique solution to (12) with very

high probability. The argument considers two separate cases based on com-

paring ‖∆T‖2F and ‖∆T⊥‖2F . This motivates us to define the following two sets:

S1 =

{
X ∈ S : ‖∆T‖2F ≥

(√
2Lλmax(H−1)

λmin(H−1) ‖∆T⊥‖F
)2
}

and S2 =

{
X ∈ S :

‖∆T‖2F <
(√

2Lλmax(H−1)
λmin(H−1) ‖∆T⊥‖F

)2

&RΩ(∆) = 0

}
. With this, assuming

that Ω is sampled uniformly at random with replacement, the two cases are as

follows.

1. For all X ∈ S1, set |Ω| = m “sufficiently large” such that Pr
({

Ω ⊂ I
∣∣ |Ω| = m,λmin (PT FΩ PT) > λmin(H)

2

})
≥ 1− p1 based on Lemma 2. Therefore, all X ∈ S1 are feasible solutions

to (12) with probability at most p1 from Theorem 2(a).

2. For all X ∈ S2, we obtain

Pr

({
Ω ⊂ I

∣∣ |Ω| = m,Y ∈ range R∗Ω & ‖PTY − SgnM‖F ≤
1

4

√
1

2L

λmin(H−1)

λmax(H−1)
& ‖PT⊥Y ‖ ≤

1

2

})
≥ 1−ε

with ε =

l∑
i=1

[p2(i) + p3(i) + p4(i)] by setting |Ω| = m “sufficiently large”

based on Lemma 4. Then, the probability of all X ∈ S2 being solutions

to (12) is at most ε from Theorem 2(b).

Using the above two cases and employing the union bound, any X ∈ S

different from M is a solution to the general matrix completion problem with
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probability at most p = p1 +
∑l
i=1[p2(i)+p3(i)+p4(i)]. In the arguments above,

we have used the terms “sufficiently large”, “small probability” and “very high

probability” with out being precise. The goal now is to set everything explicit.

First, define very high probability as a probability of at least 1−n−β for β > 1.

Analogously, define small failure probability as a probability of at most n−β

for some β > 1. To recover the underlying matrix with high probability, the

idea is to carefully set the remaining free parameters m, l and mi so that the

p ≤ n−β for β > 1. This necessitates revisiting all the failure probabilities in the

analysis. p1, the first failure probability, is the probability that the condition in

Theorem 2(a) does not hold. In the construction of the dual certificate Y via

the golfing scheme, three failure probabilities, p2(i), p3(i) and p4(i), ∀i ∈ [1, l],

appear. With this, all the failure probabilities are noted below.

p1 = n exp

(
−λmin(H)2κ

8ν

)
; p2(i) = exp

(
− κi

32
(
λmax(H−1)‖H−1‖∞ν + n

Lr

) +
1

4

)

p3(i) = 2n exp

(
−3 min

(
(µ+ 1)‖H−1‖∞, 1

4

)2
κi

8(µ+ 1)‖H−1‖2∞ν

)
; p4(i) = n2 exp

(
− 3κi

32
(
cvν + n

Lr

))

To suitably set mi, since ki = min
Lr , we can set ki with the condition that all the

failure probabilities are at most
1

4l
n−β for β > 1. A minor calculation results

one suitable choice of ki, ki = 48
(
Cν + 1

nr

)(
β log(n) + log(4l)

)
, with C defined

as

C = max

(
λmax(H−1)‖H−1‖∞, cv,

(µ+ 1)‖H−1‖∞
min

(
(µ+ 1)‖H−1‖∞, 1

4

)2
)

(37)

The total failure probability, applying the union bound, is bounded above by

n−β . The number of measurements, m = lrnki, is at least

log2

(
4
√

2L
λmax(H)

λmin(H)

√
r

)
nr

(
48
[
Cν +

n

Lr

][
β log(n) + log

(
4 log2

(
4
√

2L
λmax(H)

λmin(H)

√
r

))])
(38)

This finishes the proof of Theorem 1. It can be concluded that the minimization

program in (12) recovers the underlying matrix with very high probability.
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4. Conclusion

In this paper, we study the problem of recovering a low rank matrix given

a few of its expansion coefficients with respect to any basis. The considered

problem generalizes existing analysis for the standard matrix completion prob-

lem and low rank recovery problem with respect to an orthonormal basis. The

main analysis uses the dual basis approach and is based on dual certificates.

An important assumption in the analysis is a proposed sufficient condition on

the basis matrices named as the correlation condition. This condition can be

checked in O(n3) computational time and holds in many cases of deterministic

basis matrices. If this condition holds and the underlying low rank matrix obeys

the coherence condition with parameter ν, under additional mild assumptions,

our main result shows that the true matrix can be recovered with very high

probability from O(nrν log2 n) uniformly random sampled coefficients. Future

research will consider a detailed analysis of the correlation condition and eval-

uating the effectiveness of the framework of the general matrix completion in

certain applications.
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Appendix A. Appendix A

Lemma 6. Given an orthonormal basis {Cα}L=n2

α=1 , we have
∑
αC

T
αCα =∑

αCαC
T
α = nI.

Proof. Consider a matrix X ∈ Rn×n expanded in the orthonormal basis as
X =

∑
α〈X ,Cα〉Cα. With x and cα as column-wise vectorized forms of X

and Cα respectively, x =
∑
α〈x , cα〉cα = (

∑
α cαc

T
α)x. This implies that∑

α cαc
T
α = In2 where the subscript denotes the size of the identity matrix.

This is the standard completeness relation. The implication of this relation is
that

∑
αCα(i, j)Cα(s, t) = δi,js,t. Next, consider

∑
αCαC

T
α . The (i, j)-th entry

of this sum is given by(∑
α

CαC
T
α

)
i,j

=
∑
α

n∑
s=1

Cα(i, s)Cα(j, s) =

n∑
s=1

∑
α

Cα(i, s)Cα(j, s) =

n∑
s=1

δi,sj,s = nδi,j

It follows that
∑
αCαC

T
α = nI. An analogous calculation results

∑
αC

T
αCα =

nI.

Lemma 7. If X ∈ T, SgnX ∈ T.

Proof. Consider the singular value decomposition of X as X = UΣV T . SgnX
is simply SgnX = U(Sgn Σ)V T = UDV T where D is the diagonal matrix
resulting from applying the sign function to Σ. Using this decomposition, we
consider PT⊥sgn X.

PT⊥ sgn X = sgn X − PT sgnX

= UDV T − [PU sgn X + sgn XPV − PU sgn X PV ]

= UDV T − [UUTUDV T + UDUTV V T −UUTUDUTV V T ] = 0

Above, the last step follows from the fact that UTU = I. It can be concluded
that sgn X ∈ T.

Lemma 8. Given any X ∈ Rn×n, the following norm inequalities hold.

λmin(H) ‖X‖2F ≤
∑
α∈I
〈X ,wα〉2 ≤ λmax(H)‖X‖2F ; λmin(H−1) ‖X‖2F ≤

∑
α∈I
〈X , zα〉2 ≤ λmax(H−1)‖X‖2F
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Proof. Vectorize the matrix X and each dual basis zα. It follows that∑
α∈I
〈X , zα〉2 =

∑
α∈I

xTzαz
T
αx = xTZZTx

Orthogonalize Z with Z = Z(
√
H−1)−1. Since

∑
β∈I〈X , zβ〉2 = xT ZH−1Z

T
x,

we obtain

λmin(H−1) ‖x‖22 = λmin(H−1) ‖X‖2F ≤
∑
β∈I
〈X , zβ〉2 ≤ λmax(H−1) ‖x‖22 = λmax(H−1) ‖X‖2F

The above result follows from a simple application of the min-max theorem. An
analogous argument gives

λmin(H) ‖X‖2F ≤
∑
α∈I
〈X ,wα〉2 ≤ λmax(H−1)|X‖2F

This concludes the proof.

Lemma 9. Define η(X) = max
β∈I
|〈X , zβ〉|. For a fixed X in T, with κj =

mjn

Lr
,

the following estimate holds for all t ≤ η(X).

Pr (max
β∈I

|〈PTR∗jX −X , zβ〉| ≥ t) ≤ n2 exp

(
− 3t2κj

8η(X)2
(
cvν + n

Lr

)) (A.1)

Proof. 〈PTR∗jX −X , zβ〉, for some β, can be represented in the dual basis as
follows.

〈PTR∗jX−X , zβ〉 = 〈
∑
α∈Ωj

L

mj
〈X , zα〉PT wα−X , zβ〉 =

∑
α∈Ωj

(
L

mj
〈X , zα〉〈PT wα , zβ〉 −

1

mj
〈X , zβ〉

)

The summand, denoted Yα, is of the form Xα−E[Xα] and automatically satisfies
E[Yα] = 0. Bernstein inequality can now be applied with appropriate bound on
|Yα| and |E[Y 2

α ]|. First, we bound |Yα| making use of the coherence conditions
(18) and (19).

|Yα| =
∣∣∣∣ Lmj
〈X , zα〉〈PT wα , zβ〉 −

1

mj
〈X , zβ〉

∣∣∣∣ ≤ L

mj
η(X) λmax(H−1)‖H−1‖∞

νr

n
+

1

mj
η(X)

=
1

mj
η(X)

(
L

n
λmax(H−1)‖H−1‖∞νr + 1

)
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To bound E[Y 2
α ], noting that E[Y 2

α ] = E[X2
α]− E[Xα]2, it follows that

E[Y 2
α ] ≤ E

[
L2

m2
j

〈X , zα〉2〈PT wα , zβ〉2
]

+
1

m2
j

〈X , zβ〉2

≤ L

m2
j

∑
α∈I
〈X , zα〉2〈PT wα , zβ〉2 +

1

m2
j

η(X)2

≤ η(X)2 L

m2
j

∑
α∈I
〈PT wα , zβ〉2 +

1

m2
j

η(X)2

≤ η(X)2 L

m2
j

cvνr

n
+

1

m2
j

η(X)2

The last inequality results from the coherence condition in (16). To conclude the
proof, we apply the Bernstein inequality with |Yα| ≤ R = 1

mj
η(X)

(
L
nλmax(H−1)‖H−1‖∞νr + 1

)
and σ2 = 1

mj
η(X)2

(
L
n cvνr + 1

)
. With kj =

mjn
Lr , for t ≤ σ2

R = η(X)2
L
n cvνr+1

L
nλmax(H−1)‖H−1‖∞νr+1

≥
η(X), it holds that

Pr(|〈PTR∗jX −X , zβ〉| ≥ t) ≤ exp

(
− 3t2κj

8η(X)2
(
cvν + n

Lr

)) (A.2)

Lemma 9 now follows from applying a union bound over all elements of the dual
basis.

Lemma 10. Let cα ≥ 0. Then, the following two inequalities hold.∥∥∥∥∥∑
α

cα (PT⊥ wα)(PT⊥ wα)T

∥∥∥∥∥ ≤
∥∥∥∥∥∑
α

cαwαw
T
α

∥∥∥∥∥∥∥∥∥∥∑
α

cα (PT⊥ wα)T (PT⊥ wα)

∥∥∥∥∥ ≤
∥∥∥∥∥∑
α

cαw
T
αwα

∥∥∥∥∥
Proof. We start with the first statement. Using the definition of PT⊥ wα,∥∥∑

α cα (PT⊥ wα)(PT⊥ wα)T
∥∥ can be written as follows.∥∥∥∥∥∑

α

cα (PT⊥ wα)(PT⊥ wα)T

∥∥∥∥∥ =

∥∥∥∥∥∑
α

cα PU⊥ wα PV ⊥ wT
α PU⊥

∥∥∥∥∥ =

∥∥∥∥∥PU⊥
(∑

α

cαwα PV ⊥ wT
α

)
PU⊥

∥∥∥∥∥
Using the fact that the operator norm is unitarily invariant and ‖PXP‖ ≤ X
for any X and a projection P,

∥∥∑
α cα (PT⊥ wα)(PT⊥ wα)T

∥∥ can be upper
bounded as follows∥∥∥∥∥∑
α

cα (PT⊥ wα)(PT⊥ wα)T

∥∥∥∥∥ ≤
∥∥∥∥∥∑
α

cαwα PV ⊥ wT
α

∥∥∥∥∥ =

∥∥∥∥∥∑
α

cαwα

(
wT
α − PV wT

α

)∥∥∥∥∥
=

∥∥∥∥∥∑
α

[cαwαw
T
α − cαwα PV wT

α ]

∥∥∥∥∥
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where the first equality follows from the relation PV ⊥ = I − PV . Since cα ≥
0,
∑
α cαwαw

T
α is positive semidefinite. Using the relation P2

V = PV and
the assumption that cα ≥ 0,

∑
α cαwα PV wT

α =
∑
α cαwα PV PV wT

α is also
positive semidefinite. A similar argument concludes that

∑
α cαwα PV ⊥ wT

α

is also positive semidefinite. Finally, using the norm inequality, ‖A + B‖ ≥
max(‖A‖, ‖B‖), for positive semidefinite matrices A and B, it can be seen the
first statement holds. An analogous proof as above yields the second statement
concluding the proof.
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