

1

2 **Title:** Environmental transmission of *Pseudogymnoascus destructans* to hibernating little brown
3 bats

4 **Authors:** Alan C. Hicks^{1‡}, Scott Darling^{2‡}, Joel Flewelling², Ryan von Linden¹, Carol U.
5 Meteyer^{3‡}, Dave Redell^{4†}, J. Paul White⁴, Jennifer Redell⁴, Ryan Smith^{2‡}, David Blehert³, Noelle
6 Rayman⁵, Joseph R. Hoyt^{1‡,6}, Joseph C. Okoniewski^{1‡}, Kate E. Langwig^{1‡,6*}

7

8 * To whom correspondence should be addressed. E-mail: klangwig@gmail.com

9 ¹ New York State Department of Environmental Conservation, 625 Broadway, Albany NY
10 12233-4754

11 ² Vermont Fish and Wildlife Department, 271 North Main Street, Suite 215, Rutland, VT 05701

12 ³ U.S. Geological Survey, National Wildlife Health Center, 6006 Schroeder Rd., Madison, WI
13 53711

14 ⁴ Wisconsin Dept. Natural Resources, Madison, WI

15 ⁵ U.S. Fish and Wildlife Service- Cortland NY

16 ⁶ Virginia Tech, Dept. of Biological Sciences, Blacksburg, VA

17 [‡] Address reflects affiliation at time of study.

18 [†] Deceased

19

20

21 **ABSTRACT**

22 Pathogens with persistent environmental stages can have devastating effects on wildlife
23 communities. White-nose syndrome (WNS), caused by the fungus *Pseudogymnoascus*
24 *destructans*, has caused widespread declines in bat populations of North America. In 2009,
25 during the early stages of the WNS investigation and before molecular techniques had been
26 developed to readily detect *P. destructans* in environmental samples, we initiated this study to
27 assess whether *P. destructans* can persist in the hibernaculum environment in the absence of its
28 conclusive bat host and cause infections in naive bats. We transferred little brown bats (*Myotis*
29 *lucifugus*) from an unaffected winter colony in northwest Wisconsin to two *P. destructans*
30 contaminated hibernacula in Vermont where native bats had been excluded. Infection with *P.*
31 *destructans* was apparent on some bats within 8 weeks following the introduction of unexposed
32 bats to these environments, and mortality from WNS was confirmed by histopathology at both
33 sites 14 weeks following introduction. These results indicate that environmental exposure to *P.*
34 *destructans* is sufficient to cause the infection and mortality associated with WNS in naive bats,
35 which increases the probability of winter colony extirpation and complicates conservation
36 efforts.

37

38 **INTRODUCTION**

39

40 Pathogens with indirect transmission from environmental reservoirs can have serious
41 consequences for wildlife host populations (1). Environmental reservoirs can maintain infection
42 in the absence of focal hosts, linking otherwise disconnected individuals across space and time
43 (2-6). Furthermore, environmental reservoirs can sustain seasonal outbreaks (7-9) and increase
44 the magnitude of disease impacts (10). For numerous diseases, including Chytridiomycosis in
45 amphibians (11), anthrax in ungulates (12), and white-nose syndrome in bats (13), population
46 recovery may be limited by the continued exposure to environmental pathogen reservoirs.

47 White-nose syndrome (WNS) is a disease of hibernating bats first documented in 2006 in
48 eastern New York State, USA (14). It has since spread across much of North America (13) and
49 threatens multiple bat species with extinction (15). In New York and Vermont, the states with
50 the longest history of WNS, the numbers of bats in hibernacula have declined overall by more
51 than 95% (13, 15). White-nose syndrome is caused by the psychrophilic fungus *P. destructans*
52 (16), which appears to have been introduced to North America from Eurasia (17). This fungus
53 invades living tissue of torpid bats (18) and disrupts the normal pattern of periodic arousal in

54 hibernating bats (19). *Pseudogymnoascus destructans* grows optimally in the cool temperatures
55 at which bats hibernate, with maximal growth at 14°C (20, 21). Bat-to-bat transmission of *P.*
56 *destructans* is well-established (5, 16), and *P. destructans* can survive in the environment long-
57 term in the absence of bat hosts (22-24). The presence of *P. destructans* in caves and mines is
58 thought to enable seasonal epizootics of WNS, as bats clear infections when they are euthermic
59 during summer (25, 26). However, while it is assumed that exposure to environmental *P.*
60 *destructans* alone is sufficient to cause WNS in naive bat populations, this remains unproven.

61 Long-term persistence of *P. destructans* in the hibernacula environment in the absence of
62 bat hosts makes management of WNS challenging as it eliminates the possibility of
63 recolonization of hibernacula with unexposed bats following population extirpation, and reduces
64 the probability that sites will naturally become decontaminated during the summer when bats are
65 no longer inhabiting the site. Additionally, persistence of the pathogen in the environment could
66 facilitate spread to new hibernacula during fall swarm when bats make repeated visits to multiple
67 hibernacula. Here, we assess the role of the hibernaculum as a sufficient reservoir for *P.*
68 *destructans* to investigate whether transmission of *P. destructans* can occur to naive hosts
69 directly from the environment.

70 METHODS

71 On October 27, 2009, we translocated 79 little brown bats (*Myotis lucifugus*) from a *P.*
72 *destructans* negative hibernaculum in Wisconsin to two *P. destructans* contaminated mines in
73 Vermont (GM, BWM) from which native bats had been excluded. Collection of live bats was
74 conducted by Wisconsin DNR personnel in compliance with state Endangered and Threatened
75 Species Laws (State Statute 29.04 and Administrative Rule NR 27). In Vermont, handling of bat
76 species was conducted by Fish & Wildlife Department personnel in compliance with Vermont
77 statutes of Chapter 123: Protection Of Endangered Species. New York personnel assisted in live
78 bat handling under the authority of the State of New York State Environmental Conservation
79 Law Article 11.

80 The source hibernaculum for the *M. lucifugus* used in the study was a mine in northwest
81 Wisconsin, which was 1300 kilometers from the nearest *P. destructans* contaminated
82 hibernaculum at the time of study. GM in Vermont had been confirmed WNS affected in spring
83 of 2008, and BWM was confirmed to harbor bats with WNS in spring of 2009 based on visual
84 inspection of bats and conspicuous mortality. Both sites were straight mining adits, which are
85 small prospecting mines used to explore for mineral deposits, and typically are small with few
86 cracks and crevices and were selected for the simplicity of finding and accessing bats. In July

87 2009, prior to the experiment, we constructed two bat proof-screens spaced 10 meters apart
88 inside the entrances of both sites. Screens were composed of wooden frames covered in
89 hardware cloth and sealed into the mines using foam sealant and steel wool. After construction of
90 the screens, no native bats were detected in GM during several subsequent visits. At BWM,
91 native bats were able to enter the site up until October 05, 2009 because of a small gap between
92 the ceiling and the first bat proof screen, which allowed access, although bats were not able to
93 pass through the second screen. No native bats were detected in either site after the screen was
94 repaired. At both sites, there were at least one other known hibernacula <1 km from GM and
95 BWM, thus allowing any excluded resident bats to select alternate roosting sites. To ensure
96 recovery of all translocated bats in the experimental portion of the mines, deep crevices
97 (principally at BWM) and drill-holes (principally GM) were plugged or partially filled with roof
98 ridge vent material.

99 In early October 2009, prior to the introduction of naïve bats from Wisconsin, we
100 collected samples from BWM and GM for microscopic examination and mycological culture.
101 Sterile polyester-tipped swabs were used to sample surfaces where bats were likely to roost (e.g.
102 boreholes) and surfaces that were expected to accumulate *P. destructans* falling from roosting
103 bats or deposited by air currents (e.g. tops of rocks on the mine floor and wall shelves). These
104 sampled sites were located in areas of the mine where concentrations of bats had been observed
105 by state personnel to roost in previous years. Matter collected on the swabs was deposited in 2 ml
106 sterile distilled water in sterile 15 ml centrifuge tubes. Paired swabs of the same targets were
107 then used to streak 100-mm diameter petri plates containing Sabouraud dextrose agar containing
108 gentamycin and chloramphenicol. On return to the laboratory, one drop of solution from the
109 tubes was spread onto a second plate (Sabouraud dextrose agar with gentamycin and
110 chloramphenicol) before the remaining solution was preserved with 1 ml 10% formalin. Media
111 plates were incubated at 5°C.

112 As a sensitive and specific qPCR was not yet available (e.g. (27)), we used microscopic
113 examination of samples to identify *P. destructans* in accordance with published morphology (18,
114 20). Prior to microscopic examination, swab solutions were agitated, then centrifuged for 15
115 minutes at high speed. All but approximately 0.2 ml of the supernatant was carefully discarded
116 with a disposable pipette. The pellet was then resuspended by pipette and, after allowing some of
117 the denser sediment to settle out (1-3 min), 2 drops (0.03 ml) of the fluid was placed on a
118 microscope slide, covered with a 22 X 22 mm coverslip and examined at 450X. The slides were
119 searched systematically by a single observer until at least a single conidium of *P. destructans*

120 was observed. The number of conidia present was then characterized by counting all such
121 conidia on 5 transects across the slide (near top and bottom margins, across the middle, and at
122 the $\frac{1}{4}$ and $\frac{3}{4}$ transects).

123 Many precautions were taken to assure that that the Wisconsin bats were not exposed to
124 *P. destructans* before they were released in the Vermont mines. Naïve bats from Wisconsin were
125 collected by Wisconsin state agency personnel that had never visited any *P. destructans*
126 contaminated sites. All supplies or equipment were either purchased new or disinfected with a
127 10% chlorine bleach solution. All bats were handled with disposable gloves, one pair per bat. All
128 personnel showered and changed into new clothing before making the trip in a vehicle never
129 before used by anyone who had been to a *P. destructans* contaminated site. Based upon annual
130 sampling of bats, the Wisconsin mine from which the bats originated did not become positive for
131 *P. destructans* until 2016 (7 years after the sampling effort for this experiment was completed),
132 providing strong support that bats were not exposed to *P. destructans* in their origin site at the
133 time they were collected.

134 Seventy-nine total bats were released into Vermont hibernation sites (n = 38 to BWM, n
135 = 37 to GM). After releasing the bats into the Vermont hibernacula, the sites were checked four
136 times, at intervals of 3, 4, 6, and 8 weeks post introduction (Table 1). At each visit, the
137 hibernacula were systematically searched for live and dead bats. The visual appearance of each
138 bat was noted, as was its exact location. Each bat was also photographed with a high quality
139 digital SLR camera. Except for a careful collection of visible fungus on 3 bats at GM using a
140 polyester swab on the first visit to confirm *P. destructans*, live bats were not physically
141 disturbed. Moribund bats, a status determined by a combination of appearance, location, and
142 reaction to stimuli, were euthanized by cervical dislocation by state agency personnel. Prior to
143 necropsy the bats were weighed and a swab sample was collected from the dorsal surface of the
144 right wing and the entire uropatagium. The swab sample was deposited in 2 ml of distilled water,
145 fixed with the addition of 1 ml 10% formalin, and centrifuged to concentrate conidia and other
146 solids. All but 0.2 ml of the supernatant was then discarded. The pellet and residual fluid were
147 then mixed, and a drop of the mixture placed on a microscope slide and covered with a 22 mm X
148 22 mm coverslip. Slides were examined systematically for conidia of *P. destructans* at 450X.
149 Once a definitive conidium was detected, a count of conidia was made on three transects as an
150 index of abundance as described above. Histopathological assessment of tissue from the
151 plagiopatagium (18) as well as PCR to confirm presence or absence of *P. destructans* in wing
152 tissue (28) was conducted by the USGS National Wildlife Heath Center. A mean WNS

153 histologic severity score was assigned to each bat for which histopathological assessment was
154 completed (citation 19, appendix S2).

155

156

157 RESULTS

158

159 ***P. destructans* in Hibernacula before Introduction of Wisconsin Bats**

160

161 Conidia of *P. destructans* were observed in all 5 samples from drill holes at GM (0.4, 2, 3, 6.6,
162 67 conidia/transect). Conidia of *P. destructans* were not observed in seven of eight other samples
163 at GM. The single, positive sample from this group was a swab of a rock on the mine-floor
164 sprinkled with bat feces that registered <1 conidium/transect. At BWM, where boreholes are
165 absent, two of 13 samples were positive (0.2 and 0.8 conidia/transect), both from surface swabs
166 of bat carcasses on the mine floor. All culture attempts at both mines were quickly overgrown
167 with other fungi.

168

169 **Hibernacula Monitoring**

170

171 Infection with *P. destructans* was confirmed by photography and microscopic
172 examination of swab samples of bats at both mines by the first visit on December 15, 2009
173 (Table 1, Fig 1A). Mortality was observed at both mines at this time, although it possible that
174 this mortality was related to or exacerbated by the stress of translocation and not directly caused
175 by *P. destructans*. Nonetheless, 16 bats at GM and 1 bat at BWM had visible fungal growth on
176 their skin consistent with *P. destructans* infection. Extensive mortality consistent with WNS was
177 recorded at GM in late January 2010 (Fig 1B). No live bats were seen at GM after the February
178 visit. WNS developed significantly more slowly at BWM (Table 1, logistic regression of
179 mortality between sites (GM: -3.342 ± 0.584 , BWM: -0.538 ± 0.184 , $P = 0.0021$). A single
180 moribund bat at this mine was still alive on the final visit to BWM on April 8, 2010.

181 Most dead bats were recovered toward the front of the mine tunnels (35 bats, 75%, were
182 within 3 m of the screens). Whereas bat that were still alive were encountered in areas where
183 bats previously roosted, regardless of visibly apparent infections with *P. destructans*. Only three
184 non-moribund bats were recorded within 3 m of the screen.

185

186

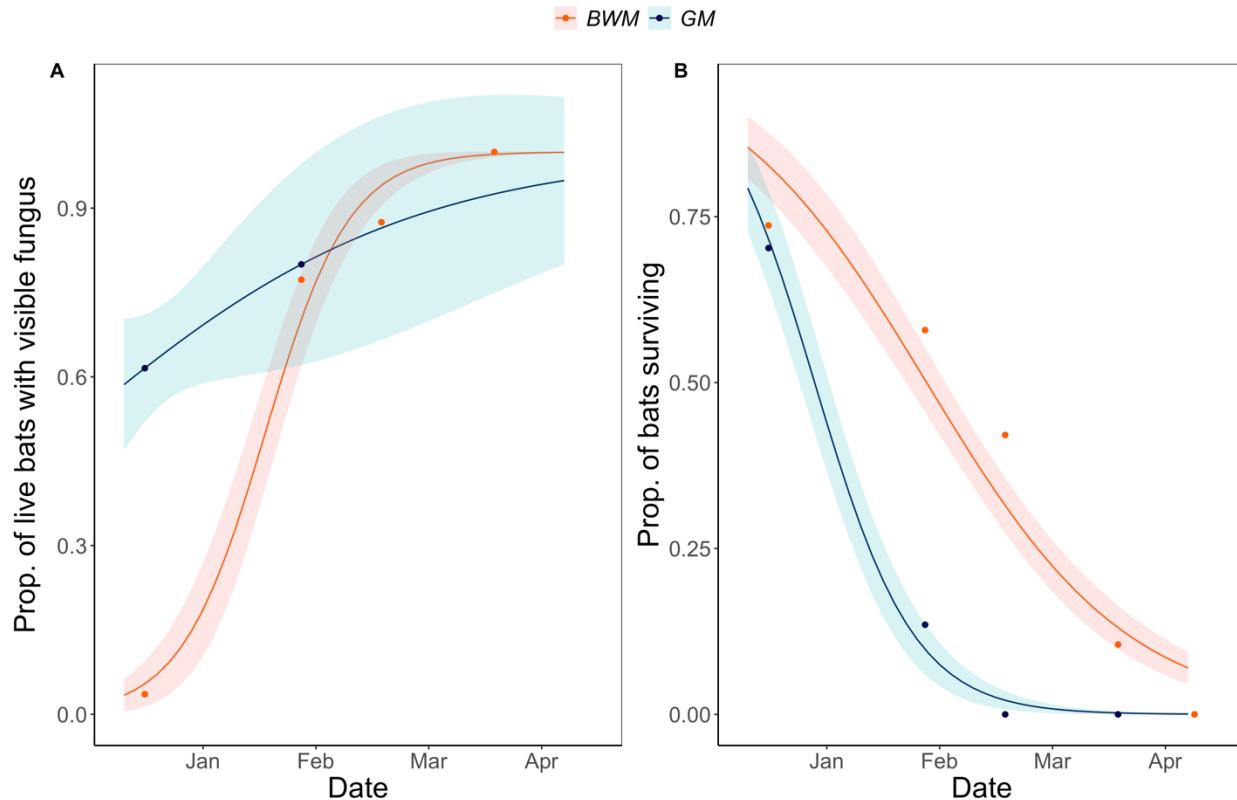
187

Table 1. Progress of white-nose syndrome (WNS) in bats from Wisconsin introduced into bat-free hibernacula in Vermont with histories of WNS outbreaks*

Location	No. bats seen alive/ No. live bats with visible signs of <i>P. destructans</i> †/ No. found dead or moribund				
	December 15	January 27	February 18	March 18	April 8
BWM	28/1/8	22/17/6	16/14/2	4/4/16	0/0/3
GM	26/16/4	5/4/21	0/0/9	0/0/3	

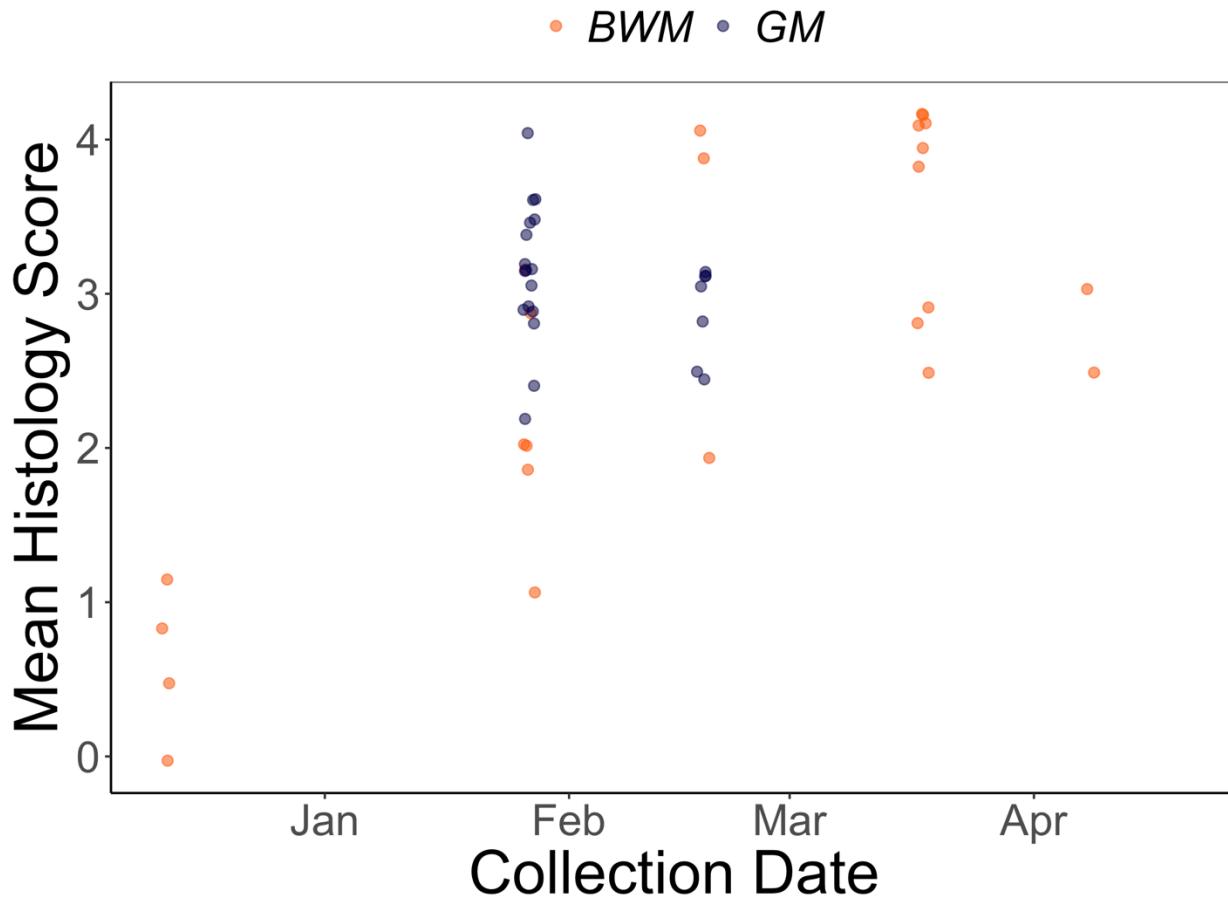
*WNS was first recorded at BWM mine late in the previous winter. WNS was present at GM during the 2 previous winters, after which most bats had died.

†As determined by high-resolution photography.


188

189

190


191 Confirmation of *P. destructans* and evidence of WNS

192 Of the 50 carcasses that were suitable for histopathological examination, 45 (90%) showed skin
193 lesions diagnostic of WNS (Figure 2). Five bats lacked diagnostic lesions, 4 of which were
194 recovered on the first visit to BWM, supporting that some initial mortality may have been related
195 to transportation stress. All bats positive for WNS by histopathology were positive for *P.*
196 *destructans* by microscopic examination of the swab samples for conidia and by PCR of skin
197 samples from the wings. Of the 25 bats with a degree of post-mortem degradation that precluded
198 histopathological assessment, *P. destructans* was detected by swab examination on 17 and by
199 PCR on 18. Subcutaneous white fat was totally or severely (≤ 0.06 g) depleted in all but 2 of 40
200 histologically positive bats for which this metric was assessed.

201

202 Figure 1. Visible infection and mortality data from the 2009 translocation experiment. (A) The
203 proportion of live bats with visible fungal growth indicative of *P. destructans* infection. (B) The
204 proportion of live bats remaining at each site. Sites differed significantly in their dynamics
205 (logistic regression of site interacting with date, visible fungus site*date coef +/- SE of GM
206 compared to BWM = -2.02 ± 1.03 , $P = 0.05$, proportion alive at GM compared to BWM: -1.15
207 ± 0.41 , $P = 0.00546$).

208

209 Figure 2. Mean WNS histologic severity scores of dead or moribund bats collected from BWM
210 and GM. Scores are averaged across body surfaces examined (wing, ear/muzzle). Scores were
211 graded as 0 - no fungi suggestive of WNS, 1 - superficial and limited but suspicious of early
212 WNS with hyphae in keratin and randomly into epidermis, but not yet forming distinctive
213 cupping or dense packets, 2 - More extensive superficial infection with epidermal cupping
214 packed with hyphae diagnostic of WNS, 3 - More severe fungal infection with tissue invasion
215 including epidermal cupping packed with hyphae diagnostic of WNS, 4 - Severe infection with
216 tissue and wing damage worse than 3.

217

218

219 **DISCUSSION**

220 Our results indicate that *P. destructans* in WNS-affected hibernacula can serve as a
221 primary source of infection for bats and confirms that the environmental reservoir alone is
222 sufficient to induce infection and mortality with *P. destructans*. The presence of *P. destructans*
223 in a sustained environmental reservoir increases the probability that infection of bats will

224 continue even as bat densities decline, and greatly increases the probability of the complete
225 extirpation at some sites, as has already been documented throughout the eastern U.S. (15, 29,
226 30). Cumulative losses of hibernating colonies could lead to regional extirpations and increase
227 the potential for species extinction.

228 Previous work has demonstrated that *P. destructans* contamination in the environment
229 increases with time since *P. destructans* invasion (10, 31, 32) and that infection severity and
230 impacts to host populations increase with the extent of environmental contamination (10). Our
231 findings are similar, in that GM, with a longer history of WNS in bat populations, had a higher
232 number of samples contaminated with *P. destructans* than samples collected from BWM, which
233 is consistent with increasing contamination of hibernation sites over time since *P. destructans*
234 invasion (10, 31, 32). Bats at GM also experienced a faster rate of decline and became visibly
235 infected earlier than bats at BWM, providing additional anecdotal support of the scaling of
236 reservoir contamination and disease impacts. Although this study was limited to only two sites
237 that varied in environmental *P. destructans* contamination and other factors may contribute to
238 differences in impacts (e.g. reviewed in (13)), these data provide support for the potential
239 importance of reservoir contamination in WNS population declines.

240 Although it is possible that various sources of stress associated with translocating bats in
241 this experiment contributed to the rate of WNS development in our experiment, visible clinical
242 signs of WNS appeared at 49 days post-introduction, earlier than has been documented in
243 laboratory experimental infections, which utilized similar transportation protocols and that may
244 have exerted similarly stressful conditions (16). Many subsequent experimental infections, which
245 confined bats in incubators (e.g. (16, 33, 34), failed to detect such severe clinical signs (e.g.
246 visible fungal infections) as early as was evident in this study. Additional research is needed to
247 determine the underlying differences between experimental and field outcomes.

248 Critically, our results unequivocally demonstrate that *P. destructans* does not need to be
249 carried by summer bats to cause WNS outbreaks equivalent in scale to those that naturally occur
250 in bat populations. During the summer, prevalence and fungal loads on bats decay (25, 26) and
251 bats become infected upon return to hibernacula during fall (25, 35). While *P. destructans*
252 infections during summer are greatly reduced, viable conidia can be found on small numbers of
253 individuals over summer (36). However, the high infection and mortality in naïve bats in this
254 study demonstrates that recrudescing summer infections are not necessary to initiate epizootics
255 of WNS.

256 This study was conducted one year after the initial recognition that mass mortality of bat
257 populations in the northeastern U.S. was associated with the fungus *P. destructans* (14).
258 Accordingly, many diagnostic tools and approaches that are now commonly used to assess WNS,
259 such as qPCR to detect the pathogen and UV fluorescence to diagnose fungal lesions, were
260 unavailable to the researchers conducting this work. Subsequent field studies have demonstrated
261 that hibernacula can serve as long-term reservoirs for *P. destructans* (10, 23, 24, 31, 32, 37).
262 However, this study remains the only experiment to assess whether the environmental reservoir
263 can cause WNS epizootics in the absence of previously infected bat hosts. Integrating these
264 experimental data with earlier field studies solidifies the key role of contaminated environments
265 in eliciting WNS outbreaks. More broadly, our results suggest that pairing experiments and field
266 studies can substantially improve understanding of the importance of environmental reservoirs
267 across host-pathogen systems.

268
269

270 **ACKNOWLEDGEMENTS**

271 The authors thank the numerous individuals that contributed to the advancement in
272 knowledge of WNS since this study was first conducted. The use of trade, product, or firm
273 names is for descriptive purposes only and does not imply endorsement by the U.S. government.
274 The findings and conclusions in this article are those of the authors and do not necessarily
275 represent the views of the U.S. Fish and Wildlife Service.

276
277
278
279
280
281
282
283

284 Literature Cited

285

286 1. de Castro F & Bolker B (2005) Mechanisms of disease-induced extinction. *Ecology Letters* 8(1):117-126.

287 2. Breban R, Drake JM, Stallknecht DE, & Rohani P (2009) The Role of Environmental Transmission in Recurrent Avian Influenza Epidemics. *PLoS Comput Biol* 5(4):e1000346.

288 3. Li S, Eisenberg JN, Spicknall IH, & Koopman JS (2009) Dynamics and control of infections transmitted from person to person through the environment. *Am. J. Epidemiol.* 170(2):257-265.

289 4. Ogbunugafor CB, *et al.* (2020) Variation in microparasite free-living survival and indirect transmission can modulate the intensity of emerging outbreaks. *Scientific reports* 10(1):1-14.

290 5. Hoyt JR, *et al.* (2018) Cryptic connections illuminate pathogen transmission within community networks. *Nature*.

291 6. Turner WC, *et al.* (2021) The roles of environmental variation and parasite survival in virulence-transmission relationships. *Royal Society open science* 8(6):210088.

292 7. Rohani P, Breban R, Stallknecht DE, & Drake JM (2009) Environmental transmission of low pathogenicity avian influenza viruses and its implications for pathogen invasion. *Proceedings of the National Academy of Sciences of the United States of America* 106(25):10365-10369.

293 8. King AA, Ionides EL, Pascual M, & Bouma MJ (2008) Inapparent infections and cholera dynamics. *Nature* 454(7206):877-U829.

294 9. Shaman J, Pitzer VE, Viboud C, Grenfell BT, & Lipsitch M (2010) Absolute humidity and the seasonal onset of influenza in the continental United States. *Plos Biology* 8(2).

295 10. Hoyt JR, *et al.* (2020) Environmental reservoir dynamics predict global infection patterns and population impacts for the fungal disease white-nose syndrome. *Proceedings of the National Academy of Sciences* 117(13):7255.

296 11. Briggs CJ, Knapp RA, & Vredenburg VT (2010) Enzootic and epizootic dynamics of the chytrid fungal pathogen of amphibians. *Proceedings of the National Academy of Sciences* 107(21):9695-9700.

297 12. Turner WC, *et al.* (2014) Fatal attraction: vegetation responses to nutrient inputs attract herbivores to infectious anthrax carcass sites. *Proceedings of the Royal Society B: Biological Sciences* 281(1795):20141785.

298 13. Hoyt JR, Kilpatrick AM, & Langwig KE (2021) Ecology and impacts of white-nose syndrome on bats. *Nature Reviews Microbiology*.

299 14. Blehert DS, *et al.* (2009) Bat white-nose syndrome: an emerging fungal pathogen? *Science* 323(5911):227-227.

300 15. Langwig KE, *et al.* (2012) Sociality, density-dependence and microclimates determine the persistence of populations suffering from a novel fungal disease, white-nose syndrome. *Ecology Letters* 15(9):1050-1057.

301 16. Lorch JM, *et al.* (2011) Experimental infection of bats with *Geomyces destructans* causes white-nose syndrome. *Nature* 480:376-378.

302 17. Drees KP, *et al.* (2017) Phylogenetics of a Fungal Invasion: Origins and Widespread Dispersal of White-Nose Syndrome. *mBio* 8(6):e01941-01917.

303 18. Meteyer CU, *et al.* (2009) Histopathologic criteria to confirm white-nose syndrome in bats. *J. Vet. Diagn. Invest.* 21(4):411-414.

304

331 19. Reeder DM, *et al.* (2012) Frequent Arousal from Hibernation Linked to Severity of
332 Infection and Mortality in Bats with White-Nose Syndrome. *Plos One* 7(6).

333 20. Gargas A, Trest MT, Christensen M, Volk TJ, & Blehert DS (2009) *Geomycetes*
334 *destructans* sp. nov. associated with bat white-nose syndrome. *Mycotaxon* 108:147-154.

335 21. Verant ML, Boyles JG, Waldrep W, Wibbelt G, & Blehert DS (2012) Temperature-
336 dependent growth of *Geomycetes destructans*, the fungus that causes bat white-nose
337 syndrome. *Plos One* 7(9).

338 22. Hoyt JR, *et al.* (2014) Long-term persistence of *Pseudogymnoascus destructans*, the
339 causative agent of white-nose syndrome, in the absence of bats. *EcoHealth*:1-4.

340 23. Lorch JM, *et al.* (2013) A culture-based survey of fungi in soil from bat hibernacula in
341 the eastern United States and its implications for detection of *Geomycetes destructans*, the
342 causal agent of bat white-nose syndrome. *Mycologia* 105(2):237-252.

343 24. Lorch JM, *et al.* (2013) Distribution and environmental persistence of the causative agent
344 of white-nose syndrome, *Geomycetes destructans*, in bat hibernacula of the eastern United
345 States. *Appl. Environ. Microbiol.* 79(4):1293-1301.

346 25. Langwig KE, *et al.* (2015) Host and pathogen ecology drive the seasonal dynamics of a
347 fungal disease, white-nose syndrome. *Proceedings of the Royal Society B: Biological
348 Sciences* 282(1799).

349 26. Fuller NW, *et al.* (2020) Disease recovery in bats affected by white-nose syndrome.
350 *Journal of Experimental Biology* 223(6).

351 27. Muller LK, *et al.* (2013) Bat white-nose syndrome: a real-time TaqMan polymerase chain
352 reaction test targeting the intergenic spacer region of *Geomycetes destructans*. *Mycologia*
353 105(2):253-259.

354 28. Lorch JM, *et al.* (2010) Rapid polymerase chain reaction diagnosis of white-nose
355 syndrome in bats. *J. Vet. Diagn. Invest.* 22(2):224-230.

356 29. Frick WF, *et al.* (2010) An emerging disease causes regional population collapse of a
357 common north american bat species. *Science* 329(5992):679-682.

358 30. Frick WF, *et al.* (2015) Disease alters macroecological patterns of North American bats.
359 *Global Ecology and Biogeography* 24(7):741-749.

360 31. Langwig KE, *et al.* (2015) Invasion dynamics of white-nose syndrome white-nose
361 syndrome fungus, midwestern United States, 2012-2014. *Emerg Infect Dis* 21(6).

362 32. Verant ML, *et al.* (2018) Determinants of *Pseudogymnoascus destructans* within bat
363 hibernacula: Implications for surveillance and management of white-nose syndrome.
364 *Journal of applied ecology* 55(2):820-829.

365 33. Cheng TL, *et al.* (2017) Efficacy of a probiotic bacterium to treat bats affected by the
366 disease white-nose syndrome. *Journal of applied ecology* 54(3):701-708.

367 34. McGuire LP, *et al.* (2016) White-Nose Syndrome Disease Severity and a Comparison of
368 Diagnostic Methods. *EcoHealth* 13(1):60-71.

369 35. Ballmann AE, Torkelson MR, Bohuski EA, Russell RE, & Blehert DS (2017) Dispersal
370 hazards of *Pseudogymnoascus destructans* by bats and human activity at hibernacula in
371 summer. *Journal of Wildlife Diseases* 53(4):725-735.

372 36. Dobony CA, *et al.* (2011) Little brown myotis persist despite exposure to white-nose
373 syndrome. *Journal of Fish and Wildlife Management* 2(2):190-195.

374 37. Lindner DL, *et al.* (2011) DNA-based detection of the fungal pathogen *Geomycetes*
375 *destructans* in soils from bat hibernacula. *Mycologia* 103(2):241-246.

376