
Partial Differential Equations in Applied Mathematics 5 (2022) 100346

O
s
B
a

b

A

T
W

K
B
K
S

1

t
b
a
r
H
q
I
g
o
d
S
d
T
t

d
p
s
s
D
e
a
r
i

Contents lists available at ScienceDirect

Partial Differential Equations in Applied Mathematics

journal homepage: www.elsevier.com/locate/padiff

verview of the Kadomtsev–Petviashvili-hierarchy reduction method for
olitons
o Yang a, Jianke Yang b,∗

School of Mathematics and Statistics, Ningbo University, Ningbo 315211, China
Department of Mathematics and Statistics, University of Vermont, Burlington, VT 05405, USA

R T I C L E I N F O

his paper is written for the occasion of Prof.
en-Xiu Ma’s 60th birthday

eywords:
ilinear method
P hierarchy reduction
olitons

A B S T R A C T

The Kadomtsev–Petviashvili (KP) hierarchy reduction method is a prominent direct method for deriving explicit
solutions to integrable equations. This method is based on Hirota’s bilinear formulation of integrable systems,
as well as the observation that bilinear forms of integrable systems belong to the KP hierarchy or its extensions.
Thus, solutions to the KP hierarchy or its extensions, under proper reductions, would yield solutions to the
underlying integrable system. In this article, we give a brief overview of this KP-hierarchy reduction method for
the derivation of solitons, dark solitons, lumps and rogue waves in well-known integrable equations, such as the
KP equation, the Korteweg–de Vries equation, the Davey–Stewartson equations, and the nonlinear Schrödinger
equation.
. Introduction

The bilinear method for integrable systems started with R. Hirota in
he early 1970s. Hirota noticed that many integrable equations could
e converted into bilinear forms through variable transformations. In
ddition, series solutions to these bilinear equations would terminate,
esulting in exact explicit solutions to the underlying integrable system.
irota’s original solutions were expressed as a summation, which would
uickly become complicated when the order of the solution gets large.
t was realized later from the Sato theory that bilinear forms of inte-
rable equations belong to the Kadomtsev–Petviashvili (KP) hierarchy
r its extension. Thus, solutions to the KP hierarchy or its extension, un-
er proper reductions, would result in solutions to integrable systems.
ince KP hierarchies admit large classes of determinant solutions, these
eterminants could yield very compact solutions for integrable systems.
his KP-hierarchy reduction method is a higher version of the bilinear
heory, and will be described in this article.

The purpose of this article is to introduce this KP-hierarchy re-
uction method to a non-expert. Thus, we will keep it as simple as
ossible. We will show how to use this method to quickly derive
ophisticated explicit solutions to well-known integrable equations,
uch as the KP equation, the Korteweg–de Vries (KdV) equation, the
avey–Stewartson (DS) equations, and the nonlinear Schrödinger (NLS)
quation. Solutions we will derive include solitons, dark solitons, lumps
nd rogue waves. Most of the solutions we will present have been
eported before, but some of them seem to be new. Since this paper
s meant to be a simple introduction to the KP-reduction method, we

∗ Corresponding author.
E-mail address: jxyang@uvm.edu (J. Yang).

will not attempt to give a comprehensive review of literature on this
subject. Thus, our references will be brief.

This paper is organized as follows. In Section 2, we introduce
bilinear forms for integrable equations, such as KP, KdV, DS and NLS. In
Section 3, we introduce the KP hierarchy and some of its extensions. In
Sections 4 and 5, solutions to the KP hierarchy and its extensions, in the
form of Wronskian determinants and Gram determinants, are presented
respectively. In Section 6, KPII solitons are derived. In Section 7, KPI
solitons are derived. In Section 8, KPI lumps are derived. In Section 9,
KdV solitons are derived. In Section 10, DSI and DSII dark solitons
are derived. In Section 11, DSI and DSII rogue waves are derived. In
Section 12, dark solitons in the defocusing NLS equation are derived.
In Section 13, rogue waves in the focusing NLS equation are derived.
Section 14 is the summary.

2. Bilinear forms of integrable equations

2.1. The bilinear form of the KP equation

Consider the KP equation

(−4𝑢𝑡 + 𝑢𝑥𝑥𝑥 + 6𝑢𝑢𝑥)𝑥 + 3𝜎𝑢𝑦𝑦 = 0. (2.1)

This equation is called KPI when 𝜎 = −1 and KPII when 𝜎 = 1.
Under the transformation

𝑢 = 2(log 𝜏)𝑥𝑥, (2.2)
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this KP equation is reduced to the bilinear form

(𝐷4
𝑥 − 4𝐷𝑥𝐷𝑡 + 3𝜎𝐷2

𝑦) 𝜏 ⋅ 𝜏 = 0, (2.3)

where 𝐷 is Hirota’s bilinear differential operator defined by

𝑃
(

𝐷𝑥, 𝐷𝑦, 𝐷𝑡
)

𝐹 (𝑥, 𝑦, 𝑡) ⋅ 𝐺(𝑥, 𝑦, 𝑡)
≡ 𝑃

(

𝜕𝑥 − 𝜕𝑥′ , 𝜕𝑦 − 𝜕𝑦′ , 𝜕𝑡 − 𝜕𝑡′
)

×

𝐹 (𝑥, 𝑦, 𝑡)𝐺(𝑥′, 𝑦′, 𝑡′)|
|𝑥′=𝑥, 𝑦′=𝑦, 𝑡′=𝑡 ,

(2.4)

and 𝑃 is a polynomial of (𝐷𝑥, 𝐷𝑦, 𝐷𝑡).

2.2. The bilinear form of the KdV equation

The KdV equation is

− 4𝑢𝑡 + 𝑢𝑥𝑥𝑥 + 6𝑢𝑢𝑥 = 0. (2.5)

Under the variable transformation (2.2), i.e.,

𝑢 = 2(log 𝜏)𝑥𝑥, (2.6)

this KdV is reduced to the bilinear form

(𝐷4
𝑥 − 4𝐷𝑥𝐷𝑡) 𝜏 ⋅ 𝜏 = 0. (2.7)

2.3. The bilinear form of the DS system

The Davey–Stewartson (DS) equations are

i𝐴𝑡 = −𝜎𝐴𝑥𝑥 + 𝐴𝑦𝑦 + 𝜖(|𝐴|
2 + 2𝜎𝑄)𝐴,

𝜎𝑄𝑥𝑥 +𝑄𝑦𝑦 = −(|𝐴|2)𝑥𝑥.
(2.8)

When 𝜎 = −1, it is called DSI, and when 𝜎 = 1, it is called DSII. The
parameter 𝜖 = ±1 is the sign of nonlinearity.

Under the variable transformation

𝐴 =
√

2
𝑔
𝑓
, 𝑄 = −𝜎 − 𝜖 (2 log𝑓 )𝑥𝑥, (2.9)

where 𝑓 is a real variable and 𝑔 a complex one, DS equations (2.8) are
reduced to the following bilinear forms

(i𝐷𝑡 + 𝜎𝐷2
𝑥 −𝐷

2
𝑦)𝑔 ⋅ 𝑓 = 0,

(𝜎𝐷2
𝑥 +𝐷

2
𝑦)𝑓 ⋅ 𝑓 = 2𝜖(𝑔𝑔∗ − 𝑓 2),

(2.10)

where the asterisk ‘*’ represents complex conjugation. The transfor-
mation (2.9) and the resulting bilinear system (2.10) are suitable for
deriving DS solutions on non-zero constant backgrounds, such as dark
solitons and rogue waves.

With the invertible coordinate transform
𝑥1 =

1
2 (𝑥 + 𝜎

′𝑦), 𝑥−1 = − 1
2 𝜖𝜎(𝑥 − 𝜎

′𝑦),

𝑥2 =
1
2 i𝜎𝑡, 𝑥−2 = − 1

2 i𝜎𝑡,
(2.11)

where 𝜎′ =
√

−𝜎, bilinear equations (2.10) can be split into the
ollowing system

(𝐷2
𝑥1

+𝐷𝑥2 )𝑓 ⋅ 𝑔 = 0,
(𝐷2

𝑥−1
−𝐷𝑥−2 )𝑓 ⋅ 𝑔 = 0,

𝐷𝑥1𝐷𝑥−1𝑓 ⋅ 𝑓 = 2(𝑓 2 − 𝑔𝑔∗).
(2.12)

2.4. The bilinear form of the NLS equation

The NLS equation is

𝑖𝑢𝑡 + 𝑢𝑥𝑥 + 2𝜖𝑢|𝑢|2 = 0, (2.13)

where 𝜖 = ±1 is the sign of nonlinearity (𝜖 = 1 for focusing and 𝜖 = −1
for defocusing). Under the variable transformation

𝑢 =
𝑔
𝑓
𝑒2i𝜖𝑡, (2.14)

where 𝑓 is a real function and 𝑔 a complex one, the bilinear form of
this NLS is
(𝐷2

𝑥 − i𝐷𝑡)𝑓 ⋅ 𝑔 = 0,
𝐷2
𝑥𝑓 ⋅ 𝑓 = 2𝜖(𝑔𝑔∗ − 𝑓 2).

(2.15)

This bilinear system is suitable for deriving NLS solutions on non-zero
constant backgrounds.
2

3. The KP hierarchy and its extensions

Let 𝐱 = (⋯ , 𝑥−2, 𝑥−1, 𝑥1, 𝑥2,…) be a sequence of independent vari-
bles. Then, the KP hierarchy is1

𝐷4
1 − 4𝐷1𝐷3 + 3𝐷2

2
)

𝜏 ⋅ 𝜏 = 0, (3.1)

(𝐷3
1 + 2𝐷3)𝐷2 − 3𝐷1𝐷4

]

𝜏 ⋅ 𝜏 = 0, (3.2)

𝐷6
1 − 20𝐷3

1𝐷3 − 80𝐷2
3 + 144𝐷1𝐷5 − 45𝐷2

1𝐷
2
2
)

𝜏 ⋅ 𝜏 = 0, (3.3)
........,

here 𝐷𝑗 ≡ 𝐷𝑥𝑗 . Notice that the first member of this hierarchy,
q. (3.1), is the same as KP’s bilinear form (2.3) if we set (𝑥1, 𝑥2, 𝑥3) =
𝑥,
√

𝜎 𝑦, 𝑡). This is why the above hierarchy is called the KP hierarchy.
The following bilinear equations

(𝐷2
1 +𝐷2) 𝜏𝑛 ⋅ 𝜏𝑛+1 = 0, (3.4)

(𝐷2
−1 −𝐷−2) 𝜏𝑛 ⋅ 𝜏𝑛+1 = 0, (3.5)

𝐷1𝐷−1 𝜏𝑛 ⋅ 𝜏𝑛 = 2(𝜏2𝑛 − 𝜏𝑛+1𝜏𝑛−1), (3.6)

belong to an extension of the KP hierarchy.1,2 Specifically, the first two
Eqs. (3.4)–(3.5) belong to the first modified KP hierarchy, and the last
equation is the bilinear form of the two-dimensional Toda lattice.

4. Wronskian solutions of KP hierarchies

The original KP hierarchy (3.1)–(3.3) admits the following Wron-
skian solutions

𝜏 =

|

|

|

|

|

|

|

|

|

|

𝜙1 𝜕𝑥1𝜙1 ⋯ 𝜕𝑁−1
𝑥1

𝜙1
𝜙2 𝜕𝑥1𝜙2 ⋯ 𝜕𝑁−1

𝑥1
𝜙2

⋮ ⋮ ⋮ ⋮
𝜙𝑁 𝜕𝑥1𝜙𝑁 ⋯ 𝜕𝑁−1

𝑥1
𝜙𝑁

|

|

|

|

|

|

|

|

|

|

, (4.1)

here 𝑁 is an arbitrary positive integer, and functions {𝜙1(𝐱),…𝜙𝑁 (𝐱)}
atisfy the linear partial differential equations

𝑥𝑗𝜙𝑖 = 𝜕𝑗𝑥1𝜙𝑖, 𝑗 = 1, 2,… . (4.2)

ndeed, substituting the above 𝜏 function into the KP hierarchy, the
ierarchy equations reduce to the Plücker relation for determinants.3

The extended KP hierarchy equations (3.4)–(3.6) admit the follow-
ng Wronskian solutions2

𝑛 =

|

|

|

|

|

|

|

|

|

|

𝜕𝑛𝑥1𝜙1 𝜕𝑛+1𝑥1
𝜙1 ⋯ 𝜕𝑛+𝑁−1

𝑥1
𝜙1

𝜕𝑛𝑥1𝜙2 𝜕𝑛+1𝑥1
𝜙2 ⋯ 𝜕𝑛+𝑁−1

𝑥1
𝜙2

⋮ ⋮ ⋮ ⋮
𝜕𝑛𝑥1𝜙𝑁 𝜕𝑛+1𝑥1

𝜙𝑁 ⋯ 𝜕𝑛+𝑁−1
𝑥1

𝜙𝑁

|

|

|

|

|

|

|

|

|

|

, (4.3)

here

𝑥𝑗𝜙𝑖 = 𝜕𝑗𝑥1𝜙𝑖, 𝑗 = −2,−1, 1, 2. (4.4)

. Gram solutions of KP hierarchies

Gram solutions to the original KP hierarchy (3.1)–(3.3) are3:

𝜏 = det1≤𝑖,𝑗≤𝑁
(

𝑚𝑖𝑗
)

,

𝑚𝑖𝑗 = 𝑐𝑖𝑗 + ∫

𝑥1
𝑓𝑖𝑔𝑗 𝑑𝑥1,

𝜕𝑥𝑛𝑓𝑖 = 𝜕𝑛𝑥1𝑓𝑖,

𝜕𝑥𝑛𝑔𝑗 = (−1)𝑛−1𝜕𝑛𝑥1𝑔𝑗 ,

(5.1)

here 𝑐𝑖𝑗 are constants. Substituting these Gram solutions into the KP
ierarchy, this hierarchy reduces to the Jacobi identity of determinants.

Gram solutions to the extended KP hierarchy equations (3.4)–(3.6)
re

𝜏𝑛 = det1≤𝑖,𝑗≤𝑁
(

𝑚(𝑛)
𝑖𝑗

)

,

𝑚(𝑛)
𝑖𝑗 = 𝑐𝑖𝑗 + ∫

𝑥1
𝜑(𝑛)
𝑖 𝜓

(𝑛)
𝑗 𝑑𝑥1,

(𝑛) (𝑛+𝑘) (𝑛) (𝑛−𝑘)

(5.2)
𝜕𝑥𝑘𝜑𝑖 = 𝜑𝑖 , 𝜕𝑥𝑘𝜓𝑗 = −𝜓𝑗 ,
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Fig. 1. A KPII two-soliton from Wronskian formulae (4.1) and (6.4) with parameters
(6.5).

where 𝑘 = −2,−1, 1, 2, and 𝑐𝑖𝑗 are constants. These solutions satisfying
he Toda-lattice equation (3.6) can be found in Ref. 3, while their
atisfying (3.4) can be found in Ref. 4. Their satisfying (3.5) can be
nferred directly from Ref. 4.

. KPII solitons

In this section, we derive KPII solitons. For KPII, 𝜎 = 1. When we
et (𝑥1, 𝑥2, 𝑥3) = (𝑥, 𝑦, 𝑡), the bilinear KP equation (2.3) becomes the first
ember (3.1) of the KP hierarchy. Thus, solutions to the KP hierarchy,
ith all the higher coordinates (𝑥4, 𝑥5,…) set as zero, will give KPII

solutions. Since KP-hierarchy solutions come in both Wronskian and
Gram forms, we can also derive KPII solitons in different forms.

6.1. KPII solitons in Wronskian form

First, we derive KPII solitons in Wronskian form. The corresponding
Wronskian solution of the 𝜏 function is given in Eq. (4.1). To get explicit
solutions, the simplest choice of functions 𝜙𝑖 is

𝜙𝑖(𝐱) = 𝛼𝑖 exp(𝜉(𝐱, 𝑝𝑖)), (6.1)

where

𝜉(𝐱, 𝑘) ≡
3
∑

𝑗=1
𝑘𝑗𝑥𝑗 = 𝑘𝑥 + 𝑘2𝑦 + 𝑘3𝑡, (6.2)

and 𝛼𝑖, 𝑝𝑖 are real constants. Obviously, these 𝜙𝑖 functions satisfy
the linear partial differential equations (4.2). However, since the KPII
solution given through the variable transformation (2.2) is invariant
under the 𝜏-transformation

𝜏 → 𝑒𝑐1𝑥1+𝑐2𝑥2+𝑐3𝑥3𝜏, (6.3)

where (𝑐1, 𝑐2, 𝑐3) are arbitrary real constants, it is easy to see that this
simplest choice (6.1) gives the trivial zero solution 𝑢(𝑥, 𝑦, 𝑡) = 0.

The simplest nontrivial choice of 𝜙𝑖 is

𝜙𝑖(𝐱) = 𝛼𝑖 exp(𝜉(𝐱, 𝑝𝑖)) + 𝛽𝑖 exp(𝜉(𝐱, 𝑞𝑖))

= 𝛼𝑖 𝑒
𝑝𝑖𝑥+𝑝2𝑖 𝑦+𝑝

3
𝑖 𝑡 + 𝛽𝑖 𝑒

𝑞𝑖𝑥+𝑞2𝑖 𝑦+𝑞
3
𝑖 𝑡, (6.4)

where 𝛼𝑖, 𝛽𝑖, 𝑝𝑖 and 𝑞𝑖 are arbitrary real constants. Obviously, these new
𝜙𝑖 functions also satisfy the linear partial differential equations (4.2).
The corresponding Wronskian solution (4.1), through the bilinear trans-
formation (2.2), then gives soliton solutions to the KPII equation.

To demonstrate these soliton solutions, we choose 𝑁 = 2 and

𝑝1 = 1, 𝑝2 = 2.3, 𝑞1 = −0.2, 𝑞2 = 1.1, 𝛼1 = 𝛼2 = 𝛽1 = 𝛽2 = 1. (6.5)

The corresponding two-soliton is displayed in Fig. 1. This solution is X-
shaped and describes the interaction between KPII’s two fundamental
(line) solitons.

However, if we choose a slightly different set of parameters,

𝑝 = 1, 𝑝 = 2.3, 𝑞 = −0.2, 𝑞 = 1, 𝛼 = 𝛼 = 𝛽 = 𝛽 = 1, (6.6)
1 2 1 2 1 2 1 2

3

Fig. 2. A degenerate KPII two-soliton from the Wronskian formulae (4.1) and (6.4)
with parameters (6.6).

where only the value of 𝑞2 is changed from 1.1 to 1, the solution’s graph
would look quite different, see Fig. 2. This solution is Y-shaped, and can
be called a degenerate KPII two-soliton. This Y-shaped solution is very
common on beaches, see Ref. 5.

In Ref. 6, Kodama investigated a wider class of KPII solutions, and
identified different types of solitons with cobweb structures. This class
of solutions of KPII comes from choosing

𝜙𝑖(𝐱) =
𝑀
∑

𝑗=1
𝛼𝑖𝑗 exp(𝜉(𝐱, 𝑝𝑖𝑗 )), (6.7)

here 𝑀 is an arbitrary positive integer, and 𝛼𝑖𝑗 , 𝑝𝑖𝑗 are free real
onstants. The reduced echelon form of the 𝑁 × 𝑀 matrix 𝐴 = (𝛼𝑖𝑗 )

is used to classify the type of cobweb structures in the solution.

6.2. KPII solitons in gram form

The Gram form of the 𝜏 solution to the KP hierarchy (3.1) is given
n Eq. (5.1). Setting (𝑥1, 𝑥2, 𝑥3) = (𝑥, 𝑦, 𝑡) and all the higher coordinates
𝑥4, 𝑥5,…) zero, this Gram 𝜏 function gives a KPII solution. KPII solitons
ill result when we choose
𝑓𝑖 = 𝑒𝜉𝑖 , 𝑔𝑗 = 𝑒𝜂𝑗 ,

𝜉𝑖 = 𝑝𝑖𝑥 + 𝑝2𝑖 𝑦 + 𝑝
3
𝑖 𝑡 + 𝜉𝑖0,

𝜂𝑗 = 𝑞𝑗𝑥 − 𝑞2𝑗 𝑦 + 𝑞
3
𝑗 𝑡 + 𝜂𝑗0,

(6.8)

nd 𝑝𝑖, 𝑞𝑗 , 𝜉𝑖0 and 𝜂𝑗0 are arbitrary real constants. These functions
bviously satisfy the linear partial differential equations in (5.1). The
orresponding 𝜏 function is then

𝜏 = det1≤𝑖,𝑗≤𝑁
(

𝑚𝑖𝑗
)

,

𝑚𝑖𝑗 = 𝑐𝑖𝑗 +
1

𝑝𝑖+𝑞𝑗
𝑒𝜉𝑖+𝜂𝑗 ,

(6.9)

where 𝑐𝑖𝑗 are also arbitrary real constants. This 𝜏 solution is real-
valued as required. To demonstrate these KPII solitons in Gram form,
we choose 𝑁 = 2,

𝑝1 = 1, 𝑝2 = 2.3, 𝑞1 = 0.2, 𝑞2 = −1.1,

𝜉10 = 𝜉20 = 𝜂10 = 𝜂20 = 0, (𝑐𝑖𝑗 ) =
(

1 −1
1 0.01

)

.
(6.10)

he graph of the corresponding solution is shown in Fig. 3. This is a
PII two-soliton with a long stem at the center. Such solutions have
een observed on beaches in Ref. 5. By choosing other 𝑐𝑖𝑗 values, we
an also get KPII solitons such as those shown in Figs. 1–2.

. KPI solitons

For KPI, 𝜎 = −1 in Eq. (2.1). In this case, when setting (𝑥1, 𝑥2, 𝑥3) =
(𝑥, i𝑦, 𝑡), the bilinear KPI equation (2.3) becomes the KP-hierarchy
quation (3.1), whose Gram solutions are (5.1). A simple choice of these
ram solutions is still (6.9), but with

𝜉𝑖 = 𝑝𝑖𝑥1 + 𝑝2𝑖 𝑥2 + 𝑝
3
𝑖 𝑥3 + 𝜉𝑖0 = 𝑝𝑖𝑥 + i𝑝2𝑖 𝑦 + 𝑝

3
𝑖 𝑡 + 𝜉𝑖0,

2 3 2 3
𝜂𝑗 = 𝑞𝑗𝑥1 − 𝑞𝑗 𝑥2 + 𝑞𝑗 𝑥3 + 𝜂𝑗0 = 𝑞𝑗𝑥 − i𝑞𝑗 𝑦 + 𝑞𝑗 𝑡 + 𝜂𝑗0,
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Fig. 3. A KPII two-soliton from the Gram formula (6.9) with parameters (6.10).

Fig. 4. Two KPI solitons from the Gram formula (7.2) with parameters (7.3). The 𝑐𝑖𝑗
values for (a) and (b) are the first and second sets in Eq. (7.4) respectively.

and 𝑐𝑖𝑗 , 𝑝𝑖, 𝑞𝑗 , 𝜉𝑖0, 𝜂𝑗0 are now complex constants. To ensure this 𝜏
function is real-valued, we impose parameter conditions

𝑐∗𝑖𝑗 = 𝑐𝑗𝑖, 𝑝𝑖 = 𝑞∗𝑖 , 𝜉𝑖0 = 𝜂∗𝑖0. (7.1)

Under these conditions, 𝑚∗
𝑖𝑗 = 𝑚𝑗𝑖, and thus 𝜏 is real. Putting these

results together, we find that KPI admits the following Gram solutions

𝜏 = det1≤𝑖,𝑗≤𝑁
(

𝑚𝑖𝑗
)

,

𝑚𝑖𝑗 = 𝑐𝑖𝑗 +
1

𝑝𝑖+𝑝∗𝑗
𝑒𝜉𝑖+𝜉

∗
𝑗 ,

𝜉𝑖 = 𝑝𝑖𝑥 + i𝑝2𝑖 𝑦 + 𝑝
3
𝑖 𝑡 + 𝜉𝑖0,

(7.2)

where 𝑐∗𝑖𝑗 = 𝑐𝑗𝑖, and 𝑝𝑖, 𝜉𝑖0 are free complex constants. These solutions
give KPI solitons. To illustrate, we choose

𝑁 = 2, 𝑝1 = 1, 𝑝2 = 1 + i, 𝜉10 = 𝜉20 = 0, (7.3)

and two sets of 𝑐𝑖𝑗 values,

(𝑐𝑖𝑗 ) =
(

1 0
0 1

)

, (𝑐𝑖𝑗 ) =
(

1 i
−i 1

)

. (7.4)

The corresponding two solutions at 𝑡 = 0 are displayed in Fig. 4(a,b)
respectively. Fig. 4(a) describes the interaction between two KPI line
solitons. Fig. 4(b) is a degenerate and more interesting solution, where
lumps are periodically emitted from the intersection of the two semi-
line solitons. These lumps, after emission, would move along the
negative-𝑥 axis.

8. KPI lumps

KPI admits stable fundamental lump solutions that are bounded
rational functions decaying in all spatial directions. In addition, it
admits rational solutions that describe the interaction between these
lumps. These rational solutions can be written as

𝜏 = det1≤𝑖,𝑗≤𝑁
(

𝑚𝑖𝑗
)

,

𝑚𝑖𝑗 = 𝐴𝑖𝐵𝑗
1

𝑝𝑖+𝑞𝑗
𝑒𝜉𝑖+𝜂𝑗 ||

|𝑞𝑗=𝑝∗𝑗
,

𝜉𝑖 = 𝑝𝑖𝑥 + i𝑝2𝑖 𝑦 + 𝑝
3
𝑖 𝑡,

2 3

(8.1)
𝜂𝑗 = 𝑞𝑗𝑥 − i𝑞𝑗 𝑦 + 𝑞𝑗 𝑡, c

4

Fig. 5. Lump solutions of KPI. Upper row: a two-lump with parameters (8.3) at two
time values of 𝑡 = −1 and 1.3. Lower row: a second-order lump with parameters (8.4)
at two time values of 𝑡 = −3 and 6.

where

𝐴𝑖 =
𝑛𝑖
∑

𝑘=0
𝑐𝑖𝑘(𝑝𝑖𝜕𝑝𝑖 )

𝑛𝑖−𝑘, 𝐵𝑗 =
𝑛𝑗
∑

𝑘=0
𝑐∗𝑗𝑘(𝑞𝑗𝜕𝑞𝑗 )

𝑛𝑗−𝑘, (8.2)

𝑛𝑖 is an arbitrary positive integer, 𝑝𝑖 is an arbitrary complex constant
with 𝑝𝑖 + 𝑝∗𝑗 ≠ 0, and 𝑐𝑖𝑘 is also an arbitrary complex constant. It is
easy to see, from the previous KPI solutions (7.2), that the above new
solutions (8.1) are also special cases of the general Gram solutions (5.1),
since differential operators 𝐴𝑖, 𝐵𝑗 and 𝜕𝑥𝑛 commute with each other. In
addition, the above 𝜏 is real since 𝑚∗

𝑖𝑗 = 𝑚𝑗𝑖. Thus, the above solutions
also satisfy the KPI equation. The exponential terms 𝑒𝜉𝑖+𝜂𝑗 in these
solutions will eventually factor out of the 𝜏 determinant and disappear
from the 𝑢 solution (2.2). Thus, these 𝑢 solutions are rational functions
of (𝑥, 𝑦, 𝑡).

These solutions (8.1) contain many types of lump solutions, such as
multi-lumps, higher-order lumps, and their combinations. Multi-lumps
are solutions where 𝑁 > 1, all 𝑝𝑖’s are distinct, and 𝑛1 = 𝑛2 = ⋯ = 𝑛𝑁 =
, which describe the elastic interaction between multiple fundamental
umps with different terminal velocities. Higher-order lumps, on the
ther hand, are solutions with 𝑁 ≥ 1 and all 𝑝𝑖’s the same, which
escribe the anomalous scattering between multiple fundamental lumps
ith identical terminal velocities. As a demonstration of multi-lump

olutions, we choose

= 2, 𝑝1 = 1, 𝑝2 = 1 + i, 𝑐10 = 𝑐20 = 1, 𝑐11 = 𝑐21 = 0. (8.3)

he corresponding two-lump is shown in the upper row of Fig. 5. To
emonstrate a higher-order lump, we choose

= 1, 𝑝1 = 1, 𝑛1 = 2, 𝑐10 = 1, 𝑐11 = 𝑐12 = 0. (8.4)

he corresponding second-order lump is shown in the lower row of
ig. 5. These two solutions have very different behaviors. In the two-
ump solution, the two individual lumps simply pass through each other
fter collision without change of velocity or phase. But in the second-
rder lump, the two individual lumps first move toward each other
long the 𝑥 axis, then collide, and then separate away from each other
long the 𝑦 direction.

More explicit expressions for higher-order KPI lumps through Schur
olynomials, as well as analysis of their large-time solution patterns,
an be found in Ref. 7.
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Fig. 6. (a) A KdV two-soliton from the Wronskian formulae (9.4) and (9.6) with pa-
ameters (9.7). (b) A KdV three-soliton from the Gram formula (9.12) with parameters
9.13).

. KdV solitons

The bilinear form (2.7) of KdV is a special case of the KP hierarchy
quation (3.1) when we set (𝑥1, 𝑥3) = (𝑥, 𝑡) and the 𝜏 function is

independent of 𝑥2. Thus, to derive KdV solutions, we need to do a
dimension reduction and reduce the KP-hierarchy’s solution 𝜏 to one

ithout 𝑥2 dependence. To do so, one cannot simply set 𝑥2 = 0 in the
KP-hierarchy’s 𝜏(𝐱) solution. The correct dimension reduction process
epends on the Wronskian or Gram form of the hierarchy solution 𝜏,
nd will be done separately below.

.1. KdV solitons in Wronskian form

For the Wronskian solution (4.1) of the KP hierarchy, we choose 𝜙𝑖
unctions as in (6.4), i.e.,

𝑖(𝐱) = 𝛼𝑖 𝑒
𝑝𝑖𝑥1+𝑝2𝑖 𝑥2+𝑝

3
𝑖 𝑥3 + 𝛽𝑖 𝑒

𝑞𝑖𝑥1+𝑞2𝑖 𝑥2+𝑞
3
𝑖 𝑥3 . (9.1)

o achieve dimension reduction, we constrain parameters 𝑝𝑖 and 𝑞𝑖 by

𝑖 = −𝑝𝑖. (9.2)

nder this constraint, the above 𝜙𝑖 becomes

𝑖(𝐱) = 𝑒𝑝
2
𝑖 𝑥2 𝜙̂𝑖(𝑥1, 𝑥3), (9.3)

here

̂𝑖(𝑥1, 𝑥3) = 𝛼𝑖 𝑒
𝑝𝑖𝑥1+𝑝3𝑖 𝑥3 + 𝛽𝑖 𝑒

−𝑝𝑖𝑥1−𝑝3𝑖 𝑥3 . (9.4)

nserting this 𝜙𝑖(𝐱) into the Wronskian (4.1), it is easy to see that the
orresponding 𝜏 function is of the form

(𝐱) = 𝑒(𝑝
2
1+𝑝

2
2+⋯+𝑝2𝑁 )𝑥2𝜏(𝑥1, 𝑥3), (9.5)

here

𝜏(𝑥1, 𝑥3) =

|

|

|

|

|

|

|

|

|

|

𝜙̂1 𝜕𝑥1 𝜙̂1 ⋯ 𝜕𝑁−1
𝑥1

𝜙̂1
𝜙̂2 𝜕𝑥1 𝜙̂2 ⋯ 𝜕𝑁−1

𝑥1
𝜙̂2

⋮ ⋮ ⋮ ⋮
𝜙̂𝑁 𝜕𝑥1 𝜙̂𝑁 ⋯ 𝜕𝑁−1

𝑥1
𝜙̂𝑁

|

|

|

|

|

|

|

|

|

|

. (9.6)

ince the KP hierarchy equation (3.1) is invariant when 𝜏 is multiplied
y an exponential of a linear function of 𝑥2, this 𝜏(𝑥1, 𝑥3) then also
atisfies (3.1). But it is independent of 𝑥2, and thus satisfies KdV’s
ilinear form (2.7), where (𝑥1, 𝑥3) = (𝑥, 𝑡). This 𝜏(𝑥, 𝑡) gives KdV solitons
hrough the bilinear transformation (2.6).

To demonstrate, we choose 𝑁 = 2,

1 = 1, 𝑝2 = 1.5, 𝛼1 = 𝛼2 = 1, 𝛽1 = 1, 𝛽2 = −1. (9.7)

he corresponding two-soliton of KdV is displayed in Fig. 6(a).
Extending the above bilinear approach, one can also obtain other

ypes of KdV solutions. For example, by choosing 𝜙𝑖(𝐱) to be 𝑒𝑝2𝑥2
ultiplying the 𝑝𝑖’s coefficient of the power expansion of 𝛼 𝑒𝑝𝑥1+𝑝3𝑥3 +

𝛽 𝑒−𝑝𝑥1−𝑝3𝑥3 in 𝑝, where 𝛼, 𝛽 and 𝑝 are arbitrary real constants, such
𝜙 (𝐱) would still satisfy the linear partial differential equations (4.2).
𝑖 w

5

Then, applying the same KP-hierarchy invariance when 𝜏 is multiplied
by an exponential of a linear function of 𝑥2, we see that the 𝜏(𝑥1, 𝑥3)
function, whose elements 𝜙̂𝑖(𝑥1, 𝑥3) are polynomial functions of (𝑥1, 𝑥3)
from the power expansion of 𝛼 𝑒𝑝𝑥1+𝑝3𝑥3 + 𝛽 𝑒−𝑝𝑥1−𝑝3𝑥3 in 𝑝, would
satisfy KdV’s bilinear form (2.7) with (𝑥1, 𝑥3) = (𝑥, 𝑡). Such 𝜏(𝑥, 𝑡) gives
ational solutions of KdV, which are singular. Other ways to derive
hese rational KdV solutions can be found in Ref. 8.

.2. KdV solitons in Gram form

For the Gram solution (5.1) of the KP hierarchy, we choose 𝑚𝑖𝑗 as
n (6.9). To achieve dimension reduction, we choose

𝑖𝑗 = 𝛿𝑖𝑗 , (9.8)

here 𝛿𝑖𝑗 = 1 when 𝑖 = 𝑗 and 0 otherwise. Then, by factoring out 𝑒𝜉𝑖
from the 𝑖th row and 𝑒𝜂𝑗 from the 𝑗th column of 𝜏, and redistributing
𝑒𝜉𝑖+𝜂𝑖 to the 𝑖th row of the resulting determinant, we find that elements
𝑚𝑖𝑗 of this 𝜏 can be rewritten as

𝑚𝑖𝑗 = 𝛿𝑖𝑗 +
1

𝑝𝑖 + 𝑞𝑗
𝑒𝜉𝑖+𝜂𝑖 . (9.9)

Since

𝜉𝑖 + 𝜂𝑖 = (𝑝𝑖 + 𝑞𝑖)𝑥1 + (𝑝2𝑖 − 𝑞
2
𝑖 )𝑥2 + (𝑝3𝑖 + 𝑞

3
𝑖 )𝑥3 + (𝜉𝑖0 + 𝜂𝑖0), (9.10)

f we constrain real parameters (𝑝𝑖, 𝑞𝑖) as

𝑖 = 𝑝𝑖, (9.11)

hen this 𝜏 would be independent of 𝑥2, and thus satisfies KdV’s bilinear
form (2.7), where (𝑥1, 𝑥3) = (𝑥, 𝑡). This 𝜏 gives the 𝑁-soliton solution of
KdV. Its expression can be written out more explicitly as

𝜏(𝑥, 𝑡) = det
1≤𝑖,𝑗≤𝑁

(

𝛿𝑖𝑗 +
1

𝑝𝑖 + 𝑝𝑗
𝑒2𝑝𝑖𝑥+2𝑝

3
𝑖 𝑡+𝛾𝑖

)

, (9.12)

where 𝛾𝑖 ≡ 𝜉𝑖0 + 𝜂𝑖0, and 𝛾𝑖, 𝑝𝑖 are arbitrary real constants.
To demonstrate these KdV solitons in Gram form, we choose

𝑁 = 3, 𝑝1 = 1, 𝑝2 = 1.5, 𝑝3 = 2, 𝛾1 = 𝛾2 = 𝛾3 = 0. (9.13)

he corresponding three-soliton is displayed in Fig. 6(b).

0. DS dark solitons

0.1. DSI and DSII dark solitons in Gram form

DS’ bilinear system (2.12) belongs to the extended KP hierarchy
3.4)–(3.6). Thus, its Gram solutions are

𝐴 =
√

2 𝑔𝑓 , 𝑄 = −𝜎 − 𝜖 (2 log𝑓 )𝑥𝑥,

𝑓 = 𝜏0, 𝑔 = 𝜏1, 𝑔∗ = 𝜏−1,
(10.1)

where 𝜏𝑛 is given in Eq. (5.2). The simplest 𝜏𝑛 solutions are obtained
when we choose

𝜑(𝑛)
𝑖 = 𝑝𝑛𝑖 𝑒

𝜉𝑖 , 𝜓 (𝑛)
𝑗 = (−𝑞𝑗 )−𝑛𝑒

𝜂𝑗 ,

𝜉𝑖 =
1
𝑝2𝑖
𝑥−2 +

1
𝑝𝑖
𝑥−1 + 𝑝𝑖𝑥1 + 𝑝2𝑖 𝑥2 + 𝜉𝑖0,

𝜂𝑗 = − 1
𝑞2𝑗
𝑥−2 +

1
𝑞𝑗
𝑥−1 + 𝑞𝑗𝑥1 − 𝑞2𝑗 𝑥2 + 𝜂𝑗0,

(10.2)

here 𝑝𝑖, 𝑞𝑗 , 𝜉𝑖0 and 𝜂𝑗0 are complex constants. Obviously, these 𝜑(𝑛)
𝑖 , 𝜓

(𝑛)
𝑗

functions satisfy the linear partial differential equations in (5.2). The
resulting 𝜏𝑛 solutions are then

𝜏𝑛 = det1≤𝑖,𝑗≤𝑁
(

𝑚(𝑛)
𝑖𝑗

)

,

𝑚(𝑛)
𝑖𝑗 = 𝑐𝑖𝑗 +

1
𝑝𝑖+𝑞𝑗

(− 𝑝𝑖
𝑞𝑗
)𝑛𝑒𝜉𝑖+𝜂𝑗 ,

(10.3)

here 𝑐 are complex constants.
𝑖𝑗
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Fig. 7. A DSI two-dark soliton |𝐴| from the Gram solution (10.1)–(10.3) and (10.6)
with parameters (10.8) at times 𝑡 = ±1.

Fig. 8. DSI degenerate two-dark soliton |𝐴| from the Gram solution (10.1)–(10.3) and
(10.6) with parameters (10.9) at times 𝑡 = ±1.

In order for Eq. (10.3) to give true DS solutions, we must meet the
complex-conjugation conditions

𝜏0 = 𝜏∗0 , 𝜏−1 = 𝜏∗1 , (10.4)

since 𝑓 needs to be real and (𝜏1, 𝜏−1) need to be (𝑔, 𝑔∗) from Eq. (10.1).
These conjugation conditions can be met in different ways for DSI and
DSII, which will be treated separately below.

10.1.1. DSI dark solitons
For DSI, the coordinate transform (2.11) reduces to

𝑥1 =
1
2 (𝑥 + 𝑦), 𝑥−1 =

1
2 𝜖(𝑥 − 𝑦),

𝑥2 = − 1
2 i𝑡, 𝑥−2 =

1
2 i𝑡,

(10.5)

where (𝑥1, 𝑥−1) are real and (𝑥2, 𝑥−2) purely imaginary. To ensure the
conjugation conditions (10.4), we constrain parameters as

𝑞𝑗 = 𝑝∗𝑗 , 𝜂𝑗0 = 𝜉∗𝑗0, 𝑐𝑖𝑗 = 𝑐∗𝑗𝑖. (10.6)

Then

𝜉∗𝑗 = 𝜂𝑗 ,
(

𝑚(𝑛)
𝑖𝑗

)∗
= 𝑚(−𝑛)

𝑗𝑖 , 𝜏∗𝑛 = 𝜏−𝑛, (10.7)

and thus the conjugation conditions (10.4) are satisfied.
To illustrate these DSI solutions, we choose

𝑁 = 2, 𝜖 = 1, 𝑝1 = 1 + i, 𝑝2 = 0.8, 𝜉𝑗0 = 0, 𝑐𝑖𝑗 = 𝛿𝑖𝑗 . (10.8)

Then we get a two-dark-soliton which is shown in Fig. 7.
With other choices of the 𝑐𝑖𝑗 values, these DSI solutions could look

different. For example, when we choose the same parameters as in
(10.8) but with all 𝑐𝑖𝑗 taken as 1, i.e.,

𝑁 = 2, 𝜖 = 1, 𝑝1 = 1 + i, 𝑝2 = 0.8, 𝜉𝑗0 = 0, 𝑐𝑖𝑗 = 1, (10.9)

the corresponding solution is plotted in Fig. 8. This solution is triple-
branched, with two of the branches dark solitons, but the third branch
comprising periodically spaced dipoles. This kind of DSI dark soliton
can be called a degenerate two-dark soliton.
6

10.1.2. DSII dark solitons
For DSII, the coordinate transform (2.11) becomes

𝑥1 =
1
2 (𝑥 + i𝑦), 𝑥−1 = − 1

2 𝜖(𝑥 − i𝑦),

𝑥2 =
1
2 i𝑡, 𝑥−2 = − 1

2 i𝑡,
(10.10)

here (𝑥1, 𝑥−1) become complex. To satisfy conjugation conditions
10.4) for DSII, we need to constrain parameters differently from (10.6)
f DSI. Indeed, in this case, we need to split parameters 𝑝𝑖, 𝑞𝑖, 𝜉𝑖0, 𝜂𝑖0, 𝑐𝑖𝑗
nto two blocks and constrain them analogously to what was done in
ef. 9, so that the resulting 𝜏𝑛 determinant becomes a 2 × 2 block
eterminant with certain symmetries. Details will be omitted.

0.2. DSII dark solitons in Wronskian form

Since DS’ bilinear system (2.12) belongs to the extended KP hierar-
hy (3.4)–(3.6), its Wronskian solutions are

= 𝜏0, 𝑔 = 𝜏1, 𝑔∗ = 𝜏−1, (10.11)

here 𝜏𝑛 is given in Eqs. (4.3)–(4.4), i.e.,

𝜏𝑛 =

|

|

|

|

|

|

|

|

|

|

𝜕𝑛𝑥1𝜙1 𝜕𝑛+1𝑥1
𝜙1 ⋯ 𝜕𝑛+𝑁−1

𝑥1
𝜙1

𝜕𝑛𝑥1𝜙2 𝜕𝑛+1𝑥1
𝜙2 ⋯ 𝜕𝑛+𝑁−1

𝑥1
𝜙2

⋮ ⋮ ⋮ ⋮
𝜕𝑛𝑥1𝜙𝑁 𝜕𝑛+1𝑥1

𝜙𝑁 ⋯ 𝜕𝑛+𝑁−1
𝑥1

𝜙𝑁

|

|

|

|

|

|

|

|

|

|

, (10.12)

nd 𝜙𝑖 satisfies the linear partial differential equations (4.4). For this
𝑛 to be true solutions, it must also meet the complex conjugation
onditions (10.4).

Here, we consider defocusing DSII, where 𝜖 = −1. In this case, the
oordinate transform (2.11) is

𝑥1 =
1
2 (𝑥 + i𝑦), 𝑥−1 =

1
2 (𝑥 − i𝑦),

𝑥2 =
1
2 i𝑡, 𝑥−2 = − 1

2 i𝑡,
(10.13)

here 𝑥−1 = 𝑥∗1 and 𝑥−2 = 𝑥∗2. If we choose 𝜙𝑖 functions as

𝜙1 =
𝑀
∑

𝑗=1
𝛼𝑗 𝑒

𝑝𝑗𝑥1+𝑝2𝑗 𝑥2+𝑝
−1
𝑗 𝑥−1+𝑝−2𝑗 𝑥−2 ,

𝜙𝑖 = 𝜕𝑖−1𝑥−1
𝜙1, 𝑖 = 2,… , 𝑁,

(10.14)

with 𝑀 and 𝑁 being arbitrary positive integers, then these 𝜙𝑖 satisfy
the linear partial differential equations (4.4). In addition, if we impose
parameter constraints

|𝑝𝑗 | = 1, 𝛼𝑗 are all real, (10.15)

then the complex conjugation conditions (10.4) are also satisfied. Thus,
the corresponding (10.12) gives DSII solutions. To illustrate these
solutions, we choose

𝑁 = 1,𝑀 = 4, 𝛼1 = 𝛼2 = 𝛼3 = 𝛼4 = 1,

(𝑝1, 𝑝2, 𝑝3, 𝑝4) = (𝑒−i, 𝑒2i, 𝑒0.45i, 𝑒−2.6i).
(10.16)

The corresponding DSII solution at 𝑡 = 0 is shown in Fig. 9(a). This
solution is a X-shaped dark soliton.

If we keep the same 𝑝𝑗 values but change 𝛼𝑗 to

𝛼1 = 1, 𝛼2 = 0.1, 𝛼3 = 30, 𝛼4 = 300, (10.17)

hen the solution at 𝑡 = 0 becomes two Y-shaped dark solitons joined
y a long dark stem, as is shown in Fig. 9(b).

Under other choices of 𝜙𝑖 functions, different DSII solutions can also
e obtained. For instance, it has been pointed out by G. Biondini and
. Maruno (private communications) that if one takes

𝑖 =
𝑀
∑

𝑗=1
𝛼𝑖𝑗 𝑝

−(𝑁−1)∕2
𝑗 𝑒𝑝𝑗𝑥1+𝑝

2
𝑗 𝑥2+𝑝

−1
𝑗 𝑥−1+𝑝−2𝑗 𝑥−2 , 𝑖 = 1,…𝑁,

and impose parameter constraints of
|𝑝𝑗 | = 1, (𝛼𝑖𝑗 )𝑁×𝑀 are all real,
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Fig. 9. DSII dark solitons |𝐴| from the Wronskian solution (10.11)–(10.15) at time
𝑡 = 0: (a) with parameters (10.16); (b) with 𝑝𝑗 values as in (10.16) but 𝛼𝑗 values as in
(10.17).

then the 𝜏𝑛 function in (10.12) would also give DSII solutions through
(10.11). In this case, if the integer part of 𝑁∕2 is odd, then this 𝜏𝑛
function would be such that

𝜏∗0 = −𝜏0, 𝜏∗−1 = −𝜏1,

and thus does not satisfy the conjugation conditions (10.4). However,
when we define

𝑓 = i𝜏0, 𝑔 = i𝜏1, 𝑔∗ = i𝜏−1,

these (𝑓, 𝑔, 𝑔∗) functions would satisfy DSII’s bilinear forms (2.12)
and meet the proper complex conjugation conditions. Graphs of these
solutions exhibit cobweb structures of dark solitons.

11. DS rogue waves

Since DS’ bilinear system (2.12) is in the extended KP hierarchy
(3.4)–(3.6), to obtain DS rogue waves, we choose Gram solutions (5.2)
to this extended KP hierarchy (3.4)–(3.6) as

𝜏𝑛 = det1≤𝑖,𝑗≤𝑁
(

𝑚̃(𝑛)
𝑖𝑗

)

,

𝑚̃(𝑛)
𝑖𝑗 = ∫

𝑥1
𝜑̃(𝑛)
𝑖 𝜓̃

(𝑛)
𝑗 𝑑𝑥1,

𝜑̃(𝑛)
𝑖 = 𝐴𝑖𝜑

(𝑛)
𝑖 , 𝜓̃ (𝑛)

𝑗 = 𝐵𝑗𝜓
(𝑛)
𝑗 ,

𝜑(𝑛)
𝑖 = 𝑝𝑛𝑖 𝑒

𝜉𝑖 , 𝜓 (𝑛)
𝑗 = (−𝑞𝑗 )−𝑛𝑒

𝜂𝑗 ,

𝜉𝑖 =
1
𝑝2𝑖
𝑥−2 +

1
𝑝𝑖
𝑥−1 + 𝑝𝑖𝑥1 + 𝑝2𝑖 𝑥2,

𝜂𝑗 = − 1
𝑞2𝑗
𝑥−2 +

1
𝑞𝑗
𝑥−1 + 𝑞𝑗𝑥1 − 𝑞2𝑗 𝑥2,

(11.1)

where 𝐴𝑖 and 𝐵𝑗 are differential operators of order 𝑛𝑖 and 𝑚𝑗 with
respect to 𝑝𝑖 and 𝑞𝑗 ,

𝐴𝑖 =
𝑛𝑖
∑

𝑘=0
𝑐𝑖𝑘(𝑝𝑖𝜕𝑝𝑖 )

𝑛𝑖−𝑘, 𝐵𝑗 =
𝑚𝑗
∑

𝑘=0
𝑑𝑗𝑘(𝑞𝑗𝜕𝑞𝑗 )

𝑚𝑗−𝑘, (11.2)

and 𝑝𝑖, 𝑞𝑗 , 𝑐𝑖𝑘, 𝑑𝑗𝑘 are complex constants. Obviously, the above 𝜑̃(𝑛)
𝑖

and 𝜓̃ (𝑛)
𝑗 satisfy the linear partial differential equations in (5.2) since

operators 𝐴𝑖 and 𝐵𝑗 commute with differentials 𝜕𝑥𝑘 . Thus, this 𝜏𝑛
atisfies the extended KP hierarchy (3.4)–(3.6), and hence DS’ bilinear
ystem (2.12) under the (𝑓, 𝑔, 𝑔∗) choices of (10.11). A more explicit
xpression for the above 𝜏𝑛 solution is taken as

𝜏𝑛 = det1≤𝑖,𝑗≤𝑁
(

𝑚̃(𝑛)
𝑖𝑗

)

,

𝑚̃(𝑛)
𝑖𝑗 = 𝐴𝑖𝐵𝑗

1
𝑝𝑖+𝑞𝑗

(− 𝑝𝑖
𝑞𝑗
)𝑛𝑒𝜉𝑖+𝜂𝑗 .

(11.3)

Here, we intentionally do not include constants of integration 𝑐𝑖𝑗 into
̃ (𝑛)𝑖𝑗 , because this way, this 𝜏𝑛 would be a polynomial function of
𝐱 = (𝑥−2, 𝑥−1, 𝑥1, 𝑥2) multiplying a 𝑛-independent exponential of a linear
function of 𝐱. Thus, the resulting (𝐴,𝑄) solutions from the transforma-
ion (2.9) would be rational functions of 𝐱. These rational functions give
ogue waves in the DS system (2.8) through (2.9) and (10.11), i.e.,

𝐴 =
√

2 𝑔𝑓 , 𝑄 = −𝜎 − 𝜖 (2 log𝑓 )𝑥𝑥,
∗

(11.4)

𝑓 = 𝜏0, 𝑔 = 𝜏1, 𝑔 = 𝜏−1,

7

Fig. 10. A DSI rogue wave |𝐴| in Eqs. (11.3)–(11.5) with parameters (11.7).

f the above 𝜏𝑛 also satisfies the conjugation conditions (10.4), and
parameters 𝑝𝑖, 𝑞𝑗 meet some restrictions.

11.1. DSI rogue waves

For DSI, the coordinate transform (2.11) is (10.5), where (𝑥1, 𝑥−1)
are real and (𝑥2, 𝑥−2) purely imaginary. In this case, for 𝜏𝑛 in (11.3) to
satisfy conjugacy conditions (10.4), we constrain the parameters as

𝑞𝑗 = 𝑝∗𝑗 , 𝑚𝑗 = 𝑛𝑗 , 𝑑𝑗𝑙 = 𝑐∗𝑗𝑙 . (11.5)

Then,

𝜉∗𝑗 = 𝜂𝑗 ,
(

𝑚̃(𝑛)
𝑖𝑗

)∗
= 𝑚̃(−𝑛)

𝑗𝑖 , 𝜏∗𝑛 = 𝜏−𝑛. (11.6)

Thus, conjugation conditions (10.4) are met. The corresponding solu-
tions (11.3)–(11.4) give DSI rogue waves when all 𝑝𝑗 ’s are real.10 As
an example, we choose

𝜖 = 1, 𝑁 = 2, 𝑛1 = 𝑛2 = 1, 𝑝1 = 1, 𝑝2 = 1.5,

𝑐10 = 𝑐20 = 1, 𝑐11 = 𝑐21 = 0,
(11.7)

and the corresponding rogue wave is shown in Fig. 10.

11.2. DSII rogue waves

For DSII, the coordinate transform (2.11) is (10.10), where (𝑥1, 𝑥−1)
are complex. To derive rogue waves for DSII, we need to constrain
parameters in the 𝜏𝑛 solution (11.3) blockwise, so that 𝜏𝑛 becomes a
2 × 2 block determinant with certain symmetry. See Ref. 9 for details.

12. Dark solitons in the defocusing NLS equation

The bilinear forms (2.15) of the NLS equation (2.13) belong to the
extended KP hierarchy [see (3.4)–(3.6)]. From Section 5, we know that
Gram solutions (5.2), i.e.,

𝜏𝑛 = det1≤𝑖,𝑗≤𝑁
(

𝑚(𝑛)
𝑖𝑗

)

,

𝑚(𝑛)
𝑖𝑗 = 𝑐𝑖𝑗 + ∫

𝑥1
𝜑(𝑛)
𝑖 𝜓

(𝑛)
𝑗 𝑑𝑥1,

𝜕𝑥𝑘𝜑
(𝑛)
𝑖 = 𝜑(𝑛+𝑘)

𝑖 , 𝜕𝑥𝑘𝜓
(𝑛)
𝑗 = −𝜓 (𝑛−𝑘)

𝑗 ,

(12.1)

with 𝑘 = −1, 1 and 2, satisfy the extended KP hierarchy equations (3.4)
and (3.6), i.e.,

(𝐷2
𝑥1

+𝐷𝑥2 ) 𝜏𝑛 ⋅ 𝜏𝑛+1 = 0,
(12.2)
𝐷𝑥1𝐷𝑥−1 𝜏𝑛 ⋅ 𝜏𝑛 = 2(𝜏𝑛𝜏𝑛 − 𝜏𝑛+1𝜏𝑛−1).
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Here, we have deleted the 𝑥−2 dependence in the above 𝜏𝑛 function
since the two bilinear equations in (12.2) do not involve 𝑥−2. The
simplest Gram solutions (12.1) are

𝜏𝑛 = det1≤𝑖,𝑗≤𝑁
(

𝑚(𝑛)
𝑖𝑗

)

,

𝑚(𝑛)
𝑖𝑗 = 𝑐𝑖𝑗 +

1
𝑝𝑖+𝑞𝑗

(

− 𝑝𝑖
𝑞𝑗

)𝑛
𝑒𝜉𝑖+𝜂𝑗 ,

𝜉𝑖 =
1
𝑝𝑖
𝑥−1 + 𝑝𝑖𝑥1 + 𝑝2𝑖 𝑥2 + 𝜉𝑖0,

𝜂𝑗 =
1
𝑞𝑗
𝑥−1 + 𝑞𝑗𝑥1 − 𝑞2𝑗 𝑥2 + 𝜂𝑗0,

(12.3)

which are the same solutions (10.2)–(10.3) but with 𝑥−2 = 0. Here, 𝑝𝑖,
𝑞𝑗 , 𝑐𝑖,𝑗 , 𝜉𝑖0 and 𝜂𝑗0 are all arbitrary complex parameters.

To reduce the three-dimensional bilinear equations (12.2) to the
wo-dimensional NLS bilinear equations (2.15), we need to perform a
imension reduction. To do so, we impose the condition

𝑥1𝜏𝑛 = 𝜕𝑥−1𝜏𝑛. (12.4)

This way, we will have

𝐷𝑥1𝐷𝑥−1 𝜏𝑛 ⋅ 𝜏𝑛 = 𝐷2
𝑥1
𝜏𝑛 ⋅ 𝜏𝑛. (12.5)

Then, Eqs. (12.2) would reduce to the NLS bilinear equations (2.15)
when we set 𝑥1 = 𝑥, 𝑥2 = i𝑡, 𝜖 = −1 (defocusing NLS), and

𝑓 = 𝜏0, 𝑔 = 𝜏1, 𝑔∗ = 𝜏−1. (12.6)

To achieve the dimensional reduction (12.4), we choose

𝑖𝑗 = 𝛿𝑖𝑗 . (12.7)

Then, by factoring out 𝑒𝜉𝑖 from the 𝑖th row and 𝑒𝜂𝑗 from the 𝑗th column
f 𝜏𝑛 in (12.3), and then redistributing 𝑒𝜉𝑖+𝜂𝑖 to the 𝑖th row of the
esulting determinant, we find that elements 𝑚(𝑛)

𝑖𝑗 of this 𝜏𝑛 can be
ewritten as

(𝑛)
𝑖𝑗 = 𝛿𝑖𝑗 +

1
𝑝𝑖 + 𝑞𝑗

(

−
𝑝𝑖
𝑞𝑗

)𝑛
𝑒𝜉𝑖+𝜂𝑖 . (12.8)

Since

𝜉𝑖 + 𝜂𝑖 =
(

1
𝑝𝑖

+ 1
𝑞𝑖

)

𝑥−1 + (𝑝𝑖 + 𝑞𝑖)𝑥1 + (𝑝2𝑖 − 𝑞
2
𝑖 )𝑥2 + 𝛾𝑖, (12.9)

here 𝛾𝑖 = 𝜉𝑖0 + 𝜂𝑖0, when we insert the 𝜏𝑛 determinant with matrix
lements (12.8) into the dimensional reduction Eq. (12.4), we see that
his equation would hold if parameters 𝑝𝑖 and 𝑞𝑖 satisfy the relation

𝑖 + 𝑞𝑖 =
1
𝑝𝑖

+ 1
𝑞𝑖
. (12.10)

One simple way to meet this relation is to constrain (𝑝𝑖, 𝑞𝑖) by

𝑞𝑖 =
1
𝑝𝑖
. (12.11)

After this dimension reduction, 𝑥−1 becomes irrelevant and can be set
to zero in the 𝜏𝑛 solutions (12.3).

From Eq. (12.6), we see that to obtain valid NLS solutions, we still
need to meet the complex conjugation conditions

𝜏∗0 = 𝜏0, 𝜏−1 = 𝜏∗1 . (12.12)

Since 𝑥1 = 𝑥 is real and 𝑥2 = i𝑡 pure imaginary, when we further impose
parameter conditions

𝑞𝑖 = 𝑝∗𝑖 , 𝜂𝑖0 = 𝜉∗𝑖0, (12.13)

we would get relations (10.7). Thus, complex conjugation conditions
(12.12) are satisfied.

Combining the complex-conjugation constraints (12.13) with the
dimensional-reduction constraint (12.11), we get

|𝑝 | = 1. (12.14)
𝑖

8

Fig. 11. (a) A NLS two-dark soliton |𝑢| in Eq. (12.15) with parameters (12.16). (b) A
NLS three-dark soliton |𝑢| in Eq. (12.15) with parameters (12.17).

To summarize, the defocusing NLS equation (2.13) (with 𝜖 = −1)
admits the following solutions

𝑢𝑁 (𝑥, 𝑡) = 𝜏1
𝜏0
𝑒−2i𝑡,

𝜏𝑛 = det1≤𝑖,𝑗≤𝑁
(

𝑚(𝑛)
𝑖,𝑗

)

,

𝑚(𝑛)
𝑖𝑗 = 𝛿𝑖𝑗 +

1
𝑝𝑖+𝑝∗𝑗

(

−𝑝𝑖𝑝𝑗
)𝑛 𝑒(𝑝𝑖+𝑝

∗
𝑖 )𝑥+(𝑝

2
𝑖 −𝑝

∗2
𝑖 )i𝑡+𝛾𝑖 ,

(12.15)

where |𝑝𝑖| = 1, and 𝛾𝑖 are free real constants. These solutions are dark
solitons.

As an example, we set

𝑁 = 2, 𝑝1 = 1, 𝑝2 = 𝑒i𝜋∕4, 𝛾1 = 𝛾2 = 0. (12.16)

he resulting two-dark soliton is plotted in Fig. 11(a). If we choose
= 3 and

1 = 1, 𝑝2 = 𝑒i𝜋∕4, 𝑝3 = 𝑒−i𝜋∕4, 𝛾1 = 𝛾2 = 0, 𝛾3 = 5, (12.17)

e would get a three-dark soliton as is shown in Fig. 11(b).
Following similar methods, one can derive dark solitons in the Man-

kov system (a two-component generalization of the NLS equation). In
his case, the extended KP hierarchy equations (3.4) and (3.6) need to
e further generalized to include one more independent variable as well
s its associated index for the 𝜏 function. See Ref. 11 for details.

3. Rogue waves in the focusing NLS equation

To derive rogue waves in the focusing NLS equation (2.13) (with
= 1), we choose Gram solutions (5.2) as

𝜏𝑛 = det1≤𝑖,𝑗≤𝑁
(

𝑚(𝑛)
𝑖𝑗

)

,

𝑚(𝑛)
𝑖𝑗 = ∫

𝑥1
𝜑(𝑛)
𝑖 𝜓

(𝑛)
𝑗 𝑑𝑥1,

𝜑(𝑛)
𝑖 = 𝐴𝑖𝜑(𝑛), 𝜓 (𝑛)

𝑗 = 𝐵𝑗𝜓 (𝑛),

𝜑(𝑛) = 𝑝𝑛𝑒𝜉 , 𝜓 (𝑛) = (−𝑞)−𝑛𝑒𝜂 ,

𝜉 = 1
𝑝𝑥−1 + 𝑝𝑥1 + 𝑝

2𝑥2,

𝜂 = 1
𝑞 𝑥−1 + 𝑞𝑥1 − 𝑞

2𝑥2,

(13.1)

here 𝐴𝑖 and 𝐵𝑗 are differential operators of order 𝑛𝑖 and 𝑚𝑗 as

𝑖 =
𝑛𝑖
∑

𝑘=0

𝑎𝑘
(𝑛𝑖 − 𝑘)!

(𝑝𝜕𝑝)𝑛𝑖−𝑘, 𝐵𝑗 =
𝑚𝑗
∑

𝑘=0

𝑏𝑘
(𝑚𝑗 − 𝑘)!

(𝑞𝜕𝑞)
𝑚𝑗−𝑘, (13.2)

nd 𝑎𝑘, 𝑏𝑘 are complex constants. It is easy to see that these 𝜑(𝑛)
𝑖 and

(𝑛)
𝑗 satisfy the linear partial differential equations in (5.2) for 𝑘 = −1, 1
nd 2. Thus, the above 𝜏𝑛 function satisfies the extended KP hierarchy
quations (3.4) and (3.6), i.e.,

(𝐷2
𝑥1

+𝐷𝑥2 ) 𝜏𝑛 ⋅ 𝜏𝑛+1 = 0,

𝐷𝑥1𝐷𝑥−1 𝜏𝑛 ⋅ 𝜏𝑛 = 2(𝜏𝑛𝜏𝑛 − 𝜏𝑛+1𝜏𝑛−1).
(13.3)

he elements 𝑚(𝑛)
𝑖𝑗 in the above 𝜏𝑛 function can be written out more

xplicitly as

(𝑛) = 𝐴𝑖𝐵𝑗

[

1
(

−
𝑝
)𝑛

𝑒𝜉+𝜂
]

. (13.4)
𝑖𝑗 𝑝 + 𝑞 𝑞
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Fig. 12. Two NLS rogue waves |𝑢| in Eq. (13.11) with parameters (13.12) and (a)
𝑎3 = −1∕12; (b) 𝑎3 = 5∕3.

Here, we do not introduce the 𝑐𝑖𝑗 constant into 𝑚(𝑛)
𝑖𝑗 for the same reason

as in Eq. (11.3) for DS rogue waves.
To reduce the three-dimensional bilinear equations (13.3) to the

two-dimensional NLS bilinear equations (2.15) with 𝜖 = 1, we also need
to perform a dimension reduction. In this case, we impose the condition

(

𝜕𝑥1 + 𝜕𝑥−1
)

𝜏𝑛 = 𝐶𝜏𝑛, (13.5)

where 𝐶 is a constant. Under this condition, we would have

𝐷𝑥1𝐷𝑥−1 𝜏𝑛 ⋅ 𝜏𝑛 = −𝐷2
𝑥1
𝜏𝑛 ⋅ 𝜏𝑛. (13.6)

Thus, Eqs. (13.3) would reduce to the NLS bilinear equations (2.15)
when we set 𝑥1 = 𝑥, 𝑥2 = i𝑡, 𝜖 = 1 (focusing NLS), and

𝑓 = 𝜏0, 𝑔 = 𝜏1, 𝑔∗ = 𝜏−1. (13.7)

To satisfy the dimension reduction condition (13.5), we set

𝑛𝑖 = 2𝑖 − 1, 𝑚𝑗 = 2𝑗 − 1, 𝑝 = 𝑞 = 1 (13.8)

in the 𝜏𝑛 function with elements (13.4). Under these parameter choices,
we can show after some algebra that4
(

𝜕𝑥1 + 𝜕𝑥−1
)

𝜏𝑛 = 4𝑁𝜏𝑛. (13.9)

Hence, the dimension-reduction condition (13.5) is met. After that, 𝑥−1
becomes irrelevant and can be set to zero.

Due to Eq. (13.7) and the requirement of 𝑓 being real in the bilinear
transformation (2.14), we also need to satisfy the complex conjugation
condition

𝜏∗0 = 𝜏0, 𝜏−1 = 𝜏∗1 . (13.10)

These conjugation conditions can be met by constraining parameters
(𝑎𝑘, 𝑏𝑘) as 𝑏𝑘 = 𝑎∗𝑘 in differential operators 𝐴𝑖 and 𝐵𝑗 .

To summarize, the focusing NLS equation (2.13) (with 𝜖 = 1) admits
the following rational solutions4

𝑢 = 𝜏1
𝜏0
𝑒2i𝑡,

𝜏𝑛 = det1≤𝑖,𝑗≤𝑁
(

𝑚(𝑛)
𝑖𝑗

)

,

𝑚(𝑛)
𝑖𝑗 = 𝐴𝑖𝐵𝑗

[

1
𝑝+𝑞

(

− 𝑝
𝑞

)𝑛
𝑒(𝑝+𝑞)𝑥+(𝑝2−𝑞2)i𝑡

]

𝑝=𝑞=1
,

𝐴𝑖 =
2𝑖−1
∑

𝑘=0

𝑎𝑘
(2𝑖 − 1 − 𝑘)!

(𝑝𝜕𝑝)2𝑖−1−𝑘,

𝐵𝑗 =
2𝑗−1
∑

𝑘=0

𝑎∗𝑘
(2𝑗 − 1 − 𝑘)!

(𝑞𝜕𝑞)2𝑗−1−𝑘,

(13.11)

where 𝑎𝑘 are free complex constants. These solutions are rogue waves.
For example, when we choose

𝑁 = 2, 𝑎0 = 1, 𝑎1 = 𝑎2 = 0, (13.12)

then two 2nd-order rogue waves with 𝑎3 = −1∕12 and 5∕3 are shown
in Fig. 12(a, b) respectively.
9

The rogue wave solutions in Eq. (13.11) are expressed through
differential operators. More explicit expressions through elementary
Schur polynomials can be derived by introducing the generator  of
differential operators (𝑝𝜕𝑝)𝑘(𝑞𝜕𝑞)𝑙 as

=
∞
∑

𝑘=0

∞
∑

𝑙=0

𝜅𝑘

𝑘!
𝜆𝑙

𝑙!
(𝑝𝜕𝑝)𝑘(𝑞𝜕𝑞)𝑙 ,

nd then using the identity

𝐹 (𝑝, 𝑞) = 𝐹 (𝑒𝜅𝑝, 𝑒𝜆𝑞), (13.13)

here 𝐹 (𝑝, 𝑞) is an arbitrary function. See Ref. 4 for details.
In rogue waves of Eq. (13.11), free parameters were introduced

hrough summations in differential operators 𝐴𝑖 and 𝐵𝑗 . A better way
f introducing free parameters was presented in Ref. 12, where 𝐴𝑖
nd 𝐵𝑗 contained a single differential term, and free parameters ap-
eared in exponentials. Under this latter parameterization, rogue wave
xpressions through Schur polynomials are much simpler.

4. Summary

In this article, we have introduced the KP-hierarchy reduction
ethod for solitons. Starting from bilinear forms of integrable equa-

ions and matching them to the KP hierarchy or its extension, then
sing Wronskian/Gram solutions of these hierarchies and performing
roper reductions such as dimension reduction and complex-
onjugation reduction, we have derived solitons, dark solitons, lumps
nd rogue waves in the KP, KdV, DS and NLS equations. Graphs of
he derived solutions are also illustrated. This KP-hierarchy reduction
ethod is a powerful technique and can be applied to any integrable

quation in principle.
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