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Abstract
Recent work of Shareshian andWachs, Brosnan and Chow, and Guay-Paquet connects
the well-known Stanley–Stembridge conjecture in combinatorics to the dot action of
the symmetric group Sn on the cohomology rings H∗(Hess(S, h)) of regular semisim-
ple Hessenberg varieties. In particular, in order to prove the Stanley–Stembridge
conjecture, it suffices to construct (for any Hessenberg function h) a permutation
basis of H∗(Hess(S, h)) whose elements have stabilizers isomorphic to Young sub-
groups. In this manuscript, we give several results which contribute toward this goal.
Specifically, in some special cases, we give a new, purely combinatorial construc-
tion of classes in the T -equivariant cohomology ring H∗

T (Hess(S, h)) which form
permutation bases for subrepresentations in H∗

T (Hess(S, h)). Moreover, from the
definition of our classes it follows that the stabilizers are isomorphic to Young sub-
groups. Our constructions use a presentation of the T -equivariant cohomology rings
H∗

T (Hess(S, h)) due to Goresky, Kottwitz, and MacPherson. The constructions pre-
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sented in this manuscript generalize past work of Abe–Horiguchi–Masuda, Chow, and
Cho–Hong–Lee.

Keywords Hessenberg variety · Equivariant cohomology · Stanley-Stembridge
conjecture

Mathematics Subject Classification Primary: 14M15 · Secondary: 05E05

1 Introduction

Hessenberg varieties (in Lie type A) are subvarieties of the full flag varietyF�ags(Cn)

of nested sequences of linear subspaces in C
n . Research concerning Hessenberg

varieties lies in a fruitful intersection of algebraic geometry, combinatorics, and rep-
resentation theory, and they have been studied extensively since the late 1980s. These
varieties are parameterized by a choice of linear operator S ∈ gl(n, C) and non-
decreasing function h : [n] → [n], where [n] := {1, 2, . . . , n}, called a Hessenberg
function. When S is a regular semisimple element and h(i) ≥ i for all i , Hess(S, h)

is called a regular semisimple Hessenberg variety.
Thedot actionof the symmetric group Sn on the cohomology1 rings H∗(Hess(S, h))

of regular semisimple Hessenberg varieties, defined by the third author in [18], has
received considerable recent attention due to its connection to thewell-knownStanley–
Stembridge conjecture in combinatorics. This conjecture states that the chromatic
symmetric function of the incomparability graph of a (3 + 1)-free poset is e-positive,
i.e., it is a non-negative linear combination of elementary symmetric functions. The
Stanley–Stembridge conjecture is a well-known conjecture in the field of algebraic
combinatorics and is related, for example, to various other deep conjectures about
immanants [15]. The relationship between the Stanley–Stembridge conjecture and
Hessenberg varieties was made apparent some years ago by work of Shareshian and
Wachs [16], Brosnan and Chow [5], and Guay-Paquet [11]. We refer the reader to
[12] for a leisurely exposition of the history; for the purposes of this manuscript we
restrict ourselves to recalling that, in order to prove the Stanley–Stembridge conjec-
ture from the point of view of Hessenberg varieties, it suffices to construct a basis of
H∗(Hess(S, h)) that is permuted by the dot action (i.e., a permutation basis) and such
that the stabilizer of each element is a subgroup of Sn generated by reflections. This
problem has motivated much research in the field of Hessenberg varieties in the last
few years.

In this manuscript, we tackle this problem by using techniques that are available in
T -equivariant cohomology and not ordinary cohomology. We exploit general proper-
ties of equivariant cohomology and of the T -action onHess(S, h), which in particular
imply any free H∗

T (pt)-module basis of H∗
T (Hess(S, h)) projects to a C-basis of

H∗(Hess(S, h)) under the natural projection. The definition of the dot action in [18]
used this same philosophy, defining an action on H∗

T (Hess(S, h)) and then inducing

1 In this paper, we focus exclusively on cohomology rings with coefficients in C. We will omit the notation
of coefficients in our cohomology rings for this reason.
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an action on ordinary cohomology by this same projection. Similarly, our strategy is
to first construct a H∗

T (pt)-module basis for H∗
T (Hess(S, h)) which is permuted by

the dot action, and then project it to ordinary cohomology. Since this construction of
the basis is consistent with the construction of the dot action on H∗

T (Hess(S, h)) and
H∗(Hess(S, h)), a set that is permuted by the dot action in equivariant cohomology
projects to a set that is permuted also in ordinary cohomology. Section 2.4 contains
a more leisurely account of this approach toward the Stanley–Stembridge conjecture,
including an explicit formulation of what we call the “permutation basis program.”

Our goal in this manuscript is to take preliminary steps toward the construction of
a permutation basis of H∗(Hess(S, h)) in the following sense. We explicitly con-
struct collections of cohomology classes in H∗

T (Hess(S, h)) which are permuted
by the dot action, are H∗

T (pt)-linearly independent, and whose stabilizer groups
are reflection subgroups. From this it follows that these classes form a permutation
basis of the subrepresentation in H∗

T (Hess(S, h)) which they span. Moreover, we
can identify explicitly this subrepresentation in terms of permutation representations
Mλ := indSn

Sλ
(1) for appropriate partitions λ and Young subgroups Sλ of Sn . Thus, our

results can be viewed as achieving some progress toward the larger goal of building a
full H∗

T (pt)-module permutation basis of H∗
T (Hess(S, h)), with point stabilizers iso-

morphic to Young subgroups—which would in turn resolve the Stanley–Stembridge
conjecture.

One important subtlety is that we consider equivariant cohomology as a module
over a polynomial ring and not as a complex vector space. This means that, when we
equip equivariant cohomology with the structure of a (twisted) representation of the
finite group Sn , a submodule which is stable under the representation may not be a
direct summand. For instance, with the standard action of the permutation group S2 on
C[t1, t2], the symmetric polynomial t1+ t2 generates aC[t1, t2]-subrepresentation that
cannot be written as a direct summand of C[t1, t2]. Thus, although this manuscript
constructs a linearly independent set of vectors in H∗

T (Hess(S, h)) which are per-
muted by the dot action and have stabilizer equal to a Young subgroup, it is not a priori
guaranteed that our set can be extended to a full permutation basis. Another subtlety
is that the H∗

T (pt)-linear independence of our sets of permuted vectors does not nec-
essarily imply that their projections to H∗(Hess(S, h)) are still linearly independent.
Together, these subtleties mean that the open question remains, whether we can indeed
extend our linearly independent sets in this manuscript to a full permuted basis. (See
Sect. 2.4 for more.) This is a question for future work.

We now summarize the results within this manuscript in a rough form. Our
main technical tool is the Goresky–Kottwitz–MacPherson (GKM) theory of T -
equivariant cohomology. Here, we consider the maximal torus T of diagonal matrices
in GL(n, C) and the natural T -action on Hess(S, h) ⊆ F�ags(Cn) induced from
the action of GL(n, C) on F�ags(Cn) ∼= GL(n, C)/B by left multiplication.
GKM theory describes explicitly and combinatorially the T -equivariant cohomol-
ogy H∗

T (Hess(S, h)) as a collection of lists of polynomials—one polynomial for
each permutation w ∈ Sn—which satisfy compatibility conditions (see (2.4)); see
[18] for details. While the explicit combinatorial nature of the GKM description of
H∗

T (Hess(S, h)) is convenient for many purposes, it is worth pointing out that the
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question of building permutation bases in the language of GKM theory poses its own
computational challenges. This is because the dot action exchanges polynomials asso-
ciated to different permutationsw ∈ Sn , and this complicates the analysis of the linear
independence of orbits under the dot action. Nevertheless, in some special cases we
are able to overcome these obstacles, as we now explain.

Our first results give purely combinatorial constructions of well-defined GKM
classes in H∗

T (Hess(S, h)). We begin by formalizing a statement which is well
known to experts but which (to our knowledge) has not been recorded in the lit-
erature in this generality. Let λ = (λ1, λ2, . . . , λ�) be a composition of n and Sλ

denote the associated Young subgroup, generated by the set of simple reflections
{si | i /∈ {λ1, λ1 +λ2, . . . , λ1 +λ2 +· · ·+λ�−1}}. Let vλ be the permutation obtained
by taking the longest permutation w0 = [n, n − 1, . . . , 2, 1] in Sn and re-ordering the
values {1, 2, . . . , λ1}, {λ1 + 1, . . . , λ1 + λ2}, . . . , {λ1 + λ2 + · · · + λ�−1 + 1, . . . , n}
to be increasing. Recall that vλ is the unique maximal element with respect to Bruhat
order in the set of shortest coset representatives for Sλ\Sn . Now define a function
f (k)
λ : Sn → C[t1, . . . , tn] by

fλ(w) :=
{∏

ti −t j ∈N−
h (vλ)(tw(i) − tw( j)) if w = yvλ, for some y ∈ Sλ

0 otherwise

where N−
h (vλ) := {ti − t j | i > j and vλ(i) < vλ( j) and i ≤ h( j)}. Then it is well

known among experts that fλ ∈ H
2|N−

h (vλ)|
T (Hess(S, h)) is a well-defined equivariant

cohomology class.
The above construction yields T -equivariant cohomology classes which have the

special property that their support set (i.e., the permutations w ∈ Sn on which
fλ(w) 	= 0) is the single coset of the Young subgroup Sλ containing the maximal
coset representative vλ. Thus, we call these “top-coset classes.” Moreover, it is not
difficult to see that the orbit under the dot action of these “top-coset classes” is H∗

T (pt)-
linearly independent. Specifically, for fλ the top-coset GKM class defined above, the
Sn-orbit of fλ under the dot action

{w · fλ | w ∈ Sn}

is H∗
T (pt)-linearly independent. Furthermore, the H∗

T (pt)-subrepresentation of H∗
T

(Hess(S, h)) spanned by this set in H∗
T (Hess(S, h)) is an Sn-subrepresentation with

the same character as the Sn-representation indSn
Sλ

(1) 
 MP(λ), where P(λ) is the
partition of n obtained from λ by rearranging the parts in decreasing order. We explain
these facts in some detail in Sect. 3.

As mentioned above, even in cases for which the Stanley–Stembridge conjec-
ture is known to hold, constructing an explicit basis for the free H∗

T (pt)-module
H∗

T (Hess(S, h)) which is permuted by the dot action remains difficult. Progress has
been made in two special cases. The first is h = (h(1), n, . . . , n), studied by Abe,
Horiguchi, and Masuda in [1] and the second is h = (2, 3, . . . , n, n) where Cho,
Hong, and Lee [6] recently proved a conjecture of Chow [7] which gave an explicit
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permutation basis in this special case. In each of these settings, the authors use the
top-coset construction outlined above.

In order to make progress on the construction of a permutation basis in the general
case we need recipes for constructing classes that have support on more than one
coset. Our first main result takes a step in this direction, in the special case when the
composition has two parts. This is a natural first case to consider, as the Stanley–
Stembridge conjecture is known to be true in the so-called “abelian case,” and in that
setting, the permutation representations occurring as summands of the dot action are
either trivial or correspond to partitions of n with exactly two parts (see [12]). We have
the following; for precise definitions see Sect. 4.

Theorem 1 (Theorem 4.8) Let h : [n] → [n] be a Hessenberg function and λ =
(λ1, λ2) a composition of n. Let 0 ≤ k ≤ λ2. If λ1 > 1 then we additionally assume
that h(k + 2) = n. Let vk denote the permutation whose one-line notation is given
in (4.4) in Sect. 4 and let Sk := {ti − t j | i < j and v−1

k (i) > v−1
k ( j) and v−1

k (i) ≤
h(v−1

k ( j))}. Then the function f (k)
λ : Sn → C[t1, . . . , tn] defined by

f (k)
λ (yv) :=

{∏
ta−tb∈Sk

(ty(a) − ty(b)) if v ≥ vk, y ∈ Sλ

0 otherwise

is a well-defined equivariant cohomology class in H2|Sk |
T (Hess(S, h)).

We recover the top-coset classes from the construction above in the special case
where k = λ2 (since vk = vλ and Sk = vk(N−

h (vλ)) in that case). When k < λ2
our classes are supported on a union of right cosets and we can give (Lemma 4.10)
a concrete description of their support and the support of any element in the Sn-orbit
of f (k)

λ under the dot action. Since these support sets consist of unions of more than

one coset in general, proving that the Sn-orbit of f (k)
λ is H∗

T (pt)-linearly independent
becomesmore difficult. However, we do obtain a linear independence result analogous
to the top-coset case mentioned above in the case where k = λ2 − 1, under some
additional hypotheses on the Hessenberg function h. Roughly, the result is as follows;
see Theorem 5.1 for the precise statement.

Theorem 2 (Theorem 5.1) Let h : [n] → [n] a Hessenberg function. Let λ = (λ1, λ2)

be a composition of n such that h(1) < λ2. If λ1 > 1, we place additional assumptions
on the Hessenberg function h as in Theorem 5.1 below. Then

(1) the Sn-orbit of f (λ2−1)
λ is H∗

T (pt)-linearly independent, and
(2) the stabilizer of each element in the Sn-orbit is conjugate to the Young subgroup

Sλ.

In particular, the H∗
T (pt)-submodule of H∗

T (Hess(S, h)) spanned by the Sn-orbit of

f (λ2−1)
λ is an Sn-subrepresentation with the same character as IndSn

Sλ
(1) 
 MP(λ),

where P(λ) is the partition of n obtained from λ by rearranging the parts to be in
decreasing order.

Finally, we address the question of combining the permutation bases obtained above
to form a permutation basis of a larger subrepresentation. Considering such unions is
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essential since a permutation basis for H∗
T (Hess(S, h))will generally consist of a col-

lection of permutation bases, one for each induced permutation representation indSn
Sλ

(1)
contained in H∗

T (Hess(S, h)), where the union of all such bases is still H∗
T (pt)-linearly

independent. As in the case of a single permutation representation, however, proving
the linear independence of such unions of classes can be technically difficult. Neverthe-
less, we are able to prove the linear independence of a union of two such permutation
bases in the special case of λ = (1, n − 1). A rough statement is as follows; for the
precise statement see Theorem 6.2.

Theorem 3 (Theorem 6.2) Let λ = (1, n − 1) and assume h is a Hessenberg function
such that h(1) < n − 1, deg f (n−1)

λ = deg f (n−2)
λ , and h(i) > i for all i . Then the

union of the Sn-orbits of f (n−1)
λ and f (n−2)

λ , i.e., the set

{w · f (n−1)
λ | w ∈ Sn} ∪ {w · f (n−2)

λ | w ∈ Sn},

is H∗
T (pt)-linearly independent. In particular, the H∗

T (pt)-submodule of H∗
T (Hess(S,

h)) spanned by this union of Sn-orbits is an Sn-subrepresentation isomorphic to the
direct sum of two copies of the permutation representation with same character as
IndSn

Sλ
(1) 
 M (n−1,1).

Example 6.4 below presents an application of our theorem in the case that h = (n −
2, n − 1, n, . . . , n). Although we do not have a complete description of a permutation
basis for H∗

T (Hess(S, h)) in that case, our results do yield a basis for the two copies
of M (n−1,1) of minimal degree that do occur. Our example also motivates a statement
of a natural follow-up problem which we give in Problem 6.5.

The advantage of the construction from Theorem 1 is that we obtain explicit combi-
natorial formulas for the equivariant classes, their support sets, and a clear description
of the dot action on each f (k)

λ . It is worth emphasizing that this kind of information can
be quite difficult to obtain when the classes are defined geometrically. Moreover, it is
this information that gives us the leverage needed to prove the main theorems regard-
ing H∗

T (pt)-linear independence. On the other hand, these linear independence results
apply only in special cases, particularly the results of Theorem 3. In the recent preprint
[6], Cho, Hong, and Lee give a geometric construction of a basis for H∗

T (Hess(S, h))

in all cases, by using an affine paving of that variety. Although these “geometric”
classes are linearly independent, they do not in general form a permutation basis with
respect to the dot action, and there is no known general, explicit combinatorial formula
for the values of these classes at different permutations w ∈ Sn , except for the spe-
cial case h = (2, 3, . . . , n, n). Therefore, it is currently a compelling open question
to express our classes—which are defined purely combinatorially—in terms of the
basis constructed geometrically in [6], particularly in the abelian case. We discuss this
further in Sect. 4; see Problem 4.9 below.

We now give a brief overview of the contents of this paper. Section 2 discusses
relevant backgroundmaterial, including the presentation of H∗

T (Hess(S, h)) viaGKM
theory, and an overview of useful facts regarding the combinatorics of Sn and its coset
decompositions. In addition, we provide in Sect. 2.4 an expository account of the
broader context inwhich ourmanuscript should be placed. In particular, we give a clear
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statement of what we call the “permutation basis program,” which seeks to solve the
Stanley–Stembridge conjecture using the geometry of Hessenberg varieties. In Sect. 3,
although the construction of top-coset classes is known to the experts, we formalize the
presentation of these equivariant classes. We then define the equivariant cohomology
classes studied in this manuscript in Sect. 4. Our main theorem proves that, under
some minor assumptions on the Hessenberg function h, these are well-defined classes
in H∗

T (Hess(S, h)) andwe are able to give an explicit description of their supports.We
state the problem of connecting our GKM classes to those defined by Cho, Hong, and
Lee in Problem 4.9. Sections 5 and 6 prove the linear independence results appearing
in Theorem 2 and Theorem 3, respectively. We conclude Sect. 6 with an application
of our linear independence theorems to the case of h = (n − 2, n − 1, n, . . . , n) and
the statement of a natural question, to be analyzed in future work, in Problem 6.5.

2 Background

In this section, we briefly recall some notation and terminology needed for discussion
of Hessenberg varieties and their associated cohomology rings. We refer to [12] for a
more leisurely account. In the final subsection, Sect. 2.4, we also give an expository
account of the larger context of this paper, and give explicit statements of the broader
research problems to which this paper contributes.

2.1 HessenbergVarieties, Hessenberg Functions, and the Type A Root System

The (full) flag variety F�ags(Cn) is the collection of sequences of nested linear sub-
spaces of C

n :

F�ags(Cn) := {V• = ({0} ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vn−1 ⊂ C
n) | dimC(Vi )

= i for all i = 1, . . . , n}.

A Hessenberg variety in F�ags(Cn) is specified by two pieces of data: a Hessen-
berg function and a choice of an element in gl(n, C). A Hessenberg function is a
non-decreasing function h : [n] → [n]. In this paper, we consider only Hessenberg
functions such that h(i) ≥ i for all i ∈ [n] and implicitly make this assumption for
all such functions appearing below. We frequently write a Hessenberg function by
listing its values in sequence, i.e., h = (h(1), h(2), . . . , h(n)). Now let X be an n × n
matrix in gl(n, C), which we also consider as a linear operator C

n → C
n . Then the

Hessenberg variety Hess(X, h) associated to h and X is defined to be

Hess(X, h) := {V• ∈ F�ags(Cn) | XVi ⊆ Vh(i) for all i ∈ [n]} ⊂ F�ags(Cn).

(2.1)

In this paper, we focus on a special case of Hessenberg varieties. Let S denote a regular
semisimple matrix in gl(n, C), that is, a matrix which is diagonalizable with distinct
eigenvalues. Then we call Hess(S, h) a regular semisimple Hessenberg variety.
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Note that h(i) ≥ i for all i ∈ [n] implies Hess(S, h) is non-empty. The equivariant
cohomology of Hess(S, h) is the main object of study in this paper.

Now we set some notation associated to type A root systems. Let h ⊆ gln(C)

denote the Cartan subalgebra of diagonal matrices, and let ti denote the coordinate
function on h reading off the (i, i)-th matrix entry along the diagonal. We denote the
root system of gln(C) by � := {ti − t j | i, j ∈ [n], i 	= j}, with the subset of positive
roots given by

�+ := {ti − t j | 1 ≤ i < j ≤ n}.

The negative roots in � are �− := � \ �+, and we denote the simple positive roots
in �+ by

� := {αi := ti − ti+1 | 1 ≤ i ≤ n − 1}.

Given h : [n] → [n] a Hessenberg function, it will be convenient to consider variants
of the above terminology which incorporate the data of h. In particular, we define the
notation

�−
h := {ti − t j ∈ �− | i ≤ h( j)}. (2.2)

It is clear that the set �−
h is determined by the Hessenberg function h, but it is useful

to also note that h is uniquely determined by �−
h (since h(i) ≥ i for all i ∈ [n]).

We also recall some terminology concerning inversions. TheWeyl group in Lie type
A is the symmetric group Sn on n letters. Given a permutation w ∈ Sn , the inversion
set of w is given by

N (w) := {γ ∈ �+ | w(γ ) ∈ �−}. (2.3)

Note that γ = ti − t j is an inversion of w if and only if i < j and w(i) > w( j). Thus,
the pair (i, j) is an inversion of the permutation w in the classical sense if and only if
γ = ti − t j ∈ N (w). We also set

N−(w) := {γ ∈ �− | w(γ ) ∈ �+}.

It is straightforward to see that w(N−(w)) = N (w−1). Let �(w) denote the (Bruhat)
length function on Sn . Then �(w) = |N (w)| = |N−(w)|. If γ = ti − t j ∈ � then
we denote by sγ the transposition of Sn swapping i and j . We do not differentiate
between positive and negative roots with this notation, so in particular sγ = s−γ . It is
well known that �(wsγ ) < �(w) for γ ∈ � if and only if γ ∈ N−(w) [14, Sections
1.6-1.7]. When αi ∈ � we write si := sαi for the simple reflection swapping i and
i + 1.
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2.2 The Equivariant Cohomology ofHess(S, h) and the Dot Action Representation

In this section, we briefly recall some facts about the ordinary and equivariant coho-
mology rings of regular semisimple Hessenberg varieties, and the definition of the dot
action representation on these rings. We refer the reader to [12,17,18] for more details.
Let h : [n] → [n] be a Hessenberg function and Hess(S, h) the regular semisimple
Hessenberg variety associated to h. The maximal torus T of diagonal matrices in
GL(n, C) acts on F�ags(Cn) preserving Hess(S, h) and

Hess(S, h)T = F�ags(Cn)T ∼= Sn,

where we identify Sn with the permutation flags in F�ags(Cn). In this setting, the
localization theorem of torus-equivariant topology applies and the inclusion map of
the fixed point set into Hess(S, h) induces an injection,

ι : H∗
T (Hess(S, h)) ↪→ H∗

T (Hess(S, h)T ) =
⊕
w∈Sn

H∗
T (pt) ∼=

⊕
w∈Sn

C[t1, . . . , tn].

For f ∈ H∗
T (Hess(S, h)), since ι is injective, by slight abuse of notation we denote

also by f its image in H∗
T (Hess(S, h)T ). For each w ∈ Sn we denote by f (w) ∈

C[t1, . . . , tn] the w-th component of f in the decomposition above.
Applying results ofGoresky–Kottwitz–MacPherson, one obtains the following con-

crete description of the image of ι as in [18]:

H∗
T (Hess(S, h))

∼=
⎧⎨
⎩ f ∈

⊕
w∈Sn

C[t1, . . . , tn]
∣∣∣∣ for all w ∈ Sn and γ = ti − t j ∈ N−(w) ∩ �−

h ,

f (w) − f (wsγ ) is divisible by w(γ ) = tw(i) − tw( j).

⎫⎬
⎭
(2.4)

We call the condition described in the right-hand side of (2.4) the GKM condition
for Hess(S, h). Since the set N−(w) ∩ �−

h appearing in (2.4) is used so frequently,
we define the notation

N−
h (w) := N−(w) ∩ �−

h . (2.5)

Motivated by the above, the GKM graph of the regular semisimple Hessenberg
variety Hess(S, h) is defined as the (labeled, directed) graph with vertex set Sn and
edges

w
w(γ )

wsγ ,

where γ ∈ N−
h (w). Note that w → wsγ an edge implies wsγ < w, as γ ∈ N−(w).

The set of labels of the directed edges in the GKM graph of Hess(S, h) with w as a
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source is

w(N−
h (w)) = w(N−(w) ∩ �−

h ) = w(N−(w)) ∩ w(�−
h ) = N (w−1) ∩ w(�−

h ),

(2.6)

where we have used the fact that w(N−(w)) = N (w−1).

Example 2.1 Let n = 3 and h = (2, 3, 3). TheGKMgraph ofHess(S, h) is as follows:

s1s2s1
t1−t2t2−t3

s1s2

t1−t3

s2s1

t1−t3

s1

t1−t2

s2

t2−t3

e

The GKM graph is the combinatorial data encoding the set of GKM conditions for
Hess(S, h) on the RHS of (2.4). When h = (n, n, . . . , n), we have �−

h = �− and
Hess(S, h) = F�ags(Cn); theGKMgraph of the flag variety is also called theBruhat
graph of Sn . In this special case, since N−(w) is a subset of �− by definition, we see
that the set of edges with w as a source in the GKM graph of F�ags(Cn) is in one-to-
one correspondence with N−(w). Moreover, in this case, the set of these edge labels is
w(N−(w)) = N (w−1). We can see from (2.4) that in order to obtain the GKM graph
forHess(S, h) from the Bruhat graph, we simply delete the edges corresponding to γ

with γ /∈ �−
h . In summary, there are precisely |�−

h | = dimHess(S, h) edges adjacent
tow in the GKM graph forHess(S, h) and exactly |N−

h (w)| edges withw as a source.
Now we recall the Sn-action, often called the “dot action,” on H∗

T (Hess(S, h)) and
H∗(Hess(S, h)) constructed explicitly by the third author in [18]. First, we define an
Sn-action on the polynomial ring C[t1, . . . , tn] in the standard way by permuting the
indices of the variables, i.e., for ti ∈ C[t1, . . . , tn] and v ∈ Sn we define v(ti ) :=
tv(i). This induces an Sn-action on C[t1, . . . , tn] by C-linear ring homomorphisms.
By (2.4), an element f ∈ H∗

T (Hess(S, h)) is specified uniquely by a list ( f (w))w∈Sn

of polynomials in C[t1, . . . , tn] satisfying the GKM conditions. Given v ∈ Sn and
f = ( f (w))w∈Sn , the dot action of v on f is defined by

(v · f )(w) := v( f (v−1w)) for all w ∈ Sn . (2.7)

It is straightforward to check that the class v · f also satisfies the GKM conditions,
and we therefore obtain a well-defined action of Sn on H∗

T (Hess(S, h)), called the
dot action representation. This is a twisted group action on equivariant cohomology
as it acts non-trivially on the underlying ring of scalars H∗

T (pt) 
 C[t1, . . . , tn]—the
action on H∗

T (pt) is the standard action of Sn on the polynomial ring defined above. The
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dot action on the equivariant cohomology H∗
T (Hess(S, h)) induces the dot action on

ordinary cohomology H∗(Hess(S, h)) by the forgetful map π : H∗
T (Hess(S, h)) →

H∗(Hess(S, h)). Indeed, the forgetful map is known to be surjective and the dot action
preserves the kernel [18], hence this induces awell-defined action on H∗(Hess(S, h)).

Remark 2.2 It is known that in the case of regular semisimple Hessenberg varieties,
the T -equivariant cohomology H∗

T (Hess(S, h)) is a free H∗
T (pt)-module, and that

the forgetful map H∗
T (Hess(S, h)) → H∗(Hess(S, h)) is the surjection obtained by

taking the quotient by the ideal 〈t1, t2, . . . , tn〉 ⊆ H∗
T (pt) ∼= C[t1, . . . , tn]. From this it

follows that the image of a permutation basis (as a H∗
T (pt)-module) of H∗

T (Hess(S, h))

is a permutation C-basis of H∗(Hess(S, h)). However, as noted in the introduction, a
H∗

T (pt)-linearly independent set need not map to a C-linearly independent set under
the natural projection.

As discussed in the introduction, Shareshian and Wachs conjectured in [16] that
the above “dot action” representation on H∗(Hess(S, h)) is related to the well-known
Stanley–Stembridge conjecture. Specifically, they conjectured a tight relationship
between the chromatic Hessenberg function of the incomparability graph of a unit
interval order to the dot action on H∗(Hess(S, h)) as defined above; we refer to [16,
Conjecture 10.1] for the detailed statement. Shareshian and Wachs’ conjecture was
proven by Brosnan and Chow [5], and independently by Guay-Paquet [11], in 2015.
For the purposes of this paper it suffices to recall that these results imply that the
Stanley–Stembridge conjecture would follow from the following conjecture, phrased
in terms of the dot action on H∗(Hess(S, h)) (see [16, Conjecture 10.4]).

Conjecture 2.3 Let h : [n] → [n] be a Hessenberg function. Then there exists a basis
of H∗(Hess(S, h)) that is permuted by the dot action, and such that the stabilizer of
each element in the basis is a reflection subgroup.

The motivation for this manuscript is to take some steps toward addressing Conjec-
ture 2.3, but as discussed in the Introduction and due to the observations in Remark 2.2,
we opt below to focus exclusively on the equivariant version of Conjecture 2.3, since
a solution to the equivariant version yields a solution to Conjecture 2.3.

Before concluding this subsection we make one more simplifying remark. Recall
that a Hessenberg function h : [n] → [n] is connected if h(i) > i for all i ∈ [n − 1].
This terminology is due in part to the fact that the corresponding regular semisimple
Hessenberg varietyHess(S, h) is connected if and only if h is connected [3, Appendix
A]. If h is not connected then it is straightforward to argue that the connected com-
ponents ofHess(S, h) are each isomorphic to a direct product of ‘smaller’ connected
regular semisimple Hessenberg varieties (see the analogous argument given in [10,
Theorem 4.5]). In that case, the dot action on H∗(Hess(S, h)) is induced from the dot
action of a reflection subgroup on the cohomology of this connected component (the
equivalent statement for chromatic quasisymmetric functions is very well known; c.f.
[2, Theorem 1.1(B)]). Thus, in order to address Conjecture 2.3 it suffices to consider
only those regular semisimple Hessenberg varieties corresponding to connected Hes-
senberg functions.On the other hand,many of our theorems belowhold forHessenberg
functions without this additional restriction. We therefore note when this assumption
is required.
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2.3 Weyl Group Combinatorics

We now take a moment to briefly review and set notation regarding combinatorics
of Sn . Let μ = (μ1, μ2, . . . , μ�) be a composition of n, that is, μ1, μ2 . . . , μ� are
positive integers such that μ1 + μ2 + · · · + μ� = n. Throughout this section, we let
[μ]i = μ1 + · · · + μi for all i = 1, . . . , � and set [μ]0 := 0. Note that [μ]1 = μ1 and
[μ]� = n.

We define the Young subgroup corresponding to μ to be the subgroup

Sμ := 〈si | i /∈ {[μ]1, [μ]2, . . . , [μ]�−1}〉 ⊆ Sn .

Any subgroup of Sn generated by simple reflections is of the form Sμ for some com-
position μ of n. Moreover, it is well known that any reflection subgroup of Sn , i.e.,
a subgroup of Sn generated by reflections, is conjugate to a Young subgroup Sμ for
some μ.

In our computations below, we frequently consider the set of right and left cosets,
denoted, respectively, by Sμ\Sn and Sn/Sμ, of a given Young subgroup Sμ. The short-
est length right (respectively, left) coset representatives for Sμ\Sn (respectively,
Sn/Sμ) are defined as follows:

μSn := {v ∈ Sn | v−1(αi ) ∈ �+ for all i ∈ [n] \ {[μ]1, [μ]2, . . . , [μ]�−1}}

and

Sμ
n := {v ∈ Sn | v(αi ) ∈ �+ for all i ∈ [n] \ {[μ]1, [μ]2, . . . , [μ]�−1}}.

It follows immediately from the definitions above that

(μSn)−1 = Sμ
n . (2.8)

These shortest coset representatives are useful, among other things, for decompos-
ing arbitrary elements of Sn , as the followingwell-known lemmastates [14, Prop. 1.10].

Lemma 2.4 Let w ∈ Sn. Then w can be written uniquely as

(1) w = yv for some y ∈ Sμ and v ∈ μSn, and
(2) w = v′y′ for some y′ ∈ Sμ and v′ ∈ Sμ

n .

Moreover, for such y, y′ ∈ Sμ and v ∈ μSn and v′ ∈ Sμ
n , we have �(w) = �(y) +

�(v) = �(v′) + �(y′).

Remark 2.5 The factors y and v in the decomposition of w given in Lemma 2.4(1)
have a straightforward interpretation in terms of the one-line notation of w, as we
now describe. In order to obtain the one-line notation for v, rearrange the values of
{[μ]i +1, [μ]i +2, . . . , [μ]i+1} in the one-line notation of w to be in increasing order
from left to right, for each i = 0, . . . , � − 1. The result is the one-line notation for v,
which is the shortest right coset representative of w in Sμ\Sn . Now y is simply the
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element of Sn which permutes the sets {[μ]i +1, [μ]i +2, . . . , [μ]i+1} to be in the same
order that was found in the originalw, for each i = 0, . . . , �−1. Similarly, there is also
a simple method for obtaining the decomposition w = v′y′ in Lemma 2.4(2) from the
one-line notation ofw. Specifically,weobtain the one-line notation ofv′ by rearranging
the values in the one-line notation ofw in positions {[μ]i +1, [μ]i +2, . . . , [μ]i+1} in
increasing order from left to right for all i = 0, . . . , �−1. In this case, y′ is the element
of Sn which permutes the sets {[μ]i + 1, [μ]i + 2, . . . , [μ]i+1} into the same relative
order as those in the one-line notation forw in positions {[μ]i +1, [μ]i +2, . . . , [μ]i+1}
for all i = 0, . . . , � − 1.

Example 2.6 Let n = 7 and μ = (4, 3). Let w = [6, 4, 1, 7, 2, 5, 3]. Write w = yv

for y ∈ Sμ and v ∈ μSn . From Remark 2.5 we obtain

y = [4, 1, 2, 3, 6, 7, 5] and v = [5, 1, 2, 6, 3, 7, 4].

Similarly, we have w = v′y′ for y′ ∈ Sμ and v′ ∈ Sμ
n with

y′ = [3, 2, 1, 4, 5, 7, 6] and v′ = [1, 4, 6, 7, 2, 3, 5].

We will also use the unique (Bruhat) maximal element contained in μSn , and simi-
larly for the set of shortest left coset representatives, which can be described explicitly
as follows. Let w0 = [n, n − 1, . . . , 1] denote the maximal element of Sn , i.e., the
longest permutation of Sn . Then the maximal element of μSn , denoted herein as vμ,
is the shortest right coset representative of the right coset Sμw0 (see [4, Prop. 2.5.1]).
For example, if n = 7 and μ = (4, 3) as in Example 2.6 then

vμ = [5, 6, 7, 1, 2, 3, 4].

Note also that the maximal element of Sμ
n is v−1

μ . From this description of vμ, the
following is straightforward.

Lemma 2.7 For γ a root, we have γ ∈ N−(vμ) if and only if svμ(γ ) /∈ Sμ.

Given a composition μ of n, let μ′ := (μ�, μ�−1, . . . , μ1) be the composition
obtained by reversing the entries. For example, if μ = (3, 4, 4), we obtain μ′ =
(4, 4, 3). Note that [μ′]i = μ� + μ�−1 + · · · + μ�−i+1 for all i = 1, . . . , �. The
correspondence μ �→ μ′ defines an involution on the set of compositions of n, since
evidently (μ′)′ = μ. We will also need the following simple lemma.

Lemma 2.8 Letμ = (μ1, μ2, . . . , μ�)be a composition of n andμ′ = (μ�, μ�−1, . . . ,

μ1). The maximal element of μSn and the maximal element of Sμ′
n are equal, i.e.,

vμ = v−1
μ′ .

Proof It follows from the discussion above that

vμ([μ′]�−i−1 + j) = [μ]i + j for all 0 ≤ i ≤ � − 1 and 1 ≤ j ≤ μi+1. (2.9)
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Similarly,

vμ′([μ]i + j) = [μ′]�−i−1 + j for all 0 ≤ i ≤ � − 1 and 1 ≤ j ≤ μi+1. (2.10)

It follows from these formulas that vμ = v−1
μ′ , as desired. The desired result now

follows from the fact that the maximal element of Sμ′
n is v−1

μ′ by (2.8). ��
The next lemma is completely elementary; we include the statement since we use

it repeatedly.

Lemma 2.9 Let W be a group and H ⊆ W a subgroup. Suppose Hσ is a right coset
of H in W , and consider the subgroup Hσ := σ−1Hσ . Then there is a well-defined
bijection

φσ : H\W → W/Hσ , φσ (Hτ) = τ−1σ Hσ .

Moreover, given two right cosets Hσ1 and Hσ2 of H in W , we have φσ1(Hτ) ∩
φσ2(Hτ) 	= ∅ if and only if Hσ1 = Hσ2, and therefore the left cosets φσ1(Hτ) and
φσ2(Hτ) of the (possibly distinct) subgroups Hσ1 and Hσ2 in W are either disjoint or
equal.

We apply Lemma 2.9 below to obtain a bijection between the right cosets Sμ\Sn

and left cosets Sn/Sμ′ . We use this correspondence in the following sections to give
a simple description of the GKM classes defined therein. In the special case where v

is maximal element of μSn , the map φv from Lemma 2.9 further induces a bijection
between shortest coset representatives.

Lemma 2.10 Let μ be a composition of n and vμ denote the maximal-length element
of μSn. There is a well-defined bijection

φvμ : μSn −→ Sμ′
n ; v �→ v−1vμ, (2.11)

and moreover, we have v−1
μ Sμvμ = Sμ′ .

Proof Note that φvμ can be viewed as a restriction to coset representatives of the
bijection defined in Lemma 2.9 at the level of cosets. To prove the desired result, we
need only show that this restriction to shortest coset representatives is well defined.

Let v ∈ μSn . To show that φvμ is well defined we need to show v−1vμ ∈ Sμ′
n . To see

this, let

k ∈ [n] \ {[μ′]1, [μ′]2, . . . , [μ′]�−1} = [n] \ {μ�,μ� + μ�−1, . . . , μ� + · · · + μ2}.

By definition of Sμ′
n it now suffices to show v−1vμ(αk) ∈ �+, i.e., that v−1vμ(k) <

v−1vμ(k + 1). By our assumptions, it follows that we can write k = [μ′]i + j for
some 0 ≤ i ≤ � − 1 and 1 ≤ j < μ�−i . The formula (2.9) implies

v−1vμ(k) = v−1([μ]�−i−1 + j) and v−1vμ(k + 1) = v−1([μ]�−i−1 + j + 1).
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Now v−1([μ]�−i−1 + j) is the position of [μ]�−i−1 + j in the one-line notation
of v and v−1([μ]�−i−1 + ( j + 1)) is the position of [μ]�−i−1 + j + 1 in the one-
line notation of v. Thus, we have only to show that [μ]�−i−1 + j appears before
[μ]�−i−1 + j + 1 in the one-line notation of v. But this follows from the fact that
v ∈ μSn and [μ]�−i−1 + j ∈ [n] \ {[μ]1, [μ]2, . . . , [μ]�−1}. We conclude φvμ is
indeed well defined. The fact that φvμ is bijective now follows from Lemma 2.9.

Finally, recall that Sμ is generated by the simple reflections sk with k /∈ [n] \
{[μ]1, [μ]2, . . . , [μ]�−1}. To prove v−1

μ Sμvμ = Sμ′ , we show that v−1
μ (αk) = αm for

somem /∈ [n]\{[μ′]1, [μ′]2, . . . , [μ′]�−1}. This implies that conjugation by v−1
μ = vμ′

maps the generators of Sμ to those of Sμ′ . Since k ∈ [n]\{[μ]1, [μ]2, . . . , [μ]�−1}, we
may write k = [μ]i + j for some 0 ≤ i ≤ � − 1 and 1 ≤ j < μi+1. Applying (2.10)
we obtain

vμ′(k) = [μ′]�−i−1 + j and vμ′(k + 1) = [μ′]�−i−1 + j + 1.

Thus, vμ′(αk) = αm form = [μ′]�−i−1+ j . Since [μ′]�−i−1 = μ�+μ�−1+· · ·+μi+1
and j < μi+1 we have m /∈ [n] \ {[μ′]1, [μ′]2, . . . , [μ′]�−1} as desired. ��

We end this subsection with two facts that will be used later. The first lemma below
describes a decomposition of the sets N (w−1) and N−(w) associated to a permutation
w ∈ Sn . We will frequently apply this statement below in the context of Lemma 2.4;
a proof can be found in [14, Section 1.7].

Lemma 2.11 Let w = yv ∈ Sn such that �(w) = �(y) + �(v). Then N (w−1) =
N (y−1) � yN (v−1) and N−(w) = N−(v) � v−1N−(y).

Example 2.12 To illustrate the decomposition N−(w) = N−(v)�v−1N−(y), consider
w = [6, 4, 1, 7, 2, 5, 3] as in Example 2.6. In this case, y = [4, 1, 2, 3, 6, 7, 5] and
v = [5, 1, 2, 6, 3, 7, 4]. Then

N−(v) = {t2 − t1, t3 − t1, t5 − t1, t7 − t1, t5 − t4, t7 − t4, t7 − t6}

and N−(y) = {t2 − t1, t3 − t1, t4 − t1, t7 − t5, t7 − t6} so

v−1N−(y) = {t3 − t2, t5 − t2, t7 − t2, t6 − t1, t6 − t4}.

The reader can then check that N−(w) = N−(v) � v−1N−(y).

We also take a moment to recall a criterion for determining Bruhat order in the
Weyl group Sn (see e.g., [4]). For w ∈ Sn, denote by DR(w) the right descent set of
w, namely,

DR(w) := {i | w(i) > w(i + 1), 1 ≤ i ≤ n − 1}.

For example, if w = [3, 6, 8, 4, 7, 5, 9, 1, 2] the descent set is DR(w) = {3, 5, 7}.
The following is frequently called the tableau criterion [4, Theorem 2.6.3].
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Theorem 2.13 (The tableau criterion) For w, v ∈ Sn, let wi,k denote the i-th element
in the increasing rearrangement of w(1), w(2), . . . , w(k), and similarly for vi,k . Then
w ≤ v in Bruhat order if and only if wi,k ≤ vi,k for all k ∈ DR(w) and 1 ≤ i ≤ k.

2.4 Permutation Bases and the Stanley–Stembridge Conjecture

As we indicated in Sect. 2.2, the main motivation for this manuscript is the study of
the Stanley–Stembridge conjecture, reformulated by Shareshian andWachs [16] into a
question about the dot action representation on the cohomology ring H∗(Hess(S, h))

of regular semisimple Hessenberg varieties, as recorded in Conjecture 2.3 above.
To address this problem, we therefore seek to explicitly build permutation bases in
H∗(Hess(S, h))whose stabilizers are reflection subgroups. In fact, in order to achieve
this, we first study the analogous question in equivariant cohomology instead. Specif-
ically, we propose to construct a H∗

T (pt)-module basis of the free H∗
T (pt)-module

H∗
T (Hess(S, h)) consisting of equivariant classes permuted by the dot action and

whose stabilizers are reflection subgroups. We could then project such a basis to
ordinary cohomology H∗(Hess(S, h)) using the forgetful map from equivariant to
ordinary cohomology. By Remark 2.2, the projected basis in H∗(Hess(S, h)) would
have the desired properties. At first glance, this strategy may seem counterintuitive
since equivariant cohomology is much larger than ordinary cohomology, so one may
expect the problem to be more difficult. However, as is frequently the case, the addi-
tional structure on H∗

T (Hess(S, h)) can frequently make it more tractable (and indeed,
as we saw above, the original definition of the dot action was made possible by the
GKM theory on equivariant cohomology).

Based on this point of view, we propose to study the following question:

Does there exist a H∗
T (pt)-module basisBof the free H∗

T (pt)-
module H∗

T (Hess(S, h)) which is permuted by the dot
action, and such that the stabilizer Stab(b) ⊆ Sn for any
b ∈ B is a reflection subgroup?

(2.12)

The question posed above is well known among the experts andwe do not claim any
originality.Moreover, there are already results in the literaturewhich can be interpreted
in terms of this question, as we discuss in more detail below. However, as far as we
are aware, (2.12) has not previously been recorded explicitly in the literature in this
form. As such we take a moment to discuss the problem and to propose some methods
of attack.

First of all, we expect that GKM theory will be a critical tool for addressing (2.12),
just as it was for the original definition of the dot action. There are some inherent
challenges in this approach, however. One such challenge is that, in general it is non-
trivial to explicitly construct, by purely combinatorial means, an element in the RHS
of (2.4), i.e., an element in the GKM description of equivariant cohomology. To put
it another way, while there do exist formulas for the restrictions to T -fixed points of
special equivariant cohomology classes of GKM spaces which have, for example, con-
crete geometric descriptions—e.g., equivariant Schubert classes, or Chern classes of
equivariant vector bundles—it is in general difficult to arrive at a purely combinatorial
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algorithm producing a list of polynomials ( f (w))w∈Sn , with f (w) ∈ H∗
T (pt), which

together satisfy the GKM compatibility (divisibility) conditions. Thus, it is non-trivial
to explicitly construct candidates for permutation bases in H∗

T (Hess(S, h)). Another
challenge is that it is difficult in general to prove that a set of GKM classes is H∗

T (pt)-
linearly independent, i.e., they satisfy no H∗

T (pt)-linear relations. This is because a
GKM class is realized as a vector of polynomials, with coordinates indexed by T -
fixed points, and the question of linear independence then becomes a complicated
linear algebra problem over the polynomial ring H∗

T (pt) 
 C[t1, . . . , tn]. This being
said, it is not hard to see (and has been noticed before) that if the set has computation-
ally convenient properties, such as “poset-upper-triangularity” with respect to Bruhat
order on Sn as discussed in [13], then linear independence can be deduced. However,
in the absence of such vanishing properties, the linear algebra over H∗

T (pt) is not so
straightforward.

Despite these challenges, some results which partly address (2.12) already appear
in the literature. For instance, Abe, Horiguchi, and Masuda give an explicit pre-
sentation of the cohomology ring of H∗(Hess(S, h)) in the special case when
h = (h(1), n, n, . . . , n) in [1]; their “yi classes,” which are a subset of their generators
of H∗(Hess(S, h)) in this case, are in fact obtained as images ofGKMclasses in equiv-
ariant cohomology forwhich they are able towrite downan explicit formula.Moreover,
it is clear that their “yi classes” form a permutation basis for an Sn-subrepresentation
in H∗(Hess(S, h)). In another direction, Chow gave in [7] a conjectured permutation
basis for H∗(Hess(S, h)) in the special case where h = (2, 3, 4, . . . , n − 1, n, n) (in
this caseHess(S, h) is the permutohedral variety). Chow’s definition of his generators
uses the GKM description in equivariant cohomology. In a recent paper, Cho, Hong,
and Lee have shown that Chow’s GKM classes have a geometric interpretation in
terms of the Białynicki-Birula stratification of the permutohedral variety, and use this
to prove Chow’s conjecture that these classes are indeed a permutation basis. Thus,
this settles the question (2.12) in this special case, and it remains to analyze the more
general cases.

With the above discussion in mind, we propose to study the following problems,
for as a general a Hessenberg function as possible. We refer to this as the “permutation
basis program.”

Problem 1 Give a systematic, combinatorial algorithm for constructing GKM classes
in H∗

T (Hess(S, h)) beyond those that are already known, and whose stabilizer groups
with respect to the dot action are reflection subgroups.

Problem 2 Given a GKM class f ∈ H∗
T (Hess(S, h)), find conditions under which its

Sn-orbit

{w · f | w ∈ Sn}

is H∗
T (pt)-linearly independent.

Problem 3 Suppose { fα}α∈S is a collection of GKM classes in H∗
T (Hess(S, h)) such

that the Sn-orbit of each fα , considered above, is H∗
T (pt)-linearly independent. Find
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conditions under which the entire collection

{w · fα | w ∈ W and α ∈ S}

is H∗
T (pt)-linearly independent.

The remainder of this manuscript addresses these problems for a number of special
classes of Hessenberg varieties.

3 GKM Classes in H∗
T (Hess(S,h)): The Top-Coset Case

In this and the next section, we address Problem 1 of the “permutation basis program”
described at the end of Sect. 2.4.

Specifically, we present in this section a combinatorial construction ofGKMclasses
in H∗

T (Hess(S, h))which is alreadywell known to experts andwhich have the property
that the classes evaluate to be non-zero only on a single (“top” in a suitable sense,
to be explained below) coset of a Young subgroup. In particular, we do not claim
any originality for the results presented in this section. Then in Sect. 4, we present a
variant of this “top-coset” construction which results in GKM classes that can be non-
zero on more than one coset. We chose this method of exposition for several reasons.
First, although the top-coset construction is well known among experts, as far as we
are aware it has not been recorded formally, and is in the general form. Second, the
intuition behind the construction for both the top-coset case and our construction in
Sect. 4 is most easily grasped in the top-coset case. Finally, the technical hypotheses
on the constructions in this section and the next are such that neither construction is
subsumed by the other, so it felt natural to make this distinction clear in the exposition.
We emphasize again that the construction given in the present section has appeared in
special cases in the work of Abe–Horiguchi–Masuda [1], Chow [7], and Cho–Hong–
Lee [6].

We begin with a lemmawhich decomposes a certain set of edges in the GKMgraph;
intuitively, the idea is that some of the edges “remain” in a fixed (”top”) coset, while
the others point “down” toward lower (“non-top”) cosets. The precise statement is
in Lemma 3.1. Throughout this section, we fix a composition μ = (μ1, μ2, . . . , μ�)

of n and let Sμ denote the corresponding Young subgroup. Let vμ denote the unique
maximal element of μSn as introduced in Sect. 2.3. We refer to the right coset Sμvμ

of Sμ corresponding to this maximal element as the “top coset.” Also recall that edges
in the GKM graph with w as a source are indexed by the set N−

h (w), as in (2.6).
Moreover, by Lemmas 2.4 and 2.11 we know that if w = yvμ for y ∈ Sμ then
N−(w) = N−(vμ) � v−1

μ N−(y). Thus, we have

N−
h (w) := N−(w) ∩ �−

h = (N−(vμ) � v−1
μ N−(y)) ∩ �−

h

= (N−(vμ) ∩ �−
h ) � (v−1

μ N−(y) ∩ �−
h ).

We can now state the lemma.
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Lemma 3.1 Let w = yvμ ∈ Sμvμ be an element in the top coset of Sμ where y ∈ Sμ.
Consider an edge of the GKM graph for Hess(S, h),

w
w(γ )−−−→ wsγ for some γ ∈ N−

h (w) = (N−(vμ) ∩ �−
h ) � (v−1

μ N−(y) ∩ �−
h ).

Then

(1) if γ ∈ N−
h (vμ) ∩ �−

h then wsγ ∈ Sμv for some v ∈ μSn with v < vμ and
(2) if γ ∈ v−1

μ N−(y) ∩ �−
h then wsγ ∈ Sμvμ.

Proof Suppose γ ∈ N−(vμ) ∩ �−
h . Then by Lemma 2.7 we know svμ(γ ) /∈ Sμ, so

wsγ = ysvμ(γ )vμ /∈ Sμvμ. Hence, wsγ ∈ Sμv for some v ∈ μSn with v 	= vμ. Since
vμ is the unique maximal element of μSn we get v < vμ. On the other hand, suppose
γ ∈ v−1

μ N−(y) ∩ �−
h . Then vμ(γ ) ∈ N−(y) and y ∈ Sμ imply that svμ(γ ) ∈ Sμ.

This in turn means that wsγ = yvμsγ = ysvμ(γ )vμ lies in the top coset Sμvμ. This
completes the proof. ��

We can now define the top-coset GKM classes. We provide a proof for the record.

Proposition 3.2 Let μ = (μ1, μ2, . . . , μ�) be a composition of n and let Sμ denote
the associated Young subgroup. Let vμ ∈ μSn denote the maximal-length right coset
representative in μSn. Let

fμ(w) :=
{∏

ti −t j ∈N−
h (vμ)(tw(i) − tw( j)) if w = yvμ, for some y ∈ Sμ

0 otherwise.

Then fμ ∈ H
2|N−

h (vμ)|
T (Hess(S, h)), or in other words, fμ satisfies the GKM condi-

tions of (2.4). Moreover, y · fμ = fμ for all y ∈ Sμ.

Proof Consider an edge w
w(γ )−−−→ wsγ of the GKM graph of Hess(S, h). We take

cases.
If neither w or wsγ is contained in the top coset Sμvμ then by definition of fμ we

have fμ(w) = fμ(wsγ ) = 0 so the difference fμ(w)− fμ(wsγ ) is equal to 0 and the
GKM condition for this edge trivially holds.

Next suppose w and wsγ are both contained in the top coset Sμvμ. In this case, by
definition of fμ we have

fμ(wsγ ) =
∏

ti −t j ∈N−
h (vμ)

(twsγ (i) − twsγ ( j))

= sw(γ )

⎛
⎜⎝ ∏

ti −t j ∈N−
h (vμ)

(tw(i) − tw( j))

⎞
⎟⎠ = sw(γ )( fμ(w)).

Thus, w(γ ) divides fμ(w) − sw(γ )( fμ(w)) = fμ(w) − fμ(wsγ ), as required.
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Note that we cannot havew ∈ Sμv andwsγ ∈ Sμvμ for some v ∈ μSn with v < vμ

since in that case we get

wsγ ≤ w ⇒ vμ ≤ v

by [4, Proposition 2.5.1], which contradicts the assumption that v < vμ. This implies
that the only remaining case to check is when w ∈ Sμvμ and wsγ ∈ Sμv for some
v ∈ μSn with v < vμ. In this case, we get

fμ(w) − fμ(wsγ ) =
∏

ti −t j ∈N−
h (vμ)

(tw(i) − tw( j))

because fμ(wsγ ) = 0. Moreover, by Lemma 3.1, we know that we are in the situation
when γ = ti − t j ∈ N−(vμ)∩�−

h = N−
h (vμ). Thus, w(γ ) = tw(i) − tw( j) appears as

a factor in the RHS of the above equation, and in particular divides fμ(w)− fμ(wsγ )

as desired.
Finally, suppose y ∈ Sμ. Since left multiplication by y−1 stabilizes all right cosets

of Sμ in Sn we get that

y · fμ(w) =
{

y( fμ(y−1w)) if w ∈ Sμvμ

0 otherwise.

Now we have

y( fμ(y−1w)) = y

⎛
⎜⎝ ∏

ti −t j ∈N−
h (vμ)

(ty−1w(i) − ty−1w( j))

⎞
⎟⎠

=
∏

ti −t j ∈N−
h (vμ)

(tw(i) − tw( j)) = fμ(w)

for all w ∈ Sμvμ. This proves y · fμ = fμ. ��
Remark 3.3 The classes constructed in Proposition 3.2 can be defined in the more
general setting of the equivariant cohomology of a regular semisimple Hessenberg
variety contained in the flag variety G/B of any reductive algebraic group G. The
GKM graph a regular semisimple Hessenberg variety is well known, and generalizes
the construction presented above (cf. [9]). Fix a subgroup WJ in the Weyl group W
generated by a subset J of simple reflections.We can define a GKM class by assigning
a non-zero label to each element of the right coset of WJ in W corresponding to the
maximal shortest right coset representative of WJ \W . This non-zero label is a product
of roots defined analogously to Proposition 3.2, and yields a well-defined equivariant
cohomology class by essentially the same argument.

Multiplying the class fμ in Proposition 3.2 by any Sμ-invariant non-zero homoge-

neous equivariant cohomology class g ∈ H2 j
T (Hess(S, h)) yields a class of degree
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2|N−
h (vμ)| + 2 j with the property that g fμ is Sμ-invariant and g fμ(w) = 0 unless w

is in the right coset of Sμ indexed by vμ. We call any class of this form a top-coset
GKM class since its support set, i.e., the set of permutations at which it evaluates to
be non-zero, is precisely the right coset of the maximal element vμ in μSn .

The next lemma tells us that the support set of any class in the Sn-orbit of the
top-coset class fμ has a simple description in terms of certain left cosets in Sn . Recall
from (2.8) that (μSn)−1 = Sμ

n .

Lemma 3.4 Letμ = (μ1, μ2, . . . , μ�)be a composition of n andμ′ = (μ�, μ�−1, . . . ,

μ1). Let Sμ′ be the Young subgroup corresponding to μ′. For all v ∈ Sμ
n we have

v · fμ(w) =
{∏

ti −t j ∈N−
h (vμ)(tw(i) − tw( j)) if w = φvμ(v−1)y′ for some y′ ∈ Sμ′

0 otherwise
,

where φvμ : μSn → Sμ′
n is the bijection defined in (2.11). In particular, the class

v · f has support equal to the left coset of Sμ′ in Sn with shortest coset representative
φvμ(v−1) := vvμ and the support of any two classes v1 · fμ and v2 · fμ where
v1, v2 ∈ Sμ

n with v1 	= v2 are disjoint.

Proof By definition,
(
v · fμ

)
(w) := v( fμ(v−1w)) is non-zero if and only if

fμ(v−1w) 	= 0. The latter condition is equivalent to requiring that v−1w ∈ Sμvμ.
We have

v−1w = yvμ for some y ∈ Sμ ⇔ w = vvμv−1
μ yvμ for y ∈ Sμ

⇔ w = φvμ(v−1)y′ for y′ := v−1
μ yvμ ∈ Sμ′ ,

where we have used Lemma 2.10 for the last equivalence. Thus,
(
v · fμ

)
(w) 	= 0 if

and only if w ∈ φvμ(v−1)Sμ′ . Moreover, if v−1w ∈ Sμvμ then

(
v · fμ

)
(w) = v( fμ(v−1w)) = v

⎛
⎜⎝ ∏

ti −t j ∈N−
h (vμ)

tv−1w(i) − tv−1w( j)

⎞
⎟⎠

=
∏

ti −t j ∈N−
h (vμ)

tw(i) − tw( j)

as desired. This proves the first claim.
Now let v1, v2 ∈ Sμ

n . By the above, we know that the support of v1 · fμ (respectively,
v2· fμ) is the left cosetφvμ(v−1

1 )Sμ = v1vμSμ′ (respectively,φvμ(v−1
2 )Sμ = v2vμSμ′ ).

Applying Lemma 2.10 we know v1vμ, v2vμ ∈ Sμ′
n are shortest left coset representa-

tives, so v1vμSμ′ ∩ v2vμSμ′ 	= ∅ if and only if v1vμ = v2vμ if and only if v1 = v2.
Hence, we conclude if v1 	= v2 then the two left cosets φvμ(v−1

1 )Sμ and φvμ(v−1
2 )Sμ

are disjoint. Thus, if v1 	= v2, then the supports of v1 · fμ and v2 · fμ are disjoint. ��
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The main reason for studying top-coset classes comes from the following proposi-
tion, which is also well known.

Proposition 3.5 Let μ = (μ1, μ2, . . . , μ�) be a composition of n and let Sμ be the
corresponding Young subgroup of Sn. Let fμ be the top-coset GKM class defined in
Proposition 3.2. Then the Sn-orbit of fμ under the dot action, given by the set

{v · fμ | v ∈ Sμ
n },

is H∗
T (pt)-linearly independent. Furthermore, the H∗

T (pt)-subrepresentation of H∗
T

(Hess(S, h)) spanned by this set is an Sn-subrepresentation with the same character
as indSn

Sμ
(1) 
 MP(μ), where P(μ) is the partition of n obtained from μ by rearranging

the parts in decreasing order.

Proof We first prove that the set {v · fμ | v ∈ Sμ
n } is H∗

T (pt)-linearly independent. To
see this, suppose that there exist polynomials cv ∈ H∗

T (pt) such that

∑
v∈Sμ

n

cv v · fμ = 0 ∈ H∗
T (Hess(S, h)). (3.1)

The above equality takes place in H∗
T (Hess(S, h)) which we may identify with its

GKM description, as a subring of
⊕

w∈Sn
H∗

T (pt). In particular, (3.1) holds if and
only if

∑
v∈Sμ

n

cv

(
v · fμ

)
(w) = 0 for all w ∈ Sn . (3.2)

By Lemma 3.4 the classes v · fμ have disjoint supports, so that for any w ∈ Sn there
exists at most one v ∈ Sμ

n such that
(
v · fμ

)
(w) 	= 0. Let w ∈ Sn and suppose(

v · fμ
)
(w) 	= 0 for some v ∈ Sμ

n . Then
(
v′ · fμ

)
(w) = 0 for all v′ ∈ μSn with

v′ 	= v so (3.2) implies

cv

(
v · fμ

)
(w) = 0 ∈ H∗

T (pt).

Since H∗
T (pt) is a polynomial ring overC and in particular an integral domain, the fact

that (v · fμ)(w) 	= 0 implies cv = 0. Now the fact that cv = 0 for all v ∈ Sμ
n follows

from the fact that for any v ∈ Sμ
n there exists at least onew ∈ Sn with (v · fμ)(w) 	= 0,

as can be seen from the explicit description of the support of v · fμ in Lemma 3.4.
To see that the span of {v · fμ | v ∈ Sμ

n } is an Sn-submodule (with H∗
T (pt)-

coefficients) isomorphic to indSn
Sμ

(1) it suffices to show that the stabilizer subgroup of
fμ is Sμ. This is clear as y · fμ = fμ for all y ∈ Sμ by Proposition 3.2 and v · fμ 	= fμ
for all v ∈ Sμ

n with v 	= e by Lemma 3.4. This completes the proof. ��
Example 3.6 Let n = 3 and h = (2, 3, 3) as in Example 2.1. The following three
classes in H∗

T (Hess(S, h)) give the Sn-orbit of f = fμ for μ = (1, 2). (Note that in
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this case, Sμ
n = {e, s1, s2s1}.)

e s1 s2 s1s2 s2s1 s1s2s1
f 0 0 0 t1 − t3 0 t1 − t2

s1 · f 0 0 t2 − t3 0 t2 − t1 0
s2s1 · f t3 − t2 t3 − t1 0 0 0 0

Now spanH∗
T (pt){ f , s1 · f , s2s1 · f } in H∗

T (Hess(S, h)) is an Sn-subrepresentation

isomorphic to M (2,1).

The discussion above makes it evident that these classes are very special in the
sense that the support is just one right coset. The question naturally arises: can we give
a variant of this “top-coset” construction to systematically and explicitly construct
GKM classes whose supports may include more than one coset, and which still have
stabilizer subgroups which are reflection subgroups? In the next section we answer
this question in the affirmative, under some restrictions on the Hessenberg function h.

4 GKM Classes in H∗
T (Hess(S,h)) for Two-Part Compositions

In theprevious section,weexplainedhow to constructGKMclasses in H∗
T (Hess(S, h))

which are supported on a single (“top”) coset of aYoung subgroup.Although this prop-
erty does make these classes more computationally tractable, this is a highly restrictive
condition. In this section, under some technical hypotheses on h, we construct GKM
classes which can be non-zero on more than one coset. Motivated by the “abelian
case” as discussed in the introduction, our analysis focuses on compositions of n with
two parts.

The setting for this section is as follows. Let λ = (λ1, λ2) be a composition of n
with two parts. Then Sλ = 〈si | i 	= λ1〉 is the associated Young subgroup. In order
to define our GKM classes, we further decompose the set λSn of shortest right coset
representatives for Sλ as follows.We need some preparation. Consider the composition
μ = (1, n − 1). From the discussion in Sect. 2.3 it is not hard to see that the set of
shortest right coset representatives μSn is given by

μSn = {e, s1, s1s2, . . . , s1s2 · · · sn−1}.

We define

uk := s1s2 . . . sk (4.1)

for k with 1 ≤ k ≤ n − 1 and u0 := e. The maximal element of μSn is then un−1.
Note that the one-line notation for uk has a 1 in position k + 1, and all other entries
in increasing order. Moreover, it is straightforward to check that two permutations
v,w ∈ Sn are in the same right coset of Sμ if 1 is in the same position in their one-line
notation, that is, if v−1(1) = w−1(1). Returning now to the coset representatives λSn
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for λ = (λ1, λ2), in this section we denote the maximal element in λSn by vλ2 . It can
be computed explicitly in this case to be

vλ2 = [λ1 + 1, λ1 + 2, . . . , n︸ ︷︷ ︸
λ2 entries

, 1, 2, . . . , λ1︸ ︷︷ ︸
λ1 entries

]

which means

v−1
λ2

= [λ2 + 1, λ2 + 2, . . . , n︸ ︷︷ ︸
λ1 entries

, 1, 2, . . . , λ2︸ ︷︷ ︸
λ2 entries

].

Since vλ2 has a 1 in the (λ2 + 1)-st entry, it follows that vλ2 is contained in the right
coset Sμuλ2 of Sμ. Indeed, we have

vλ2 = v0uλ2 for v0 := [1, λ1 + 1, λ1 + 2, . . . , n︸ ︷︷ ︸
λ2 entries

, 2, 3, . . . , λ1︸ ︷︷ ︸
λ1−1 entries

] ∈ Sμ (4.2)

and we can also compute

v−1
0 = [1, λ2 + 2, . . . n, 2, 3, . . . , λ2 + 1] ∈ Sμ. (4.3)

We now focus on the elements of λSn of the form v0uk for 0 ≤ k ≤ λ2. Define

vk := v0uk .

The one-line notation for vk is

vk = [λ1 + 1, λ1 + 2, . . . , λ1 + k − 1, λ1 + k︸ ︷︷ ︸
k entries

,

1︸︷︷︸
(k+1)-st entry

, λ1 + k + 1, . . . , n − 1, n︸ ︷︷ ︸
(k+2)-nd to (λ2+1)-st entry

, 2, 3, . . . , λ1︸ ︷︷ ︸
last λ1−1 entries

] (4.4)

from which it follows that vk indeed lies in λSn . We define (λSn)0 to be the set of such
vk , i.e., (λSn)0 := {v0, v1, . . . , vλ2}.

We note two facts for future use. First, the one-line notation for v−1
k is

v−1
k = [k + 1, λ2 + 2, . . . , n, 1, 2, . . . , k, k̂ + 1, k + 2 . . . , λ2, λ2 + 1]. (4.5)

Second, since v0 is contained in Sμ and the uk are shortest coset representatives in
μSn , from Lemma 2.4 we know �(vk) = �(v0) + �(uk).

Remark 4.1 In the case that λ = μ = (1, n − 1), i.e., when λ1 = 1 and λ2 = n − 1,
then from (4.2) it follows that v0 is equal to the identity permutation, and uk = vk for
all 0 ≤ k ≤ λ2 = n − 1. So in this case, (λSn)0 = μSn = {e, u1, u2, . . . , un−1}.
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We focus on this subset (λSn)0 of λSn because it is particularly well behaved under
the Bruhat order. To see this, we begin with the following simple lemma.

Lemma 4.2 Let λ = (λ1, λ2) be a composition of n with two parts and suppose
v,w ∈ λSn. Then w ≤ v in Bruhat order if and only if w−1(k) ≤ v−1(k) for all
1 ≤ k ≤ λ1.

Proof This follows from a straightforward application of the tableau criterion in
Theorem 2.13 together with the fact that a shortest coset representative v ∈ λSn

is uniquely determined by the locations of the entries {1, 2, . . . , λ1}, i.e., the set
{v−1(1), v−1(2), . . . , v−1(λ1)}. ��

Using Lemma 4.2 above we can show the following.

Lemma 4.3 Let λ = (λ1, λ2) be a composition of n as above. Then:

(1) (λSn)0 = {v ∈ λSn | v0 ≤ v}, and
(2) for any k, j with 0 ≤ k, j ≤ λ2, we have vk ≤ v j in Bruhat order if and only if

k ≤ j .

Proof We first prove the case λ = (1, n −1), so λ1 = 1, λ2 = n −1. Then v0 = e, and
it is not hard to see that (λSn)0 = λSn . Since v0 = e, the first claim is immediate. The
second claim follows straightforwardly from the tableau criterion in Theorem 2.13
and the fact that vk = uk is the permutation whose one-line notation has a 1 in the
(k + 1)-st position and all other entries are increasing.

Now suppose λ1 ≥ 2. From the one-line notation of v0 in (4.2) and the tableau
criterion, it follows that any other shortest coset representative v ∈ λSn with v0 ≤ v

must have the entries {2, 3, . . . , λ1} appearing in the lastλ1−1many entries of the one-
line notation of v. This then implies that v must equal vk for some k with 0 ≤ k ≤ λ2,
as can be seen from the one-line notation of vk in (4.4). Conversely, it is immediate
from Lemma 4.2 that each vk satisfies v0 ≤ vk . Hence the first claim is proved. The
second also follows from the tableau criterion and (4.4). ��
Lemma 4.4 For all k with 0 ≤ k ≤ λ2 we have

N (v−1
k ) = {t1 − tb | b ∈ {λ1 + 1, . . . , λ1 + k}} � {ta − tb

| a ∈ {2, 3, . . . , λ1}, b ∈ {λ1 + 1, . . . , n}}.

Proof By definition,

N (v−1
k ) = {γ ∈ �+ | v−1

k (γ ) ∈ �−}
= {ta − tb | a < b, v−1

k (a) > v−1
k (b)}. (4.6)

The claim now follows from the explicit description of the one-line notation of v−1
k

given in (4.5). ��
We can now define our GKM classes. Fix k with 0 ≤ k ≤ λ2. We define a function

f (k)
λ : Sn → C[t1, . . . , tn] in (4.8) below. Under certain additional hypotheses on
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k, the composition λ, and the Hessenberg function h, we will show in Theorem 4.8
that f (k)

λ is a well-defined equivariant cohomology class in H∗
T (Hess(S, h)), i.e., the

assignment f (k)
λ : Sn → C[t1, . . . , tn] satisfies all the GKM compatibility conditions

in (2.4). To define f (k)
λ , we first set the notation

Sk := vk N−
h (vk) = N (v−1

k ) ∩ vk(�
−
h ) (4.7)

for the set of roots that label the edges in the GKM graph of Hess(S, h) with source
vk as in (2.6). Now for any w ∈ Sn , we first write w = yv for unique y ∈ Sλ and
v ∈ λSn and then define

f (k)
λ (yv) :=

{∏
ta−tb∈Sk

(ty(a) − ty(b)) if v ≥ vk

0 otherwise.
(4.8)

The following lemmasummarizes someproperties of the function f (k)
λ which follow

immediately from the definition.

Lemma 4.5 Let f (k)
λ : Sn → C[t1, t2, . . . , tn] be as defined in (4.8). Then each of the

following hold.

(1) The support of f (k)
λ is a union of right Sλ-cosets, and is the set of permutations

Bruhat greater than vk , i.e.,

supp( f (k)
λ ) := {w ∈ Sn | f (k)

λ (w) 	= 0} =
⊔

k≤ j≤λ2

Sλv j = {w ∈ Sn | w ≥ vk}.

(2) The element f (k)
λ is fixed by Sλ under the dot action,

y · f (k)
λ = f (k)

λ for all y ∈ Sλ.

(3) For any y ∈ Sλ and w ∈ Sn, we have

f (k)
λ (yw) = y( f (k)

λ (w)),

where the RHS denotes the standard action of Sλ ⊆ Sn on a polynomial in
C[t1, . . . , tn].

Proof The first equality of (1) follows from the definition (4.8) and Lemma 4.3, since
f (k)
λ (w) = f (k)

λ (yv) is defined to be non-zero exactly when w ∈ Sλv for v ≥ vk and
{v ∈ λSn | v ≥ vk} = {vk, . . . , vλ2}. To prove the second equality, first note that
the inclusion

⊔
k≤ j≤λ2

Sλv j ⊆ {w ∈ Sn | w ≥ vk} follows from Lemma 4.3(2) and
Lemma 2.4. On the other hand, let w ∈ Sn such that w ≥ vk and write w = yv with
y ∈ Sλ and v ∈ λSn as in Lemma 2.4. By [4, Proposition 2.5.1], vk ≤ w implies
vk ≤ v. Thus, v = v j for some j such that k ≤ j ≤ λ2 by Lemma 4.3 as desired.
This proves the first claim.
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To see the second claim, first observe that for y ∈ Sλ the definition of the dot action
implies

(
y · f (k)

λ

)
(w) = y

(
f (k)
λ (y−1w)

)

and since y ∈ Sλ, the two elements y−1w and w are in the same right Sλ-coset. We
take cases. If f (k)

λ (w) = 0 then by the above f (k)
λ (y−1w) is also equal to 0, hence

y( f (k)
λ (y−1w)) = 0 also. If f (k)

λ (w) 	= 0 then w = y′v for some y′ ∈ Sλ and v ≥ v j .

Then y−1w = (y−1y′)v ∈ Sλv implies f (k)
λ (y−1w) 	= 0 and by (4.8) we obtain

(y · f (k)
λ )(w) = y( f (k)

λ (y−1y′v)) = y

⎛
⎝ ∏

ta−tb∈Sk

y−1(ty′(a) − ty′(b)

⎞
⎠

=
∏

ta−tb∈Sk

(ty′(a) − ty′(b)) = f (k)
λ (y′v) = f (k)

λ (w)

as desired. This proves (2). We now have

f (k)
λ (w) = y−1 · f (k)

λ (w) = y−1( f (k)
λ (yw)) for all y ∈ Sλ.

Hence (3) follows. ��
Our construction recovers the top-coset classes for compositions with two parts

that were discussed in the previous section.

Remark 4.6 In the special casewhere k = λ2, Lemma4.5 tells us that f (λ2)
λ is supported

on the coset Sλvλ2 corresponding to the Bruhat-maximal element of λSn . In this case,
given w = yvλ2 we have

f (λ2)
λ (w) =

∏
ta−tb∈Sk

(ty(a) − ty(b)) =
∏

ti −t j ∈N−
h (vλ2 )

(tw(i) − tw( j)).

This shows that f (λ2)
λ is precisely the top-coset GKM class fλ introduced in the

previous section.

The function f (k)
λ : Sn → C[t1, . . . , tn] defined above sometimes, but does not

always, yields a well-defined class in H∗
T (Hess(S, h)), as we illustrate in the next

example.

Example 4.7 Let n = 6 and fix a Hessenberg function h = (3, 4, 5, 6, 6, 6). In this
case, we have

�−
h = {t2 − t1, t3 − t2, t4 − t3, t5 − t4, t6 − t5, t3 − t1, t4 − t2, t5 − t3, t6 − t4}.
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For this example, we take λ = (2, 4). We get

(λSn)0 = {v0, v1, v2, v3, v4},

where

v−1
0 = [1, 6, 2, 3, 4, 5], v−1

1 = [2, 6, 1, 3, 4, 5], v−1
2 = [3, 6, 1, 2, 4, 5],

v−1
3 = [4, 6, 1, 2, 3, 5], v−1

4 = [5, 6, 1, 2, 3, 4].

Consider the casewhen k = 1.Wehave N (v−1
1 ) = {t1−t3, t2−t3, t2−t4, t2−t5, t2−t6}

and S1 = {t1 − t3, t2 − t5, t2 − t6} so,

f (1)
λ (yv) :=

{
(ty(2) − ty(5))(ty(2) − ty(6))(ty(1) − ty(3)) if v ∈ {v1, v2, v3, v4}
0 otherwise

For example, we have that

f (1)
λ (v3) = f (1)

λ (v1) = (t2 − t5)(t2 − t6)(t1 − t3) and

f (1)
λ (s4v1) = s4( f (1)

λ (v1)) = (t2 − t4)(t2 − t6)(t1 − t3).

Consider v−1
3 = [4, 6, 1, 2, 3, 5]. Since t4 − t2 ∈ �−

h and swapping the numbers 2
and 4 in v−1

3 yields the permutation (s4v1)−1 = [2, 6, 1, 4, 3, 5] of length strictly less
than v−1

3 , we know that the GKM graph of Hess(S, h) contains the following edge:

v3
t1−t4

s4v1 , (4.9)

where t1 − t4 = v3(t4 − t2). But f (1)
λ (v3) − f (1)

λ (s4v1) is not divisible by t1 − t4, so

f (1)
λ does not satisfy the GKM conditions. Now consider the case in which k = 2. As

S2 = {t2 − t5, t2 − t6, t1 − t3, t1 − t4} we have

f (2)
λ (yv) :=

{
(ty(2) − ty(5))(ty(2) − ty(6))(ty(1) − ty(3))(ty(1) − ty(4)) if v ∈ {v2, v3, v4}
0 otherwise.

In this case, the right Sλ cosets in the support set of f (2)
λ are those with coset repre-

sentatives v2, v3, and v4. Note that f (2)
λ clearly satisfies the GKM conditions for the

edge in (4.9) since f (2)
λ (s4v1) = 0 and t1 − t4 divides f (2)

λ (v3). As another example,
by similar reasoning as above we obtain another edge of the GKM graph:

v4
t1−t5

s5v2.

In this case, we have

f (2)
λ (v4) = (t2 − t5)(t2 − t6)(t1 − t3)(t1 − t4) = f (2)

λ (s5v2)
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since s5 stabilizes the product (t2 − t5)(t2 − t6)(t1 − t3)(t1 − t4). Thus, f (2)
λ satisfies

the GKM conditions for this edge also. The reader can check that f (2)
λ defines an

equivariant cohomology class in H8
T (Hess(S, h)); this fact will also follow from

Theorem 4.8 below.

The content of the next result,which is also thefirstmain theoremof thismanuscript,
is that when we impose an additional hypothesis on the integer k in relation to the
Hessenberg function h, then f (k)

λ is a well-defined GKM class. Theorem 4.8 gives us
a new construction of GKM classes in H∗

T (Hess(S, h)) that differs from that in the
literature, since now more than one coset may get a non-zero label.

Theorem 4.8 Let h : [n] → [n] be a Hessenberg function and λ = (λ1, λ2) a com-
position of n with exactly two non-zero parts. Let 0 ≤ k ≤ λ2. If λ1 > 1 then we
additionally assume that h(k + 2) = n. Then the function f (k)

λ : Sn → C[t1, . . . , tn]
defined in (4.8) is a well-defined equivariant cohomology class in H2|Sk |

T (Hess(S, h)).

Before beginning the proof, we emphasize that the assumption of h(k + 2) = n in
the statement above is necessary, as noted for k = 1 in Example 4.7 above.

Proof of Theorem 4.8 To prove the theorem, we must show the following. Let

w
w(γ )

wsγ

be an edge of the GKM graph of Hess(S, h). Then w,wsγ ∈ Sn are permutations
such that �(wsγ ) < �(w) and w(γ ) ∈ N (w−1) ∩ w(�−

h ). We must prove that w(γ )

divides f (k)
λ (w) − f (k)

λ (wsγ ). We argue on a case-by-case basis.

Case (1): Suppose w is not contained in the support of f (k)
λ , i.e., f (k)

λ (w) = 0. In this

case we claim that sγ w is also not contained in the support of f (k)
λ . This is because

if wsγ is contained in some Sλv j with k ≤ j ≤ λ2, then wsγ ≥ v j in Bruhat order,
which means w > wsγ ≥ v j ≥ vk in Bruhat order. By Lemma 4.5 this implies w is

contained in the support of f (k)
λ , contradicting our assumption. Hence, f (k)

λ vanishes
at both w and wsγ , and the claim follows trivially.

Case (2):Wenowassumew lies in the support of f (k)
λ . ByLemma4.5, this is equivalent

to the condition that there exists j with k ≤ j ≤ λ2 such that w ∈ Sλv j . We write
w = yv j for y ∈ Sλ. It will be convenient to divide this further into sub-cases,
according to the coset in which wsγ lies. In fact, we first argue that wsγ cannot lie
in certain right cosets; more precisely, we claim that, under the given hypotheses, it
cannot happen that wsγ ∈ Sλv� for j < � ≤ λ2. Indeed, if wsγ = y1v� for such an �

and y1 ∈ Sλ then we have

wsγ ≤ w ⇒ y1v� ≤ yv j ⇒ v� ≤ v j ⇒ � ≤ j,

where the second implication is by [4, Proposition 2.5.1] and the third follows from
Lemma 4.3. Hence we obtain a contradiction.
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Throughout the arguments below, we fix j as the integer such that w ∈ Sλv j and
write w = yv j for y ∈ Sλ. The above discussion implies that the three remaining
cases we must consider are as follows:

(2-a) wsγ /∈ supp( f (k)
λ ), or equivalently, wsγ /∈ Sλv for any v ∈ {vk, . . . , v j−1, v j },

(2-b) wsγ ∈ Sλv j , or
(2-c) wsγ ∈ Sλv� for some k ≤ � < j .

Before proceeding, we give an explicit description of the root β := v j (γ ) in
each of these cases. By assumption, γ ∈ N−

h (w) = N−(w) ∩ �−
h and N−(w) =

N−(v j ) � v−1
j N−(y) by Lemma 2.11. Thus, we have

β = v j (γ ) ∈ v j N−(w) = N (v−1
j ) � N−(y).

We can decompose the set N (v−1
j ) appearing in the RHS of the above equation even

further. The formula for N (v−1
k ) for different values of k as given in Lemma 4.4

implies

N (v−1
j ) = N (v−1

k ) � {t1 − tb | b ∈ {λ1 + k + 1, . . . , λ1 + j}},

and therefore, combining the previous two statements, we obtain

β ∈ N (v−1
k ) � {t1 − tb | b ∈ {λ1 + k + 1, . . . , λ1 + j}} � N−(y). (4.10)

Now consider wsγ = yv j sγ = ysv j (γ )v j = ysβv j . Write β = ta − tb. Then we
obtain the one-line notation for sβv j from that of v j by swapping the entries a and
b. Equivalently, the one-line notation for (sβv j )

−1 is obtained from that of v−1
j by

exchanging the entries in positions a and b. Using the formulas for the one-line
notation of v−1

j from (4.5) (or equivalently, the formula for the one-line notation
of v j from (4.4)) and Lemma 4.4, it is now straightforward to check the following
characterizations of the three cases (2-a), (2-b), (2-c) above. First we consider case
(2-a). We claim that if wsγ /∈ supp( f (k)

λ ) then β ∈ N (v−1
k ) ∩ v j (�

−
h ). From (4.10)

we know that β can lie in one of 3 sets:

N (v−1
k ), {t1 − tb | b ∈ {λ1 + k + 1, . . . , λ1 + j}}, and N−(y).

If β ∈ N−(y) then sβ ∈ Sλ and hence ysβv j ∈ Sλv j , which would imply ysβv j ∈
supp( f (k)

λ ). Hence this cannot occur. If β ∈ {t1 − tb | b ∈ {λ1 + k + 1, . . . , λ1 + j}}
then from the formula for the one-line notation of v j in (4.4) and from the description
of shortest coset representatives given in Remark 2.5 it follows that sβv j lies in the

right coset of an element v ∈ {vk, . . . , v j−1}, hence ysβv j ∈ supp( f (k)
λ ). Thus,

this also cannot occur. We conclude that if sβv j /∈ supp( f (k)
λ ) then β ∈ N (v−1

k ).
Since γ ∈ �−

h , we are always assuming β ∈ v j (�
−
h ) and we now conclude that if

wsγ /∈ supp( f (k)
λ ) then β ∈ N (v−1

k ) ∩ v j (�
−
h ). Second, for case (2-b), observe that

wsγ = ysβv j ∈ Sλv j if and only if sβv j ∈ Sλv j since y ∈ Sλ, and the latter is
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equivalent to sβ ∈ Sλ. From the decomposition (4.10) and Lemma 4.4 it follows that
sβ ∈ Sλ if and only if β ∈ N−(y). Thus, we obtain that wsγ ∈ Sλv j if and only if
β ∈ N−(y) ∩ v j (�

−
h ). Third, for case (2-c), we can use similar reasoning to see that

wsγ = ysβv j lies in Sλv� for some k ≤ � < j if and only if

β ∈ {t1 − tb | b ∈ {λ1 + k + 1, . . . , λ1 + j}} ∩ v j (�
−
h ).

We can now argue each case separately, based on the above characterizations of the
root β.
Sub-case (2-a): In this case, f (k)

λ (wsγ ) = 0, so in order to prove the GKM condition

it suffices to prove thatw(γ ) divides f (k)
λ (w), i.e., thatw(γ ) = y(β) for some β ∈ Sk .

Since w = yv j this is equivalent to v j (γ ) = β ∈ Sk . Recall from (4.7) that Sk =
N (v−1

k ) ∩ vk(�
−
h ). As we saw above, in this case we have β ∈ N (v−1

k ) ∩ v j (�
−
h ),

so it remains to establish that β ∈ vk(�
−
h ). Write β = ta − tb. The assumption

that ta − tb ∈ v j (�
−
h ) implies that v−1

j (a) ≤ h(v−1
j (b)). Since β ∈ N (v−1

k ), from
Lemma 4.4 it follows that a ∈ {1, . . . , λ1} and b ∈ {λ1 + 1, . . . , n}. Now the explicit
formula in (4.5) for the one-line notation of v−1

k and v−1
j implies v−1

k (a) ≤ v−1
j (a)

and v−1
k (b) ≥ v−1

j (b). Thus, v−1
k (a) ≤ v−1

j (a) ≤ h(v−1
j (b)) ≤ h(v−1

k (b)) implying

β = ta − tb ∈ vk(�
−
h ) as desired, and case (2-a) is complete.

Sub-case (2-b): In this case, we have β = v j (γ ) ∈ N−(y), so sβ ∈ Sλ. This implies
that sy(β) = syv j (γ ) = sw(γ ) ∈ Sλ also. Now from Lemma 4.5 we conclude that

f (k)
λ (wsγ ) = f (k)

λ (sw(γ )w) = sw(γ )( f (k)
λ (w)).

It is a classical fact that w(γ ) divides f − sw(γ ) f , so we obtain our result. This
completes case (2-b).
Sub-case (2-c): In this case, we have wsγ ∈ Sλv� for k ≤ � < j , so in particular

f (k)
λ (wsγ ) 	= 0. We aim to show that f (k)

λ (wsγ ) = f (k)
λ (w), from which it follows

that f (k)
λ (w) − f (k)

λ (wsγ ) = 0, which is clearly divisible by w(γ ).
First observe that the only way we can have wsγ ∈ Sλv� is if γ = t j+1 − t�+1.

This is because w ∈ Sλv j , which implies the entries {1, . . . , λ1} are in the ( j + 1)-th
and the last λ1 − 1 positions in the one-line notation of w. Any element in Sλv� must
have the {1, . . . , λ1} entries in the (� + 1)-th and last λ1 − 1 positions of its one-line
notation. In order for this to happen, we must have sγ exchange the positions j + 1
and � + 1. Next recall the decomposition w = yv j = yv0u j where v0 and u j are as
defined in (4.2) and (4.1), respectively. Since sγ is the reflection swapping j + 1 and
� + 1, an explicit computation yields

wsγ =
{

yv0s�+2 · · · s j u� if j > � + 1
yv0u� = yv� if j = � + 1

which implies that wsγ = yv� if j = � + 1. Hence, for the case j = � + 1 it is

immediate that f (k)
λ (wsγ ) = f (k)

λ (yv�) = ∏
η∈Sk

y(η) = f (k)
λ (w) by definition of
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f (k)
λ . Thus, f (k)

λ (wsγ ) − f (k)
λ (w) = 0 and we are done. Therefore, in what follows

we may assume that j > � + 1. In this case, we claim that

wsγ = yv0s�+2 · · · s j u� = y′v0u�

for some y′ ∈ Sλ. Indeed, we get

y′ = y
(
v0s�+2 · · · s jv

−1
0

)
= ysv0(�+2) · · · sv0( j)

and we know v0(i) = λ1 + i − 1 for all i = 2, . . . , λ2 from (4.2). Since � + 1 < j by
assumption and j ≤ λ2 we know � + 2 ≤ λ2 and also since j > � + 1, where � ≥ 0,
we know j ≥ 2. So it follows that

y′ = ysλ1+�+1sλ1+�+2 · · · sλ1+ j−1 ∈ Sλ. (4.11)

Let y1 := sλ1+�+1sλ1+�+2 · · · sλ1+ j−1. To summarize, we have shown wsγ = yy1v�,
where yy1 ∈ Sλ.

By definition of f (k)
λ we have

f (k)
λ (wsγ ) =

∏
η∈Sk

yy1(η) and f (k)
λ (w) =

∏
η∈Sk

y(η).

If we establish the following equality

y1

⎛
⎝∏

η∈Sk

η

⎞
⎠ =

∏
η∈Sk

η (4.12)

then it would follow that f (k)
λ (wsγ ) = f (k)

λ (w), hence f (k)
λ (wsγ ) − f (k)

λ (w) = 0 and
we are done. In the remainder of the argument we therefore focus on proving (4.12).

To prove (4.12), first notice that y1 ∈ Stab(1, 2, . . . , λ1 + �). Motivated by this,
using the explicit description of N (v−1

k ) in Lemma 4.4 we decompose the elements

of Sk into two subsets Sk = S
(1)
k � S

(2)
k , where we define

S
(1)
k := {ta − tb ∈ Sk | a, b ∈ {1, 2, . . . , λ1 + k}} (4.13)

and

S
(2)
k = {ta − tb ∈ Sk | (a, b) ∈ {2, . . . , λ1} × {λ1 + k + 1, . . . , n}}. (4.14)

Since k ≤ �, it is clear that if η ∈ S
(1)
k then y1(η) = η. Next we analyze the set S(2)

k .

Note first that in the case λ1 = 1, then Sk = S
(1)
k and hence we are done. Thus, for the
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remainder of the argumentwemay assumeλ1 > 1. For any (a, b)with a ∈ {2, . . . , λ1}
and b ∈ {λ1 + k + 1, . . . , n} then

v−1
k (a) ∈ {λ2 + 2, . . . , n} and v−1

k (b) ∈ {k + 2, k + 3, . . . , λ2 + 1}.

Sinceλ1 > 1,we have by the hypothesis in the statement of the theorem that h(k+2) =
n. Thus, h(v−1

k (b)) = n for any v−1
k (b) ∈ {k + 2, . . . , λ2 + 1} and v−1

k (a) ≤ n =
h(v−1

k (b)), implying ta − tb ∈ vk(�
−
h ) for all a ∈ {2, . . . , λ1} and b ∈ {λ1 + k +

1, . . . , n}. The above discussion implies that

S
(2)
k = {ta − tb | (a, b) ∈ {2, . . . , λ1} × {λ1 + k + 1, . . . , n}}.

Since y1 = sλ1+�+1sλ1+�+2 · · · sλ1+ j−1 permutes the elements of {λ1 + k + 1, . . . , n}
(because λ1+k +1 ≤ λ1+�+1 and λ1+ j −1 ≤ λ1+λ2−1 = n −1 ) and stabilizes
the elements of {2, . . . , λ1}, it follows that y1(S

(2)
k ) = S

(2)
k . Since we already saw y1

stabilizes the elements in S
(1)
k , we conclude (4.12) holds, as desired. This completes

the (2-c) case and hence the proof. ��
By Lemma 4.5, the class f (k)

λ constructed in Theorem 4.8 is fixed by Sλ under the
dot action. As in the case of the top-coset classes of the previous section, we consider
the orbit of f (k)

λ under the dot action:

{
v · f (k)

λ | v ∈ Sλ
n

}
.

We will prove in Sect. 5 that this set of classes is H∗
T (pt)-linearly independent, in a

special case and under further assumptions on the Hessenberg function h.
We now discuss potential connections between our Theorem 4.8 and some other

recent results byCho,Hong, andLee on equivariant cohomology classes for the regular
semisimple Hessenberg variety. We first remark that, as noted in the introduction, the
advantages of our construction are (1) we have an explicit formula for the value of f (k)

λ

at each w ∈ Sn , namely that in (4.8) and (2) we can give simple, concrete descriptions
of the elements in the Sn-orbit of f (k)

λ as well as their support sets. On the other hand,
the drawbacks of our construction are that, in its current form, the construction only
applies in the case that the composition λ has two parts, and we are not yet able to
use such classes to construct a basis for the free module H∗

T (Hess(S, h)). In contrast,
Cho, Hong, and Lee recently gave a geometric construction of an H∗

T (pt)-module basis
for H∗

T (Hess(S, h)) for general Hessenberg functions [6]. Their classes arise from a
Białynicki-Birula decomposition of Hess(S, h). While the existence of such classes
is not new, it is in general a difficult question to compute the values of these classes
at different permutations w ∈ Sn . The results of [6] are significant in that they make
progress toward describing these classes explicitly. For example, the authors describe
the support set of each class combinatorially in terms of the Hessenberg function h.
On the other hand, these classes do not give a permutation basis of H∗

T (Hess(S, h)),
and an explicit formula for their values at w ∈ Sn similar to that given in (4.8) is
only known in the case where h = (2, 3, . . . , n, n). In that special case, the authors

123



_####_ Page 34 of 54 La Matematica  _#####################_

express certain equivariant classes defined by Chow in the statement of his Erasing
marks conjecture [7] as linear combinations of their “Białynicki-Birula classes,” and
use their results to prove Chow’s conjecture. Aswe have already noted, Chow’s classes
are top-coset classes for appropriately chosen Young subgroups.

This recent progress, together with our Theorem 4.8 above, naturally suggest the
followingopenproblem.Weexpect a solution to this problem to lead to further progress
in the “permutation basis program” in more general cases of Hessenberg functions.

Problem 4.9 Let h : [n] → [n] be a Hessenberg function and λ = (λ1, λ2) a compo-
sition of n with exactly two parts satisfying the assumptions of Theorem 4.8. Compute
that expansion of f (k)

λ as an H∗
T (pt)-linear combination of the H∗

T (pt)-module basis
of “Białynicki-Birula classes” for H∗

T (Hess(S, h)) studied by Cho–Hong–Lee in [6].

Finally, in the last part of this section, we prove some properties of our classes f (k)
λ

which will be useful in the analysis in the following sections. We begin with a proof of
the analog of Lemma 3.4, describing the support set of each v · f (k)

λ for v ∈ Sλ
n . Given

the composition λ of n, recall that for each v j ∈ (λSn)0 we obtain from Lemma 2.9 a
bijection

φv j : Sλ\Sn → Sn/S( j)
λ ; φv j (Sλv) = v−1v j S( j)

λ ,

where S( j)
λ := v−1

j Sλv j . Recall also that (Sλ
n )−1 = λSn by (2.8).

Lemma 4.10 Let λ = (λ1, λ2) be a composition of n with two parts and 0 ≤ k ≤ λ2.
For each v ∈ Sλ

n we have

(
v · f (k)

λ

)
(w) =

{∏
η∈Sk

wv−1
j (η) if w ∈ φv j (Sλv

−1) for some k ≤ j ≤ λ2

0 otherwise.

In particular, v · f (k)
λ : Sn → C[t1, . . . , tn] has support equal to the union of left

cosets,

⊔
k≤ j≤λ2

φv j (Sλv
−1) =

⊔
k≤ j≤λ2

vv j S( j)
λ .

Proof Let v ∈ Sλ
n . We have

(
v · f (k)

λ

)
(w) 	= 0 if and only if f (k)

λ (v−1w) 	= 0. The

latter condition is equivalent by Lemma 4.5 to the condition that v−1w ∈ Sλv j for
some k ≤ j ≤ λ2. We have

v−1w = yv j for y ∈ Sλ ⇔ w = vv jv
−1
j yv j for y ∈ Sλ

⇔ w ∈ vv j S( j)
λ = φv j (Sλv

−1).
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This proves the assertion about the support of v · f (k)
λ . Given such a w, write v−1w =

yv j for y ∈ Sλ. Then vy = wv−1
j and we get

(
v · f (k)

λ

)
(w) := v( f (k)

λ (v−1w)) = v

⎛
⎝∏

η∈Sk

y(η)

⎞
⎠ =

∏
η∈Sk

wv−1
j (η).

This proves the lemma. ��
Our last lemmaof this section states that the stabilizer of the element f (k)

λ is precisely
Sλ.

Lemma 4.11 Let λ = (λ1, λ2) be a composition of n with two parts and 0 ≤ k ≤ λ2.
If λ1 = 1 then we also assume that k ≥ 1. Then the stabilizer in Sn of f (k)

λ is equal to
Sλ.

Proof We have already seen in Lemma 4.5(2) that Sλ stabilizes f (k)
λ . Hence, it suffices

to show that if v ∈ Sn satisfies v · f (k)
λ = f (k)

λ , then v ∈ Sλ. Since we already know that
Sλ is contained in the stabilizer, it suffices to prove the statement for v ∈ Sλ

n a shortest

left coset representative. So suppose v ∈ Sλ
n and suppose that v · f (k)

λ = f (k)
λ . We wish

to show that v ∈ Sλ, which means v is the identity permutation (since the shortest left
coset representative for the identity coset is the identity). Since v · f (k)

λ = f (k)
λ , their

supports sets must be equal, and by Lemma 4.10 it follows that

⊔
k≤ j≤λ2

vv j S( j)
λ =

⊔
k≤ j≤λ2

v j S( j)
λ

or equivalently

⊔
k≤ j≤λ2

vSλv j =
⊔

k≤ j≤λ2

Sλv j .

In particular this means that, for every j with k ≤ j ≤ λ2, we must have that vv j is
contained in some coset Sλv� for � with k ≤ � ≤ λ2. In particular, there exists some
� with k ≤ � ≤ λ2 such that vvk ∈ Sλv�. We consider the cases λ1 > 1 and λ1 = 1
separately.

Suppose λ1 > 1. Recall that vk has one-line notation as given in (4.4), and in
particular that the last (λ1 − 1)-many entries of the one-line notation for vk are given
by the sequence 2, 3, . . . , λ1, and similarly for v�. Thus, vvk ∈ Sλv� for k ≤ � ≤
λ2 implies that {v(2), v(3), . . . , v(λ1)} is a subset of {1, 2, . . . , λ1}. Now recall that
v is a shortest left coset representative. From Remark 2.4 it follows that we may
assume its first λ1 entries are increasing, i.e., v(1) < v(2) < · · · < v(λ1). If 1 ∈
{v(2), . . . , v(λ1)}, then since the entries must be increasing we conclude v(2) = 1,
but then we come to a contradiction since there is no value of v(1) which can be less
than v(2) = 1. Thus, 1 /∈ {v(2), . . . , v(λ1)}, but then {v(2), . . . , v(λ1)} = {2, . . . , λ1}
and we conclude that v(2) = 2, v(3) = 3, . . . , v(λ1) = λ1. Now the condition that
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v(2) = 2 and v(1) < v(2) forces v(1) = 1 also. Thus, v must be the identity (since
it is a shortest left coset representative, and acts as the identity on {1, 2, . . . , λ1}, so it
must also act as the identity on {λ1 + 1, . . . , n}).

Now we suppose λ1 = 1 and k ≥ 1. In this case, v� = u� is the unique permutation
with 1 in position � + 1 and all other entries in increasing order. In particular, since
y(1) = 1 for all y ∈ Sλ weget that vvk ∈ Sλv� for k ≤ � ≤ λ2 implies that 1 = vvk(�+
1) ∈ {v(1), v(k + 2), . . . , v(n)}. Now suppose 1 lies in {v(k + 2), . . . , v(n)}. Since v

is a shortest left coset representative, we may assume v(2) < v(3) < · · · < v(n). In
particular, if v(1) 	= 1 then we must have v(2) = 1. This contradicts the assertion that
1 ∈ {v(k + 2), . . . , v(n)}, since k ≥ 1. Hence, the only possibility is that v(1) = 1,
which in turn implies that v must be the identity by the same reasoning as above. This
concludes the proof. ��

5 Linear Independence for an Sn-Orbit: Special Cases

In the previous two sections, we gave a purely combinatorial algorithm that produces,
in certain situations, classes f (k)

λ ∈ ⊕
w∈Sn

H∗
T (pt)which satisfy the GKM conditions

for a Hessenberg function h, and hence can be viewed as equivariant cohomology
classes in H∗

T (Hess(S, h)). Moreover, Lemma 4.11 proves that the stabilizer of the

class f (k)
λ under the dot action is Sλ. Thus, we can view the results of Sects. 3 and 4

as a partial answer to the first problem posed at the end of Sect. 2.4.
The purpose of this section is to take the theory developed in Sects. 3 and 4

one step further, by addressing the main question posed in Problem 2 at the end
of Sect. 2.4, namely: under what conditions is the Sn-orbit of f (k)

λ linearly indepen-
dent over H∗

T (pt)? Note that, in the case of the “top coset” classes, the Sn-orbit is
indeed H∗

T (pt)-linearly independent, as we have already recorded in Proposition 3.5.
Therefore, in this section, we focus on proving the linear independence statement—in
some special cases—for the classes we constructed in Sect. 4 which have supports
that are a union of more than one right coset.

We begin by stating the main result of this section. We need some notation to state
one of the (technical) hypotheses. Let v−1

λ2−1 be the permutation defined as in (4.5);
for the reader’s convenience, we record its one-line notation here as well:

v−1
λ2−1 = [λ2, λ2 + 2, . . . , n, 1, 2, . . . , λ2 − 1, λ2 + 1]. (5.1)

We note in particular that

v−1
λ2−1(b) = b − λ1 if λ1 + 1 ≤ b ≤ n − 1, and v−1

λ2−1(a) = a + λ2 if 2 ≤ a ≤ λ1.

(5.2)

The above remarks will be useful in the arguments below. We also define

j0 := min{b ∈ {λ1 + 1, . . . , n − 1} | λ2 ≤ h(v−1
λ2−1(b))}. (5.3)
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The index j0 is used in our proof to describe the set Sλ2−1 = N (v−1
λ2−1) ∩ vλ2−1(�

−
h ).

We can now state our theorem.

Theorem 5.1 Let n be a positive integer and h : [n] → [n] a Hessenberg function.
Let λ = (λ1, λ2) � n be a composition of n with two parts. Assume h(1) < λ2. In
addition, if λ1 > 1, we also assume h(λ2 + 1) = n and h(v−1

λ2−1( j0)) ≤ λ2 + 1. Then

(1) the Sn-orbit of f (λ2−1)
λ is H∗

T (pt)-linearly independent, and

(2) the stabilizer of each element in the Sn-orbit of f (λ2−1)
λ is a conjugate of the

reflection subgroup Sλ.

In particular, the H∗
T (pt)-submodule of H∗

T (Hess(S, h)) spanned by the Sn-orbit of

f (λ2−1)
λ is an Sn-subrepresentation with the same character as IndSn

Sλ
(1) 
 MP(λ),

where P(λ) is the partition of n obtained from λ by rearranging the parts to be in
decreasing order.

Note that since we are taking k = λ2 − 1 in the above theorem (with respect to
the construction of the f (k)

λ in the previous section), we have k + 2 = λ2 + 1, so the
assumption h(λ2 + 1) = n in Theorem 5.1 is equivalent to the necessary hypothesis
h(k + 2 = λ2 + 1) = n in the statement of Theorem 4.8. Hence, under the hypotheses
of Theorem 5.1, we do know from Theorem 4.8 that the classes f (λ2−1)

λ are well
defined in H∗

T (Hess(S, h)).
We also note that the claim regarding the stabilizers of the elements in the Sn-orbit

is a straightforward consequence of the construction of the f (k)
λ and Lemma 4.11

(see also Proposition 3.5), so the main task at hand is to prove the H∗
T (pt)-linear

independence, and this is what occupies the bulk of this section. More specifically, we
begin with the following.

We introduce some notation. Since λ = (λ1, λ2) is a two-part composition, shortest
left coset representatives in Sλ

n are parameterized by subsets of n of cardinality λ1.
Indeed, given a subset J = { j1 < j2 < · · · < jλ1} ⊆ [n], the corresponding shortest
left coset representative is the permutation defined as

vJ := [ j1, j2, . . . , jλ1 , j ′1, . . . , j ′λ2 ] ∈ Sλ
n , (5.4)

where [n] \ J = { j ′1 < · · · < j ′λ2} and it is straightforward to see that all shortest left
coset representatives arise in this way. Moreover, given a permutationw we obtain the
one-line notation for the shortest left coset representative of w in Sλ

n by rearranging
the values in positions 1, 2, . . . , λ1 and those in λ1 + 1, . . . , n so that they are in the
increasing order. With this notation in place we can write

Sλ
n = {vJ | J ⊆ [n], |J | = λ1}.

Note that since (λSn)0 ⊆ λSn = (Sλ
n )−1 for all k with 0 ≤ k ≤ λ2, we have

v−1
k = v{k+1,λ2+2,...,n},
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where vk is the permutation (4.4) considered in Sect. 4. Lemma 4.5(2) shows that
y · f (k)

λ = f (k)
λ for any y ∈ Sλ. This implies that the Sn-orbit of f (k)

λ under the dot
action is

{vJ · f (k)
λ | vJ ∈ Sλ

n }. (5.5)

Our linear independence argument requires the following statement.

Proposition 5.2 Suppose I , J , K ⊆ [n] are subsets with cardinality λ1 and let k =
λ2 − 1. Then

(1) supp(vJ · f (k)
λ ) ∩ supp(vI · f (k)

λ ) 	= ∅ if and only if I = J or |J ∩ I | = λ1 − 1,
and

(2) if I , J , K are pairwise distinct subsets of [n], then supp(vJ · f (k)
λ ) ∩ supp(vI ·

f (k)
λ ) ∩ supp(vK · f (k)

λ ) = ∅.

Proof We begin by proving statement (1). First, it is clear that if I = J then

supp(vJ · f (k)
λ ) ∩ supp(vI · f (k)

λ ) 	= ∅.

Thus, to prove the statement it suffices to show that, in the case that I 	= J , the
condition supp(vJ · f (k)

λ ) ∩ supp(vI · f (k)
λ ) 	= ∅ is equivalent to |J ∩ I | = λ1 − 1.

So now suppose I 	= J . Recall that S( j)
λ := v−1

j Sλv j for any 0 ≤ j ≤ λ2, so

v j S( j)
λ = Sλv j . By Lemma 4.10 and using the fact that k = λ2 − 1 and k + 1 = λ2

(so f (k)
λ has support consisting of exactly two cosets), we have

supp(vJ · f (k)
λ ) ∩ supp(vI · f (k)

λ )

=
(
vJ vk S(k)

λ � vJ vk+1S(k+1)
λ

)
∩
(
vI vk S(k)

λ � vI vk+1S(k+1)
λ

)
. (5.6)

Since I 	= J , vI and vJ are distinct shortest left coset representatives of Sλ, fromwhich
it follows that vJ vk S(k)

λ ∩vI vk S(k)
λ = ∅ and similarly vJ vk+1S(k+1)

λ ∩vI vk+1S(k+1)
λ =

∅ (see Lemma 2.9). Hence, we can continue the computation started in (5.6) to obtain

supp(vJ · f (k)
λ ) ∩ supp(vI · f (k)

λ )

=
(
vJ vk+1S(k+1)

λ ∩ vI vk S(k)
λ

)
�
(
vJ vk S(k)

λ ∩ vI vk+1S(k+1)
λ

)
= (vJ Sλvk+1 ∩ vI Sλvk) � (vJ Sλvk ∩ vI Sλvk+1) . (5.7)

This proves that, in the case I 	= J , the intersection of the two support sets is non-
empty if and only if

vJ Sλvk+1 ∩ vI Sλvk 	= ∅ or vJ Sλvk ∩ vI Sλvk+1 	= ∅.
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To complete the proof of statement (1), it now suffices to argue that each of these
conditions is equivalent to the condition that |J ∩ I | = λ1 − 1. First, we have

vJ Sλvk+1 ∩ vI Sλvk 	= ∅ ⇔ vJ y1vk+1 = vI yvk for some y, y1 ∈ Sλ

⇔ vJ y1 = vI sy(θ)y for some y, y1 ∈ Sλ and θ = t1 − tn,

where the second equivalence follows from the fact that vkv
−1
k+1 = sθ since k = λ2−1,

as can be readily checked by computation. We conclude that vJ Sλvk+1 ∩ vI Sλvk 	= ∅
if and only if there exists y ∈ Sλ such that the shortest left coset representative of
vI sy(θ) in Sλ

n is vJ .
The one-line notation for vI sy(θ) is obtained from the one-line notation of vI by

exchanging the values in positions y(1) and y(n). Since y ∈ Sλ we know y(1) ∈
{1, . . . , λ1} and y(n) ∈ {λ1 + 1, . . . , n}. In particular, the description of the one-line
notation for vJ and vI given in (5.4) implies that the desired condition holds if and
only if we can obtain J from I by changing a single element, or more precisely, if and
only if |J ∩ I | = λ1 − 1. This proves the desired result in this case.

Next, consider the condition that vJ Sλvk ∩ vI Sλvk+1 	= ∅. By the same logic as
above, this intersection is non-empty if and only if there exists y ∈ Sλ such that
the shortest left coset representative of vI sy(θ) is vJ for some y ∈ Sλ. By the same
reasoning as in the paragraph above we obtain |J ∩ I | = λ1−1. This proves statement
(1).

We now prove statement (2). Suppose I , J , K are pairwise distinct. Using the same
reasoning as above the intersection of the three support sets is

[(
vJ vk+1S(k+1)

λ ∩ vI vk S(k)
λ

)
�
(
vJ vk S(k)

λ ∩ vI vk+1S(k+1)
λ

)]

∩
(
vK vk S(k)

λ � vK vk+1S(k+1)
λ

)
. (5.8)

As before, since J 	= K and I 	= K we know that vJ vk+1S(k+1)
λ ∩ vK vk+1S(k+1)

λ = ∅
and vI vk S(k)

λ ∩ vK vk S(k)
λ = ∅. In particular we obtain

(
vJ vk+1S(k+1)

λ ∩ vI vk S(k)
λ

)
∩
(
vK vk S(k)

λ � vK vk+1S(k+1)
λ

)
= ∅.

Similarly, we obtain

(
vJ vk S(k)

λ ∩ vI vk+1S(k+1)
λ

)
∩
(
vK vk S(k)

λ � vK vk+1S(k+1)
λ

)
= ∅.

Hence, the set in (5.8) is empty, i.e.,

[(
vJ vk+1S(k+1)

λ ∩ vI vk S(k)
λ

)
�
(
vJvk S(k)

λ ∩ vI vk+1S(k+1)
λ

)]

∩
(
vK vk S(k)

λ � vK vk+1S(k+1)
λ

)
= ∅

as desired. This proves statement (2). ��
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We are now ready to prove Theorem 5.1.

Proof of Theorem 5.1 First, Theorem 4.8 implies that the class f (λ2−1)
λ is indeed a

well-defined GKM class under the hypotheses of Theorem 5.1. Now we want to show
that the set (5.5) is H∗

T (pt)-linearly independent. Suppose there is a H∗
T (pt)-linear

combination of {vJ · f (λ2−1)
λ | vJ ∈ Sλ

n } that gives the zero class, i.e.,

∑
J

cJ vJ · f (λ2−1)
λ = 0 ∈ H∗

T (Hess(S, h)) ⊆
⊕
w∈Sn

H∗
T (pt) (5.9)

for some cJ ∈ H∗
T (pt). We must show that cJ = 0 ∈ H∗

T (pt) for all J ⊂ [n] with
|J | = λ1. Since (5.9) holds as an equality of GKM classes, then in particular the LHS
must evaluate to 0 at any permutation w ∈ Sn .

By Proposition 5.2, only two elements in the set (5.5) can be non-zero when eval-
uated at any given w ∈ Sn . Consider, in particular, the evaluation at vλ2 of the
LHS of (5.9). Let K = {2, 3, . . . , λ1, n}. We now show that vλ2 ∈ supp( f (k)

λ ) ∩
supp(vK · f (k)

λ ). To see this, we apply equation (5.7) to J = {1, 2, . . . , λ1} and
I = K = {2, 3, . . . , λ1, n} (so vJ = e is the identity permutation) to obtain

supp( f (k)
λ ) ∩ supp(vK · f (k)

λ ) = (Sλvk+1 ∩ vK Sλvk) � (Sλvk ∩ vK Sλvk+1). (5.10)

Recall that vλ2−1v
−1
λ2

= sθ as in the proof of Proposition 5.2, where θ = t1 − tn so

vλ2v
−1
λ2−1 = sθ also (since s−1

θ = sθ ). Also, from the definition of vK in (5.4) it is not
hard to see that vK sθ ∈ Sλ. We then have

v−1
K sθ ∈ Sλ ⇒ v−1

K vλ2v
−1
λ2−1 ∈ Sλ ⇒ vλ2 = vK yvλ2−1 for some y ∈ Sλ (5.11)

so vλ2 ∈ vK Sλvk = vK Sλvλ2−1. Since vλ2 ∈ Sλvk+1 = Sλvλ2 also, we see that
vλ2 ∈ Sλvk+1 ∩vK Sλvk so by (5.10) we conclude vλ2 ∈ supp( f (k)

λ )∩ supp(vK · f (k)
λ ).

The discussion above implies that when we evaluate the LHS of (5.9) at w = vλ2

we obtain

cJ f (λ2−1)
λ (vλ2) + cK

(
vK · f (λ2−1)

λ

)
(vλ2)

= cJ f (λ2−1)
λ (vλ2) + cK vK

(
f (λ2−1)
λ (v−1

K vλ2)
)

= cJ f (λ2−1)
λ (vλ2) + cK vK

(
f (λ2−1)
λ (v−1

K vλ2v
−1
λ2−1vλ2−1)

)

= cJ

∏
β∈Sλ2−1

β + cK vK

⎛
⎝ ∏

β∈Sλ2−1

v−1
K vλ2v

−1
λ2−1(β)

⎞
⎠

= cJ

∏
β∈Sλ2−1

β + cK

∏
β∈Sλ2−1

sθ (β)

(5.12)
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where in the third equalitywe have used that v−1
K vλ2v

−1
λ2−1 ∈ Sλ aswe saw in (5.11) and

in the last equality we have used that vλ2v
−1
λ2−1 = sθ . Since we have the equality (5.9)

we conclude that

cJ

∏
β∈Sλ2−1

β + cK

∏
β∈Sλ2−1

sθ (β) = 0.

The above analysis gives us one linear equation relating two of the coefficients
appearing in the LHS of (5.9). We need at least one more equation to be able to
conclude that cJ and cK are both equal to 0. To do this, we need to evaluate (5.12) at
another permutation in supp( f (k)

λ ) ∩ supp(vK · f (k)
λ ). To find such a permutation, it

will be useful to set some notation. We define

A1 :={ta − tb | (a, b) ∈ {2, 3, . . . , λ1} × {λ1+1, . . . , n}, v−1
λ2−1(a)≤h(v−1

λ2−1(b))}

and

A2 := {t1 − tb | b ∈ {λ1 + 1, . . . , n − 1}, λ2 ≤ h(v−1
λ2−1(b))}.

Note that A1 = ∅ if λ1 = 1. It follows from the definition of Sλ2−1, Lemma 4.4, and
properties of vλ2−1 that

Sλ2−1 = A1 � A2. (5.13)

Recall that

j0 := min{b ∈ {λ1 + 1, . . . , n − 1} | λ2 ≤ h(v−1
λ2−1(b))}.

From the one-line notation of v−1
λ2−1 in (5.1) it follows that v−1

λ2−1(b) = b − λ1, and
together with the fact that Hessenberg functions are non-decreasing, this implies

A2 = {t1 − t j0 , t1 − t j0+1, . . . , t1 − tn−1}. (5.14)

Since h(1) < λ2 by assumption, we have h(v−1
λ2−1(λ1 + 1)) = h(1) < λ2 so we

conclude that λ1 + 1 < j0. Consider the simple reflection s j0−1 exchanging j0 − 1
and j0. Since λ1 + 1 ≤ j0 − 1 ≤ n − 2 we have s j0−1 ∈ Sλ and s j0−1(1) = 1 and
s j0−1(n) = n.
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Recall that one of the hypotheses of Theorem 5.1 is that h(v−1
λ2−1( j0)) ≤ λ2 + 1.

Using this, we conclude that, in the case when λ1 > 1, we have

ta − tb ∈ A1 ⇒ v−1
λ2−1(a) ∈ {λ2 + 2, . . . , n} by (5.1)

⇒ h(v−1
λ2−1( j0)) ≤ λ2 + 1 < v−1

λ2−1(a)

⇒ h(v−1
λ2−1( j0)) < h(v−1

λ2−1(b)) by definition of A1

⇒ v−1
λ2−1(b) > v−1

λ2−1( j0)

⇒ b > j0 since v−1
λ2−1 is increasing on {λ1 + 1, . . . , n}, and b, j0 ∈ {λ1 + 1, . . . , n}

⇒ s j0−1(ta − tb) = ta − tb since j0 < b and a ≤ λ1 < j0 − 1.

(5.15)

Since (5.15) holds for any β = ta − tb ∈ A1 we conclude s j0−1(β) = β for all
β ∈ A1. (In the case λ1 = 1, the set A1 is empty so this statement is vacuously true.)
From (5.14) and (5.13) we then see immediately that

f (λ2−1)
λ (vλ2) = (t1 − t j0)(t1 − t j0+1) · · · (t1 − tn−1)

∏
β∈A1

β

f (λ2−1)
λ (s j0−1vλ2) = s j0−1( f (λ2−1)(vλ2))

= (t1 − t j0−1)(t1 − t j0+1) · · · (t1 − tn−1)
∏

β∈A1

β

(5.16)

since s j0−1 ∈ Sλ and s j0−1 acts non-trivially only on the first factor of f (λ2−1)(vλ2).
(Here we interpret the product over A1 to be equal to 1 if λ1 = 1 and A1 = ∅.) Note
that the above equation implies s j0−1vλ2 ∈ supp( f (λ2−1)

λ ).
In (5.12) we computed vK · f (λ2−1)(vλ2) and obtained

vK · f (λ2−1)(vλ2 ) =
∏

β∈Sλ2−1

sθ (β) = (tn − t j0 )(tn − t j0+1) · · · (tn − tn−1)
∏

β∈A1

sθ (β).

(5.17)
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We can compute

vK · f (λ2−1)
λ (s j0−1vλ2)

= vK

(
f (λ2−1)(v−1

K s j0−1vλ2)
)

= vK

(
f (λ2−1)
λ (v−1

K s j0−1sθ vλ2−1)
)

since sθ = vλ2v
−1
λ2−1

= vK

(
f (λ2−1)
λ (v−1

K sθ s j0−1vλ2−1)
)
because sθ and s j0−1 commute

= sθ s j0−1

(
f (λ2−1)
λ (vλ2−1)

)
because v−1

K sθ ∈ Sλ and s j0−1 ∈ Sλ

= sθ

⎛
⎝(t1 − t j0−1)(t1 − t j0+1) · · · (t1 − tn−1)

∏
β∈A1

β

⎞
⎠

by definition of f (λ2−1)
λ and (5.16)

= (tn − t j0−1)(tn − t j0+1) · · · (tn − tn−1)
∏

β∈A1

sθ (β).

(5.18)

In particular, our computations imply s j0−1vλ2 ∈ supp( f λ2−1
λ ) ∩ supp(vK · f (λ2)

λ ).
Evaluating (5.9) at vλ2 and s j0−1vλ2 we obtain equations

cJ f (λ2−1)
λ (vλ2) + cK vK · f (λ2−1)

λ (vλ2) = 0 (5.19)

and

cJ f (λ2−1)
λ (s j0−1vλ2) + cK vK · f (λ2−1)

λ (s j0−1vλ2) = 0. (5.20)

Subtracting (5.20) from (5.19) and using the formulas given in (5.16), (5.17), and (5.18)
we obtain

cJ (t j0−1 − t j0)(t1 − t j0+1) · · · (t1 − tn−1)∏
β∈A1

β + cK (t j0−1 − t j0)(tn − t j0+1) · · · (tn − tn−1)
∏

β∈A1

sθ (β) = 0.

Dividing by t j0−1 − t j0 and rearranging yields

cJ (t1 − t j0+1) · · · (t1 − tn−1)
∏

β∈A1

β = −cK (tn − t j0+1) · · · (tn − tn−1)
∏

β∈A1

sθ (β).

Substituting this expression back in to (5.19) and using (5.16) and (5.17) we obtain

(t1 − t j0)

⎛
⎝−cK (tn − t j0+1) · · · (tn − tn−1)

∏
β∈A1

sθ (β)

⎞
⎠
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+cK (tn − t j0)(tn − t j0+1) · · · (tn − tn−1)
∏

β∈A1

sθ (β) = 0

from which it follows that

cK (tn − t1)

⎛
⎝(tn − t j0+1) · · · (tn − tn−1)

∏
β∈A1

sθ (β)

⎞
⎠ = 0

and we therefore conclude cK = 0, and hence cJ = 0 also.
We have now shown that two of the coefficients, namely cJ and cK for J =

{1, 2, . . . , λ1} and K = {2, 3, . . . , λ1, n}, appearing in the linear combination
from (5.9) are equal to 0. Now for any I ⊆ [n] of cardinality λ1 with |J ∩ I | = λ1−1,
by Proposition 5.2 we can find a permutation w such that vI · f (k)

λ and vJ · f (k)
λ do

not vanish at w, and vK · f (k)
λ (w) = 0 for all K 	= I and K 	= J . But then the

fact that cJ = 0 implies cI = 0 also. Now we can use the fact that any I ⊆ [n] of
cardinality λ1 can be obtained from J in finitely many steps by changing 1 element
in the subset at a time, so that by iterating this argument we conclude that cI = 0 for
all coefficients appearing in the LHS of (5.9), as desired. This shows that the classes
{vJ · f (λ2−1)

λ | vJ ∈ Sλ
n } are H∗

T (pt)-linearly independent, as desired.
Finally, the assertion that the submodule of H∗

T (Hess(S, h)) spanned by the Sn-

orbit of f (λ2−1)
λ has the same character as IndSn

Sλ
(1) follows immediately from the

fact that the stabilizer of f (λ2−1)
λ is Sλ by Lemma 4.11. The stabilizer of vJ · f (k)

λ is
vJ Sλv

−1
J 
 Sλ. This completes the proof of the theorem. ��

6 Linear Independence Between Two Sn-Orbits

In this section, we seek to partially address Problem 3 of Sect. 2.4, in a special case.
Recall that Problem 2 asks when a single Sn-orbit is H∗

T (pt)-linearly independent.
Problem 3 then asks for conditions under which a union of more than one Sn-orbit
is also H∗

T (pt)-linearly independent. In this section, we focus exclusively on the case
where the Sn-orbits under consideration consist of homogeneous elements of the same
degree. This is a reasonable condition, since the dot action preserves degrees. We now
state precisely the hypotheses for the special case we consider in this section. First,
we restrict to the case λ = (1, n − 1), so λ1 = 1 and λ2 = n − 1. In this setting,
by Theorem 4.8 we know that f (k)

λ is a well-defined equivariant cohomology class
of H∗

T (Hess(S, h)) for all 0 ≤ k ≤ n − 1. Second, we also assume h(1) < n − 1
so Theorem 5.1 holds, and thus, the set of cohomology classes in the Sn-orbit of
f (λ2−1)
λ = f (n−2)

λ is H∗
T (pt)-linearly independent.

We now consider the two GKM classes f (λ2)
λ = f (n−1)

λ and f (λ2−1)
λ = f (n−2)

λ

as defined by (4.8) corresponding to the choices k = λ2 = n − 1 and k = λ2 −
1 = n − 2, respectively. Since λ = (1, n − 1), the Sn-orbit of both f (n−1)

λ and

f (n−2)
λ are given by taking the images under the dot action of the elements of Sλ

n =
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{e, u−1
1 , u−1

2 , . . . , u−1
n−1}, where uk was defined in (4.1). For the purpose of this section

only, we define notation as follows:

fi := u−1
i · f (n−2)

λ and gi := u−1
i · f (n−1)

λ for i = 0, . . . , n − 1. (6.1)

As explained above, we restrict our considerations to the case in which deg( f0) =
deg(g0). The main result of this section is Theorem 6.2, which states that the
set { f0, f1, . . . , fn−1, g0, g1, . . . , gn−1} is H∗

T (pt)-linearly independent whenever
deg( f0) = deg(g0) ≥ 2. In other words, we show that the union of the two per-
mutation bases { f0, . . . , fn−1} and {g0, . . . , gn−1}, shown individually to be linearly
independent in Theorem 5.1, is still linearly independent when considered together.
This therefore represents another step toward the larger goal of building a global
permutation basis for the entire cohomology ring H∗

T (Hess(S, h)), as proposed in
Problem 3 of Sect. 2.4.

Before embarking on the proof of Theorem 6.2 we consider the hypothesis that
deg( f0) = deg(g0). Recall that Sk := N (v−1

k ) ∩ vk(�
−
h ). Since λ = (1, n − 1), we

have that vk = uk for all 0 ≤ k ≤ n − 1 as noted in Remark 4.1. In particular, by
Lemma 4.4 we have

N (u−1
n−1) = {t1 − tb | 2 ≤ b ≤ n} and N (u−1

n−2) = {t1 − tb | 2 ≤ b ≤ n − 1}.

We also have

uk�
−
h = {ti − t j | u−1

k ( j) < u−1
k (i) ≤ h(u−1

k ( j))}

from which it follows that

Sn−1={t1 − tb | 2≤b≤n and n ≤h(b − 1)} = {t1 − ti+1 | 1 ≤ i ≤ n − 1, h(i) = n}

and

Sn−2 = {t1 − tb | 2 ≤ b ≤ n − 1 and n − 1 ≤ h(b − 1)}
= {t1 − ti+1 | 1 ≤ i ≤ n − 2, h(i) ≥ n − 1}.

Since the degrees of f0 := f (n−2)
λ and g0 := f (n−1)

λ are given by the cardinalities of
the sets Sn−2 and Sn−1, respectively, we obtain

deg( f0) = |{i | i < n − 1, h(i) ≥ n − 1}| and deg(g0) = |{i | i < n, h(i) = n}|.

Thus, in order to ensure that our classes have the same degree, we assume throughout
this section that the Hessenberg function h : [n] → [n] has the property that

|{i | i < n − 1, h(i) ≥ n − 1}| = |{i | i < n, h(i) = n}|. (6.2)

The following lemma records some properties of Hessenberg functions satisfy-
ing (6.2).
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Lemma 6.1 Suppose h : [n] → [n] is a connected Hessenberg function such that (6.2)
holds. Then

(1) the set {i | i < n − 1, h(i) ≥ n − 1} is non-empty,
(2) if we let j := min{i | i < n − 1, h(i) ≥ n − 1}, then j is the unique element of

[n] such that h( j) = n − 1,
(3) deg( f0) = deg(g0) = n − j − 1 for the classes f0, g0 defined above, and
(4) if |{i | i < n − 1, h(i) ≥ n − 1}| = |{i | i < n, h(i) = n}| ≥ 2, then j < n − 2.

Proof For the first claim, observe that under the assumption (6.2), it suffices to show
that {i | i < n − 1, h(i) = n} is non-empty. But it follows from the connectedness of
h that h(n − 1) = n so n − 1 ∈ {i | i < n, h(i) = n}, and hence the set is non-empty
as desired. To prove the second claim we first observe that

{i | i < n − 1, h(i) ≥ n − 1}
= {i | i < n − 1, h(i) = n − 1} � {i | i < n − 1, h(i) = n}

and

{i | i < n, h(i) = n} = {i | i < n − 1, h(i) = n} � {n − 1},

where we have again used that h is connected, so h(i) ≥ i + 1 for all 1 ≤ i ≤ n − 1.
Combining these equations with assumption (6.2), we conclude

|{i | i < n − 1, h(i) = n − 1}| = 1. (6.3)

The assertion that j is unique and h( j) = n − 1 now follows. To see the third claim,
note that by definition of j we have

{i | i < n − 1, h(i) ≥ n − 1} = { j, j + 1, j + 2, . . . , n − 2}

which implies |{i | i < n − 1, h(i) ≥ n − 1}| = n − j − 1, as claimed. Finally, the
last claim follows immediately from the third claim, since |{i | i < n − 1, h(i) ≥
n − 1}| = n − j − 1 ≥ 2 implies j ≤ n − 3, or equivalently j < n − 2. ��

We now state our main theorem.

Theorem 6.2 Let λ = (1, n − 1) and assume that h : [n] → [n] is a connected
Hessenberg function satisfying condition (6.2) and such that h(1) < n − 1. Let
fi = u−1

i · f (n−2)
λ and gi = u−1

i · f (n−1)
λ for all i = 0, . . . , n − 1. Suppose that

deg( f0) = deg(g0) ≥ 2. Then the union of the Sn-orbits of f0 and g0, namely the set
{ f0, . . . , fn−1, g0, . . . , gn−1}, is H∗

T (pt)-linearly independent.

Let usmake somepreliminaryobservations. In order to show that { f0, f1, . . . , fn−1,

g0, g1, . . . , gn−1} is H∗
T (pt)-linearly independent,weneed to show that if the following

equality holds

c0 f0 + c1 f1 + · · · + cn−1 fn−1 + d0g0 + d1g1 + · · · + dn−1gn−1 = 0 (6.4)

123



La Matematica  _#####################_ Page 47 of 54 _####_

in H∗
T (Hess(S, h)), where c0, . . . , cn−1, d0, . . . , dn−1 ∈ H∗

T (pt), then the coefficients
are all zero, i.e., c0 = c1 = · · · = cn−1 = d0 = d1 = · · · = dn−1 = 0.

In the course of our arguments, will make use of the following [8, p.65, Exercise
11].

Proposition 6.3 Let A be a (m − 1) × m matrix with entries in the polynomial ring
R = k[t1, . . . , tn] where k is a field. Suppose also that the m −1 rows of A are linearly
independent over R. Then,

(1) The vector btr = (a1, a2, . . . , am) ∈ Rm defined by ai = (−1)i+1 det(Ai ) sat-
isfies Ab = 0. Here Ai is the (m − 1) × (m − 1) sub-matrix of A obtained by
deleting the i-th column of A.

(2) Any solution b0 of the equation Ax = 0 is of the form gb for some g ∈ R, i.e.,
any solution must be a polynomial multiple of b.

Wemake some preliminary calculations. Set j := min{i | i < n −1, h(i) ≥ n −1}
as in Lemma 6.1. Using the definition of f (n−2)

λ we can calculate the value of f0 at
un−1 and un−2 to obtain

f0(un−1) =
∏

i<n−1
h(i)≥n−1

(t1 − ti+1) =
∏

j≤i≤n−2

(t1 − ti+1) = f0(un−2). (6.5)

Similarly for g0 we can use the definition of f (n−1)
λ to compute

g0(un−1) =
∏
i<n

h(i)=n

(t1 − ti+1) =
∏

j+1≤i≤n−1

(t1 − ti+1). (6.6)

Next, recall that by definition f0 = f (n−2)
λ is non-zero on precisely two right cosets

of Sλ in Sn , namely Sλun−2 and Sλun−1, where

un−2 = [2, 3, . . . , n − 1, 1, n] and un−1 = [2, 3, . . . , n, 1]. (6.7)

It is easy to confirm by a direct calculation that

u2
n−1 = s1s2 · · · sn−1s1s2 · · · sn−1 = s2s3 · · · sn−1un−2. (6.8)

The following are also straightforward computations:

un−1s j = s j+1un−1 which means s j u
−1
n−1 = u−1

n−1s j+1

and also

u−1
n−1s2s3 · · · sn−1 = sθ , (6.9)
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where θ = t1 − tn , so sθ is the transposition exchanging 1 and n only. We can now
compute

fn−1(un−1) =
(

u−1
n−1 · f (n−2)

λ

)
(un−1) by definition of fn−1

= u−1
n−1( f0(u

2
n−1)) by definition of the dot action and f0

= u−1
n−1( f0(s2s3 · · · sn−1un−2)) by (6.8)

= u−1
n−1s2s3 · · · sn−1( f0(un−2)) by Lemma 4.5(3) with y = s2s3 · · · sn−1

= sθ ( f0(un−2)) by (6.9).

From the above and (6.5) we immediately obtain

fn−1(un−1) =
∏

j≤i≤n−2

(tn − ti+1). (6.10)

Next, note that 2 ≤ j ≤ n − 2 by Lemma 6.1 and because we have assumed that
h(1) < n − 1. We therefore have s j ∈ Sλ and

s j un−1∈ Sλun−1 and un−1s j un−1=s j+1u2
n−1=s j+1s2s3 · · · sn−1un−2 ∈ Sλun−1,

(6.11)

where we have used (6.8) and the computations above. We can now compute

f0(s j un−1) = (t1 − t j )
∏

j<i≤n−2

(t1 − ti+1) (6.12)

since f0(s j un−1) = s j f0(un−1) and by (6.5). Recall that we also know f0(un−1) =
f0(un−2) by definition of the class f0 = f (n−2)

λ as computed in (6.5). Therefore,

fn−1(s j un−1) :=
(

u−1
n−1 · f0

)
(s j un−1) = u−1

n−1( f0(un−1s j un−1))

= u−1
n−1( f0(s j+1s2s3 · · · sn−1un−2)) by (6.11)

= u−1
n−1s j+1s2s3 · · · sn−1( f0(un−2))

= s j sθ ( f0(un−1)) by the computations above

= sθ ( f0(s j un−1))

= (tn − t j )
∏

j<i≤n−2

(tn − ti+1) since s j and sθ commute and by (6.12).

(6.13)

Finally, we also note that g0(s j un−1) = s j (g0(un−1)) = g0(un−1) since s j ∈ Sλ and
s j fixes the product appearing in (6.6).

With these preliminaries in place, we can now begin our proof of Theorem 6.2.
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Proof of Theorem 6.2 The computations above show that f0, fn−1, and g0 are all non-
zero at un−1 and s j un−1. Lemma 3.4 and Proposition 5.2 tell us that all other fi and gi

evaluate to be zero at un−1 and s j un−1. It follows that, when restricted to the T -fixed
point un−1, equation (6.4) becomes

c0 f0(un−1) + cn−1 fn−1(un−1) + d0g0(un−1) = 0

and when restricted to s j un−1 the same equation (6.4) becomes

c0 f0(s j un−1) + cn−1 fn−1(s j un−1) + d0g0(s j un−1) = 0.

This is equivalent to the statement that the vector of polynomials (c0, cn−1, d0)T is a
solution to the matrix equation AX = 0, considered over the ring H∗

T (pt), where A is
the 2 × 3 matrix

A :=
[

f0(un−1) fn−1(un−1) g0(un−1)

f0(s j un−1) fn−1(s j un−1) g0(s j un−1)

]
.

The entries in A are elements of H∗
T (pt) ∼= C[t1, . . . , tn], a polynomial ring over the

field C.
We wish to apply Proposition 6.3 with m = 3, for which we need first to check

that the rows of A are linearly independent over H∗
T (pt). To do this it suffices to see

that the determinant of at least one of the 2 × 2 minors of A is non-zero. Let Ai for
i = 1, 2, 3 denote the minor of A with the i-th column deleted. It is a straightforward
computation to see that

A3 =
⎛
⎝ ∏

j+1≤i≤n−1

(t1 − ti+1)

⎞
⎠
⎛
⎝ ∏

j<i≤n−2

(tn − ti+1)

⎞
⎠ (t j+1 − t j )

and

A1 =
⎛
⎝ ∏

j+1≤i≤n−1

(t1 − ti+1)

⎞
⎠
⎛
⎝ ∏

j<i≤n−2

(tn − ti+1)

⎞
⎠ (t j − t j+1).

In particular, we see that A1 	= 0 and A3 	= 0 and A1 = −A3. Thus, we may apply
Proposition 6.3, and from it we conclude that (c0, cn−1, d0) = c(A1,−A2, A3) for
some c ∈ H∗

T (pt). Since we saw above that A1 = −A3, it follows immediately that
c0 = −d0.

We now give the idea of the next steps in our argument before giving the details.
From Lemma 3.4 and Proposition 5.2 we know that at any given w ∈ Sn , exactly
two of the fi ’s and one of the gi ’s evaluate to be non-zero. In the above argument we
chose two permutations un−1 and s j un−1 which have the property that it is exactly
f0, fn−1 and g0 which evaluate to be non-zero at these permutations, thus isolating
the 3 coefficients c0, cn−1 and d0 for analysis. By using Proposition 6.3 we were
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then able to conclude that (c0, cn−1, d0) must be a scalar multiple of a certain vector
obtained by taking minors of a 2× 3 matrix, constructed from the values of f0, fn−1,
and g0 at these permutations. In the next part of our argument, our strategy is to find
another permutation w′ such that f0, fn−1, and g0 are exactly the three elements in
{ f0, f1, . . . , fn−1, g0, g1, . . . , gn−1} evaluated to be non-zero atw′. Replacing s j un−1
withw′, a similar argument as that given above creates a new 2×3matrix B and yields
the conclusion that (c0, cn−1, d0) must be a scalar multiple of a vector defined using
the minors of B. Thus, if we can find a permutation w′ such that the vector of minors
of B and the vector of minors of A are linearly independent, then we can conclude
that (c0, cn−1, d0) must be equal to 0.

We now turn to the details of the argument sketched above. Recall from Lemma 6.1
that deg( f0) = deg(g0) = n − j − 1, and our assumption deg( f0) = deg(g0) ≥ 2
implies j < n − 2. This in turn implies that the simple reflection s j+1 commutes with
sθ . We now argue that we may take w′ = s j+1un−1. Indeed, we can compute that
since s j+1 ∈ Sλ, using (6.6) we have

g0(s j+1un−1) = s j+1(g0(un−1)) = (t1 − t j+1)
∏

j+1<i≤n−1

(t1 − ti+1) (6.14)

and

f0(s j+1un−1) = s j+1( f0(un−1)) = f0(un−1) (6.15)

since s j+1 fixes the product appearing in (6.5). Next, using similar reasoning as
in (6.11) and (6.13), we obtain

fn−1(s j+1un−1) = s j+1( fn−1un−1) = fn−1(un−1)

since s j+1 also fixes the product appearing in (6.10). Thus, f0, fn−1, g0 are precisely
the 3 classes that evaluate to be non-zero at w′, and the other classes are all zero at w′.
The above computations allow us to analyze the relevant 2 × 3 matrix

B :=
[

f0(un−1) fn−1(un−1) g0(un−1)

f0(s j+1un−1) fn−1(s j+1un−1) g0(s j+1un−1)

]
.

Recall thatwe had already observed that A1 = −A3 in the vector ofminors obtained
from the original matrix A. Let Bi be the analogous minor of B obtained by deleting
the i-th column. As argued above, it suffices to show that (A1, A2, A3) is linearly
independent from (B1, B2, B3), for which it suffices to see that B1 	= −B3 (since
H∗

T (pt) is an integral domain). From the above computations we obtain,

B1 = fn−1(un−1)g0(s j+1un−1) − g0(un−1) fn−1(s j+1un−1)

= fn−1(un−1)[g0(s j+1un−1) − g0(un−1)]
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and thus

B1 =
⎛
⎝ ∏

j≤i≤n−2

(tn − ti+1)

⎞
⎠
⎛
⎝ ∏

j+1<i≤n−1

(t1 − ti+1)

⎞
⎠ (t j+2 − t j+1)

so B1 	= 0. On the other hand, we have

B3 = f0(un−1) fn−1(s j+1un−1) − fn−1(un−1) f0(s j+1un−1) = 0

and the result now follows.
Thus, we have seen that (B1, B2, B3) is H∗

T (pt)-linearly independent from
(A1, A2, A3), which shows that c0 = cn−1 = d0 = 0.

To complete the argument, we must now show that ci = di = 0 for all i , 0 ≤ i ≤
n − 1.

Considerw ∈ Sn such thatw(n) = 1 andw(n −1) = i +1 for i /∈ {0, n −1}. Since
w(n) = 1, we obtain w ∈ Sλun−1 which implies that f0(w) 	= 0 and g0(w) 	= 0.
Furthermore, w(n − 1) = i + 1 implies that uiw(n − 1) = ui (i + 1) = 1 so
uiw ∈ Sλun−2 which tell us that

fi (w) = u−1
i · f0(w) = u−1

i ( f0(uiw)) 	= 0

also. Thus, evaluating equation (6.4) at w we get

c0 f0(w) + ci fi (w) + d0g0(w) = 0.

However, since c0 = d0 = 0, this implies that ci = 0, since fi (w) 	= 0 and H∗
T (pt) is

an integral domain. Thus, ci = 0 for all 0 ≤ i ≤ n − 1. This means that the original
linear dependence relation is among the g0, g1, . . . , gn−1, but we have already proved
these are linearly independent, so di = 0 for all 0 ≤ i ≤ n − 1. This concludes the
proof. ��

We conclude with a motivating example and open problem. As noted in the intro-
duction, one reason for focusing on partitions with two parts is the fact that when h :
[n] → [n] is anabelianHessenberg function (that is,when h(1) ≥ max{i | h(i) < n}),
the only irreducible representations which occur in the dot action representation are
those corresponding to partitions with at most two parts (see [12, Cor. 5.12]). In this
case, the Stanley–Stembridge conjecture is known to hold and work of the first two
authors gives an inductive formula for number of permutation representations Mμ

that appear in each graded part [12]. The following example considers a special case
of abelian Hessenberg functions. Using the constructions of this manuscript, we are
able to define the correct number of equivariant cohomology classes generating the
representations M (n−1,1) in certain graded pieces of the dot action representation.

Example 6.4 Let n be a positive integer with n ≥ 5 and h = (n−2, n−1, n, n, . . . , n).
We consider the decomposition of each graded piece of the dot action representation
into permutation representations, given by
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H2i (Hess(S, h)) =
⊕
μ�n

μ=(μ1,μ2)

cμ,i Mμ. (6.16)

In the special case under consideration, we apply the results of [12]. The possible
two-element sink sets (i.e., independent sets) of the “incomparability graph” of h =
(n −2, n −1, n, n, . . . , n) are {1, n −1}, {2, n}, and {1, n}. Now the inductive formula
of [12, Thm. 6.1] tells us that

cμ,i = 0 unless μ ∈ {(n), (n − 1, 1), (n − 2, 2)}.

and

c(n−1,1),i = 0 for all 0 ≤ i ≤ n − 4 and c(n−1,1),n−3 = 2.

(The interested reader can find a similar computation in [12, Example 6.2].) In other
words, the minimal degree in which M (n−1,1) appears is 2(n−3), and there are exactly
two copies of M (n−1,1) in this degree. By assumption, h is a connected Hessenberg
function satisfying all assumptions of Theorem 6.2 above. In particular,

|{i | i < n − 1, h(i) ≥ n − 1}| = |{i | i < n, h(i) = n}| = n − 3

in this case. Thus, the classes { f0, f1, . . . , fn−1, g0, g1, . . . , gn−1} give us a linearly
independent set of equivariant classes in H2(n−3)

T (Hess(S, h)) that together span
exactly two H∗

T (pt)-modules, each of which is isomorphic to M (n−1,1).

The example above shows that our Theorem 6.2 yields part of a permutation basis
for H2(n−3)(Hess(S, (n − 2, n − 1, n, . . . , n))). Indeed, one easily confirms that the
only other representations appearing in this degree are trivial. We therefore recover a
permutation basis for H2(n−3)

T (Hess(S, (n − 2, n − 1, n, . . . , n))) by adding to our
collection an appropriate number of Sn-invariant classes of degree 2(n−3). It is still an
open question how to build, in the other degrees, linearly independent sets of classes
spanning permutation modules.

More interestingly, since 2(n − 3) is the minimal degree in which M (n−1,1) occurs
in H∗(Hess(S, (n − 2, n − 2, n, . . . , n))), one could hope to obtain classes in higher
degree generating an isomorphic H∗

T (pt)-submodule by multiplying each of the fi ’s
(or gi ’s) by some appropriately chosen Sn-invariant class.

Problem 6.5 Let n be a positive integer with n ≥ 5 and set h = (n−2, n−1, n, . . . , n).
Suppose k > n − 3 and c(n−1,1),k 	= 0 where c(n−1,1),k is the coefficient defined as

in (6.16) above. Identify Sn-invariant classes h1, . . . , hm ∈ H2(k−(n−3))
T (Hess(S, h)),

where m = c(n−1,1),k , and r with 1 ≤ r ≤ m so that the set

{h j fi | 1 ≤ j ≤ r , 0 ≤ i ≤ n − 1} ∪ {h j gi | r + 1 ≤ k ≤ m, 0 ≤ i ≤ n − 1}

is H∗
T (pt)-linearly independent.
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Any solution to this open problems is another step toward the construction of a
permutation basis for the dot action representation in this case. In general, one may
hope to show that our construction always yields a linearly independent basis for
those Mμ of minimal degree that appear as summands of the Sn-representation on
H∗

T (Hess(S, h)), whenever h is abelian.
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