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Summary

The bats skin microbiota plays an important role in
reducing pathogen infection, including the deadly
fungal pathogen Pseudogymnoascus destructans, the
causative agent of white-nose syndrome. However,
the dynamic of skin bacterial communities response
to environmental perturbations remains poorly
described. We characterized skin bacterial commu-
nity over time and space in Rhinolophus
ferrumequinum, a species with high resistance to the
infection with P. destructans. We collected environ-
mental covariate data to determine what factors
influenced changes in community structure. We
observed significant temporal and spatial shifts in
the skin bacterial community, which was mainly
associated with variation in operational taxonomic
units. The skin bacterial community differed by the
environmental microbial reservoirs and was most
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influenced by host body condition, bat roosting tem-
perature and geographic distance between sites, but
was not influenced by pathogen infection.
Furthermore, the skin microbiota was enriched in
particular taxa with antifungal abilities, such as
Enterococcus, Burkholderia, Flavobacterium, Pseudo-
monas, Corynebacterium and Rhodococcus. And
specific strains of Pseudomonas, Corynebacterium
and Rhodococcus even inhibited P. destructans
growth. Our findings provide new insights in charac-
terizing the variation in bacterial communities can
inform us about the processes of driving community
assembly and predict the host’s ability to resist or
survive pathogen infection.

Introduction

Microbial communities can form a symbiotic or commen-
sal relationship with their hosts and play an essential role
in protection from invading pathogens (Round and
Mazmanian, 2009; Grice and Segre, 2011; Thaiss
et al., 2016). The host-associated microbial communities
can be influenced by a myriad of factors including envi-
ronmental conditions (Pantos et al., 2015), environmental
microbial reservoirs (Loudon et al., 2014), host body con-
dition (Hernandez-Gémez et al., 2018) and pathogen
infection (Byrd et al., 2018), which can vary over time
and among populations. Although the stability of micro-
bial communities to various stressors has been docu-
mented (Azarbad et al., 2016; Oh et al., 2016), few
studies have explored the influence of multiple abiotic
and biotic factors on microbial community structure and
composition.

The recent introduction of the fungus Pseudo-
gymnoascus destructans, which causes white-nose syn-
drome (WNS), to North America has resulted in
devastating impacts to bat populations (Lorch
et al., 2011; Langwig et al., 2012; Langwig et al., 2016;
Drees et al., 2017). During pathogen infection, host-
associated bacterial communities could be an important
factor in WNS disease dynamics, as they can provide a
benefit to their host against pathogen infection and have
been previously shown to increase bat survival both
in vitro (Hoyt et al., 2015; Micalizzi et al., 2017) and in
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situ (Hoyt et al., 2019). Limited data on the skin micro-
biota in relation to WNS have been reported (Lemieux-
Labonté et al., 2017; Ange-Stark et al., 2019; Grisnik
et al., 2020), particularly for bats with high resistance to
P. destructans in the endemic region, such as in Asia.
Considering that bat skin bacterial communities are vul-
nerable to external stressors, especially during hiberna-
tion when skin may be in direct contact with local
environment for long periods of time (Hoyt et al., 2018),
assessing temporal and spatial dynamics of host-
associated microbial communities is crucial for under-
standing and forecasting their response to environment
change and pathogen infection, and ultimately affecting
their defensive function against pathogens. For instance,
amphibian skin microbiota exhibited the temporal and
spatial changes primarily caused by phylogenetic con-
straints, microbiota reservoirs, environmental temperature
or fungal infection, which may eventually affect host
health (e.g. Walke and Belden, 2016; Jiménez and
Sommer, 2017; Rebollar et al., 2020). However, the com-
plex interactions of how host-associated microbiota are
influenced by the environment, pathogen infection, and in
turn, their influence on bat host resistance over time and
space remains an outstanding question.

Here we examine the variation in skin bacterial com-
munities and what factors most influenced changes in
community structure from Rhinolophus ferrumequinum
over time and among populations in these communities
to an invading fungal pathogen. This is a widespread bat
species in China that has been shown to have low fungal
loads over winter (Hoyt et al., 2016a; Hoyt et al., 2020).
We hypothesized that bat skin bacterial assemblage
structure would exhibit both temporal and spatial variabil-
ity over the hibernation period, and environmental bacte-
rial communities and external conditions, such as
temperature, geographic distance among populations,
body condition and infection would influence the
observed variation. In order to address our hypothesis,
we sampled bacterial communities from bats skin and
collected environmental covariate data over time and
space to characterize the community structure of bat skin
and environment.

Results
P. destructans infection status of R. ferrumequinum

Pseudogymnoascus destructans was detected in all but
one sampling time point, with bats not testing positive for
the fungus at the start of the hibernation season,
December. From January to April, the quantity of P. des-
tructans (logio ng of DNA) was not significantly different
among sampling points (average —5.53, —5.87 and
—4.93 respectively; Kruskal-Wallis test, P > 0.05;
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Fig. S1a). We also detected the presence of P. des-
tructans at all sites during late hibernation. The average
log-transformed fungal loads were —3.60, —2.08, —4.85,
—3.73 and —4.93 for HN, BJ, JL2, LN and JL1 respec-
tively (Fig. S1b).

Variation of skin bacteria within and among populations

A total of 3408 and 4354 OTUs were identified over four
sampling time points and across five sites respectively.
Across all samples, the dominant taxa were from four
main phyla: Firmicutes, Proteobacteria, Actinobacteria
and Bacteroidetes (Fig. S2).

Pairwise comparisons of Shannon diversity between four
sampling time points showed no significant differences,
except for one comparison between December and January
that was significantly different (Wilcox: P,y < 0.001;
Fig. 1A). The other two alpha diversity indices (Observed
OTUs and PD) did not differ significantly over time
(Kruskal-Wallis; Observed OTUs, 42 = 6.68, P = 0.08; PD,
% =7.01, P = 0.07; Figs S3a and 3B). Similar results were
obtained for Observed OTUs and PD across different sites
(Figs S3c and 3D). However, we found significant variation
in Shannon diversity between some of the sites (Fig. 1B),
that is, LN harboured higher diversity than HN (Wilcox:
Pagj < 0.01) and JL1 (Wilcox: P,g < 0.001).

Skin bacterial communities varied over time and
among different populations of R. ferrumequinum. Non-
metric multidimensional scaling (NMDS) revealed a clear
temporal pattern in which samples were largely par-
titioned by sampling time points, suggesting community
structure varied across all time points, except for between
January and February (NMDS with stress = 0.14; PER-
MANOVA, Pseudo-Fs ¢, = 13.08, P = 0.001, R? = 0.40;
Fig. 1C). Consistently, hierarchical clustering also rev-
ealed that the samples from January and February clus-
tered together suggesting bats have similar community
structure over this period (Fig. S4). Furthermore, PER-
MANOVA also indicated that variability in skin bacterial
communities was also observed among sites (NMDS with
stress = 0.20; PERMANOVA, Pseudo-Fse3 = 5.09,
P =0.001, R? = 0.26; Fig. 1D). The dispersion values
showed significant differences in the distance to the cen-
troid over time, which was driven by the differences
between December with the least variation and each
other sampling time point (betadisper: F3s59 = 16.19,
P<0.001; Fig. S5). However, there was no significant dif-
ference in the dispersion values across sites (betadisper:
F459 =1.70, P =0.17). In addition, comparison of indi-
viduals that tested either positive or negative for P. des-
fructans at a given sampling time point or site showed
that the presence of P. destructans on bats did not alter
the skin bacterial community structure (Time: PER-
MANOVA, Pseudo-F;¢ =1.78, P =0.95, R®> =0.03;
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Fig. 1. Temporal and spatial changes of skin bacterial community in R. ferrumequinum. Shannon diversity of bat skin and corresponding environ-
mental samples over time (A) and among sites (B). Non-metric multidimensional scaling (NMDS) plots of Beta diversity (Bray—Curtis dissimilarity)
among four time points (C), and five sites (D), as well as between time and space (E). Ellipses (C, D and E) represent confidence intervals
(Cl) of 95%. (F) Sample localities of R. ferrumequinum population used in this study.

Space: PERMANOVA, Pseudo-F;g3 = 1.15, P = 0.56,
R? =0.02). Contrary to our expectations, male and
female bats at each sampling time point or site showed
similar bacterial communities (Time: PERMANOVA,
Pseudo-Fy e, = 1.44, P = 0.094, R® = 0.02; Space: PER-
MANOVA, Pseudo-Fy g3 = 1.03, P = 0.15, R® = 0.02).
After controlling for sampling time points using partial
regression analysis, we found that BMI was a significant
predictor of Observed OTUs (F(159) = 7.791, P = 0.007,

Fig. 2A) and PD (F(1,59) = 7.556, P = 0.008, Fig. 2B) over
four sampling time points, and as bats BMI decreased,
observed OTUs and PD also decreased. However, the
correlation between BMI and Shannon diversity was not
significant (F(1 59y =2.912, P =0.093, Fig. S6). Those
results also showed that a negative but no significant
relationship between alpha diversity and bat roosting
temperature (all P > 0.05, Figs 2 and S6). Contrary to our
expectations, fungal loads had no significant effect on the
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Fig. 2. Factors that influence structure and composition of bacterial communities on R. ferrumequinum. Black lines represent the relationship
between BMI and alpha diversity is significant. Dashed lines represent the relationship between factors (BMI and bat roosting temperature) and
alpha diversity is marginal. Gray ribbons show 95% confidence intervals (Cl). (A) and (B) Relationship between alpha diversity of host skin and
bat roosting temperature and body mass index in four time points. (C) Effect of geographic distance (on a logo scale) and bat roosting tempera-
ture on Bray—Curtis dissimilarity among individual pairs of bats based on generalized linear mixed model with a beta distribution and a logit link.
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change of any alpha diversity index (all P > 0.05). Spatial
hierarchical clustering showed that samples with closer
geographic distances had more similar community struc-
tures with the exception of one site (JL1; Fig. S7). A sig-
nificant positive correlation was also examined between
geographic distance and Bray—Curtis dissimilarity among
individual pairs of bats (P < 0.001; Fig. 2C), with the
closer the geographic distance, the more similar the bac-
terial communities. A positive trend was observed
between bat roosting temperature and Bray—Curtis dis-
similarity (P < 0.001; Fig. 2C).

Beta diversity was further partitioned into turnover and
nestedness components. Our results revealed that turn-
over component was disproportionately greater than the
nestedness component (Fig. 3A and B), which indicates
turnover component contributes the most to overall beta
diversity, implying species replacement rather than
nestedness driving variation in community structure over

time and space. In addition, 10 indicator OTUs (spanning
four phylum and six classes, Fig. 3C) identified were
associated with temporal difference in bacterial commu-
nity structure and 10 indicator OTUs (spanning four phy-
lum and five classes, Fig. 3D) were associated with
spatial difference. For example, significant indicators in
December were Enterococcus and Bacillus, but in April
indicator taxa were Myroides, Corynebacterium, Klebsi-
ella and Pseudomonas.

Relationship between environmental bacteria and skin
bacterial communities

We compared the Shannon diversity of bat skin and
corresponding environmental samples. Bat skin had a
lower Shannon diversity compared to environment for
each time point (Mann-Whitney U test, all P < 0.05,
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Fig. 1A). While across five sites, bats and their roosting
environments showed similar Shannon diversity, except
for JL1 (Mann—-Whitney U test, all P > 0.05, Fig. 1B).
When comparing beta diversity values across all bat skin
and environment assemblages together, significant tem-
poral and spatial differences were examined between bat
skin and environmental groups based on NMDS of Bray—
Cutis dissimilarity (Time: NMDS with stress = 0.17, PER-
MANOVA, Pseudo-Fy g, = 14.09, P = 0.001, R® = 0.15;
Space: NMDS with stress = 0.18, PERMANOVA,
Pseudo-F4 g3 = 8.40, P = 0.001, R? = 0.09; Fig. 4A and
B). In addition, there was no difference between the dis-
persion of variances between bat skin and environmental
groups (betadisper; Time: F; g1 = 0.26, P = 0.60; Space:
Figo=0.11, P = 0.74).

The linear discriminant analysis effect size (LEfse) anal-
ysis was used to determine the bacterial OTUs that could
explain the difference between these two groups. A total
of 522 OTUs were identified to distinguish bat skin and
environment classes using the time series data [linear dis-
criminant analysis (LDA) scores > 2, P < 0.05, Table S1].
Among those OTUs with higher relative abundances,
21 and 28 taxa exhibited greater relative abundance in the
environment and on bat skin respectively (LDA scores >
4, Table S1; Fig. 4C). We also identified 411 OTUs driving
the differences between environmental and bat skin micro-
biota using the data collected among sites (LDA scores >
2, P < 0.05, Table S2). Twenty-seven taxa associated with
bat skin exhibited greater relative abundance compared to
the environmental samples, while only nine taxa were
more abundant in the environment than on bat skin (LDA
scores > 4, Table S2; Fig. 4D).

When examining across all OTUs, we found a positive
correlation between bats and their associated environ-
mental sample regardless of time point (Dec.: z = 0.35,
P <0.001; Jan.: = =0.22, P <0.001; Feb.: = =0.17,
P <0.001; Apr.: = = 0.34, P <0.001; Fig. 5A). However,
when OTUs with relative abundance greater than 0.1%
were compared, the relationship between bat skin and
environmental samples became significantly negatively
correlated (Dec.: = = —0.28, P < 0.001; Jan.: = = —0.17,
P =0.031; Feb.: z = —0.29, P < 0.001; Apr.: = = —0.32,
P <0.001; Fig. 5A). Across sites including HN, BJ and
JL2, the significant negative correlations between bat
skin and environmental samples were also detected,
except for LN (HN: z = —0.27, P < 0.001; BJ: © = —0.35,
P <0.001; JL2: ¢ = —0.15, P <0.01; LN: = = —0.05,
P = 0.36; Fig. 5B).

Discussion

Host-associated bacterial communities play an essential
role in protecting hosts from pathogens. In this study, we
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examined the temporal and spatial dynamics of the skin
microbiota of R. ferrumequinum and found that host body
condition, bat roosting temperature and geographic dis-
tance affected the bacterial community assembly. The
enrichment of potentially beneficial bacteria in the skin
microbiota may contribute to high resistance of R.
ferrumequinum to P. destructans infection.

We found substantial variation in skin bacterial commu-
nities over time, which was primarily caused by microbial
species replacement in occurrence (Fig. 3A). After con-
trolling for time using partial regression analysis, body
condition accounted for the most variation in alpha diver-
sity (Fig. 2), and this observed change may be the adap-
tation or adjustment of the skin bacterial community as
conditions change over the winter. During winter hiberna-
tion, bats consume stored fat for energy, which is
reflected as a change in body condition. Higher body
mass index (BMI) indicates that the host has a better
physical condition, which could impact immune response
and the ability to cope with environmental stress, which
in return influences the ability of bacteria to colonize the
skin (Keiser et al., 2016; Hernandez-Gémez et al., 2018).
This interaction needs to be further characterized experi-
mentally to understand how BMI mediates bacterial
colonization.

Our results showed that the bat skin microbiota was
not associated with sex, possibly due to the tendency for
hibernating bats to cluster in groups, which in turn reduce
variation in skin microbiota among individuals. Addition-
ally, population turnover might affect the observed tempo-
ral variation of skin bacterial communities since bat
individuals were not recaptured and sampled in this
study. Actually, tracking individual bats over time was dif-
ficult given the large population size. Although this may
introduce additional variation, a representative picture of
the potential temporal variation in bat skin microbiota is
dependable by averaging the data collected by
sampling date.

We also found that the skin bacterial communities var-
ied among populations, and that local conditions like bat
roosting temperature and geographic distance among
sites influenced patterns of bacterial occurrence and dis-
tribution. During hibernation, bats lower their body tem-
peratures to near ambient. The change in thermal
condition over winter likely has a strong regulating effect
on bacteria community structure. Environmental condi-
tions also vary among hibernacula (subterranean sites
where bats hibernate during the winter) which influences
the community composition, similar to what has been
observed in other systems, where environmental temper-
atures altered skin and gut microbiota (Kohl and
Yahn, 2016; Robak and Richards-Zawacki, 2018).
Results of the UPGMA and generalized linear models
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Fig. 5. Relationship between host and corresponding environmental bacteria through time and space. Black dots represent all OTUs, red dots
show the OTUs with a relative abundance greater than 0.1%. The right side of the figure shows the correlation coefficient and P values. Relative
abundance of OTUs of bat skin and corresponding environmental samples at each time point (A) and each site (B).

showed that bacterial communities were more similar
between sites that were closer together (Figs 2C and
S7), known as the distance-decay relationship by which
communities similarity between any two locations
decreases as the geographic distance between them
increases (Ren et al., 2017). However, other abiotic fac-
tors, such as elevation and habitat, could be expected to

be responsible for the microbial variation observed, which
could be analyzed in future studies. In general, we found
that environmental heterogeneity and dispersal limitation
are major factors in determining the spatial variation of
skin bacterial communities.

Bacterial community structure has been shown to be
influenced by pathogen presence (Jani and Briggs, 2014;
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Lemieux-Labonté et al., 2017; Allender et al., 2018;
Ange-Stark et al., 2019). However, for this species that
shows a high degree of resistance to pathogen infection,
we found no difference in the community diversity and
structure between infected and uninfected individuals
either among or within populations. However, regardless
of time or space, indicator analyses revealed that some
genera (i.e. Pseudomonas, Rhodococcus, Enterococ-
cus, Bacillus, Corynebacterium) were significantly more
abundant in bat skin microbiota (Fig. 3C and D). Those
genera have previously been identified on bats and are
known for inhibiting the growth of P. destructans in vitro
(Cornelison et al., 2014; Micalizzi et al., 2017; Grisnik
et al., 2020), and one strain of Pseudomonas fluorescens
can reduce disease impacts on bat populations (Hoyt
et al., 2019). Moreover, several other genera, reported as
antifungal agents in other systems (i.e. Burkholderia,
Brackiella, Flavobacterium) (Woodhams et al., 2015),
were also identified as the most abundant OTUs of bat
skin microbiota. One possible explanation for the high
abundance of bacteria with anti-fungal abilities is they
may be more suitable for resisting the invasion and
growth of P. destructans during hibernation. Bats in Asia
have likely coevolved with P. destructans for thousands
of years compared to species that are just being exposed
to this pathogen for the first time in North America, which
may contributes to these differences.

Studies examining influences on host-associated
microbiota have shown that shifts in microbes found in
the environment can influence host-associated micro-
biota (Crump and Hobbie, 2005; Shade et al., 2013),
while others have found species or population-specific
bacterial communities that are influenced very little by the
environment (McKenzie et al., 2012). In this study, host
skin microbiota showed significant lower alpha diversity
than corresponding environment samples at different
sampling time points (Fig. 1A), suggesting the microbial
difference between host and environment. However,
except for one site, no alpha diversity difference between
bat skin and the environment was observed at other sites
during late hibernation (Fig. 1B), which may be due to dif-
ferent types of environmental conditions affecting the
microbial difference among sampling sites. For instance,
some organically poor environments (e.g. bare rock sur-
faces where bats roost) may simply reflect bacterial com-
munities of nearby hosts (Kueneman et al., 2014; Bates
et al., 2018).

In addition, we also found that bacterial community
structure differed from the community present in the envi-
ronment. Both the NMDS and hierarchical clustering
based on Bray-Curtis dissimilarity revealed that the
microbial communities of bat skin and the environment
clustered separately with little overlap (Fig. 4 and Figs S4
and S7), indicating that these communities are distinct. In

addition, LEfse revealed that only 15% of OTUs found in
the temporal analysis, and 9% of OTUs found in the spa-
tial analysis were descriptive of the difference between
host-associated and environmental assemblages,
suggesting skin communities on bats host shared the
majority of their OTUs with their corresponding environ-
mental. However, the host skin bacterial communities
were enriched in bacterial taxa that were low abundances
in the environment (red points in Fig. 5), in spite of a sig-
nificant positive relationship examined for the majority of
bacterial taxa between host and environment (black
points in Fig. 5). This pattern was consistent with other
studies, such as in amphibian, sponge (Webster
et al., 2010; Walke et al., 2014; Mariel et al., 2017),
suggesting the assembly of skin bacteria is not a com-
plete reflection of the microbiota in the environment.
Overall, there is still some degree of interplay between
the host and environmental assemblages of bacteria con-
sidering the direct exposure of host to the local
environment.

In summary, we demonstrated that the skin bacterial
community of R. ferrumequinum exhibited temporal and
spatial variation during hibernation and was different from
environmental microbial reservoirs. More broadly, our
results suggest enrichment of multiple taxa with potential
antifungal activity may continue resistance to the fungal
pathogen over the infectious period. Future research
should consider using metagenomics or
metatranscriptomics to approaches test what function
bacterial communities play in resistance to pathogen
invasion. A promising strategy to reduce the impacts of
P. destructans is the use of probiotic strategies. Consid-
ering the dynamics of skin microbiota can help facilitate
the development of probiotic bioaugmentation to provide
protection for threatened bat species.

Experimental procedures
Field sampling

We collected epidermal swabs from adult R. fer-
rumequinum with the sealed epiphyseal gaps and envi-
ronmental swabs from bat roosting locations. Samples
were collected at four time points, at approximately
40 days intervals from December 2017 to April 2018 at a
cave (JL1) in the Jilin Province, and across four addi-
tional populations from Henan Province (HN), Jilin Prov-
ince (JL2), Liaoning Province (LN) and Beijing (BJ) in
March and April 2018. Samples were conducted at those
five hibernation sites with a latitudinal gradient and differ-
ent roosting temperatures for bats where P. destructans
had been previously found (Hoyt et al., 2020). A total of
63 individual bats were sampled over time from the same
population as a temporal dataset and 64 individuals
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sampled from different populations as a spatial dataset.
In addition, we collected 35 samples from the environ-
ment where bats were roosting. Sample sizes for each
sampling time point and population were shown in
Table 1.

Each individual R. ferrumequinum was removed from
the roost with a pair of sterile latex gloves and swabbed
using sterile polyester swabs. Two types of epidermal
swabs were collected from each individual following the
standard protocols to test for P. destructans (Langwig
et al., 2014; Hoyt et al., 2016b) and collect skin bacterial
communities (Kooser et al., 2015). For P. destructans
detection, we sampled bats by dipping sterile polyester
swabs in sterile water and then swabbed five times along
the forearm and muzzle of each bat. We used a similar
method to swab the opposite skin for bacterial community
composition but swabbed the entire propatagium and
plagiopatagium. Swab tips were stored in individually
labelled sterile tubes containing 500 pl of salt preserva-
tion buffer (RNAlater®, Tiangen, China) and stored at
—20°C within 24 h of sampling and held until DNA extrac-
tion. In addition, samples of local environment were also
collected by swabbing cave walls under each individual
hibernating bat for five times along the walls in linear stro-
kes (approx. 5 cm) and preserved in the same way. Tem-
perature was recorded by using a Fluke 62 MAX IR
Thermometer (Fluke, Everett, WA, USA) taken directly
next to each sampled bat, which represents bat roosting
temperatures (Hoyt et al., 2016a). Swabbing was con-
ducted prior to bats arousing from torpor while their body
was still near ambient temperature. After swabbing, we
measured and recorded each individual's weight and
forearm length to calculate the BMI (BMI = weight/fore-
arm length). All bats were released immediately after
sampling. The sampling was performed by the same per-
son in order to prevent individual variation in swabbing
technique. All the studies have been approved by the
Laboratory Animal Welfare and Ethics Committee of Jilin
Agricultural University.
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Pseudogymnoascus destructans test

Fungal DNA was extracted from swabs with a modified
DNeasy blood and tissue extraction kits (Qiagen, Hilden,
Germany). The protocol was modified for fungal extrac-
tions to include lyticase during the lysis step in addition to
the proteinase K and buffer ATL (Shuey et al., 2014; Hoyt
et al., 2016a). Per DNA extraction plate contained eight
negative controls (blanks). To determine each individual’s
infection intensity, we used a real-time quantitative PCR
for P. destructans diagnosis developed by Muller
et al. (2013). All samples were run in duplicate with the
positive control derived from the isolate P. destructans
ATCC MYA-4855. To calculate fungal loads, in nano-
grams, serial dilutions of a quantified standard of the pos-
iive control (2ngpl~") were used to generate the
equation: Fungal load = 107[(Ct — 22.04942)/—3.34789]
(Langwig et al., 2014). All negative controls had no P.
destructans detection.

Bacterial DNA extraction and sequencing

Whole genomic DNA was extracted from swabs using
the E.Z.N.A™ Mag-Bind Soil DNA Kit (OMEGA Bio-Tek,
Norcross, GA, USA) according to the manufacturer’s pro-
tocol. The samples were transferred to centrifuge tubes
containing Buffer SLX Mlus and vortexed at maximum
speed to lyse samples. Then we obtained the superna-
tant through multiple steps of incubation and centrifuga-
tion. Finally, tubes were placed on magnetic separation
devices suitable to magnetize the Magsi particles and
added buffers into tubes according to instructions. After
DNA extraction was completed, the first PCR step was
performed to amplify the V3-V4 region of the bacteria
16S ribosomal RNA gene with the universal primers
341F and 805R (Eiler et al., 2012). PCR amplifications
were performed with a Mastercycler Nexus GSX1
(Eppendorf, Germany) in final volume of 30 pul containing
10 ng of genomic DNA, 15 pl 2x Taq Master Mix, 1 pl

Table 1. The sample size of skin bacterial community and environmental samples, as well as site information in this study.

Roosting
Hibernation Sample size temperature BMI

Date period Type Site (environment) (mean + SD) (mean + SD)
Dec. 5, 2017 Early Temporal Jilin Province (JL1) 9 (5) 8.3 £0.39 0.44 £ 0.04
Jan. 17,2018 Middle Temporal Jilin Province (JL1) 20 (5) 8.02 + 0.26 0.39 + 0.04
Feb. 27,2018 Middle Temporal Jilin Province (JL1) 14 (5) 8.31 +£0.13 0.35 + 0.04
Apr. 8,2018 Late Temporal Jilin Province (JL1) 20 (5) 8.67 +£0.16 0.31 £ 0.02
Apr. 8,2018 Late Spatial Jilin Province (JL1) 20 (5) 8.67 £ 0.16 0.31 £0.02
Mar. 25, 2018 Late Spatial Henan Province (HN) 10 (3) 8.19 +£ 0.40 0.30 + 0.02
Mar. 27, 2018 Late Spatial Beijing City (BJ) 4 (4) 10 £0.87 0.30 + 0.02
Apr. 5,2018 Late Spatial Jilin Province (JL2) 14 (5) 8.07 +£ 0.47 0.32 + 0.02
Apr. 6,2018 Late Spatial Liaoning Province 16 (5) 7.90 £ 0.41 0.31 £ 0.01

(LN)
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Bar-PCR primer F and 1 pl primer R. The conditions for
PCR were as follows: one denaturation step of 94°C for
3 min; with five cycles at 94°C for 30 s, 45°C for 20 s,
65°C for 30 s; 20 cycles of denaturation at 94°C for 20 s,
annealing at 55°C for 20 s and extension at 72°C for
30 s, and a final extension at 72°C for 5 min. Another
30 pl reaction mixture contained 20 ng of the first step
amplification product, 15 pl 2x Taq master Mix and 1 pl
each primer was used for the second PCR step under
the following conditions: denaturation at 95°C for 3 min,
five cycles of denaturation at 94°C for 20 s, annealing at
55°C for 20 s and extension at 72°C for 30 s, and a final
extension at 72°C for 5 min. PCR amplicons were puri-
fied with Agencourt AMPure XP (Beckman Coulter, USA)
and quantified DNA concentration of each sample using
the Qubit 2.0 DNA Assay Kit (Life, USA) to normalize
samples prior to lllumina Miseq (2 x 300 bp) sequencing
in Sangon Biotech (Shanghai, China).

In this study, the total number of raw sequences gener-
ated from different sampling time points (JL1 population)
and different sites was 4 971 629 [average 59 899 reads/
sample [range from 41299 to 88 478)] and 5 044 014
[average 60 048 reads/sample (range from 35832 to
91 204)] respectively. The adapter sequences added in
the process of sequencing were first removed by
cutadapt v1.2.1 (Martin, 2011). Forward and reverse
reads were formed into contigs using QIIME v1.9.1 pipe-
line based on the base overlap length of at least 10 bp
and no mismatch allowed (Caporaso et al., 2010). High-
quality reads were obtained using the following criteria:
no presence of ambiguous bases (N), no errors in
barcode sequence were allowed, a minimum of five con-
secutive high-quality base pairs (Q = 20) and a maximum
of three consecutive low-quality base paired were
allowed. After quality processing, a total of 4 674 791
(average 56 323 reads/sample) and 4 492 098 reads
(average 53 477 reads/sample) were obtained from dif-
ferent sampling time points and sites respectively.
Unique sequences were identified and clustered into
OTUs at a sequence similarity threshold of 97% based
on the UPARSE method, with singletons and chimeric
sequences exclude during this process (Edgar, 2013).
Taxonomic information was provided for each OTU
against the Greengenes database and assigned taxon-
omy using Ribosomal Database Project Classifier (Wang
et al., 2007; McDonald et al., 2012). Furthermore, phylo-
genetic tree files were also created in the QIIME pipeline.
To avoid interferences from rare OTUs, which may be
errors, the OTUs were removed based on <0.001% of
total reads (Bokulich et al., 2013). Finally, to standardize
sampling effort across samples, the OTU table was rare-
fied according to the lowest number of reads, that is, the
remaining reads for per sample at temporal and spatial
datasets are 32 746 and 26 396 respectively.

Data analysis

To determine the change in skin bacterial community
diversity and structure, and what factors were explana-
tory of variation in assemblage diversity and structure,
alpha diversity metrics including Shannon diversity,
Observed OTUs and Faith’s Phylogenetic Diversity
(PD) were calculated separately for samples collected
from each time point and each site. These three alpha
diversity indices were selected because the Observed
OTUs count the number of distinct OTUs in each sample,
Shannon diversity considers both community richness
and evenness, whereas PD incorporates phylogenetic
differences between species (Faith, 1992; Dubois
et al., 2017). Non-parametric Kruskal-Wallis tests (since
normal distributions of the data or homogeneity of vari-
ances were rejected according to Shapiro and Bartlett
tests in the package stats respectively) were used to
compare alpha diversity through different sampling time
points and among different populations respectively. The
P-values for multiple comparisons were corrected using
Bonferroni correction (Hochberg, 1988). Bray—Curtis dis-
similarity matrices were used to calculate the beta diver-
sity and were visualized with NMDS in k = 2 dimensions
using the ordinate() and plot_ordination() functions in R
package phyloseq (McMurdie and Holmes, 2013). A non-
parametric analysis of variance (PERMANOVA) based
on 999 permutations was used to test the significance for
beta diversity through different sampling time points and
among different populations using adonis() function in the
package vegan respectively (Oksanen et al., 2018). Post
hoc pairwise testing (pairwise differences between
groups) was assessed with the pairwise.adonis() function
in the package pairwiseAdonis, and Bonferroni correction
was applied for multiple comparisons (Arbizu, 2017). The
betadisper() function was used to evaluate homogeneity
of dispersion among sample groups. We also used PER-
MANOVA (999 permutations) to test whether the P. des-
tructans status (positive/negative) or sex affects the skin
bacterial community structure. To account for
nestedness, we stratified by time for different sampling
time points, and by site for different populations in
PERMANOVAs. In order to determine the relative impor-
tance of time versus space to changes in the skin bacte-
rial community, the ANOSIM analysis of the Bray—Curtis
dissimilarity was used for statistical analysis and plotted
using NMDS (k = 2 dimensions) in the package vegan.
To account for the correlation between bat roosting
temperature, BMI, fungal loads and time (e.g. BMI
decreases, and roosting temperature and fungal loads
increase over winter), we used a partial regression
approach where we explored how much variation each
variable explained after accounting for the effect of one
of the others. We regressed observed OTUs, PD and
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Shannon diversity over time and used the residuals from
that relationship as the response variable in a linear
model with BMI, bat roosting temperature and fungal
loads. In addition, we examined the effect of geographic
distance and bat roosting temperature on Bray—Curtis
dissimilarity among individual pairs of bats using a gener-
alized linear mixed model with a beta distribution and a
logit link. In this model, log-transformed geographic dis-
tance and bat roosting temperature were set as fixed
effects, and site was included as a random effect. The
pairwise geographic distance between samples was cal-
culated by Geographic Distance Matrix Generator v.1.2.3
based on the coordinates of hibernacula.

An unweighted pair group method with arithmetic mean
(UPGMA) was used to evaluate clustering patterns
across sampling time points and populations. UPGMA
was used on Bray—Curtis dissimilarity of mean OTU rela-
tive abundances greater than 0.1% at the genus level
and heatmap visualization was completed in the package
pheatmap (Kolde, 2015). To reveal the assembly mecha-
nism of bacterial community composition, we computed
three multiple-site dissimilarities (Bsim + Pres = Psor)
based on Sgrensen dissimilarity indices (presence—
absence data) to account for the turnover (fsm: the
replacement of some species by others) and nestedness
(Bnes: species loss between samples) components of total
beta diversity (Bsor) through time and space using beta.
multi() function in the package betapart (Baselga, 2010;
Baselga et al., 2018). In addition, to identify OTUs most
responsible for the temporal and spatial variability in skin
bacterial communities on R. ferrumequinum, indicator
analysis using the OTUs with relative abundance larger
than 1% at genus levels was performed. The indicator
value (IndVal) compares the relative abundance distribu-
tions of OTU across predefined groups (each sampling
time point and site). It provides an index ranges from
0 (indicative of an OTU evenly distributed across all
groups) to 1 (indicative of an OTU in one group but not
others). All computations of IndVal were done in the
package indicspecies accessed by the multipatt() func-
tion (Caceres and Legendre, 2009), and significance was
assessed with 9999 permutations. The P-values for multi-
ple comparisons were corrected using the false discovery
rate procedure. OTUs with corrected P-values <0.05 and
IndVal =0.4 were retained as indicators (Lemieux-
Labonté et al., 2017). The parameter IndVal.g was used
since it corrects for unequal group size.

To address the relationship between host-associated
skin bacteria and environmental bacteria, we first calcu-
lated the Shannon diversity and compared it by Mann—
Whitney U test between bat and environmental samples.
Beta diversity was calculated and visualized the same as
described above. PERMANOVA listing time or site as
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‘strata’ and permutation analysis of multivariate homoge-
neity of group dispersions with 999 permutations were
also used to test significance for beta diversity. In order
to determine which OTUs explained the difference in bac-
terial community structure, we used LEfse method
(Segata et al., 2011). According to previous studies
(McKenzie et al., 2012), OTUs with LDA scores >2 were
considered informative, while the OTUs with LDA scores
>4 were chosen for further analysis. In addition, to deter-
mine the correlation between host and environmental
samples, Kendall’s tau according to OTU relative abun-
dance were calculated (Rebollar et al., 2016). These cor-
relations were analyzed using all OTUs or just OTUs with
relative abundance greater than 0.1%.
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Fig. S1. Infection intensity of P. destructans in R.
ferrumequinum across time and space. Infection intensity
varied over time (a) and sites (b), measured as Pd_load, on
a log10 scale in nanograms.

Fig. S2. Stacked bar chart of most abundance bacterial
phyla through time (a) and space (b).

Fig. S3. Temporal and spatial variation of alpha diversity of
bat skin. (a) Observed OTUs over time. (b) Phylogenetic
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Diversity over time. (c) Observed OTUs across five sites.
(d) Phylogenetic Diversity across five sites.

Fig. S4. UPGMA and heatmap based on OTUs with relative
abundance > 0.1% across bat skin and environmental bacte-
ria over four sampling time-points. Columns are samples
and rows are OTUs. The OTUs are displayed at the genus
level.

Fig. S5. Box plot of multivariate homogeneity of group dis-
persions (variances) of R. ferrumequinum skin bacterial
communities over four sampling time-points. Different letters
(a and b) represent statistically significant differences over
sampling time-points, as indicated by the Tukey post hoc
tests.

Fig. S6. Relationship between Shannon diversity of host skin
and body mass index (a) and bat roosting temperature (b) in

four sampling time-points. Dashed lines represent the rela-
tionship between factors (BMI and bat roosting temperature)
and Shannon diversity is marginal. Gray ribbons show 95%
confidence intervals (ClI).

Fig. S7. UPGMA and heatmap based on OTUs with relative
abundance > 0.1% across bat skin and environmental bacte-
ria across five sites. Columns are samples and rows are
OTUs. The OTUs are displayed at the genus level.

Table S1. 522 OTUs were obtained from LEfSe analysis
with an LDA score of > 2.0 based on temporal dataset. The
red represented OTUs with LDA > 4.

Table S2. 411 OTUs were obtained from LEfSe analysis
with an LDA score of >2.0 based on spatial dataset. The
red represented OTUs with LDA > 4.
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