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Abstract

Simultaneously controlling COVID-19 epidemics and limiting economic and societal impacts

presents a difficult challenge, especially with limited public health budgets. Testing, contact

tracing, and isolating/quarantining is a key strategy that has been used to reduce transmission

of SARS-CoV-2, the virus that causes COVID-19 and other pathogens. However, manual con-

tact tracing is a time-consuming process and as case numbers increase a smaller fraction of

cases’ contacts can be traced, leading to additional virus spread. Delays between symptom

onset and being tested (and receiving results), and a low fraction of symptomatic cases being

tested and traced can also reduce the impact of contact tracing on transmission. We examined

the relationship between increasing cases and delays and the pathogen reproductive number

Rt, and the implications for infection dynamics using deterministic and stochastic compartmen-

tal models of SARS-CoV-2. We found that Rt increased sigmoidally with the number of cases

due to decreasing contact tracing efficacy. This relationship results in accelerating epidemics

because Rt initially increases, rather than declines, as infections increase. Shifting contact

tracers from locations with high and low case burdens relative to capacity to locations with

intermediate case burdens maximizes their impact in reducing Rt (but minimizing total infec-

tions may be more complicated). Contact tracing efficacy decreased sharply with increasing

delays between symptom onset and tracing and with lower fraction of symptomatic infections

being tested. Finally, testing and tracing reductions in Rt can sometimes greatly delay epidem-

ics due to the highly heterogeneous transmission dynamics of SARS-CoV-2. These results

demonstrate the importance of having an expandable or mobile team of contact tracers that

can be used to control surges in cases. They also highlight the synergistic value of high capac-

ity, easy access testing and rapid turn-around of testing results, and outreach efforts to encour-

age symptomatic cases to be tested immediately after symptom onset.

Author summary

Contact tracing is a key tool in the control of infectious diseases. However, to successfully

contact and quarantine individuals with traditional methods requires time and is limited

by available capacity. As cases rise, limited capacity results in only a fraction of contacts
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being reached each day before the next set of cases is detected. Here we examine the rela-

tionships between increasing case numbers, contact tracing efficiency, and the pathogen

reproductive number Rt (the number of cases infected by each case) and how these rela-

tionships vary with delays between symptom onset and tracing initiation, and incomplete

participation in the testing and tracing process. We found that under conditions found

throughout much of the world, where only 20–40% of symptomatic cases are detected,

contact tracing can reduce Rt by a maximum of 20%, and this benefit quickly dissolves as

contacts needing tracing exceed capacity. Increases in the fraction of symptomatic people

being tested and reductions in the time between symptom onset and initiating tracing

substantially increase the potential impact of tracing in reducing Rt to 60%, but this bene-

fit is also lost as cases rise and contacts needing tracing exceed capacity to do so. Maintain-

ing excess contact tracing capacity and the ability to shift it to areas most in need can

substantially reduce pathogen transmission and limit epidemics.

Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in late 2019, spread

globally in early 2020, and resulted in rapidly growing local epidemics, large scale mortality, and

strains on hospital capacity in many countries [1–4]. Initial outbreaks in most countries were lim-

ited only by severe control measures including closing all but essential businesses as well as

schools, churches, and other organizations [5,6]. Only a few countries were able to limit transmis-

sion with less disruptive public health measures [7–9]. The combination of severe disease control

measures and the disease itself have had devastating impacts on economies and societies [10,11].

Following control with strict lockdown measures, most countries attempted to re-open as many

business sectors and activities as possible while avoiding a rapid rise in infections.

Although self-isolation of symptomatic individuals, social distancing, and mask wearing

have reduced the transmission of SARS-CoV-2, additional interventions, including business

closures and working from home, have often been required to keep the pathogen reproductive

number Rt below 1 [10,12,13]. One public health strategy that has been used to reduce trans-

mission in some countries is testing symptomatic individuals, tracing their contacts to people

they may have infected, isolating infected individuals, and quarantining people that may have

become infected but have yet to show symptoms or test positive for the virus (hereafter abbre-

viated TTIS) [8,13,14]. If contacts of cases can be found and quarantined or isolated before or

during their infectious period, this can limit onward spread of the virus [15].

Numerous studies have examined the effectiveness and limitations of TTIS on transmission

of SARS-CoV-2 and other pathogens [14–27]. Many studies have shown that TTIS can sub-

stantially reduce the pathogen reproductive number, Rt, but its efficacy depends on the impor-

tance of pre-symptomatic and asymptomatic transmission, delays between symptom onset

and being tested, and the fraction of infections that are tested and traced [14,19,22,24]. Previ-

ous studies have explored various parameter values for contact tracing efficacy by varying the

fraction isolated, the fraction symptomatic, and the contribution to transmission of undetected

infections [14,19,22]. A key unexplored challenge in implementing TTIS is that tracing con-

tacts and ensuring they can safely quarantine or isolate is a time-consuming process which

results in only a fraction of contacts being reached if cases and their contacts exceed case inves-

tigation and contact tracing capacity. This reduces the effectiveness of contact tracing as cases

increase. Previous studies have assumed fixed values for contact tracing parameters, or have

simulated epidemics with models that do not describe the links between cases and their
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contacts, or use models that don’t include the interactions between rising cases, delays between

symptom onset and tracing, and reductions in the pathogen reproductive number Rt.

Our aim was to examine the relationship between increasing cases, contact tracing efficacy,

and the pathogen reproductive number, Rt, and to examine the potential outcomes for disease

dynamics. We built a compartment model of SARS-CoV-2 transmission, parameterized it with

data from the literature, and examined how Rt varied with number cases traced, delays between

symptom onset and the start of contact tracing, the numbers of contacts per case, and different

fractions of symptomatic cases being tested and traced. We also simulated a stochastic version of

the model with variable numbers of initial infections and with and without contact tracing to

examine how reductions in Rt and initial conditions affected variation in the timing of epidemics.

Methods

We built a susceptible-exposed-infected-recovered (SEIR) compartment model of SARS-

CoV-2 that included two compartments for infected individuals that reflect the presence of

symptoms (pre-symptomatic, Ips, and symptomatic, Is; S1 Fig). For simplicity, we omitted

asymptomatically infected individuals (i.e. those that never develop any symptoms) because

meta-analyses [28,29], as well as subsequent studies [30], showed that asymptomatic individu-

als infect a much smaller fraction of their contacts than individuals that eventually develop

symptoms. We also omitted severely symptomatic individuals because they are likely to be

hospitalized and thus cause very few infections in the community. In addition, contact tracing

severely symptomatic cases is ineffective because, by the time an infection progresses to severe

symptoms 6–8 days after symptom onset [31,32], many of their contacts will already have fin-

ished most of their infectious period, and quarantining or isolating these contacts would have

little effect. We note that models that included both of these classes of infected hosts produced

results that were very similar to those described below. We also omitted more complex popula-

tion structure (e.g. household clustering) in order to develop a more transparent relationship

between rising cases, delays, and contact tracing efficacy.

The equations of the model (S1 Fig) are:

dS=dt ¼ � kbS=NðsIpsIps þ sIsIsÞ

dE=dt ¼ kbS=NðsIpsIps þ sIsIsÞ � ðqE!Ips þ f trεE Ips þ f trεE IsÞE

dIps=dt ¼ qE!IpsE � ðqIps!Is þ f trεIps Ips þ f trεIps IsÞIps
dIs=dt ¼ qIps!IsIps � ðtIs þ gIs þ f trεIs Ips þ f trεIs IsþaIsÞIs
dQ=dt ¼ f trðεE Ips þ εE IsÞEþ f trðεIps Ips þ εIps IsÞIps þ ðtIs þ f trðεIs Ips þ εIs IsÞÞIs � gQQ � aQQ

dR=dt ¼ gsIs þ gQQ

½Eq 1�

Parameter values are given in Table 1. κ is a social distancing factor between 0 and 1 that scales

the transmission rate β (and directly scales the reproductive rate Rt). σ is the relative infectious-
ness for the two I classes. q are the transition rates between classes given by the subscripts sepa-

rated by the arrow (qE!Ips is the transition rate between the E and Ips classes). τIs is the rate of
testing and removal of symptomatic infected individuals Is. The terms ftr

�ε are the removal rate

of individuals by contact tracing, with the ε values being the maximum rate of removal by contact

tracing from the first subscripted class, due to infections that were caused by the second subscript

(e.g. εE Ips is the rate that individuals in the E class are removed by contact tracing that were

infected by Ips individuals), and ftr is the fraction between 0 and 1 that are actually removed, due

to limited contact tracing capacity (see below). Q is the quarantine/isolation class, α are the dis-

ease-caused death rates, and γ is the recovery rate to the R class.

PLOS COMPUTATIONAL BIOLOGY Contact tracing efficiency, transmission heterogeneity and accelerating COVID-19 epidemics

PLOSComputational Biology | https://doi.org/10.1371/journal.pcbi.1009122 June 17, 2021 3 / 17

https://doi.org/10.1371/journal.pcbi.1009122


The fraction of contacts that can be reached and placed in quarantine each day, ftr, is simply

the contact tracing capacity (the number of contact tracers, NCT multiplied by the number of

calls they can make per day NCCTD), divided by the number of contacts that need to be reached

each day (the number of symptomatic cases detected by testing, IsτIs multiplied by the number

of close contacts per case, Ncpc):

f tr ¼ NCTNCCTD=IstIsNcpc ½Eq 2�

If tracing capacity exceeds contacts requiring tracing, all contacts are traced, so max ftr = 1.

We note that contact tracing includes both case investigation to obtain information on con-

tacts, and successfully reaching contacts and ensuring they can safely quarantine or isolate

themselves. The capacity of a given public health jurisdiction reflects whichever part of this

process is limiting.

The maximum contact tracing removal rates ε are derived from the fact that all infected

individuals in the E, Ips, and Is classes were infected by individuals in the Ips and Is classes, at

some time in the past. The maximum removal rates ε are the product of three terms:

Table 1. Parameter values and descriptions. Time units for each parameter are either time in days (d), the inverse of time (d-1) or unitless (-).

Para-

meter

Value/

range

Unit Description Reference or Derivation

κ 0–1 - Social distancing factor Adjusted to produce Rtffi 1.2–1.7; consistent with data post-lockdown; [56]

β 0.35 d-1 Transmission rate Set to give plausible pre-lockdown R0ffi 3 [56]

σps 1.81 - Relative infectiousness pre-symptomatic:mildly

symptomatic

[52]

σIs 1 - Relative infectiousness (reference level)

qE!Ips 1/3.2 d-1 1/(duration latent period) [52]

ftr Eq 2 - Fraction of infected individuals traced See Eq 2; ratio of contacts needing tracing to tracing capacity

NCT 15 - Number of contact tracers for pop of 100,000

people

https://www.naccho.org/uploads/full-width-images/Contact-Tracing-Statement-4-

16-2020.pdf

NCCTD 12 d-1 Number of contacts reached per contact tracer per

day

One contact reached each 40 min

Ncpc 5, 10, 20,

30

- Number of contacts per case [39,57]

εx y Eq 7 d-1 6 maximal contact tracing removal rates; one for

each infected class x infected by infected class y

See Eq 7; product of: fraction of symptomatic cases detected by testing; fraction of

individuals infected by Ips or Is; and fraction of infected contacts still in that

infectious class

qIps!Is 1/2.3 d-1 1/(duration pre-symptomatic period) [52]

τIs 0.1–1 d-1 Testing removal rate for Is (1/delay from onset to

testing & tracing)

Scenarios explored

γIs 1/5, d-1 Recovery rate [52]

αIs, αQ 0.0025 d-1 Disease caused death rates estimated using infection fatality ratio (IFR), adjusted for excluding asymptomatics;

IFR = 0.0066/0.8; [58–60]; αQ = qQ!R
�IFR/(1-IFR); αIs = γIs�IFR/(1-IFR)

γQ 1/14 d-1 Quarantined recovery rate Does not affect dynamics

fte Eq 3 - Fraction of symptomatic cases that are tested before

they recover

Eq 3; ratio of testing rate to sum of testing rate and recovery rate

fIps, fIs Eq 4 - Fraction of infected individuals that were infected

by pre-symptomatic or symptomatic individuals

Eq 4; relative infectiousness multiplied by infectious period divided by sum of all

infections

δIps, δIs Eq 5 d Delay from infection until being traced Eq 5; the sum of testing delays, time for tracing (0.5d) and for δIps the time between

being infected by pre-symptomatic individuals and those individuals being detected

by testing as symptomatic cases

fx y Eq 6 - Fraction of infected contacts infected by class y still

in infected class x

Eq 6; Exponentially decaying fraction of individuals that have reached a given class

x and still remain there after a given delay δ

https://doi.org/10.1371/journal.pcbi.1009122.t001
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1. the fraction of symptomatic cases Is that are tested, fte, before they recover:

f te ¼ tIs=ðtIs þ gIsÞ; ½Eq 3�

2. the fraction of individuals in a given class that were infected by pre-symptomatic, Ips, or

symptomatic, Is individuals,

f Ips ¼ ðsIps=qIps!IsÞ=½sIps=qIps!Is þ sIs=ðtIs þ gIsÞ�

f Is ¼ ½sIs=ðtIs þ gIsÞ�=½sIps=qIps!Is þ sIs=ðtIs þ gIsÞ�;
½Eq 4�

and

3. the fraction of individuals that are still in infected class x (E, Ips, or Is) by the time they are

traced (S2 Fig), fx y = e-λδ, where y is the class they were infected by (Ips or Is), λ is the aver-

age rate that individuals leave a class (or a series of host classes), and δ is the delay from
infection until being traced, which is the sum of the average time to test and trace individu-

als after symptom onset, 1/τIs, the average time to trace contacts (0.5 days, since each day a

new set of contacts arise), and, for infections caused by Ips individuals, the delay between Ips

individuals infecting the contacts, and when Ips individuals are identified by testing in the Is

class, 1/qIps!Is:

dIps ¼ 1=tIs þ 0:5þ 1=qIps!Is

dIs ¼ 1=tIs þ 0:5
½Eq 5�

The fraction remaining in each of the 3 infected classes, E, Ips, Is, that were infected by each

of the two infectious classes, Ips and Is, respectively, is thus given by six equations:

fE Ips ¼ e� ðqE!Ips�dIpsÞ

fE Is ¼ e� ðqE!Ips�dIsÞ

f Ips Ips ¼ ð1� fE IpsÞðe� ðdIps=ð1=qE!Ipsþ1=qIps!IsÞÞ

f Ips Is ¼ ð1� fE IsÞðe� ðdIs=ð1=qE!Ipsþ1=qIps!IsÞÞ

f Is Ips ¼ ð1� fE Ips� f Ips IpsÞðe� ðdIps=ð1=qE!Ipsþ1=qIps!Isþ1=gIsÞÞ

f Is Is ¼ ð1� fE Is� f Ips IsÞðe� ðdIs=ð1=qE!Ipsþ1=qIps!Isþ1=gIsÞÞ

½Eq 6�

The fraction of infections remaining in each class for variable delays in case symptom onset

to testing positive, τIs, is shown in S2 Fig. The maximum removal rates ε are simply the

product of these three quantities:

εE Ips ¼ f tef IpsfE Ips

εE Is ¼ f tef Isf E Is

εIps Ips ¼ f tef Ipsf Ips Ips

εIps Is ¼ f tef Isf Ips Is

εIs Ips ¼ f tef Ipsf Is Ips

εIs Is ¼ f tef Isf Is Is

½Eq 7�
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We parameterized the model with data from the literature (Table 1). We note that spatial or

temporal variability in contact rates (e.g. from social distancing or other non-pharmaceutical

interventions) have direct linear impacts on Rt and shift the curves in Figs 1 and 2 vertically

(S3 Fig), but do not change their shape and thus don’t affect the proportional impact of contact

tracing on Rt. Increased transmissibility of viral variants such as B.617.2, B.1.1.7 or P.1 [33,34]

would similarly shift the curves vertically without changing their shape unless the temporal

dynamics of infectiousness are substantially different [35]; at present, data on viral load

dynamics for viral variants are sparse [36]. Although the compartmental model above results

in exponential distributions for the duration that hosts remain in each host class, the combina-

tion of an exposed class E and a pre-symptomatic class Ips results in an incubation period that

is approximately lognormally distributed with mean and dispersion similar to the empirically

observed values [37]. We explored models with multiple compartments for other classes (e.g.

Is) to investigate the implications of non-exponentially distributed durations and obtained

very similar results to those described below.

Fig 1. Pathogen reproductive number, Rt, plotted against the ratio of contacts needing tracing to contact tracing capacity for variable delays (1/τIs) of 1–5 and 10
days between case symptom onset and the start of contact tracing (including getting tested and receiving result).With testing, but no contact tracing, Rt increases

35% from 1.7 to 2.3 as the delay 1/τIs increases from 1 to 5 days, which is evident in the y-axis difference between black and green curves in the upper right of the graph

where new case burdens are so high contact tracing is ineffective. The delays (1/τIs) are indicated by the small numbers on each curve in the left of the plot. Curves are

horizontal where capacity exceeds contacts needing tracing. The number of contacts per case, Ncpc, was 10.

https://doi.org/10.1371/journal.pcbi.1009122.g001
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We note that while notifying individuals that they have had contact with a case can be done

quickly (especially with using a cell-phone tracing app; [22]), successfully ensuring a contact

has their needs met (including food, medicine, clothing) to quarantine in a safe space where

they won’t infect their household members requires substantially more time (https://www.cdc.

gov/coronavirus/2019-ncov/php/notification-of-exposure.html). Thus, we assumed the

approximate duration required for a successful contact tracing call was 40 min, resulting in the

number of contacts reached by a contact tracer per day, NCCTD, of 12.

We derived an expression for the pathogen reproductive number Rt for the equations above

using the next generation matrix [38]:

Rt ¼ S=N½kb��½qE!Ips=ðqE!Ips þ f trεE Ips þ f trεE Is��

½½sIps=ðqIps!Is þ f trεIps Ips þ f trεIps IsÞ�þ

½ðsIsÞ=ðgIs þ tIs þ f trεIs Ips þ f trεIs Is þ aIsÞ��½qIps!Is=ðqIps!Is þ f trεIps Ips þ f trεIps IsÞ��

½Eq 8�

This expression can be understood as the fraction of the population that is susceptible, S/N,

multiplied by the contact rate β (which is scaled by the social distancing factor κ), multiplied

Fig 2. Pathogen reproductive number, Rt, plotted against the number of cases per contact tracer calls per day, for four different numbers of contacts per case (5,

10, 20, 30; these reflect the range of contacts before and during restrictions on social gatherings [39,45,46]). The number of contacts per case is indicated by the

small numbers on each curve in the middle of the plot. The average delay between symptom onset and contact tracing (including getting tested and receiving result),

1/τIs, is set to 5 days; as a result, the green curve is identical to the green curve in Fig 1.

https://doi.org/10.1371/journal.pcbi.1009122.g002
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by the fraction of hosts that pass through the E class to the Ips class without being removed by

contact tracing (1st row), multiplied by the sum of the infections arising from Ips (row 2) and

the infections arising from Is (row 3). The infections arising from Ips (row 2) are the product of

their infectiousness, σIps, and the infectious period of the Ips class (the inverse of the losses
from the Ips class). The infections arising from Is are the product of their infectiousness, σIs,
and the infectious period of the Is class (the inverse of the losses from the Is class) all multiplied

by the fraction of hosts in the Ips class that pass into the Is class without being contact traced.

We examined how Rt varied with different numbers of new symptomatic cases detected

(τsIs), delays of 1 to 10 days (which captures the range observed during the epidemic) between

symptom onset and the start of contact tracing (1/τIs in Eq 2), and numbers of contacts per

case (Ncpc in Eq 2) [39]. Rapid tests taken on the day of symptom onset, as used by the United

Kingdom starting in April 2021, could result in delays as short as 1 day, whereas the time from

symptom onset until test results were returned often exceeded 10 days in the US in 2020

[24,40]. In some figures we used the baseline contact tracing capacity standards suggested by

the US National Association of County and City Health Officials (15 contact tracers per

100,000 people; https://www.naccho.org/uploads/full-width-images/Contact-Tracing-

Statement-4-16-2020.pdf), but note that because the fraction of contacts traced (Eq 2) is a ratio

of four quantities, any combination of values that produce the same number of contacts per

contact tracer calls per day will produce the same value of Rt. Thus, the results are not geo-

graphically specific; all that is needed to apply the results to a new setting is the ratio of contacts

needing tracing to tracing capacity. We performed a simple sensitivity analysis of this relation-

ship by determining how much Rt varied with a ten percent increase or decrease in each

model parameter (S3 Fig).

We examined the effect of decreasing contact tracing efficiency as infections increased on

disease dynamics and Rt by simulating a deterministic version of the model in Eq 1 and plotted

Rt in real time as an epidemic swept through a population over one year. We note that SARS-

CoV-2 epidemics in most countries have consisted of multiple surges or waves [15,41] as

restrictions have limited contact rates. However, the relative relationships we show between

the reproductive number Rt and contact tracing demand relative to capacity are time-insensi-

tive and depend only on infections, contacts and contact tracing capacity, and can be scaled by

adjusting the fraction of the population that is susceptible.

Finally, we explored the implications of stochastic variability and contact tracing on infec-

tion dynamics in a scenario based on a moderate size city (100,000 people) with partly effective

non-pharmaceutical interventions/social distancing (κ = 0.6), resulting in Rt = 1.33 with mod-

erately effective testing and contact tracing (equivalent to 1/τIs = 10 days which results in

~25% of infected individuals being tested or quarantined), or Rt = 1.57 without contact tracing.

We simulated a stochastic version of the model given by Eq 1 where the number of new infec-

tions was drawn from a negative binomial distribution with mean equal to Rt and dispersion

parameter 0.16 which is intermediate between available estimates for COVID-19 [42–44]. We

examined different initial numbers (5 and 50) of latently infected individuals, E, at the start of

the epidemic to understand how stochastic variation in transmission could impact the timing

of epidemics when the number of initial infections was small or moderately large.

R code to reproduce all results is available from: https://github.com/marmkilpatrick/

Contact-Tracing-Efficiency

Results

The effectiveness of contact tracing in reducing the pathogen reproductive number, Rt, was

dependent on synergistic interactions among three factors: the number of cases being traced
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(given a fixed number of contact tracers), the delay between symptom onset and the start of

tracing, 1/τIs, (including getting tested and receiving result), and the fraction of symptomatic

cases that get traced (Figs 1 and 2).

First, the relationship between Rt and the number of cases per contact tracer calls per day

was approximately sigmoid (Figs 1 and 2); at both high and low case numbers adding or

removing contact tracers had smaller effects, whereas at intermediate case numbers relative to

capacity, shifting contact tracers had a much larger impact. When the ratio of contacts needing

tracing to capacity was high (i.e. 10 or higher), contact tracing had relatively little effect in

reducing Rt no matter how long the delay was between symptom onset and the start of tracing,

1/τIs (right side of Fig 1; this pattern is also evident in Fig 2). This is because<10% of the con-

tacts needing tracing and isolation were reached and isolated.

Contact tracers in regions with very high new case numbers relative to contact tracing

capacity (>10 on Fig 1) would have a larger reduction on Rt if they were tracing calls in loca-

tions with intermediate numbers of cases (ratios of contacts needing tracing to capacity of

1–5). In order to reverse an increase in cases (i.e. to reduce Rt<1), the analyses in Figs 1 and 2

suggest that when new case burdens are high relative to capacity, population-wide interven-

tions (e.g. social distancing or different levels of shelter-in-place or lockdown orders which

reduce contact rates, β or κ, and shift the entire curves in Figs 1 and 2 downward proportion-

ately and S3 Fig), or orders of magnitude increases in contact tracing capacity are needed until

Rt can be effectively reduced by contact tracing. Conversely, and intuitively, when there is

excess contact tracing capacity (to the left of 1 on the x-axis in Fig 1), contact tracing was as

effective as it could be in reducing Rt, but excess capacity is underutilized. Shifting a subset of

contact tracers to areas where cases and contacts needing tracing exceed capacity could sub-

stantially reduce Rt in those areas.

Second, increasing delays, 1/τIs, between symptom onset and the start of tracing had a syn-

ergistic effect on the efficacy of contact tracing (Fig 1). With a 10 day delay, contact tracing

could only reduce Rt by 20% (from 2.6 to 2.1 in Fig 1; compare the right and left heights of the

yellow curve). In contrast, if all symptomatic individuals got tested within 4 days of symptom

onset and results were returned within the next 24 hours (1/τIs = 5 days), contact tracing could

reduce Rt by 40% from 2.2 to 1.3 (Fig 1 green curve). The maximum benefit of contact tracing

(the difference between the maximum and minimum of each curve) is relatively constant for

short delays of 1-3d between symptom onset and testing (1/τIs) because most infected contacts

are still in the E class or have just entered the Ips class (S2 Fig). As these delays increase further,

more contacts have moved into the infectious classes and have transmitted the pathogen to

other hosts (S2 Fig). With a 10 day delay, 96% of contacts have left the E class, and 49% have

already reached the R class (S2 Fig). The number of contacts per case obviously also influences

the time required to trace these contacts (Fig 2). If allowable (or illegal) gathering sizes

increase, this increases the number of contacts per case, which reduces contact tracing efficacy

if contact tracing capacity is exceeded.

Thirdly, if contacts for a substantial fraction of all symptomatic cases do not get traced and

quarantined, TTIS is far less effective. Figs 1 and 2 primarily showed optimistic scenarios

where the fraction of symptomatic infections that are tested and traced is determined only by

the delay between symptom onset and testing results being returned (1/τIs) and the rate of
recovery. With a 5 day delay (1/τIs = 5) (Fig 2), this results in 50% of infections being detected

by testing in the mildly symptomatic state (Is) which is higher than some estimates of case

under-ascertainment based on seroprevalence studies, especially early in the pandemic

[47,48]. In contrast, if only half of symptomatic cases are tested (and their contacts traced), this

is similar to a 10 day delay (1/τIs = 10) between symptom onset and tracing, which has a far

lower impact in reducing Rt at both high and low case burdens (the yellow curve in Fig 1). If
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quarantining contacts is only partly effective (e.g. they stay home but infect household mem-

bers who go on to infect others) this will similarly reduce the effectiveness of contact tracing.

Limited contact tracing can also produce unexpected dynamics. Reduced contact tracing

efficiency with increasing cases results in a transient accelerating epidemic where Rt actually

increases over time leading to a much larger epidemic size and an accelerated epidemic (Fig

3E and 3F). A decrease in contact tracing efficiency as cases rise can, initially, outweigh the

depletion of susceptible individuals which leads to a spike in Rt over time, until depletion of

susceptibles overwhelms this effect (compare rightmost panels, Fig 3E and 3F, which have lim-

ited contact tracing, to leftmost panels, Fig 3A and 3B, where social distancing reduces Rt to

the same initial value as contact tracing). With effectively unlimited contact tracing this phe-

nomenon does not arise (compare middle panels, Fig 3C and 3D, which show effectively

unlimited contact tracing, to rightmost panels Fig 3E and 3F).

Finally, the impact of contact tracing in reducing the pathogen reproductive number Rt has

two consequences on the temporal timing and establishment of epidemics. First, as is well

known, reducing Rt delays and reduces the peak of the epidemic (Fig 4 top vs bottom panels).

Second, and less appreciated during the current pandemic, stochastic variation in Rt can lead

Fig 3. Reduced contact tracing efficiency with increasing cases leads to accelerating epidemics. Top panels (A, B, C) show the number of susceptible, infected

(latent, pre-symptomatic and symptomatic combined), and recovered individuals. Bottom panels (D, E, F) show the reproductive number, Rt, over time. Left most

panels (A, D) show dynamics with no contact tracing but social distancing (κ = 0.58) set to give same initial R0 (1.35) as with contact tracing. Middle panels (B, E)

show dynamics with effectively unlimited contact tracing (1500 contact tracers making 12 calls/day; 10 contacts per case) but no social distancing (κ = 1), with an

identical value of R0 as in panels A, D. Right panels (C, F) show dynamics with the same parameter values as (B, E) except with limited contact tracing (15 contact

tracers). R0 is the same value as in panels D and E (R0 = 1.35), but Rt increases as cases increase and contact tracing becomes inefficient, which overwhelms the

decrease in the fraction of the population that is susceptible. In all panels, the delay from symptom onset to receiving test results, 1/τIs, is 5d. All populations start with
100,000 individuals. Note the identical epidemic sizes (final fraction susceptible 0.53) for panels A (social distancing) and B (effectively unlimited contact tracing), but

much larger epidemic size for limited contact tracing in panel C (final fraction susceptible 0.14).

https://doi.org/10.1371/journal.pcbi.1009122.g003
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to very different timing of epidemics if the initial number of infected individuals is low (Fig 4A

and 4C; epidemic peaks can vary by 6 months by chance), and variation is larger if Rt is lower

(Fig 4A vs Fig 4C and Fig 4B vs Fig 4D). Finally, heterogeneity in individual transmission can

result in local fadeout of the pathogen and fadeout is more likely when contact tracing reduces

Rt closer to 1, and if the number of initially infected individuals is lower (compare the Fraction

of epidemics established in panels A vs B-D).

Discussion

The two main strategies that have been used to control SARS-CoV-2 transmission before the

development of vaccines were TTIS and society-wide social distancing interventions (includ-

ing closing businesses, banning gatherings, wearing masks, etc.) [12]. Closing businesses has

had devastating impacts on employment and economies, as well as cascading impacts on soci-

ety. TTIS has far smaller economic and societal costs, but its efficacy in controlling epidemics

is not fully understood, and some studies suggest that it is insufficient to keep Rt below 1 in

Fig 4. Variability in the timing and outcome of epidemics due to stochastic variation in individual transmission. Lines show number of latently infected

individuals in the E class over time for 1 year with moderate social distancing that reduces contact rates by 40% (κ = 0.6). Grey lines show runs from a single stochastic

simulation and the black line shows the deterministic outcome. The fraction of epidemics that establish is the fraction of simulations where the maximum number of

people infected at any time exceeds the starting number infected. The four scenarios shown include different starting numbers of latently infected individuals on day 0,

E0 (A, C: 5; B, D: 50), and with (A, B) or without (C, D) contact tracing (CT) which lowered R0 from 1.57 to 1.33. The delay from symptom onset to testing and tracing

1/τIs was 10d. The modeled population of 100,000 people had 15 tracers making 12 calls/day, and each case had an average of 10 contacts which is intermediate

between pre-lockdown and lockdown conditions; this scenario is the same as the yellow line in Fig 1.

https://doi.org/10.1371/journal.pcbi.1009122.g004
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many settings, especially without widespread testing and digital contact tracing [13,14,22,49].

We examined how the efficacy of contact tracing decreases with increasing case burden. As

case burdens increased relative to contact tracing capacity, contact tracing reached a small

fraction of contacts and had little effect on Rt, leading to accelerating epidemics. Conversely,

when case numbers were very low relative to contact tracing capacity, there was excess capacity

and, all else being equal, contact tracers could be used more effectively in higher case burden

settings with negligible impacts on local transmission. We note that the exact number of con-

tact tracers needed to reduce Rt depends on the number of contacts per case and the number

of calls each tracer can make each day (Fig 2). However, this key quantity appears as a ratio of

case-contacts per contact tracer calls per day. Thus, each contact tracing team (e.g. a county or

local jurisdiction) can use local estimates of contacts per case and the number of calls each

tracer can make each day to determine where they are on the modelled relationships (Figs 1

and 2).

Allocating contact tracers among populations to most effectively reduce total infections is a

non-trivial problem. A smaller reduction in Rt (e.g. 10%) in one population can prevent more

infections (especially over multiple generations of transmission) than a larger (e.g. 20%) reduc-

tion in Rt in a second population if Rt in the second location is lower (especially when Rt>1 in

the first population), or when there is a larger number of infected individuals in the first popu-

lation. Thus, transferring contact tracers from a region with a high case burden relative to con-

tact tracing capacity to maximize their efficacy in reducing Rt should only be done if other

measures (e.g. social distancing) can be put into place to reduce Rt where case numbers are

high. More generally, allocation of contact tracers to maximize the number of cases prevented

given an array of tools would require a complex dynamic analysis beyond that examined here.

However, the results shown here show the quantitative impact that shifts in contact tracers can

have in reducing Rt, which can be critical, especially if the goal is to use contact tracing to

reduce Rt<1 in a given population.

We also found that the efficacy of contact tracing itself, regardless of capacity, was strongly

influenced by delays between the onset of symptoms and the beginning of tracing, as well as

the fraction of symptomatic infections that were traced. Unless delays were short and the frac-

tion of symptomatic cases that were traced was high, contact tracing had limited effects in

reducing Rt. This finding of synergistic effects between testing delays and contact tracing effi-

ciency parallels results from other studies demonstrating the large effects of delays in reducing

efficacy of isolating infections by testing alone [50]. We note that in the model considered

here, only symptomatic individuals were removed by testing (pre-symptomatic individuals

were not detected by testing) which leads to a smaller impact of testing on Rt than is possible if

all individuals are tested [40]. Our results emphasize the importance of encouraging people to

get tested as soon as possible after mild symptom onset, and having sufficient testing capacity

to return their results quickly [40]. Similarly, the fraction of symptomatic infections that get

tested and traced is poorly known, but if the ratio of infections to cases from seroprevalence

studies in some locations is approximately correct (e.g. 10:1 to 4:1; [47,48]), then contact trac-

ing will have limited effects in reducing transmission.

Allocation of contact tracing resources can be most efficiently deployed in two ways. First,

contact tracing is much more effective when infections are detected soon after symptom onset.

One should prioritize these individual cases for tracing since their contacts are likely to be ear-

lier in their infections and quarantining/isolating them will cut off most or all of their infec-

tious period (S2 Fig). If one knows the date of contact between the case and the contact, one

could also prioritize tracing more recent contacts and those that had contact with the case dur-

ing the case’s days of peak infectiousness just before and after symptom onset [51,52]. Second,

if one is attempting to limit transmission in multiple regions (e.g. counties within a state) one

PLOS COMPUTATIONAL BIOLOGY Contact tracing efficiency, transmission heterogeneity and accelerating COVID-19 epidemics

PLOSComputational Biology | https://doi.org/10.1371/journal.pcbi.1009122 June 17, 2021 12 / 17

https://doi.org/10.1371/journal.pcbi.1009122


could deploy contact tracers to counties where they will be able to have the most impact: from

places with excess capacity to those with intermediate numbers of cases per contact tracer calls

per day. Conversely, if contact tracers cannot quarantine the contacts of cases within 10–12

days of the case’s symptom onset, they will be unlikely to effectively reduce transmission from

those contacts.

Our results also demonstrate two phenomena observed in COVID-19 epidemics. First, epi-

demic dynamics sometimes differ enormously between places that seem otherwise similar

which is well understood by mathematical modelers [15,53–55], but sometimes forgotten in

considering spatial variation in epidemic outcomes. Spatial variation in disease dynamics may

be due to differences in social behavior or contact patterns, but we showed that stochastic

chance may also play a large role in shifting the timing of epidemics by up to six months. The

impact of stochasticity is largest when the initial number of cases is low and Rt is close to 1 (i.e.

when lockdowns are first lifted), because this results in populations spending longer periods of

time with few cases where stochastic variation is most important. Second, staged business re-

openings and the emergence of new virus variants have sometimes led to accelerating or run-

away epidemics. These may be due to sudden changes in social behavior, but we showed that

accelerating epidemics can also result from decreases in contact tracing efficiency [26].

Increasing contact tracing capacity could limit this epidemic acceleration as cases increase,

which suggests that training a reserve capacity of tracers and being able to deploy a mobile

tracing force could help limit runaway epidemics.

More broadly, contact tracing could play an important role in limiting transmission of

SARS-CoV-2 and other pathogens [49]. However, we found that its efficacy depends on partic-

ipation in seeking testing immediately following symptom onset, quick return of test results,

and sufficient contact tracing capacity if case numbers surge. Shortcomings in each of these

factors greatly limit its efficacy, especially as cases increase, which could necessitate much

more damaging measures to control transmission, including widespread business and school

closures. Investments in public health, including testing, contact tracing, and public outreach

to encourage health seeking when symptomatic, is likely a much more cost-effective approach

to control COVID-19, and other diseases.

Supporting information

S1 Fig. Compartmental model of SARS-CoV-2. See text for equations and Table 1 for param-

eter values. Boxes represent Susceptible (S), Exposed (E), Infected (I), recovered (R), and

Quarantined/Isolated (Q) classes. There are two compartments for infected individuals that

reflect the presence of symptoms (pre-symptomatic, Ips, and symptomatic, Is). κ is a social dis-

tancing factor between 0 and 1 that modifies the contact rate β, σ are infectiousness for each of
the Ips and Is classes, q are transition rates between classes given by the subscripts separated by

the arrow (e.g. qE!ps is the transition rate between the E and Ips classes), ε are the rates of

removal by contact tracing from the E or I classes to the quarantined class Q based on which

class infected those individuals (e.g. εE Ips is the contact tracing removal rate of E individuals

that were infected by Ips individuals), τIs is the removal rate by testing of symptomatic infected

individuals, α is the disease-caused death rate, and γ are the recovery rates to the R class. The

dashed lines indicate that both classes of infected individuals contribute to transmission.

(TIF)

S2 Fig. The impact of delays between individuals becoming infected and being traced and

removed on the host class that that infected individual will be in before being removed.

For example, if the delay between infection and quarantine/isolation is 6 days, then 15% of

infected individuals will still be in the latently infected class, E, 28% in the pre-symptomatically
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infected class, Ips, 33% in the symptomatically infected class, Is, and 24% will have already

recovered, R.

(TIF)

S3 Fig. Sensitivity analysis. The plot shows how much Rt changes from a 10% increase (red)

or 10% decrease (blue) in that model parameter relative to values in Table 1 (with τIs = 0.2 and

κ = 1). Rt scales linearly with β and κ, whereas transition parameters qE!Ips, qIps!Is, the testing

rate τIs, and pre-symptomatic infectiousness σIps have approximately 50–75% as large an effect

as β or κ. The recovery rate, γIs, and symptomatic infectiousness σIs are less influential, and the
death rate αIs has very little effect on Rt.

(TIF)
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