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reduction method. General rogue waves arising from a constant background, from a lump-soliton
background and from a dark-soliton background have been derived, and their dynamics illustrated. For
rogue waves arising from a constant background, fundamental rogue waves are line-shaped, and multi-
rogue waves exhibit multiple intersecting lines. Higher-order rogue waves could also be line-shaped,
but they exhibit multiple parallel lines. For rogue waves arising from a lump-soliton background, they
could exhibit distinctive patterns due to their interaction with the lump soliton. For rogue waves
arising from a dark-soliton background, their intensity pattern could feature half-line shapes or lump
shapes, which are very novel.
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1. Introduction

Three-wave interaction arises in a wide variety of physical
systems, such as water waves, nonlinear optics, plasma physics,
and others [1-9]. When the wavenumbers and frequencies of
the three waves form a resonant triad, this interaction is the
strongest. In this case, the governing equations for this interaction
are integrable [10-17]. As a consequence, multi-solitons in one
spatial dimension and multi-lumps in two spatial dimensions of
this system have been derived [4,12-14,17-21].

Rogue waves are an interesting class of solutions in nonlinear
wave systems that “come from nowhere and disappear with no
trace” [22]. These waves have been linked to freak waves in the
ocean and extreme events in optics [23-26]. In addition, rogue
waves have been observed in water tanks, optical fibers and
plasma [27-34]. Due to their mathematical novelty and physical
connections, rogue waves have attracted a lot of studies, espe-
cially in the integrable systems community, because analytical
expressions of rogue waves can be explicitly obtained when the
nonlinear wave system is integrable. So far, rogue waves have
been derived in a large number of integrable systems, such as
the nonlinear Schrédinger (NLS) equation [35-42], the deriva-
tive NLS equations [43-47], the Manakov system [48-53], the
Davey-Stewartson equations [54,55], and many others [56-65].
In addition, rogue waves that arise from a non-uniform back-
ground have also been reported in several wave systems [66-68].
These explicit solutions of rogue waves shed much light on the
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rogue dynamics in physical systems that are governed by the
underlying integrable equations.

Rogue waves in (1 + 1)-dimensional three-wave resonant
interactions have been derived and analyzed as well [69-74].
Compared to rogue waves in many other (1 + 1)-dimensional
equations, rogue waves in this three-wave system exhibited a
much wider variety of solutions and wave patterns. This makes
us wonder, what kind of rogue wave behaviors will arise in the (2
+ 1)-dimensional three-wave system, i.e., the three-wave system
with two spatial dimensions instead of one.

Here, we study rogue waves in the (2 4+ 1)-dimensional three-
wave system by the bilinear Kadomtsev-Petviashvili (KP) reduc-
tion method. This method of deriving rogue waves was first
developed for the NLS equation in [41], and then extended to
the Davey-Stewartson equations, the Ablowitz-Ladik equation
and others in [54,55,57,62-64]. This method was further im-
proved on three major aspects in [47,65,74], in the context of
the derivative NLS equations, the Boussinesq equation, and the
(1 + 1)-dimensional three-wave system, respectively. In [47], a
new parameterization of internal parameters in bilinear rogue
waves was proposed, so that rogue wave expressions through
elementary Schur polynomials become much simpler. In [65], a
judicious choice of differential operators inside the procedure was
developed, so that the dimension reduction process and analytical
expressions of rogue waves are drastically simplified. In [74],
this judicious choice of differential operators in [65] was gener-
alized, so that rogue waves corresponding to roots of arbitrary
multiplicities in a certain algebraic equation inside this bilinear
procedure can be derived (not just simple roots of all previous
cases). The main benefit of this KP-reduction method is that,
rogue wave expressions out of it are very concise and explicit
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through elementary Schur polynomials. These simple and explicit
expressions paved the way for asymptotic analysis of rogue wave
patterns in [53,75].

In this article, we apply the bilinear KP reduction method
to the (2 4+ 1)-dimensional three wave system and derive its
rogue waves on both a constant background and a non-constant
background. We show that for rogue waves arising from a con-
stant background, fundamental rogue waves are line-shaped, and
multi-rogue waves display multiple intersecting lines. Higher-
order rogue waves could also be line-shaped, but would exhibit
multiple parallel lines instead of intersecting lines. For rogue
waves arising from a non-constant background, we report two
different types of solutions. One type is rogue waves that emerge
from a lump-soliton background, and these waves are rational
solutions. The other type is rogue waves that emerge from a dark-
soliton background, and these waves are semi-rational solutions
which contain both rational and exponential components. We
find that for the latter type of rogue waves, their intensity can
exhibit half-line shapes or lump shapes, which are fascinating.

This paper is structured as follows. In Section 2, we introduce
the (2 + 1)-dimensional three-wave system and their constant-
background solutions. In Section 3, we present our rogue wave
solutions that arise from a constant background. In Section 4,
we illustrate dynamics of these rogue waves emerging from a
constant background. In Section 5, we present our rogue wave
solutions that arise from a non-constant background, including
from a lump-soliton background and a dark-soliton background,
and illustrate their dynamics. In Section 6, we provide deriva-
tions of rogue waves presented in Sections 3 and 5. Section 7
summarizes the paper.

2. Preliminaries

The (2 + 1)-dimensional three-wave resonant interaction sys-
tem is

@ +Vi-V)ui(x,y, t) = equ5(x, y, Huz(x, y, t),
@ + V2 - V) up(x, y, t) = eui(x, y, uj(x, y, t), (1)
3 + V3 - V)us(x, y, t) = esuj(x, y, tuz(x, y, t).

Here, V = (d, 9y) is the gradient operator in the R? space, Vy =
(V,Q], Vk,z) are the three waves’ group velocities along the (x, y)
directions, and the asterisk “*’ represents complex conjugation.
Adopting a coordinate system that moves at the velocity of the
third wave, we make V3 = (0, 0) without loss of generality. In
addition, we assume that V; and V, are not parallel to each other,
i.e, Vi1Voy — ViVo1 # 0. Parameters ¢; are nonlinear coefficients
that can be scaled to +1. In addition, one can fix €; = 1.
The above three-wave system admits plane-wave solutions

upo(x, y, t) = prelkrxtiytent),

Uy o(X, y, ) = ppelllaxtravient) (2)
uso(x, y,t) = lpse‘("3x“3y+‘”3”,

where wave vectors (k;, A;) and frequencies w; satisfy the reso-
nance relations

ki+k +ks=0, Ai+2iy+Ai3=0,

and wave-amplitude parameters (o1, p2, p3) satisfy the following
conditions

P1 (601 + Vi ik + V1.2)~1) = —€105 03,
p2 (w2 + Va1ka + Vaaha) = —€207 p3, (4)
p3 (w1 + @) = €307 p5.

These plane waves have constant amplitudes in the (x, y) space;
so we will call them constant-background solutions.

w1+ wy+w3 =0, (3)

Physica D 432 (2022) 133160

In this article, we assume that the three wave amplitudes
|p1l, |p2| and |ps| are all nonzero. Then, using phase invariance
of the three-wave system, we can normalize p;, p, and ps; to
be all real. Thus, in the later text, we assume (p1, p2, p3) real. In
addition, we define three real constants

P203 L1P3 P102

V1 =€ » V2 =€ » V3= €3 .
P1 02 3

Rogue waves in the three-wave system (1) are solutions that

arise from the above constant background, or from non-constant

solutions such as lumps or dark solitons that sit on the above

constant background. Such solutions will be derived in later sec-

tions. Our solutions will be presented through elementary Schur
polynomials Sj(x), which are defined by

o0 oo
ZS]’(X)E] = exp ijef ,
j=0 j=1

where X = (X1, X2, ...).

(5)

3. Rogue waves that arise from a constant background

Rogue waves that arise from the constant background (2) are
rational solutions. Our general rational solutions to the three-
wave system (1) are given in two different but equivalent forms
by the following two theorems.

Theorem 1. The (2 4 1)-dimensional three-wave system (1) admits
rational solutions

1,N
(%3, 1) = py B ks hrsenn),

N (X, Y. £) = py B2 glllaxay+ant) (6)

. 83N j
uzN(X, y, £) = ipg 2 —ellaxtravtest),

where N is an arbitrary positive integer,

N=T00, &IN=T10, £N=To-1, &N =T-11 (7)
Tox = det (mg'}"‘)) , (8)
1<ijen \ &

the matrix elements in <,y are defined by

o _ ()" (02"
Mo )t (m)!

k S\ N
x L <_B> (_E) e®1i(x.3.6) . (9)
p+q q q+1 .
p=pi. 4=
n; and n; are arbitrary non-negative integers,
1 1 1
Oijx.y.t)=-+-)za+|—+—|22+{@+qz
p 4 p—i q+i

+Zar.ilnr|: ]+Za* In" |: :| (10)
r=1

variables (z1, z3, z3) are related to (x, y, t) as

Vyox — Vory
7=y 2 (11)
Vi1Vay — ViaVag
Viiy — Viox
L=y 1Y 12 (12)

2 ,
Vi1Vay — ViaVag
Viag — Vo) x Vo1 =V
=y [( 12— V) x+ (Vo 11)y+ti|,

(13)
Vi1V — ViV

p; are free non-imaginary complex constants, and a, ; (r = 1,2, ...)
are free complex constants.
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One may notice from Eq. (9) that these solutions involve
exponential factors e®J. But those exponential factors will cancel
out when g; y is divided by fy in Eq. (6), and the resulting ratios
are thus only rational functions of (x, y, t).

The solutions in the above theorem are given through dif-
ferential operators [see (9)]. More explicit expressions of these
solutions are presented in the following theorem.

Theorem 2. The rational solutions in Theozem 1 are given by
Egs. (6)-(8), where the matrix elements m; ; (k) of T,k can be rewrit-
ten as

min(ni,nj) 1 p}p* v
(n.k) i
m. . =
N Z (pi +p;~*> [(pi+p;~*)2}

v=0
xjfi(n, k) + vs;’j,. , (14)

X Sp—v[X;(n, k) + vsij] Spy o [
+ + +
vectors X (n, k) = (X, X3, - . .) are

—Crij + Qr i,

(15)

1
x5 k) = apizi + Briza + pizs + ngri+ khy

_ 1
X (0 k) = o iz + Bfizo + ij‘23 —ng’ —khi — ¢ +af;,

(16)

Sij = (S1,ij, S2,i» - - -)» coefficients oy i, Briv &riv by, Crij and s, ;; are
obtained from the expansions

1 o0
_7_2:“1‘1’( s A :Z,Br,i/(r, (17)
piet r=1 pe”—l IR
o0
— r
1n<pl_1 ) Zg”/c K—;hﬂ(, (18)
pie“ +p;
In|— -1 ZCHJK
pi+pf -
pi+pf [ e —1 >
In|—— = s (19)
K pie“ + p; —

pi are free non-imaginary complex constants, and a, ;(r = 1,2,...)
are free complex constants.

The above rational solutions contain rogue waves that arise
from the constant background (2), as well as algebraic localized
(lump) solitons moving on this constant background and a mix-
ture between these two types of solutions (see later text). To get
rogue waves that arise from the constant background, we need to
impose conditions on p;. To derive these conditions, we consider
the fundamental rational solution, where we take N = 1 and
ny = 1in Theorem 2. In addition, we normalize a; 1—c¢1,1,;1 = 0 by
a coordinate shift. Performing simple calculations, we can reduce
the t, x function to

o = m\) = €& + A, (20)
where
g=ax+by+ct+0(n k), &=a'x+b*y+c't—0%n,k),
I (21)
R
and q, b, ¢, 8 are complex coefficients given by
1

4=

Vi1Vay — ViaVag
1 p

X [—p])/rvzz + myzvrz +p1y3(Viz — sz)] . (22)
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1
b= ————
Vi1V — V12V
1 p
X [V1V21 - 71.27/2V11 +p1y3(Var — V11):| ) (23)
D1 (p1 —1)
n
¢ =ypr, 00 k)=k+ —2. (24)
p1—1

To derive parameter conditions for rogue waves, we separate
the real and imaginary parts of the above complex variables as

P1=DpP11+ip12, a=a;+iay, b=Dby+1iby, c =cy +icy,
0 =0, +1i6,.

(25)
Then, the 7, solution (20) can be rewritten as
Toi = &7 + & — 2016 + 2i625 — 0] — 65 + A, (26)
where
&r=ax+by+cat, & =ax+by+ct. (27)

We can readily show that under the velocity assumption of
V11V — ViaVa1 # 0, the three ratios of ay/az, by/b; and cq/c;,
cannot be all the same. Then, the above fundamental rational
solution exhibits two distinctively different dynamical behaviors
depending on the ratio relations between a;/a, and b;/b,.

1. If ”1 + ';1 , then along the [x(t), y(t)] trajectory where

X+ by = —cit, axx + b,y = —cot, (28)

the above 7, is a constant. The corresponding solution
(u1, Uy, u3) is an algebraic localized lump soliton moving
on the constant background (2).

2.0F 58 = b # I, then the & =
followmg parameter condition

by

by equation yields the

(P12 — 1)(171.1 +p1.2) _ pl,Z[pL] + (P12 — 1)2]2
12! V2
piy 407, — P12
— 2 S o, (29)
V3

In this case, the corresponding solution (uq, Uy, u3) uni-
formly approaches the constant background (2) in the en-
tire (x, y) plane when t — =oo0. In the intermediate times,
it rises to a higher amplitude. Since a;/a, = by/b,, this
solution depends on (x, y) through the combination of a;x+
b1y. Thus, this is a line rogue wave.

For the other (i.e., non-fundamental) rational solutions in
Theorems 1-2, in order for them to be rogue waves that
arise from the constant background (2), we need to require
every parameter p; (1 < i < N) to satisfy the above con-
dition (29), where p; ; is replaced by p; ; and p; » replaced
by pi2, with (p; 1, pi2) being the real and imaginary parts
of the complex parameter p;.

The condition (29) can be further simplified. When
(p1.1, p1,2) are replaced by the more general (p; 1, pi2), the
simplified condition can be expressed as a quartic equation
for p; 1 as

Xobiy + xabiy + x2 =0, (30)
where the coefficients are

xo =iz — Ny —Dpiay;

x1=2(pi2— 1) piy; ' — 2pi2 (pi2 — 1)2 7/2_1 -

x2 =iz (pi2 — 1) [P?,z)ﬁ_l — (pi2— 1)3 vy - )’3_1] .
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4. Dynamics of rogue waves that arise from a constant back-
ground

Now we study dynamics of rogue waves that arise from the
constant background (2) in the three-wave system (1). These
solutions are given by Theorems 1-2, with all parameters p;
satisfying the condition (30).

4.1. Fundamental rogue waves
The fundamental rogue wave is given by Eq. (20), with p,

satisfying the condition (30). The amplitude functions of this
fundamental rogue wave can be written more explicitly as

itk y 0l = |pEt|, i=1,2,3, (31)
h

where
1

filx,y, t) =mY = (@x + by + c1t? + p(alx + by + ocat)?
0

|P1|2
(p1 +p})?’

g11x,y,t) = m(ﬂio) = filx,y, t) — % (@1x + b1y + LoCat)
+2i6(arx + byy + c1t) — 512 - é22,

£2.1(x,y,t) = m(f‘]_]) =filx,y, )+ 2 (@1x 4+ b1y + Zocat) — 1,

g31(x,y,t)

(—1.1) 2i(6; — 1)

=m;, =flxy )+ (a1x + b1y + Zocat)

—2iby(arx + byy + cit) — (6 — 12 — 62,
parameters (ay, by, 1, ¢3) are given by Eqgs. (22)-(25), and

Coza*], 6, =0 <L>, 92=S<L> (32)
a, p—i p—i

Here, )i and J represent the real and imaginary parts of a complex
number.

To demonstrate this fundamental rogue wave, we choose non-
linear coefficients, background amplitudes and velocity values
as

ei=—6=e=1 pp=p=p=1, V1 =6, Vi =5,

V2,1 = 4, Vz,z = 3.
(33)

In addition, we choose p; = 0.5 + 0.5i, which satisfies the con-
dition (30). For these choices of parameters, the corresponding
rogue wave is displayed in Fig. 1. It is seen that this is a line rogue
wave with a single dominant peak line.

4.2. Multi-rogue waves

To get multi-rogue waves, weset N > landn; =ny =--- =
ny = 1in the rational solutions of Theorem 2, and require all {p;}
values to satisfy condition (30). To demonstrate, we choose N = 2
and the same nonlinear coefficients, background amplitudes and
velocity values as in (33). In addition, we choose

p1 = —0.539770966 + 0.3i, p, = 1.904662796 + 0.65i,

(11,1 = O, (11,2 =0.

(34)

Notice that these (pq, p,) values satisfy conditions (30), because
we obtained their real parts by solving the quartic Eq. (30),
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with their imaginary parts set as 0.3 and 0.65 respectively. The
corresponding two-rogue wave solution is displayed in Fig. 2. We
see that this rogue wave features two intersecting lines, indi-
cating that this solution describes the interaction between two
fundamental line rogue waves. Interestingly, at the intersection
point between the two line rogue waves, the |u;| component
has higher amplitude, but the (|uy], |u3|) components have lower
amplitudes.

4.3. High-order rogue waves

Higher-order rogue waves are obtained by taking N = 1 and
n; > 1 in the rational solutions of Theorem 2, with p; satisfying
the condition (30). To demonstrate, we choose n; = 2, p; =
V3/2+1i/2, and

a=-=ea=1p=1, p=+2, ps=1, Vi, =6,

Vip=5, Vo1 =4, V=3, a1, =0, a1 =0.
(35)

Note that for this p; value, +/3/2 is a double root of the quartic
Eq. (30). The corresponding solution is displayed in Fig. 3. In-
terestingly, this second-order rogue solution is still a line rogue
wave. However, compared to the single-peak fundamental line
rogue wave of Fig. 1, this second-order line rogue wave develops
two peaks, which are most pronounced in the t = —1 panels. This
type of higher-order rogue waves has not been reported before to
our best knowledge.

5. Rogue waves that arise from a non-constant background

The three-wave system (1) also admits rogue waves that do
not arise from the constant background (2). We consider this type
of rogue waves in this section.

5.1. Rogue waves that arise from lump-soliton backgrounds

In the previous rational solutions of Theorems 1-2, if only
some of the {p;} parameters satisfy the condition (30) but the
others do not, then we will get rogue waves that arise from lump-
soliton backgrounds. To demonstrate this type of rogue waves, we
choose

N=2 m=m=1 pi1=2, pp=1+i
(36)

a7 =0, a=0,

and the other parameters are as given in Eq. (33). Notice that
p1 does not satisfy the condition (30), but p, does. The cor-
responding solution is displayed in Fig. 4. Notice that at large
negative time, the solution is a lump soliton moving on the
constant background (2). However, as time increases, a line rogue
wave arises and interacts with this lump soliton. This interaction
creates interesting intensity patterns which strongly deform the
original lump soliton. At large positive time, however, this rogue
wave disappears, and the solution goes back to a lump soliton
again.

5.2. Rogue waves that arise from line-dark-soliton backgrounds

In addition to the above rogue waves that arise from lump-
soliton backgrounds, there also exist rogue waves that arise from
line-dark-soliton backgrounds. This latter type of rogue waves are
not rational solutions though. They are semi-rational solutions
which contain both rational and exponential components. Ana-
lytical expressions of these semi-rational solutions are given by
the following theorem.
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X

Fig. 1. A fundamental line rogue wave with parameter choices (33) and p = 0.5 + 0.5i. In all panels, —10 < x,y < 10.

Theorem 3. The (2 + 1)-dimensional three-wave system (1) admits min(n; 1) 1 ppr |
Lo . . (n,k) (nk) __ v
semi-rational solutions (6)—(8), where the matrix elements m;; of my; = Z — TR
Ty are given by '—o \PiTDh pi +p;
n; nj
N (p3p)" (a2)” X Smo[X(, k) + V811 Sy (%50, K) + v
Y | (m)t - (m)!

=

k S\ N
[ e
p+q q q+1

or equivalently, by

—k o\ —n
(37) +7i _p_; - p; — l
p=pi. 4=p p; b+l



B. Yang and J. Yang

Physica D 432 (2022) 133160

X

X X

Fig. 2. A two-rogue wave solution with parameter choices (33)-(34). In these panels, —100 < x < 0 and —50 < y < O in the first row, —50 < x < 50 and
—25 < y < 25 in the second to fourth rows, and 0 < x < 100, 0 < y < 50 in the last row. These (x,y) intervals in different rows are different because the

intersection point of the two line rogue waves is moving.

1
pi—i

1
Xexp|—{—+

J— ZZ
pi b}

z p—
1 piti

—(pi +p;)zs |, (38)

;i j are complex constants satisfying the constraint

Tij = njfi’ (39)

and all other notations are the same as in Theorems 1 and 2.

If all m;; are zero, then the above solution reduces to the
rational solutions given in Theorems 1-2.If n; = 0forall 1 <i <
N, where the summation term in Eq. (38) reduces to a constant
1/(pi + p;‘), we would get line dark solitons or multi-line dark
solitons. But if m;; are not all zero, and n; are not all zero, then
we will get semi-rational solutions.

Rogue waves will be obtained if some of the p; parameters in
these semi-rational solutions satisfy the condition (30), and these
rogue waves will arise from single-line or multi-line dark solitons.
We illustrate this type of rogue waves below.
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Fig. 3. A second-order rogue wave under parameter choices (35) and p; = +/3/2 +i/2. In all panels, —16 <x < 16 and —8 <y < 8.

Fundamental semi-rational rogue waves are obtained when
we take N = 1, ny = 1, py satisfying the condition (30), and 74 ;
is a real nonzero constant [hence satisfying the constraint (39)].
To illustrate this type of rogue waves, we choose

p1 = 0536234874 4+ 0.4i, m1=1, a1 =0, (40)

and all other parameters are as given in Eq. (33). The correspond-
ing solution is displayed in Fig. 5. As is seen, at large negative
time, this solution is a fundamental line dark soliton. As time
increases, a rogue wave appears, which interacts with this dark
soliton. The most interesting feature of this rogue wave is that it
is a half-line rogue wave which appears on only the upper side

of the line dark soliton. This contrasts the fundamental rogue
wave arising from a constant background in Fig. 1, which is a
whole line. At large positive time, this half-line rogue wave dis-
appears, and the solution goes back to the fundamental line dark
soliton.

To demonstrate non-fundamental semi-rational rogue waves,
we take

N =2,
a;1=0,a;2=0.

m=m=1 mp=1 my=m1=0,

(41)

The nonlinear coefficients, background amplitudes and velocities
are taken as in Eq. (33). We will show two solutions.
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X

Fig. 4. A rogue wave that arises from a lump-soliton background. Solution parameters are given in Egs. (33) and (36). In these panels, —56 < x < —40 and
—45 <y < —33 in the first row, —18 <x < —2 and —2 <y < —14 in the second row, —8 < x <8 and —6 <y < 6 in the third row, 2 <x <18 and 2 <y < 14
in the fourth row, and 41 < x <57, 36 <y < 48 in the last row. These (x, y) intervals in different rows are different because the lump soliton is moving.

In the first non-fundamental semi-rational rogue wave, we
choose

p1 = —0.542592881 + 0.35i,
1,1 = —1.

p2 = 1.904662796 + 0.65i

(42)

Both p; and p, here satisfy the condition (30). Thus, we an-
ticipate that this solution describes the interaction between a
two-rogue-wave solution from a constant background and a two-
dark-soliton solution. This solution is plotted in Fig. 6. It is seen
that at large negative and positive times, this solution is indeed
a two-dark soliton, and at intermediate times, a rogue wave

appears and interacts with this two-dark soliton. These behaviors
are consistent with our anticipations. However, this rogue wave
that appears at intermediate times here is not a two-rogue wave
from a constant background as the one shown in Fig. 2 (which
features two intersecting whole lines). Instead, the present rogue
wave consists of two half-lines which appear on the opposite
sides of the two-dark soliton. In addition, locations of these two
half-lines are also moving along the dark-soliton lines. The half-
line feature of the present rogue wave echoes that in Fig. 5, but
motions of the two half-line rogue waves (especially relative to
each other) are new and fascinating features.
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Fig. 5. A fundamental semi-rational rogue wave with parameter values in Egs. (33) and (40). In these panels, —8 < x,y < 8 in the first four rows, and —3 <x,y < 13

in the last row.

In the second non-fundamental semi-rational rogue wave, we
choose

pr=15 p=1+4+i, m;=1 (43)

The p; value here does not satisfy the condition (30), but p,
does. Intuitively, this p; value in the rational part of the semi-
rational solution signals a lump soliton, and the p, value signals
a rogue wave — likely a half-line rogue wave in view of Figs. 5
and 6. Thus, we might have anticipated that this semi-rational
solution would describe the interaction between a lump soliton,

a half-line rogue wave and a two-dark soliton. The true solution
is displayed in Fig. 7. One of the most surprising features of this
solution is that, at large negative time, the lump soliton is ab-
sent. However, as time increases, this lump miraculously appears.
More interestingly, as time increases further, this lump persists
but detaches itself and moves away from the two-dark soliton.
In the whole evolution process, there is no half-line rogue wave.
Instead, the lump that emerges from the two-dark soliton acts as
a rogue wave. But this lump rogue wave does not disappear at
large positive time, unlike rogue waves in previous six figures.



B. Yang and J. Yang Physica D 432 (2022) 133160

lq:] lq2| lgs|

R

I

<

I

=

X

Fig. 6. A non-fundamental semi-rational rogue wave with parameter values given in Eqs. (33) and (41)-(42). In these panels, —97 <x < —73 and —80 <y < —60
in the first row, —17 <x <7 and —13 <y < 7 in the second row, —12 < x < 12 and —10 <y < 10 in the third row, —7 < x < 17 and —7 <y < 13 in the fourth
row, and 73 < x <97, 60 <y < 80 in the last row.

We should note that other integrable systems may also admit 6.1. Proof of Theorem 1
semi-rational solutions. For example, semi-rational solutions in

the KP-I equation were derived in [76,77] recently. Due to the boundary conditions (2), we first introduce the
bilinear transformation
6. Proofs of Theorems 1-3 &1 plkix+ary+ort)

u(x,y,t) = ,017

In this section, we derive the rational and semi-rational solu-

82 i(kyxthgy+ant)
tions presented in Theorems 1-3. u(X, y, t) = p2 79 FriarTent, (44)
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r==2
r=0
=3

Fig. 7. Another non-fundamental semi-rational rogue wave with parameter values given in Egs. (33), (41) and (43). In these panels, —92 < x
—75 <y < =57 in the first row, —20 < x < 0 and —17 < y < 1 in the second row, —10 < x < 10 and —9 < y < 9 in the third row, 0 <

—1 <y < 17 in the fourth row, and 72 < x <92, 57 <y < 75 in the last row.

us(x, y, t) = ips%ei“@"“”“"w,

where f(x,y,t) is a real function, and g(x,y,t)(k = 1,2,3)
are complex functions. Under this transformation, the three-wave
system (1) is converted into the following system of bilinear
equations

(De + Vi1Dx + V12Dy — iy1) g1 - f = —iy18585,

(D¢ + Vo,1Dx 4 Vo 2Dy — iy2) g2 - f = —iyagies, (45)

Physica D 432 (2022) 133160

< —72 and
X < 20 and

(De —iy3) g3 - f = —irag78;,
where D is Hirota’s bilinear differential operator defined by
P (DXa Dya Dt) F(Xv Y, t) . G(X7 Y, t)
=P (3 — v, 0y — dy, O — ) F(x, ¥, )X, ¥/, t )lwer, ymy, =t

P is a polynomial of (Dy, D, D;), and constants (y1, y2, y3) are as
defined in Eq. (5).
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Next, we introduce the coordinate transformation

Via Vaa

X AN
—_ | iz V2
t 11 1)\
1 V2 V3

which is equivalent to Eqs. (11)-(13) in Theorem 1. Under this
coordinate transformation, we have

B +Vi -V =y,
0 +Vy -V =y0,,

0p = y30;.

Thus, the bilinear system (45) reduces to
(iD;, + 1) g1 -f = ge3,

(iD, + 1) g -f =gigs,

(iDz; + 1) g5 - f = gig;.

Below, we will first construct algebraic solutions to the more
general bilinear system

(iDz, + 1) g1 - f = hahs,
(iDz, + 1) g2 - f = hyhs,
(iDz; + 1) g5 - f = hihy,

where hq, h, and hs are also complex functions. Afterwards, we
will impose the reality condition for f and complex conjugation
conditions

hy = g, (50)

Under these conditions, the bilinear system (49) will become the
bilinear system (48), and the corresponding algebraic solutions
will give rational solutions of the three-wave system (1) through
the above variable and coordinate transformations (44) and (46).

Gram solutions to the general bilinear system (49) have been
studied in Ref. [74]. After simple generalizations of those results,
we find that the 7 function

(47)

(48)

(49)

k=1,2,3.

Toe = det (mg’}’k)) , (51)
1<i,j<N >
where
nj n;
(k) _ (p3y)" (a9,)” ~(n,k)
mj =~ = m; j , (52)
J ()t (m)t Y
p=pi, 4=g;
k N
- 1 —i\" L
o (D)
| p+q q q+1
1 1 ,
§i = ;)Zl to et (p —1)z3 + o, (54
1 .
n=-21+ -7 + (g + 1)z5 + 1o j, (55)
q q+1

pi, qj are arbitrary complex constants, and & i(p), 10 j(q) are arbi-
trary functions of p and q, respectively, would satisfy the follow-
ing bilinear system

[iD21 + 1] Tn+1,k * Tnk = Tnk+1Tn+1,k—1>

[iDz, + 1] Tnk-1 Tnk = Tno1kTns1.k-1, (56)
[iDz; + 1] Too1kt1 * Tk = Tn1kTn ki1

Thus, if we define

f=7%0 & =710, & =7T0-1, £ =711, (57)
and

hy =110, ha=701, h3=71_1, (58)
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the above bilinear system (56) would reduce to (49), and these t
functions would be solutions to that bilinear system.

To introduce explicit free parameters into the above solutions,
we let

o0 o0
p q
&o0,i = Z ariIn" [*] s Moj = Z by 1" |:fi| ,
r=1 Pi r=1 qi

where g, ; and b, ; are free complex constants.

In order to reduce the bilinear system (49) to the original one
in (48), we still need to impose the f-reality condition as well as
the complex conjugacy conditions of h; = g*. All these conditions
would be satisfied if

(59)

Tnk = [T—n,—k]* . (60)
To realize this condition, we set
qj = p]*, br,j = af_j. (61)
In this case, we can readily show that

(—n.—k) "
mj,i" = [mif} ] . (62)

Thus, the condition (60) holds, and the t functions (57) are
solutions to the original bilinear system (48). Inserting the above
(&o,i, noj) expressions (59) and parameter conditions (61) into
the matrix element expression (52), we then obtain the rational
solutions in Theorem 1 for the three-wave system (1).

6.2. Proof of Theorem 2

Next, we remove differential operators in solutions of Theo-
rem 1, and derive a more explicit solution form that is given in
Theorem 2.

The technique we use is similar to that developed in [41,
74]. We first introduce the generator G of differential operators
(pdp)'(qdqY as

(o] o0
g =
i=0 j=0

ki A j
l‘ ]| (pap) (qaq) :
For this generator, we have the identity [41]
GF(p, q) = F(e*p, e*q),

where F(p, q) is an arbitrary function. Then,

~(n k)

(p + )y

e (2) () (555)
 piec +get \ et pi—i g +1i

o0
X exp (Z(ar,m’ + aj})f)) X

r=1

1 1 1 1
(o2
pie pi  ge q;

1 1 1 1
+ - — St = o K2
piec —1 pi—1 ge*+1 gj+1

+ (pie _pi+qje)‘_qj)z3}'

p=pi, 4=4;

The 1/(pie* + g;e*
1 _ pi+qj
pie + qjeA (pie + q;)(gje* + pi)
pie“ — pi) QJe - ‘b)]
X
Z [ (pie* + g;)(gje* + pi)

) term above can be rewritten as [74]
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Di + qj i ( Didj

v
(pleK +q;) Cbe)” + pi) = (pi + CIJ )\)
X (pi+QJ e -1 ) (pl+q] et —1 )V
K pie +g; gje* + pi
—Z< )( pidj m) (pi+Qj><pi+Qj>
pi+¢q; ) \(pi + ;) pie* +q;) \ gje* + p;
X(PH‘QJ e—1>v(Pi+QJ‘ ek_l)v_
K pie +g; A gje* +p;

Using the above two equations as well as expansions (17)-(19),
together with the conjugation relation q; = p;‘, we get

(p + )iy

-2 () (6 557)
pi+4qi) \(pi +q)?

X exp Z (xr,J(n k) + vsp.ij) k"

r=1

o0
+Z X k) +vst ) A7)
r=1

~(n k)‘
p=pi, 4=q;

where x; ”(n k) and s, ;j are as defined in Theorem 2. Taking the
coefficients of x'A/ on both sides of the above equation, we get

(n,k) min(n;,nj)

o 1 pip}
(i + PR 2:; pi+pf ) | (pi+ppP
X Sp—u[X(1, k) + vsi ]
X Spi—v[X; (1, k) + vsj ], (63)
where m(" ) is the matrix element defined in Eq. (52). It is easy

to see that the function t, , with its matrix element m( k) scaled

as the left side of the above equation, still satisfies the bilinear
equations (48), because the scaling factor is an exponential of
a linear function in (z1, 22, z3). Thus, the scaled 7, function,
with its matrix elements given by the right side of the above
equation, i.e., by Eq. (14) of Theorem 2, still satisfies the bilinear
equations (48) of the three-wave system. This completes the
proof of Theorem 2.

6.3. Proof of Theorem 3

To derive semi-rational solutions in the three-wave system (1),
we choose the matrix element m( "k of the Tnk function as in
Eq. (37), which is the same as that in Eq. (52) plus a complex
constant r; ;. It is easy to see that such a 7, x function still satisfies
the bilinear system (56) for reasons explained in Ref. [74]. Under
the condition 7;; = n] the corresponding 7, x function satisfies
the complex-conjugation condition (60) as well. Thus, this 7,k
function with the matrix element m{** as given in Eq. (37)
satisfies the bilinear equations (48) of the three wave system. To
derive the more explicit expression (38) of m: '; ¥ in Theorem 3,
we just need to repeat the calculatlons in the proof of Theorem 2,
except that the m;; term in m( ) after the scaling of (p;+ p;)m )N(" X
in Eq. (63), gives rise to the exponentlal terms in Eq. (38)
Theorem 3. This theorem is then proved.

7. Conclusion

In this paper, we have investigated rogue waves in the (2
1)-dimensional three-wave system (1) by the bilinear KP-
reduction method. General rogue waves arising from a constant
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background, from a lump-soliton background and from a dark-
soliton background have been derived, and their dynamics il-
lustrated. We have shown that for rogue waves arising from a
constant background, fundamental rogue waves are line-shaped,
and multi-rogue waves exhibit multiple intersecting lines. In
addition, higher-order rogue waves could also be line-shaped,
but would exhibit multiple parallel lines. For rogue waves arising
from a lump-soliton background, they could exhibit distinctive
patterns due to their interaction with the lump soliton. For rogue
waves arising from a dark-soliton background, their intensity
pattern could feature half-line shapes or lump shapes, which are
very novel.

In this article, we have only illustrated the simplest rogue
wave solutions. It is known that as the order N increases, rogue
waves could exhibit more striking patterns [53,75]. Whether
rogue waves in the (2 + 1)-dimensional three-wave system (1)
also display novel patterns at large N values is an interesting
question which merits further studies.
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