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ABSTRACT
We provide a new bi-criteria 𝑂̃ (log2 𝑘) competitive algorithm for

explainable 𝑘-means clustering. Explainable 𝑘-means was recently

introduced by Dasgupta, Frost, Moshkovitz, and Rashtchian (ICML

2020). It is described by an easy to interpret and understand (thresh-

old) decision tree or diagram. The cost of the explainable 𝑘-means
clustering equals to the sum of costs of its clusters; and the cost of

each cluster equals the sum of squared distances from the points

in the cluster to the center of that cluster. The best non bi-criteria

algorithm for explainable clustering 𝑂̃ (𝑘) competitive, and this

bound is tight.

Our randomized bi-criteria algorithm constructs a threshold

decision tree that partitions the data set into (1+𝛿)𝑘 clusters (where

𝛿 ∈ (0, 1) is a parameter of the algorithm). The cost of this clustering

is at most 𝑂̃ (1/𝛿 · log2 𝑘) times the cost of the optimal unconstrained

𝑘-means clustering. We show that this bound is almost optimal.

CCS CONCEPTS
• Theory of computation → Unsupervised learning and clus-
tering.
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1 INTRODUCTION
In this paper, we study explainable 𝑘-means clustering. 𝑘-means is

one of the most popular ways to cluster data. It is widely used in

data science and machine learning. A 𝑘-means clustering of data

set 𝑋 in R𝑑 is determined by its 𝑘 centers 𝑐1, 𝑐2, . . . , 𝑐𝑘 . Specifically,

𝑘-means clustering is a 𝑑-dimensional Voronoi diagram for centers

𝑐1, 𝑐2, . . . , 𝑐𝑘 , in which, the 𝑖-th cluster contains those points in 𝑋
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that are closer to 𝑐𝑖 than to any other center 𝑐 𝑗 . The cost of the

clustering equals

cost(𝑋 ; 𝑐1, 𝑐2, . . . , 𝑐𝑘 ) ≡
𝑑∑︁
𝑖=1

∑︁
𝑥∈𝑃𝑖

∥𝑥 − 𝑐𝑖 ∥2
2
, (1)

where 𝑃𝑖 is the 𝑖-th cluster.

In a recent paper, Dasgupta, Frost, Moshkovitz, and Rashtchian

[14] observed that it can be hard for a human to understand𝑘-means

clustering. Clusters in 𝑘-means are determined by all features (coor-

dinates) of the data. Thus, usually there is no a concise explanation

of why a particular point belongs to one cluster or another. To

make 𝑘-means more understandable for humans, Dasgupta et al.

[14] proposed an alternative way to cluster data, which they called

explainable 𝑘-means. In explainable 𝑘-means, the data set is parti-
tioned into clusters using a threshold decision tree with 𝑘 leaves

(a variant of a binary space partitioning tree). Every internal node

𝑢 of the tree splits the data into two disjoint groups based on a

single feature (coordinate). A point 𝑥 is assigned to the left subtree

of 𝑢, if 𝑥𝑖 ≤ 𝜃 ; it is assigned to the right subtree of 𝑢, if 𝑥𝑖 > 𝜃 .

Points assigned to each of the 𝑘 leaves form a cluster. The cost of

explainable 𝑘-means clustering is defined in the same way as for

𝑘-means. It is equal to the sum of cluster costs:

cost(𝑋,T) =
𝑑∑︁
𝑖=1

∑︁
𝑥∈𝑃𝑖

∥𝑥 − 𝑐𝑖 ∥2
2
,

where 𝑃1, . . . , 𝑃𝑘 are clusters; 𝑐1, . . . , 𝑐𝑘 are centers of 𝑃1, . . . , 𝑃𝑘 ;

and T is the decision tree that defines the clustering.

Note that explainable 𝑘-means clustering can be represented by

a simple decision diagram as in Figure 1. This diagram is easy to

understand, and humans can easily determine to which cluster a

given data point 𝑥 belongs to.

The cost of explainability or the competitive ratio of an explain-

able 𝑘-means clustering is the ratio between the cost of that cluster-

ing and the cost of the optimal unconstrained 𝑘-means clustering

for the same data set. Dasgupta et al. [14] showed how to obtain

a 𝑘-means clustering with a competitive ratio of 𝑂 (𝑘2). This com-

petitive ratio was improved to a near-optimal
1
bound of 𝑂̃ (𝑘) by

Makarychev and Shan [28]; Gamlath, Jia, Polak, and Svensson [19];

and Esfandiari, Mirrokni, and Narayanan [16]. This guarantee does

not depend on the size and dimension of the data set. However, it

is large for large data sets. For comparison, the best competitive

ratio for explainable 𝑘-medians is exponentially better than 𝑂̃ (𝑘).
It equals 𝑂̃ (log𝑘) (see Esfandiari et al. [16], Makarychev and Shan

[28]). Nevertheless, Dasgupta et al. [14] and then Frost et al. [18]

empirically demonstrated that, in practice, the price of explainabil-

ity for 𝑘-means clustering is fairly small. In this work, we provide a

1
It is possible to get a better competitive ratio for low dimensional data. For details,

see Section 1.2
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𝑦 ≤ 10.2

𝑥 ≤ 10.8

2 3

1

Figure 1: Explainable and non-explainable 𝑘-means. The left diagram shows the optimal Voronoi partition of the plane. The
middle diagram shows an explainable partition. The right diagram shows the corresponding decision tree for explainable
clustering.
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Figure 2: Performance of 𝑘-means++ on BioTest data set. The left diagram shows the cost of 𝑘-means++ for 𝑘 = 5, 10, 15, . . . , 200.
The clustering cost is divided by the cost of 𝑘-means with 1000 clusters. The right diagram shows the ratio between the clustering
cost with 𝑘 centers and the cost with (1 + 𝛿)𝑘 centers for 𝑘 = 5, 10, . . . , 150 and 𝛿 = 0.2.

theoretical justification for this observation. Specifically, we show a

bi-criteria approximation algorithmwhich finds a decision tree with

(1+𝛿)𝑘 leaves and has a competitive ratio of𝑂 (1/𝛿 log2 𝑘 log log𝑘),
where 𝛿 is a parameter between 0 and 1.

We note that in practice the cost of the optimal 𝑘-means cluster-

ing is approximately the same for 𝑘 and (1 + 𝛿)𝑘 clusters (here

𝛿 ∈ (0, 1) is a small constant). In other words, for many data

sets 𝑋 , we have OPT𝑘 (𝑋 ) ≈ OPT(1+𝛿 )𝑘 (𝑋 ), where OPT𝑘 (𝑋 ) is
the cost of the optimal unconstrained 𝑘-means clustering of 𝑋

with 𝑘 clusters
2
. The plot in Figure 2 shows that the cost of 𝑘-

means++ clustering for BioTest data set from KDD Cup [15] is

about the same for 𝑘 and (1 + 𝛿)𝑘 centers when 𝑘 is between 50

and 200. If OPT𝑘 (𝑋 ) ≈ OPT(1+𝛿 )𝑘 (𝑋 ), then our algorithm gives a

true 𝑂̃ (log2 𝑘) approximation, because

cost(𝑋,T) ≤ 𝑂̃ (log2 𝑘) OPT𝑘 (𝑋 ) ≈ 𝑂̃ (log2 𝑘) OPT(1+𝛿 )𝑘 (𝑋 ) .

2
In the worst case, we may have OPT(1+𝛿 )𝑘 (𝑋 ) ≪ OPT𝑘 (𝑋 ) . For example, if 𝑋

contains exactly (1 + 𝛿 )𝑘 points, then OPT(1+𝛿 )𝑘 (𝑋 ) = 0 but OPT𝑘 (𝑋 ) > 0.

1.1 Our Results
We now formally state our results. We provide a randomized al-

gorithm for finding bi-criteria explainable 𝑘-means. Similarly to

the algorithm by Frost et al. [18], our algorithm takes 𝑘 centers

{𝑐1, 𝑐2, . . . , 𝑐𝑘 } and a parameter 𝛿 > 0 and returns a threshold de-

cision tree with (1 + 𝛿)𝑘 leaves. Each leaf of the tree is labeled

with one of the centers 𝑐1, 𝑐2, . . . , 𝑐𝑘 . Let us denote the center re-

turned by the decision tree T for point 𝑥 by T (𝑥). Then, the cost
of explainable clustering defined by T equals

cost(𝑋,T) ≡
∑︁
𝑥∈𝑋

∥𝑥 − T (𝑥)∥2
2
. (2)

Theorem 1.1. There exists a polynomial-time randomized algo-
rithm that given a data set 𝑋 , a set of 𝑘 centers 𝐶 = {𝑐1, 𝑐2, . . . , 𝑐𝑘 },
and parameter 𝛿 ∈ (0, 1), creates a threshold decision tree T whose
leaves are labeled with centers from𝐶 . The expected number of leaves
in T is (1+𝛿)𝑘 , and the expected cost of explainable clustering defined
by T is

E[cost(𝑋,T)] ≤ 𝑂 (1/𝛿 · log2 𝑘 log log𝑘) · cost(𝑋,𝐶) .
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Observe that our algorithm constructs a tree with (1+𝛿)𝑘 leaves

and only 𝑘 centers. Thus, we can use this algorithm to partition 𝑋

into 𝑘 clusters. In this case, one cluster may be assigned to several

different leaves. Alternatively, we can assign its own cluster to

every leaf. Then, we will have a proper threshold decision tree

with (1 + 𝛿)𝑘 clusters. In either case, we can further improve the

clustering by replacing the original center 𝑐𝑖 assigned to each leaf

𝑢 with the optimal center for the cluster assigned to 𝑢 (the optimal

center is the centroid of that cluster).

If𝐶 is the optimal set of centers for 𝑘 means, then the explainable

clustering provided by our algorithm has an expected cost of at

most𝑂 (1/𝛿 ·log2 𝑘 log log𝑘) OPT𝑘 (𝑋 ). Furthermore, if𝐶 is obtained

by a constant factor bi-criteria approximation algorithm such as

𝑘-means++ (in which case, |𝐶 | = (1 + 𝛿)𝑘 and cost(𝑋,𝐶) ≤ 𝑂 (1) ·
OPT𝑘 (𝑋 )), then the expected cost of the explainable clustering

is also at most 𝑂 (1/𝛿 · log2 𝑘 log log𝑘) OPT𝑘 (𝑋 ) and the number

of leaves in the threshold decision tree is at most (1 + 3𝛿)𝑘 in

expectation.

As we note above, our work is influenced by the paper of Frost,

Moshkovitz, and Rashtchian [18], who showed a bi-criteria algo-

rithm for explainable 𝑘-means. However, our algorithm for this

problem is very different from theirs. It uses the approach from

our previous paper (Makarychev and Shan [28]). In that paper, we

gave an algorithm for finding explainable 𝑘-medians with ℓ2 norm.

Our new algorithm has an additional crucial step: It duplicates

some centers when the algorithm splits nodes. This step gives an

exponential improvement to the competitive ratio for 𝑘-means. The

analysis of our algorithm is considerably more involved than the

analysis of the previous algorithm.

We complement our algorithmic results with an almost matching

lower bound of Ω(1/𝛿 · log2 𝑘) for all threshold trees with at most

(1 + 𝛿)𝑘 leaves.

Theorem 1.2. For every 𝑘 > 500 and ln
3 𝑘/

√
𝑘 < 𝛿 < 1/100,

there exists an instance 𝑋 with 𝑘 clusters such that the 𝑘-means cost
for every threshold tree T with (1 + 𝛿)𝑘 leaves is at least

cost(𝑋,T) ≥ Ω

(
log

2 𝑘

𝛿

)
OPT𝑘 (𝑋 ).

In the full version, we provide a family of 𝑘-means instances

for which a greedy bi-criteria algorithm finds a solution of cost

cost(𝑋,T) ≥ Ω̃(𝑘2) OPT𝑘 (𝑋 ) for 𝑘 → ∞.

1.2 Related Work
Decision trees have been widely used for classification and cluster-

ing due to their simplicity. Examples of decision tree algorithms

for supervised classification include CART by Breiman et al. [10],

ID3 by Quinlan [29], and C4.5 by Quinlan [30]. Examples of deci-

sion tree algorithms for unsupervised clustering include algorithms

by Liu et al. [23], Fraiman et al. [17], Silhouette Metric (Bertsimas

et al. [7]), Saisubramanian et al. [31].

Dasgupta et al. [14] proposed the problems of explainable 𝑘-

means and 𝑘-medians clustering in ℓ1. They defined these problems

and offered algorithms for explainable 𝑘-means and 𝑘-medians

with the competitive ratios of 𝑂 (𝑘2) and 𝑂 (𝑘), respectively. Later,

Frost et al. [18] designed a new bi-criteria algorithm for these prob-

lems and evaluated its performance in practice. Laber and Murt-

inho [21], Makarychev and Shan [28], Charikar and Hu [11], Es-

fandiari, Mirrokni, and Narayanan [16], and Gamlath, Jia, Polak,

and Svensson [19] provided improved upper and lower bounds for

explainable 𝑘-means and 𝑘-medians. The best competitive ratios

for explainable 𝑘-means and 𝑘-medians are 𝑂̃ (𝑘) and 𝑂̃ (log𝑘), re-
spectively. Makarychev and Shan [28], Esfandiari et al. [16], and

Gamlath et al. [19] gave a 𝑂̃ (𝑘) competitive ratio for explainable

𝑘-means; and Makarychev and Shan [28] and Esfandiari et al. [16]

gave a 𝑂̃ (log𝑘) bound for 𝑘-medians. Charikar and Hu [11] pro-

vided 𝑘1−2/𝑑 · poly(𝑑 log𝑘) algorithm for 𝑘-means (this algorithm

gives stronger approximation guarantees when the dimension of

the space, 𝑑 , is small). Additionally, Makarychev and Shan [28] gave

an 𝑂̃ (log3/2 𝑛) competitive algorithm for explainable 𝑘-medians in

ℓ2.

Boutsidis et al. [8], Boutsidis et al. [9], Makarychev et al. [25],

Cohen et al. [12], and Becchetti et al. [6] showed how to reduce

the dimensionality of a data set for 𝑘-means clustering. Particu-

larly, Makarychev et al. [25] proved that we can use the Johnson

Lindenstrauss transform to reduce the dimensionality of 𝑘-means

to 𝑑′ = 𝑂 (log𝑘). Note, however, that the Johnson Lindenstrauss

transform cannot be used for the explainable 𝑘-means, because this

transform does not preserve the set of features. Instead, one can

use a feature selection algorithm by Boutsidis et al. [9] or Cohen

et al. [12] to reduce the dimensionality to 𝑑′ = 𝑂̃ (𝑘).
The classic 𝑘-means clustering has been extensively studied by

researchers in machine learning and theoretical computer science.

Lloyd’s algorithm (Lloyd [24]) is the most popular heuristic for

𝑘-means clustering. Arthur and Vassilvitskii [4] proposed a ran-

domized seeding algorithm called 𝑘-means++, which achieves an

expected 𝑂 (log𝑘) approximation. Ahmadian, Norouzi-Fard, Svens-

son, and Ward [2] designed a primal-dual algorithm with an ap-

proximation factor of 6.357. It was recently improved to 6.12903

by Grandoni, Ostrovsky, Rabani, Schulman, and Venkat [20]. Das-

gupta [13] and Aloise, Deshpande, Hansen, and Popat [3] showed

that 𝑘-means problem is NP-hard. Awasthi et al. [5] showed that

it is also NP-hard to approximate the 𝑘-means objective within a

factor of (1 + 𝜀) for some positive constant 𝜀 (see also Lee, Schmidt,

and Wright [22]). The bi-criteria approximation for 𝑘-means has

also been studied before. Aggarwal, Deshpande, and Kannan [1]

proved that 𝑘-means++ that picks (1 + 𝛿)𝑘 centers gives a constant

factor bi-criteria approximation for some constant 𝛿 > 0. Later,

Wei [32] and Makarychev, Reddy, and Shan [27] gave improved

bi-criteria approximation guarantees for 𝑘-means++. Makarychev,

Makarychev, Sviridenko, and Ward [26] designed local search and

LP-based algorithms with better bi-criteria approximation guaran-

tees.

2 PRELIMINARIES
Consider a set of points 𝑋 ⊆ R𝑑 and an integer 𝑘 > 1. A 𝑘-means

clustering consists of 𝑘 clusters 𝑃1, . . . , 𝑃𝑘 . Each cluster 𝑃𝑖 is as-

signed a center 𝑐𝑖 , which is the centroid (geometric center) of 𝑃𝑖 .
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The cost of the clustering equals

cost(𝑋 ; 𝑐1, . . . , 𝑐𝑘 ) ≡
𝑑∑︁
𝑖=1

∑︁
𝑥∈𝑃𝑖

∥𝑥 − 𝑐𝑖 ∥2
2
.

The optimal 𝑘-means clustering is the clustering of the minimum

cost. We denote the cost of the optimal 𝑘-means clustering with 𝑘

clusters by OPT𝑘 (𝑋 ).
A threshold decision tree is a tree that recursively partitions R𝑑

into cells using hyperplane cuts. Every node in the tree corresponds

to a cell (polytope) of the space. The root corresponds to the entire

space R𝑑 . In this paper, we will identify nodes of the tree with the

cells they correspond to. Thus, a threshold decision tree defines a

hierarchical partitioning of R𝑑 into 𝑘 cells or clusters.

Each internal node (cell) 𝑢 in the threshold tree is split into two

nodes 𝑢𝑙𝑒 𝑓 𝑡 and 𝑢𝑟𝑖𝑔ℎ𝑡 using a threshold cut (𝑖, 𝜉) as follows:
𝑢𝑙𝑒 𝑓 𝑡 = {𝑥 ∈ 𝑢 : 𝑥𝑖 ≤ 𝜉} and 𝑢𝑟𝑖𝑔ℎ𝑡 = {𝑥 ∈ 𝑢 : 𝑥𝑖 > 𝜉}.

We assign a center 𝑐 to every leaf of the threshold decision tree. Let

T (𝑥) (where 𝑥 ∈ R𝑑 ) be the center assigned to the unique leaf 𝑢

of T that contains 𝑥 . In this paper, we will also assign centers to

internal nodes of the tree. We will denote the set of centers assigned

to node 𝑢 by 𝐶𝑢 . For leaf nodes, we have |𝐶𝑢 | = 1.

Consider a data set𝑋 and threshold decision treeT . The𝑘-means

cost of T equals

cost(𝑋,T) ≡
∑︁
𝑥∈𝑋

∥𝑥 − T (𝑥)∥2
2
.

The competitive ratio of explainable clustering defined by T is

cost(𝑋,T)/OPT𝑘 (𝑋 ). We say that a randomized algorithm is 𝛼-

competitive if the expected cost of the explainable clustering re-

turned by the algorithm is at most 𝛼 cost(𝑋,𝐶), where 𝐶 is the set

of centers provided to the algorithm.

A bi-criteria solution to explainable 𝑘-means clustering with

parameter 𝛿 is a threshold decision tree with at most (1+𝛿)𝑘 leaves.

In this paper, we describe an algorithm that finds a tree with at

most (1 + 𝛿)𝑘 leaves and 𝑘 distinct centers assigned to them.

3 ALGORITHM
In this section, we present an algorithm for explainable 𝑘-means

clustering. The input of the algorithm is a set of centers 𝑐1, . . . , 𝑐𝑘

and parameter 𝛿 . The output is a threshold decision tree in which

every leaf node is labeled with one of the centers 𝑐𝑖 . In Sections 5

and 6, we will show that the expected number of leaves in the

decision tree is (1+𝛿)𝑘 and the approximation factor of the obtained

clustering is 𝑂 (1/𝛿 · log2 𝑘 · log log𝑘).
Algorithm. Our algorithm builds a binary threshold tree using

a top-down approach. The algorithm assigns every node 𝑢 in the

tree a subset of centers 𝑐1, . . . , 𝑐𝑘 . We denote this subset 𝐶𝑢 . First,

the algorithm creates a tree T1 with a root vertex 𝑟 and assigns

all centers 𝑐1, 𝑐2, . . . , 𝑐𝑘 to it. Then, the algorithm recursively splits

leaf nodes in the threshold tree until each leaf is assigned exactly

one center. At each step 𝑡 , the algorithm chooses a coordinate

𝑖𝑡 ∈ {1, 2, . . . , 𝑑}, a positive threshold 𝜃𝑡 ∈ (0, 1), and number 𝜎𝑡
in {±1} uniformly at random. For each leaf 𝑢 with more than one

center, it calls function Divide-and-Share to split node 𝑢 into two

parts.

Threshold Tree Construction
Input: a data set 𝑋 and set of centers 𝐶 = {𝑐1, 𝑐2, . . . , 𝑐𝑘 }, a
parameter 𝛿 ∈ (0, 1)
Output: a threshold tree T

• Create a tree T1 containing a root 𝑟 . Let 𝐶𝑟 = 𝐶 .

• while T𝑡 contains a leaf with at least two distint centers do:
– Sample 𝑖𝑡 ∈ {1, 2, . . . , 𝑑}, 𝜃𝑡 ∈ (0, 1), and 𝜎𝑡 ∈ {±1}
uniformly at random.

– For each leaf 𝑢 in the tree T𝑡 containing more than one

center, split node 𝑢 using Divide-and-Share with
parameters 𝑢, 𝑖𝑡 , 𝜃𝑡 , 𝜎𝑡 , and 𝜀 = min{𝛿/15 ln𝑘, 1/384}.

– Update 𝑡 = 𝑡 + 1.

Figure 3: Threshold Tree Construction

Function Divide-and-Share
Input: a node 𝑢, a coordinate 𝑖 ∈ {1, . . . , 𝑑}, a positive threshold 𝜃 ,
a number 𝜎 ∈ {±1}, and a parameter 𝜀

Output: if successful, the function splits 𝑢 into two parts

• Find the median of all centers assigned to node 𝑢. Denote it

by𝑚𝑢
.

• Let 𝑅𝑢 = max{∥𝑐 −𝑚𝑢 ∥2 : 𝑐 ∈ 𝐶𝑢 } be the maximum

distance from𝑚𝑢
to one of the centers in 𝐶𝑢 .

• Let

𝐿𝑒 𝑓 𝑡 = {𝑐 ∈ 𝐶𝑢 : 𝑐𝑖 ≤ 𝑚𝑢
𝑖 + 𝜎

√
𝜃𝑅𝑢 + 𝜀

√
𝜃𝑅𝑢 };

𝑅𝑖𝑔ℎ𝑡 = {𝑐 ∈ 𝐶𝑢 : 𝑐𝑖 ≥ 𝑚𝑢
𝑖 + 𝜎

√
𝜃𝑅𝑢 − 𝜀

√
𝜃𝑅𝑢 }.

• If both sets – 𝐿𝑒 𝑓 𝑡 and 𝑅𝑖𝑔ℎ𝑡 – are nonempty, then

– Split 𝑢 into two parts using cut (𝑖,𝑚𝑢 + 𝜎
√
𝜃𝑅𝑢 ).

– Assign the set of centers 𝐿𝑒 𝑓 𝑡 to the left child 𝑢𝑙𝑒 𝑓 𝑡 and

the set of centers 𝑅𝑖𝑔ℎ𝑡 to the right child, 𝑢𝑟𝑖𝑔ℎ𝑡 .

• Otherwise, return the unmodified tree (in this case, we say

that Divide-and-Share fails).

Figure 4: Function Divide-and-Share

Function Divide-and-Share first finds a median
3
of all centers

assigned to 𝑢, which we denote by 𝑚𝑢
. Let 𝑅𝑢 be the maximum

distance from centers in node 𝑢 to the median𝑚𝑢
. The algorithm

creates two child nodes for 𝑢 using cut 𝜔𝑡 = (𝑖𝑡 , 𝜉𝑡 ) with 𝜉𝑡 =

𝑚𝑢
𝑖
+ 𝜎𝑡

√
𝜃𝑡𝑅𝑢 . Then, Divide-and-Share assigns two sets of centers,

𝐿𝑒 𝑓 𝑡 and 𝑅𝑖𝑔ℎ𝑡 , defined in Figure 4 to the left and right children

of 𝑢, respectively. Note that these sets share centers in the strip of

width 2𝜀
√
𝜃𝑡𝑅𝑢 :

𝐿𝑒 𝑓 𝑡 ∩ 𝑅𝑖𝑔ℎ𝑡 = {𝑐 ∈ 𝐶𝑢 : 𝜉𝑡 − 𝜀
√︁
𝜃𝑡𝑅𝑢 ≤ 𝑐𝑖 ≤ 𝜉𝑡 + 𝜀

√︁
𝜃𝑡𝑅𝑢 }.

If one of the sets, 𝐿𝑒 𝑓 𝑡 or 𝑅𝑖𝑔ℎ𝑡 , is empty, then Divide-and-Share
discards both newly created children of 𝑢.

We show that the bi-criteria approximation factor of the algo-

rithm is 𝑂 (1/𝛿 log2 𝑘 log log𝑘) and the expected number of leaves

is (1 + 𝛿)𝑘 . In the next section, we give a proof overview. Then,

3
Median𝑚𝑢

satisfies the following property: For ever coordinate 𝑖 , each of the sets

{𝑐 ∈ 𝐶𝑢 : 𝑐𝑖 < 𝑚𝑢
𝑖
} and {𝑐 ∈ 𝐶𝑢 : 𝑐𝑖 > 𝑚𝑢

𝑖
} contains at most half of all points

from𝐶𝑢 .
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we prove the upper bounds on the expected number of leaves and

approximation factor of the algorithm in Sections 5 and 6, respec-

tively.

4 PROOF OVERVIEW
In this section, we provide an overview of the analysis of our algo-

rithm, give definitions, and discuss the motivation for the proofs.

In Sections 5 and 6, we present detailed proofs.

4.1 Cost of Clustering
We first analyze approximation guarantees for our algorithm. We

show that the expected approximation factor is𝑂 (1/𝛿 log2 𝑘 log log𝑘)
= 𝑂 (1/𝜀 log𝑘 log log𝑘), particularly for constant 𝛿 (e.g., 𝛿 = 0.05),

the expected approximation factor is 𝑂 (log2 𝑘 log log𝑘). We de-

note the final tree returned by the algorithm by T . Let T (𝑥) be the
center assigned by the threshold tree T to point 𝑥 .

Theorem 4.1. For every set of centers 𝑐1, . . . , 𝑐𝑘 in R𝑑 , every 𝛿 ∈
(0, 1), and every 𝑥 ∈ R𝑑 , we have

E
[
∥𝑥−T (𝑥)∥2

2

]
≤ 𝑂 (1/𝛿 log

2 𝑘 log log𝑘) min

𝑐∈{𝑐1,...,𝑐𝑘 }
∥𝑥−𝑐 ∥2

2
. (3)

This theorem guarantees that the expected approximation factor

for every point 𝑥 is at most 𝑂 (1/𝛿 log
2 𝑘 log log𝑘). Consequently,

the expected approximation factor for any data set𝑋 is also bounded

by 𝑂 (1/𝛿 log
2 𝑘 log log𝑘).

Fix an arbitrary point 𝑥 for the entire proof of Theorem 4.1. If

𝑥 equals one of the centers 𝑐𝑖 , then T (𝑥) also always equals 𝑐𝑖 .

Hence, ∥𝑥 −T (𝑥)∥2
2
= 0 and bound (3) trivially holds. So, from now

on, we will assume that 𝑥 is not one of the centers.

Denote by T𝑡 the tree built by the algorithm in the first (𝑡 − 1)
steps. Tree T1 contains only one node – the root. The root corre-

sponds to the entire space R𝑑 and all centers 𝑐1, . . . , 𝑐𝑘 are assigned

to it. Since point 𝑥 is fixed, we will only consider nodes 𝑢 in T that

contain 𝑥 . Let𝑢𝑡 be the leaf node of the tree T𝑡 that contains 𝑥 . That
is, 𝑢𝑡 is the leaf node that contains 𝑥 at the beginning of iteration

𝑡 . Nodes 𝑢1, 𝑢2, . . . form a path in the tree T from the root to the

unique leaf of T that contains 𝑥 . To simplify notation, we denote

𝐶𝑡 = 𝐶𝑢𝑡 , 𝑅𝑡 = 𝑅𝑢𝑡 , 𝑚𝑡 =𝑚𝑢𝑡 .

Also, let 𝐷𝑡 be the diameter of set 𝐶𝑡 :

𝐷𝑡 = max{∥𝑐′ − 𝑐′′∥2 : 𝑐′, 𝑐′′ ∈ 𝐶𝑡 }.

Finally, let T𝑡 (𝑥) be the closest center from the set 𝐶𝑡 to point 𝑥 .

We call this center the tentative center for point 𝑥 at step 𝑡 . The

tentative cost of 𝑥 at step 𝑡 is ∥𝑥 − T𝑡 (𝑥)∥2
2
.

Initially, at step 1, the tentative center for point 𝑥 is the closest

center 𝑐 ∈ {𝑐1, . . . , 𝑐𝑘 } to 𝑥 . If the tentative center for 𝑥 does not

change, then the eventual cost of 𝑥 , ∥𝑥 − T (𝑥)∥2
2
exactly equals

the optimal cost ∥𝑥 − 𝑐 ∥2
2
. However, at some step 𝑡 , point 𝑥 may

be separated from its tentative center 𝑐 (see below for a formal

definition), in which case another tentative center T𝑡+1 (𝑥) is as-
signed to 𝑥 . At this step, the tentative cost of 𝑥 may significantly

increase. Moreover, the tentative cost of 𝑥 may further increase if

𝑥 is separated from the new tentative center. Our goal is to give an

upper bound on the expected total cost increase.

Definition 4.2. We say that 𝑥 is separated from its tentative
center 𝑐 = T𝑡 (𝑥) at step 𝑡 , if 𝑐 ∉ 𝐶𝑡+1.

Note that 𝑥 is separated from its tentative center 𝑐 = T𝑡 (𝑥) at
step 𝑡 if and only if 𝑐 is no longer the tentative center for 𝑥 at step

𝑡 + 1 ( T𝑡+1 (𝑥) ≠ T𝑡 (𝑥)). We now define 𝐴𝑘 . Loosely, speaking 𝐴𝑘

is the approximation factor of the algorithm for the given set of

centers 𝑐1, . . . , 𝑐𝑘 and point 𝑥 . For technical reasons, the formal

definition is more involved.

Definition 4.3. Let 𝐴𝑘 be the smallest number such that the
following inequality holds with probability 1 for every partially built
tree T𝑡 :

E
[
∥𝑥 − T (𝑥)∥2

2
| T𝑡

]
≤ 𝐴𝑘 ∥𝑥 − T𝑡 (𝑥)∥22 . (4)

In this definition, E
[
∥𝑥 − T (𝑥)∥2

2
| T𝑡

]
is the conditional expec-

tation of the eventual cost of 𝑥 given that at step 𝑡 the partially

built tree is T𝑡 . Thus, if at some step 𝑡 , the tentative center for 𝑥 is 𝑐 ,

then the expected final cost E[∥𝑥 − T (𝑥)∥2
2
| T𝑡 ] is upper bounded

by 𝐴𝑘 ∥𝑥 − 𝑐 ∥2
2
. Observe, that 𝐴𝑘 is well defined and finite, because

T (𝑥) and T𝑡 (𝑥) take at most 𝑘 different values (namely, values in

{𝑐1, . . . , 𝑐𝑘 }).
We show an upper bound of 𝑂 (1/𝜀 log𝑘 log log𝑘) on 𝐴𝑘 (note:

𝜀 = min{𝛿/15 ln𝑘,1/384}). To illustrate the proof, we make a num-

ber of simplifying assumptions in this section. The actual proof is

considerably more involved. We give it in Section 6.

Informal Proof of the Upper Bound on 𝐴𝑘 . Suppose 𝑐∗ is the
tentative center for 𝑥 at step 𝑡∗. If at some step 𝑡 ≥ 𝑡∗, center 𝑐∗ is
separated from 𝑥 , then we assign a new tentative center to 𝑥 . We

call this center a fallback center for 𝑥 . This fallback center depends

on the tree T𝑡 and cut (𝑖, 𝜉) that separates 𝑥 and 𝑐∗. However, to
illustrate the idea behind the proof, let us assume that the distance

from the fallback center to 𝑥 does not depend on the cut (𝑖, 𝜉).
Specifically, we suppose that the distance from 𝑥 to the fallback

center is𝑀𝑡 at step 𝑡 for every cut (𝑖, 𝜉).

We consider four possibilities:

A. Point 𝑥 and 𝑐∗ are never separated.
B. Point 𝑥 is separated from 𝑐∗ at step 𝑡 and 𝐷2

𝑡 ≤ ∥𝑥 − 𝑐∗∥2
2
.

C. Point 𝑥 is separated from 𝑐∗ at step 𝑡 and ∥𝑥 − 𝑐∗∥2
2
< 𝐷2

𝑡 ≤
𝐴𝑘𝑀

2

𝑡 /2.
D. Point 𝑥 is separated from 𝑐∗ at step 𝑡 and 𝐷2

𝑡 > 𝐴𝑘𝑀
2

𝑡 /2.
In case (A), the cost of 𝑥 in the resulting tree T equals ∥𝑥 − 𝑐∗∥2

2
.

In cases (B) and (C), the eventual cost of 𝑥 is upper bounded by

(𝐷𝑡 + ∥𝑥 − 𝑐∗∥2)2 ≤ 2𝐷2

𝑡 + 2∥𝑥 − 𝑐∗∥2
2
because no matter which

center 𝑐∗∗ in 𝐶𝑡 is assigned to 𝑥 in T , the distance from 𝑐∗∗ to 𝑥 is

at most ∥𝑥 − 𝑐∗∥2 + ∥𝑐∗ − 𝑐∗∗∥2 ≤ ∥𝑥 − 𝑐∗∥2 + 𝐷𝑡 (note: 𝐷𝑡 is the

maximum distance between centers in𝐶𝑡 ). Furthermore, in case (B),

2𝐷2

𝑡 + 2∥𝑥 −𝑐∗∥2 ≤ 4∥𝑥 −𝑐∗∥2. In case (D), after step 𝑡 , the distance

from 𝑥 to the new tentative center is𝑀𝑡 . Hence, by the definition

of 𝐴𝑘 (see Definition 4.3), the expected cost of 𝑥 in T is bounded

by 𝐴𝑘𝑀
2

𝑡 . To summarize, in case (A) or (B), the final cost of 𝑥 is at

most 4∥𝑥 −𝑐∗∥2
2
. In case (C) and (D), the final cost is upper bounded

by 2∥𝑥 − 𝑐∗∥2
2
+min

{
2𝐷2

𝑡 , 𝐴𝑘𝑀
2

𝑡

}
, where 𝑡 is the step when 𝑥 and

𝑐∗ are separated.
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Let 𝑡∗∗ be the first step 𝑡 of the algorithm, when 𝐷𝑡 ≤ ∥𝑥 − 𝑐∗∥2
or 𝑐∗ is no longer the tentative center for 𝑥 . Note that for some step

𝑡 ,𝐶𝑡 contains only one center and 𝐷𝑡 = 0. Hence, the stopping time

𝑡∗∗ is well defined. Let

𝑝𝑥,𝑐∗,𝑡 = P{𝑥 & 𝑐∗ are separated at step 𝑡 | T𝑡 }

be the probability that point 𝑥 is separated from 𝑐∗ at step 𝑡 condi-
tioned on T𝑡 . Then, we have

E[∥𝑥 − T (𝑥)∥2
2
| T𝑡∗ ] ≤

≤ 4∥𝑥 − 𝑐∗∥2
2
+ E

[ 𝑡∗∗−1∑︁
𝑡=𝑡∗

𝑝𝑥,𝑐∗,𝑡 min

{
2𝐷2

𝑡 , 𝐴𝑘𝑀
2

𝑡

}
| T𝑡∗

]
.

We need to estimate the probability that 𝑥 and 𝑐∗ are separated

at step 𝑡 . Observe that if 𝑥 and 𝑐∗ are separated, then 𝑥𝑖 −𝑚𝑡
𝑖
≤

𝜎𝑡
√
𝜃𝑡𝑅𝑡 and 𝑐∗

𝑖
−𝑚𝑡

𝑖
≥ (𝜎𝑡 + 𝜀)

√
𝜃𝑅𝑡 or 𝑥𝑖 −𝑚𝑡

𝑖
≥ 𝜎𝑡

√
𝜃𝑅𝑡 and

𝑐∗
𝑖
−𝑚𝑡

𝑖
≤ (𝜎𝑡 − 𝜀)

√
𝜃𝑅𝑡 , where 𝑖 = 𝑖𝑡 is the coordinate chosen

by the algorithm. We consider the case when 𝑥𝑖 and 𝑐
∗
𝑖
are on the

same side of𝑚𝑡
𝑖
, i.e. (𝑥𝑖 −𝑚𝑡

𝑖
) (𝑐∗

𝑖
−𝑚𝑡

𝑖
) ≥ 0. The case when 𝑥𝑖 and

𝑐∗
𝑖
are on the opposite sides of𝑚𝑡

𝑖
is handled similarly. Since 𝜃𝑡 is

uniformly distributed in [0, 1] and coordinate 𝑖𝑡 is chosen randomly

from {1, . . . , 𝑑}, we have

𝑝𝑥,𝑐∗,𝑡 = P{𝑥 & 𝑐∗ are separated at step 𝑡 | T𝑡 } ≤

≤ 1

𝑑 𝑅2𝑡

𝑑∑︁
𝑖=1

max

{ |𝑐∗
𝑖
−𝑚𝑡

𝑖
|2

(1 + 𝜀)2
−|𝑥𝑖−𝑚𝑖 |2, |𝑥𝑖−𝑚𝑖 |2−

|𝑐∗
𝑖
−𝑚𝑡

𝑖
|2

(1 − 𝜀)2
, 0

}
.

Remark: In the formula above, we divide |𝑐∗
𝑖
−𝑚𝑡

𝑖
|2 by (1 + 𝜀)2

and |𝑐∗
𝑖
−𝑚𝑡

𝑖
|2 by (1 − 𝜀)2. These factors – 1/(1+𝜀 )2 and 1/(1−𝜀 )2 –

are essential for the analysis. If we did not have them, we would

get Θ̃(𝑘) instead of 𝑂 (1/𝜀 log𝑘 log log𝑘) approximation!

We now use the following inequality: For all positive numbers 𝑎, 𝑏

and 𝜀 ∈ (0, 1), we have

max

{
𝑏2

(1 + 𝜀)2
− 𝑎2, 𝑏2 − 𝑎2

(1 − 𝜀)2

}
≤ (𝑏 − 𝑎)2

2𝜀 − 𝜀2
≤ (𝑏 − 𝑎)2

𝜀
. (5)

This inequality can be verified by dividing the left and right hand

sides by 𝑎2 and solving the obtained quadratic equation for 𝜆 = 𝑏/𝑎.
We have

𝑝𝑥,𝑐∗,𝑡 ≤ 1

𝑑 𝑅2𝑡

𝑑∑︁
𝑖=1

(𝑥𝑖 − 𝑐∗
𝑖
)2

𝜀
=

∥𝑥 − 𝑐∗∥2
2

𝜀𝑑 𝑅2𝑡

.

Note that the separation probability is proportional to the squared

distance between 𝑥 and its tentative center 𝑐∗ (i.e., ∥𝑥 −𝑐∗∥2
2
) rather

than the distance ∥𝑥 − 𝑐∗∥2 itself.
In Section 6, we are going to use a slightly different version of

inequality (5) to bound the probability that 𝑥 and 𝑐∗ are separated
using a particular cut (𝑖, 𝜉) (see Claim 6.9).

We use the upper bound on the separation probability to obtain

a convenient bound on the expected final cost of 𝑥 :

E[∥𝑥 − T (𝑥)∥2
2
| T𝑡∗ ] ≤

≤4∥𝑥 − 𝑐∗∥2
2
+ E

[ 𝑡∗∗−1∑︁
𝑡=𝑡∗

∥𝑥 − 𝑐∗∥2
2

𝜀𝑑𝑅2𝑡

·min

{
2𝐷2

𝑡 , 𝐴𝑘𝑀
2

𝑡

}
| T𝑡∗

]
=∥𝑥 − 𝑐∗∥2

2
·
(
4 + E

[
1

𝜀𝑑

𝑡∗∗−1∑︁
𝑡=𝑡∗

min

{
2𝐷2

𝑡 , 𝐴𝑘𝑀
2

𝑡

}
𝑅2𝑡

| T𝑡∗
])
.

Thus,

E
[ ∥𝑥 − T (𝑥)∥2

2

∥𝑥 − 𝑐∗∥2
2

| T𝑡∗
]
≤

≤ 4 + E
[
1

𝜀𝑑

𝑡∗∗−1∑︁
𝑡=𝑡∗

min

{
2𝐷2

𝑡 , 𝐴𝑘𝑀
2

𝑡

}
𝑅2𝑡

| T𝑡∗
]
. (6)

Our goal is to bound the right hand side of this inequality by

𝑂 (1/𝜀 log𝑘 log log𝑘).
In Lemma 6.1, we show that 𝑅𝑡 ≈ 𝐷𝑡 . Specifically, 1/

√
2𝑅𝑡 ≤ 𝐷𝑡 ≤

2𝑅𝑡 . This inequality would be trivial if𝑚
𝑡
was one of the centers 𝑐 𝑗 .

However, generally speaking, this is not the case. In fact,𝑚𝑡
does

not have to belong to the convex hull of centers in𝐶𝑡 . Nevertheless,

𝐷𝑡 ∈ [1/√2𝑅𝑡 , 2𝑅𝑡 ] because𝑚𝑡
is the median of 𝐶𝑡 (see Lemma 6.1).

It is easy to see that the diameter 𝐷𝑡 is a non-increasing function

of 𝑡 (since 𝐶𝑡+1 ⊂ 𝐶𝑡 ) and𝑀𝑡 is a non-decreasing function of 𝑡 . In

Lemma 6.2, we show that, in fact,𝐷𝑡 decreases by a factor of 2 every

𝐿 = Θ(𝑑 ln𝑘) steps with high probability. That is, 𝐷𝑡+𝐿 ≤ 𝐷𝑡/2.
This happens because for every step 𝑡 , each pair of centers 𝑐′ and 𝑐′′

with ∥𝑐′ −𝑐′′∥2 ≥ 𝐷𝑡/2 assigned to 𝑢𝑡 is separated with probability

at least Ω(1/𝑑) (see Corollary 6.4). So, in 𝐿 = Θ(𝑑 ln𝑘) steps all pairs
of centers in 𝐶𝑡 at distance at least 𝐷𝑡/2 are separated with high

probability.

We upper bound the right hand side of (6). Write

1

𝜀𝑑

𝑡∗∗−1∑︁
𝑡=𝑡∗

min

{
2𝐷2

𝑡 , 𝐴𝑘𝑀
2

𝑡

}
𝑅2𝑡

≤

≤
∑︁

𝑡 ∈{𝑡∗,· · · ,𝑡∗∗−1}
𝐴𝑘𝑀

2

𝑡 ≤2𝐷2

𝑡

𝐴𝑘𝑀
2

𝑡

𝜀𝑑𝑅2𝑡

+
∑︁

𝑡 ∈{𝑡∗,· · · ,𝑡∗∗−1}
2𝐷2

𝑡<𝐴𝑘𝑀
2

𝑡

2𝐷2

𝑡

𝜀𝑑𝑅2𝑡

≤
∑︁

𝑡 ∈{𝑡∗,· · · ,𝑡∗∗−1}
2𝐷2

𝑡 ≥𝐴𝑘𝑀
2

𝑡

4𝐴𝑘𝑀
2

𝑡

𝜀𝑑𝐷2

𝑡︸                       ︷︷                       ︸
Σ𝐼

+
∑︁

𝑡 ∈{𝑡∗,· · · ,𝑡∗∗−1}
2𝐷2

𝑡<𝐴𝑘𝑀
2

𝑡

8

𝜀𝑑

︸                ︷︷                ︸
Σ𝐼 𝐼

. (7)

Consider the first sum, Σ𝐼 on the right hand side of (7). It is upper

bounded by 2𝐿 times the maximum term in that sum, because 𝐷𝑡

halves every 𝐿 steps and therefore (𝑀𝑡/𝐷𝑡 )2 increases by 4 times

every 𝐿 steps. The maximum term in Σ𝐼 is, in turn, upper bounded

by 8/(𝜀𝑑) (because 2𝐷2

𝑡 ≥ 𝐴𝑘𝑀
2

𝑡 for all terms in Σ𝐼 ).
Now consider the second sum, Σ𝐼 𝐼 on the right hand side of

(7). Let 𝑡 ′ be the first step 𝑡 for which 2𝐷2

𝑡 < 𝐴𝑘𝑀
2

𝑡 . Using that

𝐷𝑡+𝐿 ≤ 𝐷𝑡/2, we obtain the following upper bound on the number
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of steps 𝑡 < 𝑡∗∗ in Σ𝐼 𝐼 :

𝑡∗∗ − 𝑡 ′ ≤ 𝐿 + 𝐿 · log
2

𝐷𝑡 ′

𝐷𝑡∗∗−1
≤

≤ 𝐿 + 𝐿 · log
2

√︁
𝐴𝑘/2 𝑀𝑡 ′

𝐷𝑡∗∗−1
≤ 𝐿 + 𝐿 · log

2

√︁
𝐴𝑘/2 𝑀𝑡∗∗−1
𝐷𝑡∗∗−1

.

The last inequality holds because𝑀𝑡 is a non-decreasing function

of 𝑡 . Recall, that the distance to the fallback center, 𝑀𝑡 is upper

bounded by ∥𝑥 −𝑐∗∥2 +𝐷𝑡 for every step 𝑡 ∈ {𝑡∗, · · · , 𝑡∗∗ −1}. Also,
by the definition of stopping time 𝑡∗∗, for every 𝑡 < 𝑡∗∗, we have
𝐷𝑡 > ∥𝑥 − 𝑐∗∥2. Thus,

𝑀𝑡∗∗−1
𝐷𝑡∗∗−1

≤ ∥𝑥 − 𝑐∗∥2 + 𝐷𝑡∗∗−1
𝐷𝑡∗∗−1

≤ 2.

Therefore, 𝑡∗∗ − 𝑡 ′ ≤ 𝐿 · (1 + log
2

√︁
2𝐴𝑘 ). Consequently, the second

sum, Σ𝐼 aswell as Σ𝐼+Σ𝐼 𝐼 are upper bounded by𝑂 ((𝐿 log𝐴𝑘 )/(𝜀𝑑)) =
𝑂 (1/𝜀 log𝑘 log𝐴𝑘 ). We obtained the following bound:

E
[ ∥𝑥 − T (𝑥)∥2

2

∥𝑥 − 𝑐∗∥2
2

| T𝑡∗
]
≤ 𝑂 (1/𝜀 log𝑘 log𝐴𝑘 ) .

Therefore, 𝐴𝑘 ≤ 𝑂 (1/𝜀 log𝑘 log𝐴𝑘 ). This recurrence relation gives

us an upper bound of 𝑂 (1/𝜀 log𝑘 log log𝑘) on 𝐴𝑘 . This concludes

the proof overview of Theorem 3.

4.2 Expected Number of Leaves
We show that the expected number of leaves in the threshold tree

given by our algorithm is at most 𝑒𝛿/2𝑘 . Particularly, for 𝛿 ∈ (0, 1),
the expected number of leaves is at most (1 + 𝛿)𝑘 . We now give an

overview of the analysis. We provide a complete proof in Section 5.

In this section, we consider the case when the space is one di-

mensional. That is, all centers and data points lie on the real line.

Consider a fixed center 𝑐 . Let 𝑁𝑐 (T ) be the number of leaves in

tree T containing 𝑐 . We show that E[𝑁𝑐 (T )] is at most 𝑒𝛿/2.
Suppose 𝑐 is assigned to node 𝑢 at step 𝑡 (note that 𝑐 may be

assigned to several nodes). Denote the total number of centers

assigned to 𝑢 by 𝑘′ = |𝐶𝑢 |. We prove by induction on 𝑘′ that the
expected number of leaves to which 𝑢 is assigned in the subtree

rooted at𝑢 is at most (1+5𝜀)log2 𝑘 ′
. If 𝑘′ = 1, then the claim trivially

holds, since 𝑢 is a leaf. Assume 𝑘′ > 1.

Our algorithm divides 𝑢 into two parts 𝑢𝑙𝑒 𝑓 𝑡 and 𝑢𝑟𝑖𝑔ℎ𝑡 . One of

them contains the median𝑚𝑢
. We call that part the main child and

denote it by 𝑢′. In turn, the main child 𝑢′ is also divided into two

parts, one of them – denoted by 𝑢′′ – is the main child of 𝑢′. We

call the sequence of nodes 𝑢,𝑢′, 𝑢′′, . . . the main branch rooted at 𝑢.

Note that the main child always contains at least half of all centers

assigned to its parent. This is the case, because𝑚𝑢
is the median

of all centers assigned to 𝑢. Thus, the part containing𝑚𝑢
contains

at least half of all centers in 𝐶𝑢 , and the other (secondary) child

contains at most half of all centers in 𝐶𝑢 .

Suppose that center 𝑐 is assigned to a node 𝑣 in the main branch

𝑢,𝑢′, 𝑢′′, . . . . When 𝑣 is divided into two parts, one of the following

three events may occur: (1) 𝑐 is assigned only to the main child of 𝑣 ;

(2) 𝑐 is assigned to both the main and secondary children of 𝑣 ; (3) 𝑐

is assigned only to the secondary child of 𝑣 . Denote these events by

E1, E2, and E3, respectively. We estimate the number of nodes𝑤

such that 𝑐 is assigned to𝑤 , and𝑤 is a secondary child of a node in

the main branch. This number equals to the number of events E2

that occur in the main branch before the first event E3 occurs plus

1. If the probabilities of events E1, E2, and E3 were the same for all

nodes in the main branch containing 𝑐 , the expected number above

would be equal to 1/P(E3 | E2 ∪ E3). Without loss of generality

assume that𝑚𝑢 = 0, then for 𝜀 ≤ 1/10, we have

1

P(E3 | E2 ∪ E3)
=
P(E2 ∪ E3)
P(E3)

=
𝑐2

(1 − 𝜀)2𝑅2𝑡

/
𝑐2

(1 + 𝜀)2𝑅2𝑡

=
(1 + 𝜀)2
(1 − 𝜀)2

≤ 1 + 5𝜀.

Every secondary child𝑤 contains at most 𝑘′/2 centers. So, by the

inductive hypothesis, the expected number of leaves containing 𝑐

in the subtree rooted at𝑤 is at most (1 + 5𝜀) ⌊log2 𝑘 ′/2⌋
. Therefore,

the expected number of leaves containing 𝑐 in the subree rooted at

𝑢 is at most

(1 + 5𝜀) · (1 + 5𝜀) ⌊log2 𝑘
′/2⌋ ≤ (1 + 5𝜀) ⌊log2 𝑘

′ ⌋ .

This concludes the proof of the inductive claim. We now observe

that

E[𝑁𝑐 (T )] ≤ (1 + 5𝜀) ⌊log2 𝑘 ⌋ ≤ 𝑒𝛿/2

for 𝜀 ≤ 𝛿
15 ln𝑘

.

5 EXPECTED NUMBER OF LEAVES
In this section, we prove a bound the expected number of leaves

in the threshold tree constructed by our algorithm. Our algorithm

assigns all centers 𝑐1, . . . , 𝑐𝑘 to the root 𝑟 of the threshold tree

T . Then, it recursively divides centers assigned to every node 𝑢

between its children. However, centers in a narrow strip 𝐿𝑒 𝑓 𝑡 ∩
𝑅𝑖𝑔ℎ𝑡 are shared by the both children of node 𝑢. Thus, the total

number of leaves in the threshold tree T may be larger than 𝑘 . Let

𝑁 (T ) be the number of leaves in T . We show an upper bound

of 𝑒𝛿/2𝑘 on the expected number of leaves E[𝑁 (T )], where the
expectation is over the randomness of our algorithm.

Theorem 5.1. For every set of centers 𝑐1, 𝑐2, . . . , 𝑐𝑘 in R𝑑 and
every 𝛿 ∈ (0, ln𝑘/32), the expected number of leaves in the threshold
tree T given by our algorithm is at most

ET [𝑁 (T )] ≤ 𝑒𝛿/2𝑘.

In particular, for 𝛿 ∈ (0, 1),
ET [𝑁 (T )] ≤ (1 + 𝛿)𝑘.

Proof. For every center 𝑐 , we bound the expected number of

leaves containing 𝑐 by 𝑒𝛿/2. Consider a fixed center 𝑐 . For a node 𝑢

in the threshold tree T , let 𝑁𝑢
𝑐 (T ) denote the number of leaves in

the subtree of T rooted at node 𝑢 to which center 𝑐 is assigned to.

Definition 5.2. For every integer 𝑘′ ∈ {1, 2, . . . , 𝑘}, let 𝐵𝑘 ′ be the
minimum number such that the following inequality holds for every
partially built tree T𝑡 and every leaf 𝑢 with |𝐶𝑢 | ≤ 𝑘′ in T𝑡 to which
center 𝑐 is assigned,

E[𝑁𝑢
𝑐 (T ) | T𝑡 ] ≤ 𝐵𝑘 ′ .

That is, 𝐵𝑘 ′ is an upper bound on the expected number of leaves

in the subtree rooted at 𝑢 that contain 𝑐 if at most 𝑘′ centers are
assigned to 𝑢. To prove Theorem 5.1, it is sufficient to show that 𝐵𝑘
is at most 1 + 𝛿 . We derive the following recurrence relation on 𝐵𝑘 ′ .
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Lemma 5.3. The upper bound on the expected number of leaves
𝐵𝑘 ′ satisfies the following recurrence relation:

𝐵1 = 1, (8)

𝐵𝑘 ′ ≤ (1 + 5𝜀)𝐵⌊𝑘 ′/2⌋ , (9)

where 𝜀 = min{𝛿/15 ln𝑘, 1/384}.

Proof. It is easy to see that 𝐵1 = 1, because if 𝑐 is the only

center assigned to node 𝑢, then 𝑢 is a leaf and 𝑁𝑢
𝑐 (T ) = 1. We now

prove (9). Consider a partially built tree T𝑡 , node 𝑢 in T𝑡 , and center
𝑐 in 𝑋𝑢 for which inequality (5.2) is tight i.e., 𝐵𝑘 ′ = E[𝑁𝑢

𝑐 (T ) | T𝑡 ].
Examine the call of function Divide-and-Share that splits node 𝑢.

Let 𝑖𝑡 be the coordinate randomly chosen for this call of function

Divide-and-Share. Without loss of generality, we assume that 𝑐𝑖 ≥
𝑚𝑢
𝑖
. If 𝜎𝑡 is negative, then center 𝑐 is assigned only to the right child

of 𝑢. In this case, the expected number of leaves containing 𝑐 in the

subtree rooted at 𝑢 is at most 𝐵𝑘 ′ .

We now consider the case when 𝜎𝑡 = 1. Define three disjoint

events: (1) center 𝑐 is assigned only to the left child of 𝑢 and 𝜎𝑡 = 1;

(2) center 𝑐 is assigned to both children of 𝑢 and 𝜎𝑡 = 1; (3) center

𝑐 is assigned only to the right child of 𝑢 and 𝜎𝑡 = 1. Denote these

events by E1, E2, and E3, respectively.

The number of centers assigned to node𝑢 is 𝑘′. Thus, the number

of centers assigned to each child of 𝑢 is at most 𝑘′. Moreover, if

𝜎𝑡 = 1, the number of centers assigned to the right child 𝑢𝑟𝑖𝑔ℎ𝑡 of
𝑢 is at most ⌊𝑘′/2⌋, because𝑚𝑢

is the median of all centers in 𝐶𝑢
and for all centers 𝑐′ assigned to 𝑢𝑟𝑖𝑔ℎ𝑡 , 𝑐

′
𝑖
> 𝑚𝑢

𝑖
. Hence, if event

E1 occurs, then the expected number of leaves containing 𝑐 in the

subtree rooted at 𝑢 is bounded by 𝐵𝑘 ′ . If event E2 occurs, then the

expected number of leaves containing 𝑐 in the subtree rooted at 𝑢

is bounded by 𝐵𝑘 ′ + 𝐵⌊𝑘 ′/2⌋ . Finally, if event E3 occurs, then the

expected number of leaves containing 𝑐 in the subtree rooted at 𝑢

is bounded by 𝐵⌊𝑘 ′/2⌋ .Let 𝑝𝑡,1 = P(E1 | T𝑡 ), 𝑝𝑡,2 = P(E2 | T𝑡 ), and
𝑝𝑡,3 = P(E3 | T𝑡 ). Thus,

E[𝑁𝑢
𝑐 (T ) | T𝑡 ] ≤

≤ 1/2 · 𝐵𝑘 ′ + 𝐵𝑘 ′ · 𝑝𝑡,1 +
(
𝐵𝑘 ′ + 𝐵⌊𝑘 ′/2⌋

)
𝑝𝑡,2 + 𝐵⌊𝑘 ′/2⌋ · 𝑝𝑡,3

=

(
1/2 + 𝑝𝑡,1 + 𝑝𝑡,2

)
𝐵𝑘 ′ +

(
𝑝𝑡,2 + 𝑝𝑡,3

)
𝐵⌊𝑘 ′/2⌋ .

Since 1/2 + 𝑝𝑡,1 + 𝑝𝑡,2 + 𝑝𝑡,3 = 1, we have

𝐵𝑘 ′ = E[𝑁𝑢
𝑐 (T ) | T𝑡 ] ≤

(
1 − 𝑝𝑡,3

)
𝐵𝑘 ′ +

(
𝑝𝑡,2 + 𝑝𝑡,3

)
𝐵⌊𝑘 ′/2⌋ .

Thus,

𝐵𝑘 ′ ≤
𝑝𝑡,2 + 𝑝𝑡,3

𝑝𝑡,3
𝐵⌊𝑘 ′/2⌋ =

P(E2 ∪ E3 | T𝑡 )
P(E3 | T𝑡 )

𝐵⌊𝑘 ′/2⌋ .

Compute P(E2 ∪ E3 | T𝑡 ) and P(E3 | T𝑡 ):

P(E2 ∪ E3 | T𝑡 ) =

=
1

2𝑑

𝑑∑︁
𝑖=1

P
{��𝑐𝑖 −𝑚𝑡

𝑖

�� ≥ (1 − 𝜀)
√︁
𝜃𝑡𝑅𝑡

}
=

1

2𝑑

𝑑∑︁
𝑖=1

(𝑐𝑖 −𝑚𝑡
𝑖
)2

(1 − 𝜀)2𝑅2𝑡
;

P(E3 | T𝑡 ) =

=
1

2𝑑

𝑑∑︁
𝑖=1

P
{��𝑐𝑖 −𝑚𝑡

𝑖

�� ≥ (1 + 𝜀)
√︁
𝜃𝑡𝑅𝑡

}
=

1

2𝑑

𝑑∑︁
𝑖=1

(𝑐𝑖 −𝑚𝑡
𝑖
)2

(1 + 𝜀)2𝑅2𝑡
.

Therefore, we have

𝐵𝑘 ′ ≤ 𝐵⌊𝑘 ′/2⌋ ·
𝑑∑︁
𝑖=1

(𝑐𝑖 −𝑚𝑡
𝑖
)2

(1 − 𝜀)2𝑅2𝑡

/
𝑑∑︁
𝑖=1

(𝑐𝑖 −𝑚𝑡
𝑖
)2

(1 + 𝜀)2𝑅2𝑡
=

=
(1 + 𝜀)2
(1 − 𝜀)2

𝐵⌊𝑘 ′/2⌋ ≤ (1 + 5𝜀)𝐵⌊𝑘 ′/2⌋ .

where the last inequality holds because 𝜀 ≤ 1/10. □

We now bound the expected number of leaves in the threshold

tree T . By Lemma 5.3, the expected number of leaves containing

center 𝑐 in the threshold tree T is at most

E[𝑁 𝑟
𝑐 (T )] ≤ 𝐵𝑘 ≤ (1 + 5𝜀) ⌊log2 𝑘 ⌋ · 𝐵1 ≤

≤
(
1 + 𝛿

3 ln𝑘

)
log

2
𝑘
≤

(
𝑒

𝛿
3 ln𝑘

)
log

2
𝑘
< 𝑒𝛿/2 .

Since 𝑒𝛿/2 < 1 + 𝛿 for 𝛿 ∈ (0, 1), we have for 𝛿 ∈ (0, 1)

E[𝑁 𝑟
𝑐 (T )] ≤ 𝑒𝛿/2 ≤ 1 + 𝛿.

□

6 APPROXIMATION FACTOR
We now prove Theorem 4.1. Our proof follows the outline given in

Section 4. We fix a point 𝑥 , step 𝑡∗, and estimate E[∥𝑥 − T (𝑥)∥2
2
|

T𝑡∗ ]. Let 𝑐∗ = T𝑡∗ (𝑥) be the tentative center assigned to 𝑥 at step

𝑡∗. As in Section 4, let 𝑢𝑡 be the leaf node of T𝑡 that contains 𝑥 ,

𝐶𝑡 = 𝐶𝑢𝑡 , 𝑅𝑡 = 𝑅𝑢𝑡 , and𝑚
𝑡 = 𝑚𝑢𝑡

. We denote the diameter of 𝐶𝑡
by 𝐷𝑡 .

6.1 Bounds on the Diameter
We prove several facts about the diameter 𝐷𝑡 . First, we show that

𝐷𝑡 ≈ 𝑅𝑡 .

Lemma 6.1. For every leaf node 𝑢 in a partially built tree T𝑡 , we
have

1/√2𝑅𝑢 ≤ 𝐷𝑢 ≤ 2𝑅𝑢 .

Proof. The second bound easily follows from the triangle in-

equality: for every 𝑐′ and 𝑐′′ in 𝐶𝑢 ,

∥𝑐′ − 𝑐′′∥2 ≤ ∥𝑐′ −𝑚𝑢 ∥2 + ∥𝑚𝑢 − 𝑐′′∥2 ≤ 2𝑅𝑢 .

We now show the first bound. Let 𝑐 be the farthest center in 𝐶𝑢
from𝑚𝑢

. Then, 𝑅𝑢 = ∥𝑐 −𝑚𝑢 ∥2. Consider a center 𝑐′ in 𝐶𝑢 . The

distance between 𝑐 and 𝑐′ is upper bounded by𝐷𝑢 because𝐷𝑢 is the

diameter of 𝐶𝑢 . Hence, for each 𝑐
′
in 𝐶𝑢 , we have ∥𝑐 − 𝑐′∥2

2
≤ 𝐷2

𝑢 .

Thus,

𝐷2

𝑢 ≥ Avg𝑐′∈𝐶𝑢
∥𝑐 − 𝑐′∥2

2
=

= Avg𝑐′∈𝐶𝑢

𝑑∑︁
𝑖=1

|𝑐𝑖 − 𝑐′𝑖 |
2 =

𝑑∑︁
𝑖=1

Avg𝑐′∈𝐶𝑢
|𝑐𝑖 − 𝑐′𝑖 |

2,

where Avg𝑐′∈𝐶𝑢
𝑓 (𝑐′) denotes the average of 𝑓 over 𝑐′ in 𝐶𝑢 . Ob-

serve that

Avg𝑐′∈𝐶𝑢
|𝑐𝑖 − 𝑐′𝑖 |

2 ≥ 1/2|𝑐𝑖 −𝑚𝑢
𝑖 |

2 .

This is because𝑚𝑢
is the median point in𝐶𝑢 , consequently, at least

a half of all points 𝑐′ ∈ 𝐶𝑢 are on the other side of the hyperplane
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{𝑥 : 𝑥𝑖 =𝑚𝑢
𝑖
} from 𝑐 (including centers 𝑐′ on the hyperplane). For

these centers 𝑐′, we have |𝑐𝑖 − 𝑐′
𝑖
| ≥ |𝑐𝑖 −𝑚𝑢

𝑖
|. Therefore,

𝐷2

𝑢 ≥
𝑑∑︁
𝑖=1

Avg𝑐′∈𝐶𝑢
|𝑐𝑖 − 𝑐′𝑖 |

2 ≥ 1/2
𝑑∑︁
𝑖=1

|𝑐𝑖 −𝑚𝑢
𝑖 |

2 = 1/2𝑅2𝑢 .

□

We prove that the diameter 𝐷𝑡 is exponentially decaying with 𝑡 .

To this end, we estimate the probability that two centers 𝑐′ and 𝑐′′

with ∥𝑐′ − 𝑐′′∥2 ≥ 𝐷𝑡/2 are separated at step 𝑡 . We say that two

centers 𝑐′, 𝑐′′ ∈ 𝐶𝑡 are separated at step 𝑡 if 𝑐′ ∉ 𝐶𝑡 or 𝑐
′′ ∉ 𝐶𝑡 .

Lemma 6.2. For every two centers 𝑐′, 𝑐′′ ∈ 𝐶𝑡 at distance at least
𝐷𝑡/2,

Pr

{
𝑐′ ∉ 𝐶𝑡+1 or 𝑐′′ ∉ 𝐶𝑡+1 | T𝑡

}
≥ 1/128𝑑 .

Proof. Suppose, at step 𝑡 , the algorithm picks coordinate 𝑖𝑡 =

𝑖 . For every two centers 𝑐′, 𝑐′′ ∈ 𝐶𝑡 , we consider the following

two cases: (1) 𝑐′ and 𝑐′′ are on the same side of the median𝑚𝑡
in

coordinate 𝑖 (i.e. sign(𝑐′
𝑖
−𝑚𝑡

𝑖
) = sign(𝑐′′

𝑖
−𝑚𝑡

𝑖
)), and (2) 𝑐′ and

𝑐′′ are on the opposite sides of the median𝑚𝑡
in coordinate 𝑖 (i.e.

sign(𝑐′
𝑖
−𝑚𝑡

𝑖
) = − sign(𝑐′′

𝑖
−𝑚𝑡

𝑖
)).

Consider the first case, when 𝑐′ and 𝑐′′ are on the same side of

the median𝑚𝑡
in coordinate 𝑖 . Without loss of generality, assume

that 𝑐′′
𝑖
≥ 𝑐′

𝑖
≥ 𝑚𝑡

𝑖
. Observe that if 𝜎𝑡 = 1, 𝑐′′

𝑖
−𝑚𝑡

𝑖
> (1 + 𝜀)𝑅𝑡

√
𝜃𝑡 ,

and 𝑐′
𝑖
−𝑚𝑡

𝑖
≤ (1− 𝜀)𝑅𝑡

√
𝜃𝑡 , then centers 𝑐′ and 𝑐′′ are separated at

step 𝑡 . Let E𝑡,𝑖,𝑐′ = {𝑖𝑡 = 𝑖, 𝜎𝑡 = 1} be the event that the threshold
cut at step 𝑡 is in coordinate 𝑖 and 𝜎𝑡 = 1. Then, the conditional

probability that 𝑐′ and 𝑐′′ are separated given E𝑡,𝑖,𝑐′ is

P
[
𝑐′𝑖 −𝑚𝑡

𝑖 ≤ (1 − 𝜀)𝑅𝑡
√︁
𝜃𝑡 & 𝑐′′𝑖 −𝑚𝑡

𝑖 > (1 + 𝜀)𝑅𝑡
√︁
𝜃𝑡 | T𝑡 , E𝑡,𝑖,𝑐′

]
= P

{
𝜃𝑡 ∈

[ (𝑐′
𝑖
−𝑚𝑡

𝑖
)2

(1 − 𝜀)2𝑅2𝑡
,
(𝑐′′
𝑖
−𝑚𝑡

𝑖
)2

(1 + 𝜀)2𝑅2𝑡

]}
=

(
(𝑐′′
𝑖
−𝑚𝑡

𝑖
)2

(1 + 𝜀)2𝑅2𝑡
−

(𝑐′
𝑖
−𝑚𝑡

𝑖
)2

(1 − 𝜀)2𝑅2𝑡

)+
,

where (𝑥)+ denotes max{𝑥, 0}.
Now, consider the second case, when 𝑐′ and 𝑐′′ are on the op-

posite sides of the median 𝑚𝑢
in coordinate 𝑖 . Assume without

loss of generality that 𝑐′′
𝑖

≥ 𝑚𝑡
𝑖
≥ 𝑐′

𝑖
and |𝑐′′

𝑖
−𝑚𝑡

𝑖
| ≥ |𝑐′

𝑖
−𝑚𝑡

𝑖
|. If

𝑐′′
𝑖
−𝑚𝑢

𝑖
≥ (1 + 𝜀)𝑅𝑡

√
𝜃𝑡 and 𝜎𝑡 = 1, then 𝑐′ and 𝑐′′ are separated

at this step. Thus, the conditional probability that 𝑐′ and 𝑐′′ are
separated given 𝑖𝑡 = 𝑖 and parameter 𝜎𝑡 = 1 is at least

P
{
𝑐′′𝑖 −𝑚𝑡

𝑖 ≥ (1 + 𝜀)𝑅𝑡
√︁
𝜃𝑡 | T𝑡 , 𝑖𝑡 = 𝑖, 𝜎𝑡 = 1

}
=

(𝑐′′
𝑖
−𝑚𝑡

𝑖
)2

(1 + 𝜀)2𝑅2𝑡
.

Define

𝑎𝑖 = min

{
|𝑐′𝑖−𝑚

𝑡
𝑖 |, |𝑐

′′
𝑖 −𝑚

𝑡
𝑖 |
}

and 𝑏𝑖 = max

{
|𝑐′𝑖−𝑚

𝑡
𝑖 |, |𝑐

′′
𝑖 −𝑚

𝑡
𝑖 |
}
.

Let 𝐼1, 𝐼2 ⊂ {1, 2, . . . , 𝑑} be the set of indices 𝑖 for which 𝑐′
𝑖
and 𝑐′′

𝑖

lie on the same side and opposite sides of𝑚𝑡
, respectively. Then,

Pr

{
𝑐′ ∉ 𝐶𝑡+1 or 𝑐′′ ∉ 𝐶𝑡+1 | T𝑡

}
≥

≥ 1

2𝑑

∑︁
𝑖∈𝐼1

( 𝑏2
𝑖

(1 + 𝜀)2𝑅2𝑡
−

𝑎2
𝑖

(1 − 𝜀)2𝑅2𝑡

)+
+ 1

2𝑑

∑︁
𝑖∈𝐼2

𝑏2
𝑖

(1 + 𝜀)2𝑅2𝑡
.

Now observe that

1

2𝑑

∑︁
𝑖∈𝐼1

( 𝑏2
𝑖

(1 + 𝜀)2𝑅2𝑡
−

𝑎2
𝑖

(1 − 𝜀)2𝑅2𝑡

)+
≥

≥ 1

2𝑑𝑅2𝑡

∑︁
𝑖∈𝐼1

𝑏2
𝑖

(1 + 𝜀)2
−

𝑎2
𝑖

(1 − 𝜀)2

≥ 1

2𝑑𝑅2𝑡

∑︁
𝑖∈𝐼1

𝑏2𝑖 − 𝑎2𝑖 − (2𝜀𝑏2𝑖 + 3𝜀𝑎2𝑖 ).

Similarly, we have

1

2𝑑

∑︁
𝑖∈𝐼2

𝑏2
𝑖

(1 + 𝜀)2𝑅2𝑡
≥

∑
𝑖∈𝐼2 𝑏

2

𝑖
− 2𝜀𝑏2

𝑖

2𝑅2𝑡 𝑑
.

When 𝑐′ and 𝑐′′ are on the same side of𝑚𝑡
in coordinate 𝑖 , we have

𝑏2𝑖 − 𝑎2𝑖 = (𝑏𝑖 − 𝑎𝑖 ) (𝑏𝑖 + 𝑎𝑖 ) ≥ (𝑏𝑖 − 𝑎𝑖 )2 = (𝑐′𝑖 − 𝑐′′𝑖 )
2 .

When 𝑐′ and 𝑐′′ are on the opposite side of𝑚𝑡
in coordinate 𝑖 , we

have

4𝑏2𝑖 ≥ (𝑏𝑖 + 𝑎𝑖 )2 = (𝑐′𝑖 − 𝑐′′𝑖 )
2 .

Note that

∑𝑑
𝑖=1 𝑏

2

𝑖
+𝑎2

𝑖
=

∑𝑑
𝑖=1 (𝑐′𝑖 −𝑚

𝑡
𝑖
)2+ (𝑐′′

𝑖
−𝑚𝑡

𝑖
)2 = ∥𝑐′−𝑚𝑡 ∥2

2
+

∥𝑐′′ −𝑚𝑡 ∥2
2
. Therefore, the probability that 𝑐′ and 𝑐′′ are separated

at step 𝑡 is at least

P
{
𝑐′ ∉ 𝐶𝑡+1 or 𝑐′′ ∉ 𝐶𝑡+1 | T𝑡

}
≥

𝑑∑︁
𝑖=1

(𝑐′
𝑖
− 𝑐′′

𝑖
)2

8𝑑𝑅2𝑡

−
2𝜀𝑏2

𝑖
+ 3𝜀𝑎2

𝑖

2𝑑𝑅2𝑡

≥
∥𝑐′ − 𝑐′′∥2

2

8𝑅2𝑡 𝑑
− 6𝜀

2𝑑
.

where the second inequality is due to

∑𝑑
𝑖=1 2𝜀𝑏

2

𝑖
+3𝜀𝑎2

𝑖
≤ ∑𝑑

𝑖=1 3𝜀𝑏
2

𝑖
+

3𝜀𝑎2
𝑖
= 3𝜀∥𝑐′ −𝑚𝑡 ∥2

2
+ 3𝜀∥𝑐′′ −𝑚𝑡 ∥2

2
≤ 6𝜀𝑅2𝑡 . We conclude that for

centers 𝑐′ and 𝑐′′ with ∥𝑐′ − 𝑐′′∥2
2
≥ 𝐷2

𝑡 /4, we have

P
{
𝑐′ ∉ 𝐶𝑡+1 or 𝑐′′ ∉ 𝐶𝑡+1 | T𝑡

}
≥ 1

2𝑑
·
( 𝐷2

𝑡

16𝑅2𝑡

− 6𝜀

)
≥ 1

2𝑑
·
(
1

32

− 6𝜀

)
≥ 1

128𝑑
.

Here, we used that 𝐷𝑡 ≥ 1/√2𝑅𝑡 and 𝜀 ≤ 1/384. □

We obtain the following corollary from Lemma 6.1.

Lemma 6.3. Let 𝐿 = ⌈640𝑑 ln𝑘⌉. Then, for every 𝑡 , we have

P {𝐷𝑡+𝐿 ≥ 𝐷𝑡/2 | T𝑡 } ≤
1

𝑘3
.

Proof. Consider a fixed time step 𝑡 . Suppose the distance be-

tween centers 𝑐′ and 𝑐′′ is at least 𝐷𝑡/2. Since the diameter 𝐷𝑡 is

non-increasing as 𝑡 increases, the distance between 𝑐′ and 𝑐′′ is
greater than 𝐷𝑡 ′/2 for any step 𝑡 ′ ≥ 𝑡 . By Lemma 6.2, the probabil-

ity that these centers 𝑐′ and 𝑐′′ are separated at step 𝑡 ′ is at least
1/128𝑑.

Thus, these two centers 𝑐′ and 𝑐′′ are not separated in ⌈640𝑑 ln𝑘⌉
steps from step 𝑡 with probability at most(

1 − 1

128𝑑

)
640𝑑 ln𝑘

≤ 𝑒−5 ln𝑘 .
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Since there are at most

(𝑘
2

)
pairs of centers with distance greater

than 𝐷𝑡/2, by the union bound over all such pairs, we have for

𝐿 = ⌈640𝑑 ln𝑘⌉

P {𝐷𝑡+𝐿 ≥ 𝐷𝑡/2 | T𝑡 } ≤
(
𝑘

2

)
· 𝑒−5 ln𝑘 ≤ 1

𝑘3
.

□

To simplify the exposition, we define a stopping time 𝑡∗∗. Let 𝑡∗∗

be the first step 𝑡 > 𝑡∗ of the algorithm when one of the following

happens: (A)𝐷𝑡 ≤ ∥𝑥−𝑐∗∥2 (note: if 𝑐∗ is the only center remaining

in 𝐶𝑡 , then 𝐷𝑡 = 0); (B) 𝑥 and 𝑐∗ are separated before step 𝑡 (i.e.,

𝑐∗ ∉ 𝐶𝑡 ); or (C) 𝐷𝑡 > 𝐷𝑡−𝐿′/2 and 𝑡 ≥ 𝑡∗ + 𝐿′ for 𝐿′ = ⌈1280𝑑 ln𝑘⌉.
For some step 𝑡 , 𝐶𝑡 contains only one center and 𝐷𝑡 = 0. Thus, the

stopping time 𝑡∗∗ is well-defined. We show that it is very unlikely

that the case (C) happens, i.e. 𝐷𝑡∗∗ > 𝐷𝑡∗∗−𝐿′/2 and 𝑡∗∗ ≥ 𝑡∗ + 𝐿′.

Corollary 6.4. Let 𝐿′ = ⌈1280𝑑 ln𝑘⌉ be twice as large as 𝐿 in
Lemma 6.3. Then,

P
{
𝐷𝑡∗∗ > 𝐷𝑡∗∗−𝐿′/2 & 𝑡∗∗ ≥ 𝑡∗ + 𝐿′ | T𝑡∗

}
≤ 1

𝑘
.

Proof. Let 𝐿 = ⌈640𝑑 ln𝑘⌉ be as in Lemma 6.3. We consider the

set of steps

𝑆𝐿 = {𝑡 ≤ 𝑡∗∗ : 𝑡 = 𝑡∗ + 𝐿𝑧, 𝑧 ≥ 1}.
By Lemma 6.3, we have for each step 𝑡 = 𝑡∗ + 𝐿𝑧 in this set 𝑆𝐿

P {𝐷𝑡 > 𝐷𝑡−𝐿/2 | T𝑡−𝐿} ≤
1

𝑘3
.

We consider every step 𝑡 = 𝑡∗ + 𝐿′𝑧 for 𝑧 ≥ 1. If 𝐷𝑡 > 𝐷𝑡−𝐿′/2,
then we have 𝑡∗∗ ≤ 𝑡 . If 𝐷𝑡 ≤ 𝐷𝑡−𝐿′/2, then we must separate at

least one center from𝐶𝑡−𝐿′ in 𝐿′ steps, which means |𝐶𝑡 | < |𝐶𝑡−𝐿′ |.
Since there are at most𝑘 centers in𝐶𝑡∗ , we have at most𝑘 such steps

𝑡 with𝐷𝑡 ≤ 𝐷𝑡−𝐿′/2. Thus, we have 𝑡∗∗ ≤ 𝑡∗+𝐿′𝑘 = 𝑡∗+2𝑘𝐿. Then,
the set of steps 𝑆𝐿 contains at most 2𝑘 steps. By the union bound

over all steps 𝑡 ∈ 𝑆𝐿 , we have 𝐷𝑡 ≤ 𝐷𝑡−𝐿/2 for all steps 𝑡 ∈ 𝑆𝐿 with

probability at least 1− 1/𝑘 . Suppose that 𝐷𝑡 ≤ 𝐷𝑡−𝐿/2 holds for all
steps 𝑡 ∈ 𝑆𝐿 . For every 𝑡

∗ + 𝐿′ ≤ 𝑡 ≤ 𝑡∗∗, there exists a 𝑡 ′ ∈ 𝑆𝐿 such

that 𝑡 −𝐿′ ≤ 𝑡 ′ −𝐿 < 𝑡 ′ ≤ 𝑡 . Since 𝐷𝑡 is a non-increasing sequence,

we have for every 𝑡∗ + 𝐿′ ≤ 𝑡 ≤ 𝑡∗∗

𝐷𝑡 ≤ 𝐷𝑡 ′ ≤ 𝐷𝑡 ′−𝐿/2 ≤ 𝐷𝑡−𝐿′/2.
Therefore, we have 𝐷𝑡∗∗ > 𝐷𝑡∗∗−𝐿′/2 and 𝑡∗∗ ≥ 𝑡∗ + 𝐿′ with proba-

bility at most 1/𝑘 . □

6.2 Cost of Separation
In this section, we complete the proof of Theorem 4.1. The proof is

similar to the overview we gave in Section 4. The key difference is

that we no longer assume that the distance from 𝑥 to the nearest

fallback center does not depend on the cut that separates 𝑥 and 𝑐∗.
To simplify the exposition, from now on, we shall assume that

𝑐∗
𝑖
≥ 𝑥𝑖 for all 𝑖 . Wemake this assumption without loss of generality,

because if 𝑐∗
𝑖
< 𝑥𝑖 for some 𝑖 , we can mirror all centers 𝑐 in 𝐶 and

point 𝑥 across the hyperplane {𝑦𝑖 = 0}, or, in other words, we

can change the sign of the 𝑖-th coordinate for all centers 𝑐 in 𝐶

and point 𝑥 . This transformation does not affect the algorithm but

makes 𝑐∗
𝑖
≥ 𝑥𝑖 .

For every (𝑖, 𝜂) with 𝑥𝑖 ≤ 𝜂 < 𝑐𝑖 , define 𝑀𝑡 (𝑖, 𝜂) as follows:
𝑀𝑡 (𝑖, 𝜂) equals the distance from 𝑥 to the closest center 𝑐′ in 𝐶𝑡

with 𝑐′
𝑖
≤ 𝜂. If there are no centers 𝑐′ in𝐶𝑡 with 𝑐′𝑖 ≤ 𝜂, then we let

𝑀𝑡 (𝑖, 𝜂) = ∞. Observe that if 𝑥 and 𝑐∗ are separated at step 𝑡 , then

𝑥𝑖 ≤ 𝑚𝑡
𝑖 + 𝜎𝑡

√︁
𝜃𝑡𝑅𝑡 < 𝑚𝑡

𝑖 + 𝜎𝑡
√︁
𝜃𝑡𝑅𝑡 + 𝜀

√︁
𝜃𝑡𝑅𝑡︸                         ︷︷                         ︸

𝜂𝑡

< 𝑐∗𝑖 ,

where 𝑖 is the coordinate chosen at step 𝑡 . Thus, if 𝑥 and 𝑐∗ are

separated at step 𝑡 , the distance from 𝑥 to the fallback center is

𝑀𝑡 (𝑖, 𝜂𝑡 ), where 𝜂𝑡 =𝑚𝑡
𝑖
+ 𝜎𝑡

√
𝜃𝑡𝑅𝑡 + 𝜀

√
𝜃𝑡𝑅𝑡 .

At each step 𝑡 , our algorithm calls function Divide-and-Share
with parameters (𝑖𝑡 , 𝜎𝑡 , 𝜃𝑡 ) to split node 𝑢𝑡 . Let 𝜔𝑡 = (𝑖𝑡 , 𝜉𝑡 ) be the
cut chosen by the algorithm for node 𝑢𝑡 where 𝜉𝑡 =𝑚𝑡

𝑖
+ 𝜎𝑡

√
𝜃𝑡𝑅𝑡 ;

𝜔𝑡 is undefined (𝜔𝑡 =⊥), if the algorithm does not make any cut at

step 𝑡 . Note that the cut 𝜔𝑡 is determined by the tuple (𝑖𝑡 , 𝜎𝑡 , 𝜃𝑡 ).
Then, 𝑥 and 𝑐∗ are separated at step 𝑡 by the tuple (𝑖, 𝜎, 𝜃 ) if 𝑐∗ ∈ 𝐶𝑡 ,

𝜔𝑡 = (𝑖,𝑚𝑡
𝑖
+ 𝜎

√
𝜃𝑅𝑡 ) and 𝑥𝑖 ≤ 𝜉𝑡 < 𝜂𝑡 < 𝑐∗

𝑖
. Let 𝑓𝑥,𝑡 (𝑖, 𝜎, 𝜃 ) be

the indicator of the event 𝑥 and 𝑐∗ are separated at step 𝑡 by the

tuple (𝑖, 𝜎, 𝜃 ). If 𝑥𝑖 ≤ 𝑚𝑡
𝑖
+ 𝜎

√
𝜃𝑅𝑡 < 𝑚𝑡

𝑖
+ (𝜎 + 𝜖)

√
𝜃𝑅𝑡 < 𝑐∗

𝑖
, then

𝑓𝑥,𝑡 (𝑖, 𝜎, 𝜃 ) = 1; otherwise, 𝑓𝑥,𝑡 (𝑖, 𝜎, 𝜃 ) = 0.

We define a penalty function 𝑍𝑡 (𝑖, 𝜎, 𝜃 ) for every tuple (𝑖, 𝜎, 𝜃 )
with 𝑖 ∈ {1, 2 . . . , 𝑑}, 𝜎 ∈ {±1}, 𝜃 ∈ (0, 1) as follows:

𝑍𝑡 (𝑖, 𝜎, 𝜃 ) = E
[
∥𝑥 − T (𝑥)∥2

2
| T𝑡 , (𝑖𝑡 , 𝜎𝑡 , 𝜃𝑡 ) = (𝑖, 𝜎, 𝜃 )

]
𝑓𝑥,𝑡 (𝑖, 𝜎, 𝜃 ).

In other words, 𝑍𝑡 (𝑖, 𝜎, 𝜃 ) equals 0 if the tuple (𝑖, 𝜎, 𝜃 ) does not
separate 𝑥 and 𝑐∗ at step 𝑡 . Otherwise, it is equal to the expected

cost of 𝑥 in the final tree T assuming that the algorithm chooses the

tuple (𝑖, 𝜎, 𝜃 ) at step 𝑡 . Note that if 𝑥 and 𝑐∗ are already separated

at step 𝑡 , then 𝑍𝑡 (𝑖, 𝜎, 𝜃 ) = 0.

Claim 6.5. For every step 𝑡 and every tuple (𝑖, 𝜎, 𝜃 ), we have

𝑍𝑡 (𝑖, 𝜎, 𝜃 ) ≤ min

{
2∥𝑥 − 𝑐∗∥2

2
+ 2𝐷2

𝑡 , 𝐴𝑘 𝑀2

𝑡 (𝑖, 𝜂)
}
,

where 𝜂 =𝑚𝑡
𝑖
+ (𝜎 + 𝜀)

√
𝜃𝑅𝑡 .

Proof. If 𝑥 and 𝑐∗ are not separated by the tuple (𝑖, 𝜎, 𝜃 ) at
step 𝑡 or 𝑥 and 𝑐∗ are already separated at step 𝑡 , then we have

𝑍𝑡 (𝑖, 𝜎, 𝜃 ) = 0. Thus, we only need to consider the case when 𝑥 and

𝑐∗ are separated by the tuple (𝑖, 𝜎, 𝜃 ) at step 𝑡 , i.e. 𝑓𝑥,𝑡 (𝑖, 𝜎, 𝜃 ) = 1.

By the triangle inequality, we have

∥𝑥 − T (𝑥)∥2
2
≤ (∥𝑥 − 𝑐∗∥2 + ∥𝑐∗ − T (𝑥)∥2)2 ≤

≤ (∥𝑥 − 𝑐∗∥2 + 𝐷𝑡 )2 ≤ 2∥𝑥 − 𝑐∗∥2 + 2𝐷2

𝑡 .

By Definition 4.3 of the approximation factor 𝐴𝑘 , we have

𝑍𝑡 (𝑖, 𝜎, 𝜃 ) = E
[
∥𝑥 − T (𝑥)∥2

2
| T𝑡 , (𝑖𝑡 , 𝜎𝑡 , 𝜃𝑡 ) = (𝑖, 𝜎, 𝜃 )

]
≤

≤ 𝐴𝑘 ∥𝑥 − T𝑡+1 (𝑥)∥22 = 𝐴𝑘𝑀
2

𝑡 (𝑖, 𝜂) .

Combining these two bounds, we get the conclusion. □

Our goal is to show that 𝐴𝑘 ≤ 𝑂 (1/𝜀 log𝑘 log log𝑘). We prove

Lemma 6.6, which provides the following recurrence relation on𝐴𝑘 :

𝐴𝑘 ≤ max{4,𝐴𝑘/𝑘}+𝛼/𝜀 log𝑘 log𝐴𝑘 . Using this recurrence relation,

we get the desired bound on 𝐴𝑘 .

Lemma 6.6. For some absolute constant 𝛼 , we have

E
[ ∥𝑥 − T (𝑥)∥2

2

∥𝑥 − 𝑐∗∥2
2

| T𝑡∗
]
≤ max{4,𝐴𝑘/𝑘} + 𝛼/𝜀 log𝑘 log𝐴𝑘 . (10)
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Proof. Let 𝑡∗∗ be the stopping time from Corollary 6.4: 𝑡∗∗ is the
first step 𝑡 when (A) 𝐷𝑡 ≤ ∥𝑥 − 𝑐∗∥2 (note: if 𝑐∗ is the only center

remaining in 𝐶𝑡 , then 𝐷𝑡 = 0); (B) 𝑥 and 𝑐∗ are separated before

step 𝑡 (i.e., 𝑐∗ ∉ 𝐶𝑡 ); or (C) 𝐷𝑡 > 𝐷𝑡−𝐿′/2 (where 𝐿′ = 𝑂 (𝑑 ln𝑘)
as in Corollary 6.4; 𝑡 ≥ 𝑡∗ + 𝐿′). Let E𝐴 , E𝐵 , and E𝐶 be events

corresponding to the the stopping rules (A), (B), and (C):

E𝐴 =
{
𝐷𝑡∗∗ ≤ ∥𝑥 − 𝑐∗∥2 & 𝑐∗ ∈ 𝐶𝑡∗∗

}
;

E𝐵 =
{
𝑥 & 𝑐∗ are separated at step 𝑡∗∗ − 1

}
;

E𝐶 =
{
𝐷𝑡∗∗ > 𝐷𝑡∗∗−𝐿′/2 & 𝑡∗∗ ≥ 𝑡∗ + 𝐿′

}
\ (E𝐴 ∪ E𝐵) .

Note that E𝐴 , E𝐵 , and E𝐶 are disjoint collectively exhaustive events

(one of them must always occur) and by Corollary 6.4, Pr(E𝐶 |
T𝑡∗ ) ≤ 1/𝑘 . We further partition E𝐵 into disjoint events

E𝐵,𝑡 = {𝑥 & 𝑐∗ are separated at step 𝑡}.
If event E𝐴 occurs, then the eventual cost of 𝑥 is at most (∥𝑥 −

𝑐∗∥2+𝐷𝑡∗∗ )2 ≤ 4∥𝑥−𝑐∗∥2
2
because every center in𝐶𝑡∗∗ is at distance

at most ∥𝑥 − 𝑐∗∥2 + 𝐷𝑡∗∗ from 𝑥 . If event E𝐵,𝑡 occurs, then the

expected cost of 𝑥 is upper bounded by 𝑍 (𝑖𝑡 , 𝜎𝑡 , 𝜃𝑡 ). Finally, if event
E𝐶 occurs, then the expected cost of 𝑥 in T is upper bounded by

𝐴𝑘 ∥𝑥 − 𝑐∗∥2
2
(because 𝑐∗ is the tentative center for 𝑥 at step 𝑡∗∗).

We have

E
[
∥𝑥 − T (𝑥)∥2

2
| T𝑡∗

]
≤

≤ 4∥𝑥 − 𝑐∗∥2
2
· P(E𝐴 | T𝑡∗ ) +𝐴𝑘 ∥𝑥 − 𝑐∗∥2

2
· P(E𝐶 | T𝑡∗ )

+
∞∑︁

𝑡=𝑡∗
E
[
𝑍𝑡 (𝑖𝑡 , 𝜎𝑡 , 𝜃𝑡 ) | E𝐵,𝑡 , T𝑡∗

]
Pr(E𝐵,𝑡 | T𝑡∗ )

≤ max{4, 𝐴𝑘/𝑘} · ∥𝑥 − 𝑐∗∥2
2

+
∞∑︁

𝑡=𝑡∗
E
[
(𝑍𝑡 (𝑖𝑡 , 𝜎𝑡 , 𝜃𝑡 ) − 4∥𝑥 − 𝑐∗∥2

2
) · 1(E𝐵,𝑡 ) | T𝑡∗

]
.

Let 𝑍𝑡 (𝑖𝑡 , 𝜎𝑡 , 𝜃𝑡 ) = max{𝑍𝑡 (𝑖𝑡 , 𝜎𝑡 , 𝜃𝑡 ) − 4∥𝑥 − 𝑐∗∥2
2
, 0}. Then,

E
[ ∥𝑥 − T (𝑥)∥2

2

∥𝑥 − 𝑐∗∥2
2

| T𝑡∗
]
≤

≤ max{4,𝐴𝑘/𝑘} +
∞∑︁

𝑡=𝑡∗
E
[
𝑍𝑡 (𝑖𝑡 , 𝜎𝑡 , 𝜃𝑡 )
∥𝑥 − 𝑐∗∥2

2

· 1(E𝐵,𝑡 ) | T𝑡∗
]
.

Our goal is to upper bound the second term by 𝛼/𝜀 log𝑘 log𝐴𝑘 .

Write,

E
[
𝑍𝑡 (𝑖𝑡 , 𝜎𝑡 , 𝜃𝑡 ) · 1(E𝐵,𝑡 ) | T𝑡∗

]
=

𝑑∑︁
𝑖=1

E

[ ∫
1

0

𝑍𝑡 (𝑖,−1, 𝜃 ) + 𝑍𝑡 (𝑖, 1, 𝜃 )
2𝑑

𝑑𝜃 · 1{𝑡 < 𝑡∗∗} | T𝑡∗
]
. (11)

Here, we used that parameters 𝑖𝑡 , 𝜎𝑡 , and 𝜃𝑡 are randomly chosen

from {1, . . . , 𝑑}, {±1}, and [0, 1], respectively. We need the follow-

ing lemma, which we prove in Section 6.3.

Lemma 6.7. For every 𝑖 , we have∫
1

0

𝑍𝑡 (𝑖,−1, 𝜃 ) + 𝑍𝑡 (𝑖, 1, 𝜃 )
2

𝑑𝜃 ≤

≤
𝑐∗
𝑖
− 𝑥𝑖

𝜀 (1 − 𝜀)

∫ 𝑐∗𝑖

𝑥𝑖

min{2𝐷2

𝑡 , 𝐴𝑘𝑀
2

𝑡 (𝑖, 𝜂)}
𝑅2𝑡

𝑑𝜂.

Using Lemma 6.7, we can upper bound (11) as follows

E
[
𝑍𝑡 (𝑖𝑡 , 𝜎𝑡 , 𝜃𝑡 ) · 1(E𝐵,𝑡 ) | T𝑡∗

]
≤ 1

𝑑

𝑑∑︁
𝑖=1

𝑐∗
𝑖
− 𝑥𝑖

𝜀 (1 − 𝜀) E
[ 𝑡∗∗−1∑︁
𝑡=𝑡∗

∫ 𝑐∗𝑖

𝑥𝑖

min{2𝐷2

𝑡 , 𝐴𝑘𝑀
2

𝑡 (𝑖, 𝜂)}
𝑅2𝑡

𝑑𝜂 | T𝑡∗
]

=
1

𝑑

𝑑∑︁
𝑖=1

𝑐∗
𝑖
− 𝑥𝑖

𝜀 (1 − 𝜀)

∫ 𝑐∗𝑖

𝑥𝑖

E
[ 𝑡∗∗−1∑︁
𝑡=𝑡∗

min{2𝐷2

𝑡 , 𝐴𝑘𝑀
2

𝑡 (𝑖, 𝜂)}
𝑅2𝑡

| T𝑡∗
]
𝑑𝜂

≤
𝑑∑︁
𝑖=1

2(𝑐∗
𝑖
− 𝑥𝑖 )2

𝑑𝜀
max

𝜂∈[𝑥𝑖 ,𝑐∗𝑖 ]
E
[ 𝑡∗∗−1∑︁
𝑡=𝑡∗

min{2𝐷2

𝑡 , 𝐴𝑘𝑀
2

𝑡 (𝑖, 𝜂)}
𝑅2𝑡

| T𝑡∗
]
.

We now show that for every 𝜂 ∈ [𝑥𝑖 , 𝑐∗𝑖 ] the following bound holds

with probability 1:

𝑡∗∗−1∑︁
𝑡=𝑡∗

min{2𝐷2

𝑡 , 𝐴𝑘𝑀
2

𝑡 (𝑖, 𝜂)}
𝑅2𝑡

≤ 𝑂 (𝑑 log𝑘 log𝐴𝑘 ) . (12)

This will conclude the proof of Lemma 6.6 because (12) implies that

E
[
𝑍𝑡 (𝑖𝑡 , 𝜎𝑡 , 𝜃𝑡 ) · 1(E𝐵,𝑡 ) | T𝑡∗

]
≤ 1

𝑑

𝑑∑︁
𝑖=1

2(𝑐∗
𝑖
− 𝑥𝑖 )2

𝜀
·𝑂 (𝑑 log𝑘 log𝐴𝑘 )

=
2∥𝑐∗ − 𝑥 ∥2

2

𝜀
·𝑂 (log𝑘 log𝐴𝑘 ) .

□

Lemma 6.8. Inequality (12) holds with probability 1.

Proof. By Lemma 6.1, 𝑅𝑡 ≥ 𝐷𝑡/2. Thus,

𝑡∗∗−1∑︁
𝑡=𝑡∗

min{2𝐷2

𝑡 , 𝐴𝑘𝑀
2

𝑡 (𝑖, 𝜂)}
𝑅2𝑡

≤

≤ 8

𝑡∗∗−1∑︁
𝑡=𝑡∗

min{𝐷2

𝑡 , 𝐴𝑘𝑀
2

𝑡 (𝑖, 𝜂)}
𝐷2

𝑡

= 8

𝑡∗∗−1∑︁
𝑡=𝑡∗

min

{
1,
𝐴𝑘 𝑀

2

𝑡 (𝑖, 𝜂)
𝐷2

𝑡

}
.

Let

𝑓𝑡 (𝑖, 𝜂) =
𝐴𝑘 𝑀

2

𝑡 (𝑖, 𝜂)
𝐷2

𝑡

.

Observe that𝑀𝑡 (𝑖, 𝜂) is a non-decreasing sequence and 𝐷𝑡 is a non-

increasing sequence for fixed 𝑖 , 𝜂 and 𝑡 ∈ {𝑡∗, . . . , 𝑡∗∗−1}. Moreover,

by the definition of stopping time 𝑡∗∗, 𝐷𝑡 ≤ 𝐷𝑡−𝐿′/2 for 𝑡 ∈ {𝑡∗ +
𝐿′, . . . , 𝑡∗∗−1}, where 𝐿′ = 𝑂 (𝑑 log𝑘) (see stopping rule (C)). Hence,
𝑓𝑡 (𝑖, 𝜂) is a non-decreasing sequence, and 𝑓𝑡 (𝑖, 𝜂) ≥ 4𝑓𝑡−𝐿′ (𝑖, 𝜂) for
𝑡 ∈ {𝑡∗ + 𝐿′, · · · , 𝑡∗∗ − 1}. Let 𝑡 ′ be the first step 𝑡 in [𝑡∗, 𝑡∗∗ − 1]
when 𝑓𝑡 ′ (𝑖, 𝜂) ≥ 1. If 𝑓𝑡 (𝑖, 𝜂) < 1 for all 𝑡 ∈ {𝑡∗, · · · , 𝑡∗∗ − 1}, then
𝑡 ′ = 𝑡∗∗. We have

1

8

𝑡∗∗−1∑︁
𝑡=𝑡∗

min{2𝐷2

𝑡 , 𝐴𝑘𝑀
2

𝑡 (𝑖, 𝜂)}
𝑅2𝑡

≤

≤
𝑡∗∗−1∑︁
𝑡=𝑡∗

min{1, 𝑓𝑡 (𝑖, 𝜂)} =
𝑡 ′−1∑︁
𝑡=𝑡∗

𝑓𝑡 (𝑖, 𝜂)︸       ︷︷       ︸
Σ𝐼

+
𝑡∗∗−1∑︁
𝑡=𝑡 ′

1︸ ︷︷ ︸
Σ𝐼 𝐼

.
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The first sum (Σ𝐼 ) on the right hand side is upper bounded by

2𝐿′ · 𝑓𝑡 ′ (𝑖, 𝜂), because 𝑓𝑡 (𝑖, 𝜂) ≥ 4𝑓𝑡−𝐿′ (𝑖, 𝜂) for 𝑡 < 𝑡∗∗. In turn,

2𝐿′ · 𝑓𝑡 ′ (𝑖, 𝜂) ≤ 2𝐿′ = 𝑂 (𝑑 log𝑘), because 𝑓𝑡 (𝑖, 𝜂) ≤ 1 for 𝑡 < 𝑡 ′.
The second sum (Σ𝐼 𝐼 ) equals 𝑡

∗∗ − 𝑡 ′. Since 𝑓𝑡 (𝑖, 𝜂) ≥ 4𝑓𝑡−𝐿′ (𝑖, 𝜂)
for every 𝑡 ∈ [𝑡∗ + 𝐿′, 𝑡∗∗ − 1], we have⌊

(𝑡∗∗ − 1) − 𝑡 ′

𝐿′

⌋
≤ log

4

𝑓𝑡∗∗−1 (𝑖, 𝜂)
𝑓𝑡 ′ (𝑖, 𝜂)

≤

≤ log
4
𝑓𝑡∗∗−1 (𝑖, 𝜂) = log

4

(
𝐴𝑘 𝑀

2

𝑡∗∗−1 (𝑖, 𝜂)
𝐷2

𝑡∗∗−1

)
.

It remains to show that𝑀𝑡∗∗−1 (𝑖, 𝜂) = 𝑂 (𝐷𝑡∗∗−1) and thus

𝑡∗∗ − 𝑡 ′ = 𝑂 (𝐿′ log𝐴𝑘 ) = 𝑂 (𝑑 log𝑘 log𝐴𝑘 ) .

We have, 𝑀𝑡∗∗−1 (𝑖, 𝜂) ≤ ∥𝑥 − 𝑐∗∥2 + 𝐷𝑡 ≤ 2𝐷𝑡 , where we used

that for every 𝑡 < 𝑡∗∗, 𝐷𝑡 > ∥𝑥 − 𝑐∗∥2 (see stopping rule (C)). This

finishes the proof of Lemma 6.8. □

6.3 Proof of Lemma 6.7
We first make the following simple but crucial observation.

Claim 6.9. If 𝑍𝑡 (𝑖, 𝜎, 𝜃 ) > 0, then for 𝜂 =𝑚𝑡
𝑖
+ (𝜎 + 𝜀)

√
𝜃𝑅𝑡 , we

have

|𝜂 −𝑚𝑡
𝑖 | ≡ |(𝜎 + 𝜀)

√
𝜃𝑅𝑡 | ≤

𝑐∗
𝑖
− 𝑥𝑖

𝜀
.

Proof of Claim 6.9. If 𝑍𝑡 (𝑖, 𝜎, 𝜃 ) > 0, then the cut with param-

eters 𝑖 , 𝜎 , 𝜃 separates 𝑥 and 𝑐∗ (otherwise, 𝑍𝑡 (𝑖, 𝜎, 𝜃 ) and 𝑍𝑡 (𝑖, 𝜎, 𝜃 )
would be equal to 0). That is, 𝑥𝑖 ≤ 𝑚𝑡

𝑖
+ 𝜎

√
𝜃𝑅𝑡 and 𝑐

∗
𝑖
> 𝑚𝑡

𝑖
+ (𝜎 +

𝜀)
√
𝜃𝑅𝑡 . Write,

𝑐∗𝑖 − 𝑥𝑖 = (𝑐∗𝑖 −𝑚𝑡
𝑖 ) − (𝑥𝑖 −𝑚𝑡

𝑖 ) > (𝜎 + 𝜀)
√
𝜃𝑅𝑡 − 𝜎

√
𝜃𝑅𝑡 = 𝜀

√
𝜃𝑅𝑡 .

Hence,

| (𝜎 + 𝜀)
√
𝜃𝑅𝑡 | =

|𝜎 + 𝜀 |
𝜀

· 𝜀
√
𝜃𝑅𝑡 <

|𝜎 + 𝜀 |
𝜀

(𝑐∗𝑖 − 𝑥𝑖 ) .

□

Proof of Lemma 6.7. We have∫
1

0

𝑍𝑡 (𝑖,−1, 𝜃 ) + 𝑍𝑡 (𝑖, 1, 𝜃 )
2

𝑑𝜃 =
1

2

∑︁
𝜎∈{±1}

∫
1

0

𝑍𝑡 (𝑖, 𝜎, 𝜃 ) 𝑑𝜃 .

Make the substitutions 𝜂𝜎 = 𝑚𝑡
𝑖
+ (𝜎 + 𝜀)𝑅𝑡

√
𝜃 . Then, we have

𝑑𝜃 =
2(𝜂𝜎−𝑚𝑡

𝑖
)

(𝜎+𝜀 )2𝑅2

𝑡

𝑑𝜂𝜎 and∫
1

0

𝑍𝑡 (𝑖,−1, 𝜃 ) + 𝑍𝑡 (𝑖, 1, 𝜃 )
2

𝑑𝜃 =

=
∑︁

𝜎∈{±1}

∫ 𝑚𝑡
𝑖
+(𝜎+𝜀 )𝑅𝑡

𝑚𝑡
𝑖

𝑍𝑡 (𝑖, 𝜎, 𝜃 )
(𝜎 + 𝜀)2𝑅2𝑡

· (𝜂𝜎 −𝑚𝑡
𝑖 ) 𝑑𝜂𝜎 .

By Claim 6.7, |𝜂𝜎 −𝑚𝑡
𝑖
| ≤ |𝜎 + 𝜀 |/𝜀 · (𝑐∗

𝑖
− 𝑥𝑖 ). Since 𝑍 (𝑖, 𝜎, 𝜃 ) ≥ 0,

we have 𝑍 (𝑖, 𝜎, 𝜃 ) = max{𝑍𝑡 (𝑖𝑡 , 𝜎𝑡 , 𝜃𝑡 ) − 4∥𝑥 − 𝑐∗∥2
2
, 0} ≤ 𝑍 (𝑖, 𝜎, 𝜃 ).

As we discuss in the previous section, 𝑍 (𝑖, 𝜎, 𝜃 ) ≤ 𝑍 (𝑖, 𝜎, 𝜃 ) ≤
min{2𝐷2

𝑡 , 𝐴𝑘𝑀
2

𝑡 (𝑖, 𝜂𝜎 )} (see Claim 6.5). Also, if 𝜂𝜎 ∉ [𝑥𝑖 , 𝑐∗𝑖 ], then

𝑥 and 𝑐∗ are not separated by the tuple (𝑖, 𝜎, 𝜃 ), which implies

𝑍 (𝑖, 𝜎, 𝜃 ) = 0. Thus,∫
1

0

𝑍𝑡 (𝑖,−1, 𝜃 ) + 𝑍𝑡 (𝑖, 1, 𝜃 )
2

𝑑𝜃 ≤

≤
𝑐∗
𝑖
− 𝑥𝑖

𝜀 (1 − 𝜀)

∫ 𝑐∗𝑖

𝑥𝑖

min{2𝐷2

𝑡 , 𝐴𝑘𝑀
2

𝑡 (𝑖, 𝜂)}
𝑅2𝑡

𝑑𝜂.

This concludes the proof of Lemma 6.7. □

7 LOWER BOUND ON THE BI-CRITERIA
APPROXIMATION

In this section, we prove Theorem 1.2. We show a lower bound on

the price of explainability for 𝑘-means in the bi-criteria setting. Our

proof follows the general approach by Makarychev and Shan [28].

Theorem 1.2. For every 𝑘 > 500 and ln3 𝑘/
√
𝑘 < 𝛿 < 1/100, there

exists an instance 𝑋 with 𝑘 clusters such that the 𝑘-means cost for
every threshold tree T with (1 + 𝛿)𝑘 leaves is at least

cost(𝑋,T) ≥ Ω

(
log

2 𝑘

𝛿

)
OPT𝑘 (𝑋 ).

Proof of Theorem 1.2. We construct a hard instance for ex-

plainable clustering as follows. Let 𝑑 = 300⌈ln𝑘⌉. Consider the grid
{0, 𝜀, 2𝜀, . . . , 1}𝑑 with step size 𝜀 = 50𝛿/⌈ln𝑘⌉ in the 𝑑-dimensional

unit cube [0, 1]𝑑 .We uniformly sample𝑘 centers𝐶 = {𝑐1, 𝑐2, . . . , 𝑐𝑘 }
from the nodes of the grid. Then, we create a data set 𝑋 . For every

center 𝑐𝑖 in 𝐶 , data set 𝑋 contains many (namely, 𝑘2 ⌈ln3 𝑘⌉) points
co-located with 𝑐𝑖 and two special points 𝑐𝑖±(𝜀, 𝜀, . . . , 𝜀). Hence, the
total number of points in 𝑋 is 𝑘3 ⌈ln3 𝑘⌉ + 2𝑘 . Note that all centers

and all points in 𝑋 lie in the nodes of the grid.

The cost of the 𝑘-means clustering with centers𝐶 = {𝑐1, . . . , 𝑐𝑘 }
equals 2𝑘𝑑𝜀2, since the distance from the special points 𝑐𝑖±(𝜀, . . . , 𝜀)
to 𝑐𝑖 is 𝜀

√
𝑑 . Hence, the cost of the optimal 𝑘-means clustering is at

most 2𝑘𝑑𝜀2. We now show that there exists an instance such that the

cost of every explainable 𝑘-means clustering with (1 + 𝛿)𝑘 centers

is at least 2𝑘𝑑𝜀2 · Ω(1/𝛿 log2 𝑘). In this instance, every explainable

𝑘-means clustering with (1 + 𝛿)𝑘 centers separates at least 𝛿𝑘 =

Ω(𝜀𝑘 ln𝑘) special points 𝑐𝑖 ± (𝜀, 𝜀, . . . , 𝜀) from 𝑐𝑖 . The cost of each

special point separated from its original center is at least Ω(𝑑).
Thus, the total cost of every explainable 𝑘-means clustering is at

least Ω(𝑑𝜀𝑘 ln𝑘) = 2𝑘𝑑𝜀2 ·Ω(1/𝛿 log2 𝑘). First, with high probability
every two centers in 𝐶 are far apart. We use the following lemma

from Makarychev and Shan [28].

Lemma 7.1 (Makarychev and Shan [28]). With probability at
least 1 − 1/𝑘2 the following statement holds: The distance between
every two distinct centers 𝑐′ and 𝑐′′ in 𝐶 is at least

√
𝑑/5.

All data points in𝑋 are in the grid {−𝜀, 0, 𝜀, 2𝜀, . . . , 1, 1+𝜀}𝑑 . Every
internal node 𝑢 in the threshold tree should contain a threshold cut

that separates at least two data points in that node 𝑢. Otherwise,

we can ignore this threshold cut since one side of this cut contains

no data points. If two threshold cuts have the same coordinate and

thresholds within the same grid interval ( 𝑗𝜀, 𝑗𝜀 + 𝜀), then these two

threshold cuts create the same partition of data points contained

in the internal node. Since there are at most 1/𝜀 + 2 different grid

intervals for each coordinate, the number of distinct threshold cuts
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for each internal node is at most 𝑑 (1/𝜀 + 2) ≤ 2𝑑/𝜀. Every node in

the threshold tree corresponds to a cell inR𝑑 . This cell is determined

by the threshold cuts on the path from the root to that node. Let

𝜋 be an ordered set of tuples (𝑖 𝑗 , 𝜉 𝑗 , 𝜆 𝑗 ), where (𝑖 𝑗 , 𝜉 𝑗 ) is the 𝑗-th

threshold cut on the path from the root to the node, and 𝜆 𝑗 ∈ {±1}
specifies one of the sides of the cut. Then, every ordered set 𝜋

corresponds to a path in the threshold tree starting in the root.

Let 𝑢 (𝜋) be the intersection of the cuts in 𝜋 . We say that a center

𝑐𝑖 in 𝑢 (𝜋) is damaged if one of the special points 𝑐𝑖 ± (𝜀, . . . , 𝜀)
is separated from 𝑐𝑖 by one of the threshold cuts in 𝜋 . In other

words, 𝑐𝑖 is damaged if 𝑐𝑖 ∈ 𝑢 (𝜋), but 𝑐𝑖 − (𝜀, . . . , 𝜀) ∉ 𝑢 (𝜋) or
𝑐𝑖 + (𝜀, . . . , 𝜀) ∉ 𝑢 (𝜋). Otherwise, we say that 𝑐𝑖 is not damaged.

Similarly, we say that a node of the grid 𝑥 ∈ 𝑢 (𝜋) is not damaged

if 𝑥 ± (𝜀, . . . , 𝜀) ∈ 𝑢 (𝜋). Let 𝐹𝑢 (𝜋 ) be the set of all centers that are
not damaged in node 𝑢 (𝜋). We show that with high probability, if

a node 𝑢 (𝜋) contains more than

√
𝑘 centers, every threshold cut

that splits node 𝑢 (𝜋) damages at least 𝜀 |𝐹𝑢 (𝜋 ) |/2 centers in 𝐹𝑢 (𝜋 ) .

Lemma 7.2. With probability at least 1 − 1/𝑘 , the following holds:
For every path (ordered set of cuts) 𝜋 of length at most log

2
𝑘/4, we

have (a) |𝐹𝑢 (𝜋 ) | ≤
√
𝑘 ; or (b) every threshold cut that separates at

least two data points in 𝑢 (𝜋) damages at least 𝜀 |𝐹𝑢 (𝜋 ) |/2 centers in
𝐹𝑢 (𝜋 ) .

Proof. Consider a fixed ordered set of cuts 𝜋 of size at most

log
2
𝑘/4. We upper bound the probability that both events (a) and

(b) do not occur for this fixed path 𝜋 on the random instance 𝑋 . If

|𝐹𝑢 (𝜋 ) | ≤
√
𝑘 , then the event (a) happens. So, we assume that 𝐹𝑢 (𝜋 )

contains more than

√
𝑘 centers. We then bound the probability that

event (b) happens conditioned on the size of 𝐹𝑢 (𝜋 ) . Observe that
all centers in 𝐹𝑢 (𝜋 ) are distributed uniformly and independently

among the grid nodes in𝑢 (𝜋) that are not damaged by the cuts in 𝜋

conditioned on |𝐹𝑢 (𝜋 ) |. Pick an arbitrary threshold cut (𝑖, 𝜉) in𝑢 (𝜋)
that separates at least two nodes of the grid in𝑢 (𝜋). For every center
𝑐 in 𝐹𝑢 (𝜋 ) , the probability that the threshold cut (𝑖, 𝜉) damages this

center 𝑐 is at least 𝜀. Let 𝑋 𝑗 be the indicator random variable that

the 𝑗-th center in 𝐹𝑢 (𝜋 ) is damaged by (𝑖, 𝜉). The expected number

of centers in 𝐹𝑢 (𝜋 ) damaged by cut (𝑖, 𝜉) conditioned on |𝐹𝑢 (𝜋 ) | = 𝑙

equals

E
[ 𝑙∑︁
𝑗=1

𝑋 𝑗

��� ��𝐹𝑢 (𝜋 ) �� = 𝑙

]
≥ 𝜀𝑙 .

Let 𝜇 = E[∑𝑗 𝑋 𝑗 | |𝐹𝑢 (𝜋 ) | = 𝑙]. By the Chernoff bound for Bernoulli

random variables, we have

P

{ 𝑙∑︁
𝑗=1

𝑋 𝑗 ≤ 𝜀
��𝐹𝑢 (𝜋 ) �� /2 ��� ��𝐹𝑢 (𝜋 ) �� = 𝑙

}
≤

≤ P
{ 𝑙∑︁
𝑗=1

𝑋 𝑗 ≤ 𝜇/2
��� ��𝐹𝑢 (𝜋 ) �� = 𝑙

}
≤ 𝑒−𝜇/8 ≤ 𝑒−𝜀

√
𝑘/8 .

Combining all conditional probabilities for |𝐹𝑢 (𝜋 ) | >
√
𝑘 , the proba-

bility that the event (b) doesn’t happen is at most 𝑒−𝜀
√
𝑘/8

. Since all

data points are in the grid {−𝜀, 0, 𝜀, 2𝜀, . . . , 1, 1+𝜀}𝑑 , there are at most

2𝑑/𝜀 different threshold cuts that separates at least two data points

in node 𝑢 (𝜋). By the union bound, the probability that both events

(a) and (b) do not happen is at most 𝑒−𝜀
√
𝑘/8 · 2𝑑/𝜀 ≤ 𝑒−2 ln

2 𝑘
. Since

there are at most 4𝑑/𝜀 different choices for each tuple (𝑖 𝑗 , 𝜉 𝑗 , 𝜆 𝑗 )
in 𝜋 , the number of paths with length less than𝑚 = log

2
𝑘/4 is at

most𝑚(4𝑑/𝜀)𝑚 ≤ 𝑒 ln
2 𝑘
. Thus, by the union bound over all paths

with length less than log
2
𝑘/4, we get that (a) or (b) holds with

probability at least

1 −𝑚(4𝑑/𝜀)𝑚 · 𝑒−𝜀
√
𝑘/8 · 2𝑑/𝜀 ≥ 1 − 𝑒 ln

2 𝑘 · 𝑒−2 ln
2 𝑘 ≥ 1 − 1

𝑘
.

since 𝑑/𝜀 ≤ 15000

√
𝑘 ln3 𝑘 for 𝑑 = 300⌈ln𝑘⌉ and 𝜀 = 50𝛿/⌈ln𝑘⌉ ≥

50

√
𝑘 ln2 𝑘 . □

By Lemma 7.1 and Lemma 7.2, we can find an instance 𝑋 such

that the following conditions hold:

• The distance between every two distinct centers 𝑐′ and 𝑐′′

in 𝐶 is at least

√
𝑑/5.

• For every path (ordered set of cuts) 𝜋 of length at most

log
2
𝑘/4, we have (a) |𝐹𝑢 (𝜋 ) | ≤

√
𝑘 ; or (b) every threshold

cut that separates at least two data points in 𝑢 (𝜋) damages

at least 𝜀 |𝐹𝑢 (𝜋 ) |/2 centers in 𝐹𝑢 (𝜋 ) .

We first show that the threshold tree must separate all centers.

Suppose there is a leaf contains more than one center. Since the

distance between every two centers is at least

√
𝑑/5, there exists at

least one center in this leaf with distance greater than

√
𝑑/10 to the

optimal center of this leaf. Since we add 𝑘2 ⌈ln3 𝑘⌉ points co-located
with each center, the cost for the leaf that contains more than one

center is greater than 𝑘2 ⌈ln3 𝑘⌉ ·𝑑/100 = 2𝑘𝑑𝜀2 ·Ω(1/𝛿 log2 𝑘). Thus,
the lower bound holds for any threshold tree that does not separate

all centers. To separate all centers, the depth of the threshold tree

must be at least ⌈log
2
𝑘⌉. We show the following lower bound on the

number of damaged centers for every threshold tree that separates

all centers.

Lemma 7.3. Consider any instance 𝑋 with 𝑘 centers satisfies two
conditions in Lemma 7.1 and Lemma 7.2. For every threshold tree that
separates all centers in 𝐶 , there are at least 2𝛿𝑘 damaged centers.

Proof. Consider any threshold tree T that separates all centers.

We consider the following two cases. If the number of damaged

centers at level ⌊log
2
𝑘⌋/4 of threshold treeT is more than𝑘/2, then

the total number of damaged centers generated by this threshold

tree is more than 2𝛿𝑘 .

If the number of damaged centers at level ⌊log
2
𝑘⌋/4 of thresh-

old tree T is less than 𝑘/2, then the number of centers that are

not damaged at each level 𝑖 = 1, 2, . . . , ⌊log
2
𝑘⌋/4 is at least 𝑘/2.

We call a node 𝑢 a small node if it contains at most

√
𝑘 centers

which are not damaged, otherwise we call it a large node. We

now lower bound the number of centers damaged at a fixed level

𝑖 ∈ {1, 2, · · · , ⌊log
2
𝑘⌋/4}. For every level 𝑖 ∈ {1, 2, · · · , ⌊log

2
𝑘⌋/4},

the number of nodes at level 𝑖 is at most 𝑘1/4. Since each small node

contains at most

√
𝑘 centers that are not damaged, the total number

of centers that are not damaged in small nodes at level 𝑖 is at most

𝑘3/4. Since the total number of centers that are not damaged at

level 𝑖 is at least 𝑘/2, the number of centers that are not damaged

in large nodes at level 𝑖 is at least 𝑘/4. By Lemma 7.2, the number

of damaged centers generated at level 𝑖 is at least 𝜀𝑘/8. Therefore,
the total number of damaged centers generated by this threshold
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tree T is at least

⌊log
2
𝑘⌋

4

· 𝜀𝑘
8

≥
50⌊log

2
𝑘⌋𝛿𝑘

32 ln𝑘
≥ 2𝛿𝑘,

which completes the proof. □

We now lower bound the cost for every threshold tree with

(1 + 𝛿)𝑘 leaves that separates all centers. Consider any threshold

tree T with (1 + 𝛿)𝑘 leaves that separates all centers in 𝐶 . By

Lemma 7.3, we have more than 2𝛿𝑘 data points separated from

their original centers by T . For each point 𝑥 separated from its

original center 𝑐 , one and only one of the following may occur: (1)

the data point 𝑥 is assigned to a leaf containing a center 𝑐′ ≠ 𝑐 ; (2)

the data point 𝑥 is assigned to a leaf containing no center. Among

these 2𝛿𝑘 data points, we show that there are at least 𝛿𝑘 data points

that have distances to their new centers greater than

√
𝑑/20.

For each leaf containing a center 𝑐′, the optimal center for this

leaf is shifted from 𝑐′ by at most 𝜀
√
𝑑 . Otherwise, the cost of this

leaf is at least 𝑘2 ⌈ln3 𝑘⌉ · 𝜀2𝑑 = 2𝑘𝑑𝜀2 · Ω(1/𝛿 log2 𝑘) since there are
𝑘2 ⌈ln3 𝑘⌉ data points co-located at each center. Suppose a point 𝑥

separated from its original center 𝑐 is assigned to a leaf containing a

center 𝑐′ ≠ 𝑐 . By Lemma 7.1 and the triangle inequality, the distance

from the point 𝑥 to the optimal center for this leaf is at least

√
𝑑/10.

For each leaf containing no center, it may contain several points

from distinct clusters. Among these points, there is at most one

point within

√
𝑑/20 distance of the optimal center for this leaf.

Suppose two points 𝑥 ′ and 𝑥 ′′ from distinct clusters are within√
𝑑/20 distance of the optimal center for this leaf. Then, the distance

between 𝑥 ′ and 𝑥 ′′ is at most

√
𝑑/10. Let 𝑐′ and 𝑐′′ be the original

centers for points 𝑥 ′ and 𝑥 ′′ respectively. The distance between
𝑐′ and 𝑐′′ is at most

√
𝑑/10 + 2𝜀

√
𝑑 ≤

√
𝑑/5, which contradicts the

distance between every two centers is at least

√
𝑑/5.

Since the threshold tree T has (1+𝛿)𝑘 leaves, there are 𝛿𝑘 leaves

that do not contain a center. Thus, among points separated from

their original centers, there are at most 𝛿𝑘 points with distance less

than

√
𝑑/20 to their new centers. Since there are more than 2𝛿𝑘

points separated from their original centers, we have at least 𝛿𝑘

points with cost greater than 𝑑/400. Therefore, the cost given by

this threshold tree T is at least

cost(𝑋,T) ≥ 𝛿𝑘 · 𝑑

400

= Ω(𝛿𝑑𝑘) .

Recall that the optimal 𝑘-means cost for this instance is at most

2𝑘𝜀2𝑑 and 𝜀 = 50𝛿/⌈ln𝑘⌉. Thus, the cost given of this explainable

clustering is at least

cost(𝑋,T) = Ω(𝛿𝑑𝑘) ≥ Ω

(
log

2 𝑘

𝛿

)
OPT𝑘 (𝑋 ) .

□
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