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ABSTRACT

Direction of Arrival (DOA) estimation is widely applied in acoustic
source localization. A multi-frequency model is suitable for charac-
terizing the broadband structure in acoustic signals. In this work, we
solve the continuous (gridless) line spectrum estimation problem by
incorporating the multi-frequency model into an atomic norm min-
imization (ANM) framework. We show that our ANM problem is
equivalent to a semi-definite program (SDP) which can be solved
by an off-the-shelf SDP solver. We also provide the dual certificate
that can certify the optimality of the SDP solution, and we localize
the sources by finding the peaks of the norm of the dual polynomial.
Numerical results support our theoretical findings and demonstrate
the effectiveness of the method.

Index Terms— Atomic norm minimization, DOA estimation,
multi-frequency model, semi-definite programming, trigonometric
polynomials

1. INTRODUCTION

Direction of Arrival (DOA) estimation is an important topic in ar-
ray processing, with a wide range of applications in wireless com-
munications, sensor networks, and speech communication. Conven-
tional DOA estimation methods assume a narrowband signal model,
and they are successful for narrowband signals (e.g., radar signals)
whose bandwidths are significantly less than the central frequency.
However, the narrowband assumption may not be valid in acoustic
localization scenarios since acoustic signals are typically broadband.
Therefore, for such scenarios it is necessary to consider a multi-
frequency model that decomposes the broadband signal into multiple
narrowband signals. Multi-frequency models have been widely ap-
plied in acoustic source localization [1–3] when the signal contains
a wide range of frequency bins and cannot be characterized by a nar-
rowband model. Grid-based sparse localization approaches for the
multi-frequency model have been proposed [2–6] for robustness and
aliasing suppression. However, these methods assume that the true
DOAs lie on a finite set of grid points, and their performance may
degrade if the DOAs fall off the grid.

To overcome the grid mismatch problem, atomic norm mini-
mization (ANM) methods that work on continuous (gridless) dictio-
naries have been proposed in a variety of contexts [7–18]. ANM ex-
tends grid-based `1 norm minimization to the continuous setting and
is commonly applied to solve the line spectrum estimation problem
for signals that are sparse in the temporal frequency domain. As is
well known, narrowband DOA estimation problems can be mapped
into an equivalent problem, where the cosine of each source’s DOA
maps to a single temporal frequency.

The authors in the pioneering ANM paper [7] worked directly
with the continuous (temporal) frequency estimation problem and

considered the complete data case. As long as the temporal fre-
quency separation was greater than the minimum separation, exact
recovery of the active temporal frequencies was guaranteed. Fur-
thermore, a semidefinite programming (SDP) framework that char-
acterized the ANM problem was presented. Inspired by [7], the au-
thors in [8] studied the continuous temporal frequency estimation
based on randomly sampled data for the single measurement vec-
tor (SMV) case. The minimum separation condition was relaxed
in [11]. ANM for multiple measurement vectors (MMVs) was stud-
ied in [10,13]. In [12], the author considered a super-resolution prob-
lem that had a similar setup to [7] except that the point spread func-
tion was assumed to be unknown. Based on the assumption that the
point spread function was stationary and lived in a known subspace,
the lifting trick was applied, and the problem was formulated using
ANM. The model was generalized to non-stationary point spread
functions in [14]. The sample complexity of modal analysis with
random temporal compression was established in [15]. ANM for 2D
temporal frequency estimation was studied in [9]. In [16], the au-
thors proposed a reweighted ANM framework, which can enhance
the sparsity and achieve super-resolution. ANM was also recently
applied in digital beamforming [19], adaptive interference cancella-
tion [20], time-varying channel estimation [21], denoising [22, 23],
and blind demodulation [24,25]. We refer readers to [26] for a com-
prehensive overview of ANM and its applications. However, all of
these prior works implicitly used a narrowband signal assumption
and are not appropriate to broadband DOA estimation.

In this paper, we consider the continuous (gridless) line spec-
trum estimation problem under the multi-frequency model. It turns
out that this problem can be reformulated as a certain continuous
ANM problem so that super-resolution can be achieved. This ANM
problem can be further characterized by a trigonometric polyno-
mial problem that was extensively discussed in [27]. By apply-
ing the bounded real lemma for vector trigonometric polynomials
in [27], we equivalently formulate our ANM problem as an SDP
problem that can be solved by an off-the-shelf SDP solver (such as
CVX [28]). In addition, we provide the dual certificate that certi-
fies the optimality of the atomic decomposition. Numerical results
support our theory and demonstrate the effectiveness of the method.

2. SIGNAL MODEL

We make the following assumptions for the signal model:

1. There are Nm sensors forming a uniform linear array (ULA)
with array spacing d.

2. There are K active sources impinging on the array from un-
known directions of arrival (DOAs) θ.

3. Each source has Nf active temporal frequency components,
each at a multiple of a fundamental frequency f0, i.e., f ∈
{1, 2, . . . , Nf} and ff0 ∈ {f0, 2f0, . . . , Nff0}.
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4. We suppose 2πf0d
c
≤ π or d ≤ c

2f0
holds, where c is the

speed of propagation. Note that this is only a technical as-
sumption for simplifying the theoretical analysis and it is not
required in the practical applications. We also notice that
this is the maximum separation for the fundamental frequency
to avoid grating lobe (aliasing). For higher frequencies (i.e.
f ≥ 2), the grating lobe will still exist. This gives the multi-
frequency DOA problem an interesting structure in that the
data at each higher frequency is aliased; such aliasing is not
considered in conventional narrowband ANM papers.

Based on the above assumptions, we absorb the constant pa-
rameters d, f0, and c into a scaled DOA parameter w = w(θ) :=
2πf0d cos(θ)

c
∈ [−π, π]. We often refer to w simply as the DOA.

For each frequency index f ∈ {1, 2, . . . , Nf}, let yf ∈ CNm

denote the received signal across the Nm sensors. Stacking all of
these into a matrix, the full set of received data is denoted by Y :=
[y1 . . .yNf ] ∈ CNm×Nf . Summing over the K active DOAs, gives

Y =
∑
w

[xw(1)a(1, w) . . . xw(Nf )a(Nf , w)], (1)

where a(f, w) := 1√
Nm

[1 . . . e−jwf(Nm−1)]T = 1√
Nm

[zf ·0 . . .

zf ·(Nm−1)]T ∈ CNm is the (normalized) array manifold vector
(steering vector) corresponding to frequency bin f and DOA w, and
xw(f) is the signal amplitude for the f -th frequency bin (z is de-
fined as e−jw). Our goal is to identify the K active DOAs w from
the data matrix Y appearing in (1).

Define a matrix X ∈ CNm×Nf as follows

X :=
∑
w

cwA(w) � xTw, (2)

where A(w) := [a(1, w) . . .a(Nf , w)] ∈ CNm×Nf and xw :=
[xw(1) . . . xw(Nf )]T ∈ CNf . Without loss of generality, ‖xw‖2 =
1 is assumed and the coefficient cw is used to absorb any other scal-
ing of the amplitude vector. In (2), � is the operator defined as
[A � bT ] := [a1b(1) . . .aNf b(Nf )] ∈ CNm×Nf where A =

[a1 . . .aNf ] ∈ CNm×Nf , and b = [b(1) . . . b(Nf )]T ∈ CNf . Fi-
nally, we define the identity operator L : CNm×Nf → CNm×Nf

such that Y = L(X).

3. METHODOLOGY

3.1. Atomic Norm Minimization

To efficiently represent tensors of the form (2), we define the follow-
ing atomic set (d = c

2f0
is assumed here, and this assumption will

be relaxed to d ≤ c
2f0

in the later discussions):

A := {A(w) � xTw : w ∈ [−π, π],xw ∈ CNf , ‖xw‖2 = 1}. (3)

From (2), X is a sparse combination of K atoms from A since only
a few directions have active sources. ANM provides a framework for
identifying such sparse combinations in continuously parameterized
dictionaries. In our case, the dictionaryA parameterized by the con-
tinuous DOA w. Thus, by applying ANM on Y = L(X), grid-free
source localization can be achieved.

We propose the following ANM-based optimization framework:

min
X

‖X‖A s.t. Y = L(X), (4)

where the atomic norm is defined as ‖X‖A := inf{t ≥ 0|X ∈
t · conv(A)} = {

∑
w cw|X =

∑
w cwA(w) � xTw, cw ≥ 0}. Based

on the definition of the dual norm, we express ‖X‖A in terms of the
dual atomic norm ‖Q‖∗A as follows

‖X‖A := sup
‖Q‖∗A≤1

〈Q,X〉R = sup
‖Q‖∗A≤1

〈L(Q),L(X)〉R

= sup
‖Q‖∗A≤1

〈L(Q),Y〉R.
(5)

Now, we consider the constraint ‖Q‖∗A ≤ 1 (note that ‖xw‖2 = 1
will be used in the following derivation, and Q := [q1 . . .qNf ] ∈
CNm×Nf is the dual variable):

‖Q‖∗A := sup
‖X‖A≤1

〈Q,X〉R = sup
xw
w

〈Q,A(w) � xTw〉R

= sup
xw(f)
w

Nf∑
f=1

〈qf , xw(f)a(f, w)〉R

= sup
xw(f)
w

Re(

Nf∑
f=1

xw(f)qHf a(f, w))

(a)
= sup

xw
w

Re(xHwψ(Q,a(w))) = sup
xw
w

|xHwψ(Q,a(w))|

(b)
= sup

w
‖ψ(Q,a(w))‖2

(c)
= sup

w∈[−π,π]
σmax(h(w)) ≤ 1,

(6)

where (a) follows by the definition ψ(Q,a(w)) := [qH1 a(1, w)
. . .qHNf

a(Nf , w)]T ∈ CNf (this is called the dual polynomial
[7], [8]), and (b) follows from the definition of the operator norm.
For (c), we define the vector polynomial h(w) as follows. Each
entry of ψ(Q,a(w)) is the inner product between a slice of Q
and an array manifold vector with different parameters, which
serves as an obstacle for us to find an efficient polynomial rep-
resentation. To overcome this challenge, we define ã(w) :=
1√
N

[1 e−jw1 . . . e−jwNf (Nm−1)]T ∈ CN , whereN := Nf (Nm−
1) + 1. Then there exists a coefficient vector uf ∈ CN (a zero-
padded version of qf ) such that uHf ã(w) = qHf a(f, w) ∀f ∈
{1, . . . , Nf}. Hence,

ψ(Q,a(w)) := [qH1 a(1, w) . . .qHNf
a(Nf , w)]T

=

 uH1
...

uHNf

 ã(w) = Hã(w) := h(w),
(7)

where the last line follows by defining H := [u1 . . .uNf ]H

∈ CNf×N . Denoting the columns of H as H := [h0 . . .hN−1],
we have h(w) =

∑N−1
k=0 hke

−jwk =
∑N−1
k=0 hkz

k. Stacking these
columns, we define H̄ := [hT0 . . .h

T
N−1]T ∈ CN·Nf . Finally,

inspired by [27], we have the following proposition.

Proposition 3.1 Let h(w) be as defined in (7). Then ‖Q‖∗A =
supw∈[−π,π] σmax(h(w)) ≤ 1 holds if and only if there exists a
matrix Q0 ∈ CN×N � 0 such that

N−k∑
i=1

Qi,i+k = δk =

{
1, k = 0,

0, k = 1, . . . , N − 1,
(8)

and such that [
Q0 Ĥ

ĤH INf

]
� 0. (9)
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Proof Construct the Hermitian trigonometric polynomial R(w) :=
1−HH(w)H(w). Note hH(w)h(w) = ‖h(w)‖22 = σ2

max(h(w)).
Therefore, R(w) ≥ 0 if and only if σmax(h(w)) ≤ 1.

Now we consider the condition forR(w) ≥ 0. DefineR0(w) =
1 andR1(w) = hH(w)h(w), thusR(w) = R0(w)−R1(w). Based
on Lemma 4.25 in [27], R0(w) ≥ R1(w) if and and only if Q0 �
Q1, where Q0 ∈ CN×N and Q1 ∈ CN×N are Gram matrices
associated with R0(w) and R1(w), respectively.

We further observe h(w) = [h0 . . .hN−1][z0 . . . zN−1]T =

ĤH [z0 . . . zN−1]T := ĤHz. Then, the Gram matrix representation
of R1(w) can be obtained as follows

R1(w) = hH(w)h(w) = zHĤĤHz. (10)

Hence, Q1 = ĤĤH is the Gram matrix associated with R1(w).
Since Q0 � Q1, we have Q0 � ĤĤH . Based on Schur comple-
ment condition, (9) will be hold.

On the other hand, based on the Gram matrix representation of
R0(w) = zHQ0z, we have

1 = R0(w) = Tr(R0(w)) = Tr(zHQ0z) = Tr(zzHQ0).
(11)

Since zzH =
∑N−1
k=−(N−1) Θkz

−k (Θk ∈ RN×N is the matrix
such that all non-zero entries only lie in the k-th diagonoal), then

1 = R0(w) = Tr(

N−1∑
k=−(N−1)

ΘkQ0z
−k). (12)

To ensure (12) is satisfied, (8) needs to be held. This completes the
proof. �

3.2. Equivalent SDP

From Proposition 3.1 and (5)-(6) , we have the following SDP that
is equivalent to (4):

max
Q,Q0

〈L(Q),Y〉R

s.t.

[
Q0 Ĥ

ĤH INf

]
� 0

N−k∑
i=1

Qi,i+k = δk.

(13)

3.3. Dual Certificate

The dual polynomial ψ(Q,a(w)) that was introduced in (7) serves
as a certificate for the optimality of (4). Specifically, we have the
following theorem.

Theorem 3.2 Let W denote a collection of source directions w;
its cardinality |W| equals the number of sources. Then X =∑
w∈W cwA(w) � xTw (‖xw‖2 = 1) is the unique atomic de-

composition such that ‖X‖A =
∑
w∈W |cw| if the following two

conditions are satisfied:
(1) There exists Q such that the dual polynomial ψ(Q,a(w)) satis-
fies {

ψ(Q,a(w)) = sign(c∗w)xw ∀w ∈ W
‖ψ(Q,a(w))‖2 < 1 ∀w /∈ W,

(14)

where sign(c∗w) :=
c∗w
|c∗w|

.

(2) {A(w) � xTw : w ∈ W} is a linearly independent set.

Proof First, notice that if (14) is satisfied, based on (6), we have
‖Q‖∗A ≤ 1. Then,

‖X‖A ≥ ‖X‖A · ‖Q‖∗A
(a)
≥ 〈Q,X〉R

= 〈Q,
∑
w∈W

cwA(w) � xTw〉R =
∑
w∈W

Re[cw〈Q,A(w) � xTw〉]

=
∑
w∈W

Nf∑
f=1

Re[cw〈qf , xw(f)a(f, w)〉]

=
∑
w∈W

Re[cw〈xw, ψ(Q,a(w))〉]

(b)
=
∑
w∈W

Re[cw · sign(c∗w)‖xw‖22] =
∑
w∈W

|cw|
(c)
≥ ‖X‖A,

(15)
where (a) is based on Hölder’s inequality [29], (b) follows because
if w ∈ W , then ψ(Q,a(w)) = sign(c∗w)xw based on (14), and (c)
follows from the definition of the atomic norm. Hence, ‖X‖A =
〈Q,X〉R =

∑
w∈W |cw|.

For the uniqueness, suppose there exists another decomposition
X =

∑
w′ cw′A(w′) � xTw′ which satisfies ‖X‖A =

∑
w′ |cw′ |.

There must exist w′ /∈ W contributing to X due to the mutual lin-
ear independence for the atoms. Therefore, we have the following
contradiction:∑
w′

|cw′ | = ‖X‖A = 〈Q,X〉R = 〈Q,
∑
w

cw′A(w′) � xTw′〉R

=
∑
w′

Re[cw′〈xw′ , ψ(Q,a(w′))〉]

=
∑
w′∈W

Re[cw′〈xw′ , ψ(Q,a(w′))〉] +
∑
w′ /∈W

Re[cw′〈xw′ , ψ(Q,a(w′))〉]

(a)
<
∑
w′∈W

|cw′ |+
∑
w′ /∈W

|cw′ | =
∑
w′

|cw′ |,

(16)
where (a) is because of (14). Therefore, the atomic decomposition
which satisfies ‖X‖A =

∑
w∈W |cw| must be unique. �

Remark 2 This theorem indicates that as long as (14) and the linear
independence condition are satisfied, the optimality of the atomic
decomposition is guaranteed. In (14), we have ‖ψ(Q,a(w))‖2 = 1
for w ∈ W and ‖ψ(Q,a(w))‖2 < 1 for w /∈ W . Therefore,
‖ψ(Q,a(w))‖2 will achieve the maximum value at the ground-
truth DOAs. To localize the DOAs, we only need to find a collection
of w associated with the peaks of ‖ψ(Q,a(w))‖2. By solving
((13) via CVX [28], we can obtain Q. By using the dual solution
Q to construct the dual polynomial ψ(Q,a(w)) based on (7), we
can evaluate the `2 norm of ψ(Q,a(w)) for arbitrary DOA w and
localize the sources with the maximum `2 norm.
Remark 3 The aliasing present in the multi-frequency measure-
ments makes further analysis of the vector-valued dual polynomial
challenging, since for each f ≥ 2, row f of ψ(Q,a(w)) is necessar-
ily periodic inw with period 2π/f . We are exploring this interesting
structure in our ongoing analysis.

4. NUMERICAL EXAMPLES

We supposeK = 3 incoherent sources have DOAs θ = 80.4◦, 88.6◦,
and 92.5◦ (90◦ is considered broadside). Assume c = 340 m/s,
f0 = 100 Hz, a uniform linear array with Nm = 12 sensors and
spacing d = c

2f0
, and no noise is present. The number of frequency
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Fig. 1. The `2 norm of the dual polynomial vector for (a) Nf = 1
(only 100 Hz is used) and (b) Nf = 5 ({100, 200, 300, 400, 500}
Hz are all used). K = 3, θ = {80.4◦, 88.6◦, 92.5◦}, Nm = 12,
f0 = 100 Hz, d = c

2f0
, and xw ∼ CN (0, 1). No noise is present.

bins Nf = 5 and the (temporal) frequencies of the sources are
{100, 200, 300, 400, 500} Hz. The amplitude vectors xw of the
3 sources are randomly generated with standard complex normal
distribution CN (0, 1) and then normalized so that ‖xw‖2 = 1.
All cw = 1. We solve (13) by CVX [28] and construct the dual
polynomial as (7). The peaks of the norm of the dual polynomial in
Fig. 1(b) exactly capture the source locations.

The recovery of the amplitude vector xw is considered in Fig. 2.
In (14), since cw = 1, the dual polynomial evaluated in the ground-
truth DOAs should exactly capture xw. We plot the (modulus) dual
polynomial for the 3 sources under each frequency and the power for
each source at the estimated DOAs. This verifies Theorem 3.2 and
indicates the dual polynomial can be used to estimate xw.

We also study the effects of the number of frequency bins Nf ,
on the DOA estimation. For the above setup, we consider the `2
norm of the dual polynomial forNf = 1 (only 100 Hz) andNf = 5
(5 frequencies are used), respectively (see Fig. 1). When Nf = 1,
we see both false positives and false negatives. In contrast, when
Nf = 5, the peaks exactly capture the DOAs. When Nf = 1,
although there is no aliasing in the data, the dual polynomial fails to
capture the sources since the sources are not well-separated. When
Nf = 5, the multi-frequency data contains aliasing, however, since
this aliasing occurs at a different multiple for each frequency f , the
norm of the dual polynomial vector can be used for localizing the
sources. This demonstrates the benefits of multi-frequency ANM.

The root mean square error (RMSE) of the DOAs versus Nf is
evaluated in Fig. 3. In this noise-free example, Nm = 9 and there
are K = 3 or 6 sources with DOAs uniformly generated from a 1◦

angular grid between [0◦, 180◦] with at least 15◦ separation between
DOAs. c, f0, and d are as previous example. The amplitude xw has
identical entries (each entry is 1/

√
Nf ). Nf varies from 1 to 6 and

the frequencies are {1 ·100, . . . , Nf ·100} Hz. 100 Monte Carlo tri-
als are averaged, and in each trial the DOAs are different. The RMSE

for each trial is computed as
√

1
K

∑K
k=1(θ̂km − θkm)2, where θ̂,

and θ are sorted estimated DOAs, and sorted ground-truth DOAs.
We compare the RMSE with multi-frequency sparse Bayesian learn-
ing (SBL) [6] with 1◦ angular grid. Therefore, there is no grid
mismatch for SBL. From Fig. 3 (b), both methods improve as Nf
increases due to the presence of more data. The improvement for
ANM is partially due to the coherent structure originating from the
identical entries in xw. The identical entries in xw allow the dual
polynomial to satisfy (14) even for aliasing cases, while for other
arbitrary xw, (14) is typically violated. Based on Theorem 3.2, the

0

0.5

1

A
m

pl
itu

de

100 200 300 400 500

Estimated
Ground-truth

0

0.5

1

100 200 300 400 500

Frequency (Hz)

Estimated
Ground-truth

0

0.5

1

A
m

pl
itu

de

100 200 300 400 500

Frequency (Hz)

Estimated
Ground-truth

0

0.5

1

S
ou

rc
e 

po
w

er

75 80 85 90 95 100

DOA (°)

Estimated
Ground-truth

(a) (b)

(c) (d)

Fig. 2. (a)–(c): Recovery performance of the modulus of xw for the
three sources; (d) Source power estimation from the dual polynomial
evaluated at the estimated DOAs. Same setup as Fig. 1 (b).
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Fig. 3. RMSE (◦) versus Nf for randomly generated DOAs with at
least 15◦ separation. K = 3 (a) or 6 (b), Nm = 9, Nf = {1, ..., 6},
MC = 100, and xw has uniform entries. c, f0, and d are the same
as Fig. 1. No noise is present.

algorithm is guaranteed to succeed if (14) is satisfied, thus ANM can
perfectly resolve all sources if xw has identical entries.

5. CONCLUSION

In this paper, we adapt the ANM framework to the multi-frequency
model so that it can support continuous parameter estimation. The
ANM is reformulated as an SDP problem based on the bounded real
lemma so that the ANM becomes a computationally tractable prob-
lem. The dual certificate is also given, which makes it possible to
localize the sources by finding the positions of peaks in the norm of
the dual polynomial. Numerical results support our theory and show
the effectiveness of the method. Additional analysis will be included
in our future paper.
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