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1. Introduction

Recovering low-rank matrices from given incomplete linear measurements
plays an important role in many problems such as image and video process-
ing [1], model reduction [2], phase retrieval [3], molecular conformation [4, 5, 6],
localization in sensor networks [7, 8], dimensionality reduction [9], recommender
systems [10] as well as solving PDEs on manifold-structured data represented
as incomplete distance [11], just to name a few. A natural framework to the
low-rank recovery problem is rank minimization under linear constraints. How-
ever, this problem is NP-hard [12] and thus motivates alternative solutions. A
series of theoretical papers [13, 14, 15, 16, 12] showed that the NP-hard rank
minimization problem for matrix completion can be obtained by solving the
following convex nuclear norm minimization problem:

minimize X[

subject to  X; ; =M; ; (i,j) €Q (1)
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where || X ||« denotes the nuclear norm defined as the sum of the singular values
of X, and Q C {(4,4)|i, 5 = 1,...,n}, | = m, denotes a random set that consists
of the sampled indices. The remarkable fact is that, under certain conditions, the
underlying low-rank matrix can be reconstructed exactly with high probability
from only O(nrlog? (n)) uniformly random measurements. The idea to use the
nuclear norm as an approximation of the rank function was first discussed in
[2]. Loosely, minimizing the sum of singular values will likely lead to a solution
with many zero singular values resulting a low rank matrix. One generalization
of the matrix completion problem in [15] considers measurements with respect
to a symmetric orthonormal basis and gives comparable theoretical guarantees
based on the elegant dual certificate analysis. In particular, it shows that the
true low rank matrix can be recovered with high probability from O(nrlog?(n))
uniformly random measurements.

The starting point and inspiration for this work was our recent work in
[17] which studies a matrix completion problem with respect to a specific non-
orthogonal basis. In this paper, we consider the matrix completion problem
with respect to any non-orthogonal basis. Given a general unit-norm basis
{wy}L_, which spans an L dimensional subspace S of R"*" the nuclear norm

minimization program for this general matrix completion problem is provided

by

minimize || X]||«
XeS
subject to (X ,wqy) = (M ,w,) a€Q (2)

where {2 denotes a random set sampling the basis indices. We are interested in

the following two problems.

1. Could we obtain comparable recovery guarantees for the general matrix

completion problem?

2. If the answer to (1) is affirmative, what conditions are needed on the basis

{wy} and Q7



The main goal of this paper is a theoretical analysis of these two problems. We
start by discussing few examples which show how the problem naturally arises

in several applications.

FEuclidean Distance Geometry Problem.. Given partial information on pairwise
distances, the Euclidean distance geometry problem is concerned with construct-
ing the configuration of points. The problem has applications in diverse areas
[4, 5,9, 7, 11]. Formally, consider a set of n points in an r-dimensional space
P = {p1,p2,....pn}" € R™". Let D = [d?,] denote the squared Euclidean
distance matrix. The inner product matrix, also known as the Gram matrix
and defined as X;; = (p;,pj), is a positive semidefinite matrix of rank 7.
A minor analysis reveals that D and X can be related in the following way:
D;; = X;; +X;,; —2X;;. For r < n, consider the following nuclear norm

minimization program to recover X.

minimize || X«
XERTLXTL
subject to Xiﬂ' + Xj,j — 2Xi,j = Di,j (’L,j) e (3)

X-1=0; X=X";XeS,

In the above program, S; denotes the set of positive semidefinite matrices and
the constraint X -1 = 0 fixes the translation ambiguity. The above minimization
problem can be equivalently interpreted as a general matrix completion problem

with respect to some operator basis w,.

minimize || X ||«
Xes
subject to (X ,wq) = (M ,wq) Va € (4)

_ 1 _ nxn _
where wo = 5(€a;,0; + €as, a0 — €a1,as — €as,ay) ad S = {X € R | X =

XT & X1 =0}NS, with S; denoting the set of positive semidefinite matrices.
The constant % is a normalization constant and e, o, is a matrix whose entries

are all zero except a 1 at the (ay, aa)-th entry. It can be verified that {wa }2_,,

I = n(n—1)

5, is a non-orthogonal basis for the linear space {X € R"*" | X =



XT & X -1 = 0}. Theoretical analysis of this problem was recently conducted
by the authors of this paper in [17] and in fact inspired this work.

Spectrally Sparse Signal Reconstruction.. The problem of signal reconstruction
has many important practical applications. When the underlying signal is as-
sumed to be sparse, the theory of compressive sensing states that the signal
can be recovered by solving the convex l; minimization problem [18]. In [1],
the authors consider the recovery of spectrally sparse signal € R™ of known
order r where r < n. Let H : C™* — C™**™2 be the linear operator that maps a

vector z € C™ to a Hankel matrix Hz € C"*"2 with n + 1 = n; + ne. Denote

the orthonormal basis of ny; x ny Hankel matrices by {H,}L)"?. After some
analysis, the reconstruction problem is formulated as low-rank Hankel matrix

completion problem [1].
find Hz subject to rank(Hz)=r Pq(Hz)= Po(Hz)

Pq is the sampling operator defined as: Po(Z) = >, o(Z, Ha)H, where Q
is the random set that consists of the sampled Hankel basis. For the case where
r is not specified, one can consider the following nuclear norm minimization
problem.

fanis X

subject to (X ,H,)= (M, H,) Yae (5)

where X = Hz and M = Hx. (5) is now in the form of a general matrix

completion problem.

Signal Recovery Under Quadratic Measurements.. Given a signal x € R™, con-
sider quadratic measurements of the form a; = (x,w;) with some vector
w; € R™. Given that m random measurements are available, it is of inter-
est to determine if the underlying signal can be recovered. Using the lifting

idea in [19], the signal recovery problem can be written as the following nuclear



norm minimization problem.

minimize || X||.
XER’HX n

subject to (X ,W,) = (M ,W,) Yae (6)
X=XT:X*»0

Above W, = w,w}, and  is the random set that consists of the indices of the
sampled vectors. In the case that a; are sampled independently and uniformly
at random on the unit sphere, the above minimization problem is the well known
PhaseLift problem [3]. One can consider a general case where the assumption
is simply that the w;’s are structured and form a basis. The framework intro-
duced in this paper allows, under certain conditions, to state results about the

uniqueness of this general recovery problem.

Weighted Nuclear Norm minimization.. The usual assumption in matrix com-
pletion is uniform random measurements. In the case of general sampling mod-
els, it has been argued that the nuclear norm minimization is not a suitable
approach [20]. An alternative which has been argued to promote more accurate
low rank solutions [19, 21] is the weighted nuclear norm minimization [22, 20].

The general weighted nuclear norm minimization problem is given by

minimize ||RXC]|.

subject to (X ,w,) = (M ,w,) VaeQ (7)

where R and C, diagonal matrices with positive diagonal entries, scale the rows
and columns of X respectively. If the basis matrices {w,} are the canonical
basis, the resulting problem is the standard matrix completion problem. In the
context of the movie recommendation problem, the work in [20] demonstrates
that the weighted nuclear minimization obtains better prediction accuracy than
the unweighted nuclear norm minimization. For this case, the scaling matrices R
and C reflect the non-uniform weight assumed to different users and different
movies. Motivated by these considerations, we consider the general nuclear

norm minimization problem where the basis matrices are sampled uniformly at



random but with a prior on uncertainty of the underlying matrix modeled by
the scaling matrices R and C'. Introducing the matrix Y = RXC, the above

minimization problem can equivalently be rewritten as follows.

minimize  ||Y]|«

subject to (Y, R 'w,C™") = (M ,R 'w,C) Vac (8)

M is the weighted ground matrix M defined as M = RMC. This is a general
matrix completion problem with respect to the basis R~'w,C~!. It can be ver-
ified that the set {R™'w,C 1} is a basis. Of interest is the following question:

What kind of choices for R and C' lead to successful recovery algorithms?

Challenges. The minimization problem in (2) has random linear constraints
which can be expressed as £(X) where £ is the appropriate linear operator.
Using the work in [12], one approach to show uniqueness of the general matrix
completion problem is to check if £ obeys the restricted isometry property (RIP)
condition. Our basis are structured and deterministic and so in general the RIP
condition does not hold. As an example, consider the nuclear norm minimization
program in (4) for the Euclidean distance geometry problem. We choose any
(2,7) ¢ Q and construct a matrix X with X, ; = X;; = X;; = X;,; =1 and
zero everywhere else. One can easily check that £(X) = 0 which shows that the
RIP condition does not hold. The general matrix completion problem resembles
the matrix completion problem with respect to a symmetric orthonormal basis
first considered in [15]. However, the basis {w,}Z_; in the general matrix
completion problem are not necessarily orthogonal. One solution is to employ
any of the basis orthogonalization algorithms and consider the minimization
problem in the new orthonormal basis. This solution however is not useful since
the measurements can not be treated as independent in the new basis. As such,
the lack of orthogonality mandates an alternative analysis to show that the

general matrix completion problem admits a unique solution.

Related work. The compressive sensing (CS) problem considers the solution of

an undetermined linear system Axz = b with the prior that the underlying vec-



tor « is sparse. A series of works [18, 23, 24, 25] have shown that if A is well
conditioned, expressed using for instance the restricted isometry property (RIP)
or the coherence condition, m = O(slog n) measurements suffice to recover the
sparse solution x with very high probability. With the measurement vectors,
rows of the matrix A, sampled from some random distribution, the conven-
tional CS problem is the isotropic CS problem where the covariance matrix of
the measurements is proportional to the identity matrix. If the isotropy con-
dition does not hold, the standard results are not directly applicable. With
that, the anisotropic compressive sensing problem has been studied in [26, 27].
The general matrix completion problem with respect to a non-orthogonal basis
can be seen as analogue of anisotropic compressive sensing. Another line of
work that relates to ours is structured matrix completion where model priors
are integrated in the underlying matrix to be recovered. In [28], the authors
consider the problem of recovering a spectrally sparse signal given some time
domain samples. They propose an algorithm *“ Enhanced Matrix Completion”
that first transforms the data matrix into its enhanced form employing a Hankel
structure and then applies matrix completion on the enhanced form. In [29],
this approach was further generalized using a low-rank interpolation approach
allowing it to be used for the recovery of a broad class of signals. In addition to
theoretical results on signal recovery, the work therein shows strong empirical
results that validate that the structured matrix completion model outperforms
conventional CS based signal recovery algorithms. A related problem is [15]
where the author generalizes the standard matrix completion problem to any

symmetric orthonormal basis.

The main technical difference in this paper compared to the aforementioned
previous works is that the sampling operator, central to the analysis of the
matrix completion problem, is not self adjoint. In particular, a common step
in the analysis of matrix completion algorithms is the isometry condition which
considers a spectral norm bound on PrRqgPr — Pr where P is a projection on

a certain subspace T and Rq is the sampling operator. In the general matrix



completion setting, this spectral bound does not hold as the sampling operator
is no longer self adjoint. A natural alternative is a spectral norm bound on
PrRERaPr — Pr. It turns out that standard concentration inequality based
arguments obtain suboptimal probability of success for this bound and can only
be made optimal under very stringent conditions on the non-orthogonal basis.
The main technical novelty of this paper is replacing this bound by a minimum
eigenvalue bound on the operator A\, (Pr Fq Pr) where Fq, is a restricted frame
operator. This idea along with the dual certificate approach [13] was employed,
for a specific application of the distance geometry problem, in our previous work
[17]. Much inspired by this work, we were interested in generalizing the result
to any non-orthogonal basis. The current paper is a culmination of this effort.
To our knowledge, the first work that uses a dual basis approach is the work in
[30]. Therein, the authors study the compressive sensing problem in a general
transform domain and provide theoretical guarantees. The problem we study in
this paper can be seen as a direct analogue of this work for matrix completion.
The techniques in [30] consider the CS setting. A direct translation of these
results requires a suitable bound on ||PrRERaPr — Pr||. As remarked earlier,
this bound can not be realized for the general matrix completion problem and

requires an alternative approach.

Contributions. In this paper, under suitable sampling conditions, a dual basis
approach is used to show that the general matrix completion problem admits a
unique solution. Introducing a dual basis to w,, denoted by z,, ensures that
the measurements (X ,w,) in (2) are compatible with expansion coefficients
of M. Based on the framework of the dual basis approach, we show that the
minimization problem recovers the underlying matrix under suitable conditions.

Two main contributions of this paper are as follows.

1. A dual basis approach is used to prove a uniqueness result for the general
matrix completion problem. The main result shows that if the number of
random measurements m is of order O(nr log2 n), under certain assump-

tions, the nuclear norm minimization program recovers the underlying



low-rank solution with very high probability. A key part of our proof uses
the operator Chernoff bound. This part of the proof based on the Chernoff

bound is simple and might find use in other problems.

2. An important condition, named the correlation condition, is introduced.
This condition determines whether the nuclear norm minimization pro-
gram succeeds for a given general matrix completion problem. The cor-
relation condition could hold for deterministic measurements and more

importantly can be checked in polynomial time.

Outline. The outline of the paper is as follows. Section 2 introduces the cor-
relation condition and discusses the dual basis approach. The proof of the
main result is presented in section 3. The key components of the proof can
be described as follows. The general matrix completion problem is a convex
minimization problem for which a sufficient condition to optimality is the KKT
condition. We will use a dual certificate Y, satisfying certain conditions, to
certify that the general matrix completion problem admits a unique minimizer.
The construction of Y follows the elegant golfing scheme proposed in [15]. The
bulk of the theoretical work then focuses on using this scheme and proving that
the conditions hold with very high probability. The implication of the proof is
that there is a unique solution to the general matrix completion problem with

very high probability. Section 4 concludes the work.

Notation. The notations used in the paper are summarized in Table 1.

x Vector 1 X || 7 Frobenius norm
X Matrix | X |l oo SUP|y| =1 [| X V]
X Operator (1 X SUpP|jy|,=1 [ X 02
b Transpose | X || « Nuclear norm
Tr(X) Trace IIA]| sup| x| p=1 MAX||F-
(X,Y) Trace(XTY) Amax, Amin Maximum, Minimum eigenvalue
1 A vector or matrix of ones Sgn X Usign (Z)VT; here [U, %, V] = svd(X)
0 A vector or matrix of zeros Q1 Random sampled set, Universal set

Table 1: Notations




2. Matrix Completion Problem under a Non-orthogonal Basis

In this section, we introduce a new condition referred as a correlation con-
dition for low-rank matrix completion in a non-orthogonal basis. We will also
discuss a dual basis formulation which plays an important role in our main

result.

2.1. Correlation Parameter

We consider an L dimensional subspace S C R"™*™ as the feasible set of
the general matrix completion. We allow L < n? such as the case where the
feasible solutions naturally satisfy linear constraints. Given a complete set of

unit-norm basis {w,}L_; of the subspace S, any X € S can be determined

L
a=1"*

if one specifies all the measurements {(X ,w,) The problem studied in
this paper considers the case where we have random access to a few of these
measurements. Leaving the precise notion of “a few” for later, we consider the
following question: Are there non-orthogonal basis for which the matrix com-
pletion framework, learning from few measurements, still works? In this paper,
we note that as long as a certain condition, named correlation condition, on the
basis matrices is satisfied, the sample complexity of low rank matrix completion
with respect to non-orthogonal basis is of the same order as sample complex-
ity of low rank matrix completion with respect to an orthogonal basis. In the
specific case of the general matrix completion problem, the goal is to rigor-
ously show that, under certain conditions, a low rank matrix can be recovered
from few random non-orthogonal measurements. The intuitive arguments above
motivate the following correlation condition which loosely informs how far the

non-orthogonal basis is from an orthonormal basis.

Definition 1. The unit-norm basis {w, € R"™"}L_, has correlation parameter
w if there is a constant p > 0 such that the following two equations hold

l wlw, — T
nz .

Intuitively, the above definition describes that the operators %Za wlw,

< (9)

1
<u & *E dwl —7T
! Hnawwa

and = > wow! are nearly isometric to the identity operator. To understand

10



the correlation condition, we first establish certain properties and follow by

computing the correlation condition of certain basis matrices.

Lemma 1. [Properties and examples of correlation condition] Given a unit-
norm basis {w, € R"*"}L_| with correlation parameter u, the following state-
ments hold:

a. The correlation parameter is bounded above by n, that is, p < max(1, TL:)

b. If the correlation condition holds, it follows that

max(waa> (u+1)n maX<Z“’a > (u+1)n

c. If {wo}E_; is an orthonormal basis L = n?,

holds with p = 0.

the correlation condition

d. For the basis matrices in the Fuclidean distance geometry problem, the
correlation condition holds with p = 1.

Proof.

1. For positive semidefinite matrices A and B, the norm inequality ||A —

B|| < max(||A|, || B|) holds. Let A = 1% wlw, and let B Z. Ap-

plymg the trlangle 1nequahty, it follows that H 1 Z wlw, || < LY [Jwl]|||wal] <
Ly wl wa —IH < max(n,1) = n. An analogous argu-

ment obtalns | L i > wewl —I|| < max(1,£). Hence, p < max(1, £)
as desired. It should be remarked that the theoretical analysis requires
w=0(1).

2. Note that Apax (Zizl wgwa) = | 2521 wlw,—nI+nZ| < || 25:1 wlw,—
nZ||+||nZ|| = (p+1)n. A similar argument results Apax (Zizl wawg) <
(u+ )n.

3. For an orthonormal basis in S = R™*", the completeness relation states
2 2

that > wawl = Y"_ wlw, = nZ. The proof of this fact is stan-

dard. For ease of reference, a proof is included in Lemma 6. Using the

completeness relation, it follows that the correlation condition holds with
n=0.

4. For the Euclidean dibtance geometry problem, the basis are eymmetric SO
it suffices to consider 3> w?2. A short calculation results £ > w? =
ﬁ(nl' —117). The correlatlon condition bound amounts to ﬁnding the
operator norm of %||Z+1117|. Since the maximum eigenvalue of 1117 is
1, 1[I+ 1117 = 1. Hence, for the Euclidean distance geometry problem,
the correlation condition holds with p = 1.

11
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An advantage of the correlation condition is its computational complexity.
The computational complexity of checking the correlation condition is at most
O(n?). As such, given a measurement operator, it can easily be checked whether
it satisfies the correlation condition or not. If the result is positive, the analysis
in this paper can be applied. If the correlation condition does not hold, no

conclusion can be made.

2.2. Dual basis formulation

For the general matrix completion problem in (2), the measurements are
in the form (X ,w,). If w, is orthonormal, X can be expanded as X =
Yoo X, wa)w, where (X ,w,) are the expansion coefficients. However, for
non-orthogonal basis, this expansion does not hold. Since the measurements
are inherent to the problem, the ideal expansion will be of the form X =
Y o{X ,wa)2zq. The idea of the dual basis approach is to realize this form with
the implication that the expansion coefficients match the random measurements.
This approach is briefly summarized below and we refer the interested reader
to [30] where the dual basis approach is first considered in the context of the
general compressive sensing problem. The work in [17] uses the dual basis
approach in the context of the context of matrix completion problem in the
context of the Euclidean distance geometry problem. Given the basis {w,}Z_,
of S, we define the matrix H as H, g = (w, ,wgs) and write H;ylﬁ as H P,
After minor analysis, it is straightforward to check z, = > s H @ Bwg is a dual
basis satistying (z. ,wg) = do,3. We note the following relations which will
be used in later analysis, H = WTW, H ' = ZTZ and Z = WH ™! where
W = [wy,ws,..,wr] and Z = [2z1, 29, ..., 2] denote the matrix of vectorized
basis matrices and vectorized dual basis matrices respectively. The sampling
operator, a central operator in the analysis of the general matrix completion

problem, is defined as follows.

L
Rg:XGS—)aZ<X,wa>za (10)
a€ef)

12



The sampling model, for the set €, is uniform random with replacement from
I={1,---,L}. The size of Q is denoted by m and the scaling factor % is simply
for convenience of analysis. The adjoint operator of the sampling operator also
appears in the analysis and has the following form.
RE:XGSH£Z<X,zQ>wa (11)
M e

Using the sampling operator Rg, we can write (2) as follows.

minimize || X«
Xes
subject to R (X) = Ro(M) (12)

Another operator which appears in the analysis is the restricted frame operator

defined as follows.

L
fg:XGS—)EZ<X,wa>wa (13)
o)

It can be readily verified that the restricted frame operator is self-adjoint and

positive semidefinite.

Coherence.. One can not expect to have successful reconstruction for an arbi-
trary matrix M, in particular, when M has very few non-zero expansion coeffi-
cients. Thus, the notion of coherence is introduced in [13] to guarantee successful
completion. Consider the singular value decomposition of M = Z;:l /\kukv,z.
Let’s write U = span {uy,...,u,}, UX = span{u,41,...,u,} as the orthogonal
complement of U, V = span {v1,...,v,} and V! = span{v,;1,...,v,} as the
orthogonal complement of V. Projections onto these spaces appear frequently
in the analysis and can be summarized as follows. Let Py and Py denote the
orthogonal projections onto U and V respectively. Py and Pyr are defined
analogously. Define T = {UOT + OVT : © € R"*"} to be the tangent space of

the rank r matrix in R™*™ at M. The orthogonal projection onto T is given by
PrX =PuX + XPy — PuXPy (14)

13



It then follows that Ppi X = X — PrX = Py X Pyr. We define a coherence

condition as follows.

Definition 2. The aforementioned rank r matric M € R™*™ has coherence v
with respect to unit-norm basis {wq }acr if the following estimates hold

r
max > (Prwa,wg)? < v (15)

Bel
max Y (Prz,,ws)? < Cov— (16)
a€l n

Bel

T\2 r

max (w, , UV*)* < Vo3 (17)

where {za}acr is the dual basis of {wa}taer and ¢, is a constant satisfying
Cy 2 )\max(H_l)HH_IHOO'

Remark 1. Since the above coherence conditions are a central part of the analy-
sis, we consider equivalent simplified forms. We start with a bound on || Py w,||%
using (15) and Lemma 8 which results

r

2 2 r 2 -1
)‘min<H) HPT waHF < Halg( Z(PT Wa 7w6> < VE = |7)T wa”F < )‘maX(H )Vn

Bel

Neat, using the above inequality, the following bound for |Pr zo||F follows.

o o _ — vr
1Przallr < Y I1H* P Prwslle =Y [H® | [|Prawsllr < |H oo VAmax(H 1)

pel pel n

It should be noted that the analysis presented in this paper requires that | H ||«
is at most O(1). Finally, we use the previous inequality and (17) to derive a
bound for (z, ,UVT)2.

2o, UVT)? = H*Pws , UVT)? < max (wg, UVT)? H>P
( ) <% 8 )” < ﬁ€§<< i ) %I |

vr
—1)2

<||H —

<|H

The coherence conditions can now be summarized as follows.

r

rggﬁ{ | Pr wa”%«“ < AIIIaX(Hil) VE (18)

max |[Pr 2ol < [|H ™% Amox(H ) v (19)
T\2 —12 YT

max (z , UVT)? < [H | = (20)

14



The coherence parameter is indicative of concentration of information in the
ground truth matrix. If the underlying matrix has low coherence, each mea-
surement is equally informative as the other. On the other hand, if a matrix
has high coherence, it means that the information is concentrated on few mea-

surements.

Sampling Model.. For the general matrix completion problem, the basis ma-
trices are sampled uniformly at random with replacement. The advantage of
this model is that the sampling process is independent. This property is crucial
since our analysis uses concentration inequalities for i.i.d matrix valued random
variables. A disadvantage of this sampling process is that the same measure-
ment could be repeated and the analysis needs to account for the number of

duplicates.

3. Main Result and Proof

The main result of this paper shows that the nuclear norm minimization
program for the general matrix completion problem in (12) recovers the under-
lying matrix with very high probability. A precise statement is stated in the

theorem below.

Theorem 1. Let M € R"™ ™ be a matriz of rank r that obeys the coher-
ence conditions (15), (16) and (17) with coherence v and satisfies the corre-
lation condition (9) with correlation parameter u. Define C' as follows: C =
max <)\max(H1)3acv7 ; (p+ DIH | 1

min( (u+ 1| H oo, 3)?
and ||[H 1 ||oo = O(1). Assume m measurements, {{M ,wa)}acq, are sampled
uniformly at random with replacement. For 8 > 1, if

m> log, <4\/ﬁmﬁ) nr (48 [Cv+ %] [ Blog(n) + log (4 log, (ifm\/?)) ])

the solution to (12) is unique and equal to M with probability at least 1 —n 5.

> with parameter ¢, from (16)

Since the general matrix completion problem in (12) is convex, the optimizer
can be characterized using the KKT conditions. A compact and simple form

of these conditions is derived in [13]. With this, a brief outline of the proof is

15



as follows. The proof is divided into two main parts. In the former part, we
show that if the aforementioned optimality conditions hold, then M is a unique
solution to the minimization problem. The latter and main part of the proof
is concerned with showing that, under certain assumptions, these conditions do
hold with very high probability. The implication of this is that, for a suitable
choice of m, M is a unique solution for the general matrix completion problem.

Our proof adapts arguments from [15, 17]. Few remarks on the difference of
our proof to the matrix completion proofs in [15, 16] and our previous work [17]

are in order.

1. The operator Rq is not self-adjoint. The main implication of this is that
the operator PrRqPr, an important operator in matrix completion anal-
ysis, is no longer isometric to Pr. It turns out the appropriate operator
to consider is Pt R RaPr where the goal is to show that this operator is
nearly isometric to Pr. However, this approach is not amenable to sim-
ple analysis. In this work, the main argument is based on showing that
the minimum eigenvalue of the operator PrFqPr is bounded away from
zero with very high probability. To prove this fact, the operator Chernoff
bound is employed. The interpretation of this bound is that, restricted to
the space T, the operator PrFqPr is full rank. If the measurement basis
is orthogonal, Fo = Rgq, the implication is that the operator PrRqPr on
T is invertible. With this, PrFqPr can be understood as the operator

analogue of PrRqoPr for non-orthogonal measurements.

2. The measurement basis is non-orthogonal. Since we use the dual basis
approach, the spectrum of the matrices H and H~! become important.
However, since we do not work with a fixed basis, all the constants are
unknown. This is particularly relevant and presents some challenge in the

use of concentration inequalities and will be apparent in later analysis.

For the matrix completion problem, with measurement basis e;;, the theoretical
lower bound of O(nrvlog n) was established in [14]. Note that, if C' = O(1) and

1 = O(1), Theorem 1 requires on the order of nrvlog® n measurements which

16



is only log(n) factor away from the optimal lower bound. The order of Theorem
1 is also the same order as those used in [15, 16]. These works consider the low
rank recovery problem with any orthogonal basis and the matrix completion
problem respectively. Before the proof of main result, we illustrate Theorem 1

on two of the examples discussed in the introduction.

Euclidean Distance Geometry Problem: A matrix completion formula-
tion and theoretical analysis of the Euclidean distance geometry problem ap-
pears in [17]. Using the existing analysis in [17], L = %, Amax(H ™) < 4,
Amin(H™') = & and |H!||«c = 8. The constant c,, which satisfies ¢, >
Amax(H 1) || H |, is set to 32. Using Lemma 1(d), the correlation condi-
tion for the Euclidean Distance Geometry Problem holds with g = 1. Using
Theorem 1, it can be seen that the number of samples needed to recover the

underlying low rank Gram matrix for the Euclidean distance geometry problem

is O(nrvlog®n).

Spectrally Sparse Signal Reconstruction: For simplicity, consider the case
ni1 = ng = n. For this problem, the orthonormality of the Hankel basis implies
that H = Z. Therefore, Apax(H 1) = Apin(H ™) = ||[H !|oo = 1 and L = n?.
The correlation condition holds trivially with 4 = 0. The number of samples

needed to cover the underlying low rank matrix is O(nrvlog? n).

Remark 2. It should be remarked that the minimum number of samples noted
in Theorem 1 can be lowered, the constants could be improved, if one is work-
ing with explicit basis. The analysis presented here is generic and does not
assume specific structure of the basis. Where the latter is readily available, most
inequalities appearing in the technical details can be tightened lowering the sam-
ple complexity. For instance, if the basis is orthonormal as in the problem of
spectrally sparse signal construction, the analysis in [15] gives tight results. In
general, for explicit basis with some structure, one can adopt the analysis in this
paper and improve certain bounds.

Now we return to the main proof. For ease, the proof is structured into

several intermediate results. The starting result is Theorem 2 which shows that
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if certain conditions hold, M is a unique solution to (12).

Theorem 2. For any X € S, let A = X — M denote the deviation from the
true low rank matrix M. At and Ag. denote the orthogonal projection of A
to T and T+ respectively. For any given Q with |Q| = m, the following two
statements hold.

max H !
(a). If |AT||r > V2L ((H 1)) |ArL||F and Amin (Pr Fo Pr) > $Amin(H),
then RQA 75 0.
maLX(H‘ )

|ArL||r for A € ker Rq, and there exists a

(b). If |At]|lr < V2 ﬁ
Y € range R§, satisfying,

1 1 Amin H_l
[PeY — Son Ml < by om0y <

N (L) (22)

N —

then || X1l = [M + All. > || M]]...

Theorem 2(a) states that, for “large” Ar, any deviation from M is not in the
null space of the operator. Theorem 2(b) states that, for “small” A, deviations
from M increase the nuclear norm. The theorem at hand is deterministic and at
this stage no assumptions are made on the construction of the set 2. As long as
the assumptions of the theorem are satisfied, the theorem will hold true. After
proving the theorem, we proceed to argue that the conditions in the theorem
hold with very high probability. This will require certain sampling conditions

and a suitable choice of m = |Q|.

3.1. Proof of Theorem 2

Proof of Theorem 2(a). First, observe that |Rq A||r = [|Ra Ar+Ra Ari||r >
IRa Ar|lr — |Rq At ||r. Since we want to show that RoA # 0, the observa-
tion leads to considering a lower bound for ||Rq Ar||r and an upper bound for
IRq Api | F. For any X, |Ra XH% can be bounded as follows.

|Ro X||%2 = (X , Ry Ra X) = ZZ (X, wo (X ,wp) (20, 25) = ZZ (X, wa)(X ,wg)HP
BEQ aeq BeQ aeQ)

where the last inequality uses the fact that (z,,2z3) = H*#?. The min-max
theorem applied to the above equation results

L? _ L? _
i (H ) Y (X wa)® < [Ra XIE < —Shwax(H ) Y (X wa)”
ac acQ)
(23)
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Setting X = Ap. and using the right inequality above, we obtain

L? _
IR0 A lf < A (H™) Y (A wa)* < m

ae

£MH Aq.|?
m2 )\min(H_l) THF

(24)
where the last inequality uses the fact that Y (X, wa)? < Amax(H)|| X |7
(Lemma 8 in Appendix A) and the constant m bounds the maximum number
of repetitions for any given measurement. Analogously, setting X = A and
using the left inequality in (23), we obtain

2
1Ra Axl? > 2 duin(H ) S (A w00)? = 2 i (H ) (Ax, Fo A)
ac)
(25)
The next step considers the projection onto T of the restricted frame operator
and applies the min-max theorem resulting the following inequality.

L L
||RQ ATH% Z EAHIiIl(H71)<AT 7FQ A']T> = EArrlirl(H71)<AT ) PT ‘FQ P']T A']T>

L
>~ Auwin(H ™) Awin (P2 Fo Pr) || Ar|7

(26)

Above, the first equality follows since Pr is self adjoint and evidently Ay € T.
The inequality in (26) can be reduced further using the assumption Ay, (Pr Fo Pr) >

%)\min(H ) in the theorem resulting

L _
IRa Ald > 5= Auwin(H ™) i (H) | A (27)

Finally, use the inequalities in (24) and (27) and the assumption in the theorem
to show that ||Rq Allr > 0 as follows.

(H-1
A () A1

L L
A — Amin(H 1 w(H) ||A — |
[Ra AllF > \/2m)‘mm( )Amin (H) [|AT|| 7 Y\ N (1)

L Amax(H ™) L [Amax(H™1)
> A =— Amin(H YA\ pin (H 2L—————= | || ALl — —=4 | ————=||Ape]||lF =
o Ao (D) (VIR - Ly e E

This concludes proof of Theorem 2(a).
O

Proof of Theorem 2(b). Let X = M + A be a feasible solution to (12) with the
condition that ||Ar||r < \/ﬁ%HATL”F and A € kerRq. The goal
now is to show that, for any X that satisfies these assumptions, the nuclear
norm minimization is violated meaning that || X|. = | M + Al. > || M]..
The proof of this fact makes use of the dual certificate approach in [15]. The
idea is to endow a certain object, named a dual certificate Y, with certain
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conditions so as to ensure that any X satisfying the earlier made assumptions
is not a solution to (12). It then becomes a task to construct the certificate
which satisfies the preset conditions. For ease of later reference, we start with
the former task reproducing a proof, with minor changes, in section 2E of [15].
First, using the duality of the spectral norm and the nuclear norm, note that
there exists a A € T+ with ||A|| = 1 such that (A, Pr. (A)) = ||Pre (A)]]«.
Second, using the characterization of the subgradient of the nuclear norm [31],
O|M|.={Sen M +T |T € T+ & ||Pr. T|| < 1}. With this, it can be readily
verified that Sgn M + A is a subgradient of ||M]||, at M. Mathematically, we
have ||[M+A|l. > ||[M]|.+(Sgn M +A , A). Using the condition Y € range R§
which implies (Y, A) = 0 in the previous inequality, we obtain

| M+ Al > [|[M]|. + (Sgn M + A, A)
=||M]ls +(Sgn M + A =Y, A)
= [|M]||, + (Sgn M — PrY , A1) + ||Age||x — (ProY ,Agpy)

The third equality follows using the earlier choice of A and the fact that
Sgn M € T (from Lemma 7 in Appendix A). Finally, we apply the assump-
tions of the theorem to the last equation above to obtain

IM + Al = [[M][« + (Sgn M = PrY , Ar) + || Ape ], — <’P'£FLY7ATL>

1 1 )\min(Hi )
> 1M1l - 1y 57 s el + Al = 3 Are .
1 [T Auin(H™Y) 1
> Amini2f ) -
101l - 3y 57 2R el + 1A e
1 /1 dpin(H™Y) Amax (H™1) 1
N A [Agelle ) + Sl Acelr

)\min(H 1)
= |[M]]. + EHATLHF

It can be concluded that ||M + A||, > ||M||. as desired. O

Next, we state and prove a corollary which shows that M is a unique solution
to (12) if the deterministic assumptions of Theorem 2 hold.

Corollary 1. If the conditions of Theorem 2 hold, M is a unique solution to
(12).
Proof. Define A = X — M for any X € S. Using Theorem 2(a), Ro A # 0

7 Amax(H ™! ’
if |Ar|% > ( 2LA.((H_))||ATL ||p> . It then suffices to consider the case
2

|AT|2 < ( 5T, maX((H 1)) |Ari||r ] for A € kerRq. For this case, using
the proof of Theorem 2(b), || X ||« > || M||.. Therefore, M is the unique solution
o (12). O
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8.2. Proof of Theorem 1

Using the corollary above, if the two conditions in Theorem 2 hold, it follows
that M is a unique solution to (12). The first condition in Theorem 2(a)
is the assumption that Ay (Pr Fo Pr) > %)\min(H). This will ensure that
the minimum eigenvalue of the operator Pr Fq Pr is bounded away from zero.
Using the operator Chernoff bound in [32] restated below, Lemma 2 addresses

the assumption.

Theorem 3 (Chernoff bound in [32]). Consider a finite sequence {Ly} of in-
dependent, random, self-adjoint operators, acting on matrices in R™ ™, that
satisfy

Lr=0 and ||Lg]| <R almost surely

Compute the minimum eigenvalue of the sum of the expectations,
Hmin ‘= >\min (Z E[£k]>
k

Then, we have

Hmin

Pr [Amin <§k: ck> <(1-9) umm} <n [m] Y rsco]

For 6 € [0, 1], using Taylor series of log(1 — §), note that (1 — 0)log(l —4) >

-0+ %. This results the following simplified estimate.

Pr {)\min <Z £k> <(1-9) ,umin] <n exp (752 M;}‘;) for § € [0,1]
k

Lemma 2. Consider the operator PrFoPr : T — T. With k = 7=, the
following estimate holds.

1 >\min H 2
Pr (/\min (P’]I‘ Fa P’]I‘) < 2)\min(H)> < nexp (_()H>

8

Proof. Recall the restricted frame operator Fo = ) ¢ %(X,wa)wa. For

X €T, Pr Fq Pr X can be equivalently represented as follows.
L

PrFaPrX =) — (X, Prwa) Prwa
ae)
Let L, = %( , Prweq) Prwe denote the operator in the summand. Since

L is positive semidefinite, the operator Chernoff bound can be used. The
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bound requires estimate of an upper bound R of the spectrum norm of £, and
Lhmin = )\min(zﬁeg E[Lg]). First, we estimate R as follows.

L L vr
= —|[Prwallp < —Amax(H ™) —
[Py wallh < 2 Amax(H )

L
H<'a7)ﬂ‘wa>7)ﬂ‘wa
m n

The last inequality follows from the coherence estimate in (18). With this, set

L
R=— nax(H 71)1/77“. Next, we consider the estimate of pi,;, by first evaluating
> pea ElLa].
1
Y ElLg =) {Z —{ ,PTwa>PTwa:| = (-, Prwa) Prwa
BeQ BeQ tacl acl

Forany X € T, (X, Z E[L3](X)) can be lower bounded as follows.
BeQ

(X, ) BILal(X) =Y (X, wg)? > Anin(H) | X || 7
BeQ Bel

with the last inequality following from Lemma 8 in Appendix A. The varia-
tional characterization of the minimum eigenvalue, along with the fact that
Y aco PlLa] is a self-adjoint operator, implies that the minimum eigenvalue of
Yoaco PlLal is at least Ayin(H). With this, set pimin = Amin(H). The final
step is to apply the operator Chernoff bound with R = %Amax(H ‘1)% and
tmin = Amin (H ). Setting § = %, Amin (Pr Fo Pr) > %Amin(H) with probability
of failure at most p; given by

>\min (H)2 K
8v

This concludes the proof. O

Lemma 2 shows that Ay, (Pr Fo Pr) > %)\min(H ) holds with probability at

least 1 — p; where the probability of failure is at most p; = nexp <_8£) with
mn v
K= —.
Lr
In what follows, the conditions in Theorem 2(b) are analyzed. The statement
there assumes the existence of a certain dual certificate Y that satisfies the con-
ditions in (22). In [15], David Gross devised a novel scheme, the golfing scheme,

to construct the dual certificate Y. Before showing the scheme, some notations

are in order: 1) The random set {2 is partitioned into ! batches. The i-th batch,
l

denoted €);, contains m; elements with Zmi = m. 2) For a given batch, the
i=1
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L
sampling operator can be defined as follows R; = — Z (X ,w4)2z. The
m

inductive scheme is shown below.

Qo=sen M, Yi=)> RiQ; 1, Qi=sgn M—PrY;, i=1,..1 (28)

j=1

The main idea of the remaining analysis is to employ the golfing scheme and
certify that the conditions in (22) hold with very high probability. In the analysis
of the golfing scheme, the initial task is to show that the first condition in (22)
holds. This requires a probabilistic estimate of [|PrREPrX — PrX||p >t for
a fixed matrix X € S and will be addressed in Lemma 3 to follow shortly. The
proof of the lemma relies on the vector Bernstein inequality in [15]. We use a

slightly modified version of this inequality which is stated below.

Theorem 4 (Vector Bernstein inequality). Let @1, ..., ., be independent zero-

mean vector valued random variables. Assume that max ||z;|l2 < R and Y, E[||z;||3] <
K2

o?. For anyt < "—Rz, the following estimate holds.

= 21
Pr{ Zmz zt} < exp <—2—|—>7
p ) 8o 4

Lemma 3. Given an arbitrary fived X € S, for t < 1 with k = 7+, the
following estimate holds.

2k
8 (AmaX(H71)||H71‘|mV + %)
(29)

Pr(|PrRoPrX—PrX|r = t[| X]|r) < exp (

Proof. In what follows, with out loss of generality, we assume || X ||p = 1. Using
the dual basis expansion, PrRgPrX — PrX can be represented as follows.

L 1
PTR*QP’]I‘X —PrX = Z |:m<,PTX ) za>P’JI‘ Weo — mPTX:| (30)
a€E)

The summand, denoted Y, can be written as Y, = X, — FE[X,]. Since E[Y,] =
0, it satisfies the condition for the vector Bernstein inequality and we proceed to
consider appropriate bounds for ||Y,||r and E[||Ya|/%]. First, we bound ||Y, | r

23
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making use of the coherence conditions (18) and (19).

L 1
A H<7>Tx,za>7>qr wa — LPrx
m m

L
< H —(PrX , zo)Prw,
m

1
m

i
F

F F

I3 1
< — max || Py wy || F max || Pr za||F + —
m «€l acl m

1 /L
< — (/\maX(H_l)|H_1||ooyr + 1)
m\n

Therefore, set B = - (£Xpa ()| H"loor +1). To upper bound B[] Ya3),
we start with the definition of E[||Y, %] and proceed as follows.

L? 1 2L
BlIYallt] = B| 2 (PeX 20 [Prwally + o PeX [ = Z5(PrX 20} (PoX o]
L? 5 ) 1 ) 2
=F EWTX,Z@ [Pr wallz| + W”PTXHF - ﬁ<z€%<7)ﬂrx , Wa)Za , PrX)
L2 2 2 1 2
=F W<PTX’ZO“> [Pr wall%| — WHPTXHF
<t P 2N P X za) o+ —
< o maxllPrwalle 2 (PeX 2o+ o
L vr 1 L vr 1
< 7)\max H_l 2 — < 7>\max H_l H_l oo 5
" ( )n+m27m2 ( il [ el s

Above, the second inequality results from the coherence conditions (18) and (19)
and application of Lemma 8. With this, set 02 = L (LA (H™Y) || H ™Y |ovr + 1).
To conclude the proof, we apply the vector Bernstein inequality with the spec-
ified R and 0. For t < "—}: = 1, with k = 7, the following estimate holds.

t’k 1

Pr (||PrREP X —Pr X > 1) <ex — 4=
(P R&GPr 1X|F>1t) < p( S O (H)H 0 £ ) 4>
(31)

]

Next, it will be argued that the golfing scheme (28) certifies the conditions
in (22) with very high probability. In particular, we have the following lemma.

Lemma 4. Y] obtained from the golfing scheme (28) satisfies the conditions in
1
(22) with failure probability which is at most p = Zpg (1) + p3(2) + pa(i) where
i=1

; —3 min oo, & 2f<;i
p2(i) = exp ( o + 1);173(1') = 2nexp ( 3 ((M+ DIH" ’4) )

32 Qe (H Y[ H Y oov + £2) 4 8(p+ 1)[|H 12w

3K . m;n
—_— th k; = .
32 (CvV + %) v Lr

and py(i) = n® exp <
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Proof. In what follows, we repeatedly make use of the fact that Q; € T since
sgn M € T (see Lemma 7 in Appendix A). The main idea for showing that
the first condition in (22) holds relies on a recursive form of Q; which can be
derived as follows.

7 1—1
Qi=sen M —Pr | RiQ;_1 | =sgn M —Pr | > RIQ;_1 +R;Qis
Jj=1 j=1
i—1
=sgn M —PrY R;Qj -1 —PrR;Qi_1 =sgn M — PrY;_; — PrR; Qi1
j=1
=Qi—1 —PrR;Q;—1 = (Pr — PrR;Pr)Qi-1 (32)

The first condition in (22) is a bound on |[(Pr — PrR;Pr)Qi-1llr = ||Qillr-
Using Lemma 3 with t5; = %, |(Pr—PrRiPr)Qi-1]l < t2:]|Qi—1| r holds with
failure probability at most

() T +]
1) =exp | — 4
b2 P\ 32 e D H oor + 72) 4

where k = % Using the recursive formula in (32) repeatedly, ||Q;||r can be
T

upper bounded as follows.

1Qillr < (H t2,k> 1QollF = 27"v/r (33)

k=1

)‘max H oy . . .
Setting | = log, (4\/ QL)\-((I{)) ﬁ) , the first condition in (22) is now satisfied.

It can be concluded that, using a union bound on the failure probabilities py(7),
-1

1Qillr < vr2™! = i\/gi\\z;((i{[l)) holds with failure probability that is at

most Eizl p2(i). This implies that the first condition in (22) also holds with

the same failure probability.

Next, we consider the second condition in (22) which requires a bound on
[P Yi|. First, note that || Pra Y1l = |[Pre 35 RiQj1ll = 1| 52y PreRjQj1 | <
Z;Zl [Pr+R;Q;-1ll. As such, in what follows, the focus will be finding a suit-
able bound for ||Pr:R;Q;-1|. This will be analyzed in Lemma 5 in Appendix
A. A key element in the proof of Lemma 5 is an assumption on the size of
maxg [(Q;,zg)|. For ease of notation in further analysis, let 7(Q;) be defined
as: 7(Q;) = maxg |(Q;, zg)|. The assumption is that, at the i-th step of the
golfing scheme, n(Q;)* < ||H*1||io%cz2 where ¢? is an upper bound for ||Q;||%,
|Qil|% < ¢?. The idea is to argue that this assumption holds with very high
probability. To show this, assume that n(Q;) < t4,; with failure probability
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pa(i). Setting ts,; = %n(Qi,l) and applying the inequality n(Q;) < t4,; recur-
sively results

vr

_ _9 —9 — — Vo o9
n(Q:i)? <27n(Qi—1)* <2 %' n(sgn M)? < 27*|H 1||§<>ﬁ=||H g (2 %)

%

where the last inequality follows from the coherence estimate in (20). It can

now be concluded that, noting (33), the inequality above ensures that 7(Q;)* <

|H *1||20%cf with ¢; = 27%/r. The failure probability p,(i) follows from
n

Lemma 9, noting that 7(Q;) = 7(Qi—1 — PrR;Qi—1), and is given by

3K
) = n? - Vi e 1,1

Having justified the assumption on the size of (Q);), a key part of Lemma 9, we
now consider certifying the second condition in (22). Assume that [|[Pr. R;Q; 1] <
tsjci—1, with [|Q;j_1|lr < ¢j—1 = 27U~V holds with failure probability ps(j).
(+DIH Yo 1
VT ENG

. _ 2
—3min (s + DI H ", 2) @>

Fixing 3 ; = min < >, Lemma 5 gives

p3(j) = 2nexp —
3(7) ( B+ DH 120

where k; = % P11 Y| can now be upper bounded as follows.
r
! 1 1 d 1 J
Y| < RiQr | < tapcr 1 < —= = 2~ (k=1) <
IPr Yl <3 |1Pr REQu-| ; 8kCk1 < M;;ck | N;kzzlﬂ

k=1

DN | =

Applying the union bound over the failure probabilities, ||Pr.Y;|| < % holds
true with failure probability which is at most Y’ _,[ps(j) + pa(j)]. With the

same failure probability, the second condition in (22) holds true.
O
Lemma 5 will be proved shortly using the Bernstein inequality in [33] which

is restated below for convenience.

Theorem 5 (Bernstein inequality). Consider a finite sequence {X;} of inde-
pendent, random matrices with dimension n. Assume that

E[X;]=0 and |Xi|<R Vi

Let the matriz variance statistic of the sum o2 be defined as

0'2 — max (‘

b

> EIXTXi)

Z E[X; X]]

)
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For allt > 0,

=%,

2nex ——3t2 t <

} p 802 S
>t <

2n ex —ﬁ t> %

P\ 78R = R

Lemma 5. Consider a fized matric G € T. Assume that maxg (G, z5)? <
| H 12, % ¢ with ¢ set as |G||F. < ¢*. Then, with k; = %, the following
r
(1 + DIH oo
a '

(34)

N

Q

estimate holds for all t <

Pr|PeiRIG| > te) < 2ne Rl
TS = PO = SO TR ) [ H 2w

Proof of Lemma 5. Using the dual basis representation, Pr.R;G = Z (G, zo)Priw,.

m;
acQ;
The summand, denoted X, has zero expectation since G € T. With this,
the zero mean assumption for Bernstein inequality is satisfied. Next, we con-
sider suitable estimates for R and 2. The latter necessitates an estimate for

max(|E[ X, XT]||, | E[XEX,]|)). First, we bound || E[X,X]|. Since X, X[ =
2

L

W«; ,2a)2(Prowg) (Priwy)T, using Lemma 10 in Appendix A and the fact
J

that w,w? is positive semidefinite, | E[X,X]|| can be upper bounded as fol-

lows.

L L
|E[Xa x7 Il < — max (G, 2a)* o, wowl ) < — max (z,,G)* max
? lplla=1 ppt mj €l lellz= 1

Using the correlation condition, in particular Lemma 1(b), || Y, wawl ]| <
(1 + 1)n, we obtain

Liu+1 Liu+1
|E[X. XT]|| < Mmax (za,G)? < M\\Hﬂn? Y2
mj acl mj

()

An analogous calculation and reasoning as above yields | E[ X7 X,]|| < “7“ | H 2, % c?

Therefore, using triangle inequality, set

L 1
0,2_ (,LL+ )H ||2£ 2

To complete the proof, it remains to estimate R.

N

L L
[ Xall < —[max (2o, G)|[Priwa|| < —[[H lo"—c
m; a€l m; n

(35)
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G

1 L
Two pertinent cases have to be considered. If v > —, [| X4|| < — ||H |loo —— ¢ =
r m; n

! L 2 DJ|H
Ry andify < 11Xl < 20 Y ¢ = Ry. Note that & = ¢ DIH e
" m; n Ry Nz
g & e DI H e
Ry NG

inequality. An application of the Bernstein inequality results the following esti-
mate.

. To conclude the proof, we apply the Bernstein

Pr(|Pr RG] > 1) < 2ne 327 (36)
, <p | —
LU= TP TR DIE e
DI|H s ;
for all t < e+ D] lcc with k; = M. This concludes the proof of
T Lr
Lemma 5. O

Next, it will be argued that M is a unique solution to (12) with very
high probability. The argument considers two separate cases based on com-
paring ||Ar||% and ||Ag. ||%. This motivates us to define the following two sets:

S, = {X €S:|ArZ > (\/ LymenlH) 1)||ATL\|F) } and S = {X €S

A2 < (\/ Ly | A HF) &Ro(A) = 0}. With this, assuming
that Q is sampled uniformly at random with replacement, the two cases are as

follows.

1. Forall X € Sy, set |Q2] = m “sufficiently large” such that Pr ({Q C H| || = m, Amin (Pr Fa Pr) >

> 1 — py based on Lemma 2. Therefore, all X € S; are feasible solutions

to (12) with probability at most p; from Theorem 2(a).

2. For all X € Sy, we obtain

Amin (H)
2

N 1 /1 Aum(H™Y) 1 ,
T <{QCH‘ |Q|:m,YErangeRQ&HPTY—SgnMHFS1 TW&HPTLYHSi Z

!
with € = Z [p2(i) + p3(i) + pa(i)] by setting |Q2] = m “sufficiently large”

based on Eemma 4. Then, the probability of all X &€ So being solutions
o (12) is at most € from Theorem 2(b).

Using the above two cases and employing the union bound, any X € S

different from M is a solution to the general matrix completion problem with
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probability at most p = p; —|—Zi:1 [p2()+p3(i) +p4()]. In the arguments above,
we have used the terms “sufficiently large”, “small probability” and “very high
probability” with out being precise. The goal now is to set everything explicit.
First, define very high probability as a probability of at least 1 —n =% for 8 > 1.
Analogously, define small failure probability as a probability of at most n=?
for some 8 > 1. To recover the underlying matrix with high probability, the
idea is to carefully set the remaining free parameters m, [ and m; so that the
p < n~P for 8 > 1. This necessitates revisiting all the failure probabilities in the
analysis. p1, the first failure probability, is the probability that the condition in
Theorem 2(a) does not hold. In the construction of the dual certificate Y via
the golfing scheme, three failure probabilities, pa(i), ps(i) and p4(i), Vi € [1,1],
appear. With this, all the failure probabilities are noted below.

ne ( )\min(H)zlﬁ'/) (Z) o Ri + 1
=nexp| ———1—""— ; =exp| — 4
1 p 80 P2 P32 O H D[ H v + 2) 4

. —_ 2
p3(i) = 2nexp “3min ((u DIH oo, 5) mi) pa(i) =n’exp R —
’ S+ DIH Ty S 32 (cov + 1)

m;n

To suitably set m;, since k; = =7

, we can set k; with the condition that all the
1

failure probabilities are at most 47”_6 for # > 1. A minor calculation results

one suitable choice of k;, k; = 48(Cv + -=-) (Blog(n) + log(4l)), with C defined

as

)H!
C = max <)\max(H‘1)||H‘1||oo,cv, . (et DI e - 2) (37)
min (4 + D) H |, 1)

The total failure probability, applying the union bound, is bounded above by

n~P. The number of measurements, m = lrnk;, is at least

)\max(H) n )\maX(H)
log, (4\/ QLM ﬁ) nr <48 [Cv+ E] [ Blog(n) + log <4 log, (4\/ QLMW ]
(38)
This finishes the proof of Theorem 1. It can be concluded that the minimization

program in (12) recovers the underlying matrix with very high probability.
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4. Conclusion

In this paper, we study the problem of recovering a low rank matrix given
a few of its expansion coefficients with respect to any basis. The considered
problem generalizes existing analysis for the standard matrix completion prob-
lem and low rank recovery problem with respect to an orthonormal basis. The
main analysis uses the dual basis approach and is based on dual certificates.
An important assumption in the analysis is a proposed sufficient condition on
the basis matrices named as the correlation condition. This condition can be
checked in O(n3) computational time and holds in many cases of deterministic
basis matrices. If this condition holds and the underlying low rank matrix obeys
the coherence condition with parameter v, under additional mild assumptions,
our main result shows that the true matrix can be recovered with very high
probability from O(nrv log? n) uniformly random sampled coefficients. Future
research will consider a detailed analysis of the correlation condition and eval-
uating the effectiveness of the framework of the general matrix completion in

certain applications.
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Appendix A. Appendix A

Lemma 6. Given an orthonormal basis {Ca}E=1", we have Y. crtce, =
>, C.CL =nT.

Proof. Consider a matrix X € R"™ " expanded in the orthonormal basis as
X =) (X,C,)C,. With  and ¢, as column-wise vectorized forms of X
and C, respectively, x = Y. (z,cq)ca = (3, cacl)z. This implies that
Yoa cocl = T,» where the subscript denotes the size of the identity matrix.
This is the standard completeness relation. The implication of this relation is
that Y-, Cu(i,7)Cal(s,t) = 6.7. Next, consider Y CoCZL. The (i, j)-th entry
of this sum is given by

(o)

It follows that ), C,CZL = nZ. An analogous calculation results . CIC, =
nZ.

n

ZZCa(i,S)Ca(j,S) = cha(ias)ca(ja s) = Z‘S;ﬁ = n(si,j

0,7 a s=1 s=1 « s=1

O
Lemma 7. If X € T, SgnX € T.

Proof. Consider the singular value decomposition of X as X = UXV7T. Sgn X
is simply Sgn X = U(SgnX)VT = UDVT where D is the diagonal matrix
resulting from applying the sign function to . Using this decomposition, we
consider Prisgn X.
Prisgn X =sgn X — PrsgnX

=UDVT — [Pysgn X +sgn XPy — Pysgn X Py

=UDVv!' - vv'ubpv?' +ubpUu'vv? ~UvUvTUuDUTVVT] =0
Above, the last step follows from the fact that UTU = Z. It can be concluded

that sgn X € T.
O

Lemma 8. Given any X € R"*" the following norm inequalities hold.

Aunin (H) [ X[ < Y (X wa)? < A ED X NE 5 Ain(H ™) IXNF <D (X 20)” < Anax(H 71X 7

acl acl

34



Proof. Vectorize the matrix X and each dual basis z,. It follows that

Z(X ,2)? = ZmTzazga: S A

acel acl

Orthogonalize Z with Z = Z(VH~1)~". Since "5 (X , 25)* = " ZH'Z' =z,
we obtain

Aumin (H ™) [|2]13 = Ain(H ™) | X < D (X2 26)% < Aax(H 1) |23 = A (H ) | X[
Bel

The above result follows from a simple application of the min-max theorem. An
analogous argument gives

Amin (H) HXH% < Z<X7wa>2 < )‘maX(H_l)lXH%

acl
This concludes the proof. O
Lemma 9. Definen(X) = max (X, zg)|. Fora fized X in'T, with k; = ﬂzjn,
€ T
the following estimate holds for all t < n(X).
Pr(max |(PrR:X — X ,z5)| >t) <n?exp | — 3t (A1)
Bel T =Rl =5 = P 8n(X)? (cov + &) '

Proof. (PTR;X — X, zg), for some (3, can be represented in the dual basis as
follows.

<%mxw¢mﬂ23ﬂxﬁmwfx@ﬁEZC%xmemw—3m¢@

m m m
acQ; a€l; J J

The summand, denoted Y, is of the form X, — F[X,] and automatically satisfies
E[Y,] = 0. Bernstein inequality can now be applied with appropriate bound on
|Y,| and |E[Y2]|. First, we bound |Y,| making use of the coherence conditions
(18) and (19).

L 1 L vr 1
Y,|=|—(X,z, o - — (X < (X)) Apax(H HNH Yew— + —n(X
Vol = (X 20)(Pr w00 25) = 2K 25)| € 2(X) A (HH o 2 ()

1 L 1 -1

= L0 (B oo 11

m; n
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To bound E[Y?], noting that E[Y?] = E[X2] — E[X,]?, it follows that

(e

E[YZ] gE[i (X, 24)> <77T'wa,z5>2} %(X z5)?

3
L 2 2 1 2
< — i
=2 Z<X>za> (Pr waaz5> + mg_ﬁ(X)
J aEH J
1
<X Ly S (Prwa, 25+ (X
m=
m; a€l J
L cyvr 1
<n(X)?———+ —n(X)?
mé n ms
3 J
The last inequality results from the coherence condition in (16). To conclude the
proof, we apply the Bernstein inequality with |Y |<R= n’% X) ( max (H Y[ H ™| oovr + 1)
2 _ 1 2 (L . ) 0—2 _ Leyur+l
and 0° = En(X) (Zcovr +1). With kj = 528 fort < % =n(X)? ¢ Lo (D H o >
7(X), it holds that
Pr((PrRIX — X, 25)| > 1) < 37k, (A2)
r X - X, >t)<exp|— .
R g P 8n(X)? (cov + )

Lemma 9 now follows from applying a union bound over all elements of the dual
basis. O

Lemma 10. Let ¢, > 0. Then, the following two inequalities hold.

E Co WoW
(e}

Z Co (Priwy)(Pri wy)”

(’PTJ_ Wy )T ('PTJ_ wa)

E Co wgwa
[e3%

Proof. We start with the first statement. Using the definition of Pri we,
[3°0 €a (Pre wa)(Pre we)T|| can be written as follows.

PUL Wy PVL 'wg PUL

Z Co (Priwy)(Pro wa)TH =

PUL (Z Cn Wy PVL w > PUL

Using the fact that the operator norm is unitarily invariant and |PXP|| < X
for any X and a projection P, HZQ Co (Pri wy)(Pre wa)TH can be upper
bounded as follows

W Py o w = 'wa —Pv wg)

Z Co (Pri we)(Pre wa)T

Z[ca wow?l — cowy, Py wi]

[e3
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where the first equality follows from the relation Py = Z — Py. Since ¢, >
0, >, Ca weowl is positive semidefinite. Using the relation ’P‘Z, = Py and
the assumption that ¢, > 0, > cawo Py wl = 3 cow, Py Py wl is also
positive semidefinite. A similar argument concludes that ) co wq Py wl
is also positive semidefinite. Finally, using the norm inequality, ||[A + B| >
max (|| A]l, [|B]|), for positive semidefinite matrices A and B, it can be seen the
first statement holds. An analogous proof as above yields the second statement

concluding the proof. O
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