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ABSTRACT

We provide a new bi-criteria O(log? k) competitive algorithm for
explainable k-means clustering. Explainable k-means was recently
introduced by Dasgupta, Frost, Moshkovitz, and Rashtchian (ICML
2020). It is described by an easy to interpret and understand (thresh-
old) decision tree or diagram. The cost of the explainable k-means
clustering equals to the sum of costs of its clusters; and the cost of
each cluster equals the sum of squared distances from the points
in the cluster to the center of that cluster. The best non bi-criteria
algorithm for explainable clustering O(k) competitive, and this
bound is tight.

Our randomized bi-criteria algorithm constructs a threshold
decision tree that partitions the data set into (1+9)k clusters (where
0 € (0,1) is a parameter of the algorithm). The cost of this clustering
is at most O(1/s-log? k) times the cost of the optimal unconstrained
k-means clustering. We show that this bound is almost optimal.
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1 INTRODUCTION

In this paper, we study explainable k-means clustering. k-means is
one of the most popular ways to cluster data. It is widely used in
data science and machine learning. A k-means clustering of data
set X in R is determined by its k centers cde? ., k. Specifically,
k-means clustering is a d-dimensional Voronoi diagram for centers
e, ck, in which, the i-th cluster contains those points in X
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that are closer to ¢! than to any other center ¢/. The cost of the
clustering equals

d

in2
2, 2 el

i=1 xeP;

cost(X; e, ck)

1)

where P; is the i-th cluster.

In a recent paper, Dasgupta, Frost, Moshkovitz, and Rashtchian
[14] observed that it can be hard for a human to understand k-means
clustering. Clusters in k-means are determined by all features (coor-
dinates) of the data. Thus, usually there is no a concise explanation
of why a particular point belongs to one cluster or another. To
make k-means more understandable for humans, Dasgupta et al.
[14] proposed an alternative way to cluster data, which they called
explainable k-means. In explainable k-means, the data set is parti-
tioned into clusters using a threshold decision tree with k leaves
(a variant of a binary space partitioning tree). Every internal node
u of the tree splits the data into two disjoint groups based on a
single feature (coordinate). A point x is assigned to the left subtree
of u, if x; < 0; it is assigned to the right subtree of u, if x; > 6.
Points assigned to each of the k leaves form a cluster. The cost of
explainable k-means clustering is defined in the same way as for
k-means. It is equal to the sum of cluster costs:

d
cost(X,T) = > > llx =<'l

i=1 xeP;

where Py, ..., P are clusters; A ¥ are centers of Py,..

and 7 is the decision tree that defines the clustering.

o Prs

Note that explainable k-means clustering can be represented by
a simple decision diagram as in Figure 1. This diagram is easy to
understand, and humans can easily determine to which cluster a
given data point x belongs to.

The cost of explainability or the competitive ratio of an explain-
able k-means clustering is the ratio between the cost of that cluster-
ing and the cost of the optimal unconstrained k-means clustering
for the same data set. Dasgupta et al. [14] showed how to obtain
a k-means clustering with a competitive ratio of O(k?). This com-
petitive ratio was improved to a near-optimal' bound of O(k) by
Makarychev and Shan [28]; Gamlath, Jia, Polak, and Svensson [19];
and Esfandiari, Mirrokni, and Narayanan [16]. This guarantee does
not depend on the size and dimension of the data set. However, it
is large for large data sets. For comparison, the best competitive
ratio for explainable k-medians is exponentially better than O (k).
It equals O(log k) (see Esfandiari et al. [16], Makarychev and Shan
[28]). Nevertheless, Dasgupta et al. [14] and then Frost et al. [18]
empirically demonstrated that, in practice, the price of explainabil-
ity for k-means clustering is fairly small. In this work, we provide a

!t is possible to get a better competitive ratio for low dimensional data. For details,
see Section 1.2
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Figure 1: Explainable and non-explainable k-means. The left diagram shows the optimal Voronoi partition of the plane. The
middle diagram shows an explainable partition. The right diagram shows the corresponding decision tree for explainable
clustering.
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Figure 2: Performance of k-means++ on BioTest data set. The left diagram shows the cost of k-means++ for k = 5,10, 15,.. . ., 200.

The clustering cost is divided by the cost of k-means with 1000 clusters. The right diagram shows the ratio between the clustering

cost with k centers and the cost with (1 + §)k centers for k = 5, 10,...,150 and § = 0.2.

theoretical justification for this observation. Specifically, we show a
bi-criteria approximation algorithm which finds a decision tree with
(1+8)k leaves and has a competitive ratio of O(1/51log? k loglog k),
where § is a parameter between 0 and 1.

We note that in practice the cost of the optimal k-means cluster-
ing is approximately the same for k and (1 + d)k clusters (here
d € (0,1) is a small constant). In other words, for many data
sets X, we have OPTi(X) ~ OPT(q,4)k(X), where OPT(X) is
the cost of the optimal unconstrained k-means clustering of X
with k clusters®. The plot in Figure 2 shows that the cost of k-
means++ clustering for BioTest data set from KDD Cup [15] is
about the same for k and (1 + &)k centers when k is between 50
and 200. If OPTy (X) ~ OPT (146)k(X), then our algorithm gives a

true O(log? k) approximation, because

cost(X, T) < O(log? k) OPTy(X) ~ O(log? k) OPT 14,8k (X).

In the worst case, we may have OPT(145)k (X) < OPTy(X). For example, if X
contains exactly (1+ )k points, then OPT (1,5)x (X) = 0 but OPTx (X) > 0.
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1.1 Our Results

We now formally state our results. We provide a randomized al-
gorithm for finding bi-criteria explainable k-means. Similarly to
the algorithm by Frost et al. [18], our algorithm takes k centers
{cl, 2, ck} and a parameter § > 0 and returns a threshold de-
cision tree with (1 + 8)k leaves. Each leaf of the tree is labeled
with one of the centers ¢!, c?, .. .,ck. Let us denote the center re-
turned by the decision tree 7~ for point x by 7 (x). Then, the cost

of explainable clustering defined by 7~ equals
cost(X,7) = D llx = T(x)Il3- )

xeX

THEOREM 1.1. There exists a polynomial-time randomized algo-
rithm that given a data set X, a set of k centers C = {c},c?, ..., ck},
and parameter § € (0, 1), creates a threshold decision tree T~ whose
leaves are labeled with centers from C. The expected number of leaves
inT is (1+06)k, and the expected cost of explainable clustering defined
by T is

E[cost(X,7)] < O(1/s - log2 kloglogk) - cost(X,C).
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Observe that our algorithm constructs a tree with (1+8)k leaves
and only k centers. Thus, we can use this algorithm to partition X
into k clusters. In this case, one cluster may be assigned to several
different leaves. Alternatively, we can assign its own cluster to
every leaf. Then, we will have a proper threshold decision tree
with (1 + &)k clusters. In either case, we can further improve the
clustering by replacing the original center ¢ assigned to each leaf
u with the optimal center for the cluster assigned to u (the optimal
center is the centroid of that cluster).

If C is the optimal set of centers for k means, then the explainable
clustering provided by our algorithm has an expected cost of at
most O(1/5-1log? k log log k) OPT (X). Furthermore, if C is obtained
by a constant factor bi-criteria approximation algorithm such as
k-means++ (in which case, |C| = (1 + §)k and cost(X,C) < O(1) -
OPTy (X)), then the expected cost of the explainable clustering
is also at most O(1/s - log2 kloglogk) OPT(X) and the number
of leaves in the threshold decision tree is at most (1 + 36)k in
expectation.

As we note above, our work is influenced by the paper of Frost,
Moshkovitz, and Rashtchian [18], who showed a bi-criteria algo-
rithm for explainable k-means. However, our algorithm for this
problem is very different from theirs. It uses the approach from
our previous paper (Makarychev and Shan [28]). In that paper, we
gave an algorithm for finding explainable k-medians with ¢, norm.
Our new algorithm has an additional crucial step: It duplicates
some centers when the algorithm splits nodes. This step gives an
exponential improvement to the competitive ratio for k-means. The
analysis of our algorithm is considerably more involved than the
analysis of the previous algorithm.

We complement our algorithmic results with an almost matching
lower bound of Q(1/s - log? k) for all threshold trees with at most
(1+6)k leaves.

THEOREM 1.2. For every k > 500 and In® k/Vk < 8 < 1/100,
there exists an instance X with k clusters such that the k-means cost
for every threshold tree T~ with (1 + 8)k leaves is at least

cost(X,7T) > Q(

In the full version, we provide a family of k-means instances
for which a greedy bi-criteria algorithm finds a solution of cost

cost(X, T) > Q(k?) OPT(X) for k — co.

1.2 Related Work

Decision trees have been widely used for classification and cluster-
ing due to their simplicity. Examples of decision tree algorithms
for supervised classification include CART by Breiman et al. [10],
ID3 by Quinlan [29], and C4.5 by Quinlan [30]. Examples of deci-
sion tree algorithms for unsupervised clustering include algorithms
by Liu et al. [23], Fraiman et al. [17], Silhouette Metric (Bertsimas
et al. [7]), Saisubramanian et al. [31].

Dasgupta et al. [14] proposed the problems of explainable k-
means and k-medians clustering in #;. They defined these problems
and offered algorithms for explainable k-means and k-medians
with the competitive ratios of O(k?) and O(k), respectively. Later,
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Frost et al. [18] designed a new bi-criteria algorithm for these prob-
lems and evaluated its performance in practice. Laber and Murt-
inho [21], Makarychev and Shan [28], Charikar and Hu [11], Es-
fandiari, Mirrokni, and Narayanan [16], and Gamlath, Jia, Polak,
and Svensson [19] provided improved upper and lower bounds for
explainable k-means and k-medians. The best competitive ratios
for explainable k-means and k-medians are O(k) and O(log k), re-
spectively. Makarychev and Shan [28], Esfandiari et al. [16], and
Gamlath et al. [19] gave a O(k) competitive ratio for explainable
k-means; and Makarychev and Shan [28] and Esfandiari et al. [16]
gave a O(log k) bound for k-medians. Charikar and Hu [11] pro-
vided k1= . poly(dlog k) algorithm for k-means (this algorithm
gives stronger approximation guarantees when the dimension of
the space, d, is small). Additionally, Makarychev and Shan [28] gave
an (3(10g3/ ® n) competitive algorithm for explainable k-medians in
lo.

Boutsidis et al. [8], Boutsidis et al. [9], Makarychev et al. [25],
Cohen et al. [12], and Becchetti et al. [6] showed how to reduce
the dimensionality of a data set for k-means clustering. Particu-
larly, Makarychev et al. [25] proved that we can use the Johnson
Lindenstrauss transform to reduce the dimensionality of k-means
to d’ = O(log k). Note, however, that the Johnson Lindenstrauss
transform cannot be used for the explainable k-means, because this
transform does not preserve the set of features. Instead, one can
use a feature selection algorithm by Boutsidis et al. [9] or Cohen
et al. [12] to reduce the dimensionality to d’ = O(k).

The classic k-means clustering has been extensively studied by
researchers in machine learning and theoretical computer science.
Lloyd’s algorithm (Lloyd [24]) is the most popular heuristic for
k-means clustering. Arthur and Vassilvitskii [4] proposed a ran-
domized seeding algorithm called k-means++, which achieves an
expected O(log k) approximation. Ahmadian, Norouzi-Fard, Svens-
son, and Ward [2] designed a primal-dual algorithm with an ap-
proximation factor of 6.357. It was recently improved to 6.12903
by Grandoni, Ostrovsky, Rabani, Schulman, and Venkat [20]. Das-
gupta [13] and Aloise, Deshpande, Hansen, and Popat [3] showed
that k-means problem is NP-hard. Awasthi et al. [5] showed that
it is also NP-hard to approximate the k-means objective within a
factor of (1 + ¢) for some positive constant ¢ (see also Lee, Schmidt,
and Wright [22]). The bi-criteria approximation for k-means has
also been studied before. Aggarwal, Deshpande, and Kannan [1]
proved that k-means++ that picks (1 + §)k centers gives a constant
factor bi-criteria approximation for some constant § > 0. Later,
Wei [32] and Makarychev, Reddy, and Shan [27] gave improved
bi-criteria approximation guarantees for k-means++. Makarychev,
Makarychev, Sviridenko, and Ward [26] designed local search and
LP-based algorithms with better bi-criteria approximation guaran-
tees.

2 PRELIMINARIES

Consider a set of points X C R? and an integer k > 1. A k-means
clustering consists of k clusters Py, ..., Pr. Each cluster P; is as-
signed a center ¢!, which is the centroid (geometric center) of P;.
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The cost of the clustering equals

cost(X; .., ck)

i2
>l =3,

d
; xX€P;
The optimal k-means clustering is the clustering of the minimum
cost. We denote the cost of the optimal k-means clustering with k
clusters by OPT (X).

A threshold decision tree is a tree that recursively partitions R4
into cells using hyperplane cuts. Every node in the tree corresponds
to a cell (polytope) of the space. The root corresponds to the entire
space RY. In this paper, we will identify nodes of the tree with the
cells they correspond to. Thus, a threshold decision tree defines a
hierarchical partitioning of R into k cells or clusters.

Each internal node (cell) u in the threshold tree is split into two
nodes ujfy and uyigp, using a threshold cut (i, £) as follows:

Uefr ={x €u:x; < £}
We assign a center c to every leaf of the threshold decision tree. Let
T (x) (where x € R?) be the center assigned to the unique leaf u
of 7" that contains x. In this paper, we will also assign centers to
internal nodes of the tree. We will denote the set of centers assigned
to node u by Cy,. For leaf nodes, we have |Cy| = 1.

Consider a data set X and threshold decision tree 7. The k-means
cost of 7~ equals

cost(X,7T) = Z [|x — T(x)||§.
xeX

and  upigp = {x €u:x; > &}

The competitive ratio of explainable clustering defined by 7 is
cost(X,77)/OPT(X). We say that a randomized algorithm is a-
competitive if the expected cost of the explainable clustering re-
turned by the algorithm is at most « cost(X, C), where C is the set
of centers provided to the algorithm.

A bi-criteria solution to explainable k-means clustering with
parameter § is a threshold decision tree with at most (1+8)k leaves.
In this paper, we describe an algorithm that finds a tree with at
most (1 + )k leaves and k distinct centers assigned to them.

3 ALGORITHM

In this section, we present an algorithm for explainable k-means
clustering. The input of the algorithm is a set of centers c!,.. ., ck
and parameter 8. The output is a threshold decision tree in which
every leaf node is labeled with one of the centers c. In Sections 5
and 6, we will show that the expected number of leaves in the
decision tree is (1+J)k and the approximation factor of the obtained

clustering is O(1/s - log? k - log log k).

Algorithm. Our algorithm builds a binary threshold tree using
a top-down approach. The algorithm assigns every node u in the
tree a subset of centers ¢, . . ., ck. We denote this subset Cy. First,
the algorithm creates a tree 77 with a root vertex r and assigns
all centers ¢!, ¢, ..., c¥ to it. Then, the algorithm recursively splits
leaf nodes in the threshold tree until each leaf is assigned exactly
one center. At each step t, the algorithm chooses a coordinate
ir € {1,2,...,d}, a positive threshold 6; € (0, 1), and number o;
in {1} uniformly at random. For each leaf u with more than one
center, it calls function Divide-and-Share to split node u into two
parts.
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Threshold Tree Construction

Input: a data set X and set of centers C = {c},c?, ..., ck}, a
parameter § € (0,1)
Output: a threshold tree 7~

e Create a tree 71 containing a root r. Let C, = C.

e while 7; contains a leaf with at least two distint centers do:

— Sample i; € {1,2,...,d},0; € (0,1), and 0; € {1}
uniformly at random.

— For each leaf u in the tree 77 containing more than one
center, split node u using Divide-and-Share with
parameters u, it, 0;, 0y, and & = min{8/151nk, 1/384}.

- Updatet =t + 1.

Figure 3: Threshold Tree Construction

Function Divide-and-Share

Input: a node u, a coordinate i € {1,...,d}, a positive threshold 6,
anumber o € {+1}, and a parameter ¢
Output: if successful, the function splits u into two parts
o Find the median of all centers assigned to node u. Denote it
by m*.
e Let R, = max{||c — m*||2 : ¢ € Cy} be the maximum
distance from m" to one of the centers in Cj,.
o Let

Left={ceCy:c;

A

mi + oVOR, + eVOR,};
mi + oVOR, — eVOR,}.
o If both sets — Left and Right — are nonempty, then

Right ={c € Cy:c;i >

— Split u into two parts using cut (i, m* + cVORy,).
— Assign the set of centers Lef to the left child uj, ¢, and
the set of centers Right to the right child, u,;gp;.
e Otherwise, return the unmodified tree (in this case, we say
that Divide-and-Share fails).

Figure 4: Function Divide-and-Share

Function Divide-and-Share first finds a median® of all centers
assigned to u, which we denote by m*. Let R,, be the maximum
distance from centers in node u to the median m“. The algorithm
creates two child nodes for u using cut w; = (it, &) with &
m;‘ + 04VO0;Ry,. Then, Divide-and-Share assigns two sets of centers,
Left and Right, defined in Figure 4 to the left and right children
of u, respectively. Note that these sets share centers in the strip of
width 26V0;Ry:

Left N Right ={c e Cy : & — e\/Q_tRu <c <& +€\/9_tRu}.

If one of the sets, Left or Right, is empty, then Divide-and-Share
discards both newly created children of u.

We show that the bi-criteria approximation factor of the algo-
rithm is O(1/51og? k log log k) and the expected number of leaves
is (1 + d)k. In the next section, we give a proof overview. Then,

3Median m* satisfies the following property: For ever coordinate i, each of the sets
{c€Cy:ci <mf}and {c € Cy:c; > m}} contains at most half of all points
from C,,.
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we prove the upper bounds on the expected number of leaves and
approximation factor of the algorithm in Sections 5 and 6, respec-
tively.

4 PROOF OVERVIEW

In this section, we provide an overview of the analysis of our algo-
rithm, give definitions, and discuss the motivation for the proofs.
In Sections 5 and 6, we present detailed proofs.

4.1 Cost of Clustering

We first analyze approximation guarantees for our algorithm. We

show that the expected approximation factor is O(1/8 log? k log log k)
= O(1/elog k loglog k), particularly for constant § (e.g., § = 0.05),

the expected approximation factor is O(log? k loglog k). We de-

note the final tree returned by the algorithm by 7. Let 7 (x) be the

center assigned by the threshold tree 7~ to point x.

THEOREM 4.1. For every set of centers ., ¢k in Rd, everyd €
(0,1), and every x € RY, we have

E[||x—fr(x)||§] < 0(1/s log? kloglogk)  min
cef{c!

enes

o el

This theorem guarantees that the expected approximation factor
for every point x is at most O(1/5 log? k loglog k). Consequently,
the expected approximation factor for any data set X is also bounded
by O(1/5 log? kloglog k).

Fix an arbitrary point x for the entire proof of Theorem 4.1. If
x equals one of the centers ¢/, then 77(x) also always equals c’.
Hence, ||x — T (x) ||§ = 0 and bound (3) trivially holds. So, from now
on, we will assume that x is not one of the centers.

Denote by 7; the tree built by the algorithm in the first (+ — 1)
steps. Tree 77 contains only one node — the root. The root corre-
sponds to the entire space R? and all centers ¢!, ..., c¥ are assigned
to it. Since point x is fixed, we will only consider nodes u in 7~ that
contain x. Let u; be the leaf node of the tree 75 that contains x. That
is, u; is the leaf node that contains x at the beginning of iteration
t. Nodes uy,up, ... form a path in the tree 7 from the root to the
unique leaf of 7~ that contains x. To simplify notation, we denote

Ct=Cy,, Rt =Ry, m'=m".
Also, let D; be the diameter of set C;:
D; =max{||c’ —c"||2: ¢, € C}.

Finally, let 7;(x) be the closest center from the set C; to point x.
We call this center the tentative center for point x at step t. The
tentative cost of x at step ¢ is ||x — ‘7;(x)||§

Initially, at step 1, the tentative center for point x is the closest
center c € {c!,..., ck} to x. If the tentative center for x does not
change, then the eventual cost of x, ||x — ‘T(x)||§ exactly equals
the optimal cost ||x — c||%. However, at some step ¢, point x may
be separated from its tentative center ¢ (see below for a formal
definition), in which case another tentative center 7741 (x) is as-
signed to x. At this step, the tentative cost of x may significantly
increase. Moreover, the tentative cost of x may further increase if
x is separated from the new tentative center. Our goal is to give an
upper bound on the expected total cost increase.
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DEFINITION 4.2. We say that x is separated from its tentative
center ¢ = T (x) at step t, if ¢ ¢ Cpy1.

Note that x is separated from its tentative center ¢ = 7;(x) at
step ¢ if and only if ¢ is no longer the tentative center for x at step
t+1(Tr41(x) # Tr(x)). We now define Ag. Loosely, speaking Ay
is the approximation factor of the algorithm for the given set of
centers cl, .. .,ck and point x. For technical reasons, the formal
definition is more involved.

DEFINITION 4.3. Let A be the smallest number such that the
following inequality holds with probability 1 for every partially built
tree Iy :

Ellx - T(0l3 | 72| < A I - T ()13 @

In this definition, E [||x -7 (x) ||% | ‘7{] is the conditional expec-
tation of the eventual cost of x given that at step ¢ the partially
built tree is 7;. Thus, if at some step ¢, the tentative center for x is c,
then the expected final cost E[||x — 7 (x) ||§ | 7¢] is upper bounded
by Ay ||x — c||§. Observe, that Ay, is well defined and finite, because
7 (x) and 77(x) take at most k different values (namely, values in
{cl,....ckN.

We show an upper bound of O(1/elog k loglog k) on Ay (note:
& = min{6/15Ink,1/384}). To illustrate the proof, we make a num-
ber of simplifying assumptions in this section. The actual proof is
considerably more involved. We give it in Section 6.

Informal Proof of the Upper Bound on Ag. Suppose c* is the
tentative center for x at step ¢*. If at some step t > t*, center ¢* is
separated from x, then we assign a new tentative center to x. We
call this center a fallback center for x. This fallback center depends
on the tree 77 and cut (i, £) that separates x and ¢*. However, to
illustrate the idea behind the proof, let us assume that the distance
from the fallback center to x does not depend on the cut (i, ).
Specifically, we suppose that the distance from x to the fallback
center is M; at step ¢ for every cut (i, £).

We consider four possibilities:

A. Point x and ¢* are never separated.

B. Point x is separated from c¢* at step t and D? <|lx- c*||§

C. Point x is separated from c* at step t and ||x — c*||§ < D? <
ApM? /2.

D. Point x is separated from ¢* at step ¢t and D? > AkM,Z/Z.

In case (A), the cost of x in the resulting tree 7 equals ||x — ¢* ||§.
In cases (B) and (C), the eventual cost of x is upper bounded by
(Dy + |Ix = ¢*|l2)? < ZDE +2||lx — c*||§ because no matter which
center ¢** in Cy is assigned to x in 7, the distance from ¢** to x is
at most ||x — c¢*||2 + [lc* = ¢**|l2 < |lx — ¢*||2 + D¢ (note: D is the
maximum distance between centers in C;). Furthermore, in case (B),
ZD? +2||x = c*||? < 4||x - c*||%. In case (D), after step ¢, the distance
from x to the new tentative center is M;. Hence, by the definition
of A (see Definition 4.3), the expected cost of x in 7~ is bounded
by AkMtZ. To summarize, in case (A) or (B), the final cost of x is at
most 4[|x —c¢* ||% In case (C) and (D), the final cost is upper bounded

by 2||x — c*||§ + min {ZDf,AkMtZ}, where t is the step when x and

¢* are separated.
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Let t** be the first step ¢ of the algorithm, when Dy < ||x — ¢*||2
or ¢ is no longer the tentative center for x. Note that for some step
t, C; contains only one center and D; = 0. Hence, the stopping time
t** is well defined. Let

Pxcrt = P{x & c* are separated at step ¢ | 77}

be the probability that point x is separated from c* at step ¢ condi-
tioned on 7;. Then, we have

E[llx - 7 ()3 | 7] <
-1
<4lx-c*|2+E Z Pr.cy min {2DZ, ALM?Z} | 7 |
t=t*

We need to estimate the probability that x and ¢* are separated
at step t. Observe that if x and ¢* are separated, then x; — mf <
ot VO;R; and ¢ - m > (op + E)\/_Rt or xj — f > o;VOR; and
- mf < (O'[ - e)\/_Rt, where i = i; is the coordinate chosen
by the algorithm. We consider the case when x; and c; are on the
same side of mf, ie. (x; — mf)(c:‘ - mf) > 0. The case when x; and
¢} are on the opposite sides of mf is handled similarly. Since 6; is
uniformly distributed in [0, 1] and coordinate i; is chosen randomly
from {1,...,d}, we have

*
¢

Pxcrt = P{x & c* are separated at step ¢ | 77} <
d
max { 0}.

Remark: In the formula above, we divide |¢} - mf|2 by (1 +¢)?
and |¢} - mf|2 by (1 — £)%. These factors — 1/(1+¢)2 and 1/(1-¢)? -
are essential for the analysis. If we did not have them, we would
get ©(k) instead of O(1/elog k loglog k) approximation!

t|2 _m€|2

—8)2 ’

e} —m
(1+e)?

1

2
dtz:

*
C.
< — |2_| i

(1

—|xi=m; |, |xi—m;

We now use the following inequality: For all positive numbers a, b
and ¢ € (0,1), we have
E

This inequality can be verified by dividing the left and right hand
sides by a® and solving the obtained quadratic equation for A = b/a.
We have

a2

C(1-¢)?

bZ
(1+e)2

2 (b -

>

2

(b—a)? <
2e —¢g2 T

a)° )

*112

llxx = c*|I5
2
ed Ry

(X—C*)2
Pxcrt = RZZ l

Note that the separation probability is proportional to the squared
distance between x and its tentative center ¢* (i.e., ||x — ¢* ||§) rather
than the distance ||x — ¢*||2 itself.

In Section 6, we are going to use a slightly different version of
inequality (5) to bound the probability that x and c¢* are separated
using a particular cut (i, £) (see Claim 6.9).
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We use the upper bound on the separation probability to obtain
a convenient bound on the expected final cost of x:

Ellx = 7 (ll; | 7] <
*)12 o' llx = *113 2 2
<dllx =I5 +E| ) i {2Dh AN} | 7
t=t* €

1t rmn
QZ

=[x — ¢*||3 - (4+E
=t*

AkMZ} |7;*]).

t

Thus,
llx = T ()3 |
= 2 \q.
llx — |13
-1 . 2 2
1 min {2D%, Ap M
capp| Ly min{ZRAM} ) (©)

ed = R?

Our goal is to bound the right hand side of this inequality by
O(1/elogkloglogk).

In Lemma 6.1, we show that R; ~ D;. Specifically, 1/v2R; < D; <
2R;. This inequality would be trivial if m’ was one of the centers ¢/.
However, generally speaking, this is not the case. In fact, m’ does
not have to belong to the convex hull of centers in C;. Nevertheless,
Dy € [1/V2R;, 2R;] because m! is the median of C; (see Lemma 6.1).

It is easy to see that the diameter D; is a non-increasing function
of t (since Ct41 C Ct) and M; is a non-decreasing function of ¢. In
Lemma 6.2, we show that, in fact, D; decreases by a factor of 2 every
L = O(dInk) steps with high probability. That is, Dyy; < D;/2.
This happens because for every step ¢, each pair of centers ¢’ and ¢’/
with ||¢” = ¢”’||2 = D;/2 assigned to u; is separated with probability
at least Q(1/d) (see Corollary 6.4). So, in L = ©(d In k) steps all pairs
of centers in C; at distance at least D; /2 are separated with high
probability.

We upper bound the right hand side of (6). Write

min 2Dt,AkM2}
od Z

t=t*

2 2
< AkMt . 2Dy
= 2 2

te{t*,.-- -1} ngt te{t*,-- 1" -1} Eth
ApM?<2D? 2D?<ApM?
4AM? 8
< -+ = (7)
o edD L
te{t’,-- " -1} t te{t*,.-- t* -1}
2D2>AkM2 2D?<ARM?
1 2

Consider the first sum, X on the right hand side of (7). It is upper
bounded by 2L times the maximum term in that sum, because Dy
halves every L steps and therefore (M;/D;)? increases by 4 times
every L steps. The maximum term in ¥ is, in turn, upper bounded
by 8/(ed) (because ZDf > AkMt2 for all terms in Xj).

Now consider the second sum, Xy on the right hand side of
(7). Let t’ be the first step t for which ZD? < AkMtZ. Using that
Dyy1 < D;/2, we obtain the following upper bound on the number
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of steps t < t** in Iy

" —t' <L+L-log, <
-1
VAR /2 My Ay |2 Mo —
<L+L-logy YAKLEM _p ) 1o, NAKI2 M1
Dy —q Dy 1

The last inequality holds because M; is a non-decreasing function
of t. Recall, that the distance to the fallback center, M; is upper
bounded by ||x —c*||2 + D, for every step t € {t*,---,t** —1}. Also,
by the definition of stopping time t**, for every t < t**, we have
D¢ > ||x = ¢*||2. Thus,

Myer
Pl
Dy

llx = c*ll2 + D=1
D1

< 2.

Therefore, t** — ' < L - (1 +log, y/2A¢). Consequently, the second
sum, >j as well as X1+ 7 are upper bounded by O((Llog Ag)/(ed)) =
O(1/elogk log Ay). We obtained the following bound:

llx = T ()1l

5 | T+ | < O(Y/elogklog A).
llx = c*lI5

Therefore, Ay < O(1/elog klog Ay). This recurrence relation gives
us an upper bound of O(1/elog k loglog k) on Ag. This concludes
the proof overview of Theorem 3.

4.2 Expected Number of Leaves

We show that the expected number of leaves in the threshold tree
given by our algorithm is at most ¢%/2k. Particularly, for § € (0, 1),
the expected number of leaves is at most (1 + §)k. We now give an
overview of the analysis. We provide a complete proof in Section 5.

In this section, we consider the case when the space is one di-
mensional. That is, all centers and data points lie on the real line.
Consider a fixed center c. Let N;(7") be the number of leaves in
tree 7~ containing c. We show that E[N.(77)] is at most 972,

Suppose c is assigned to node u at step t (note that ¢ may be
assigned to several nodes). Denote the total number of centers
assigned to u by k’ = |C,|. We prove by induction on k’ that the
expected number of leaves to which u is assigned in the subtree
rooted at u is at most (1+5¢)1°82%" If k’ = 1, then the claim trivially
holds, since u is a leaf. Assume k’ > 1.

Our algorithm divides u into two parts uje ¢, and uyjgp,. One of
them contains the median m*. We call that part the main child and
denote it by u’. In turn, the main child v’ is also divided into two
parts, one of them — denoted by u”” - is the main child of u’. We
call the sequence of nodes u, u’,u”’, ... the main branch rooted at u.
Note that the main child always contains at least half of all centers
assigned to its parent. This is the case, because m" is the median
of all centers assigned to u. Thus, the part containing m* contains
at least half of all centers in Cy, and the other (secondary) child
contains at most half of all centers in C,,.

Suppose that center c is assigned to a node v in the main branch
u,u’,u’”,.... When v is divided into two parts, one of the following
three events may occur: (1) ¢ is assigned only to the main child of v;
(2) c is assigned to both the main and secondary children of v; (3) ¢
is assigned only to the secondary child of v. Denote these events by
&1, &z, and Es, respectively. We estimate the number of nodes w
such that c is assigned to w, and w is a secondary child of a node in

1635

STOC 22, June 20-24, 2022, Rome, Italy

the main branch. This number equals to the number of events &
that occur in the main branch before the first event E3 occurs plus
1. If the probabilities of events &1, 2, and E3 were the same for all
nodes in the main branch containing c, the expected number above
would be equal to 1/P(E3 | 82 U E3). Without loss of generality
assume that m* = 0, then for ¢ < 1/10, we have

1 _ P(Ey U E3) _ c? c?
P(E3 | E2U &E3) P(&E3) (1-¢)2R? | (1+¢)2R?
2
= (1+e) <1+ 5e.
(1-¢)?

Every secondary child w contains at most k” /2 centers. So, by the
inductive hypothesis, the expected number of leaves containing ¢
in the subtree rooted at w is at most (1 + 5¢)L1°82%"/2] Therefore,
the expected number of leaves containing c in the subree rooted at
u is at most

(1+5¢) - (1+56) 108 K121 < (1 4 5¢)llog K]

This concludes the proof of the inductive claim. We now observe
that
E[N.(7T)] < (1+5¢)lloszk] < (/2

)
fore < Sk

5 EXPECTED NUMBER OF LEAVES

In this section, we prove a bound the expected number of leaves
in the threshold tree constructed by our algorithm. Our algorithm
assigns all centers ., ¢* to the root r of the threshold tree
7. Then, it recursively divides centers assigned to every node u
between its children. However, centers in a narrow strip Left N
Right are shared by the both children of node u. Thus, the total
number of leaves in the threshold tree 7 may be larger than k. Let
N(7") be the number of leaves in 7. We show an upper bound
of ¢%/2k on the expected number of leaves E[N(77)], where the
expectation is over the randomness of our algorithm.

THEOREM 5.1. For every set of centers cle? .. .,ck in RY and

every § € (0,Ink/32), the expected number of leaves in the threshold
tree T~ given by our algorithm is at most

E-[N(7T)] < ek,
In particular, for § € (0,1),
Eq-[N(T)] < (1+5)k.

Proor. For every center ¢, we bound the expected number of
leaves containing ¢ by ¢9/2_Consider a fixed center c. For a node u
in the threshold tree 7, let NZ(7") denote the number of leaves in
the subtree of 7~ rooted at node u to which center c is assigned to.

DEFINITION 5.2. For every integerk’ € {1,2,...,k}, let Brs be the
minimum number such that the following inequality holds for every
partially built tree 77 and every leaf u with |Cy| < k” in T; to which
center c is assigned,

E[NS(T) | 7t] < By
That is, By is an upper bound on the expected number of leaves
in the subtree rooted at u that contain c if at most k’ centers are

assigned to u. To prove Theorem 5.1, it is sufficient to show that By
is at most 1 + §. We derive the following recurrence relation on By.
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LEMMA 5.3. The upper bound on the expected number of leaves
By satisfies the following recurrence relation:

B1 =1,
B < (1+ SE)BLk’/ZJ’

®
©

where ¢ = min{6/15Ink, 1/384}.

Proor. It is easy to see that By = 1, because if ¢ is the only
center assigned to node u, then u is a leaf and N}(7") = 1. We now
prove (9). Consider a partially built tree 7;, node u in 77, and center
¢ in X, for which inequality (5.2) is tight i.e., By = E[NZ(T) | 7¢].

Examine the call of function Divide-and-Share that splits node u.
Let i; be the coordinate randomly chosen for this call of function
Divide-and-Share. Without loss of generality, we assume that ¢; >
m . If oy is negative, then center c is assigned only to the right child
of u. In this case, the expected number of leaves containing c in the
subtree rooted at u is at most By.

We now consider the case when o; = 1. Define three disjoint
events: (1) center c is assigned only to the left child of u and o; = 1;
(2) center c is assigned to both children of u and o; = 1; (3) center
c is assigned only to the right child of u and ¢; = 1. Denote these
events by &1, &, and &3, respectively.

The number of centers assigned to node u is k”. Thus, the number
of centers assigned to each child of u is at most k’. Moreover, if
ot = 1, the number of centers assigned to the right child u,;4p; of
u is at most | k’/2], because m" is the median of all centers in Cy,
and for all centers ¢’ assigned to ugpy, c; > mj}. Hence, if event
&1 occurs, then the expected number of leaves containing ¢ in the
subtree rooted at u is bounded by By.. If event E; occurs, then the
expected number of leaves containing c¢ in the subtree rooted at u
is bounded by By + B| /2. Finally, if event &3 occurs, then the
expected number of leaves containing ¢ in the subtree rooted at u
is bounded by B| s /2).Let pr1 =P(E1 | T2), pr2 = P(E2 | T¢), and
P13 =P(E3 | T7). Thus,

E[N(T) | 7¢] <
<1/2-Bpr +Bpr - pr1 + (Bk/ +BLk'/2J)Pt,2 +B|_k’/2J - Pt.3

(1/2 +pr1 +Pt,2)Bk’ + (Pt,z +Pt,3)BLk’/2J~

Since 1/2 + ps 1 + pi2 + p,3 = 1, we have

B =E[N(T) | T¢] < (1 _Pt,3)Bk’ + (Pt,Z +Pt,3)BLk’/2J-
Thus,
Pt2+pe3 P(E V&3 | Tr)
B ’ S ; ’ = —B ’ .
M s WA TR ) WA

Compute P(E2 U E3 | T7) and P(Es | T7):
P(E2V &3 | Tr) =

d
- % 2P {|Ci -mj| > (1 —8)\/9_th} -
i=1

P(&3 | 1) =

d
- 22 efla-nil > oV -
i=1

d (Ci - m?)Z

i=1

1

2d

(i = mp)?

Z (1 +€)2R?'

i=1

1

2d
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Therefore, we have

d t\2 d t\2
(ci —my) (ci —my)
Bk! < B k’ . =
Lkr/2] ; (1-e)2R? ; (1+)2R?
a (1+¢)?

(l — E)ZBI.k//ZJ < (1 + 5€)B|—k//2]‘

where the last inequality holds because ¢ < 1/10. O

We now bound the expected number of leaves in the threshold
tree 7. By Lemma 5.3, the expected number of leaves containing
center c in the threshold tree 7 is at most

E[NI(7T)] < By < (1+5¢)108K] . ) <

S(1+3l(rslk

Since e%/2 < 1+ 5for 6 € (0,1), we have for § € (0, 1)

< (eSlik)Ingk <92,

)logz k

E[N/(T)] <e®/? <1+6.

6 APPROXIMATION FACTOR

We now prove Theorem 4.1. Our proof follows the outline given in
Section 4. We fix a point x, step t*, and estimate E[||x — T(x)||§ |
Tr+]. Let ¢* = T+ (x) be the tentative center assigned to x at step
t*. As in Section 4, let u; be the leaf node of 7; that contains x,
Ct = Cy,, Rt = Ry,, and m’ = m¥. We denote the diameter of C;
by Dt.

6.1 Bounds on the Diameter

We prove several facts about the diameter D;. First, we show that
Dt = Rt.

LEmMMA 6.1. For every leaf node u in a partially built tree 77, we
have

1/y2R, < Dy < 2R,.

Proor. The second bound easily follows from the triangle in-
equality: for every ¢’ and ¢”’ in C,,

’

lle” = c”ll2 < lle" = m“|l2 + [Im" = ||z < 2Ry.

We now show the first bound. Let ¢ be the farthest center in C,,
from m%. Then, R, = ||c — m“||2. Consider a center ¢’ in Cy. The
distance between ¢ and ¢’ is upper bounded by D,, because D, is the
diameter of Cy,. Hence, for each ¢’ in Cy, we have ||c — ¢’ ||§ < D2
Thus,

2 2
Dj; = Avguee, lle=cll3 =
d d

_ . 72 _ A
= Avgyec, Z lei —cil“ = ZAvgc,ecu |ei — ¢}
i=1 i=1

5

|2

where Avg ¢, f(c’) denotes the average of f over ¢’ in Cy. Ob-
serve that

Avgoec, lei = 2 > 1/20c; — m¥ .
This is because m" is the median point in Cy;, consequently, at least
a half of all points ¢’ € Cy, are on the other side of the hyperplane
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{x:x;=
these centers ¢’, we have |¢; — ¢}

=t > l/zZm

m} from c (including centers ¢’ on the hyperplane). For
> |ej — m'.‘l. Therefore,

d
D> ) Avguec, lei = 1/2R%,

]

We prove that the diameter D; is exponentially decaying with ¢.
To this end, we estimate the probability that two centers ¢’ and ¢/
with ||¢/ — ¢’’||2 = D;/2 are separated at step t. We say that two
centers ¢, ¢’ € Cy are separated at step t if ¢’ ¢ Cy or ¢’’ ¢ Cy.

LEMMA 6.2. For every two centers ¢’,c"’ € Cy at distance at least

Dy/2,
Pr {c’ ¢ Cry10rc”’ ¢ Cpaq | ‘7{} > 1/128d.

PROOF. Suppose, at step t, the algorithm picks coordinate i; =
i. For every two centers ¢’,¢”” € C;, we consider the following
two cases: (1) ¢’ and ¢’ are on the same side of the median m’ in
coordinate i (i.e. sign(c; — m{) = sign(c}’ — m})), and (2) ¢’ and
¢’’ are on the opposite sides of the median m’ in coordinate i (i.e.
sign(c] — m}) = —sign(c}’ — m})).

Consider the first case, when ¢’ and ¢’’ are on the same side of
the median m! in coordinate i. Without loss of generality, assume
that ¢’ > ¢} > mf. Observe that if o = 1, ¢}’ — mf > (14 €)R:V0;,
and ¢} — mf < (1-¢)R;V0;, then centers ¢’ and ¢’ are separated at
step t. Let &; ;¢ = {i; = i, 04 = 1} be the event that the threshold
cut at step ¢ is in coordinate i and o; = 1. Then, the conditional
probability that ¢’ and ¢’ are separated given &; ; / is

Plc;—mi < (1- e)R0; & off —mi > (1+ e)ReO: | T2, St,,-!cr]

(¢ = mi)? (cf —m})?
:P{et € [(1—5)212?’ (1+2)2R ”

7" ’ VAN
(¢ =m (c; —m3)
(1+€)%R2  (1-¢)?R?
where (x)* denotes max{x, 0}.

Now, consider the second case, when ¢’ and ¢’’ are on the op-
posite sides of the median m“ in coordinate i. Assume without
loss of generality that ¢’ > m} > ¢/ and |c]’ — m}| > |c] — m}|. If
cf > (1+¢)RsV0; and o4 = 1, then ¢’ and ¢’’ are separated
at this step. Thus, the conditional probability that ¢’ and ¢’ are

separated given i; = i and parameter o; = 1 is at least

t\2
i)

_mi

Pl ts (1 R\/Q_ T, =i _1_(02,_m§)2
{Ci_mi—( + RO | Tr iz = i,0r = }—m

Define
a; = min {|cl{—mf-|, |c —mt|} and b; = max {|c§—m§|, |c;’—m§|}.
LetIj, I, C {1,2,...,d} be the set of indices i for which c; and clf’
lie on the same side and opposite sides of m?, respectively. Then,
Pr {c' g Crrporc”’ ¢ Coy | 7}} >
a?

i 1 i
R Y —— —
- e)zRf) 2d 1621‘: (1+¢)2R?

1 i
2 J— —
2d IEZI:I ((1+s)2R§ (1
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Now observe that

-

a’
> _ 1
B zdR2 Z (1+£)2 (1-¢)2

t iel

al
2d Z ((1 +g)2R2 (1-¢)%R?

> 2dR2 D bE - af — (267 + 3ea}).

t iel
Similarly, we have
- 2£b2
2R2d

ZzEIZ

1 Z
5 >
2d & (1+¢)2R:

When ¢’ and ¢’ are on the same side of m! in coordinate i, we have
b} —aj = (bi — ai)(bi +a1) > (bi —ap)® = (¢f = ).
When ¢’ and ¢’ are on the opposite side of m’ in coordinate i, we

have

4b-2 > (bi +a;)? = (¢ = c/)2
Note that 34 | b2+a? = ¥ (¢} —m!)?+(c)/ —=mb)? = ||c’ -
llc”” — m? ||§ Therefore, the probability that ¢’ and ¢”’ are separated
at step ¢ is at least

m |3+

’ 17\2
_ci)

X

Zebiz + 3£a§

P{c’ ¢ Cry10orc” ¢ Cre1 | Tr}

- 2 2
£ 8dR? 2dR?
e = ¢’z 6e

T 8RYd T 2d

where the second inequality is due to Zd 2£b2+36a% < 2?:1 3€b?+
mt||2 mt||2 < 6€R%. We conclude that for

5+ 3ellc”
centers ¢’ and ¢”” with ||’ — ¢’||2 > D?/4, we have

3£ai =3¢’ -

1 D?
P ¢C "¢ Crn | Tr z—~( t 6)
{¢" ¢ Crrrorc” & Crur | T} 24 \16r2 3
o1 (1 6)>
=24 \32 %) = 1284

Here, we used that D; > 1/v2R; and ¢ < 1/384.

We obtain the following corollary from Lemma 6.1.

LEMMA 6.3. Let L = [640d In k7. Then, for every t, we have

1
PADesp 2 De/2 | Te} < 13-

Proor. Consider a fixed time step t. Suppose the distance be-
tween centers ¢’ and ¢’ is at least D; /2. Since the diameter Dy is
non-increasing as t increases, the distance between ¢’ and ¢”’ is
greater than Dy /2 for any step t’ > t. By Lemma 6.2, the probabil-
ity that these centers ¢’ and ¢’ are separated at step ¢’ is at least
1/128d.

Thus, these two centers ¢’ and ¢’ are not separated in [640d In k]
steps from step ¢ with probability at most

{

1

—5Ink
e .
128d

) 640d In k
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Since there are at most (’;) pairs of centers with distance greater
than D;/2, by the union bound over all such pairs, we have for
L =[640dInk]

1
. e—SInk < =

k
P{Di4r = D/2 | Tt} < (2) <3

O

To simplify the exposition, we define a stopping time ¢**. Let +**
be the first step ¢ > t* of the algorithm when one of the following
happens: (A) Dy < ||x—c*||2 (note: if ¢* is the only center remaining
in Cy, then Dy = 0); (B) x and ¢* are separated before step ¢ (i.e.,
¢* ¢ Cy);or (C)Dy > Dy_ys/2and t > t* + L’ for L’ = [1280d Ink].
For some step t, C; contains only one center and D; = 0. Thus, the
stopping time t** is well-defined. We show that it is very unlikely
that the case (C) happens, i.e. Dg=+ > Dy« _y//2 and t** > t* + L’.

COROLLARY 6.4. Let L’ = [1280dInk] be twice as large as L in
Lemma 6.3. Then,

. 1
P{Dt** > Dpor_p /2 & >t + L | 7;*} < P

ProOOF. Let L = [640d In k] be as in Lemma 6.3. We consider the
set of steps

Sp={t<t™:t=t"+Lz,z>1}.

By Lemma 6.3, we have for each step t = t* + Lz in this set Sy,
1
P{D; > Dy—r/2| Tt-L} < R

We consider every step t = t* + L'z forz > 1.If Dy > D;_1//2,
then we have t** < t.If D; < D;_1//2, then we must separate at
least one center from C;_j/ in L’ steps, which means |C¢| < |Cy—/].
Since there are at most k centers in Cy+, we have at most k such steps
t with D; < D;_1//2. Thus, we have t** < t*+L’k = t*+2kL. Then,
the set of steps Sy contains at most 2k steps. By the union bound
over all steps t € S;, we have Dy < D;_1 /2 for all steps t € Sp with
probability at least 1 — 1/k. Suppose that D; < D;_j /2 holds for all
steps t € Sg. For every t* + L’ < t < t**, there exists a t’ € S such
thatt —L’ < t' —L <’ < t.Since Dy is a non-increasing sequence,
we have for every t* + L <t < t*™

Dy <Dy <Dp_p/2<Dy_y//2.

Therefore, we have Dy > Dy=«_1/ /2 and t** > t* + L’ with proba-
bility at most 1/k. O

6.2 Cost of Separation

In this section, we complete the proof of Theorem 4.1. The proof is
similar to the overview we gave in Section 4. The key difference is
that we no longer assume that the distance from x to the nearest
fallback center does not depend on the cut that separates x and c*.

To simplify the exposition, from now on, we shall assume that
¢; 2 x; for all i. We make this assumption without loss of generality,
because if c;.k < x; for some i, we can mirror all centers ¢ in C and
point x across the hyperplane {y; = 0}, or, in other words, we
can change the sign of the i-th coordinate for all centers ¢ in C
and point x. This transformation does not affect the algorithm but
makes ¢} > x;.

For every (i,n) with x; < n < ¢;, define M;(i,n) as follows:
M. (i, n) equals the distance from x to the closest center ¢’ in C;
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with clf < n. If there are no centers ¢’ in Cy with c; < 5, then we let
M; (i, n7) = co. Observe that if x and ¢* are separated at step t, then
xj < mf + aﬂ/Gth < mf + at\/Gth + E\/eth < C;(,

Nt

where i is the coordinate chosen at step t. Thus, if x and ¢* are
separated at step t, the distance from x to the fallback center is
M; (i, n;), where n; = mf + 0:VOR; + eVOR;.

At each step ¢, our algorithm calls function Divide-and-Share
with parameters (i, oz, ;) to split node u;. Let w; = (it, &) be the
cut chosen by the algorithm for node u; where & = mf + o VORy;
wy is undefined (w; =1), if the algorithm does not make any cut at
step t. Note that the cut w; is determined by the tuple (i, oy, ;).
Then, x and ¢* are separated at step ¢ by the tuple (i, 0, 0) if ¢* € Cy,
wr = (i,m! + oVOR,) and x; < & < 1 < c}. Let fx;(i,0,0) be
the indicator of the event x and c¢* are separated at step ¢ by the
tuple (i,0,0). If x; < mf +0VOR, < mf +(c+e)VOR; < c;, then
fxt(i, 0,0) = 1; otherwise, fx:(i,0,6) = 0.

We define a penalty function Z; (i, o, 0) for every tuple (i, o, 6)
withi e {1,2...,d},0 € {£1},6 € (0,1) as follows:

Z1(1,0,0) =E[llx = T3 | T2, (it 01,6) = (i,0,60)] fr (i, 0, 6).
In other words, Z;(i, 0, 8) equals 0 if the tuple (i, 0, 6) does not
separate x and ¢* at step . Otherwise, it is equal to the expected
cost of x in the final tree 7~ assuming that the algorithm chooses the

tuple (i, o, 0) at step t. Note that if x and ¢* are already separated
at step ¢, then Z;(i, 0, 0) = 0.

CLAIM 6.5. For every step t and every tuple (i, o, 0), we have
Z(i,0,0) < min {2||x — c*||3 + 2D% Ap MZ(i,n)},
where n = mf + (o +£)VOR;.

Proor. If x and ¢* are not separated by the tuple (i,0,0) at
step t or x and ¢* are already separated at step ¢, then we have
Z(i,0,0) = 0. Thus, we only need to consider the case when x and
c* are separated by the tuple (i, 0, 0) at step t, i.e. fi (i, 0,0) = 1.
By the triangle inequality, we have

llx =TG5 < (Ix = *llz + lle" = T(x)ll2)* <

< (Ilx = ¢*l2 + De)? < 2||x — ¢*[|2 + 2D?.

By Definition 4.3 of the approximation factor Ay, we have

Zt(1,0,0) =B|llx - T3 | T, (ir.01,600) = (1,0,0) | <
< Agllx = Ten (I3 = AME ().

Combining these two bounds, we get the conclusion. O

Our goal is to show that Ay < O(1/elogk loglog k). We prove
Lemma 6.6, which provides the following recurrence relation on Ag:
Ay < max{4, Ax/k}+a/elog k log Ay. Using this recurrence relation,
we get the desired bound on Ag.

LEMMA 6.6. For some absolute constant a, we have
llx = T ()15

| 7+
llx =113

< max{4, Ak/k} + a/elog klog Ap.  (10)
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PROOF. Let t** be the stopping time from Corollary 6.4: ¢** is the
first step ¢t when (A) Dy < ||x — ¢*||2 (note: if ¢* is the only center
remaining in Cy, then D; = 0); (B) x and ¢* are separated before
step t (i.e,, ¢* € Cy); or (C) Dy > D;_1//2 (where L’ = O(dInk)
as in Corollary 6.4; t > t* + L’). Let E4, Ep, and E¢ be events
corresponding to the the stopping rules (A), (B), and (C):

Ea={Dp+ <|lx—c*lla & " € Cpe |

&p = {x & c* are separated at step t** — 1};

Ec = {Dt** > Dy /2 & £ > tF +L’} \ (E4 U &ER).
Note that E4, Ep, and & are disjoint collectively exhaustive events
(one of them must always occur) and by Corollary 6.4, Pr(&Ec |
Tr+) < 1/k. We further partition Eg into disjoint events

Ep = {x & ¢” are separated at step ¢}.

If event E4 occurs, then the eventual cost of x is at most (||x —
c*|l2+Dp)? < 4f|x—c* ||§ because every center in Cy+ is at distance
at most [|x — ¢*||2 + Dy from x. If event Ep; occurs, then the
expected cost of x is upper bounded by Z (i, o, 6;). Finally, if event
&c occurs, then the expected cost of x in 7 is upper bounded by
Agllx - c*||§ (because c¢* is the tentative center for x at step t**).
We have

E[llx - T3 | 7] <
<dllx = "lI3 - P(Ea | T) + Aglix = ¢*II5 - P(Ec | T7+)

+ Y E|Zii 0000 | Ep Tr | Pr(Ene | T)

t=t*
< max{4, Ag/k} - [lx - c*|I3

+ ) B[(Zelinon 00 — 4l - 1) - 1850 | T |-
t=t*

Let Z; (i¢, 0, 0¢) = max{Z; (ir, oz, 0;) — 4]lx — c*||2,0}. Then,

x— T (x)]|?
E[n Ol m]s
[lx = c*|I5

[Zt(ib o1, 0r)

1(€n0) |7,
e

< max{4, Ax/k} + Z E
t=t*
Our goal is to upper bound the second term by o/¢logklog Ag.

Write,

E[Zt(it, 01,0:) - 1(ERyt) | 7;*]

d 15 . = /s

Zi(i,-1,0) + Z;(i, 1,0

=D F / & )zd L9 g1t < 1y | 7?*]. (11)
i=1

Here, we used that parameters i;, oy, and 6; are randomly chosen

from {1,...,d}, {+1}, and [0, 1], respectively. We need the follow-

ing lemma, which we prove in Section 6.3.

LEmMA 6.7. For every i, we have

/1 Zi(i,-1,0) + Z; (i, 1,0)
0 2

do <

B ¢ —xi < mln{ZDZ,AkMZ(l ’7)}
Te(1-e) R?
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Using Lemma 6.7, we can upper bound (11) as follows

E[ft(it, 01,0;) - 1(Epy) | 7?*]

; -1 i mln{ZDz,AkMz(l ’7)}
A5y S [ A

t=t*
m1n{2D2,AkM2(z n}
d
dzeu—e)/ [H* '7?] 7
2(c* — x;)? N min{2D2,AkM2(i, m}
P il E : T*].
Z de pelvie] [; R2 7

We now show that for every 7 € [x;, ¢;] the following bound holds
with probability 1:

< O(dlogklogAy). (12)

3‘11 min{2D2, A MZ (i, n)}
2
t=t* Rt

This will conclude the proof of Lemma 6.6 because (12) implies that

E[Zt(it, 01,0r) - 1(Egyt) | Te+

sdz

2||c* —XI|§
72 0(logklog Ap).

2(c - x,)2
-O(dlogklog Ay)

LEmMmaA 6.8. Inequality (12) holds with probability 1.

Proor. By Lemma 6.1, Ry > D;/2. Thus,

3‘:1 min{2D?, A M2 (i, n)} .

= Ry )
s ”*Z‘l min{Df, A ) _ g f**z‘l min (1,24 Mi Gy |
t=t* Dy t=t* Dy
- Flin) = Ay M (i, m)
1 (i,n) = —Df :

Observe that M; (i, ) is a non-decreasing sequence and D; is a non-
increasing sequence for fixed i, n and ¢ € {t*, t** —1}. Moreover,
by the definition of stopping time ¢**, D; < D;_p/ /2 for t € {t* +
L',...,t"*—1},where L’ = O(d log k) (see stopping rule (C)). Hence,
f:(i,n) is a non-decreasing sequence, and f; (i, n) > 4f;_1- (i, n) for

te{t"+L, - ,t" —1}. Let ¢’ be the first step t in [t*,t*" — 1]
when fi-(i,n) > 1.If f;(i,n) < 1forall t € {t*, t** — 1}, then
t/ = t**. We have
1" &! min{2D? A M2 (i)}
Z <
> <
8 = R;
-1 t'-1 -1
< Y min{L iy =Y G+ Y 1.
=+ =r* =t
—_——— ——
2 2
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The first sum (27) on the right hand side is upper bounded by
2L’ - fi(i,n), because fi(i,n) > 4fi_r/(in) for t < £**. In turn,
2L - fy(i,n) < 2L = O(dlogk), because f;(i,n) < 1fort < t’.
The second sum (Z}y) equals +** — t’. Since f;(i,n) > 4f;—1/ (i, 1)
for every t € [t* + L', t** — 1], we have

{ Jre—1(im) ’7)
oG

< logy fr—1(i,n) =log, (

(i’** _ 1) -t

o <log

4

A M2, (i)

2
Dt** 1

)

It remains to show that M+ _1(i,n) = O(Dy+_1) and thus

t** —t' = O(L' log A;) = O(dlog klog Ay).

We have, Mp=_1(i,n) < |lx — ¢*||2 + D¢ < 2Dy, where we used
that for every t < t**, Dy > ||x — ¢*||2 (see stopping rule (C)). This
finishes the proof of Lemma 6.8. O

6.3 Proof of Lemma 6.7

We first make the following simple but crucial observation.

Cram 6.9. Ith(i, 0,0) > 0, then forn = mf + (o + &) VOR;, we
have

— X

(4
In—mt| = |(oc+e)VoR| < -

Proor oF Cramm 6.9. If Z(i, 0,0) > 0, then the cut with param-
eters i, o, 0 separates x and ¢* (otherwise, Z; (i, o, ) and Z(i, 0, 0)
would be equal to 0). That is, x; < mf +0VOR; and ¢ > mf +(o+
€)VOR;. Write,

¢ —xi=(cf - mf) — (x5 — mf) > (o+ g)\/aRt - o\@Rt = E‘/@Rt.
Hence,
(o + &) VOR,| = "’”' - eVOR, < "’“' T e - x).

Proor oF LEMMA 6.7. We have

1 Z,(i,-1,0) + Z,(i, 1,0
/ (i, —1,0) + Z; (i, 1, )d9
0

2
Make the substitutions 74

_ 2('/0“’"5)
W= averw;

[

1

Z /12,(1', 0,0) do.

oe{£1} 0

mlt + (0 + €)Ry V0. Then, we have
dne and

Zi(,-1,0)+Z(:1,0) o
2
mi+(+e)Re 7.(i 5. 0)

'/mf (o + g)ZR?

By Claim 6.7, |ns — mf| < |o+el/e- (] = x;). Since Z(i, 0,0) = 0,
we have Z(i, 0, 0) = max{Z; (ir, 01, 0s) — 4||x — ¢*||2,0} < Z(i, 0, 6).
As we discuss in the previous section, Z(i,0,0) < Z(i,0,0) <
min{2D% A M? (i, 1)} (see Claim 6.5). Also, if s & [xi, c;], then

“(ne - mlt) dne.

oe{xl}

1640

Konstantin Makarychev and Liren Shan

x and ¢* are not separated by the tuple (i, o, 0), which implies
Z(i,0,0) = 0. Thus,
U Zi(1,-1,0) + Z:(1,1,0
/ ¢ (i ) +Z:(i,1,0) 40 <
0 2
¢ —xi

<
T e(1-¢)

¢i min{2D?, AkM2 (i, ’7)}
RZ

This concludes the proof of Lemma 6.7.

7 LOWER BOUND ON THE BI-CRITERIA
APPROXIMATION
In this section, we prove Theorem 1.2. We show a lower bound on

the price of explainability for k-means in the bi-criteria setting. Our
proof follows the general approach by Makarychev and Shan [28].

Theorem 1.2. For every k > 500 and In3 k/Vk < 8 < 1/100, there
exists an instance X with k clusters such that the k-means cost for
every threshold tree T~ with (1 + §)k leaves is at least

2
cost(X, T) = Q (log(S k) OPT(X).

ProOF oF THEOREM 1.2. We construct a hard instance for ex-
plainable clustering as follows. Let d = 300[In k7. Consider the grid
{0,¢ 2, ...,1}4 with step size ¢ = 505/[In k] in the d-dimensional
unit cube [0, 1]9. We uniformly sample k centers C = {c!,¢c?,.. ., cky
from the nodes of the grid. Then, we create a data set X. For every
center ¢! in C, data set X contains many (namely, k?[In3 k1) points
co-located with ¢ and two special pomts c'+(¢g¢,...,¢). Hence, the
total number of points in X is k3[In® k] + 2k. Note that all centers
and all points in X lie in the nodes of the grid.

The cost of the k-means clustering with centers C = {c!, ..., cky
equals 2kde?, since the distance from the special points clt (&...,€)
to ¢t is eVd. Hence, the cost of the optimal k-means clustering is at
most 2kde?. We now show that there exists an instance such that the
cost of every explainable k-means clustering with (1 + §)k centers
is at least 2kde® - Q(1/51og? k). In this instance, every explainable
k-means clustering with (1 + §)k centers separates at least ok =
Q(ek Ink) special points ¢! + (¢, ¢, ..., ¢) from c!. The cost of each
special point separated from its original center is at least Q(d).
Thus, the total cost of every explainable k-means clustering is at
least Q(dek Ink) = 2kde?- Q(1/51og? k). First, with high probability
every two centers in C are far apart. We use the following lemma
from Makarychev and Shan [28].

LEMMA 7.1 (MAKARYCHEV AND SHAN [28]). With probability at
least 1 — 1/k? the following statement holds: The distance between
every two distinct centers ¢’ and ¢’ in C is at least Vd /5.

All data points in X are in the grid {—¢,0, ¢, 2¢, ..., 1, 1+£}d. Every
internal node u in the threshold tree should contain a threshold cut
that separates at least two data points in that node u. Otherwise,
we can ignore this threshold cut since one side of this cut contains
no data points. If two threshold cuts have the same coordinate and
thresholds within the same grid interval (je, je + ¢), then these two
threshold cuts create the same partition of data points contained
in the internal node. Since there are at most 1/¢ + 2 different grid
intervals for each coordinate, the number of distinct threshold cuts



Explainable k-Means: Don’t Be Greedy, Plant Bigger Trees!

for each internal node is at most d(1/¢ + 2) < 2d/e. Every node in
the threshold tree corresponds to a cell in R?. This cell is determined
by the threshold cuts on the path from the root to that node. Let
7 be an ordered set of tuples (i, £j, A;), where (i}, ;) is the j-th
threshold cut on the path from the root to the node, and A; € {+1}
specifies one of the sides of the cut. Then, every ordered set x
corresponds to a path in the threshold tree starting in the root.
Let u(r) be the intersection of the cuts in 7. We say that a center
¢’ in u(x) is damaged if one of the special points ¢! + (¢, ..., ¢)
is separated from ¢! by one of the threshold cuts in 7. In other
words, ¢ is damaged if ¢! € u(x), but ¢! - (e,...,¢) ¢ u(x) or
¢+ (¢,...,€) & u(m). Otherwise, we say that ¢’ is not damaged.
Similarly, we say that a node of the grid x € u() is not damaged
ifx £ (e...,¢) € u(m). Let Fy (5 be the set of all centers that are
not damaged in node u(7). We show that with high probability, if
a node u(r) contains more than Vk centers, every threshold cut
that splits node u(x) damages at least ¢|F,,()|/2 centers in F, ().

LEMMA 7.2. With probability at least 1 — 1/k, the following holds:
For every path (ordered set of cuts) it of length at most log, k/4, we
have (a) |Fy(r)| < Vk; or (b) every threshold cut that separates at
least two data points in u(x) damages at least e|F,,(,)|/2 centers in

Fu(ﬂ')~

Proor. Consider a fixed ordered set of cuts 7 of size at most
log, k/4. We upper bound the probability that both events (a) and
(b) do not occur for this fixed path & on the random instance X. If
[Fu(ml < Vk, then the event (a) happens. So, we assume that Fu(m)
contains more than Vk centers. We then bound the probability that
event (b) happens conditioned on the size of F, (). Observe that
all centers in F, () are distributed uniformly and independently
among the grid nodes in u() that are not damaged by the cuts in 7
conditioned on |Fy, () |. Pick an arbitrary threshold cut (i, £) in u(r)
that separates at least two nodes of the grid in u (). For every center
¢ in Fy,(,r), the probability that the threshold cut (i, £) damages this
center c is at least ¢. Let X be the indicator random variable that
the j-th center in F, () is damaged by (i, §). The expected number
of centers in Fy, () damaged by cut (i, £) conditioned on |Fy, ()| =1

equals
1
E[ZXJ ‘ |Fu(7r)| = l] > el
j=1

Let y =E[X; Xj | |Fy(x)| = 1]. By the Chernoff bound for Bernoulli
random variables, we have
} <

1
P{ZXJ < 5|Fu(7r)|/2 ) iFu(ﬂ')| =]
!
< P{ZXJ' < /2 ) |Fu(m)| = l} < M8 < gmeVKIB,
=1

j=

Combining all conditional probabilities for |F,, ()| > Vk, the proba-
—eVk/8

data points are in the grid {—¢,0, ¢, 2¢, .. ., 1, 1+£}d, there are at most
2d /¢ different threshold cuts that separates at least two data points
in node u(7). By the union bound, the probability that both events

2
(a) and (b) do not happen is at most e=eVk/8 . 2d/e < e~21°K Since

bility that the event (b) doesn’t happen is at most e . Since all
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there are at most 4d/e¢ different choices for each tuple (ij, £;, 1)
in 7, the number of paths with length less than m = log, k/4 is at

most m(4d/e)™ < e’k Thus, by the union bound over all paths
with length less than log, k/4, we get that (a) or (b) holds with
probability at least

1-m(4d/e)™ - e=eVk/s . 2d/e>1- e’k -2’k 5 g %

since d/e < 15000Vk In® k for d = 300[Ink] and ¢ = 505/[In k] >
50Vk In? k. o

By Lemma 7.1 and Lemma 7.2, we can find an instance X such
that the following conditions hold:

e The distance between every two distinct centers ¢’ and ¢/
in C is at least Vd/5.

e For every path (ordered set of cuts) 7 of length at most
log, k/4, we have (a) |Fy ()| < Vk; or (b) every threshold
cut that separates at least two data points in u(xr) damages
at least e|Fy,()|/2 centers in Fy, ().

We first show that the threshold tree must separate all centers.
Suppose there is a leaf contains more than one center. Since the
distance between every two centers is at least \/E/ 5, there exists at
least one center in this leaf with distance greater than Vd/10 to the
optimal center of this leaf. Since we add k% [In® k] points co-located
with each center, the cost for the leaf that contains more than one
center is greater than k?[In® k]-d/100 = 2kde®- Q(1/51og? k). Thus,
the lower bound holds for any threshold tree that does not separate
all centers. To separate all centers, the depth of the threshold tree
must be at least [log, k. We show the following lower bound on the
number of damaged centers for every threshold tree that separates
all centers.

LEMMA 7.3. Consider any instance X with k centers satisfies two
conditions in Lemma 7.1 and Lemma 7.2. For every threshold tree that
separates all centers in C, there are at least 25k damaged centers.

Proor. Consider any threshold tree 7 that separates all centers.
We consider the following two cases. If the number of damaged
centers at level | log, k] /4 of threshold tree 7~ is more than k/2, then
the total number of damaged centers generated by this threshold
tree is more than 24k.

If the number of damaged centers at level |log, k] /4 of thresh-
old tree 7 is less than k/2, then the number of centers that are
not damaged at each level i = 1,2,..., |log, k|/4 is at least k/2.
We call a node u a small node if it contains at most Vk centers
which are not damaged, otherwise we call it a large node. We
now lower bound the number of centers damaged at a fixed level
i€{1,2---,|log,k]/4}. For every level i € {1,2,---, |log, k]/4},
the number of nodes at level i is at most k1/%. Since each small node
contains at most Vk centers that are not damaged, the total number
of centers that are not damaged in small nodes at level i is at most
k3/%. Since the total number of centers that are not damaged at
level i is at least k/2, the number of centers that are not damaged
in large nodes at level i is at least k/4. By Lemma 7.2, the number
of damaged centers generated at level i is at least ¢k /8. Therefore,
the total number of damaged centers generated by this threshold
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tree 7" is at least
[log, k] ) i S
4 8
which completes the proof.

50| log, k] ok
32Ink

> 26k,
]

We now lower bound the cost for every threshold tree with
(1 + )k leaves that separates all centers. Consider any threshold
tree 7~ with (1 + §)k leaves that separates all centers in C. By
Lemma 7.3, we have more than 26k data points separated from
their original centers by 7. For each point x separated from its
original center ¢, one and only one of the following may occur: (1)
the data point x is assigned to a leaf containing a center ¢’ # c; (2)
the data point x is assigned to a leaf containing no center. Among
these 28k data points, we show that there are at least 5k data points
that have distances to their new centers greater than Vd/20.

For each leaf containing a center ¢’, the optimal center for this
leaf is shifted from ¢’ by at most £Vd. Otherwise, the cost of this
leaf is at least k?[In> k] - £2d = 2kde? - Q(1/5log? k) since there are
k?[In® k] data points co-located at each center. Suppose a point x
separated from its original center c is assigned to a leaf containing a
center ¢’ # c. By Lemma 7.1 and the triangle inequality, the distance
from the point x to the optimal center for this leaf is at least Vd/10.

For each leaf containing no center, it may contain several points
from distinct clusters. Among these points, there is at most one
point within Vd/20 distance of the optimal center for this leaf.
Suppose two points x” and x”’ from distinct clusters are within
Vd /20 distance of the optimal center for this leaf. Then, the distance
between x” and x”’ is at most Vd/10. Let ¢’ and ¢’ be the original
centers for points x” and x”’ respectively. The distance between
¢’ and ¢’’ is at most Vd/10 + 2e6Vd < Vd/5, which contradicts the
distance between every two centers is at least Vd/5.

Since the threshold tree 7~ has (1+ )k leaves, there are 5k leaves
that do not contain a center. Thus, among points separated from
their original centers, there are at most 6k points with distance less
than Vd/20 to their new centers. Since there are more than 25k
points separated from their original centers, we have at least 5k
points with cost greater than d/400. Therefore, the cost given by
this threshold tree 7~ is at least

cost(X,T) > Sk - a4 = Q(ddk).
400
Recall that the optimal k-means cost for this instance is at most
2ke?d and ¢ = 505/[In k]. Thus, the cost given of this explainable
clustering is at least

log? k
s

cost(X, 7)) = Q(ddk) = Q ( ) OPTy(X).
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