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We present new results on the equation of state and transition line of hot and dense strongly interacting
QCD matter, obtained from a bottom-up Einstein-Maxwell-Dilaton holographic model. We considerably
expand the previous coverage in baryon densities in this model by implementing new numerical methods to
map the holographic black hole solutions onto the QCD phase diagram. We are also able to obtain, for the
first time, the first-order phase transition line in a wide region of the phase diagram. Comparisons with the
most recent lattice results for the QCD thermodynamics are also presented.
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I. INTRODUCTION

Significant efforts are underway to search for the
quantum chromodynamics (QCD) critical point and sub-
sequent first-order phase transition line at medium- to low-
beam energies [1]. Ongoing experiments such as the phase
IT of the beam energy scan at the Relativistic Heavy Ion
Collider (RHIC), including a fixed-target program running
at /sy = 3-7.7 GeV [2,3] and HADES at the GSI, with
V/Snn = 1-3 GeV [4], are currently looking for the QCD
critical point. Additionally, next generation experiments
such as FAIR at the GSI (\/syy = 2.9-4.9 GeV) [5-8] and
NICA in Dubna (y/syy = 3-5 GeV) [9,10] are being built
to precisely determine the QCD equation of state (EOS)
and the properties of the strongly interacting quark-gluon
plasma (QGP) at large baryon densities. Relevant observ-
ables in this quest include fluctuations of conserved charges
[11-18], flow [19], and particle yields [20]. For recent
reviews, see Refs. [1,21].

In order to simulate the evolution of heavy-ion collisions
at low collision energies, the EOS is needed at large baryon
chemical potential up. First principle lattice QCD calcu-
lations provide the EOS at up = 0 [22-24]. However, due
to the fermion sign problem [25], it is not possible to
directly calculate the EOS at finite densities. Nevertheless,
one can reconstruct the EOS using susceptibilities calcu-
lated on the lattice through a Taylor series [26-38],
currently limited to ug/T < 2 (where T is the temperature).
A new expansion has been proposed in Ref. [39], which
covers a much larger region of up with high precision.
Unfortunately, such an approach cannot cover the whole
phase diagram, nor can it accurately capture critical
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behavior. Therefore, one must turn to alternative
approaches to describe the matter created in low-energy
collisions, and in the vicinity of a critical point. A
promising effective theory should not only reproduce
lattice QCD thermodynamics results where they are avail-
able, but also the QGP’s nearly perfect fluid behavior [40]
implied by current extractions of its transport properties
from comparisons between model calculations and exper-
imental data [41,42]. To the best of our knowledge, the only
effective model currently available in the literature that can
simultaneously describe on a quantitative level both equi-
librium and near-equilibrium features of the strongly
coupled QGP is the bottom-up nonconformal Einstein-
Maxwell-Dilaton (EMD) holographic model proposed by
some of us in Ref. [43]. This model, which is able to
quantitatively describe the high-order baryon susceptibil-
ities obtained on the lattice and the nearly perfect fluid
behavior of the QGP, is built up on the general reasoning
originally laid down in the seminal works of [44—-46], based
on a phenomenological approach of the well-known gauge/
gravity duality [47-50]. Some previous holographic
approaches focusing on qualitative aspects of the strongly
coupled QGP can be seen e.g., in Refs. [51-68].

The construction of the EMD model of Ref. [43] mainly
differs from the earlier developments of [44—46] by the fact
that the old lattice data used in those previous holographic
works to fix the free parameters of the model are, nowa-
days, known not to be quantitatively accurate. On the other
hand, Ref. [43] makes use of state-of-the-art lattice QCD
results at up = 0 as first principles inputs from QCD to fix
the free parameters of the EMD model, as we are going to
review in Sec. III C. Moreover, as discussed in Appendix A

© 2021 American Physical Society
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of Ref. [43], in the EMD model constructed in Refs. [45,46]
four different dimensionful scales were introduced to
express the temperature, baryon chemical potential,
entropy density and baryon charge density in physical
units, while in QCD there is just one dimensionful scale,
Aqcp- Therefore, also in the EMD model constructed in
Ref. [43] there is a single dimensionful scale, A, which is
used to express any physical observable in physical units
(see Sec. III C).

The EMD model of Ref. [43] predicted a critical
point in the QCD phase diagram at 7 ~ 89 MeV and
ug ~ 724 MeV. However, even though holographic calcu-
lations at finite chemical potentials are not affected by the
fermion sign problem, numerical calculations at very large
up are still quite challenging in this approach, which was
the reason why in Ref. [43] some of us were still unable to
locate the line of first-order phase transition in the region
beyond the critical point, as we will discuss in detail in the
present work. Here we considerably expand our previous
results [43] by overcoming most numerical difficulties and
providing our equation of state over a broad range in
temperature (2 MeV < T < 550 MeV) and baryon chemi-
cal potential (0 < up < 1100 MeV). By mapping out the
phase diagram of our model within this unprecedentedly
large region in the (7, up) plane, we finally locate the first-
order phase transition line beyond the critical point of our
model originally calculated in Ref. [43]. Moreover, with the
filtering scheme developed in the present work to smooth
out numerical noise, we were also able to calculate the
physical observables on top of the phase transition regions,
which was something we were unable to do at the time of
publication of Ref. [43]. Furthermore, we also present in
this work comparisons between our results and the latest
lattice data from Ref. [39].

The paper is organized as follows. In Secs. II and III we
review some of the main aspects of the bottom-up EMD
model proposed in Ref. [43], which are necessary in the
implementation of our new numerical developments pre-
sented in detail in Sec. I'V. Also, in Sec. IV we present our
results for the thermodynamic quantities of the strongly
coupled QGP, largely extending the range of values of yp
covered in the phase diagram of the EMD model, which
allows us to locate the first-order phase transition past the
critical point originally obtained in Ref. [43]. In Sec. V we
present our conclusions and future perspectives in face of
the results discussed here. In the present work we employ
natural units 2= c =kz =1 and a mostly plus metric
signature.

II. THE HOLOGRAPHIC EMD MODEL

Through the holographic gauge/gravity correspondence
developed in string theory, calculations of physical observ-
ables in a strongly coupled quantum non-Abelian gauge
theory in (flat) four dimensions can be performed by
solving the classical equations of motion of a higher

dimensional theory of gravity in asymptotically anti—
de Sitter (AdS) spacetimes. In the present work we employ
a five-dimensional bottom-up EMD model defined by the
following action [43.,45]:

1
S—/ d5x£——2/ d’x\/=g
Ms 2K5 Ms
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x [R V(p) }
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where K% = 82G5 and Gs is the five-dimensional Newton’s
constant. The EMD action (1) comprises three bulk fields in
five dimensions: the metric g,,, a real scalar called the
dilaton field ¢, and a Maxwell field A,. Additionally, R is
the Ricci scalar and F,, =V,A,—V,A, We set the
asymptotic AdSs radius L to unity and introduce as a free
parameter in its place an energy scale A, which is going to
be fixed together with K‘% in Sec. III C. The single energy
scale A expressed in MeV will be used to write in physical
units the gauge theory observables originally calculated in
terms of inverse powers of L on the gravity side of the
holographic gauge/gravity correspondence.

We note that Eq. (1) is the simplest five-dimensional
action that can holographically produce a phenomenologi-
cally realistic QCD-like effective theory in four dimensions
at finite temperature and chemical potential. In what
follows, we review some of the main aspects of the
EMD model already presented in detail in Ref. [43], since
they are important for the new numerical procedure we
develop in the present work, which shall be discussed in
Secs. IVA and 1V B.

The five-dimensional metric g,, is dual to the stress-
energy tensor of the four dimensional quantum gauge
theory and the extra holographic direction may be inter-
preted as a geometrization of the energy scale of the
renormalization group flow of the gauge theory [69].
The dilaton field is used in the present setup to break
the conformal invariance of the theory, with its potential
V(¢) (and also the free parameters k3 and A) being
engineered in a very specific way such as to emulate the
behavior of the QGP in equilibrium, as inferred from lattice
QCD calculations at pp =0. The Maxwell field is
employed here to introduce the effects associated with a
finite baryon chemical potential, which is done by tuning
the coupling function f(¢) in order to have the holographic
baryon susceptibility matching the corresponding lattice
QCD result also at ugp = 0. Therefore, as we are going to
review in Sec. III C, all the free parameters of our EMD
model are fixed by lattice QCD inputs at zero net baryon
density. Consequently, all the observables calculated at
nonzero g, besides all of those computed at 5 = 0 which
were not used to fix the free parameters of the EMD action,
follow as bona fide predictions of our holographic model.
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We are interested here in five-dimensional, nonrotating,
translationally invariant, spatially isotropic, and charged
black hole backgrounds in thermodynamic equilibrium. In
this case, the EMD fields are described by the following
general ansatz [45]

2B(r)d 2
ds®> = X [—h(r)dt* + d¥*] + ¢ h(r)r ,
¢ =¢(r), A=A, dx" = O(r)dt, (2)

where r is the holographic coordinate. The radial position
of the black hole event horizon is given by the largest root
of h(ry) = 0 and the boundary of the asymptotically AdSs
geometry lies at r — oo. The equations of motion (EOM)
can be readily obtained

H(r)
h(r)

¥+ [+ a0 5000

.- h(<)> vt RO P o, o
@)+ [0 =50+ L )| @) o
@
A"(r)=A'(r)B'(r) + %”)2 =0, (5)
W(F) + A1) = B () = A0 ()0 (2 =0,
©

h(r)[24A"(r)2 = ¢/ (r)2] + 6A"(r) 1 (r)
+2e2P0V(§) + e MO f(p)@ (12 =0, (7)

with Eq. (7) being a constraint. Since the background
function B(r) has no dynamics, one may employ a gauge
choice where B(r) = 0 in order to simplify the numerical
calculations, as we are going to do in a moment.

The equation of motion for ®(r) can be integrated to
obtain the conserved Gauss charge Qs associated with the
gauge field A,

Q6(r) = f(#)e P! (r). (8)

From Eq. (6) for the blackening function A(r) another
conserved charge is obtained: the Noether charge

Oy = AA=B0)[QANK () ~F(#)9()¥ ()], 9)

III. NUMERICAL SOLUTIONS TO THE EOM AND
THERMODYNAMIC QUANTITIES

In order to solve the EOM numerically, we need to define
a different set of coordinates which we call “numerical
coordinates,” in addition to the so-called standard coor-
dinates, which will be denoted with a tilde. Both sets of
coordinates are defined in the gauge where B(r) = 0. One
may calculate the thermodynamic quantities such as entropy
density and temperature from standard holographic
formulas using the standard coordinates, in terms of which
h(7 = o) = 1, as usual. However, to numerically solve the
EOM, it is necessary to rescale the standard coordinates to
specify definite values for some of the Taylor coefficients in
the near-horizon expansions of the EMD fields, as required in
order to initialize the numerical integration of the differential
equations (3)—(6). This rescaling is accomplished using the
numerical coordinates, as we discuss next.

A. Standard coordinates and thermodynamics

The near-boundary, ultraviolet expansions of the EMD
fields in the standard coordinates read [43,45]

F) = O 4+ ®fr e + O(e~7), (10)

where v=d—A, d=4 is the number of spacetime
dimensions of the boundary gauge theory, A =
(d + vV d* + 4m?)/2 is the scaling dimension of the gauge
field theory operator dual to the dilaton ¢(r) and m is the
mass of the dilaton field obtained from the dilaton potential
(which will be specified in Sec. III C).

The temperature of the gauge theory fluid corresponds to
the Hawking temperature of the black hole solution

T ~9d” Al G 1
A O

7=y

where we already introduced the energy scale A so that
Eq. (11) gives the temperature of the QGP expressed in
MeV. The entropy density of the boundary fluid is related to
the area of the black hole event horizon, Ay, via the
Bekenstein-Hawking formula [70,71]

s = EA3 _ An A3 = 2_”63/1(711)/\3

V' 4GsV K ’

(12)

where V is the three-dimensional spatial volume. One can
also obtain the baryon chemical potential of the system
from the boundary value of the Maxwell field
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pp = lim ®(F)A = A, (13)

whereas the baryon density is obtained from the boundary
value of the radial momentum conjugate to the Maxwell
field

pp = lim 05 _p3 - Qo= )y O

= A (14
=00 O(0;D) 2k2 K (14)

B. Thermodynamics in the numerical coordinates

For numerically solving the EMD EOM, we consider
Taylor expansions of the bulk fields near the black hole
event horizon, ) % (X, (r—rg)", where X = A, h, ¢, ®.
We rescale the holographic coordinate r so that ry = 0.
The fact that the blackening function has a simple zero at
the horizon leads to sy = 0. Also, Ay = 0 can be fixed by
rescaling the spacetime coordinates (z,X) by a common
factor, while /; = 1 can be arranged by rescaling only the
time coordinate . In addition, one must impose ®, = 0 for
ddt to be well defined, since dt has infinite norm at the
horizon. With the Taylor coefficients kg, hy, Ag, and @,
determined as aforementioned, the solutions to the set of
Egs. (3)—(7) via Taylor expansions can be parametrized by
just two coefficients, namely the value of the dilaton field
calculated at the horizon, ¢, and the derivative of the
Maxwell field evaluated at the horizon, ®@,. Indeed, differ-
ent choices for the pair of initial conditions (¢, D)
produce different black hole geometries, each of them
corresponding to some definite thermal state of the gauge
theory in equilibrium. The phase diagram of the model can
be then populated in the (7, up) plane by considering a
large ensemble of different black hole solutions.

During the numerical integration of the equations of
motion, we avoid the singularity at the horizon (ry = 0) by
starting at a slightly shifted position, e.g., ry, = 1078. The
boundary can be numerically parametrized by the value of
the holographic coordinate r at which the EMD fields have
already reached their ultraviolet behavior corresponding to
the AdSs geometry, which has a Ricci scalar of R = —20.
For the vast majority of initial conditions considered in the
present work, the corresponding black hole solutions
satisfy this condition for r < ry, = 2, which is then taken
as the upper bound for the numerical integration of the
EOM and can be used as a numerical parametrization of the
boundary. However, for some initial conditions the dilaton
only reaches the value of 10 for larger values of 7y,
(such a small value of the dilaton is used as part of our
algorithm to extract its leading ultraviolet coefficient close
to the boundary, as discussed below); in such cases we
simply set rp,, = 10.

The asymptotics of the EMD fields also imply the
following bound for generating asymptotically AdSs sol-
utions from the chosen values of the pair of initial
conditions (¢, @;) [43,45]

| < —2;(2’;‘;) — o7 (). (15)

In the numerical coordinates, one can show that the
ultraviolet behavior of the EMD fields is given according to
[43,45]

A(r) = a(r) + O(e~24l),

h(r) = hi¥ + 0(e™4")

Hr) = s+ O(e73t0),

(1) = B 4+ Bre240) 4 O, (16)

where a(r) = A™r+ A" By calculating the constraint
Eq. (7) at the boundary, one obtains Af_a{ =1/ 1/h(f)‘“.

Furthermore, by equating the conserved charge (8) evalu-
ated at the boundary and at the horizon, one also finds that

hfar
‘Dgar = —T\/gf(fﬁo)q)l- (17)

For the kind of calculations we pursue here, we just need to
obtain the behavior of a few ultraviolet expansion coeffi-
cients of the EMD fields near the boundary, namely £, @f,
@5, and ¢,. As discussed in Ref. [43], one may set A" =
h(rma) and @ = ®(ry,, ), since the blackening function
and the Maxwell field quickly reach their respective con-
formal values. From Eq. (17) one obtains @, while ¢, can
be reliably estimated by fitting the numerical solution for
¢(r) using its ultraviolet asymptotics, ¢, e™**"), within the
adaptive range r € [¢p~1(1073), ¢! (107)]. Notice that ¢,
must be extracted from the comparison between the leading
term in the analytic near-boundary expansion of the dilaton
field and its full numerical result. Clearly the numerical
solutions for the dilaton only converge to the corresponding
ultraviolet asymptotics near the boundary, when the value of
the dilaton approaches zero exponentially. The aforemen-
tioned adaptive region was defined after tests with several
different initial conditions by considering the requirement
that the numerical error defined as the difference between the
numerical dilaton and its analytic leading order ultraviolet
asymptotics is small when compared to the numerical value
of the dilaton within the fitting region. When this requirement
is satisfied, one can guarantee that ¢, is being reliably
estimated. We have also considered different adaptive
regions to extract the value of ¢4, but always restricted to
the requirement that this relative error must be small. The
physical results remain unchanged as long as this require-
ment is met.

One can show that the thermodynamic variables (11)—
(14) can be directly expressed in the numerical coordinates
as follows [43]
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1
T=— A, (18)
4n,¢f11/l’ /h{)ar
q)far
pp = ————=A, (19)
1/v pyfar
A 0
2
s = A, (20)
K5y
q,far
2 A (21)

PB=———— —
K%{Iﬁf‘/y /h{)ar

C. Fixing the free parameters of the EMD Model

The free parameters of our EMD model, namely, K%, A,
V(¢), and f(¢), are dynamically fixed by state-of-the-art
lattice QCD inputs at up =0 with 2+ 1 flavors and
physical values of the quark masses. More specifically,
k%, A, and V(¢) are fixed in order that the holographic
equation of state at up = 0 closely matches the correspond-
ing lattice QCD results from Ref. [23], while f(¢) is fixed
by requiring that the holographic second order baryon
susceptibility, also calculated at up = 0, closely matches
the corresponding lattice result from Ref. [72]. In particular,
at vanishing chemical potential it is possible to derive a
holographic formula for the dimensionless second-order
baryon susceptibility, x5 = 0*(P/T*)/d(ug/T)?, which
reads as follows [45,59]

1 s 1
720 =0V =167 1(0) Ji dre 7 )

, (22)

which is to be evaluated by setting the initial condition @,
to zero. In numerical calculations, we substitute ry; — Fya
and 00 — -

In this way, the free parameters of our holographic EMD
model are fixed as below,

V(¢) = —12cosh(0.63¢) + 0.65¢* — 0.05¢* + 0.003¢°,
% = 87Gs = 87(0.46), A = 1058.83 MeV,

_sech(ci¢ + c2¢%) LG

f(¢) 1+ C3 1+ C3

sech(cyep), (23)

where ¢; = —0.27, ¢, = 0.4, ¢c3 = 1.7, and ¢, = 100, with
the corresponding fitting results displayed in Figs. 1 and 2.
As discussed in Ref. [43], the scaling dimension of the
gauge theory operator dual to the dilaton field in our
approach is A =~ 2.73, which is a result implied by dynami-
cally matching, with our choice of the functional form of
V(¢), the holographic equation of state to the correspond-
ing state-of-the-art continuum extrapolated lattice QCD

03}
025
C”’ 02t
2
= 015
5
83PN
= 01
0.05
0 . . . . . . . . .
140 160 180 200 220 240 260 280 300
T [MeV]
FIG. 1. Results from the fitting of the holographic susceptibility

(solid black curve) to the dimensionless second order baryon
susceptibility y2 (T, up = 0) from lattice QCD [72].

results evaluated at zero baryon density with 2 + 1 flavors
and physical values of the quark masses. While one may
follow [44] and identify this scalar operator with TrF? in
the gauge theory (which for A ~ 2.73 would possess a large
anomalous dimension), such formal identification is not
rigorously needed to compute thermodynamic observables
in a bottom-up approach.

We note that (an approximation for) the pressure can be
easily calculated by integrating the entropy density with
respect to the temperature,

(@)

(© (d)

0
100 200 300 400 500 100 200 300 400 500

T [MeV] T [MeV]

0
100 200 300 400 500

T [MeV]

FIG. 2. Thermodynamics at up = 0. Lattice QCD results from
Ref. [23] (red points) are compared to the holographic model
curves (blue lines): (a) entropy density, (b) speed of sound
squared, (c) energy density e, (d) pressure P, and (e) trace
anomaly / = e — 3P.
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T
P(T,/lB ES 0) N/ dTS(Ta Hp = 0)’ (24)
T,

low

where we take here 7',,, = 2 MeV (this is the lowest value
of temperature for the black hole solutions generated with
the set of initial conditions considered in the present work,
see Sec. IVA 2).

IV. THERMODYNAMICS AT FINITE
CHEMICAL POTENTIAL

With the results of Egs. (18)—(21), we can calculate many
thermodynamic observables at finite temperature and
baryon density. For instance, the internal and free energy
densities at finite yp are, respectively,

e(s.pg) =Ts— P+ ugp, (25)
F(T,pug) = —P(T,up) = €(s.pp) — Ts — pgpp.  (26)
from which we can obtain the differential relations
de(s,pp) = Tds + ppdpp. (27)
dF(T,pp) = —dP(T, pg) = —sdT — ppdug, (28)
so that at fixed pup,

dP(T, pp)|,, = sdT, (29)

and the square of the speed of sound at fixed up reads,
B (Zas(T,,uB) >—1
HB

~\s OT
(30)

, _dpP

24 pg Opp (T pip)
A d€

S or

HB HB

Equation (30) was used in Ref. [43] to calculate the
minimum of &2(T, up), which may be used as a “transition
line” characterizing the crossover region. However,
although (30) is computationally simple to determine along
trajectories at constant chemical potential, we note that a
definition of the speed of sound that is more relevant to
phenomenological applications is the one determined at
constant entropy per particle, which we are going to
compute in this work in Sec. IV A. Finally, for complete-
ness, the trace anomaly at finite baryon density is given by

I(T,up) = (T, up) = 3P(T, up).
=Ts(T,pup) + pppp(T,pup) —4P(T,pup).  (31)

A. New numerical procedure

Now we provide some details on the new numerical
approach we developed in the present work, which is

crucial to significantly extend the results originally reported
in Ref. [43]. With this new numerical procedure we shall be
able to locate the line of first-order phase transition beyond
the critical point of our model and also evaluate several
thermodynamic observables across the (7, up) phase dia-
gram, including the phase transition region, where the
numerical computations are particularly complicated to be
performed.

1. Integration of the EMD equations of motion

The equations of motion of the EMD model are solved
with the MATLab function “odel13”. This function imple-
ments a variable-step, variable-order Adams-Bashforth-
Moulton PECE solver of order 13. The precision and
stability of this method allow us to explore a wider range of
black hole boundary initial conditions (¢, ®@;) than other
methods available in MATLab. The routine used to inte-
grate the EMD fields and find the QCD thermodynamic
observables from Egs. (18)—(21) checks crucial behavior
for the stability and physical consistency of the holographic
black hole (BH) solutions. A BH solution is accepted if it
satisfies the following requirements:

(i) The integration of the equations of motion (3)—(6) is

finite.

(i) The constraint equation (7) is satisfied.

(iii) The dilaton field ¢(r) tends to zero with the correct
ultraviolet asymptotics (16) as we approach the
boundary.

(iv) The near-boundary behavior of all the other EMD
fields also respects the correct ultraviolet asymp-
totics (16).

(v) The metric coefficient A(r) is monotonically in-

creasing.

(vi) The Ricci scalar of the black hole background, R, is
equal to -20 at the ultraviolet radial cutoff rp,,
(meaning that the geometry is already AdSs at
this point).

2. Mapping QCD thermodynamics from the black hole
initial conditions

For the results presented in Ref. [43], 2 X 10° black holes
were generated with initial conditions spanning the rectangle
defined by ¢, €[0.3,5] and @, € [0,0.48]DP*(¢hy).
Figure 3 shows how an equally spaced, rectangular grid of
initial conditions (¢, @;) is mapped into an irregular grid in
the (7, up) plane generated by the associated black hole
solutions.

As seen in Fig. 3, a simple rectangular and uniform grid
of initial conditions (¢, ®;) produces a wide region of the
(T,pup) plane which is not covered in the QCD phase
diagram (shown in white in the figure). In order to cover the
missing section, we introduce here a new way of choosing
the black hole initial conditions, which is illustrated
in Fig. 4.
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FIG. 3.

generated by the corresponding black hole solutions.

We first consider ®; = 0 (which implies solutions with
up = 0) and choose the values for ¢ such that the mapping
to the solutions in the temperature axis (at gz = 0) is
equally spaced in intervals of 0.1 MeV from T = 2 MeV to

o
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FIG. 4. Example of how the black hole initial conditions should
be chosen to map a rectangular region in the QCD phase diagram.

300 T

L7775
I

L0777
,,‘III

S s
SSNSs

Mapping of an equally spaced, rectangular grid of initial conditions (¢, ®@;) into an irregular grid of points in the (7', up) plane

T = 550 MeV. Next, for each chosen value for ¢, @, is
varied to map the QCD phase diagram completely up to
up = 1100 MeV, leading to the lines of constant ¢, shown
in Fig. 4. These lines bend in the QCD phase diagram,
giving rise to a region with three layers of competing black
hole solutions corresponding to the same (7', yp) points. In
this region, the model is limited at low 7 by the end of the
lines of constant up, were BH solutions cannot be found
using our numerical procedure. It is worth noticing that
ug ~ 1100 MeV is the highest value of up that can be
obtained before the BH solutions for the more curved lines
in Fig. 4 start diverging and become unstable, which occurs
approximately for values of ®; 2 0.83D7*(¢,). In gen-
eral, a BH solution cannot be computed when ®; passes
this threshold.

For the ensemble of BH solutions used in the present
work, each line of constant ¢, has 3000 BH solutions
separated uniformly along these lines and corresponding to
different values of ®;, populating the region of the QCD
phase diagram within the rectangle defined by T €
[2,550] MeV and pg € [0, 1100] MeV, without the holes
found in Ref. [43] by using a rectangular grid of initial
conditions (¢, @;), as shown in Fig. 3.

The precision of the calculations is significantly affected
by numerical noise associated with the fitting of the
ultraviolet coefficients in Eq. (16). The more sensitive
coefficient is ¢, , which appears in the holographic thermo-
dynamic formulas (18)—(21) raised to the powers of —1/v
and —3/v. The noise associated with the loss of numerical
precision is not the same for all lines of constant ¢, as
shown in the left panels of Figs. 5-7.

The behavior of the ultraviolet coefficients and the
thermodynamic variables, as functions of the BH initial
conditions, changes for different lines of constant ¢, as @,
increases. The value of @, for the lines close to the QCD
phase transition (i.e., lines starting between 7" = 150 and
T =180 MeV at pup = 0) increases much faster than for
the other lines and its behavior is not as simple as for the
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FIG. 6. Line of constant ¢, for T = 180 MeV before and after
the filtering process.

rest of the lines. Therefore, the treatment of the lines is
different depending on their location with respect to the
QCD transition line.

The strategy to get a smooth mapping is to filter the lines
over a large number of BH solutions. The mapping in Fig. 4
contains 3000 BH solutions per line of constant ¢ . Taking
a large number of solutions allows us to treat a noisy line
with the appropriate filters without compromising its actual
behavior.

For lines with 80 < T' < 210 MeV, @, /®,..(¢y) con-
siderably increases [see the color scheme used in Fig. 4,
which allows to identify how the different initial conditions
map into the (7,up) plane], and the filtering process
consists in smoothing out these lines using a cubic
smoothing spline filter which only gets rid of big bumps,
and then filtering the line with a Savitzky-Golay (SG) filter.

1.5
% 240 .
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x108

£ 22 E o
= 21 g
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T
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<
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0.4
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& 02 ©
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1 [MeV] 1, [Mev) 11, [MeV] 11 [MeV]
FIG. 7. Line of constant ¢, for T = 250 MeV before and after

the filtering process.

SG filters are typically used to smooth out a noisy signal
with large noise frequency. For this reason, it is important
to prepare the signal with the cubic smoothing spline filter.
The SG filter employed during this process uses a poly-
nomial of degree 3 to interpolate each point with its
neighbors. The number of neighbors approximate a range
of £20 MeV.

The rest of the lines are noisy, but the value of
@, /D, .« (¢ho) remains small. In this case, the most noisy

ultraviolet coefficient is qﬁi‘/ ¥, which is corrected by using a
simple polynomial fitting of the form a + bx? + cx*. The
remaining ultraviolet coefficients are filtered with the SG

filter. Notice that the concavity of (;Si/ ¥ changes from
positive at small 7' to negative at large 7. The region in
between is where the BH solutions can be found with less
noise and those lines are the ones that cross the critical
point. Figs. 5-7 show the lines of constant ¢ as functions
of up for different fixed temperatures, before (blue curves)
and after (red curves) the filtering process.

Once the lines of constant ¢, are corrected, they are
fitted with a cubic spline to get lines of constant ug. The
lines of constant yup are also treated with the SG filter. An
example is given in Fig. 8, which shows the baryon density

1.5 e 11, = 700[MeV] —— 1, = T30[MeV]
= T10[MeV] = T40[MeV]

12 1, = T20[MeV] 1, = T50[MeV]
2,09
&
3

0.6

0.3

0.0

85 87 89 91 93 85 87 89 91 93
TMeV] TMeV]

FIG. 8. Dependence of the baryon density (pp) on the temper-

ature (7T) for different values of the baryon chemical potential
(up) before and after the filtering process.
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as a function of the temperature for different values of up,
before and after the filter.

The lines of constant up are then fitted with a cubic
spline to calculate the pressure, the critical point and the
first-order phase transition line. The next step is to calculate
lines of constant 7 which, together with the lines of
constant pup, are used to take derivatives of the QCD
thermodynamic variables.

3. Finding the transition line and the QCD critical point

The upper panel of Fig. 9 shows lines of constant ¢, as
@, increases before the filtering process, where we can
distinguish three types of lines that define a region of
overlapping solutions for the thermodynamics of the holo-
graphic EMD model. Three different colors have been used

200

200 300 400 500 600 700 800 900 1000 1100

pp [MeV]

0 100

200
100

T [MeV] o o

FIG.9. The upper panel shows the mapping from the BH initial
conditions (¢, @) to the QCD phase diagram (7, up) before the
filtering process. The plot shows how three kinds of lines of
constant ¢b, are mapped into the (7', up) plane, where the crossing
of the lines suggest the location of the CEP. The lower panel
shows the behavior of the second order baryon susceptibility 2
in the (T,up) plane. As the chemical potential increases, x5
develops a peak that becomes a divergence at the critical point
located at TCEP ~ 89 MeV and u§EP ~ 724 MeV.

to easily identify the multisolution region in the figure. The
black dotted lines are almost parallel and do not cross each
other. Some of the dashed red lines cross each other and
also the black lines. Finally, the solid blue lines on the top
cross the black and red lines and some cross each other as
well. The location where these lines start to intersect can be
identified as a candidate point for the critical end point
(CEP) in the QCD phase diagram. Due to the presence of
the first-order phase transition line, the competing phases
may appear as solutions of the equations of motion,
although only one minimizes the free energy and represents
the true ground state of the system. In the crossover region,
one expects only one solution to the equations of motion.
However, near the first-order phase transition line, to the
right of the critical point, the black hole solutions for the
baryon density pp and the entropy density s become
multivalued functions of (7, ug). The first-order phase
transition line and the multivalued solutions end precisely
at the CEP.

With an equally spaced rectangular grid in the QCD
phase diagram, we can start to analyze the region with
multiple solutions. In order to find the exact location of the
CEP, one can analyze the second order baryon susceptibil-
ity x5, which diverges at the critical point. The behavior of
x5 as a function of T and pjp is shown in the lower panel of
Fig. 9. With this procedure, we find that the critical point is
located at Tcgp ~ 89 MeV and u$EP ~ 724 MeV, as origi-
nally reported in Ref. [43].

From the highly nonlinear and unequally spaced map-
ping showed in Fig. 3, it is possible to obtain the
thermodynamics of QCD on a regular grid in the (7', ug)
plane by means of numerical interpolation as done in [43].
In particular, the baryon density pp was obtained over a
regular grid in the interval 7' = [65 — 450] MeV and up =
[0-600] MeV via numerical interpolation.

In this work, however, we obtain an equally spaced grid
in the (7, up) plane directly from the black hole solutions
as described in Sec. IV A 2, by taking the black hole initial
conditions as shown in Fig. 4. One of the advantages of
having the thermodynamics over an equally spaced grid in
the QCD phase diagram is the opportunity to look at the
entropy and baryon density, s and pp, respectively, over
trajectories of constant T or yup in the crossover region and
near the first-order phase transition line. For instance, for an
isotherm at T > TCEP or for slices of constant iz < uSEF,
the entropy density and baryon density are single-valued
functions, since they do not cross the first-order phase
transition line. On the other hand, for trajectories of
constant T < TP or up > u$FP, i.e., trajectories that cross
the first-order phase transition line, s and pp become
multivalued. Since we are solving the holographic black
hole equations of motion, it is reasonable to obtain all
extrema of the free energy which corresponds to the
coexistence region of not only thermodynamically stable
minima, but also thermodynamically metastable and
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FIG. 10. Entropy density s (upper panels) and its integral with respect to the temperature, corresponding to the pressure (lower panels),

for three different values of ug > uSEP ~ 724 MeV.

unstable saddle points or maxima. In the top panels of
Fig. 10, we can observe the characteristic multivalued S
shape for the entropy at three different slices of uz > u$Er,
which means that at a given 7 we have three competing BH
solutions. Precisely at (TCEP, uGEP), the curves for s and
similarly for pp cease to be multivalued; this characterizes
the end of the first-order phase transition line at the CEP.

Our approach to characterize the first-order phase
transition line was to integrate the entropy with respect
to the temperature over the multivalued region, and locate
the point where the resulting curve, corresponding to the
pressure or to minus the free energy according to Egs. (26)
and (29), crosses itself. This method is close/analogous to
Maxwell’s equal area construction, although computation-
ally easier to implement.

It is important to point out that in this work we have only
analyzed the thermodynamic observables and identified a
line of first order phase transitions ending on a CEP (which
was originally predicted for this specific EMD model in
Ref. [43]). However, in principle this phase transition may
refer to different aspects of QCD, such as the chiral
transition, which in the chiral limit has as an order
parameter the chiral condensate, and the deconfinement
transition, which in a setup with dynamical quarks has no
clear order parameter (since the Polyakov loop is only a
legitimate order parameter for the deconfinement transition
in the quenched approximation with infinitely heavy
quarks). For the present model, we have not calculated
either the chiral condensate (this would require considering
at least an extra probe action on top of the numerical EMD
background solutions), nor the Polyakov loop. Therefore,
we cannot specify at this point further details about the
nature of this phase transition. Indeed, although for QCD
with dynamical quarks at low to moderate values of y the

chiral and deconfinement “transitions” are a smooth cross-
over, it is not clear whether those phase transitions are
actually located at the same place in the (7, up) plane for
higher values of yp.

Since the QCD transition from gz = 0 up to the critical
point is a smooth crossover, there is no unique definition of
a transition temperature in this region. However, one may
try to characterize this quantity as the inflection point or the
extrema of observables sensitive to the change of degrees of
freedom in the transition between hadrons and a system of
quarks and gluons. In fact, as pointed out in Ref. [73], due
to the nature of the crossover and the absence of a real order
parameter, several quantities can be used to identify a phase
transition in this case, such as the inflection point in the
second-order baryon susceptibility or the interaction mea-
sure, minimum of the speed of sound and several others.
While none of them is a real order parameter, they all
exhibit a rapid rise in the vicinity of the transition, and the
spread in transition temperature values generated by these
different criteria is an indication of the width of the
crossover. In this work, we have chosen to characterize
the transition in the crossover region by both the inflection
point of the second order baryon susceptibility x5, and the
minimum of the square of the speed of sound ¢? at constant
entropy per particle. While the corresponding transition
temperatures are not the same in the crossover region, they
do come together at the critical point, as shown in Fig. 11.

The baryon susceptibilities are generally defined as

B an(P/T4)
T /T

which are basically the coefficients in the Taylor expansion
of the pressure

(32)
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FIG. 11. The phase diagram of our EMD model. The inflection

point of y% and the minimum of ¢? from Eq. (35) are used to
characterize the crossover region.
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and the baryon density

In particular, y5 measures the equilibrium response of the
baryon density to a change in the chemical potential of the
medium. The square of the speed of sound at constant
entropy per particle is defined as ¢2 = (OP/de), /py> DUL this
definition is not practical when one wants to calculate it on
top of a (7,up) grid of points. For this reason, it is
advantageous to rewrite this state variable in terms of
derivatives of the pressure along lines of constant temper-
ature or chemical potential only [35,74]:

2 ppO7P — 2sppdr0, P+ s28ﬁBP.
' (e+ P)[03PO; P — (870,,P)]

(35)

The lines in the phase diagram corresponding to the
minimum of the square of speed of sound computed from
Eq. (35) (red, dashed) and to the inflection point of y%
(black, dash dotted) are shown in Fig. 11. As shown in the
figure, the two lines are separated in temperature at ug = 0,
while they meet at the critical point. The first-order phase
transition line, computed using the scheme implemented in
this paper, is plotted as a blue full line in Fig. 11.

The dependence of the transition temperature (defined
by the minimum of ¢2) on the chemical potential in the
crossover region can be characterized by the following
truncated series

7~ =) () o

with 7.(0)=143.4MeV, k,=0.0187, and x; =—0.00158.
In the case of the most recent lattice QCD transition line
obtained from the inflection point of the chiral condensate
and its susceptibility in the crossover region, the values of
Kk, and k; are 0.0153(18) and 0.00032(67), respectively
[75]. Tt should be noted, however, that these expansion
coefficients for the minimum of ¢2 and for the inflection of
the chiral condensate do not need to agree, since the
corresponding transition curves are actually different in
the crossover region.

B. Equation of state

The comparison between the holographic EMD equation
of state and the Taylor-expanded lattice QCD equation of
state up to pup/T < 2 [29,32] was presented in Ref. [43]. In
that work, we also predicted the location of the QCD CEP
to lie at (T, ug) ~ (89,724) MeV but, at that time, due to
numerical difficulties, we were unable to identify the
location of first-order phase transition line beyond the
CEP and also to calculate the thermodynamic observables
in the phase transition region. These numerical difficulties
were solved in the present work through the new develop-
ments discussed in previous sections, namely these: (i) the
new way of choosing the BH initial conditions illustrated in
Fig. 4, which allowed us to cover a much larger region of
the (7, up) phase diagram, including the location of the
first-order phase transition line; (ii) the filtering scheme,
which allowed us to obtain smooth results for the physical
observables in the phase transition region, where their
computation is plagued by strong numerical noise. In fact,
without the filtering process, the result for the entropy
density in the phase transition region is so noisy that it
becomes impossible to obtain sensible results for the
pressure by integrating the entropy, which in turn makes
it impossible to correctly identify the thermodynamically
stable BH solutions in the multisolution phase transition
region and the first-order phase transition line.

With the aforementioned technical developments, in the
present work we largely extend the coverage of the EMD
model on the (7, up) plane and present our results for the
equation of state in a broader region of the phase diagram and
also compare our results with the most up-to-date lattice data
for the QCD equation of state, which is now available up to
the unprecedentedly high value of up/T = 3.5 [39].

In Fig. 12 we show how the holographic EMD equation
of state compares to the lattice data from Ref. [39]. We see
that the entropy density predicted by the EMD model is in
quantitative agreement with the lattice results for all the
values of 7" and up currently covered by lattice simulations.
Regarding the pressure, there is also quantitative agreement
for most of the values of T and y5, although the EMD result
starts to deviate from the lattice outcome for the pressure
for up/T >3.5 in the high temperature region with
T Z 220 MeV. With respect to the baryon density, our
results are in quantitative agreement with the lattice

034002-11



JOAQUIN GREFA et al.

PHYS. REV. D 104, 034002 (2021)

45 : : : : ; ;
ne/T =0
at 1us/T = 0.5 1
up/T =1.0
351 up/T =15 1
pup/T = 2.0 r
3r ng/T = 2.5 &
up/T = 3.0
T 25¢fF
& up)T = 3.5 =2
=~ 4
A of 7 2 ‘jf ]
2
D
151 i 4
=
o
ZZ
1t > T T
ol P
g2272
0.5 = 1
0 L L L L L L
120 140 160 180 200 220 240
T [MeV]

up/T =30 |
up/T = 3.5

0 L L L L L L
120 140 160 180 200 220 240

T MeV

/J,B/T =0

1 1 1 1 1 1

120 140 160 180 200 220 240
T [MeV]

FIG. 12. Pressure (top panel), entropy density (center panel)
and baryon density (bottom panel) as functions of the temper-
ature, for different values of pg/T. Our curves are compared to
the latest lattice QCD results from Ref. [39].

simulations for all the values of up/T and temperatures
up to 7~ 190 MeV, although the holographic EMD
prediction overestimates the lattice results for the
baryon density at high temperatures 7 2 190 MeV when
up/T = 2.5. Interestingly enough, for lower temperatures

T <190 MeV, where the transition from a hadron gas to
the quark-gluon plasma phase takes place, the holographic
EMD predictions for the entropy density, the pressure, and
the baryon density are in quantitative agreement with the
lattice results all the way up to uz/T = 3.5, which suggests
that our prediction for the behavior of the QCD phase
transition at nonzero baryon chemical potentials is robust.

In Fig. 13 we show the surface plots of the entropy
density, baryon density, pressure and square of the speed of
sound in the (7, ug) plane. We obtained the temperature,
baryon chemical potential, entropy and baryon density
directly from the holographic dictionary given by
Egs. (18)—(21). The pressure is found by integrating the
entropy with respect to the temperature at constant baryon
chemical potential as in Eq. (29), and it can also be
computed as the integral of the baryon density with respect
to the baryon chemical potential along isotherms as sug-
gested in Eq. (28), which produced the same result and served
as a cross check. The second order baryon susceptibility %
shown in Fig. 9 is found as the derivative of the baryon
density along the chemical potential direction.

The critical point manifests itself in the first order
derivatives of the pressure, namely the entropy and baryon
density, where the pronounced gap shown by these state
variables corresponds to the first-order phase transition line
for pup > uSEP. In addition, ¢2 exhibits a dip that becomes a
zero at the CEP (which is a second-order phase transition
point), and a discontinuity for uz > uSE? along the first-
order phase transition line, as expected from thermody-
namic considerations. The location of the critical point is
shown on the pressure surface as a red spot.

The dependence of the thermodynamic state variables on
the temperature along lines of constant up is presented in
Fig. 14. There one can see the features mentioned above
more explicitly such as the jump in entropy, baryon density,
and y¥ after the first-order phase transition line is reached.
In [43], it was noted that the peak formation in x5 may
already indicate that a critical point is present at larger
densities, and here this peak begins to happen around
up =416 MeV. We see that our results appear to be
consistent with this idea. One can also notice a peak
formation in P/T* for large values of uz. While at gy = 0
itis believed that P/ T* should monotonically increase with T
[76], nonmonotonic behavior is expected to appear at non-
zero pup and low T [77,78]. Therefore, the nonmonotonic
behavior displayed by P/T* in the regime where pg/T > 1
may not be so surprising. It would be interesting to inves-
tigate this nonmonotonic region further in a future work.

It is worth mentioning that, in order to obtain the c2 at
constant entropy per particle, we calculate c2 from Eq. (35),
and it was necessary to remove the noise associated with
the second order derivatives of the pressure. For a region up
to up < 600 MeV, a SG filter was employed considering
that the minimum of this observable is not very deep.
However, due to the fact that the noise increases near the
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critical point for any observable in addition to the expected
divergences in some derivatives, 07.P and 97, P for exam-
ple, and the fact that at the critical point we expected a
minimum, it was not possible to remove the noise without
affecting the shape and features of the speed of sound.

Therefore, another approach was implemented to obtain
the region of large chemical potential in front of the critical
point. By obtaining the isentropic trajectories, one can also
compute the speed of sound by taking the simple derivative
OP/0e along the isentropic paths. The lines of constant
entropy over baryon density s/pp are relevant in the QCD
phase diagram since they approximate the trajectories that the
systems created in relativistic heavy ion collisions follow
during their evolution when viscous effects are neglected. In
fact, in the ideal case of vanishing viscosity, the quantity s/pg
is conserved because the entropy generation is only caused
by particle generation (although it has been shown that at
large baryon densities and near a critical point, large
deviations from this can be expected [79]).

The regions where the ¢2 computed from Eq. (35) was
heavily affected by the noise were removed and replaced with
the information given by computing the same observable

along the isentropic trajectories through an interpolation.
Some isentropic lines are shown in the left panel of Fig. 15,
along with the dependence of the c? with respect to the
temperature for different values of the chemical potential
(right panel).

C. About the holographic model predictions at large up

The results for the location of the CEP, and also for the
thermodynamics in general, strongly depend on the choice
for V(¢) and f(¢). Each different choice is in principle an
effective holographic description of a different fluid at the
boundary.

Reference [45] laid down the foundations of the effective
bottom-up holographic EMD approach which allows for a
quantitative description of the strongly coupled QGP (and
also of other kinds of strongly coupled physical systems,
depending on how one fixes the free parameters of the
model). However, at that time, two competing and incom-
patible lattice QCD results for the EOS had been proposed
in the literature. The Ilattice data used in Ref. [45] to
phenomenologically fix the profiles for V(¢) and f(¢)
were later shown to be not the correct results for the QCD
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EOS (on a quantitative level). It is now well established in
the lattice literature that the correct results for the QCD
EOS and the second-order baryon susceptibility at zero
baryon density are given in Refs. [23,24,72]. We have used
these state-of-the-art lattice results to construct the EMD
model of Ref. [43].

It remains to be determined whether other functional
forms for f(¢) and V(¢) exist which provide a good
description of the state-of-the-art lattice QCD results and
might lead to a different location for the critical point and
the line of first-order phase transition. This goes beyond the
purpose of our present analysis, and will be investigated in
future work.

We remark that the phenomenological reliability of a
bottom-up holographic model, since the precise details of
the dual field theory are unknown (contrary to top-down
approaches), needs to be checked by directly comparing the
predictions of the model under consideration against the
target phenomenology which it is aimed to describe.

It is quite a common practice in the literature to fix the
free parameters of an effective model to reproduce known
features from experiments or first principle calculations, and
then extrapolate the model predictions to regions which the
fundamental theory cannot reach. A crucial requirement is
that, once the free parameters are fixed, the model predictions
should effectively reproduce first principle results where they
are available. In this regard, the effectiveness of the EMD
model constructed in Ref. [43], and further analyzed in the
present work, is currently unmatched in the literature (be it
holographic or not).

We point out the following facts which strongly support
this claim:

(1) First, in Fig. 2 of Ref. [43] we compared the
predictions of the holographic EMD model for the
finite baryon density EOS with the corresponding
lattice QCD data from Ref. [29], obtaining quanti-
tative agreement all the way up to the highest values
of up reached in state-of-the-art lattice simulations at
that time. Moreover, in Fig. 1 of Ref. [43] we also
compared the predictions of the EMD model for the
nth-order baryon susceptibilities yZ(T, uz = 0) up to
n = 6," with the corresponding lattice QCD data from
Refs. [29,72], also obtaining quantitative agreement.
InFig. 1 of Ref. [43] we further predicted the behavior
for the eighth-order baryon susceptibility at vanishing
chemical potential, )(g (T, ug = 0), which at that time
had not been evaluated on the lattice; some time later
the lattice result for y§ (T, up = 0) was first calculated
in Ref. [33], and the holographic prediction originally
made in Ref. [43] was compared in Fig. 1 of Ref. [62]
with the corresponding lattice result, again attaining

'Notice that n = 2 at ug = 0 is not a prediction of the EMD
model, since the second-order baryon susceptibility at gz = 0 is
used to fix the form of f(¢) in the EMD model.

quantitative agreement and further confirming the
reliability of the present EMD model in the baryon
dense regime of QCD.

(ii) Second, in the present manuscript we compare in
Fig. 12 the predictions of the same holographic
EMD model for the finite baryon density EOS with
the most recent lattice QCD data obtained in
Ref. [39], which goes beyond the values of up
reached in the previous lattice simulations of
Ref. [29] in 2017. These results are discussed in
the paper, where again we see quantitative agree-
ment between the EMD model and lattice results,
although for the baryon charge density we see that
the holographic prediction deviates from the latest
lattice data in the high temperature regime for
sufficiently high values of pp, setting a first limita-
tion for the phenomenological reliability of our
model in the baryon dense regime at high temper-
atures (which is above the phase transition region in
the phase diagram).

To the best of our knowledge, no other effective model
currently available in the literature, besides the present
holographic EMD model, has been able to successfully
accomplish the thermodynamic tests we mentioned in items
(1) and (ii) above.

V. CONCLUSIONS AND FUTURE DIRECTIONS

In this work we presented our most recent results and
predictions on the thermodynamics and phase diagram of
strongly interacting QCD matter, obtained through a
bottom-up nonconformal holographic approach. We sig-
nificantly improved our numerical techniques, thus expand-
ing our coverage in temperature and baryon density well
beyond our previous work [43]. We were able to obtain the
first-order phase transition line beyond the critical point for
the first time out to pp ~ 1100 MeV. A good agreement is
found between our equation of state and the corresponding
lattice QCD results available at intermediate densities. The
equation of state obtained here, covering the first-order
phase transition line and the critical end point in the (7, )
plane, can be readily used in hydrodynamic simulations of
the matter created in heavy-ion collisions. Furthermore,
these results can be used to build a bridge to the high-
density, low temperature region of the QCD phase diagram
needed in the description of neutron star mergers [80]. We
point out that in our model, we do not see c2 ever
surpassing the conformal limit of ¢ = 1/3, despite pre-
dictions from neutron star mergers that this may happen at
T =0 and baryon densities above nuclear saturation
density [77,81-89]. However, the holographic approach
employed here is not expected to be a good guide for the
behavior of strongly interacting matter at 7 = 0. Rather,
our model is expected to be useful at finite temperature and
chemical potential where it is conceivable that QCD matter
still displays near perfect fluidity.
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In order to directly connect these results to the STAR
Beam Energy Scan at RHIC, our next steps will be to
couple this to a hadron resonance gas EOS at low temper-
atures. This step is crucial because hydrodynamics must
freeze-out into particles and those particles must match the
exact hadron chemistry in the EOS at freeze-out, which is
not possible in the holographic model since no explicit
hadrons are used in its construction (moreover, hadron
thermodynamics is not expected to be described by any
classical gauge/gravity construction, since the pressure in
the hadron gas phase is suppressed by a factor of ~N2
relatively to the pressure in the deconfined plasma phase in
a large N, expansion, which would require quantum string
loop corrections in the holographic duality to be properly
accounted for). Then, this could be fed into a relativistic
viscous hydrodynamics model with baryon conservation
and it would be very interesting to perform calculations
with the transport coefficients extracted from this same
EMD model. Such a study has never been performed before
and it would be the first of its kind to have both the EOS
and transport coefficients in a hydrodynamic simulation
taken from the same theoretical framework. Once that is
completed, one could compare to spectra and flow har-
monics at the beam energy scan. Finally, we note that in our
previous work [43] we did make direct comparisons
between baryon susceptibilities and STAR results for
net-proton fluctuations, but performing such a study here
is beyond the scope of the current work.

We also expect to report in the near future new results
coming from the present holographic model, regarding the
calculation of transport coefficients such as the bulk viscos-
ity, the baryon and thermal conductivities, the baryon
diffusion coefficient, the jet quenching parameter, the heavy
quark drag force and the Langevin diffusion coefficients, all
of them evaluated across the entire phase diagram covered in
the present work, including the phase transition region.

It would be also interesting to see a model such as ours,
which is consistent with lattice QCD results, to be applied
in real time out-of-equilibrium studies such as those
performed in [62,90-97]. Such study is, however, beyond
the scope of the present work.
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