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Soil water retention (SWR) function is an important model that provides an empirical relationship between soil
moisture and capillary pressure. We present a simple Python tool for fitting different types of SWR functions to
laboratory-measured soil moisture data. Three different optimization methods including the Levenberg-
Marquardt (LM) method, Trust Region Reflective (TR) method, and Dog Box (DB) method are considered. We
used all three methods to fit the van Genuchten (VG) and Brooks and Corey (BC) models to ten soil moisture
datasets. Our results show that the TR method, which allows the user to search for optimal parameter values

within a constrained region, is the best approach for fitting these models. We developed a new graphical pro-
cedure for evaluating the guesstimates and bounds for different SWR model parameters. Overall, the TR method
available in Python, together with the proposed graphical procedure, is an excellent approach for fitting both VG
and BC models to soil moisture data.

1. Introduction

A soil water retention (SWR) function is an empirical model that
describes the relationship between volumetric water content and soil
matric pressure head. This empirical relationship is an important func-
tion used in computer simulation tools that are employed for solving
practical problems in hydrology and geotechnical engineering fields
(Clement et al., 1994, 1996; Tuller et al., 2004; Malaya and Sreedeep,
2012). SWR function characterizes the ability of the soil to store and
release water, and is also used for estimating several unsaturated soil
properties that are used in hydroclimatic and hydrologic models
(Mohanty and Zhu, 2007; Shin et al., 2012). Therefore, both laboratory
and field approaches for developing SWR functions have received
widespread attention in recent years (Schindler et al., 2012; Masaoka
and Kosugi, 2018; Roy et al., 2018; Shokrana and Ghane, 2020).

In the published literature, several analytical models have been
suggested for modeling SWR functions and this includes the Brooks and
Corey (BC) model (Brooks and Corey, 1964), Fredlund-Xing model
(Fredlund and Xing, 1994), Gardner model (Gardner, 1958), Campbell
model (Campbell, 1974), and van Genuchten (VG) model (Van Gen-
uchten, 1980), to name a few. Among these models, VG and BC models
are the most widely used functions. The parameters in these models are
typically identified by fitting these model functions to measured soil
moisture data using a nonlinear curve fitting method. Both field and
laboratory data have been used in such fitting exercises. For field
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problems, researchers have employed various types of inverse modeling
approaches that utilize unsaturated flow codes, such as HYDRUS, to fit
field-observed soil moisture data (Simunek and Van Genuchten, 1999;
Wang et al., 2016). Lai and Ren (2016) combined HYDRUS-1D and PEST
(a general-purpose parameter estimation software) (Doherty et al.,
2010) to determine the effective soil hydraulic parameters at a field site.
PEST employs a nonlinear parameter estimation algorithm known as the
Gauss-Marquardt-Levenberg method. The results of this study indicated
that there are no unique set of average soil properties for fitting water
content values measured at a heterogeneous field site. Ket et al. (2018)
used a capacitance probe and a dielectric water potential sensor to
measure soil water content and water potential, respectively, at a field
site. They used HYDRUS-1D to fit the in situ data to indirectly estimate
the values of VG parameters for different types of soils. Nascimento et al.
(2018) used multiple instruments to measure the values of matric po-
tential and soil moisture levels in a field experiment and then used
HYDRUS-1D to estimate the VG model parameters. They concluded that
HYDRUS-1D was able to estimate the VG model parameters well, and the
values were found to be consistent with laboratory estimates.

For fitting SWR data, researchers have employed different types of
nonlinear least square (NLS) algorithms and heuristic search (HS)
methods. Several numerical codes have been developed for solving this
curve-fitting problem. One of the codes that use an NLS method is the
RETC code, and it is used widely for fitting different types of SWR
models (Van Genuchten and Yates, 1991). Omuto and Gumbe (2009)
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used the Gauss-Newton algorithm available in R for fitting soil hydraulic
properties used in infiltration and water retention models. Kumar et al.
(2020) developed a software tool for fitting BC, VG, and modified-VG
models using the Levenberg-Marquardt NLS routine available within
the SPSS statistical software package. One of the limitations of using NLS
algorithms is that the final solution would depend on the quality of the
initial guesses and therefore the estimated model parameters might not
be the unique global optimal values. HS algorithms, which are inde-
pendent of initial conditions, offer a more robust alternative for esti-
mating optimal SWR parameters (Chen et al., 2016). However, HS
methods have other numerical parameters that need to be adjusted a
priori to obtain valid solutions. This requirement could affect the final
output, and also the process of adjusting these parameters can be
computationally inefficient (Li et al., 2018; Luo et al., 2018). To avoid
the issues related to algorithm-specific parameter adjustments, Zhang
etal. (2018) employed a novel salp swarm algorithm (SSA) and used it to
fit SWR functions. They also compared the performance of the SSA
method with three other methods for fitting SWR functions. Their results
indicated that SSA can yield better results. Recently, Guellouz et al.
(2020) presented a study where they used the bound optimization by
quadratic approximation (BOBYQA) approach to fit a finite difference
model, which is based on the Richards’ equation, to simulate a field
experiment. They analyzed a drainage experiment conducted at field site
in Southwestern Tunisia to estimate the VG parameters for the site.

The tools reviewed above require complex computer programs for
fitting SWR models, and all these programs have some computational
limitations. The objective of this study is to develop a simple, yet robust,
computer tool for fitting VG and BC models to laboratory-measured soil
moisture data. The Python module SciPy offers several computationally
efficient solvers for fitting a nonlinear function to experimental data. In
this study, we developed a Python code, namely PySWR, that employs
SciPy for fitting SWR functions. We evaluated the code performance by
fitting VG and BC functions to ten experimental datasets available in the
literature.

2. Methods
2.1. van Genuchten SWR model

The VG model (Van Genuchten, 1980) is the most widely used SWR
model since it is a smooth mathematical function without any discon-
tinuities. This model has been used to describe a broad range of
disturbed and undisturbed soils. The model is an explicit analytical
function that describes the volumetric water content 0 as a function of
capillary pressure as:
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where 0 is the volumetric water content (cm3/cm3); 0; is the residual
water content (cm3/cm3), 05 is the saturated water content (cm3/cm3); h
is the capillary pressure head (cm) which is a negative number; o (cm -1
is a parameter that is related to the inverse of the air entry pressure; n is a
parameter that is related to the shape of the pore size distribution (Wise,
1992; Wang et al., 2017); and m is typically related to the value of n via
the expression: m = 1-1/n. The VG model is a two-parameter model and
its shape is controlled by the values of « and n. The model parameter o is
proportional to the inverse air entry value and its value can range from
about 0.005 cm ~! for fine clays to about 1 cm ~! for coarse sand. The
dimensionless value of n controls the shape of the drainage pattern and
its value can be as high as 10 for uniform soils (such as well-graded sand)
that will have sharp drainage pattern, and it can be as low as 1.1 for
heterogeneous soils (such as silty clay) that will have diffused drainage
pattern (Wise et al., 1994; Cornelis et al., 2005).
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2.2. Brooks and Corey SWR model

Another popular empirical function used for modeling SWR data is
the BC model (Brooks and Corey, 1964). This model relates soil moisture
value with capillary pressure using the following equations:
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where f (cm™!) is the inverse of air entry value (or bubbling pressure) hy,
(cm), A is a pore size distribution index and other terms are defined
above. The BC model is a two-parameter model. Unlike the VG model,
the BC model is not a smooth function since it has a discontinuity close
to the air entry value, a capillary pressure below which the soil is
assumed to be fully saturated. Note, the BC model parameter { is similar
to the VG parameter a. Typically, the value of bubbling pressure hy, (cm)
for clay soils is high and can range from about 100 to 200 cm; for sand, it
is relatively small and can range from 1 to 10 cm. The pore size distri-
bution index A is related to the VG parameter n. Lenhard et al. (1989)
provided the following analytical expression that approximately relates
A\ to the value of n:

A:L<1 —0.5%> 3)
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where m = 1-1/n. Therefore, similar to n, the parameter X is also related
to the shape of the pore-size distribution. If the pores are relatively
uniform the soil will have a sharp drainage pattern (since all the pores
will drain at a similar capillary pressure). On the other hand, if the pore
size distribution is wide then the soil will have a smooth drainage
pattern. The typical value of A can range from 5 for uniform sand to
about 0.1 for highly heterogeneous silty-sandy clay soils (Fuentes et al.,
1992; Stankovich and Lockington, 1995).

2.3. Fitting SWR functions to experimental data using non-linear
optimization methods

The problem of fitting a SWR model to an experimental dataset can
be formulated as a least-squares nonlinear optimization problem, where
the model parameters are obtained using a curve-fitting algorithm.
Nonlinear curve fitting is a process of minimizing the error between data
and model predictions by varying the model parameters over a range of
possible values. Here we will employ the following three curved fitting
algorithms that are available in the Python SciPy module: Levenberg-
Marquardt (LM) algorithm (Levenberg, 1944; Marquardt, 1963), Trust
Region Reflective (TR) algorithm (Fletcher, 1980; Sorensen, 1982), and
Dogleg algorithm with a rectangular trust region (DB) (Voglis and
Lagaris, 2004). In the past, others have used the LM algorithm, which is
an unconstrained optimization method, for fitting SWR models (Van
Genuchten and Yates, 1991; Zhang et al., 2018). However, the LM
method can be inefficient for highly nonlinear problems. For these cases,
TR or DB could be a better alternative since they allow the model
parameter values to be constrained using a set of user-specified bounds.
For example, Le et al. (2017) used a new numerical method to estimate
several parameters of a non-linear elastic visco-plastic (EVP) creep
model for soft soils. Their numerical approach employed the TR algo-
rithm to fit EVP model parameters. This study also explored some of the
limitations of the TR algorithm. As summarized in this study, the TR
method approximates the objective function f(x) with a quadratic
function q(s) that reflects the behavior of function f(x) in a neighbor-
hood N, which is called the trust-region around a point xi. The model is
“trusted” within a limited region around this current point defined by
the trust-region sub-problem. This approach can limit the length of the
step as one move from xi to X 1. Therefore, the method can be ineffi-
cient for very large constrained optimization problems. However, the
fitting problem that considered in this study only had two unknown
parameters and we did not encounter any computational inefficiencies
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in all our simulations.

2.4. Experimental data for testing the performance of various curve fitting
methods

Ten soil moisture datasets are analyzed in this study. Four of these
datasets are taken from Van Genuchten and Yates (1991) study, where
these data were used to test the performance of the RETC code for fitting
both VG and BC functions. These four RETC soils are labeled as Weld
silty clay loam (Jensen and Hanks, 1967), Touchet silt loam (King,
1965), G.E. No. 2 sand (King, 1965), and Sarpy loam (Hanks and Bowers,
1962) (See Table S1 in Supplementary Material for more details about
this sample dataset).

Six other datasets were taken from the UNsaturated SOil hydraulic
DAtabase (UNSODA). The UNSODA is a public domain resource and it
provides a wide range of data for several soils. In this study, we used the
UNSODA V2.0 available at this website: https://data.nal.usda.gov/.
These soil data are presented in a format that can be directly accessed
through Microsoft Access-97 (Nemes et al., 2001). The six datasets
selected to study include sandy, silty, loamy, and clayey type soils
collected at different field sites (See Table S2 in Supplementary Material
for more details about this sample dataset).

3. Results and discussion

The basic source code for the PySWR Python script is available at
Github (https://github.com/tpclement/PySWR; see Appendix A for
more details). PySWR is a relatively short code that offers three powerful
options (LM, TR, and DB algorithms) for fitting both VG and BC models
to soil moisture data. The code also supports data visualization and error
analysis tools. The experiment data are input to the code in a two-
column format (pressure head vs. soil moisture) using a standard
EXCEL CSV format (See Table S3 in Supplementary Material for a sample
dataset).

3.1. Van Genucthen model results

To understand the relative performance of LM, TR, and DB algo-
rithms for fitting the VG model, we first fitted the model to one of the
RETC soils (Touchet silt loam (King, 1965)) using all three optimization
methods. A standard set of initial guess values for the model parameters,
provided by Zhang et al. (2018), was used; these values are summarized
in Table 1. The table also provides a generic set of lower and upper
bounds given by Zhang et al. (2018); these values were employed when
running TR and DB methods. The table also provides a generic set of
initial guesses as well as the lower and upper bounds for all BC model
parameters.

The values of VG model parameters estimated by PySWR, literature-
derived RETC estimates (Van Genuchten and Yates, 1991), and the
computational time taken by all three fitting algorithms are summarized
in Table 2. Fig. 1 compares experimental data with the fitted model
results (note absolute values of soil water potential are plotted in all the
figures). The results show that it is almost impossible to distinguish the
difference between the curves fitted using the three methods. The data
presented in Table 2 also show that all three methods estimated identical
parameter values. The code was run on a standard windows-based

Table 1
The initial guesses and lower and upper bounds used for various model
parameters.

Parameters 0, 0 VG model BC model

n « (em™h) A g (ecm™1)
Initial guess 0.05 0.4 1 1 0.1 1
Lower bound 0 0 1 0 0 0

Upper bound 1 1 100 100 100 100
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Table 2
The values of van Genuchten model parameters for Touchet silt loam (King,
1965) estimated using the three fitting methods.

Method 0, 0 n o (cm™) Comp
time (s)

LM 0.092+ 0.527+ 3.5+ 0.0270+ 0.092
(0.004) (0.001) (0.07) (0.0001)

TR 0.092+ 0.527+ 3.5+ 0.0270+ 0.102
(0.004) (0.001) (0.07) (0.0001)

DB 0.092+ 0.527+ 3.5+ 0.0270+ 0.130
(0.004) (0.001) (0.07) (0.0001)

RETC 0.102 0.526 3.5 0.027 -
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Fig. 1. van Genuchten soil water retention function for Touchet silt loam (King,
1965) fitted using the three methods.

computer with Intel(R) Core(TM) i5 processor and 8.00 GB memory
and all three methods took a fraction of a second to converge.

The Python tool can also compute the uncertainty (or error) in the
estimated values of model parameters (which are the square root of the
diagonal entries of the covariance matrix output by the fitting routine).
The standard error values for various model parameters estimated by the
three fitting methods are summarized in Table 2. Interestingly, the un-
certainly estimates computed using all three optimization algorithms are
identical.

Since the parameter values estimated by all three fitting methods
were identical, for other RETC soils we only report the values estimated
using the TR method. We selected the TR method since it is computa-
tionally a bit more efficient than the DB method (see Table 2), and it also
allowed the user to constrain the parameter space based on our prior
knowledge of the parameter values. As illustrated in our later examples,
constraining the parameters can have several advantages. Fig. 2 presents
the model fits for all four RETC soils. In Table 3 the parameter values
estimated by PySWR are compared against the values reported in the
RETC manual. The figures show that the TR method was able to fit the
VG model well for all four RETC datasets. Also, the data shown in the
table indicate that the fitted parameter values are close to the values
estimated using the RETC code. The sum of square error (SSE) value
reported in the table was calculated as the metric to evaluate the dif-
ference between the measured and the estimated water content values.
The SSE is defined as follows:

N
SSE= > (6 - &)’ )
i=1
where 0,° is the observed data, while 0;°*! is the estimated value and N
is the total number of measurements in each soil sample. The SSE data
show that the TR method provided better fits for most of the soils.
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Fig. 2. van Genuchten model fits for the four RETC soils fitted using the TR method: (a) Weld silty clay loam (Jensen and Hanks, 1967) (b) Touchet silt loam (King,

1965) (c) G.E.No.2 sand (King, 1965) (d) Sarpy loam (Hanks and Bowers, 1962).

Table 3
The values of van Genuchten model parameters estimated using the TR method
for the four RETC soils.

Table 4
The values of Brooks and Corey model parameters for Touchet silt loam (King,
1965) estimated using the three fitting methods.

Soil type Method 0, 0s n a(ecm™) SSE
(10

Weld silty TR 0.159+ 0.49+ 5.4+ 0.0136+ 4.85
clay (0.006) (0.01) (0.3) (0.0002)
loam

Jensen RETC 0.15 0.49 5.4 0.0136 4.87
and code
Hanks
(1967)

Touchet TR 0.092+ 0.527+ 3.50+ 0.0270+ 0.10
silt loam (0.004) (0.001) (0.07) (0.0001)

King RETC 0.102 0.526 3.59 0.027 0.17
(1965) code

G. E. No.2 TR 0.069+ 0.365+ 5.4+ 0.0367+ 0.23
sand (0.007) (0.002) 0.2) (0.0003)

King RETC 0.057 0.367 5.0 0.0364 0.34
(1965) code

Sarpy TR 0.031+ 0.400+ 1.59+ 0.027+ 0.98
loam (0.005) (0.002) (0.02) (0.001)

Hanks and RETC 0.032 0.400 1.60 0.027 0.99
Bowers code
(1962)

3.2. Brooks and Corey model results

Similar to the previous section, we used the generic initial guesses
and the generic upper and lower bounds provided in Table 1 to fit the BC
model to the Touchet silt loam data using all three fitting methods. The
model parameter values estimated for Touchet silt loam are summarized
in Table 4. The table also provides the optimal values of BC parameters
estimated using the RETC code (Van Genuchten and Yates, 1991). These
results show that the LM method failed to evaluate good estimates for A,
and even provided an unrealistic negative value for the residual water
content. On the other hand, both TR and DB estimated more realistic BC
model parameter values. We repeated the fitting exercise for several

Method 0, 05 A [} (em™)

LM —-0.67 0.51 0.26 0.05

TR 0 0.510-(0.007) 0.9+(0.2) 0.045+(1e-3)
DB 0 0.510-£(0.007) 0.9+(0.2) 0.045+(1e-3)
RETC code 0.018 0.499 1.1 0.037

other soil datasets (details of these soils are discussed in later sections),
and for many of these cases, the LM method either failed to converge or
estimated unrealistic values. Furthermore, our test simulations indicated
that providing better initial guess values and also constraining the
parameter values within a narrow range (rather than the broad range
provided in Table 1) yielded better results when using the TR and DB
methods. Therefore, in the following section, we propose a practical
approach for estimating initial guess and upper-and-lower bounds
values for various model parameters by graphically analyzing the
experimental data.

Fig. 3 summarizes the details of the proposed graphical approach for
evaluating better initial guesses and parameter bounds. We present the
data analysis steps for the Touchet silt loam (King, 1965) dataset to
demonstrate this intuitive graphical approach. As a first step, we esti-
mated the initial guess value for porosity by drawing a vertical line
connecting a few data points which are close to maximum water content.
As shown in Fig. 3, this line (black line) intersected the x-axis at the
moisture content value of about 0.52, which will be our initial guess for
the value of saturated water content (or porosity). We then perturbed
this porosity value by about 25 % on either side to estimate the lower
and upper bounds for porosity as 0.40 to 0.65, respectively.

To estimate the initial guess value of the air entry pressure, we
evaluated a transition point where the soil started to drain sharply (i.e.,
the water content started to decrease sharply from the maximum satu-
ration level) and a horizontal line (blue-line) was drawn through this
point and the line intersected the y-axis at the capillary pressure value of
about 20 cm, which was assumed to be the guess value of the air entry
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Fig. 3. Graphic approach for estimating the initial guess values, and lower and
upper bounds for VG and BC model parameters.

pressure. To estimate the upper bound for the air entry pressure, we
identified an inflection point that normally occurs somewhere between
25 % and 50 % of the drainable porosity (this range is an estimate based
on our experience of analyzing multiple SWR datasets including the ten
datasets presented in this study). For the loam soil, the inflection point is
located close to the water content value of 0.35 (as marked by the ver-
tical red line without an arrow). We then drew a horizontal line (red
line) going through the inflection point and estimated the upper bound
for the air entry pressure as 40 cm for the loam soil (See Fig. 3). The
lower bound for the air entry pressure was always assumed to be 1 cm
(which is an extremely low value, typically observed for coarse sands).

To estimate the value of the upper bound of the residual saturation, a
vertical line (green line) was drawn that connected a few data points
that have very low water content values. This line intersected the x-axis
at the water content value of 0.12, and this value was assumed as the
upper bound for residual saturation. Since the value of residual water
content will always be tending towards zero, we assumed zero as the
lower bound for all soils. However, if a better value of residual satura-
tion is available, the user can always use that value as the lower bound.
The best initial guess for residual saturation was then estimated as the
midpoint between the upper and lower bound values; for the loam soil
this value is estimated to be 0.06.

The typical value of A would range from 5 for uniform material (such
as uniform sand), to a low value of about 0.1 for highly heterogeneous
silty-clay materials. The initial value for A was always assumed to be 1,
which is close to the logarithmic midpoint of the range of possible A
values. We analyzed all four RETC soils using the proposed graphical
approach and estimated initial guesses and upper and lower bounds, and
the data are summarized in Table 5.

We employed the values given in Table 5 to fit the BC model to all
four RETC soil datasets and the results are shown in Fig. 4.

The results show that both TR and DB methods fitted the data well. In

Table 5

Initial guess values and lower and upper bounds for Brooks and Corey param-
eters estimated using the proposed graphical approach for the four RETC soils
(the values are organized as 6,, 0, A, p (em™Y)).

Soil type Initial guess Lower Upper bound
bound
Weld silty clay loam (Jensen 0.07, 0.47, 1.0, 0, 0.35, 0.14, 0.58, 5,

and Hanks, 1967) 0.016 01,1 0.012

Toucher silt loam (King 1965) 0.06, 0.52, 1.0, 0, 0.39, 0.12, 0.65, 5,
0.055 01,1 0.025
G. E. No.2 sand (King, 1965) 0.045, 0.37, 0, 0.28, 0.09, 0.46, 5,
1.0, 0.083 01,1 0.04
Sarpy loam (Hanks and 0.035, 0.40, 0,0.3,0.1, 0.07, 0.5, 5,
Bowers, 1962) 1.0, 0.1 1 0.0025
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Table 6 we only provide the TR results and compare them with the
values estimated by the RETC code. These data show that the model
parameter estimated by PySWR are close to the RETC estimates. Also,
the estimated values of SSE in Table 6 indicate that the TR method
performed similar or better when compared to RETC code results, for all
four datasets.

3.3. Comparison of the efficiency of different non-linear fitting
approaches

To understand the relative efficiency of the three fitting approaches,
we artificially perturbed the Touchet silt loam (King, 1965) data (the
perturbed dataset is given in Table S4, see Supplementary Material) by
introducing some random noise to the data. We employed the graphical
approach for reevaluating the initial guesses and parameter bounds for
the noisy dataset and the results are summarized in Table S5 (see Sup-
plementary Material). We then used all three methods to fit both VG and
BC models to this noisy dataset. The estimated model parameter values
are summarized in Table 7; note, in the table we only report the values
estimated by TR because the LM method failed, and TR and DB methods
generated similar results. Fig. 5 shows the model profiles fitted using the
TR and DB methods. The figure clearly shows that both TR and DB fits
were almost identical. The most interesting result of this efficiency test
was that the LM method not only failed to fit the BC model (which
should be expected) but also failed to fit the VG model when the data
was noisy.

Our simulation results also indicated that for most cases the TR
method is a bit more computationally efficient than the DB approach (e.
g., see Table 2). We completed additional sensitivity simulations by
perturbing the initial guess values; the results indicated that for some
soils the DB method can be relatively more sensitive to initial guess
values when compared to the TR method. Overall, we found the TR
method as the most robust approach for fitting both VG and BC models.
Therefore, in the following validation section, we only present the re-
sults for the TR method.

3.4. Validation of the code performance using additional datasets

To further test the performance of the PySWR code, we used the code
to fit both VG and BC models to six different UNSODA datasets. We first
analyzed these experimental data using the proposed graphical
approach and evaluated the initial guesses and bounding values for all
the model parameters. These values are summarized in Table S6 (see
Supplementary Material).

We used the TR method to fit the VG model to the six UNSODA soils
and the fitted model profiles are compared with the experimental data in
Fig. 6. The figures show that the PySWR code was able to fit all UNSODA
datasets well. The estimated model parameter values are compared
against the SSA (Zhang et al., 2018) and RETC code results in Table S7
(see Supplementary Material). From the values of SSE, summarized in
Table S7 it can be observed that the TR method was able to provide
better fits with relatively low SSE values when compared to RETC fits.

The TR method was then used to fit the BC model to all UNSODA
soils. The model profiles fitted by the PySWR code are compared with
experimental data in Fig. 7. The figure shows that the TR method was
able to fit the BC model to all six datasets. Furthermore, the fitted model
parameter values are summarized in Table S8 (see Supplementary Ma-
terial). The values presented in the table (see S8) show that the code was
able to estimate realistic model parameters.

As discussed in the aforementioned sections, unlike the VG model,
the BC model is not a smooth function and has a discontinuity close to
the air-entry value. Comparisons of experimental data shown in Figs. 6
and 7 indicate that the initial drainage pattern was fairly smooth for all
six UNSODA soils. As expected, the sharp transition region near the air
entry value resulted in the BC function not fitting some of the data points
located near high water content values. The VG model, which simulated
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Table 6
The values of Brooks and Corey model parameters estimated by TR method for
the four RETC soils.

Soil type Method 0, 0 A B (cm™ 1) SSE
(107%)

Weld silty TR 0.112+ 0.470+ 1.83+ 0.01739+ 0.21
clay (0.003) (0.003) (0.03) (6e-5)
loam

Jensen RETC 0.11 0.46 1.89 0.017 0.21
and code
Hanks
(1967)

Toucher TR 0.00 0.510+ 0.9+ 0.045+ 2.25
silt loam (0.007) (0.2) (1le-3)

King RETC 0.018 0.499 1.1 0.037 3.67
(1965) code

G. E. No.2 TR 0.00 0.358+ 1.5+ 0.049+ 1.56
sand (0.004) (0.5) (1le-3)

King RETC 0.00 0.352 1.7 0.046 3.54
(1965) code

Sarpy TR 0.00 0.380+ 0.38+ 0.044+ 5.38
loam (0.004) (0.04) (2e-3)

Hanks and RETC 0.00 0.380 0.38 0.044 5.39
Bowers code
(1962)

Table 7

The values of van Genuchten and Brooks and Corey model parameters estimated
for the noisy Touchet silt loam (King 1965) data (note, we only report TR results
since LM failed to converge and DB estimates were identical to TR).

Method 0, 0, nora aorp(ecm 1)
VG-TR 0 0.51+(0.05) 3+(2) 0.025+(0.005)
BC-TR 0 0.50+(0.04) 0.94(1) 0.045+(0.008)

a smoother drainage pattern provided better fits for all six UNSODA
datasets. Our test simulations indicated that for most of our cases, the
VG model performed well even when generic initial guesses and generic

upper and lower bounds were used. On the other hand, the BC model
required better initial values and narrower bounds to obtain meaningful
results. Overall, the VG model was a better function for describing the
UNSODA data.

4. Conclusions

We present the details of a Python code, PySWR, for fitting VG and
BC models to soil moisture data. PySWR provides options to use several
non-linear least-squares fitting methods, including LM, TR, and DB
methods, available in the Python SciPy module. The results show that all
three methods were able to fit the VG model to the four RETC soil
datasets. However, further analysis indicated that the LM method failed
to fit the VG model when some random noise was introduced into the
data. The LM method also failed to fit the BC model to all the experi-
mental datasets considered in this study. The TR and DB methods were
found to be much better alternatives since they allowed the user to
constrain the bounds of various model parameters, thus limiting the
search within a feasible range. The efficiency of these methods can be
improved by providing good initial guesses, and better upper and lower
parameter bounds. The graphical method proposed in this study is an
intuitive practical approach for evaluating good guesstimates and
parameter bounds. The performance of the DB method was always
comparable to the TR method; however, we recommend the TR method
since it was relatively less sensitive to variations in initial guess values,
and it was also a bit more computationally efficient than the DB method.
Our results show that PySWR is an excellent tool for analyzing SWR
data. The PySWR code has tools for estimating parameter error, and it
also supports various plotting routines for comparing model-fitted SWR
curves with experimental data. Overall, PySWR is a useful tool for fitting
both VG and BC models to experimental data.
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