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Abstract

Recent work of Shareshian and Wachs, Brosnan and Chow, and Guay-Paquet connects
the well-known Stanley—Stembridge conjecture in combinatorics to the dot action of
the symmetric group S, on the cohomology rings H*(Hess (S, h)) of regular semisim-
ple Hessenberg varieties. In particular, in order to prove the Stanley—Stembridge
conjecture, it suffices to construct (for any Hessenberg function /) a permutation
basis of H*(Hess(S, h)) whose elements have stabilizers isomorphic to Young sub-
groups. In this manuscript, we give several results which contribute toward this goal.
Specifically, in some special cases, we give a new, purely combinatorial construc-
tion of classes in the T-equivariant cohomology ring Hj (Hess(S, h)) which form
permutation bases for subrepresentations in HJ (Hess(S, h)). Moreover, from the
definition of our classes it follows that the stabilizers are isomorphic to Young sub-
groups. Our constructions use a presentation of the 7T'-equivariant cohomology rings
HY (Hess (S, h)) due to Goresky, Kottwitz, and MacPherson. The constructions pre-
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sented in this manuscript generalize past work of Abe—Horiguchi-Masuda, Chow, and
Cho-Hong-Lee.
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conjecture
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1 Introduction

Hessenberg varieties (in Lie type A) are subvarieties of the full flag variety Fags(C")
of nested sequences of linear subspaces in C". Research concerning Hessenberg
varieties lies in a fruitful intersection of algebraic geometry, combinatorics, and rep-
resentation theory, and they have been studied extensively since the late 1980s. These
varieties are parameterized by a choice of linear operator S € gl(n, C) and non-
decreasing function & : [n] — [n], where [n] := {1, 2, ..., n}, called a Hessenberg
function. When S is a regular semisimple element and /(i) > i for all i, Hess(S, h)
is called a regular semisimple Hessenberg variety.

The dot action of the symmetric group S, on the cohomology' rings H* (Hess (S, h))
of regular semisimple Hessenberg varieties, defined by the third author in [18], has
received considerable recent attention due to its connection to the well-known Stanley—
Stembridge conjecture in combinatorics. This conjecture states that the chromatic
symmetric function of the incomparability graph of a (3 + 1)-free poset is e-positive,
i.e., it is a non-negative linear combination of elementary symmetric functions. The
Stanley—Stembridge conjecture is a well-known conjecture in the field of algebraic
combinatorics and is related, for example, to various other deep conjectures about
immanants [15]. The relationship between the Stanley—Stembridge conjecture and
Hessenberg varieties was made apparent some years ago by work of Shareshian and
Wachs [16], Brosnan and Chow [5], and Guay-Paquet [11]. We refer the reader to
[12] for a leisurely exposition of the history; for the purposes of this manuscript we
restrict ourselves to recalling that, in order to prove the Stanley—Stembridge conjec-
ture from the point of view of Hessenberg varieties, it suffices to construct a basis of
H*(Hess(S, h)) that is permuted by the dot action (i.e., a permutation basis) and such
that the stabilizer of each element is a subgroup of S, generated by reflections. This
problem has motivated much research in the field of Hessenberg varieties in the last
few years.

In this manuscript, we tackle this problem by using techniques that are available in
T -equivariant cohomology and not ordinary cohomology. We exploit general proper-
ties of equivariant cohomology and of the 7T-action on Hess (S, k), which in particular
imply any free Hj (pt)-module basis of HJ (Hess(S, h)) projects to a C-basis of
H*(Hess (S, h)) under the natural projection. The definition of the dot action in [18]
used this same philosophy, defining an action on H7(Hess(S, h)) and then inducing

! In this paper, we focus exclusively on cohomology rings with coefficients in C. We will omit the notation
of coefficients in our cohomology rings for this reason.

@ Springer



La Matematica _########HHHH####HHHH#E Page3of 54  _####_

an action on ordinary cohomology by this same projection. Similarly, our strategy is
to first construct a H7 (pt)-module basis for H} (Hess(S, h)) which is permuted by
the dot action, and then project it to ordinary cohomology. Since this construction of
the basis is consistent with the construction of the dot action on H}“ (Hess(S, h)) and
H*(Hess(S, h)), a set that is permuted by the dot action in equivariant cohomology
projects to a set that is permuted also in ordinary cohomology. Section 2.4 contains
a more leisurely account of this approach toward the Stanley—Stembridge conjecture,
including an explicit formulation of what we call the “permutation basis program.”

Our goal in this manuscript is to take preliminary steps toward the construction of
a permutation basis of H*(Hess(S, h)) in the following sense. We explicitly con-
struct collections of cohomology classes in Hj (Hess(S, h)) which are permuted
by the dot action, are Hj (pt)-linearly independent, and whose stabilizer groups
are reflection subgroups. From this it follows that these classes form a permutation
basis of the subrepresentation in H;ﬁ (Hess (S, h)) which they span. Moreover, we
can identify explicitly this subrepresentation in terms of permutation representations
M* = indgz (1) for appropriate partitions A and Young subgroups S; of S,,. Thus, our
results can be viewed as achieving some progress toward the larger goal of building a
full H; (pt)-module permutation basis of H; (Hess (S, h)), with point stabilizers iso-
morphic to Young subgroups—which would in turn resolve the Stanley—Stembridge
conjecture.

One important subtlety is that we consider equivariant cohomology as a module
over a polynomial ring and not as a complex vector space. This means that, when we
equip equivariant cohomology with the structure of a (twisted) representation of the
finite group S,, a submodule which is stable under the representation may not be a
direct summand. For instance, with the standard action of the permutation group S» on
Clt1, t2], the symmetric polynomial 7] +1, generates a C[¢1, f,]-subrepresentation that
cannot be written as a direct summand of C[¢1, #]. Thus, although this manuscript
constructs a linearly independent set of vectors in Hj (Hess(S, h)) which are per-
muted by the dot action and have stabilizer equal to a Young subgroup, it is not a priori
guaranteed that our set can be extended to a full permutation basis. Another subtlety
is that the H7 (pt)-linear independence of our sets of permuted vectors does not nec-
essarily imply that their projections to H*(Hess (S, h)) are still linearly independent.
Together, these subtleties mean that the open question remains, whether we can indeed
extend our linearly independent sets in this manuscript to a full permuted basis. (See
Sect. 2.4 for more.) This is a question for future work.

We now summarize the results within this manuscript in a rough form. Our
main technical tool is the Goresky—Kottwitz—MacPherson (GKM) theory of T'-
equivariant cohomology. Here, we consider the maximal torus 7' of diagonal matrices
in GL(n,C) and the natural T-action on Hess(S, h) € Flags(C") induced from
the action of GL(n,C) on Flags(C") = GL(n,C)/B by left multiplication.
GKM theory describes explicitly and combinatorially the T-equivariant cohomol-
ogy H7(Hess(S, h)) as a collection of lists of polynomials—one polynomial for
each permutation w € S,—which satisfy compatibility conditions (see (2.4)); see
[18] for details. While the explicit combinatorial nature of the GKM description of
HJ (Hess (S, h)) is convenient for many purposes, it is worth pointing out that the
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question of building permutation bases in the language of GKM theory poses its own
computational challenges. This is because the dot action exchanges polynomials asso-
ciated to different permutations w € S,,, and this complicates the analysis of the linear
independence of orbits under the dot action. Nevertheless, in some special cases we
are able to overcome these obstacles, as we now explain.

Our first results give purely combinatorial constructions of well-defined GKM
classes in Hj (Hess(S, h)). We begin by formalizing a statement which is well
known to experts but which (to our knowledge) has not been recorded in the lit-
erature in this generality. Let A = (A1, A2, ..., A¢) be a composition of n and S
denote the associated Young subgroup, generated by the set of simple reflections
{sili¢{r, \1+Ar2,...,A1+A2+---+Ae—1}}. Let vy be the permutation obtained
by taking the longest permutation wo = [n,n — 1, ..., 2, 1]in S, and re-ordering the
values {1,2, ..., ML {A1+ 1, ..., A+ A0 ..., M +A+ -+ A1+ 1, ..., 1}
to be increasing. Recall that v, is the unique maximal element with respect to Bruhat
order in the set of shortest coset representatives for S, \S,. Now define a function

© S, = Clny, ..., 1] by

Fiw) = l_[fj—l‘jEN;(U)L)(tw(i) —tw(j)) if w = yv;, forsomey € S
0 otherwise

where N, (vy) :={t; —t; | i > j and v (i) < va(j) and i < h(j)}. Then itis well

known among experts that f; € H;‘N n (0] (Hess (S, h)) is a well-defined equivariant

cohomology class.

The above construction yields 7-equivariant cohomology classes which have the
special property that their support set (i.e., the permutations w € S, on which
fr.(w) # 0) is the single coset of the Young subgroup S; containing the maximal
coset representative v,. Thus, we call these “top-coset classes.” Moreover, it is not
difficult to see that the orbit under the dot action of these “top-coset classes” is H7.(pt)-
linearly independent. Specifically, for f; the top-coset GKM class defined above, the
Sp-orbit of fj under the dot action

{w- filwe S}

is H7 (pt)-linearly independent. Furthermore, the H (pt)-subrepresentation of H7
(Hess(S, h)) spanned by this set in Hj (Hess (S, h)) is an S,-subrepresentation with

the same character as the S),-representation indgz (1) ~ MP® where P(1) is the
partition of n obtained from A by rearranging the parts in decreasing order. We explain
these facts in some detail in Sect. 3.

As mentioned above, even in cases for which the Stanley—Stembridge conjec-
ture is known to hold, constructing an explicit basis for the free H7 (pt)-module
HZ (Hess (S, h)) which is permuted by the dot action remains difficult. Progress has
been made in two special cases. The first is 4 = (h(l),n, ..., n), studied by Abe,
Horiguchi, and Masuda in [1] and the second is h = (2,3, ..., n,n) where Cho,
Hong, and Lee [6] recently proved a conjecture of Chow [7] which gave an explicit
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permutation basis in this special case. In each of these settings, the authors use the
top-coset construction outlined above.

In order to make progress on the construction of a permutation basis in the general
case we need recipes for constructing classes that have support on more than one
coset. Our first main result takes a step in this direction, in the special case when the
composition has two parts. This is a natural first case to consider, as the Stanley—
Stembridge conjecture is known to be true in the so-called “abelian case,” and in that
setting, the permutation representations occurring as summands of the dot action are
either trivial or correspond to partitions of n with exactly two parts (see [12]). We have
the following; for precise definitions see Sect. 4.

Theorem 1 (Theorem 4.8) Let h : [n] — [n] be a Hessenberg function and ) =
(A1, A2) a composition of n. Let 0 < k < Aa. If A1 > 1 then we additionally assume
that h(k + 2) = n. Let vi denote the permutation whose one-line notation is given
in(4.4) in Sect. 4 and let S := {t; — t; | i < j and v ' (i) > v '(j) and v (i) <
h(vk_l(j))}. Then the function f)fk) 0 S, — Cl1, ..., t,] defined by

@, e v = tyw)  ifv = vk, y €S2
S Ov) = {O otherwise

is a well-defined equivariant cohomology class in H%lsk‘ (Hess (S, h)).

We recover the top-coset classes from the construction above in the special case
where k = Ay (since vy = v, and 8 = v (N, (v;)) in that case). When k < A,
our classes are supported on a union of right cosets and we can give (Lemma 4.10)
a concrete description of their support and the support of any element in the S,-orbit

of f;k) under the dot action. Since these support sets consist of unions of more than

one coset in general, proving that the S, -orbit of f)fk) is HJ.(pt)-linearly independent

becomes more difficult. However, we do obtain a linear independence result analogous
to the top-coset case mentioned above in the case where k = Ay — 1, under some
additional hypotheses on the Hessenberg function /. Roughly, the result is as follows;
see Theorem 5.1 for the precise statement.

Theorem 2 (Theorem 5.1) Let h : [n] — [n] a Hessenberg function. Let A = (A1, 12)
be a composition of n such that h(1) < Ap. If .1 > 1, we place additional assumptions
on the Hessenberg function h as in Theorem 5.1 below. Then

(1) the Sy,-orbit of f)f)‘z_l) is H7 (pt)-linearly independent, and
(2) the stabilizer of each element in the S,,-orbit is conjugate to the Young subgroup
S)..

In particular, the HJ.(pt)-submodule of H} (Hess(S, h)) spanned by the S,-orbit of

. k(szl) is an S,-subrepresentation with the same character as Indgz 1) ~ MPW),

where P()) is the partition of n obtained from A by rearranging the parts to be in
decreasing order.

Finally, we address the question of combining the permutation bases obtained above
to form a permutation basis of a larger subrepresentation. Considering such unions is
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essential since a permutation basis for H7 (Hess (S, h)) will generally consist of a col-

lection of permutation bases, one for each induced permutation representation indgi 1)
contained in H (Hess(S, h)), where the union of all such bases is still H (pt)-linearly
independent. As in the case of a single permutation representation, however, proving
the linear independence of such unions of classes can be technically difficult. Neverthe-
less, we are able to prove the linear independence of a union of two such permutation
bases in the special case of A = (1, n — 1). A rough statement is as follows; for the
precise statement see Theorem 6.2.

Theorem 3 (Theorem 6.2) Let A = (1, n — 1) and assume h is a Hessenberg function
such that h(1) < n — 1, deg A(n_l) = deg fk("_z), and h(i) > i for all i. Then the
union of the S,-orbits off)fnfl) and f;"iz), i.e., the set

fw- £V we S Ufw- 7P | we S,

is H7 (pt)-linearly independent. In particular, the H7.(pt)-submodule of H} (Hess (S,
h)) spanned by this union of Sy-orbits is an S,,-subrepresentation isomorphic to the
direct sum of two copies of the permutation representation with same character as
Ind§’ (1) = M@0,

Example 6.4 below presents an application of our theorem in the case thath = (n —
2,n—1,n,...,n). Although we do not have a complete description of a permutation
basis for H}‘ (Hess (S, h)) in that case, our results do yield a basis for the two copies
of M~ of minimal degree that do occur. Our example also motivates a statement
of a natural follow-up problem which we give in Problem 6.5.

The advantage of the construction from Theorem 1 is that we obtain explicit combi-
natorial formulas for the equivariant classes, their support sets, and a clear description
of the dot action on each fk(k) . Itis worth emphasizing that this kind of information can
be quite difficult to obtain when the classes are defined geometrically. Moreover, it is
this information that gives us the leverage needed to prove the main theorems regard-
ing H7 (pt)-linear independence. On the other hand, these linear independence results
apply only in special cases, particularly the results of Theorem 3. In the recent preprint
[6], Cho, Hong, and Lee give a geometric construction of a basis for H}“ (Hess (S, h))
in all cases, by using an affine paving of that variety. Although these “geometric”
classes are linearly independent, they do not in general form a permutation basis with
respect to the dot action, and there is no known general, explicit combinatorial formula
for the values of these classes at different permutations w € S, except for the spe-
cial case h = (2,3, ..., n,n). Therefore, it is currently a compelling open question
to express our classes—which are defined purely combinatorially—in terms of the
basis constructed geometrically in [6], particularly in the abelian case. We discuss this
further in Sect. 4; see Problem 4.9 below.

We now give a brief overview of the contents of this paper. Section 2 discusses
relevant background material, including the presentation of H7.(Hess (S, h)) via GKM
theory, and an overview of useful facts regarding the combinatorics of S, and its coset
decompositions. In addition, we provide in Sect. 2.4 an expository account of the
broader context in which our manuscript should be placed. In particular, we give a clear
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statement of what we call the “permutation basis program,” which seeks to solve the
Stanley—Stembridge conjecture using the geometry of Hessenberg varieties. In Sect. 3,
although the construction of top-coset classes is known to the experts, we formalize the
presentation of these equivariant classes. We then define the equivariant cohomology
classes studied in this manuscript in Sect. 4. Our main theorem proves that, under
some minor assumptions on the Hessenberg function %, these are well-defined classes
in H} (Hess(S, h)) and we are able to give an explicit description of their supports. We
state the problem of connecting our GKM classes to those defined by Cho, Hong, and
Lee in Problem 4.9. Sections 5 and 6 prove the linear independence results appearing
in Theorem 2 and Theorem 3, respectively. We conclude Sect. 6 with an application
of our linear independence theorems to the case of h = (n —2,n — 1,n,...,n) and
the statement of a natural question, to be analyzed in future work, in Problem 6.5.

2 Background

In this section, we briefly recall some notation and terminology needed for discussion
of Hessenberg varieties and their associated cohomology rings. We refer to [12] for a
more leisurely account. In the final subsection, Sect. 2.4, we also give an expository
account of the larger context of this paper, and give explicit statements of the broader
research problems to which this paper contributes.

2.1 Hessenberg Varieties, Hessenberg Functions, and the Type A Root System

The (full) flag variety F€ags(C") is the collection of sequences of nested linear sub-
spaces of C":

Flags(C") :={Vo=({0} CcViCVoC---C V1 CC" | dimc(V))
=i forall i =1,...,n}.

A Hessenberg variety in F¢ags(C") is specified by two pieces of data: a Hessen-
berg function and a choice of an element in gl(n, C). A Hessenberg function is a
non-decreasing function . : [n] — [n]. In this paper, we consider only Hessenberg
functions such that 4 (i) > i for all i € [n] and implicitly make this assumption for
all such functions appearing below. We frequently write a Hessenberg function by
listing its values in sequence, i.e., h = (h(1), h(2), ..., h(n)). Nowlet Xbe ann x n
matrix in gl(n, C), which we also consider as a linear operator C* — C". Then the
Hessenberg variety Hess (X, h) associated to 4 and X is defined to be

Hess(X, h) :={V, € Flags(C") | XV; C V) foralli € [n]} C Flags(C").
2.1

In this paper, we focus on a special case of Hessenberg varieties. Let S denote a regular
semisimple matrix in gl(n, C), that is, a matrix which is diagonalizable with distinct
eigenvalues. Then we call Hess(S, h) a regular semisimple Hessenberg variety.
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Note that i(i) > i for all i € [n] implies Hess (S, i) is non-empty. The equivariant
cohomology of Hess(S, h) is the main object of study in this paper.

Now we set some notation associated to type A root systems. Let h < gl,(C)
denote the Cartan subalgebra of diagonal matrices, and let #; denote the coordinate
function on h reading off the (7, i)-th matrix entry along the diagonal. We denote the
root system of gl,(C) by ® := {t; —¢; | i, j € [n],i # j}, with the subset of positive
roots given by

T i={t —t; |1 <i<j<n}.

The negative roots in ® are ®~ := ® \ &7, and we denote the simple positive roots
in ®T by

A=aj:=t; —tip1 |1 <i<n—1}

Given & : [n] — [n] a Hessenberg function, it will be convenient to consider variants
of the above terminology which incorporate the data of /. In particular, we define the
notation

@ = {1 —1; € d |i < h(j)). 2.2)

It is clear that the set @, is determined by the Hessenberg function £, but it is useful
to also note that 4 is uniquely determined by @, (since h(i) > i for all i € [n]).

We also recall some terminology concerning inversions. The Weyl group in Lie type
A is the symmetric group S, on n letters. Given a permutation w € S, the inversion
set of w is given by

Nw) :={y € T | w(y) e ®}. (2.3)

Note that y = ; —¢; is an inversion of w if and only if i < j and w(i) > w(j). Thus,
the pair (7, j) is an inversion of the permutation w in the classical sense if and only if
y =1t —t; € N(w). We also set

N~ (w):={y € ™ |w(y) € 7).

It is straightforward to see that w(N ™~ (w)) = N (w™Y). Let £(w) denote the (Bruhat)
length function on §,,. Then £(w) = [N(w)| = [N"(w)|. If y =1, —t; € ® then
we denote by sy, the transposition of S, swapping i and j. We do not differentiate
between positive and negative roots with this notation, so in particular s, = s_,,. Itis
well known that £(ws, ) < £(w) for y € ® if and only if y € N~ (w) [14, Sections
1.6-1.7]. When o; € A we write s; := sy, for the simple reflection swapping i and
i+ 1.
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2.2 The Equivariant Cohomology of H{ess(S, h) and the Dot Action Representation

In this section, we briefly recall some facts about the ordinary and equivariant coho-
mology rings of regular semisimple Hessenberg varieties, and the definition of the dot
action representation on these rings. We refer the reader to [12,17,18] for more details.
Let i : [n] — [n] be a Hessenberg function and Hess(S, k) the regular semisimple
Hessenberg variety associated to ~. The maximal torus 7' of diagonal matrices in
GL(n, C) acts on FLags(C™) preserving Hess(S, h) and

Hess(S, h)! = Ftags(CHT = S,

where we identify S, with the permutation flags in F2ags(C"). In this setting, the
localization theorem of torus-equivariant topology applies and the inclusion map of
the fixed point set into Hess (S, i) induces an injection,

L2 Hyf (Hess(S, h) — Hj(Hess(S,n)") = @ Hi (p) = € Cln. ... 1],

wWES, wesS,

For f € Hj(Hess(S, h)), since ¢ is injective, by slight abuse of notation we denote
also by f its image in HJ (Hess(S, 7). For each w € S, we denote by f(w) €
Clt1, ..., t,] the w-th component of f in the decomposition above.

Applying results of Goresky—Kottwitz—MacPherson, one obtains the following con-
crete description of the image of ¢ as in [18]:

H} (Hess (S, h))

[f e@Pc, ...l

weS,

foralw e S,andy =t —t; e N (w) NP, ,
fw) — f(ws,) is divisible by w(y) = tw) — tw(j)-

2.4)

12

We call the condition described in the right-hand side of (2.4) the GKM condition
for Hess(S, h). Since the set N~ (w) N @, appearing in (2.4) is used so frequently,
we define the notation

N, (w):=N"(w)No,. (2.5)
Motivated by the above, the GKM graph of the regular semisimple Hessenberg

variety Hess(S, h) is defined as the (labeled, directed) graph with vertex set S, and
edges

where y € N, (w). Note that w — ws, an edge implies ws, < w,asy € N~ (w).
The set of labels of the directed edges in the GKM graph of Hess (S, h) with w as a
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source is

w(N, (W) = wN~(w) N®,) = wN~(w)) Nw(®;) =Nw™HNnw@,),
(2.6)

where we have used the fact that w(N~(w)) = N(w ™).

Example 2.1 Letn = 3andh = (2, 3, 3). The GKM graph of Hess (S, h) is as follows:

§18281

7 Y

5152 $251

tl—l3l ltl—h
S1 52
A %
e

The GKM graph is the combinatorial data encoding the set of GKM conditions for
Hess(S, h) on the RHS of (2.4). When h = (n, n, ...,n), we have @, = &~ and
Hess(S, h) = Flags(C"); the GKM graph of the flag variety is also called the Bruhat
graph of S,,. In this special case, since N~ (w) is a subset of ®~ by definition, we see
that the set of edges with w as a source in the GKM graph of F€ags(C") is in one-to-
one correspondence with N~ (w). Moreover, in this case, the set of these edge labels is
w(N~(w)) = N(w™1). We can see from (2.4) that in order to obtain the GKM graph
for Hess (S, h) from the Bruhat graph, we simply delete the edges corresponding to y
withy ¢ ®, . In summary, there are precisely |®, | = dim Hess (S, i) edges adjacent
to w in the GKM graph for Hess (S, k) and exactly | N, (w)| edges with w as a source.

Now we recall the S, -action, often called the “dot action,” on H}“ (Hess (S, h)) and
H*(Hess (S, h)) constructed explicitly by the third author in [18]. First, we define an
S, -action on the polynomial ring C[zq, ..., f,] in the standard way by permuting the
indices of the variables, i.e., for ; € C[t1,...,t,] and v € S, we define v(t;) :=
ty(i). This induces an S,-action on Cl[¢y, ..., #,] by C-linear ring homomorphisms.
By (2.4), an element f € H;i (Hess (S, h)) is specified uniquely by a list (f(w))yes,
of polynomials in Cl[zq, ..., t,] satisfying the GKM conditions. Given v € S, and
f = (f(w))yes,, the dot action of v on f is defined by

- fHw):= v(f(v_lw)) forall w € §,. 2.7

It is straightforward to check that the class v - f also satisfies the GKM conditions,
and we therefore obtain a well-defined action of S, on HJ (Hess(S, h)), called the
dot action representation. This is a rwisted group action on equivariant cohomology
as it acts non-trivially on the underlying ring of scalars H} (pt) >~ C[1, ..., t,]—the
action on H7 (pt) is the standard action of S, on the polynomial ring defined above. The
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dot action on the equivariant cohomology Hj (Hess(S, h)) induces the dot action on
ordinary cohomology H*(Hess(S, h)) by the forgetful map 7 : Hj (Hess(S, h)) —
H*(Hess(S, h)). Indeed, the forgetful map is known to be surjective and the dot action
preserves the kernel [ 18], hence this induces a well-defined action on H*(Hess (S, h)).

Remark 2.2 1t is known that in the case of regular semisimple Hessenberg varieties,
the T-equivariant cohomology H7(Hess (S, h)) is a free Hj (pt)-module, and that
the forgetful map H7} (Hess (S, h)) — H*(Hess(S, h)) is the surjection obtained by
taking the quotient by the ideal (t1, 12, ..., t,) € H}(pt) = C[11, ..., t,]. From this it
follows that the image of a permutation basis (as a H; (pt)-module) of H; (Hess(S, h))
is a permutation C-basis of H*(Hess(S, h)). However, as noted in the introduction, a
H7 (pt)-linearly independent set need not map to a C-linearly independent set under
the natural projection.

As discussed in the introduction, Shareshian and Wachs conjectured in [16] that
the above “dot action” representation on H*(Hess(S, h)) is related to the well-known
Stanley—Stembridge conjecture. Specifically, they conjectured a tight relationship
between the chromatic Hessenberg function of the incomparability graph of a unit
interval order to the dot action on H*(Hess(S, h)) as defined above; we refer to [16,
Conjecture 10.1] for the detailed statement. Shareshian and Wachs’ conjecture was
proven by Brosnan and Chow [5], and independently by Guay-Paquet [11], in 2015.
For the purposes of this paper it suffices to recall that these results imply that the
Stanley—Stembridge conjecture would follow from the following conjecture, phrased
in terms of the dot action on H*(Hess (S, h)) (see [16, Conjecture 10.4]).

Conjecture 2.3 Let h : [n] — [n] be a Hessenberg function. Then there exists a basis
of H*(Hess(S, h)) that is permuted by the dot action, and such that the stabilizer of
each element in the basis is a reflection subgroup.

The motivation for this manuscript is to take some steps toward addressing Conjec-
ture 2.3, but as discussed in the Introduction and due to the observations in Remark 2.2,
we opt below to focus exclusively on the equivariant version of Conjecture 2.3, since
a solution to the equivariant version yields a solution to Conjecture 2.3.

Before concluding this subsection we make one more simplifying remark. Recall
that a Hessenberg function 4 : [n] — [n] is connected if 4(i) > i foralli € [n — 1].
This terminology is due in part to the fact that the corresponding regular semisimple
Hessenberg variety Hess (S, h) is connected if and only if 4 is connected [3, Appendix
Al]. If & is not connected then it is straightforward to argue that the connected com-
ponents of Hess(S, h) are each isomorphic to a direct product of ‘smaller’ connected
regular semisimple Hessenberg varieties (see the analogous argument given in [10,
Theorem 4.5]). In that case, the dot action on H*(Hess(S, h)) is induced from the dot
action of a reflection subgroup on the cohomology of this connected component (the
equivalent statement for chromatic quasisymmetric functions is very well known; c.f.
[2, Theorem 1.1(B)]). Thus, in order to address Conjecture 2.3 it suffices to consider
only those regular semisimple Hessenberg varieties corresponding to connected Hes-
senberg functions. On the other hand, many of our theorems below hold for Hessenberg
functions without this additional restriction. We therefore note when this assumption
is required.

@ Springer



_####_ Page 12 of 54 La Matematica _#######HHHHH#HHHHE#

2.3 Weyl Group Combinatorics

We now take a moment to briefly review and set notation regarding combinatorics
of S,. Let u = (1, na, ..., ¢) be a composition of n, that is, wy, 4z ..., e are
positive integers such that w1 + w2 + - - - + w¢ = n. Throughout this section, we let
[wli =p1+---+u;foralli =1,...,¢andset [u]p := 0. Note that [£]; = w1 and
[]e = n.

We define the Young subgroup corresponding to i to be the subgroup

Spi=(si |1 & {[ulh, [ulzs ... [le—1}) € Si.

Any subgroup of §,, generated by simple reflections is of the form S, for some com-
position u of n. Moreover, it is well known that any reflection subgroup of S, i.e.,
a subgroup of S, generated by reflections, is conjugate to a Young subgroup S, for
some /L.

In our computations below, we frequently consider the set of right and left cosets,
denoted, respectively, by S;,\S, and S,,/S,,, of a given Young subgroup S,,. The short-
est length right (respectively, left) coset representatives for S,\S, (respectively,
S, /Sy) are defined as follows:

KSyi={veS, | v () ed forall i € [n]\{[uh, [kl ..., [1le—1}}

and

Si={v e S, | vla) € @F forall i € [n]\{luh, [nl2s ..., [iele—1}}.

It follows immediately from the definitions above that
(S~ = sk (2.8)

These shortest coset representatives are useful, among other things, for decompos-
ing arbitrary elements of S,,, as the following well-known lemma states [ 14, Prop. 1.10].

Lemma 2.4 Let w € S,,. Then w can be written uniquely as

(1) w=yvforsomeyeS, andv e"S,, and
(2) w="v'y for somey € S, andv' € Sy .

Moreover, for such y,y’ € S, and v € *S, and V' € SE. we have ¢(w) = L(y) +
L) = L) + LY.

Remark 2.5 The factors y and v in the decomposition of w given in Lemma 2.4(1)
have a straightforward interpretation in terms of the one-line notation of w, as we
now describe. In order to obtain the one-line notation for v, rearrange the values of
{[uli + 1, [pm)i +2, ..., []i+1} in the one-line notation of w to be in increasing order
from left to right, foreachi =0, ..., £ — 1. The result is the one-line notation for v,
which is the shortest right coset representative of w in §,\S,. Now y is simply the
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element of S, which permutes the sets {[w]; +1, []; +2, .. ., [it]i+1]} to be in the same
order that was found in the original w, foreachi = 0, ..., £—1. Similarly, there is also
a simple method for obtaining the decomposition w = v’y’ in Lemma 2.4(2) from the
one-line notation of w. Specifically, we obtain the one-line notation of v’ by rearranging
the values in the one-line notation of w in positions {[u]; + 1, [u]; +2, ..., []i+1}in
increasing order from left toright foralli = 0, ..., £— 1. In this case, y’ is the element
of S, which permutes the sets {[u]; + 1, [];i + 2, ..., []i+1} into the same relative
order as those in the one-line notation for w in positions {[u]; +1, []i +2, ..., [1]i+1}
foralli =0,...,¢—1.

Example2.6 Letn = 7and u = (4,3). Let w = [6,4,1,7,2,5,3]. Write w = yv
fory € §;, and v € #S,,. From Remark 2.5 we obtain

y=1[4,1,2,3,6,7,5] and v =1[5,1,2,6,3,7,4].
Similarly, we have w = vy’ for y’ € S, and v’ € S} with
vy =1[3,2,1,4,5,7,6] and v' =[1,4,6,7,2,3,5].

We will also use the unique (Bruhat) maximal element contained in #§,,, and simi-
larly for the set of shortest left coset representatives, which can be described explicitly
as follows. Let wg = [n,n — 1, ..., 1] denote the maximal element of S, i.e., the
longest permutation of S,,. Then the maximal element of #S,,, denoted herein as v,,,
is the shortest right coset representative of the right coset S, wq (see [4, Prop. 2.5.1]).
For example, if n = 7 and u = (4, 3) as in Example 2.6 then

v, =15,6,7,1,2,3,4].
Note also that the maximal element of S is v;l. From this description of v, the
following is straightforward.
Lemma 2.7 Fory aroot, we have y € N~ (v,) if and only if sy, (y) ¢ Su-

Given a composition p of n, let ' := (ug, o1, ..., u1) be the composition
obtained by reversing the entries. For example, if © = (3,4,4), we obtain u’ =
(4,4, 3). Note that [/Ll]i = Mg+ o1+ -0+ HLe—it1 foralli = 1,...,¢. The
correspondence u — ' defines an involution on the set of compositions of r, since
evidently (') = . We will also need the following simple lemma.

Lemma2.8 Letp = (i1, U2, - . ., p¢) beacompositionofnand ' = (e, pe—1, - - .,

w1). The maximal element of *S, and the maximal element of S are equal, i.e.,
v, =V
%

74
Proof It follows from the discussion above that

V([ le—ic1+j) =[pli+j forall 0<i <f—1landl < <puiy1. (29)
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Similarly,
v (i + j) = [We—im1 +j forall 0 <i <f—1land1 < j < piy1.(2.10)

It follows from these formulas that v, = v;,l, as desired. The desired result now

follows from the fact that the maximal element of S,’f, is v;/l by (2.8). O

The next lemma is completely elementary; we include the statement since we use
it repeatedly.

Lemma 2.9 Let W be a group and H C W a subgroup. Suppose Ho is a right coset
of H in W, and consider the subgroup Hy := o ~'Ho. Then there is a well-defined
bijection

¢o - H\W —> W/H,, ¢o(Ht)=1'0H,.

Moreover, given two right cosets Hoy and Hop of H in W, we have ¢, (Ht) N
G0, (Ht) # O if and only if Hoy = Ho», and therefore the left cosets ¢o, (Ht) and
¢, (HT) of the (possibly distinct) subgroups Hy, and Hy, in W are either disjoint or
equal.

We apply Lemma 2.9 below to obtain a bijection between the right cosets S, \S,
and left cosets S, /S,/. We use this correspondence in the following sections to give
a simple description of the GKM classes defined therein. In the special case where v
is maximal element of *S,,, the map ¢, from Lemma 2.9 further induces a bijection
between shortest coset representatives.

Lemma 2.10 Let u be a composition of n and v, denote the maximal-length element
of " Sp. There is a well-defined bijection

bu, 1Sy —> SE5 v vy, 2.11)

-1 _
and moreover, we have v, Spvy = Sy

Proof Note that ¢,, can be viewed as a restriction to coset representatives of the
bijection defined in Lemma 2.9 at the level of cosets. To prove the desired result, we
need only show that this restriction to shortest coset representatives is well defined.

-1

Letv € #S,. To show that ¢, is well defined we need to show v™"v, € S,’f,. To see

this, let

ke mI\ {1, [ T2s - [ Tem1) = [0\ {pees e + pe—1s oo oo jg + -+ + pal.
By definition of Sﬁf/ it now suffices to show v~ vy (o) € @t ie., that v"vu k) <
v~ ! v, (k + 1). By our assumptions, it follows that we can write k = [u]; + j for
some() <i<f¢—1land1 < j < py—;. The formula (2.9) implies

v () = v ((demior 4+ ) and v+ 1) = v ((lemior + 7+ D).

@ Springer



La Matematica _######HHH##HHHHHE#HE Page 150f54  _#it##

Now v’l([u]g_i_l + j) is the position of [p],—;—1 + j in the one-line notation
of vand v '([ule—i—1 + (j + 1)) is the position of [u]¢—i—1 + j + 1 in the one-
line notation of v. Thus, we have only to show that [p]s_;_1 + j appears before
[1le—i—1 + j + 1 in the one-line notation of v. But this follows from the fact that
v e lS, and [ule—i—1 +j € [n]\ {[nh, [1l2, - ., [#]le—1}. We conclude ¢y, is
indeed well defined. The fact that ¢, is bijective now follows from Lemma 2.9.

Finally, recall that §,, is generated by the simple reflections sy with k ¢ [n] \
{lrelrs (2, -, [t]e—1}. To prove v;lSMvM = S, we show that v;l (ax) = ay, for
somem ¢ [n]\{[i'11, [4']2, ..., [ ]e—1}. This implies that conjugation by v;‘ = vy
maps the generators of S, to those of §,,/. Since k € [n]\ {[u]1, (]2, ..., [n]e—1}, we
may write k = [u]; + j forsome 0 <i <{¢—1land 1 < j < p;4+1. Applying (2.10)
we obtain

v (k) = [1e—ici+j and vk + 1) = []g—io1 +j + 1.

Thus, v, (k) = ap form = ['e—i—1+j. Since [ le—i—1 = pe+pe—1+- -+ iy
and j < piy1 we havem ¢ [n]\ {[']1, [u']2. ..., [']¢e—1} as desired. o

We end this subsection with two facts that will be used later. The first lemma below
describes a decomposition of the sets N ( w~!) and N~ (w) associated to a permutation
w € S,. We will frequently apply this statement below in the context of Lemma 2.4;
a proof can be found in [14, Section 1.7].

Lemma2.11 Let w = yv € S, such that L(w) = £(y) + £(v). Then N(w’l) =
NO™HuyNw Hand N~ (w) = N"(v) Uv !N~ (y).

Example 2.12 Toillustrate the decomposition N~ (w) = N ~(v)uv~ !N~ (y), consider
w = 1[6,4,1,7,2,5,3] as in Example 2.6. In this case, y = [4, 1,2,3,6,7, 5] and
v=|[51,2,6,3,7,4]. Then
N-(w)={—t1,t3—t1,t5 — 11,17 — t1, 15 — l4, 17 — 14, 17 — I}
and N~ (y) ={to —t1,13 —t1,t4 — 11,17 — 15,17 — I} SO
VINT() = {3 —ta,ts — o t7 — . 16 — 11, t6 — 14}
The reader can then check that N~ (w) = N~ (v) U v_lN_(y).

We also take a moment to recall a criterion for determining Bruhat order in the
Weyl group S, (see e.g., [4]). For w € S,,, denote by Dg(w) the right descent set of
w, namely,

Dr(w) ={i|w@) >wi+1),1<i<n-1}.

For example, if w = [3,6,8,4,7,5,9, 1, 2] the descent set is Dgr(w) = {3,5,7}.
The following is frequently called the tableau criterion [4, Theorem 2.6.3].
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Theorem 2.13 (The tableau criterion) For w, v € Sy, let w; i denote the i-th element
in the increasing rearrangement of w(l), w(2), ..., w(k), and similarly for v; . Then
w < v in Bruhat order if and only if w; x < v; x forallk € Dr(w) and 1 <i < k.

2.4 Permutation Bases and the Stanley-Stembridge Conjecture

As we indicated in Sect. 2.2, the main motivation for this manuscript is the study of
the Stanley—Stembridge conjecture, reformulated by Shareshian and Wachs [16] into a
question about the dot action representation on the cohomology ring H* (Hess (S, h))
of regular semisimple Hessenberg varieties, as recorded in Conjecture 2.3 above.
To address this problem, we therefore seek to explicitly build permutation bases in
H*(Hess(S, h)) whose stabilizers are reflection subgroups. In fact, in order to achieve
this, we first study the analogous question in equivariant cohomology instead. Specif-
ically, we propose to construct a H}" (pt)-module basis of the free H; (pt)-module
HY(Hess(S, h)) consisting of equivariant classes permuted by the dot action and
whose stabilizers are reflection subgroups. We could then project such a basis to
ordinary cohomology H™*(Hess(S, h)) using the forgetful map from equivariant to
ordinary cohomology. By Remark 2.2, the projected basis in H*(Hess(S, h)) would
have the desired properties. At first glance, this strategy may seem counterintuitive
since equivariant cohomology is much larger than ordinary cohomology, so one may
expect the problem to be more difficult. However, as is frequently the case, the addi-
tional structure on 7 (Hess (S, h)) can frequently make it more tractable (and indeed,
as we saw above, the original definition of the dot action was made possible by the
GKM theory on equivariant cohomology).
Based on this point of view, we propose to study the following question:

Does there exista H; (pt)-module basis B of the free H7: (pt)-
module H;(J-Cess(s, h)) which is permuted by the dot
action, and such that the stabilizer Stab(b) C S, for any
b € B is a reflection subgroup?

(2.12)

The question posed above is well known among the experts and we do not claim any
originality. Moreover, there are already results in the literature which can be interpreted
in terms of this question, as we discuss in more detail below. However, as far as we
are aware, (2.12) has not previously been recorded explicitly in the literature in this
form. As such we take a moment to discuss the problem and to propose some methods
of attack.

First of all, we expect that GKM theory will be a critical tool for addressing (2.12),
just as it was for the original definition of the dot action. There are some inherent
challenges in this approach, however. One such challenge is that, in general it is non-
trivial to explicitly construct, by purely combinatorial means, an element in the RHS
of (2.4), i.e., an element in the GKM description of equivariant cohomology. To put
it another way, while there do exist formulas for the restrictions to 7'-fixed points of
special equivariant cohomology classes of GKM spaces which have, for example, con-
crete geometric descriptions—e.g., equivariant Schubert classes, or Chern classes of
equivariant vector bundles—it is in general difficult to arrive at a purely combinatorial
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algorithm producing a list of polynomials (f(w))yes,, with f(w) € Hj(pt), which
together satisfy the GKM compatibility (divisibility) conditions. Thus, it is non-trivial
to explicitly construct candidates for permutation bases in Hy (Hess(S, h)). Another
challenge is that it is difficult in general to prove that a set of GKM classes is Hj (pt)-
linearly independent, i.e., they satisfy no H7 (pt)-linear relations. This is because a
GKM class is realized as a vector of polynomials, with coordinates indexed by 7'-
fixed points, and the question of linear independence then becomes a complicated
linear algebra problem over the polynomial ring Hj (pt) ~ C[ty, ..., #,,]. This being
said, it is not hard to see (and has been noticed before) that if the set has computation-
ally convenient properties, such as “poset-upper-triangularity”” with respect to Bruhat
order on S, as discussed in [13], then linear independence can be deduced. However,
in the absence of such vanishing properties, the linear algebra over H7 (pt) is not so
straightforward.

Despite these challenges, some results which partly address (2.12) already appear
in the literature. For instance, Abe, Horiguchi, and Masuda give an explicit pre-
sentation of the cohomology ring of H*(Hess(S, h)) in the special case when
h = (h(1),n,n,...,n)in[1]; their “y; classes,” which are a subset of their generators
of H*(Hess(S, h)) in this case, are in fact obtained as images of GKM classes in equiv-
ariant cohomology for which they are able to write down an explicit formula. Moreover,
it is clear that their “y; classes” form a permutation basis for an S, -subrepresentation
in H*(Hess (S, h)). In another direction, Chow gave in [7] a conjectured permutation
basis for H*(Hess(S, h)) in the special case where h = (2,3,4,...,n—1,n,n) (in
this case Jess (S, h) is the permutohedral variety). Chow’s definition of his generators
uses the GKM description in equivariant cohomology. In a recent paper, Cho, Hong,
and Lee have shown that Chow’s GKM classes have a geometric interpretation in
terms of the Biatynicki-Birula stratification of the permutohedral variety, and use this
to prove Chow’s conjecture that these classes are indeed a permutation basis. Thus,
this settles the question (2.12) in this special case, and it remains to analyze the more
general cases.

With the above discussion in mind, we propose to study the following problems,
for as a general a Hessenberg function as possible. We refer to this as the “permutation
basis program.”

Problem 1 Give a systematic, combinatorial algorithm for constructing GKM classes
in H;f (Hess (S, h)) beyond those that are already known, and whose stabilizer groups
with respect to the dot action are reflection subgroups.

Problem 2 Given a GKM class f € H}.(Hess(S, h)), find conditions under which its
S,,-orbit

fw-flwesS,}

is Hy.(pt)-linearly independent.

Problem 3 Suppose { fu}ucs is a collection of GKM classes in Hj (Hess (S, h)) such
that the Sy-orbit of each fy, considered above, is Hy (pt)-linearly independent. Find
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conditions under which the entire collection
{fw- folweWanda € S}

is HJ.(pt)-linearly independent.

The remainder of this manuscript addresses these problems for a number of special
classes of Hessenberg varieties.

3 GKM Classes in Hy(Hess(S, h)): The Top-Coset Case

In this and the next section, we address Problem 1 of the “permutation basis program”
described at the end of Sect. 2.4.

Specifically, we present in this section a combinatorial construction of GKM classes
in H} (Hess(S, h)) which s already well known to experts and which have the property
that the classes evaluate to be non-zero only on a single (“top” in a suitable sense,
to be explained below) coset of a Young subgroup. In particular, we do not claim
any originality for the results presented in this section. Then in Sect. 4, we present a
variant of this “top-coset” construction which results in GKM classes that can be non-
zero on more than one coset. We chose this method of exposition for several reasons.
First, although the top-coset construction is well known among experts, as far as we
are aware it has not been recorded formally, and is in the general form. Second, the
intuition behind the construction for both the top-coset case and our construction in
Sect. 4 is most easily grasped in the top-coset case. Finally, the technical hypotheses
on the constructions in this section and the next are such that neither construction is
subsumed by the other, so it felt natural to make this distinction clear in the exposition.
We emphasize again that the construction given in the present section has appeared in
special cases in the work of Abe—Horiguchi-Masuda [1], Chow [7], and Cho—Hong—
Lee [6].

We begin with a lemma which decomposes a certain set of edges in the GKM graph;
intuitively, the idea is that some of the edges “remain” in a fixed ("top”) coset, while
the others point “down” toward lower (“non-top”) cosets. The precise statement is
in Lemma 3.1. Throughout this section, we fix a composition . = (@1, (2, ..., [Le)
of n and let S,, denote the corresponding Young subgroup. Let v,, denote the unique
maximal element of S, as introduced in Sect. 2.3. We refer to the right coset S, v,
of S, corresponding to this maximal element as the “top coset.” Also recall that edges
in the GKM graph with w as a source are indexed by the set N, (w), as in (2.6).
Moreover, by Lemmas 2.4 and 2.11 we know that if w = yv, for y € S, then
N~ (w) = N~ (v,) Uv, "N~ (y). Thus, we have

Ny (w):=N"(w)N®, =N (v)uv,'N"(»)) N}
= (N () N®;) U, "N~ () N d;).

We can now state the lemma.
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Lemma3.1 Let w = yv, € S,v,, be an element in the top coset of S, where 'y € S,,.
Consider an edge of the GKM graph for Hess (S, h),

w M ws, forsomey € N, (w) = (N~ (v,) N ®,) U (v;lN*(y) na,).

Then

(1) ify € N, (v) N @, then ws), € Syv for some v € S, withv < v, and
(2) ify € "N~ (y) N @} then ws, € S,v,.

Proof Suppose y € N~ (v,) N @, . Then by Lemma 2.7 we know sy, () ¢ Sy, s0
wsy = ySy,(y)Vu & Suvu. Hence, wsy, € §,v for some v € S, with v # v,,. Since
vy, is the unique maximal element of #S,, we get v < v,. On the other hand, suppose
y € v;'N=(y) N ®, . Then v, (y) € N™(y) and y € S, imply that 5,,(,) € S,.
This in turn means that ws, = yv,s, = ysy,(y) vy lies in the top coset S, v,,. This
completes the proof. O

We can now define the top-coset GKM classes. We provide a proof for the record.

Proposition 3.2 Let i = (w1, 12, - .., i¢) be a composition of n and let S, denote
the associated Young subgroup. Let v, € *S, denote the maximal-length right coset
representative in *S,,. Let

Fu(w) = Hz,-—zjeNh‘(uM)(tw(i) —tuw(j)) if w=yvy, forsomey €S,
" ’ 0 otherwise.

Then f, € H;lN”_(U“)l(i}{ess(S, h)), or in other words, f, satisfies the GKM condi-

tions of (2.4). Moreover, y - f,, = fu forally € §,.
Proof Consider an edge w AN wsy, of the GKM graph of Fess(S, h). We take
cases.

If neither w or ws,, is contained in the top coset S, v, then by definition of f,, we
have f,,(w) = f,,(wsy,) = 0 so the difference f,,(w) — f,.(ws,) is equal to 0 and the
GKM condition for this edge trivially holds.

Next suppose w and ws,, are both contained in the top coset S, v,,. In this case, by
definition of f,, we have

Su(wsy) = l_[ (tws, () — Tws, (j))

t; —[j ENh_ (UH—)

= Sw(y) l_[ (tw(i) - tw(j)) = Sw(y)(fu(w))~

ti—tj €N, (vyu)
Thus, w(y) divides fj,(w) — sw) (fu(w)) = fu(w) — fu(ws)), as required.
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Note that we cannot have w € S, v and ws, € S, v, forsomev € #S, withv < v,
since in that case we get

wsy W=, <V

by [4, Proposition 2.5.1], which contradicts the assumption that v < v,,. This implies
that the only remaining case to check is when w € S, v, and ws, € S, v for some
v e *S, with v < v,. In this case, we get

fuw) = fuws,) = [ Guwi) = twii)

fi—tj €Ny, ()

because f, (ws,) = 0. Moreover, by Lemma 3.1, we know that we are in the situation
wheny =1t —t; € N~ (v) N D, = N, (vy). Thus, w(y) = ty ) — tw(j) appears as
a factor in the RHS of the above equation, and in particular divides f,,(w) — f. (ws;)
as desired.

Finally, suppose y € §,. Since left multiplication by y~
of §,, in §,, we get that

! stabilizes all right cosets

_ [y w)) ifw e Sy
Y Juw) = { 0 " otherwislé. 8

Now we have

Y w) =y 1_[ (ty-1w(iy = Ly=1w(j))

t,‘—tjGNh_(vM)

= l_[ (tw(iy — tw(j)) = fu(w)

’i_tjeNh_(”u)
for all w € S, vy,. This proves y - f,, = fu. O

Remark 3.3 The classes constructed in Proposition 3.2 can be defined in the more
general setting of the equivariant cohomology of a regular semisimple Hessenberg
variety contained in the flag variety G/B of any reductive algebraic group G. The
GKM graph a regular semisimple Hessenberg variety is well known, and generalizes
the construction presented above (cf. [9]). Fix a subgroup W; in the Weyl group W
generated by a subset J of simple reflections. We can define a GKM class by assigning
a non-zero label to each element of the right coset of W; in W corresponding to the
maximal shortest right coset representative of W;\ W. This non-zero label is a product
of roots defined analogously to Proposition 3.2, and yields a well-defined equivariant
cohomology class by essentially the same argument.

Multiplying the class f, in Proposition 3. 2 by any §,,-invariant non-zero homoge-
neous equivariant cohomology class g € H ! (Hess(S, h)) yields a class of degree
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2|N;, (vp)| + 2 with the property that gf, is Sy -invariant and gf}, (w) = O unless w
is in the right coset of §,, indexed by v,,. We call any class of this form a top-coset
GKM class since its support set, i.e., the set of permutations at which it evaluates to
be non-zero, is precisely the right coset of the maximal element v, in #S,,.

The next lemma tells us that the support set of any class in the S,-orbit of the
top-coset class f, has a simple description in terms of certain left cosets in S,,. Recall
from (2.8) that (*S,,)~! = S¥.

Lemma3.4 Letp = (1, 42, - .., e) beacompositionofnand ' = (e, pe—1, - . .,
w1). Let S, be the Young subgroup corresponding to . For all v € Sk we have

)

. _ —1
v fuwy = | Himtenp o = tu)) w0 =y, (70 for some ' € Sy
0 otherwise

where bu, nS, — S,’;L/ is the bijection defined in (2.11). In particular, the class
v - f has support equal to the left coset of S, in S, with shortest coset representative
bu, ™ = vv, and the support of any two classes vy - f,, and vy - f,, where
v, v2 € SE with vy # vy are disjoint.

Proof By definition, (v . fu) (w) = v(fu(v’lw)) is non-zero if and only if
fu (v~'w) # 0. The latter condition is equivalent to requiring that v"'w € Suvy.
We have

v lw = yv, forsomey e S, & w= vvﬂvljlyvu fory e S,

S w= qjvu(v*l)y/ fory := vlzlyvu €Sy,

where we have used Lemma 2.10 for the last equivalence. Thus, (v - f,,) (w) # 0 if
and only if w € bv, (v_l)Sﬂ/. Moreover, if v 'w € S, v, then

(v fu) W) =v(fu w) =v [T trwe =t

t,‘—tjENh_(vﬂ)

= ]_[ Tw(i) = Tw(j)

ti—tj ENh_ (UM)

as desired. This proves the first claim.

Now let vy, vy € S)'. By the above, we know that the support of vy - f,, (respectively,
va- fu)is the left coset ¢y, (vl_l)SM = v1v, Sy (respectively, ¢, (v;l)Sﬂ = V0, 8,0).
Applying Lemma 2.10 we know vyv,, v2v, € Sﬁ,‘/ are shortest left coset representa-
tives, so v1v, S,y Nvav, S, # @ if and only if viv, = vav, if and only if v; = vs.
Hence, we conclude if v; # v then the two left cosets ¢>v“(vfl)SM and ¢>v“(v271)SM
are disjoint. Thus, if v # vy, then the supports of v - f;, and v; - f}, are disjoint. O
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The main reason for studying top-coset classes comes from the following proposi-
tion, which is also well known.

Proposition 3.5 Let yu = (w1, 2, ..., i¢) be a composition of n and let S,, be the
corresponding Young subgroup of S,. Let f,, be the top-coset GKM class defined in
Proposition 3.2. Then the Sy-orbit of f,, under the dot action, given by the set

fv-fulvesS;)

is H (pt)-linearly independent. Furthermore, the HJ (pt)-subrepresentation of Hj
(Hess (S, h)) spanned by this set is an S,,-subrepresentation with the same character
as indgﬁ (1) =~ MPW ywhere P(w) is the partition of n obtained from i1 by rearranging
the parts in decreasing order.

Proof We first prove that the set {v- f, | v € SV is H (pt)-linearly independent. To
see this, suppose that there exist polynomials ¢, € H7.(pt) such that

> cov- fu=0¢ Hi(Hess(S, h)). (3.1)

veSy

The above equality takes place in HJ (Hess(S, h)) which we may identify with its
GKM description, as a subring of @, . s, Hy (pt). In particular, (3.1) holds if and
only if

Z co (V- fu) (w) =0 forall weS,. (3.2)

vesk

By Lemma 3.4 the classes v - f;, have disjoint supports, so that for any w € S,, there
exists at most one v € ;" such that (v- f,) (w) # 0. Let w € S, and suppose
(v . fu) (w) # 0 for some v € SX. Then (v’ . fu) (w) = 0 for all v/ € #§, with
v/ # v so (3.2) implies

Cy (v . fﬂ) (w) =0 € Hf(pt).

Since Hj (pt) is a polynomial ring over C and in particular an integral domain, the fact
that (v - f,,)(w) # 0 implies ¢, = 0. Now the fact that ¢, = O forall v € Sk follows
from the fact that for any v € Sk there exists at least one w € S, with (v- fww) #0,
as can be seen from the explicit description of the support of v - f,, in Lemma 3.4.
To see that the span of {v - f, | v € Sy} is an S,-submodule (with H} (pt)-
coefficients) isomorphic to indg’; (1) it suffices to show that the stabilizer subgroup of
fuis Sy. Thisisclearas y- f, = f, forally € S, by Proposition3.2and v- f), # fu
for all v € S} with v # e by Lemma 3.4. This completes the proof. O

Example 3.6 Let n = 3 and h = (2, 3, 3) as in Example 2.1. The following three
classes in H; (Hess(S, h)) give the S,-orbit of f = f, for © = (1, 2). (Note that in
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this case, Si' = {e, s1, s251}.)

‘ e S §2 S152  $281  S18281

f 0 0 0 -1 0 nH—n
Sl-f 0 0 h—13 0 h—1 0
S2S1-fl3—t2t3—t1 0 0 0 0

Now spanH;(pt){f, s1 - f,s281 - f}in H(Hess(S, h)) is an Sy,-subrepresentation
isomorphic to M1,

The discussion above makes it evident that these classes are very special in the
sense that the support is just one right coset. The question naturally arises: can we give
a variant of this “top-coset” construction to systematically and explicitly construct
GKM classes whose supports may include more than one coset, and which still have
stabilizer subgroups which are reflection subgroups? In the next section we answer
this question in the affirmative, under some restrictions on the Hessenberg function /.

4 GKM Classes in H3 (Hess (S, h)) for Two-Part Compositions

Inthe previous section, we explained how to construct GKM classes in H}‘ (Hess(S, h))
which are supported on a single (“top”) coset of a Young subgroup. Although this prop-
erty does make these classes more computationally tractable, this is a highly restrictive
condition. In this section, under some technical hypotheses on &, we construct GKM
classes which can be non-zero on more than one coset. Motivated by the “abelian
case” as discussed in the introduction, our analysis focuses on compositions of n with
two parts.

The setting for this section is as follows. Let A = (A1, A2) be a composition of n
with two parts. Then Sy = (s; | i # A1) is the associated Young subgroup. In order
to define our GKM classes, we further decompose the set S, of shortest right coset
representatives for S as follows. We need some preparation. Consider the composition
u = (1,n — 1). From the discussion in Sect. 2.3 it is not hard to see that the set of
shortest right coset representatives » S, is given by

HSy ={e,s1,8150, ..., 8182 Sp—1}.
We define
U = S152 ... 8k “.1)

for k with 1 < k < n — 1 and ug := e. The maximal element of #S,, is then u,_i.
Note that the one-line notation for u; has a 1 in position k£ + 1, and all other entries
in increasing order. Moreover, it is straightforward to check that two permutations
v, w € S, are in the same right coset of S, if 1 is in the same position in their one-line
notation, that is, if v=1(1) = w=1(1). Returning now to the coset representatives * Sy
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for A = (A1, A2), in this section we denote the maximal element in * S, by vy,. It can
be computed explicitly in this case to be

Vi, =AM+ 1L, A 4+2,...,n,1,2, ..., A]

A2 entries A1 entries

which means

vl=Do+1+2,. .0 1.2, )l

A1 entries Ao entries

Since v;, has a 1 in the (A, 4 1)-st entry, it follows that vy, is contained in the right
coset Sy uy, of S,. Indeed, we have

V3, = voUp, for vo :=[1, A1+ 1,01 +2,...,n,2,3,..., ] €S, “4.2)

Ao entries A1—1 entries

and we can also compute
vl =LA +2,...n,2,3, ..., A+ 1] € S 4.3)
We now focus on the elements of *S,, of the form vouy for 0 < k < Xy. Define
Vg = voUg.
The one-line notation for vy is

=AM+ 2+2,..., 1 +k—1,A1 +k,

k entries

1 A Fk+1, .o on—=1,n, 2,3,...,A1 ] 4.4)

(k+1)-stentry  (k42)-ndto (Ap+1)-stentry  last A;—1 entries

from which it follows that vy indeed lies in *S,,. We define (*S,)o to be the set of such
vk, 1., (MSn)o := {vo, vi, ..., va, k.
We note two facts for future use. First, the one-line notation for vk_1 is

—

vl =+ LA +2, . n L2k kL k20 A k1] (45)

Second, since vy is contained in S, and the u; are shortest coset representatives in
1S, from Lemma 2.4 we know £(vi) = £(vg) + £(uy).

Remark 4.1 Inthe casethat A = u = (I,n — 1),i.e., whenA; = land A =n — 1,
then from (4.2) it follows that vy is equal to the identity permutation, and u; = vy for
all0 <k < Ay =n — 1. Soin this case, (*S,)o = *S, = {e, u1, us, ..., tpn_1}.
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We focus on this subset (*S,,)o of S, because it is particularly well behaved under
the Bruhat order. To see this, we begin with the following simple lemma.

Lemma4.2 Let . = (A1, A2) be a composition of n with two parts and suppose
v,w € *S,. Then w < v in Bruhat order if and only if w='(k) < v='(k) for all
1<k=<A\.

Proof This follows from a straightforward application of the tableau criterion in
Theorem 2.13 together with the fact that a shortest coset representative v € *S,
is uniquely determined by the locations of the entries {1, 2, ..., A1}, i.e., the set
D, v @), v ) u]

Using Lemma 4.2 above we can show the following.

Lemma4.3 Let A = (A1, A2) be a composition of n as above. Then:

(1) (*Sp)o = {v €S, | vo < v}, and
(2) forany k, j withQ < k, j < Ay, we have vi < vj in Bruhat order if and only if
k<j.

Proof We first prove the case A = (1,n—1),s0A; = 1, A = n—1. Then vy = e, and
it is not hard to see that (*S,)g = S, Since vg = e, the first claim is immediate. The
second claim follows straightforwardly from the tableau criterion in Theorem 2.13
and the fact that vy = uy is the permutation whose one-line notation has a 1 in the
(k + 1)-st position and all other entries are increasing.

Now suppose A1 > 2. From the one-line notation of vg in (4.2) and the tableau
criterion, it follows that any other shortest coset representative v € *S, with vg < v
must have the entries {2, 3, ..., A1} appearing in the last 11 — 1 many entries of the one-
line notation of v. This then implies that v must equal v for some k with 0 < k < A»,
as can be seen from the one-line notation of vy in (4.4). Conversely, it is immediate
from Lemma 4.2 that each vy satisfies vg < v. Hence the first claim is proved. The
second also follows from the tableau criterion and (4.4). O

Lemma4.4 Forall k with O < k < Xy we have

N =lt—tp [be+1,... . a+k}ufta—1
laef{2,3,....maLbe{h+1,..., 0.

Proof By definition,

Noh={yed® | v'(y)ed)

) . 4.6)
={ta—1tp | a <b, v, (a) >v, (b)}

The claim now follows from the explicit description of the one-line notation of vk_1
given in (4.5). O

We can now define our GKM classes. Fix £ with 0 < k < X,. We define a function
)\(k) : Sy, = Clry, ..., t,] in (4.8) below. Under certain additional hypotheses on
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k, the composition A, and the Hessenberg function 4, we will show in Theorem 4.8
that fx(k) is a well-defined equivariant cohomology class in H}" (Hess(S, h)),i.e., the
assignment f)fk) 2 S, — Cl1, ..., t,] satisfies all the GKM compatibility conditions
in (2.4). To define f)\(k), we first set the notation

Sk = N, (vp) = N(ug ) N (@) (4.7)

for the set of roots that label the edges in the GKM graph of Hess(S, h) with source
vt as in (2.6). Now for any w € §,, we first write w = yv for unique y € S, and
v € *8, and then define
® oy | Hines, @ —tyey)  ifv =
L) = {O otherwise. “8)

The following lemma summarizes some properties of the function fk(k) which follow
immediately from the definition.

Lemma4.5 Let f;k) 2 S, — Clty, 1o, ..., ty] be as defined in (4.8). Then each of the
following hold.

(1) The support of f)fk) is a union of right Sy-cosets, and is the set of permutations
Bruhat greater than vy, i.e.,

supp(f{0) == {w e S, | fOw) #0) = | | Sivj={we S, |w=ulb
k<j<ia

(2) The element f)fk) is fixed by S, under the dot action,

y- f)fk) = )fk) forall y € S,.

(3) Foranyy € S, and w € S,, we have

O yw) = y(1P W),

where the RHS denotes the standard action of S, C S, on a polynomial in
Clty, ..., ty].

Proof The first equality of (1) follows from the definition (4.8) and Lemma 4.3, since
f)\(k) (w) = f)fk) (yv) is defined to be non-zero exactly when w € Sy v for v > v, and
ve*S, |v>wn={uw,..., vy, }. To prove the second equality, first note that
the inclusion kajsz Swj C{w € S, | w > v} follows from Lemma 4.3(2) and
Lemma 2.4. On the other hand, let w € S, such that w > v and write w = yv with
yeS,andv € *S, as in Lemma 2.4. By [4, Proposition 2.5.1], vy < w implies
vy < v. Thus, v = v; for some j such that k < j < A, by Lemma 4.3 as desired.
This proves the first claim.
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To see the second claim, first observe that for y € S the definition of the dot action
implies

k K, -
(%ff ))(w)=y(ff 'y 1w))
and since y € S, the two elements y~'w and w are in the same right S; -coset. We
take cases. If f)fk)(w) = 0 then by the above fk(k) (y~'w) is also equal to 0, hence
y(f)fk) (y~'w)) = 0 also. If .f)fk)(w) # 0 then w = y'v for some y" € S; and v > v;.
Then y~'w = (y~'y)v € Syv implies f}fk)(y_lw) # 0 and by (4.8) we obtain

k), — _
YOG ) =y l_[ Yty — tyw)

ta—tbesk

k k
[T @@ —tye) =100 =£w)
ta—1tp €8k

- ;) w)

as desired. This proves (2). We now have

2w =y P w) =y (0 w)) forall y € 5.
Hence (3) follows. m]
Our construction recovers the top-coset classes for compositions with two parts
that were discussed in the previous section.
Remark 4.6 Inthe special case where k = Xy, Lemma4.5 tells us that f)f)‘Z) is supported

on the coset Sy v;, corresponding to the Bruhat-maximal element of *S,. In this case,
given w = yv;, we have

2w =TT Gw-—te)= ] Guo =t

ta—1tp €8k ti—tj €N, (va,)
This shows that f)fm is precisely the top-coset GKM class f; introduced in the
previous section.

The function fk(k) .S, — C[r1,...,t,] defined above sometimes, but does not
always, yields a well-defined class in H} (Hess(S, h)), as we illustrate in the next
example.

Example 4.7 Let n = 6 and fix a Hessenberg function 7 = (3,4, 5, 6, 6, 6). In this
case, we have

O, ={—ti,t3—t,t4g — 13,15 — 14,1 — 15,13 — 1], l4 — 12, 5 — 13, g — 14}.

@ Springer



_####_ Page 28 of 54 La Matematica _ ####H##

For this example, we take A = (2, 4). We get
(*Su)o = {vo, v1, v2, v3, v4},
where

v =11,6,2,3,4,5, v =12,6,1,3,4,5],v;' =1[3,6,1,2,4,5],
vy =14,6,1,2,3,5,v;' =1[5,6,1,2,3,4].

Consider the case whenk = 1. We have N(vf]) ={t1—t3,h—13, 1r—14, Ip—15, 1) —1g}
and 81 = {t) — 13,10 — 15, 1p — 16} SO,

FD () = (ty@) = 1y5))(ty@) — ty) (tyy = ty3)  ifv € {vi,v2, v3, 14}
» 10 otherwise

For example, we have that

) = £V 1) = (12 — 15) (12 — 16) (1) — 13) and
f;l)(&wl) = S4(fx(1)(v1)) = (2 — t4)(t2 — 16) (11 — 13).

Consider 1)3_l =[4,6,1,2,3,5]. Since t4 — tr € ®, and swapping the numbers 2
and 4 in v3_1 yields the permutation (S4U1)_1 =[2,6, 1, 4, 3, 5] of length strictly less
than vy’ ! we know that the GKM graph of Hess(S, h) contains the following edge:

11—t

V3 s4v1 4.9

where 1| — t4 = v3(t4 — t2). But f)fl)(vg.) — f)fl)(su)l) is not divisible by #; — #4, so
/\(1) does not satisfy the GKM conditions. Now consider the case in which k = 2. As
8y = {th —ts,t0 — tg, 11 — 13, 1] — t4} wWe have

FO () = (ty@) = ty$) ty@) = 1y6) Uy = Ly Eyy — ty@)  if v € {va, v3, v4}
L IPEE otherwise.

In this case, the right S cosets in the support set of f)\(Z) are those with coset repre-
sentatives vy, v3, and vg4. Note that f)fz) clearly satisfies the GKM conditions for the

edge in (4.9) since f/\(z) (sq4v1) = 0 and #; — t4 divides f;z)(v3). As another example,
by similar reasoning as above we obtain another edge of the GKM graph:

n—ts
V4 ——> S5V).

In this case, we have
;2)(1)4) =(—ts)(r —te)(t1 —13)(t1 —14) = ;2)(S5v2)
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since s5 stabilizes the product (t; — t5)(t2 — #6)(t1 — 13)(t1 — t4). Thus, f)\(Z) satisfies
the GKM conditions for this edge also. The reader can check that f)fz) defines an

equivariant cohomology class in H% (Hess(S, h)); this fact will also follow from
Theorem 4.8 below.

The content of the next result, which is also the first main theorem of this manuscript,
is that when we impose an additional hypothesis on the integer k in relation to the
Hessenberg function /, then f/\(k) is a well-defined GKM class. Theorem 4.8 gives us
a new construction of GKM classes in H7.(Hess(S, h)) that differs from that in the
literature, since now more than one coset may get a non-zero label.

Theorem 4.8 Let h : [n] — [n] be a Hessenberg function and » = (A1, A2) a com-
position of n with exactly two non-zero parts. Let 0 < k < Ap. If .1 > 1 then we
additionally assume that h(k + 2) = n. Then the function fk(k) Sy, — Clry, ..., 1]

definedin (4.8) is a well-defined equivariant cohomology class in H%lg"l (Hess (S, h)).

Before beginning the proof, we emphasize that the assumption of 4(k 4+ 2) = n in
the statement above is necessary, as noted for k = 1 in Example 4.7 above.

Proof of Theorem 4.8 To prove the theorem, we must show the following. Let

w(y)
wsy

be an edge of the GKM graph of Hess(S, h). Then w, ws, € S, are permutations
such that £(wsy,) < £(w) and w(y) € NwhHn w(®,). We must prove that w(y)

divides fk(k)(w) — f;k)(wsy). We argue on a case-by-case basis.
Case (1): Suppose w is not contained in the support of f)\(k), ie., f)fk)(w) = 0. In this

case we claim that s, w is also not contained in the support of f)fk). This is because
if ws, is contained in some Syv; with k < j < A5, then ws, > v; in Bruhat order,
which means w > ws, > v; > v in Bruhat order. By Lemma 4.5 this implies w is
contained in the support of f/\(k), contradicting our assumption. Hence, f/\(k) vanishes
at both w and ws,,, and the claim follows trivially.

Case (2): We now assume w lies in the support of f;k). ByLemma4.5, thisis equivalent
to the condition that there exists j with k < j < A, such that w € Syv;. We write
w = yv; for y € §,. It will be convenient to divide this further into sub-cases,
according to the coset in which ws,, lies. In fact, we first argue that ws,, cannot lie
in certain right cosets; more precisely, we claim that, under the given hypotheses, it
cannot happen that ws, € Syvg for j < £ < A>. Indeed, if ws), = y v, for such an ¢
and y; € S, then we have

wsy Sw =y < yv; = v <v; =L,

where the second implication is by [4, Proposition 2.5.1] and the third follows from
Lemma 4.3. Hence we obtain a contradiction.
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Throughout the arguments below, we fix j as the integer such that w € S, v; and
write w = yv; for y € ;. The above discussion implies that the three remaining
cases we must consider are as follows:

(2-a) wsy ¢ supp(f)fk)), or equivalently, ws,, ¢ Sv forany v € {vg,...,v;_1,v;},
(2-b) wsy, € Syvj, or
(2-¢) wsy € Spvg forsome k < € < j.

Before proceeding, we give an explicit description of the root 8 := v;(y) in
each of these cases. By assumption, y € N, (w) = N"(w) N ®, and N~ (w) =
N~ (v;) U vj_lN_(y) by Lemma 2.11. Thus, we have

B=vj(y) €v;N (w)=N@w; HUN(y).

We can decompose the set N (vj_l) appearing in the RHS of the above equation even

further. The formula for N (v l) for different values of k as given in Lemma 4.4
implies

N =Nohufn —t [beh+k+1,... 0+ j},
and therefore, combining the previous two statements, we obtain
BeNw Hult—nbehi+k+1... 0+ JuN(y). (410

Now consider ws, = yvjs, = ysy;)vj = yspvj. Write B = 1, — 1. Then we
obtain the one-line notation for sgv; from that of v; by swapping the entries a and
b. Equivalently, the one-line notation for (sgv j)’1 is obtained from that of v;l by
exchanging the entries in positions a and b. Using the formulas for the one-line
notation of vj_1 from (4.5) (or equivalently, the formula for the one-line notation
of v; from (4.4)) and Lemma 4.4, it is now straightforward to check the following
characterizations of the three cases (2-a), (2-b), (2-c¢) above. First we consider case
(2-a). We claim that if ws, ¢ supp(f;") then B € N(v;) N v;(®;). From (4.10)
we know that 8 can lie in one of 3 sets:

N, (=t | befhi+k+1,...,h +j}), and N™(y).

If B € N (y) then sg € S and hence ysgv; € S;v;, which would imply ysgv; €
supp(fk(k)). Hence this cannotoccur. If B € {t; —tp, | be {M +k+1,..., 01 +j}}
then from the formula for the one-line notation of v; in (4.4) and from the description
of shortest coset representatives given in Remark 2.5 it follows that sgv; lies in the

right coset of an element v € {vg,...,v;_1}, hence ysgv; € supp(f)\(k)). Thus,
this also cannot occur. We conclude that if sgv; ¢ supp(f}fk)) then 8 € N(v,:l).
Since y € @, , we are always assuming 8 € v;(®,) and we now conclude that if

wsy, ¢ supp(f)fk)) then 8 € N(v,:l) Nv;(P,). Second, for case (2-b), observe that
ws, = ysgv; € Spv; if and only if sgv; € Syv; since y € Sy, and the latter is
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equivalent to sg € Sy. From the decomposition (4.10) and Lemma 4.4 it follows that
sg € S, if and only if B € N~ (y). Thus, we obtain that ws, € S,v; if and only if
B € N~ (y) Nvj(®,). Third, for case (2-c), we can use similar reasoning to see that
wsy, = ysgv; lies in S vy for some k < ¢ < j if and only if

Belti—ty | belh+hk+1,... 0+ Nvj(@)).

We can now argue each case separately, based on the above characterizations of the
root 3.
Sub-case (2-a): In this case, fk(k) (wsy) = 0, so in order to prove the GKM condition
it suffices to prove that w(y) divides f;k) (w), i.e.,that w(y) = y(B) forsome § € 8.
Since w = yv; this is equivalent to v;(y) = B € 8. Recall from (4.7) that §; =
N(vk_l) N v (P, ). As we saw above, in this case we have § € N(vk_l) Nv;j(®,),
so it remains to establish that 8 € v (P, ). Write 8 = t, — fp. The assumption
that 7, — #, € v;(®;) implies that vj_l(a) < h(vj_l(b)). Since B € N(v;'), from
Lemma 4.4 it follows thata € {1, ..., A1} and b € {A; + 1, ..., n}. Now the explicit
formula in (4.5) for the one-line notation of v, ! and v;l implies vk_1 (a) < vj_l (a)
and v, '(b) > ujfl(b). Thus, v; ' (a) < ujfl(a) < h(vj’l(b)) < h(v; (b)) implying
B =ts —tp € vp(P;) as desired, and case (2-a) is complete.
Sub-case (2-b): In this case, we have 8 = v;(y) € N~ (y), so sg € S;.. This implies
that sy(g) = Syv;(y) = Sw(y) € S also. Now from Lemma 4.5 we conclude that

)fk)(wsy) = f)fk)(sw(y)w) = Sw(y)(f)fk)(w))-

It is a classical fact that w(y) divides f — sy()f, so we obtain our result. This
completes case (2-b).
Sub-case (2-¢): In this case, we have ws, € Syvp fork < £ < j, so in particular
P (ws,) # 0. We aim to show that £ (ws,) = £ (w), from which it follows
that f° (w) — £ (ws,) = 0, which is clearly divisible by w(y).

First observe that the only way we can have ws, € Svpisif y = ;41 — to41.

This is because w € Syv;, which implies the entries {1, ..., A} are in the (j + 1)-th
and the last A; — 1 positions in the one-line notation of w. Any element in S) v, must
have the {1, ..., A1} entries in the (£ + 1)-th and last A; — 1 positions of its one-line

notation. In order for this to happen, we must have s, exchange the positions j + 1
and £ + 1. Next recall the decomposition w = yv; = yvou; where vy and u; are as
defined in (4.2) and (4.1), respectively. Since s, is the reflection swapping j + 1 and
£ + 1, an explicit computation yields

_Jyvoseqz---sjue if j > £ 41
W = yvoue = yoe ifj=¢+1

which implies that ws, = yvg if j = £ + 1. Hence, for the case j = £ + 1 it is
immediate that £ (ws,) = £ (yve) = [T,es, v = £ (w) by definition of
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k(k). Thus, fk(k) (wsy) — /\(k)(w) = 0 and we are done. Therefore, in what follows
we may assume that j > £ + 1. In this case, we claim that

/
WSy = YVOSe42 - SjUg = Y Vollg

for some y’ € S;. Indeed, we get

y/ = )’(U056+2 o 'Sjvo_l) = YSuo(£4+2) " Svo(j)
and we know vo(i) = A1 +i — 1 foralli =2, ..., Ay from (4.2). Since { + 1 < j by

assumption and j < X, we know ¢ + 2 < X, and also since j > £ + 1, where £ > 0,
we know j > 2. So it follows that

!
Y = YSh IS0 42 Sh+j—1 € S (4.11)
Let y1 1= $3, 4041544642 - - - Sx; +j—1. To summarize, we have shown ws, = yyvy,

where yy; € Sj.
By definition of )fk) we have

sy =[] yvian and @) =[] y.

neESk neSk
If we establish the following equality

y\[In)=1In (4.12)

neSk neSk

then it would follow that £* (ws,) = £ (w), hence ¥ (ws,) — £ (w) = 0 and
we are done. In the remainder of the argument we therefore focus on proving (4.12).

To prove (4.12), first notice that y; € Stab(l, 2, ..., A1 + £). Motivated by this,
using the explicit description of N (v, 1Y in Lemma 4.4 we decompose the elements

of §; into two subsets Sy = 8,({1) L 8,((2), where we define
8V =ty —tp €S lasb e (1,2,..., A1 +k}) (4.13)
and
8 =ty —th €Sk | (@, b) € 12,..., M} x (A +k+1,...,n}). (414

Since k < ¢, it is clear that if n € 8,((1) then y;(n) = n. Next we analyze the set 8,((2).
Note first that in the case A; = 1, then §; = S,((]) and hence we are done. Thus, for the
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remainder of the argument we may assume 1| > 1.Forany (a, b) witha € {2, ..., A1}
andb € {Ay +k+1,...,n} then

v'@ e pa+2, . nyand vt (b) € k+2,k+3, ..., 0+ 1)

Since A1 > 1, we have by the hypothesis in the statement of the theorem that h (k+2) =
n. Thus, h(v; ' (b)) = n forany v, ' (b) € {k+2,..., 2+ 1} and v; (@) < n =
h(vk_l(b)), implying t; — t, € v (®,) foralla € {2,..., A} and b € {A; +k +
1, ..., n}. The above discussion implies that

8P =ty —tp | (@, b) € {2,..., ) X i +k+1,...,n}).

Since y1 = Sy, 40+15x,+642 - - - Si +j—1 permutes the elements of (A1 +k+1, ..., n}
(because A1 +k+1 < Aj+€+1landr;+j—1 <A +Aiy—1=n—1)andstabilizes
the elements of {2, ..., A1}, it follows that yl(S,(cz)) = 8,((2). Since we already saw y;

stabilizes the elements in S,((D, we conclude (4.12) holds, as desired. This completes
the (2-c) case and hence the proof. O

By Lemma 4.5, the class f)\(k) constructed in Theorem 4.8 is fixed by S; under the
dot action. As in the case of the top-coset classes of the previous section, we consider
the orbit of fk(k) under the dot action:

fv P rves).

We will prove in Sect. 5 that this set of classes is Hj (pt)-linearly independent, in a
special case and under further assumptions on the Hessenberg function 4.

We now discuss potential connections between our Theorem 4.8 and some other
recent results by Cho, Hong, and Lee on equivariant cohomology classes for the regular
semisimple Hessenberg variety. We first remark that, as noted in the introduction, the
advantages of our construction are (1) we have an explicit formula for the value of fk(k)
ateach w € §,,, namely that in (4.8) and (2) we can give simple, concrete descriptions
of the elements in the S,,-orbit of f)\(k) as well as their support sets. On the other hand,
the drawbacks of our construction are that, in its current form, the construction only
applies in the case that the composition A has two parts, and we are not yet able to
use such classes to construct a basis for the free module H;f (Hess(S, h)). In contrast,
Cho, Hong, and Lee recently gave a geometric construction of an H7 (pt)-module basis
for H} (Hess(S, h)) for general Hessenberg functions [6]. Their classes arise from a
Bialynicki-Birula decomposition of Fess(S, h). While the existence of such classes
is not new, it is in general a difficult question to compute the values of these classes
at different permutations w € S,,. The results of [6] are significant in that they make
progress toward describing these classes explicitly. For example, the authors describe
the support set of each class combinatorially in terms of the Hessenberg function 4.
On the other hand, these classes do not give a permutation basis of Hj (Hess(S, h)),
and an explicit formula for their values at w € S, similar to that given in (4.8) is
only known in the case where & = (2, 3, ..., n, n). In that special case, the authors
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express certain equivariant classes defined by Chow in the statement of his Erasing
marks conjecture [7] as linear combinations of their “Biatynicki-Birula classes,” and
use their results to prove Chow’s conjecture. As we have already noted, Chow’s classes
are top-coset classes for appropriately chosen Young subgroups.

This recent progress, together with our Theorem 4.8 above, naturally suggest the
following open problem. We expect a solution to this problem to lead to further progress
in the “permutation basis program” in more general cases of Hessenberg functions.

Problem 4.9 Let h : [n] — [n] be a Hessenberg function and A = (71, A2) a compo-
sition of n with exactly two parts satisfying the assumptions of Theorem 4.8. Compute

that expansion of f)\(k) as an Hy (pt)-linear combination of the Hy.(pt)-module basis
of “Biatynicki-Birula classes” for H}.(Hess(S, h)) studied by Cho—Hong—Lee in [6].

Finally, in the last part of this section, we prove some properties of our classes f;, *)

which will be useful in the analysis in the following sections. We begin with a proof of

the analog of Lemma 3.4, describing the support set of each v - f; ® forv e S* Given
the composition A of n, recall that for each v; € (*S,)o we obtain from Lemma 29a
bijection

bu, = S\Sn = Su/Ss u, (Shv) = v lu;8Y,

where S{7 .= v;715,v;. Recall also that (5})~" =*S,, by (2.8).

Lemma4.10 Let . = (A1, A2) be a composition of n with two parts and 0 < k < Aj.
For each v € S} we have

(v (k)) (w) = Hnesk wvj_l(n) fwe ¢y, (S,v 1) for some k < j < hy
0 otherwise.

In particular, v - f(k) S, — Clty, ..., t,] has support equal to the union of left
cosets,

L] ¢, h= || vusy”.

k<j<i» k<j<Xz

Proof Let v € S*. We have <v~ ;’”) (w) # 0 if and only if £ (v="w) # 0. The

latter condition is equivalent by Lemma 4.5 to the condition that v™'w € S,v ; for
some k < j < X>. We have

v lw = yvjfory € S & w= vvjv;lyvj for y € Sy

& wevsy =gy, (S,
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This proves the assertion about the support of v - f/\(k). Given such a w, write v 'w =

yv;j fory € S5. Then vy = wvj_l and we get

(v~ A(k)) W) =v( e wy =v | [Ty | = [T wo; .

nESk T]ESk
This proves the lemma. O

Our last lemma of this section states that the stabilizer of the element fk(k) is precisely
Sy

Lemma4.11 Let A = (A1, A2) be a composition of n with two parts and 0 < k < Aj.
If A1 = 1 then we also assume that k > 1. Then the stabilizer in S, of f)fk) is equal to
Si.

Proof We have already seen in Lemma 4.5(2) that S, stabilizes f)\(k). Hence, it suffices
to show thatif v € §,, satisfies v- f/\(k) = }fk), then v € §y. Since we already know that

S, is contained in the stabilizer, it suffices to prove the statement for v € S,Al a shortest
left coset representative. So suppose v € Sﬁ and suppose that v - f)fk) = k(k). We wish
to show that v € §j, which means v is the identity permutation (since the shortest left
coset representative for the identity coset is the identity). Since v - f)fk) = f)fk), their
supports sets must be equal, and by Lemma 4.10 it follows that

|_| vij;j)z I_l ijij)

k<j<h» k<j<hs

or equivalently

|_| VS = |_| Savj.

k<j<ia k<j<h2

In particular this means that, for every j with k < j < A», we must have that vv; is
contained in some coset Sy vy for £ with k < £ < Aj. In particular, there exists some
£ with k < £ < A, such that vv; € Syve. We consider the cases A; > l and A; = 1
separately.

Suppose A; > 1. Recall that v; has one-line notation as given in (4.4), and in
particular that the last (A; — 1)-many entries of the one-line notation for vy are given
by the sequence 2, 3, ..., A1, and similarly for vy. Thus, vvy € Spve for k < € <
Ap implies that {v(2), v(3), ..., v(r1)} is a subset of {1, 2, ..., A1}. Now recall that
v is a shortest left coset representative. From Remark 2.4 it follows that we may
assume its first A1 entries are increasing, i.e., v(1) < v(2) < --- < v(Ay). If 1 €
{v(2), ..., v(X1)}, then since the entries must be increasing we conclude v(2) = 1,
but then we come to a contradiction since there is no value of v(1) which can be less
thanv(2) = 1. Thus, 1 ¢ {v(2), ..., v(A1)},butthen {v(2),...,v(A)} ={2,..., A1}
and we conclude that v(2) = 2, v(3) = 3, ..., v(A1) = A1. Now the condition that
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v(2) = 2 and v(1) < v(2) forces v(1) = 1 also. Thus, v must be the identity (since
it is a shortest left coset representative, and acts as the identity on {1, 2, ..., A1}, so it
must also act as the identity on {A; + 1, ..., n}).

Now we suppose A1 = 1 and k > 1. In this case, vy, = uy is the unique permutation
with 1 in position £ + 1 and all other entries in increasing order. In particular, since
y(1) = lforally € S) we getthatvug € Syvefork < € < A impliesthat 1 = v (£+
1) € {v(1), v(k+2),...,v(n)}. Now suppose 1 lies in {v(k +2), ..., v(n)}. Since v
is a shortest left coset representative, we may assume v(2) < v(3) < --- < v(n). In
particular, if v(1) # 1 then we must have v(2) = 1. This contradicts the assertion that
1 e{vik+2),...,v(n)}, since k > 1. Hence, the only possibility is that v(1) = 1,
which in turn implies that v must be the identity by the same reasoning as above. This
concludes the proof. O

5 Linear Independence for an S,,-Orbit: Special Cases

In the previous two sections, we gave a purely combinatorial algorithm that produces,
in certain situations, classes fk(k) € EBw cs, H; (pt) which satisfy the GKM conditions
for a Hessenberg function /4, and hence can be viewed as equivariant cohomology
classes in Hj (Hess(S, h)). Moreover, Lemma 4.11 proves that the stabilizer of the

class fk(k) under the dot action is S,. Thus, we can view the results of Sects. 3 and 4
as a partial answer to the first problem posed at the end of Sect. 2.4.

The purpose of this section is to take the theory developed in Sects. 3 and 4
one step further, by addressing the main question posed in Problem 2 at the end
of Sect. 2.4, namely: under what conditions is the §,-orbit of f)fk) linearly indepen-
dent over H; (pt)? Note that, in the case of the “top coset” classes, the S, -orbit is
indeed H7 (pt)-linearly independent, as we have already recorded in Proposition 3.5.
Therefore, in this section, we focus on proving the linear independence statement—in
some special cases—for the classes we constructed in Sect. 4 which have supports
that are a union of more than one right coset.

We begin by stating the main result of this section. We need some notation to state
one of the (technical) hypotheses. Let v, . | be the permutation defined as in (4.5);
for the reader’s convenience, we record its one-line notation here as well:

vl =D+ 2, n 12, — Lo+ 1. (5.1

We note in particular that

vl () =b—2 if Ai+1<b<n—1, and v ' (@) =a+2i if 2<a <Ah.
(5.2)

The above remarks will be useful in the arguments below. We also define
Jor=minfbe{r+1,...,n—1} | Aa < h(v;zlfl(b))}. 5.3)
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The index jj is used in our proof to describe the set 8;,_1 = N (v;zl_l) Ny, —1(P;).
We can now state our theorem.

Theorem 5.1 Let n be a positive integer and h : [n] — [n] a Hessenberg function.
Let A = (M1, A2) F n be a composition of n with two parts. Assume h(1) < Ap. In
addition, if .1 > 1, we also assume h(Ay + 1) = n and h(v;;f] (jo)) < Ay + 1. Then

(1) the Sy-orbit of f)\()‘rl) is HJ.(pt)-linearly independent, and
(2) the stabilizer of each element in the S,-orbit of f;krl) is a conjugate of the

reflection subgroup Sj.

In particular, the H}" (pt)-submodule of H}" (Hess (S, h)) spanned by the S, -orbit of
)f}‘rl) is an Sy,-subrepresentation with the same character as Indgz 1) ~ MPW),
where P(A) is the partition of n obtained from A by rearranging the parts to be in

decreasing order.

Note that since we are taking k = A, — 1 in the above theorem (with respect to
the construction of the fk(k) in the previous section), we have k + 2 = A, + 1, so the
assumption 4(Ap 4+ 1) = n in Theorem 5.1 is equivalent to the necessary hypothesis
h(k +2 = Xy 4+ 1) = n in the statement of Theorem 4.8. Hence, under the hypotheses
of Theorem 5.1, we do know from Theorem 4.8 that the classes f)t(h_l) are well
defined in H} (Hess(S, h)).

We also note that the claim regarding the stabilizers of the elements in the S,-orbit
is a straightforward consequence of the construction of the fk(k) and Lemma 4.11
(see also Proposition 3.5), so the main task at hand is to prove the H; (pt)-linear
independence, and this is what occupies the bulk of this section. More specifically, we
begin with the following.

We introduce some notation. Since A = (A1, A2) is a two-part composition, shortest
left coset representatives in S,f are parameterized by subsets of n of cardinality A;.
Indeed, given a subset J = {ji < j» < -+ < ji,} € [n], the corresponding shortest
left coset representative is the permutation defined as

.. . . . A

vy o= []1,]2,...,]kl,]{,...,]iz]eSn, (5.4)

where [n]\ J = {j; <--- < j){z} and it is straightforward to see that all shortest left

coset representatives arise in this way. Moreover, given a permutation w we obtain the

one-line notation for the shortest left coset representative of w in S} by rearranging

the values in positions 1, 2, ..., A1 and those in A| + 1, ..., n so that they are in the
increasing order. With this notation in place we can write
Sy="{vs 1 J S nl |/ =11}

Note that since (’\Sn)o C*S, = (S,);)_1 for all kK with O < k < X,, we have

—1
Uy = Ulk+1,0242,....n}»

@ Springer



_####_ Page 38 of 54 La Matematica _#######HHHHH#HHHHE#

where vy is the permutation (4.4) considered in Sect. 4. Lemma 4.5(2) shows that
y - ffk) = f)\(k) for any y € S,. This implies that the S, -orbit of f)fk) under the dot
action is

wr- 0 1vs e s (5.5)

Our linear independence argument requires the following statement.

Proposition 5.2 Suppose 1, J, K C [n] are subsets with cardinality A1 and let k =
A — 1. Then

(1) supp(vy - £ Nsupp(uy - £F) £ Bifand only if 1 = J or|J N 1| =2y — 1,
and
(2) if I, J, K are pairwise distinct subsets of [n], then supp(v; - fx(k)) N supp(vy -

9y nsuppug - £ = 0.

Proof We begin by proving statement (1). First, it is clear that if I = J then

supp(vy - f17) Nsupp(vy - f1) # 0.

Thus, to prove the statement it suffices to show that, in the case that I # J, the
condition supp(vy - f)fk)) N supp(vy - f)fk)) # (is equivalentto |J N 1| = Ay — 1.
So now suppose I # J. Recall that S)(Lj) = vjflS;\vj forany 0 < j < Ap, so
ij)(\j) = S,v;. By Lemma 4.10 and using the fact thatk = A, —landk +1 =1,
(so f;k) has support consisting of exactly two cosets), we have

supp(vy - £*) N supp(oy - )

k k+1 k k+1
= (vJkai 'L U‘[Uk.l,_]S)(L + )> N <v1ka§ 'y v1vk+1S§ + )) . (5.6)

Since I # J, vy and vy are distinct shortest left coset representatives of S , from which
it follows that v ka)(Lk) Nvy ka;k) = () and similarly v j vgy| S)(Lkﬂ) NV V41 Sikﬂ) =
) (see Lemma 2.9). Hence, we can continue the computation started in (5.6) to obtain

k k
supp(vy - £;*) Nsupp(vy - )

k+1 k k k+1
= (U]Uk+]S)(L A UIUkSi )) u (UjUkS)(L )N v1vk+1S/§ + ))

= (Vs S Ve1 NVrSHvr) U (vg Save N v Saviert) (5.7

This proves that, in the case I # J, the intersection of the two support sets is non-
empty if and only if

VS Vg1 NvrSavg #B or vySivg NvrSyvgyr # 0.
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To complete the proof of statement (1), it now suffices to argue that each of these
conditions is equivalent to the condition that |J N I| = A1 — 1. First, we have

VySHvk+1 NV Shivg # VD < vyy vk = vryvg forsome vy, y; € Sy
& vyy1 = vySy@)y forsome y,y; €S) and 0 =11 —1,,

where the second equivalence follows from the fact that vy vkjil =spsincek = Ap—1,
as can be readily checked by computation. We conclude that v; S vg+1 N vy Syvre £ @
if and only if there exists y € S, such that the shortest left coset representative of
VISy(6) in S,}lL is vy.

The one-line notation for vy sy ) is obtained from the one-line notation of v; by
exchanging the values in positions y(1) and y(n). Since y € S, we know y(1) €
{1,..., A1} and y(n) € {A¢1 + 1, ..., n}. In particular, the description of the one-line
notation for v; and v; given in (5.4) implies that the desired condition holds if and
only if we can obtain J from I by changing a single element, or more precisely, if and
only if |/ N /| = A1 — 1. This proves the desired result in this case.

Next, consider the condition that vy Syvr N vrSyvk41 # . By the same logic as
above, this intersection is non-empty if and only if there exists y € Sy such that
the shortest left coset representative of v;sy ) is vy for some y € S,. By the same
reasoning as in the paragraph above we obtain |/ NI| = A; — 1. This proves statement
(D).

We now prove statement (2). Suppose I, J, K are pairwise distinct. Using the same
reasoning as above the intersection of the three support sets is

k+1 k k k41
I:(UJU](+]S)(L A v1ka£ )) ] (vjkai )N v;vk+1S£ * ))]

N (vakS)(\k) ] vakHS)(\kH)) . (5.8)

As before, since J # K and I # K we know that U]Uk.i,.]S)(Lk_'—l) ﬂvakHSikH) =0

and vjvg Sik) Nug kaik) = ). In particular we obtain

(vjvk+15§k+l) N vzkai")) N (vakSik) L vakHSik“)) =0.
Similarly, we obtain

(vjkaik) N v1vk+1S§k+l)) N (vakSik) u vakHSikH)) ={.
Hence, the set in (5.8) is empty, i.e.,

k+1 k k k+1
[(v]kaS)(h A vlkai )) U (Ujka)(L )N vlvk+1S)(L + )>]

N <UKka§k) U vak+1Sik+1)) =0
as desired. This proves statement (2). O
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We are now ready to prove Theorem 5.1.

Proof of Theorem 5.1 First, Theorem 4.8 implies that the class fk()‘z_l) is indeed a

well-defined GKM class under the hypotheses of Theorem 5.1. Now we want to show
that the set (5.5) is HJ (pt)-linearly independent. Suppose there is a Hj (pt)-linear

combination of {v; - f)\()‘zfl) | vy € S,f} that gives the zero class, i.e.,

Y esvg £V =0 € Hy (Fess(S. ) € @D Hy (py) (5.9)
J

weS,

for some c; € H; (pt). We must show that c; = 0 € H;(pt) for all J C [n] with
|J] = A1. Since (5.9) holds as an equality of GKM classes, then in particular the LHS
must evaluate to 0 at any permutation w € S,,.

By Proposition 5.2, only two elements in the set (5.5) can be non-zero when eval-
uated at any given w € S,. Consider, in particular, the evaluation at v;, of the

LHS of (5§.9). Let K = {2,3,..., A1, n}. We now show that vy, € supp(f;k)) N
supp(vk - f)fk)). To see this, we apply equation (5.7) to J = {1,2,..., A1} and
I =K =1{2,3,...,A1,n} (so vy = e is the identity permutation) to obtain

supp(f) Nsupp(uk - £F) = (Spvist N vk Sove) U (Spvx N vk Syvgg1). (5.10)

Recall that v,\z_lv}; - sp as in the proof of Proposition 5.2, where 6 = t; — ¢, so

Vs, v;zl_ | = g also (since s, 1 = sg). Also, from the definition of vk in (5.4) it is not
hard to see that vgsg € S). We then have

-1 -1 -1
Vg So € S = vy VinVy,_ € Sy = vy, = vkyvy,—1 forsome y e S, (5.11)

SO Uy, € VxSaUk = Vg Siavn,—1. Since vy, € Spvk+1 = Syv;, also, we see that

Up, € Sivk4+1 Nk Syvg so by (5.10) we conclude vy, € supp(f)fk)) Nsupp(vk - fk(k)).

The discussion above implies that when we evaluate the LHS of (5.9) at w = vy,
we obtain

—1 —1
ijx(Az )(vxz)+61< (UK‘ A(M )) (va,)

1 -1, —
= cjf)f)»z )(sz) + cx vk (f)f)xz )(UK]U)Q)>

o1 Mo—1), _ _
= lex( : )(UA2) +ck vk (fk( : )(vKlvkzvkzl_lvkz—l)>

(5.12)
=c; [] B+exvx| J] vk'vmvi,l(®

BESH, -1 BESH, -1
=c; [[ B+ex ] s

BESI,—1 BES -1
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where in the third equality we have used that v,}l Uj, v;z 1_ | € S)aswesawin(5.11) and

in the last equality we have used that vy, v, - | = 8. Since we have the equality (5.9)
we conclude that

cy l_[ B+ck l_[ sg(B) = 0.

BES,-1 BESH, 1

The above analysis gives us one linear equation relating two of the coefficients
appearing in the LHS of (5.9). We need at least one more equation to be able to
conclude that c; and ck are both equal to 0. To do this, we need to evaluate (5.12) at
another permutation in supp( f)fk)) N supp(vk - f)fk)). To find such a permutation, it
will be useful to set some notation. We define

Ari={ta—ty | (@.b) €{2.3,.... 1} x {a+1,....n), v (@ <h(v;" (b))
and
Ay:={t—tp | bea+1....n—1} 1k <h; B)).

Note that A = @ if A1 = 1. It follows from the definition of 8,,_, Lemma 4.4, and
properties of v;,_; that

Skg—l =A|UA,. (5.13)
Recall that

jor=min{b e A+ 1,....n— 1} | &2 < h(v;," (b)),

From the one-line notation of v;z 17] in (5.1) it follows that v{z 17] (b) = b — Xy, and
together with the fact that Hessenberg functions are non-decreasing, this implies

HAr ={t1 —tjp, 1 = tjo41, ... 11 — ty—1}. (5.14)

Since (1) < A by assumption, we have h(v;zl_l()»l + 1)) = h(l) < Xy so we
conclude that A; + 1 < jjo. Consider the simple reflection sj,_1 exchanging jo — 1
and jo. Since A1 +1 < jo—1 <n —2wehavesj_1 € S and sj,—1(1) = 1 and
Sjp—1(n) = n.
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Recall that one of the hypotheses of Theorem 5.1 is that h(v;zl_ 1Go) < A+ 1.
Using this, we conclude that, in the case when A; > 1, we have

ta—tp € A1 = v (@) € (A2 +2.....n) by (5.1)
= h; (o) <l +1 <! (@
= h(v;",(jo)) < h(v' (b)) by definition of A;
B (5.15)
= vkz—l(b) > U)\z_l(j())
= b > jp since v;;l isincreasingon {A; +1,...,n}, and b, jo € {}1 + 1,...,n}

= Sjo—1(ta — tp) =1ta — tp since jo < banda < Ay < jo— L.

Since (5.15) holds for any B = t, — 1, € Ay we conclude sj,—1(8) = B for all
B € Ai. (In the case A1 = 1, the set A is empty so this statement is vacuously true.)
From (5.14) and (5.13) we then see immediately that

2 V) = — )0 — i) - — 1) [ B

BeA
£ i) = sjo1 (F927 0 ) (5.16)
= (1 —tjp-D)(t1 = tjpr) - (1 —ta) ] B
BeA

since sj,—1 € Sy and 5,1 acts non-trivially only on the first factor of f (}‘2_1)(1);\2).
(Here we interpret the product over A; to be equal to 1 if A; = 1 and A; = #J.) Note
that the above equation implies s, —1v;, € supp( fl\(kr])).

In (5.12) we computed vk - f W—l)(vh) and obtained

v - P ) = [ 5608 = (6 — ti)tn — tjgr) -+ ttw — tat) [ s0(B).

BES,—1 BeA
(5.17)
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We can compute

L -
A

1
VK )(Sjoflv)hz)

=g (f(kzil)(v;(lsjo—lvkz)>

(A=), —1 . -1
= Vg ( ) (Vg 8jo—150V5,—1) ) since sp = ViV,

VK (fk()”rl)(vl_(lsesjo,lvkz,l)) because sy and s j,—1 commute
ro—1 _
= 568y, (fx( 2 )(vA2_1)> because UKISQ € Sy andsj,_, € S) (5.18)

=so |t —tjo )01 —tjp,) -t —tar) [] B

BeA
by definition of £*>~" and (5.16)

=ty — tjg-1)ta — tjgr1) -+t — ta=1) [ ] s6(B).

BeA
In particular, our computations imply s j,—1vx, € supp( f;‘ 21 1 supp(vk - /\(m).
Evaluating (5.9) at vy, and s;,_1v;, we obtain equations
e F i) + ek vk - (727 =0 (5.19)
and
¢y x(szl)(sjoflvxz) +ck vk - k(kr])(sj(rlvkz) =0. (5.20)

Subtracting (5.20) from (5.19) and using the formulas givenin (5.16), (5.17), and (5.18)
we obtain

cy(tjy—1 — tj)(tr — tjoa1) -+ (tr — th—1)

[T B+exio—1 =13t —tjgs1) -+t —ta-t) [ 50(8) =0.

BeA| BeA

Dividing by #j,—1 — ¢}, and rearranging yields

cy(tr — tjg41) -+ (1 — th—1) H B =—cktn —tjg4+1) - (tn — In—1) l_[ s9(B).

BeA BeAy
Substituting this expression back in to (5.19) and using (5.16) and (5.17) we obtain
(1 —tjo) | —cx (tn = tjo.) - (ta —ta) [ 50(B)
BeA
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+cg (th — tjo)(tn - tjo-‘rl) ety — th—1) l_[ s9(B) =0
BeA

from which it follows that

ekt —1) | tn = tjp) - (tn —tat) [] s6(B) | =0
BeA

and we therefore conclude cx = 0, and hence c¢; = 0 also.

We have now shown that two of the coefficients, namely c¢; and cx for J =
{1,2,...,2} and K = {2,3,...,A1,n}, appearing in the linear combination
from (5.9) are equal to 0. Now for any I C [n] of cardinality A; with [JNT| = A1 —1,
by Proposition 5.2 we can find a permutation w such that vy - f)fk) and vy - f/\(k) do

not vanish at w, and vk - f)\(k)(w) = 0 for all K # I and K # J. But then the
fact that c; = 0 implies ¢; = 0 also. Now we can use the fact that any I C [n] of
cardinality A1 can be obtained from J in finitely many steps by changing 1 element
in the subset at a time, so that by iterating this argument we conclude that ¢; = 0 for
all coefficients appearing in the LHS of (5.9), as desired. This shows that the classes
{vy - /\()"2_1) | vy € S,)l‘} are H; (pt)-linearly independent, as desired.

Finally, the assertion that the submodule of H}" (Hess(S, h)) spanned by the S),-
orbit of f)\()"rl) has the same character as Indgz (1) follows immediately from the

fact that the stabilizer of fflz*l) is S, by Lemma 4.11. The stabilizer of vy - f)fk) is
vy Sy v;l =~ S, . This completes the proof of the theorem. O

6 Linear Independence Between Two S,,-Orbits

In this section, we seek to partially address Problem 3 of Sect. 2.4, in a special case.
Recall that Problem 2 asks when a single S,-orbit is Hj (pt)-linearly independent.
Problem 3 then asks for conditions under which a union of more than one S,,-orbit
is also H7 (pt)-linearly independent. In this section, we focus exclusively on the case
where the S),-orbits under consideration consist of homogeneous elements of the same
degree. This is a reasonable condition, since the dot action preserves degrees. We now
state precisely the hypotheses for the special case we consider in this section. First,
we restrict to the case A = (1,n — 1), s0 A1 = 1 and A» = n — 1. In this setting,
by Theorem 4.8 we know that )\(k) is a well-defined equivariant cohomology class
of H]’E(J-Cess(S, h)) for all 0 < k < n — 1. Second, we also assume h(1) < n — 1
so Theorem 5.1 holds, and thus, the set of cohomology classes in the S, -orbit of
)sz_l) = )5"_2) is Hj (pt)-linearly independent.

We now consider the two GKM classes f)f)‘Z) = f)fn_l) and f)\(h_l) = )fn—2)
as defined by (4.8) corresponding to the choices k = A, = n—1land k = X, —
1 = n — 2, respectively. Since A = (1,n — 1), the §,-orbit of both f)f"_l) and

)\(”72) are given by taking the images under the dot action of the elements of S,f =
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{e, ul_l, u2_1 e u;_ll }, where uy was defined in (4.1). For the purpose of this section

only, we define notation as follows:

fir=u P and g = w7 for i =0, =1 (6.1)

1

As explained above, we restrict our considerations to the case in which deg(fy) =
deg(go). The main result of this section is Theorem 6.2, which states that the
set {fo, f1,---s fu—1,80,&1,--., &u—1} is Hj(pt)-linearly independent whenever
deg(fo) = deg(go) > 2. In other words, we show that the union of the two per-
mutation bases { fo, ..., fn—1} and {go, - .., gn—1}, shown individually to be linearly
independent in Theorem 5.1, is still linearly independent when considered together.
This therefore represents another step toward the larger goal of building a global
permutation basis for the entire cohomology ring H7 (Hess(S, h)), as proposed in
Problem 3 of Sect. 2.4.

Before embarking on the proof of Theorem 6.2 we consider the hypothesis that
deg(fo) = deg(go). Recall that §; := N(v,:l) Nvg(®,). Since A = (1,n — 1), we
have that vy = uy for all 0 < k < n — 1 as noted in Remark 4.1. In particular, by
Lemma 4.4 we have

N, ') =f{t1—112<b<n} and Nw,')) ={—1,|2<b<n—1}
We also have
we®, =1t — 15 | ug () < G) < h(ug ' ()
from which it follows that
Spo1={t1 —tp | 2<b<nandn<h(b— 1)} ={n —tix; |1 <i <n—1,h)=n)
and

Spa={t1—tp|2<b<n—1landn—1=<hb-1)}
={n—tit1 |1 i <n—-2,h(i) 2n—1}.

Since the degrees of fj := f)\(nfz) and go = f)\("fl) are given by the cardinalities of
the sets 8, and §,,_1, respectively, we obtain

deg(fo) =i |i <n—1, h(i)) =n —1}| and deg(go) = {i [ i <n, h(i) =n}|.

Thus, in order to ensure that our classes have the same degree, we assume throughout
this section that the Hessenberg function % : [n] — [n] has the property that

ili<n—1, h()>n—1}|={i |i <n, h(i) = n}|. 6.2)

The following lemma records some properties of Hessenberg functions satisfy-
ing (6.2).
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Lemma 6.1 Suppose h : [n] — [n]is a connected Hessenberg function such that (6.2)
holds. Then

(1) theset{i |i <n—1, h(i) > n — 1} is non-empty,

(2) ifwelet j:=min{i |i <n—1, h(i) > n — 1}, then j is the unique element of
[n] such that h(j) =n — 1,

(3) deg(fo) = deg(go) =n — j — 1 for the classes fo, go defined above, and

(4) iflf{lili<n—1,h@)>=n—1}=|{i |i <n, h(i) =n}| > 2, then j <n—2.

Proof For the first claim, observe that under the assumption (6.2), it suffices to show
that{i | i <n —1, h(i) = n} is non-empty. But it follows from the connectedness of
hthath(n—1) =nson—1¢€{i |i <n, h(i) = n}, and hence the set is non-empty
as desired. To prove the second claim we first observe that

{ili<n—=1, h(i) >n—1}
={ili<n—1, h(@)=n—-1}uli|i <n—1, h(i) =n}

and
{ili<n, h(i)=n}={i|i<n—1, h(i) =n}uU{n— 1},

where we have again used that / is connected, so h(i) > i + 1 forall 1 <i <n — 1.
Combining these equations with assumption (6.2), we conclude

ili<n—1, h(i))=n—1}| = 1. 6.3)

The assertion that j is unique and 4(j) = n — 1 now follows. To see the third claim,
note that by definition of j we have

{ili<n—1,h(@)>=n—-1}={j,j+1,j+2,...,n—2}

which implies [{i | i <n — 1, h(i) > n — 1}] =n — j — 1, as claimed. Finally, the
last claim follows immediately from the third claim, since |{i | i <n — 1, h(i) >
n—1}]=n—j—1>2implies j <n — 3, orequivalently j <n — 2. O

We now state our main theorem.

Theorem 6.2 Let A = (1,n — 1) and assume that h : [n] — [n] is a connected
Hessenberg function satisfying condition (6.2) and such that h(1) < n — 1. Let
fi = ui_1 . )f”_z) and g;i = ul._l . f)f"_l) foralli = 0,...,n — 1. Suppose that
deg( fo) = deg(go) > 2. Then the union of the S,-orbits of fy and go, namely the set
{fos -y fu—=1,80,---,8n—1} Is H; (pt)-linearly independent.

Letus make some preliminary observations. In order to show that { fo, f1, ..., fu—1,
80 &1 - - - » n—1}1s H} (pt)-linearly independent, we need to show that if the following
equality holds

cofotcfi+-+cen—1fu-1+dogo+digi+---+di—1gn-1 =0 (64)
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in Hy.(Hess (S, h)), whereco, ..., cy—1,do, ..., dy—1 € Hj(pt), then the coefficients
are all zero,ie.,co=c1=---=cp_1=do=d1=---=d,_1 =0.

In the course of our arguments, will make use of the following [8, p.65, Exercise
11].

Proposition 6.3 Let A be a (m — 1) x m matrix with entries in the polynomial ring
R =kl[t1, ..., t,] where k is a field. Suppose also that the m — 1 rows of A are linearly
independent over R. Then,

(1) The vector b"" = (a1, as, ..., an) € R™ defined by a; = (—1)'*t! det(A;) sat-
isfies Ab = 0. Here A; is the (m — 1) x (m — 1) sub-matrix of A obtained by
deleting the i-th column of A.

(2) Any solution by of the equation Ax = 0 is of the form gb for some g € R, i.e.,
any solution must be a polynomial multiple of b.

We make some preliminary calculations. Set j := min{i | i <n—1,h(i) >n—1}

as in Lemma 6.1. Using the definition of f/\("_z) we can calculate the value of fj at

u,—1 and u,_, to obtain

founy =[] @—tpn= [] & —tix)=fow, 2. (65

i<n—1 j<i<n-2
h(i)>n—1

Similarly for gg we can use the definition of fkn_l) to compute

g, )= [[ -ty ="J] @ -t (6.6)
i<n JjHl<i<n-—1
h(i)=n
Next, recall that by definition fy = ;"72) is non-zero on precisely two right cosets

of S, in S, namely Syu,_> and S)u,_1, where
up— =12,3,...,n—1,1,n] and u,—; =1[2,3,...,n,1]. 6.7)
It is easy to confirm by a direct calculation that
U | = SIS0 Su_ 18182 Sp—] = 5253 - - Sy Un_2. (6.8)
The following are also straightforward computations:
Up_18j = Sjy1up—1 Which means sju;_ll = M;_115j+1
and also

—1
U, 15253+ Sp—1 = g, (6.9)
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where 6 = t; — t,,, S0 sp is the transposition exchanging 1 and n only. We can now
compute

Foot ) =( 7Y 1) by definition of f, -
1( fo(u _1)) by definition of the dot action and fj
=u,_ 1(f0(SzS3---Sn—1un—2)) by (6.8)

=u, 1S253 - Sp—1(fo(un—2)) by Lemma 4.5(3) with y = 5283 - - - 5,1
= 5o (fo(un—2)) by (6.9).

From the above and (6.5) we immediately obtain

Sty =[] @ —tir0). (6.10)

Jj<i<n-=2

Next, note that 2 < j < n — 2 by Lemma 6.1 and because we have assumed that
h(1) < n — 1. We therefore have s; € §; and

Sjln—1€Spttn—1 and Un_1SjUy_1=Sj41Us_ =S 415253 Su—1Un—2 € Sylln_1,
6.11)

where we have used (6.8) and the computations above. We can now compute

folsjun-) =@ —1;) [ @ =ty (6.12)

j<i<n-=2

since fo(sjun—1) = s fo(up—1) and by (6.5). Recall that we also know fo(u,—1) =
fo(un—2) by definition of the class fo = (" D as computed in (6.5). Therefore,

FtCsjun-1) = (w21 fo) (5jtn=1) = 1, (folGta-151t2-1))
w, ' (fo(sj415283 - - Sn_1n—2)) by (6.11)
= u, 515083 sum1 (fo(un—2))
= 5;jsg(fo(u,—1)) by the computations above
= so(fo(sjun—1))
= (ty — 1)) l_[ (t, — t;11) since s; and sy commute and by (6.12).

j<i<n-=2

(6.13)

Finally, we also note that go(sju,—1) = 5;(g0(un—1)) = go(u,—1) since s; € S, and
s fixes the product appearing in (6.6).
With these preliminaries in place, we can now begin our proof of Theorem 6.2.
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Proof of Theorem 6.2 The computations above show that fy, f,—1, and g¢ are all non-
zeroatu,_1 and sju,—1. Lemma 3.4 and Proposition 5.2 tell us that all other f; and g;
evaluate to be zero at u,, 1 and s u, 1. It follows that, when restricted to the T-fixed
point u,_1, equation (6.4) becomes

cofoun—1) +cp—1 fn—1(n—1) +dogo(m—1) =0

and when restricted to s;u,_1 the same equation (6.4) becomes

cofo(sjun—1) + cn1 fu-1(sjup—1) +dogo(sju,—1) = 0.

This is equivalent to the statement that the vector of polynomials (cg, ¢;—1, d)T isa
solution to the matrix equation AX = 0, considered over the ring H7 (pt), where A is
the 2 x 3 matrix

A= [ Joun—1)  fu—1(un—1)  go(un—1) }

Jo(sjun—1) fao1(sjun—1) go(sjun—1)

The entries in A are elements of H’T" (pt) = Clty, ..., t,], a polynomial ring over the
field C.

We wish to apply Proposition 6.3 with m = 3, for which we need first to check
that the rows of A are linearly independent over H7 (pt). To do this it suffices to see
that the determinant of at least one of the 2 x 2 minors of A is non-zero. Let A; for
i =1, 2, 3 denote the minor of A with the i-th column deleted. It is a straightforward
computation to see that

A3 = [ @-u [T @G—tis0 | @ —1p
JjH+l<i<n—1 j<i<n-2
and
Al = [T @—-u [T @G—n)] =150
jHl<i<n—1 j<i<n-2

In particular, we see that A| # 0 and A3z # 0 and A] = —A3. Thus, we may apply
Proposition 6.3, and from it we conclude that (cq, ¢,—1,do) = c(Ay, —Aa, A3z) for
some ¢ € H; (pt). Since we saw above that A = —Aj3, it follows immediately that
co = —dp.

We now give the idea of the next steps in our argument before giving the details.
From Lemma 3.4 and Proposition 5.2 we know that at any given w € S,, exactly
two of the f;’s and one of the g;’s evaluate to be non-zero. In the above argument we
chose two permutations u,_1 and s;u,_1 which have the property that it is exactly
fo, fu—1 and go which evaluate to be non-zero at these permutations, thus isolating
the 3 coefficients cg, ¢,—1 and dy for analysis. By using Proposition 6.3 we were
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then able to conclude that (cq, ¢,—1, dp) must be a scalar multiple of a certain vector
obtained by taking minors of a 2 x 3 matrix, constructed from the values of fy, f,—1,
and go at these permutations. In the next part of our argument, our strategy is to find
another permutation w’ such that fy, f,—1, and go are exactly the three elements in
{fo, f1,---s fu—1, &0, &1, - .., gn—1) evaluated to be non-zero at w’. Replacing Silp—1
with w’, a similar argument as that given above creates a new 2 x 3 matrix B and yields
the conclusion that (co, ¢,—1, dyp) must be a scalar multiple of a vector defined using
the minors of B. Thus, if we can find a permutation w’ such that the vector of minors
of B and the vector of minors of A are linearly independent, then we can conclude
that (co, cn—1, do) must be equal to 0.

We now turn to the details of the argument sketched above. Recall from Lemma 6.1
that deg(fo) = deg(go) = n — j — 1, and our assumption deg( fp) = deg(go) > 2
implies j < n — 2. This in turn implies that the simple reflection s;+; commutes with
s9. We now argue that we may take w’ = s;41u,—1. Indeed, we can compute that
since sj4+1 € Sy, using (6.6) we have

80(sj+1un—1) = 5j+1(80(Un—1)) = (11 —1j41) 1_[ (t1 —tir1) (6.14)
j+l<i<n—1

and

JoGsjr1un—1) = sj+1(fo(un—1)) = folun—1) (6.15)

since s;41 fixes the product appearing in (6.5). Next, using similar reasoning as
in (6.11) and (6.13), we obtain

Jn—1Gjr1un—1) = sj+1(fu—1tn—-1) = fu—1Wn-1)

since 541 also fixes the product appearing in (6.10). Thus, fo, f.,—1, go are precisely
the 3 classes that evaluate to be non-zero at w’, and the other classes are all zero at w’.
The above computations allow us to analyze the relevant 2 x 3 matrix

B = |: So(un—1) Jn—1(Un=1) go(un—1) :|

Jo(sjt1un—1) fu1(sj+1tn—1) 80(Sj4+1Un—1)

Recall that we had already observed that A; = — A3 in the vector of minors obtained
from the original matrix A. Let B; be the analogous minor of B obtained by deleting
the i-th column. As argued above, it suffices to show that (A1, Az, A3) is linearly
independent from (B, Bz, B3), for which it suffices to see that B; # —B3 (since
HZ.(pt) is an integral domain). From the above computations we obtain,

Bl = fuo1(un—1)80(Sj111tn—1) — 80(n—1) fu—1(sj+11n—1)
= fo—1(un—1D[go(sj+1tn-1) — go(un—1)]
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and thus

Bi=| [] -t [T &=t Gra—1540

j<isn—2 jH+l<izn—1
so B; # 0. On the other hand, we have

By = fo(un—1) fa—1(Sj+1un—1) — fu—1@n—1) fo(sj+1un—1) =0

and the result now follows.

Thus, we have seen that (Bi, B2, B3) is Hj(pt)-linearly independent from
(A1, Ay, A3z), which shows that co = ¢,—1 = dy = 0.

To complete the argument, we must now show that c; = d; = 0foralli,0 <i <
n—1.

Consider w € S, suchthatw(n) = landw(n—1) =i+ 1fori ¢ {0, n—1}. Since
w(n) = 1, we obtain w € S, u,—1 which implies that fo(w) # 0 and go(w) # 0.
Furthermore, w(n — 1) = i + | implies that u;w(n — 1) = u;(i + 1) = 1 so
u;w € Spu,_» which tell us that

fiwy =u;" - fow) = u; (fo(uiw)) # 0
also. Thus, evaluating equation (6.4) at w we get
co fo(w) + ¢ fi(w) + dogo(w) = 0.

However, since ¢ = dy = 0, this implies that ¢; = 0, since f;(w) # 0 and HJ (pt) is
an integral domain. Thus, ¢; = 0 for all 0 < i < n — 1. This means that the original

linear dependence relation is among the go, g1, . . ., g.—1, but we have already proved
these are linearly independent, so d; = 0 for all 0 < i < n — 1. This concludes the
proof. O

We conclude with a motivating example and open problem. As noted in the intro-
duction, one reason for focusing on partitions with two parts is the fact that when 4 :
[n] — [n]isanabelian Hessenberg function (thatis, when (1) > max{i | h(i) < n}),
the only irreducible representations which occur in the dot action representation are
those corresponding to partitions with at most two parts (see [12, Cor. 5.12]). In this
case, the Stanley—Stembridge conjecture is known to hold and work of the first two
authors gives an inductive formula for number of permutation representations M*
that appear in each graded part [12]. The following example considers a special case
of abelian Hessenberg functions. Using the constructions of this manuscript, we are
able to define the correct number of equivariant cohomology classes generating the
representations M~ 1D in certain graded pieces of the dot action representation.

Example 6.4 Letn be apositive integer withn > Sandh = n—2,n—1,n,n,...,n).
We consider the decomposition of each graded piece of the dot action representation
into permutation representations, given by
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H¥ (Hess(S.h) = P cuiM™ (6.16)

ukn
u=(1,p2)

In the special case under consideration, we apply the results of [12]. The possible
two-element sink sets (i.e., independent sets) of the “incomparability graph” of h =
n=2,n—1,n,n,...,n)are{l,n—1}, {2, n},and {1, n}. Now the inductive formula
of [12, Thm. 6.1] tells us that

cui =0 unless pe{(n),(n—1,1),(n —2,2)}.
and
C¢n-1,1,; =0 forall0 <i <n—4and cu_1,1)n-3 =2

(The interested reader can find a similar computation in [12, Example 6.2].) In other
words, the minimal degree in which M ~1-D appears is 2(n — 3), and there are exactly
two copies of M~ in this degree. By assumption, / is a connected Hessenberg
function satisfying all assumptions of Theorem 6.2 above. In particular,

Hili<n—1,h@)=n—-1}={i|i<n,h(i)=n}|=n-3

in this case. Thus, the classes { fo, f1,.--, fu—1, 80, &1, -- -, &n—1} give us a linearly
independent set of equivariant classes in H%("%) (Hess(S, h)) that together span
exactly two HJ (pt)-modules, each of which is isomorphic to M (n=11)

The example above shows that our Theorem 6.2 yields part of a permutation basis
for H2"=3) (Hess(S, (n —2,n — 1,n, ..., n))). Indeed, one easily confirms that the
only other representations appearing in this degree are trivial. We therefore recover a
permutation basis for H%("*S)(ﬂ{ess(S, (n—2,n—1,n,...,n))) by adding to our
collection an appropriate number of S, -invariant classes of degree 2(n —3). Itis still an
open question how to build, in the other degrees, linearly independent sets of classes
spanning permutation modules.

More interestingly, since 2(n — 3) is the minimal degree in which M®~1-1) occurs
in H*(Hess(S,(n —2,n—2,n,...,n))), one could hope to obtain classes in higher
degree generating an isomorphic H7 (pt)-submodule by multiplying each of the f;’s
(or g;’s) by some appropriately chosen S, -invariant class.

Problem 6.5 Letn be a positive integerwithn > Sandseth = (n—2,n—1,n, ..., n).

Suppose k > n — 3 and c¢(—1,1),x 7 0 where c(,—1,1),x is the coefficient defined as

in (6.16) above. Identify S,-invariant classes hy, ..., h;; € H%(k_("_3))(3{ess (S, h)),

where m = c(,—1,1),k, and r with 1 <r < m so that the set
(hjfill<j=<r,0<i<n—-1}Ufhjglr+1<k=<m0<i<n-—1}

is HJ.(pt)-linearly independent.
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Any solution to this open problems is another step toward the construction of a
permutation basis for the dot action representation in this case. In general, one may
hope to show that our construction always yields a linearly independent basis for
those M* of minimal degree that appear as summands of the S,-representation on
H (Hess (S, h)), whenever h is abelian.
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