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ABSTRACT

We consider Hessenberg varieties in the flag variety of GLnðCÞ with the
property that the corresponding Hessenberg function defines an ad-nilpo-
tent ideal. Each such Hessenberg variety is contained in a Springer fiber.
We extend a theorem of Tymoczko to this setting, showing that these vari-
eties have an affine paving obtained by intersecting with Schubert cells.
Our method of proof constructs an affine paving for each Springer fiber
that restricts to an affine paving of the Hessenberg variety. We use the
combinatorial properties of this paving to prove that Hessenberg varieties
of this kind are connected.
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1. Introduction

This article studies topological and combinatorial properties of a certain class of Hessenberg

varieties. Hessenberg varieties, as introduced in ref. [3], are subvarieties of the flag variety. They
are important examples of varieties whose geometry and topology can be characterized using

combinatorial techniques (see, e.g. [1, 10, 11]). The Hessenberg variety HessðX, hÞ is parametrized
by two pieces of data: a matrix X 2 glnðCÞ and a non-decreasing function h : ½n� ! ½n�, known

as a Hessenberg function.
Most of the existing literature on Hessenberg varieties considers only Hessenberg functions

with the property that hðiÞ � i for all i. Tymoczko has shown that the Hessenberg varieties corre-
sponding to such Hessenberg functions have a paving by affines [17]. This article investigates
Hessenberg varieties corresponding to Hessenberg functions such that h(i) < i for all i. In this

case, the Hessenberg space of the function h is an ad-nilpotent ideal and HessðX, hÞ is a subvari-
ety of the Springer fiber for X. We construct an affine paving for these varieties and explore add-

itional geometric and combinatorial properties.
The fact that Hessenberg varieties of this kind are paved by affines is not new; Fresse proves

this statement for a more general class of Hessenberg varieties in ref. [6]. While the arguments
used in that article are broader in scope, they do not compute the dimension of each affine cell
in the paving. Our methods are constructive and we obtain combinatorial formulas for the

dimension of the cells, recovering Tymoczko’s results in this setting. In Section 5 below, we
define explicit coordinates for an affine paving of the Springer fiber. We then obtain a paving of

the Hessenberg variety HessðX, hÞ by setting certain coordinates equal to zero; this is recorded in
Theorem 5.7. Our arguments are of a similar flavor as those given by Spaltenstein in ref. [16].
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We give two applications of our results in Section 6. Recall that the irreducible components of

the Springer fibers are in bijection with standard tableaux. This is one of the key conclusions of

Springer theory. The Hessenberg varieties we consider here may not be equidimensional, so the

cells in the affine paving of maximal dimension are not in bijection with irreducible components.

However, Theorem 6.3 below shows that these cells are still indexed by standard tableaux. The

second main result of Section 6, namely Theorem 6.5, proves that the Hessenberg varieties we

consider are always connected (in the type A case). Example 6.7 shows that this property may

not be true for analogous Hessenberg varieties defined using other classical groups.
The constructions in this article are motivated by the goal of better understanding the geom-

etry of the affine paving. Determining the closure relations between cells in the paving and identi-

fying singularities of the irreducible components of HessðX, hÞ are both interesting open

questions. Even in the case of the Springer fiber, the answer to these questions is unknown,

although progress has been made in special cases [5, 8, 9]. Since the Hessenberg varieties consid-

ered here are all subvarieties of a Springer fiber, a thorough study of their geometry has the

potential to shed new light on these subjects.
The organization of this article is as follows. In Section 2, we review necessary definitions and

prior results. In Section 3 we study the notion of Hessenberg inversions, originally introduced by

Tymoczko in ref. [17]. We define certain subgroups of matrices crucial to the construction of our

paving in Section 4. Our affine paving is defined in Section 5 and we prove our main result,

which is Theorem 5.7. Finally, we explore some combinatorial properties of our construction in

Section 6.

2. Preliminaries

Let n be a positive integer and ½n� denote the set of positive integers f1, 2, :::, ng: We work in

type A throughout (except for Example 6.7 in Section 6), where GLnðCÞ is the group of invertible

n� n complex matrices and glnðCÞ is the Lie algebra of all n� n complex matrices. Let B be the

Borel subgroup of GLnðCÞ consisting of upper triangular matrices and U be the subgroup of

upper triangular matrices with diagonal entries equal to 1.
The Weyl group of GLnðCÞ is Sn, which we identify with the subgroup of permutation matri-

ces in GLnðCÞ: Given w 2 Sn, let

invðwÞ :¼ fði, jÞ j i > j and wðiÞ < wðjÞg

denote the set of inversions of w. Note that we adopt the nonstandard notation of listing the

larger number in the pair ði, jÞ 2 invðwÞ first; this simplifies our exposition below. The Bruhat

length of a permutation w 2 Sn is ‘ðwÞ :¼ j invðwÞ j :

2.1. Hessenberg varieties

The flag variety is the collection of all full flags in C
n,

FlagsðCnÞ :¼ fV� ¼ ðf0g � V1 � V2 � ::: � C
nÞ j dimCðViÞ ¼ i for all i 2 n½ �g:

Given a full flag V�, let fv1, v2, :::, vng be a basis of Cn such that for each i, fv1, v2, :::, vig is a

basis for Vi. We denote the flag V� by V� ¼ ðv1 j v2 j � � � j vnÞ: Let fe1, e2, :::, eng be the standard

basis of Cn: The standard flag E� is the full flag E� ¼ ðe1 j e2 j � � � j enÞ: Every flag V� is of the

form gE� where g 2 GLnðCÞ such that gek ¼ vk and gE� :¼ ðge1 j ge2 j � � � j genÞ:

Remark 2.1. The flag variety identifies with the homogeneous space GLnðCÞ=B via the map

gB 7! gE�: In this article, we interchange notation for the flag gE� and coset gB whenever it

is convenient.
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A Hessenberg variety in FlagsðCnÞ is specified by two pieces of data: a Hessenberg function
and an element of glnðCÞ: A Hessenberg function is a function h : ½n� ! ½n� such that hðiÞ �
hðiþ 1Þ for all i 2 ½n	 1�: We frequently write a Hessenberg function by listing its values in
sequence, that is, h ¼ ðhð1Þ, hð2Þ, :::, hðnÞÞ: We now define the main objects of interest in
this article.

Definition 2.2. Let h : ½n� ! ½n� be a Hessenberg function and X 2 glnðCÞ: The Hessenberg var-
iety associated to h and X is

HessðX, hÞ :¼ fV� 2 FlagsðCnÞ jXðViÞ � VhðiÞ for all i 2 n½ �g:

If V� ¼ ðv1 j v2 j � � � j vnÞ then V� 2 HessðX, hÞ if and only if Xvi 2 spanfv1, :::, vhðiÞg for all i 2
½n�: When X 2 g is a nilpotent matrix and h ¼ ð0, 1, :::, n	 2, n	 1Þ, the variety BðX, hÞ is the
Springer fiber of X, which we denote by B

X:
The following remark indicates that we may choose any matrix within a given conjugacy class

for our computations without alternating the geometric invariants of the corresponding
Hessenberg variety.

Remark 2.3. Given a fixed Hessenberg function h, we have HessðX, hÞ ’ Hessðg	1Xg, hÞ for
all g 2 GLnðCÞ:

Most of the existing literature on Hessenberg varieties assumes that the Hessenberg function
also satisfies the condition that hðiÞ � i: The main reason is that this condition on the
Hessenberg function ensures HessðX, hÞ 6¼ ; for all X 2 glnðCÞ: One of the main purposes of this
article is to explore Hessenberg varieties corresponding to Hessenberg functions with the property
that h(i) < i for all i. This is exactly the case in which the corresponding Hessenberg space,
defined by:

HðhÞ :¼ spanfEij j i � hðjÞg � glnðCÞ,

is an ad-nilpotent ideal (that is, its lower central series is finite). Thus, for the remainder of this
manuscript we assume that any Hessenberg function h : ½n� ! ½n� satisfies h(i) < i for all i 2 ½n�:

Let H :¼ fh : ½n� ! ½n� j hðiþ 1Þ � hðiÞ and hðiÞ < ig denote the set of all Hessenberg func-
tions satisfying the condition that h(i) < i. There is a partial ordering on this set defined by

h1
 h2 () h1ðiÞ � h2ðiÞ for all i

for h1, h2 2 H: A partial order like this one is studied by Drellich in ref. [4]. It follows directly
from the definition that if h1h2 then HessðX, h1Þ � HessðX, h2Þ for all X 2 glnðCÞ: Note that our
set of Hessenberg functions contains a unique maximal element with respect to 
, namely the
Hessenberg function h ¼ ð0, 1, :::, n	 1Þ: Thus HessðX, hÞ � B

X for any nilpotent matrix X 2
glnðCÞ and h 2 H:

2.2. Affine pavings

The first main goal of this manuscript is to demonstrate an affine paving of the Hessenberg var-
iety HessðX, hÞ obtained by intersecting with the Schubert cells. We do so by first constructing
an explicit affine paving of the Springer fiber B

X: We then prove that this paving restricts to a
paving of HessðX, hÞ in a natural way. Note that it is very well known that Springer fibers are
paved by affines [5, 16], and Tymoczko’s results prove that such a paving can be obtained by
intersecting with the Schubert cells [17], so our result in that case is not new.
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Definition 2.4. A paving of an algebraic variety Y is a filtration by closed subvarieties

Y0 � Y1 � � � � � Yi � � � � � Yd ¼ Y:

A paving is affine if every Yi 	 Yi	1 is isomorphic to a finite disjoint union of affine spaces;

we calls these spaces the affine cells of the paving.
An affine paving allows us to compute the Betti numbers of an algebraic variety Y, as shown

in ref. [7, 1.9.1, 19.1.11]. In the statement below, H�
c ðYÞ denotes cohomology with compact sup-

port of the algebraic variety Y.

Lemma 2.5. Let Y be an algebraic variety with an affine paving, Y0 � Y1 � � � �
� Yi � � � � � Yd ¼ Y. Then the nonzero cohomology groups of Y are given by H2k

c ðYÞ ¼ Z
nk where

nk denotes the number of affine components of dimension k.

In this article we apply the lemma for Y a complex projective variety, so H�ðYÞ ¼ H�
c ðYÞ:

There is a well-known affine paving of FlagsðCnÞ induced by the Bruhat decomposition:

FlagsðCnÞ ¼ t
w2Sn

Cw where Cw ¼ BwE�:

The B-orbit Cw is called the Schubert cell indexed by w 2 Sn: It is well known that each

Schubert cell is isomorphic to the subgroup Uw :¼ U \ wU	w	1 where U– is the subgroup of

lower triangular matrices with diagonal entries equal to 1. In other words, each flag bwE� 2 Cw

can be written uniquely as bwE� ¼ uwE� for some u 2 Uw: Since Uw is a unipotent subgroup we

have Uw ’ LieðUwÞ, where LieðUwÞ an affine space of dimension ‘ðwÞ: Therefore Cw ’ C
‘ðwÞ: It

is well known that Cw ¼ [y�w Cy, where � denotes the Bruhat order on Sn. Thus, the Schubert

cells are affine cells for the paving of FlagsðCnÞ defined by

B0 � B1 � � � � � Bnðn	1Þ
2

¼ FlagsðCnÞ where Bi :¼ [
‘ðwÞ¼i

w2Sn
Cw :

We prove HessðX, hÞ has an affine paving by considering the intersections Cw \HessðX, hÞ:

Remark 2.6. It follows from the discussion in ref. [14, §2.2] that in order to prove HessðX, hÞ is
paved by affines, it suffices to prove HessðX, hÞ \ Cw is isomorphic to affine space Cd with d 2 Z�0:

2.3. Factorization

We now describe a method for identifying a portion of any Schubert cell in FlagsðCnÞ with a

Schubert cell in the flag variety associated to GLn	1ðCÞ, namely FlagsðCn	1Þ: We view GLn	1ðCÞ
as a subgroup of GLnðCÞ by identifying it with its image under the map:

GLn	1ðCÞ ! GLnðCÞ; a 7!
a 0
0 1

� �

for all a 2 GLn	1ðCÞ: (2.1)

Let U0 be the unipotent subgroup of GLn	1ðCÞ of upper triangular matrices with diagonal

entries equal to 1. We view U0 as a subgroup of GLnðCÞ via U0 ¼ fu 2 U j uin ¼ 0 if i 6¼ ng:
Similarly, we identify Sn	1 with the subgroup fr 2 Sn j rðnÞ ¼ ng of Sn.

Each permutation w 2 Sn can be factorized uniquely as

vy where v ¼ sisiþ1 � � � sn	2sn	1, for i ¼ wðnÞ and y 2 Sn	1: (2.2)

Here sj denotes the simple transposition swapping j and jþ 1. Note that v in the factorization

above is called the shortest left coset representative for w ¼ vy with respect to the Young sub-

group Sn	1 ¼ hs1, :::, sn	2i, see [2, Proposition 2.4.4]. In one-line notation, we have that v is the

permutation with the property that v(n) ¼ i and all remaining values are placed in positions

1, 2, :::, n	 1 of the one-line notation for v in increasing order; y is the unique permutation with
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the property that y(n) ¼ n and the rest of the entries in the one-line notation for y are in the

same relative order as the entries of w.
The factorization given in (2.2) satisfies the condition that ‘ðwÞ ¼ ‘ðvÞ þ ‘ðyÞ and:

invðwÞ ¼ invðyÞ t y	1ðinvðvÞÞ: (2.3)

Example 2.7. Let w ¼ ½3, 4, 1, 2� ¼ s2s3s1s2 2 S4: Then wð4Þ ¼ 2 and we see that

w ¼ vy where v ¼ s2s3 and y ¼ s1s2:

In one-line notation, v ¼ ½1, 3, 4, 2� and y ¼ ½2, 3, 1, 4�: We have that

invðwÞ ¼ fð3, 2Þ, ð3, 1Þ, ð4, 2Þ, ð4, 1Þg

where invðyÞ ¼ fð3, 2Þ, ð3, 1Þg and y	1ðinvðvÞÞ ¼ fð4, 2Þ, ð4, 1Þg, confirming (2.3).

Recall that Uw :¼ U \ wU	w	1: In the special case where v ¼ sisiþ1 � � � sn	2sn	1 for some i 2
½n� we have Uv ¼ fu 2 U j ukj ¼ 0 for all k 6¼ i, k < jg, that is, Uv is the i-th row of U, which

we denote by Ui. The next lemma tells us there is a factorization of the elements of Uw that is

compatible with the factorization of permutations given in (2.2) above. This is a special case of

[12, Proposition 28.1].

Lemma 2.8. Suppose w 2 Sn and let w ¼ vy be the factorization given in (2.2) with

i ¼ wðnÞ ¼ vðnÞ. For each u 2 Uw the product uw can be written uniquely as

uw ¼ uivu0y for some ui 2 Ui ¼ Uv and u0 2 Uy:

Lemma 2.8 gives us an inductive decomposition of each Schubert cell, as we now explain. Let

w 2 Sn and w ¼ vy be the factorization from (2.2). Given uwE� with u 2 U, by Lemma 2.8 we

may write uwE� ¼ uivu0yE� with ui 2 Ui and u0 2 U0: (Note that since y(n) ¼ n we have

Uy � U0:) We obtain an isomorphism,

q : Cw ! C
‘ðvÞ � Cy, uwE� ¼ uivu0yE� 7! ðui, u0yE

0
�Þ (2.4)

where E0� :¼ ðe1 j e2 j ::: j en	1Þ is the standard flag in C
n	1 ¼ spanfe1, e2, :::, en	1g and we identify

Ui with affine space via ui 7! ðuijÞj>i, where ui ¼ In þ
P

j>i uijEij: We make the identification

Ui ’ C
‘ðvÞ implicitly throughout this article. Let

q1 : Cw ! C
‘ðvÞ, uwE� ¼ uivu0E� 7! ui (2.5)

be the map obtained from q via composition with projection to the first factor. Denote by P the

maximal standard parabolic subgroup with Levi subgroup equal to the image of (2.1). That is,

P ¼ fg 2 G j gnj ¼ 0forall j< ng: The map q1 can be identified with the restriction to Cw of the

canonical projection G=B ! G=P; in the notation of cosets we have q1ðuwBÞ ¼ uwP ¼ uivP:
Thus q1 is a morphism of varieties and commutes with the action of B.

3. Hessenberg inversions

Let k ¼ ðk1, k2, :::, kkÞ be a weak composition of n and ParðkÞ be the partition we obtain from k

by rearranging the parts of k in decreasing order. We begin by fixing an element Xk in the conju-

gacy class OParðkÞ of nilpotent matrices of Jordan type k.

Definition 3.1. Let k ¼ ðk1, k2, :::, kkÞ be a weak composition of n drawn as a diagram, namely

with k rows of boxes so that the ith row from the top has ki boxes. The base filling of k is

obtained as follows. Fill the boxes of k with integers 1 to n starting at the bottom of the leftmost

column and moving up the column by increments of one. Then move to the lowest box of the
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next column and so on. Denote the base filling of k by R(e). We now define:

Xk :¼
X

ð‘, rÞ
E‘r (3.1)

where the sum is taken over the set of all pairs ð‘, rÞ such that r labels the box directly to the
right of ‘ in the base filling of k.

Example 3.2. If n¼ 7 and k ¼ ð2, 3, 1, 1Þ then the base filling of k is:

and we have Xð2, 3, 1, 1Þ ¼

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

:

For each w 2 Sn, let R(w) denote the tableau of composition shape k obtained by labeling the i-

th box in the base filling of k by w	1ðiÞ: We say that R(w) is h-strict if ‘ � hðrÞ whenever ‘ labels
a box directly to the left of r in R(w). Let RShðkÞ denote the set of all h-strict tableaux of compos-

ition shape k. The set of h-strict tableaux determines which Schubert cells intersect the

Hessenberg variety. This is proved by Tymoczko in ref. [17, Theorem 7.1] for Hessenberg vari-

eties associated to Hessenberg functions such that hðiÞ � i for all i. The proof below is the same;

we give a sketch using our notation for the reader’s convenience.

Lemma 3.3. Let w 2 Sn and h 2 H. Then Cw \HessðXk, hÞ 6¼ ; if and only if RðwÞ 2 RShðkÞ:

Sketch of proof. By definition, wE� 2 HessðXk, hÞ if and only if

XkewðrÞ 2 spanfewð1Þ, :::, ewðhðrÞÞg

for all r 2 ½n�: Suppose ‘ labels the box directly to the left of r in R(w). The wð‘Þ labels the box

directly to the left of w(r) in R(e). Since XkewðrÞ ¼ ewð‘Þ we therefore have wE� 2 HessðXk, hÞ if

and only if ‘ � hðrÞ for any such pair ð‘, rÞ:
To complete the proof we have only to show that HessðXk, hÞ \ Cw 6¼ ; implies wE� 2

HessðXk, hÞ: Assume uwE� 2 HessðXk, hÞ for some u 2 Uw: Then

XkuewðrÞ 2 spanfuewð1Þ, :::, uewðhðrÞÞg () ðu	1XkuÞewðrÞ 2 spanfewð1Þ, :::, ewðhðrÞÞg

for all r 2 ½n�: The desired statement now follows immediately from the fact that the pivots of

u	1Xku are in the same position as the pivots of Xk (as proved by Tymoczko in ref. [17,

Proposition 4.6]). w

When h ¼ ð0, 1, :::, n	 1Þ we have that RShðkÞ ¼: RSðkÞ is the set of tableaux of composition

shape k which are row-strict, that is, increasing across rows. By definition, RShðkÞ � RSðkÞ for all
Hessenberg functions h 2 H: Our next definition comes from [17, Theorem 7.1], see [15] also.

Definition 3.4 . Let k be a weak composition of n and k, ‘ 2 ½n�: We say ðk, ‘Þ is a Hessenberg

inversion of R(w) for w 2 Sn if k > ‘ and:

(1) k occurs in a box below ‘ and in the same column or in any column strictly to the left of

the column containing ‘ in R(w), and
(2) if the box directly to the right of ‘ in R(w) is labeled by r, then k � hðrÞ:

Denote the set of Hessenberg inversions in R(w) by invh, kðwÞ:

4 6

3 5 7

2

1
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Note that if the pair ðk, ‘Þ satisfies condition (1), then ðk, ‘Þ 2 invðwÞ; so Hessenberg inver-
sions are a subset of the inversions of w.

Remark 3.5. If ðk, ‘1Þ, ðk, ‘2Þ 2 invh, kðwÞ then k, ‘1, and ‘2 are all in different rows of R(w), or
equivalently, wðkÞ, wð‘1Þ, and nwð‘2Þ are all in different rows of R(e). Indeed if ‘1 fills a box to
the left of ‘2 and in the same row, the assumption that ðk, ‘1Þ is a Hessenberg inversion implies
that k is less than every entry to the right of ‘1, implying ðk, ‘2Þ cannot be an inversion.

Now suppose ‘1 and k occur in the same row. Since ðk, ‘1Þ is a Hessenberg inversion, k must
occur to the left of ‘1: On the other hand, R(w) must be row-strict and k > ‘1 so we obtain a
contradiction.

Example 3.6. Let n¼ 7 and k ¼ ð2, 3, 1, 1Þ: The tableau R(w) for w ¼ ½4, 3, 1, 6, 5, 7, 2� is
shown below.

If h ¼ ð0, 1, 2, 3, 4, 5, 6Þ then R(w) has inversion set invk, hðwÞ ¼ fð7, 6Þ, ð7, 4Þ,
ð5, 4Þ, ð3, 2Þ, ð3, 1Þ, ð2, 1Þg: Note that ð7, 5Þ 2 invðwÞ but (7, 5) is not a Hessenberg inversion since
7� 5 ¼ hð6Þ: If h ¼ ð0, 0, 1, 2, 3, 3, 3Þ then the inversion set becomes invk, hðwÞ ¼ fð7, 6Þ,
ð7, 4Þ, ð5, 4Þ, ð3, 2Þ, ð2, 1Þg since 3� 2 ¼ hð4Þ now.

When h ¼ ð0, 1, 2, :::, n	 1Þ, we called the pairs in Definition 3.4 above Springer inversions,
denoted invkðwÞ in this case. We let

invkkðwÞ :¼ fðk, ‘Þ j 1 � ‘ < k and ðk, ‘Þ 2 invkðwÞg

so invkðwÞ ¼ tn
k¼2inv

k
kðwÞ: We set dk :¼ j invkkðwÞ j for all 2 � k � n:

Let w 2 Sn such that RðwÞ 2 RSðkÞ: Since R(w) is row-strict, the box labeled by n must appear
at the end of a row. Let k0 be the composition of n	 1 we obtain from k by deleting the box
labeled by n in R(w), or equivalently, deleting the box labeled by i ¼ wðnÞ in R(e). Our next
lemma shows that the Hessenberg inversions of w are well-behaved with respect to the decom-
position of invðwÞ given in (2.3).

Lemma 3.7. Suppose RðwÞ 2 RSðkÞ and w¼ vy is the factorization from (2.2) with i ¼ wðnÞ. Then
RðyÞ 2 RSðk0Þ and

invk0ðyÞ ¼ invkðwÞ n inv
n
kðwÞ:

where k0 is the composition of n	 1 we obtain from k by deleting the box labeled by n in R(w).

Proof. Recall that v is the permutation whose one-line notation has i in the n-th position and all
remaining entries are placed in positions 1, 2, :::, n	 1 in increasing order. In particular, we
obtain the base filling of the composition k0 from the base filling of k by deleting the box con-
taining i and applying v	1 to the remaining entries. It follows immediately that R(y) is the tableau
of composition shape k0 we obtain by deleting the box containing n from R(w) so RðyÞ 2 RSðk0Þ:
Thus invk0ðyÞ ¼ tn	1

k¼2 inv
k
kðwÞ as desired. w

Motivated by the inductive formula from Lemma 3.7, we let Xk0 2 gln	1ðCÞ be the nilpotent
matrix defined as in (3.1) for the composition k0 of n	 1. The proof of the lemma implies Xk0 is
the matrix corresponding to the linear transformation obtained by restricting v	1Xkv
to C

n	1 ’ spanfe1, e2, :::, en	1g:

1 4

2 5 6

7

3
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Remark 3.8. Let B
Xk0 denote the Spring fiber in FlagsðCn	1Þ corresponding to Xk0 2 gln	1ðCÞ:

The discussion above implies that for all u0 2 U0, vu0yE� 2 B
Xk if and only if u0yE

0
� 2 B

Xk0 :

4. The BkðwÞ-subgroups

We now introduce a collection of subgroups of U associated to each w 2 Sn with RðwÞ 2 RSðkÞ:
We use these subgroups in the next section to construct an affine paving of the Springer fiber BX

that restricts to a paving of the subvariety HessðX, hÞ: Throughout this section, let k be a fixed
weak composition of n and Xk 2 OParðkÞ the matrix from Definition 3.1 above.

Suppose wE� 2 B
Xk , or equivalently by Lemma 3.3, that RðwÞ 2 RSðkÞ: Using the factorization

from (2.2) we write w ¼ vy for v ¼ sisiþ1 � � � sn	2sn	1 where i ¼ wðnÞ ¼ vðnÞ: Recall the mor-
phism q1 : Cw ! C

‘ðvÞ defined in (2.5). The next lemma tells us that if uwE� 2 B
Xk , then certain

entries of ui ¼ q1ðuwE�Þ must be zero.

Lemma 4.1. Suppose uwE� 2 B
Xk and q1ðuwE�Þ ¼ ui 2 Ui for i ¼ wðnÞ. Let uij for j> i denote the

entry in the i-th row and j-th column of ui. Then uij ¼ 0 unless j appears at the end of a row in
the base filling R(e). In particular, the morphism of varieties q1 : Cw ! C

‘ðvÞ defined in (2.5)
restricts to a morphism

q
ðkÞ
1 : Cw \B

Xk ! C
dn (4.1)

where dn :¼ j invnkðwÞ j :

Proof. By Lemma 2.8 we may write uwE� ¼ uivu0yE� for some u0 2 U0 and ui ¼ q1ðuwE�Þ:
Suppose j> i does not fill a box at the end of a row in the base filling R(e) of k. This implies
ej 2 imðXkÞ: Let V� ¼ ðv1 j v2 j ::: j vnÞ where vk ¼ uwðekÞ: Since V� 2 B

Xk we must have
imðXkÞ � Vn	1 and so ej 2 spanfv1, :::, vn	1g: Thus ej ¼

Pn	1
k¼1 ckvk for some c1, :::, cn	1 2 C:

Applying ðuivÞ
	1 to both sides we obtain

v	1ðej 	 uijeiÞ ¼
X

n	1

k¼1

cku0yðekÞ ) ev	1ðjÞ 	 uijen ¼
X

n	1

k¼1

cku0eyðkÞ

) 	uijen ¼ 	ev	1ðjÞ þ
X

n	1

k¼1

cku0eyðkÞ

The RHS of the above equation is in spanfe1, :::, en	1g, implying uij ¼ 0 as desired. Finally,
we note that j> i and j appears at the end of a row in the base filling R(e) if and only if
ðw	1ðiÞ,w	1ðjÞÞ ¼ ðn,w	1ðjÞÞ is a Springer inversion of R(w) in invnkðwÞ: This shows

invnkðwÞ ¼ fðn,w	1ðjÞÞ j i < j and j lables a box at the end of a row in RðeÞg

Thus if uwE� 2 B
Xk we get

q1ðuwBÞ ¼ ui ¼ In þ
X

ðn,w�1ðjÞÞ2invn
k
ðwÞ

i<j

uijEij:

This yields the description of the restriction of q1 to Cw \B
Xk in (4.1). w

The goal of the next section is to construct a generic element of Cw \B
Xk whenever this inter-

section is nonempty. We do so by introducing a collection of subgroups of U associated to each
RðwÞ 2 RSðkÞ: Recall that invkðwÞ denotes the set of Hessenberg inversions corresponding to h ¼
ð0, 1, 2, :::, n	 1Þ, namely the Springer inversions.

Definition 4.2. Let 2 � k � n: We define BkðwÞ to be the set of all matrices gk such that:
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(1) if ðk, ‘Þ 2 invkkðwÞ and ewðjÞ ¼ Xm
k ewðÞ for some m 2 Z�0 then

gkewðjÞ ¼ ewðjÞ þ xwðkÞwð‘ÞX
m
k ewðkÞ for some xwðkÞwð‘Þ 2 C,

(2) and gkewðjÞ ¼ ewðjÞ otherwise.

From the definition above, we see that each element gk of BkðwÞ is uniquely determined by the
values of ðxwðkÞwð‘1Þ, :::, xwðkÞwð‘dÞÞ for inv

k
kðwÞ ¼ fðk, ‘1Þ, :::, ðk, ‘dÞg and d ¼ dk. To emphasize this,

we sometimes write gk ¼ gkðxwðkÞwð‘1Þ, :::, xwðkÞwð‘dÞÞ and say that ðxwðkÞwð‘1Þ, :::, xwðkÞwð‘dÞÞ are the
coordinates of gk.
Example 4.3. Let n¼ 7 and k ¼ ð3, 2, 2Þ: We consider w ¼ ½3, 2, 6, 1, 7, 4, 5� with corresponding
tableau RðwÞ 2 RSðkÞ as shown below; the base filling R(e) is also below.

RðwÞ ¼
1 3 5
2 7
4 6

RðeÞ ¼
3 6 7
2 5
1 4

In this case, invkðwÞ ¼ fð7, 5Þ, ð6, 5Þ, ð4, 2Þ, ð4, 3Þ, ð2, 1Þg so, in particular, inv4kðwÞ ¼
fð4, 2Þ, ð4, 3Þg: We have ðwð4Þ,wð2ÞÞ ¼ ð1, 2Þ and ðwð4Þ,wð3ÞÞ ¼ ð1, 6Þ: Since Xkewð4Þ ¼ 0, the
elements of B4ðwÞ are matrices of the form

I7 þ x12E12 þ x16E16 where x12, x16 2 C:

For another example, consider inv6kðwÞ ¼ fð6, 5Þg; we have ðwð6Þ,wð5ÞÞ ¼ ð4, 7Þ: In this case,
Xkewð6Þ ¼ Xke4 ¼ e1 and X2

kewð6Þ ¼ X2e4 ¼ 0: Therefore the elements of B6ðwÞ are matrices of the
form

I7 þ x47E47 þ x47E16 where x47 2 C:

Let 2 � k � n and gk 2 BkðwÞ: Then ðgkÞaa ¼ 1 for all a 2 ½n�: Suppose ðgkÞab 6¼ 0 for a 6¼ b:
By definition, ða, bÞ ¼ ðwð‘0Þ,wðk0ÞÞ where ‘0, k0 2 ½n� such that Xmewð‘Þ ¼ ewð‘0Þ and XmewðkÞ ¼
ewðk0Þ for some m 2 Z�0: Since the action of Xk on the standard basis vectors is determined by
the base filling RðeÞ 2 RSðkÞ, it follows that wðk0Þ fills the m-th box to the left of w(k) in R(e)
and wð‘0Þ fills the m-th box to the left of wð‘Þ in R(e). Equivalently, k0 fills the m-th box to the
left of k in R(w) and ‘0 fills the m-th box to the left of ‘ in R(w).

Since ðk, ‘Þ 2 invkðwÞ, we know that the box labeled by k appears below the box labeled by ‘
and in the same column or in any column strictly to the left of ‘ in R(w). Therefore the same
must be true of the pair ðk0, ‘0Þ, that is, the box labeled by k0 appears below the box labeled by ‘0

and in the same column or in any column strictly to the left of ‘0 in R(w); and similarly for the
boxes labeled by wðk0Þ and wð‘0Þ in R(e). By definition of the base filling R(e), we conclude that
a ¼ wðk0Þ < wð‘0Þ ¼ b so gk 2 U:

We summarize the discussion above in the following remark.

Remark 4.4 . Let 2 � k � n and w 2 Sn such that such that RðwÞ 2 RSðkÞ: Then BkðwÞ � U and
furthermore, given gk 2 Bk we have ðgkÞab 6¼ 0 if and only if a¼ b (in which case ðgkÞaa ¼ 1) or
ða, bÞ ¼ ðwð‘0Þ,wðk0ÞÞ where k0 fills the m-th box to the left of k in R(w) and ‘0 fills the m-th box
to the left of ‘ in R(w) for some m 2 Z�0 and ðk, ‘Þ 2 invkkðwÞ:

The remainder of this section contains results describing the structure of the matrices in
BkðwÞ; in most cases, our proofs consist of straightforward computations using linear algebra.

Lemma 4.5. Let 2 � k � n and w 2 Sn such that RðwÞ 2 RSðkÞ. The set of matrices BkðwÞ from
Definition 4.2 is an abelian subgroup of U of dimension j invkkðwÞ j :

Proof. Let gk, hk 2 BkðwÞ, where gk has coordinates ðxwðkÞwð‘1Þ, :::, xwðkÞwð‘dÞÞ and hk has coordinates
ðywðkÞwð‘1Þ, :::, ywðkÞwð‘dÞÞ for d ¼ dk. We will prove gkhk is the matrix in BkðwÞ with coordinates
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ðxwðkÞwð‘1Þ þ ywðkÞwð‘1Þ, :::, xwðkÞwð‘dÞ þ ywðkÞwð‘dÞÞ: In other words, we prove that if ðk, ‘Þ 2 invkkðwÞ
and ewðjÞ ¼ Xm

k ewð‘Þ for some m 2 Z�0, then

ðgkhkÞewðjÞ ¼ ewðjÞ þ ðxwðkÞwð‘Þ þ ywðkÞwð‘ÞÞX
m
k ewðkÞ (4.2)

and ðgkhkÞewðjÞ ¼ ewðjÞ otherwise. It follows directly from this formula that BkðwÞ is an abelian

subgroup of U.
Now consider the action of gkhk on any basis element ewðjÞ: If w(j) does not appear in R(e) to

the left and in the same row as any wð‘Þ for ðk, ‘Þ 2 invkkðwÞ, that is, if ewðjÞ 6¼ Xm
k ewð‘Þ for some

m 2 Z�0, then both gk and hk map ewðjÞ to itself and ðgkhkÞewðjÞ ¼ ewðjÞ:
If w(j) is to the left and in the same row of R(e) as wð‘Þ for some ðk, ‘Þ 2 invkkðwÞ, then

gkewðjÞ ¼ ewðjÞ þ xwðkÞwð‘ÞX
m
k ewðkÞ and hkewðjÞ ¼ ewðjÞ þ ywðkÞwð‘ÞX

m
k ewðkÞ for some m 2 Z�0: Write

Xm
k ewðkÞ ¼ ewðk0Þ where wðk0Þ labels the m-th box to the left of w(k) in R(e). Then k0 labels the m-

th box to the left of k in R(w) and hence k0 is not in the same row as ‘ for any ðk, ‘Þ 2 invkkðwÞ
by Remark 3.5. This implies gkewðk0Þ ¼ ewðk0Þ ¼ hkewðk0Þ and formula (4.2) now follows. The asser-

tion that the dimension of this subgroup is j invkkðwÞ j is clear from the definition. w

Lemma 4.6. Let 2 � k � n and w 2 Sn such that RðwÞ 2 RSðkÞ. For all gk 2 BkðwÞ we have

gkðspanfewð1Þ, ewð2Þ, :::, ewðkÞgÞ ¼ spanfewð1Þ, ewð2Þ, :::, ewðkÞg

and gkewðjÞ ¼ ewðjÞ for all j � k. Furthermore, gkðkerðXkÞÞ � kerðXkÞ:

Proof. By definition, if ewðjÞ ¼ Xm
k ewð‘Þ for some m 2 Z�0 and ðk, ‘Þ 2 invkkðwÞ then w(j) fills the

m-th box to the left of wð‘Þ in R(e). Therefore j fills the m-th box to the left of ‘ in R(w) and

since RðwÞ 2 RSðkÞ we have j � ‘ < k: This shows gkewðjÞ ¼ ewðjÞ for all j � k: Similarly, if

Xm
k ewðkÞ ¼ ewðk0Þ then k0 fills the m-th box to the left of k in R(w) and k0 � k: The first assertion

of the lemma now follows.
To prove the second, suppose ewðjÞ 2 kerðXkÞ with ewðjÞ ¼ Xm

k ewð‘Þ for some m 2 Z�0 and

ðk, ‘Þ 2 invkkðwÞ: We must show gkewðjÞ 2 kerðXkÞ, or equivalently, if Xm
k ewðkÞ 6¼ 0 then Xm

k ewðkÞ 2
kerðXkÞ: Since gk 2 U, if Xm

k ewðkÞ 6¼ 0 then Xm
k ewðkÞ ¼ ewðk0Þ where wðk0Þ < wðjÞ: The assumption

that ewðjÞ 2 kerðXkÞ implies w(j) fills a box in the first column of R(e) and the fact that wðk0Þ <
wðjÞ implies that wðk0Þ fills a box below w(j) in the first column of R(e) so Xkewðk0Þ ¼ 0

as desired. w

The next lemma shows that the matrices in BkðwÞ for k< n almost commute with Xk and the

elements of BnðwÞ always commute with Xk:

Lemma 4.7. Suppose RðwÞ 2 RSðkÞ and let 2 � k � n. Given ‘ 2 ½n�, let r‘ denote the label of the

box directly to the right of the box labeled by ‘ in R(w), if such a box exists. Then for all

gk 2 BkðwÞ,

ðgkXk 	 XkgkÞewðjÞ ¼
xwðkÞwð‘ÞewðkÞ if j ¼ r‘, ðk, ‘Þ 2 invkkðwÞ
0 otherwise

�

(4.3)

where xwðkÞwð‘Þ 2 C for ðk, ‘Þ 2 invkkðwÞ is a coordinate of gk 2 BkðwÞ: In particular, if k¼ n this

formula shows that Xk and gn commute.

Proof. First, suppose j ¼ r‘ for some ‘ 2 ½n� such that ðk, ‘Þ 2 invkkðwÞ: By definition, this is the

case if and only if XkewðjÞ ¼ ewð‘Þ and k � j: In particular, Lemma 4.6 tells us gkewðjÞ ¼ ewðjÞ: We

now have:

ðgkXk 	 XkgkÞewðjÞ ¼ gkewð‘Þ 	 ewð‘Þ ¼ xwðkÞwð‘ÞewðkÞ

where the last equation follows directly from Definition 4.2.
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It remains to show that if j 6¼ r‘ for any ‘ 2 ½n� such that ðk, ‘Þ 2 invkkðwÞ, then gkXkewðjÞ ¼
XkgkewðjÞ: This is straightforward to prove using Definition 4.2, so we omit the details.

Finally, when k¼ n we have ðn, ‘Þ 2 invkðwÞ only if ‘ labels a box at the end of a row in R(e).

Thus (4.3) tells us Xk and gn commute. w

Our goal is to use induction to analyze the flags in Cw \B
Xk : In particular, the next statement

shows that we can naturally identify the group BkðwÞ for k< n with a subgroup of the same type

in GLn	1ðCÞ using the map from (2.1).

Proposition 4.8. Suppose w 2 Sn such that RðwÞ 2 RSðkÞ and w¼ vy is the factorization defined in

(2.2), with i ¼ wðnÞ:

(1) For all 2 � k � n	 1, we have v	1BkðwÞv ¼ BkðyÞ where BkðyÞ is the subgroup of U0 �
GLn	1ðCÞ corresponding to RðyÞ 2 RSðk0Þ:

(2) Each gn 2 BnðwÞ can be factored uniquely as gn ¼ uibn where ui 2 Ui, bn 2 vU0v
	1, and

the i-th row of ui is equal to the i-th row of gn. In particular, ui ¼ q
ðkÞ
1 ðgnwE�Þ and there

exists an isomorphism of varieties Cdn ! BnðwÞ with inverse given by gn 7! q
ðkÞ
1 ðgnwE�Þ:

Proof. The proof of Lemma 3.7 shows that R(y) is the row-strict tableau we obtain by deleting

the box labeled by n from R(w). This lemma also tells us that RðyÞ 2 RSðk0Þ where k0 is the com-

position of n corresponding to R(y), and for all k � n	 1, ðk, ‘Þ 2 invk0ðyÞ if and only if ðk, ‘Þ 2
invkðwÞ: Recall that Xk0 is given by the restriction of v	1Xkv to C

n	1 ¼ spanfe1, :::, en	1g:
Let gk 2 BkðwÞ have coordinates ðxwðkÞwð‘1Þ, :::, xwðkÞwð‘dÞÞ where d ¼ dk. We prove v	1gkv 2

BkðyÞ by showing v	1gkv acts on the basis vectors fe1, :::, en	1g by the formulas given in

Definition 4.2 where k is replaced by k0 and w is replaced by y. Suppose ðk, ‘Þ 2 invk0ðyÞ and

eyðjÞ ¼ Xm
k0
eyð‘Þ for some m 2 Z�0: By definition of Xk0 , this is the case if and only if ewðjÞ ¼

Xm
k ewð‘Þ for ðk, ‘Þ 2 invkkðwÞ: Thus v

	1gkv is the matrix such that:

ðv	1gkvÞðeyðjÞÞ ¼ v	1ðgkewðjÞÞ ¼ v	1ðewðjÞ þ xwðkÞwð‘ÞX
m
k ewðkÞÞ

¼ eyðjÞ þ xwðkÞwð‘ÞX
m
k0
eyðkÞ:

By similar reasoning, we have ðv	1gkvÞeyðjÞ ¼ eyðjÞ if eyðjÞ 6¼ Xm
k0
eyð‘Þ for any ðk, ‘Þ 2 invk0ðyÞ and

m 2 Z�0: This proves v
	1BkðwÞv � BkðyÞ, after relabeling the coordinate xwðkÞwð‘Þ by xyðkÞyð‘Þ: The

proof that BkðyÞ � v	1BkðwÞv follows in exactly the same way.
To prove statement (2), suppose gn 2 BnðwÞ with coordinates ðxwðnÞwð‘1Þ, :::, xwðnÞwð‘dÞÞ ¼

ðxiwð‘1Þ, :::, xiwð‘dÞÞ where d ¼ dn. Let ui be the matrix defined uniquely by the equation

uiðewð‘ÞÞ ¼
ewð‘Þ þ xiwð‘Þei if ðn, ‘Þ 2 invnkðwÞ
ewð‘Þ otherwise:

�

Then ui 2 Ui and by definition ui has i-th row equal to gn. Furthermore, bn is uniquely deter-

mined by the formula

bnðewðjÞÞ ¼
ewðjÞ þ xiwð‘ÞX

m
k ei if ðn, ‘Þ 2 invnkðwÞ, ewðjÞ ¼ Xm

k ewð‘Þ for some m � 1
ewðjÞ otherwise:

�

for all m � 1:
By the previous paragraph, the matrix ui is uniquely determined by, and uniquely determines,

gn. We now show that bn :¼ u	1
i gn 2 vU0v

	1: It is straightforward to see from the definition of ui
and gn that u	1

i gn has the same entries as gn except for the i-th row, which is 0 in all off-diagonal

entries. Thus u	1
i gn may only have a nonzero off-diagonal entry in positions ðwðn0Þ,wð‘0ÞÞ with

wðn0Þ < wð‘0Þ where n0 labels the m-th box to the left of n in R(w) and ‘0 labels the m-th box to

the left of ‘ in R(w) for some m 2 Z�1: In particular, n0 6¼ n: It follows that v	1ðu	1
i gnÞv may
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only have nonzero off-diagonal entries in positions ðyðn0Þ, yð‘0ÞÞ where yðn0Þ 6¼ n, yð‘0Þ 6¼ n, and
yðn0Þ < yð‘0Þ so bn 2 vU0v

	1 as desired.
Finally, the map C

dn ! BnðwÞ defined by ðxiwð‘1Þ, :::, xiwð‘dÞÞ 7! gnðxiwð‘1Þ, :::, xiwð‘dÞÞ is clearly a
morphism of varieties. By the above, we may write gn ¼ uibn: Since gn commutes with Xk we get
gnwE� 2 B

Xk and:

gnwE� ¼ uivu
0
0yE� where u00 ¼ v	1bnv 2 U0, ui 2 Ui:

This shows that q
ðkÞ
1 ðgnwE�Þ ¼ ui, where q

ðkÞ
1 is the morphism defined in Lemma 4.1. The

inverse map BnðwÞ ! C
dn is precisely gn 7! ui ¼ q

ðkÞ
1 ðgnwE�Þ: This proves C

dn ! BnðwÞ is an iso-
morphism of varieties. w

Example 4.9. We illustrate the previous proposition with an example. Let n¼ 6 and k ¼ ð2, 2, 2Þ
and w ¼ ½3, 6, 2, 1, 5, 4�: In this case, v ¼ ½1, 2, 3, 5, 6, 4� and y ¼ ½3, 5, 2, 1, 4, 6�:

RðwÞ ¼
1 2
3 5
4 6

RðeÞ ¼
3 6
2 5
1 4

We have inv6kðwÞ ¼ fð6, 5Þ, ð6, 2Þg where ðwð6Þ,wð5ÞÞ ¼ ð4, 5Þ and ðwð6Þ,wð2ÞÞ ¼ ð4, 6Þ: An
arbitrary element of B6ðwÞ is of the form:

g6 ¼ I6 þ x45ðE45 þ E12Þ þ x46ðE46 þ E13Þ

¼ ðI6 þ x45E45 þ x46E46ÞðI6 þ x45E12 þ x46E13Þ ¼ u4b6

where x45, x46 2 C are the coordinates of g6, u4 ¼ I6 þ x45E45 þ x46E46 and b6 ¼ I6 þ x45E12 þ
x46E13: Note that v	1b6v ¼ b6 2 U0, confirming statement (2) of Proposition 4.8. The isomorph-
ism C

2 ! B6ðwÞ is defined by

ðx45, x46Þ 7! ðI6 þ x45E45 þ x46E46ÞðI6 þ x45E12 þ x46E13Þ ¼ g6ðx45, x46Þ:

Now consider inv4kðwÞ ¼ fð4, 2Þ, ð4, 3Þg; we have ðwð4Þ,wð2ÞÞ ¼ ð1, 6Þ and ðwð4Þ,wð3ÞÞ ¼
ð1, 2Þ: An arbitrary element of B4ðwÞ is of the form:

g4 ¼ I6 þ x12E12 þ x16E16

where x12, x16 are the coordinates of g4. We have v	1g4v ¼ I6 þ x12E12 þ x16E15 2 B4ðyÞ � U0:
Since B4ðyÞ ¼ fI5 þ x12E12 þ x15E15 j x12, x15g we obtain v	1B4ðwÞv ¼ B4ðyÞ via the identification
from (2.1), confirming statement (1) of Proposition 4.8.

5. An affine paving

In this section, we prove our first main theorem. In particular, Theorem 5.7 below tells us that
HessðXk, hÞ is paved by affines for all h 2 H: As noted above, this result is not new, but our con-
structive methods are elementary and provide more insight into the structure of the paving. We
obtain our paving of HessðXk, hÞ by restricting an affine paving for the Springer fiber B

Xk : As a
consequence, we recover Tymoczko’s formulas for the dimension of each affine cell, originally
proved in [17, Theorem 7.1] for Hessenberg varieties in the flag variety of GLnðCÞ corresponding
to Hessenberg functions such that hðiÞ � i for all i.

We begin by constructing an affine paving of the Springer fiber B
Xk using the subgroups

BkðwÞ introduced above. Throughout this section, k denotes a fixed composition of n. The next
proposition is the lynchpin of our inductive arguments; our proof resembles that of ref. [16,
Lemma 1] (see also [13, §11.3]).
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Proposition 5.1. Suppose RðwÞ 2 RSðkÞ and w¼ vy is the factorization from (2.2) with i ¼ wðnÞ.
Let k0 be the composition of n – 1 obtained from k by deleting the box labeled by n in R(w) and
Xk0 denote the restriction of v	1Xkv to C

n	1 ¼ spanfe1, e2, :::, en	1g. There exists an isomorphism
of varieties

uw : Cdn � ðCy \B
Xk0 Þ ! Cw \B

Xk

where dn ¼ j invnkðwÞ j :

Proof. We use the isomorphism C
dn ! BnðwÞ from Proposition 4.8(2) throughout the proof.

Given a flag V 0
� 2 B

Xk0 we write V 0
� ¼ u0yE

0
� for some u0 2 U0: It suffices to show that

uw : BnðwÞ � ðCy \B
X0
kÞ ! Cw \B

Xk , ðgn, u0yE
0
�Þ 7! gnvu0yE�

is an isomorphism of varieties. Note first that uw is well defined since gn commutes with Xk by
Lemma 4.7 and vu0yE� 2 B

Xk by Remark 3.8.
To begin, we argue that uw is a bijection. Suppose first that gnvu0yE� ¼ hnvu

0
0yE� for some

gn, hn 2 BnðwÞ and u0, u
0
0 2 U0: By Proposition 4.8(2), we may write gn ¼ uibn for ui 2 Ui such

that the i-th row of ui is equal to the i-th row of gn and bn 2 vU0v
	1: Similarly, we have hn ¼

u0ib
0
n for u0i 2 Ui such that the i-th row of u0i is equal to the i-th row of hn and b0n 2 vU0v

	1: Thus

ui ¼ q
ðkÞ
1 ðgnvu0E�Þ ¼ q

ðkÞ
1 ðhnvu

0
0E�Þ ¼ u0i

where q
ðkÞ
1 is the map defined in (4.1) above. Proposition 4.8(2) now implies gn ¼ hn and conse-

quently u0yE� ¼ u00yE� as well. This shows that uw is injective.
To prove surjectivity, let uwE� 2 Cw \B

Xk for some u 2 Uw: Using Lemma 2.8 we may write
uwE� ¼ uivu0yE� for u0 2 U0 and ui 2 Ui: By Lemma 4.1, we have that q

ðkÞ
1 ðuwE�Þ ¼ ui 2 C

dn :
Let gn 2 BnðwÞ have coordinates determined by q

ðkÞ
1 ðuwE�Þ via the isomorphism from

Proposition 4.8(2). Thus we have gn ¼ uibn where ui ¼ q
ðkÞ
1 ðuwE�Þ and bn 2 vU0v

	1: Now

g	1
n uwE� ¼ vu00yE� 2 B

Xk where u00 ¼ v	1bnvu0 2 U0:

This shows that uwðgn, u
0
0yE

0
�Þ ¼ uwE�, so uw is also surjective.

The bijection uw is in fact a morphism of varieties since C
dn ! BnðwÞ and the action map

GLn	1ðCÞ � FlagsðCnÞ ! FlagsðCnÞ are morphisms of varieties. The inverse map, defined by
u	1
w ðuwE�Þ ¼ ðgn, v

	1g	1
n uwE0�Þ where gn 2 BnðwÞ has coordinates determined by q

ðkÞ
1 ðuwE�Þ, is

also a morphism of varieties. This concludes the proof. w

We now introduce flags constructed using the subgroups BkðwÞ of the previous section. We
use these flags to give an explicit description of our affine paving of the Springer fibers below.

Definition 5.2. Let w 2 Sn such that RðwÞ 2 RSðkÞ: We define a subset Dw � Cw inductively as
follows. First, set D1

w ¼ fwðE�Þg: Then for each 2 � k � n let

D
k
w ¼ fgkðV�Þ j gk 2 BkðwÞ and V� 2 D

k	1
w g:

Let Dw :¼ D
n
w: In other words, bwE� 2 Dw if and only if b ¼ gngn	1:::g2 with gk 2 BkðwÞ for

all k.
The definition of Dw depends on our choice of composition k (since RðwÞ 2 RSðkÞ and the

definition of BkðwÞ depends on R(w)), but we suppress this dependence in the notation for Dw:
Note that for any composition, we have De ¼ fE�g:
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Example 5.3. Continuing Example 4.9, let n¼ 6 and k ¼ ð2, 2, 2Þ and w ¼ ½3, 6, 2, 1, 5, 4�:

RðwÞ ¼
1 2
3 5
4 6

RðeÞ ¼
3 6
2 5
1 4

In this case, invkðwÞ ¼ fð6, 5Þ, ð6, 2Þ, ð5, 2Þ, ð4, 3Þ, ð4, 2Þ, ð3, 2Þg: Computing the BkðwÞ sub-

groups, we have that B2ðwÞ ¼ fI6g and:

B3ðwÞ ¼

1 0 0 0 0 0
0 1 0 0 0 x26
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

9

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

;

, B4ðwÞ ¼

1 x12 0 0 0 x16
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

9

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

;

,

B5ðwÞ ¼

1 0 0 0 0 0
0 1 x56 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 x56
0 0 0 0 0 1

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

9

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

;

, B6ðwÞ ¼

1 x45 x46 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 x45 x46
0 0 0 0 1 0
0 0 0 0 0 1

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

9

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

;

where x26, x12, x16, x56, x45, x46 2 C: This gives:

D
1
w ¼ D

2
w ¼ fðe3 j e6 j e2 j e1 j e5 j e4Þg

D
3
w ¼ fðe3 j e6 þ x26e2 j e2 j e1 j e5 j e4Þg

D
4
w ¼ fðe3 j e6 þ x16e1 þ x26ðe2 þ x12e1Þ j e2 þ x12e1 j e1 j e5 j e4Þg

D
5
w ¼ fðe3 þ x56e2 j e6 þ x56e5 þ x16e1 þ x26ðe2 þ x12e1Þ j e2 þ x12e1 j e1 j e5 j e4Þg,

D
6
w ¼ fðe3 þ x46e1 þ x56ðe2 þ x45e1Þ j e6 þ x46e4 þ x56ðe5 þ x45e4Þ þ x16e1 � � �

� � � þ x26ðe2 þ x45e1 þ x12e1Þ j e2 þ x45e1 þ x12e1 j e1 j e5 þ x45e4 j e4Þg:

The set Dw has an inductive structure. Indeed, if w(n) ¼ i write w ¼ vy where y 2 Sn	1 and

v ¼ sisiþ1 � � � sn	2sn	1 as in (2.2). Let V� ¼ gngn	1 � � � g2wE� 2 Dw: Statement (1) of Proposition

4.8 implies g0k :¼ v	1gkv 2 BkðyÞ for all 2 � k � n	 1, so V 0
� :¼ g0n	1 � � � g

0
2yðE

0
�Þ 2 Dy �

FlagsðCn	1Þ: Here Dy is the collection of flags determined as in Definition 5.2 for y 2 Sn	1 with

RðyÞ 2 RSðk0Þ: We obtain a surjective map:

BnðwÞ �Dy ! Dw; ðgn,V
0
�Þ 7!V�: (5.1)

The next result gives our affine paving of BXk :

Theorem 5.4. Let w 2 Sn and k a composition of n such that RðwÞ 2 RSðkÞ. There exists an iso-

morphism of varieties ~uw : Cdw ! Cw \B
Xk with image equal to Dw:

Proof. We argue using induction on n � 1: The base case of n¼ 1 is trivial since FlagsðCÞ ¼
fE�g where E� ¼ spanfe1g in this case. The required isomorphism ~ue is the map 0 7! E�:

Now suppose n � 2: Let w ¼ vy be the factorization of w from (2.2), k0 the composition of

n	 1 obtained from k by deleting the box labeled by n in R(w), and Xk0 the restriction of v	1Xkv

to C
n	1 ¼ spanfe1, e2, :::, en	1g: Consider Cy \ B

Xk0 � FlagsðCn	1Þ: By induction, there exists an

isomorphism of varieties ~uy : C
dy ! Cy \B

Xk0 with image equal to Dy: Here dy ¼ j invk0ðyÞ j and

Dy is the collection of flags determined as in Definition 5.2 for y 2 Sn	1 with RðyÞ 2 RSðk0Þ: By
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Lemma 3.7 we have dw ¼ dn þ dy and Proposition 4.8(2) gives us an isomorphism C
dw ’

BnðwÞ � C
dy : Using this identification we define

~uw : BnðwÞ � C
dy ! Cw \B

Xk , ~uwðgn, xÞ ¼ uwðgn, ~uyðxÞÞ

where uw is the isomorphism of Proposition 5.1. This is an isomorphism of varieties since both
uw and ~uy are isomorphisms. Using the description of the image of ~uy and definition of uw, it
follows that the image of ~uw is equal to the image of the map (5.1), which is Dw: w

By the theorem, Cw \B
Xk ¼ Dw for all RðwÞ 2 RSðkÞ: The main theorem of this section ana-

lyzes the structure of the intersections Dw \HessðXk, hÞ in greater detail. We begin with a tech-
nical statement generalizing Lemma 4.7; it shows that the flags in Dw satisfy strong
linear conditions.

Lemma 5.5. Let RðwÞ 2 RSðkÞ and gk 2 BkðwÞ for each k. Furthermore, for each 2 � k � n let

v
ðkÞ
j ¼ gkgk	1 � � � g2ewðjÞ for all 1 � j � n:

Given ‘ 2 ½n�, let r‘ denote the label of the box directly to the right of the box labeled by ‘ in
R(w), if such a box exists. Then

ðgkXk 	 XkgkÞv
ðk	1Þ
j ¼ xwðkÞwð‘Þv

ðk	1Þ
k if j ¼ r‘, ðk, ‘Þ 2 invkkðwÞ

0 otherwise

(

(5.2)

where xwðkÞwð‘Þ 2 C for ðk, ‘Þ 2 invkkðwÞ is a coordinate of gk 2 BkðwÞ:

Proof. Since v
ðk	1Þ
j ¼ gk	1 � � � g2ewðjÞ and v

ðk	1Þ
k ¼ gk	1 � � � g2ewðkÞ, by Lemma 4.7 it suffices to show

that the matrices A ¼ gk	1 � � � g2 and gkXk 	 Xkgk commute.
In order to establish this claim, note that Lemma 4.7 also implies

kerðgkXk 	 XkgkÞ ¼ spanfewðjÞ j j 6¼ r‘ for ðk, ‘Þ 2 invkkðwÞg:

In particular, we have spanfewð1Þ, :::, ewðkÞg � kerðgkXk 	 XkgkÞ:
If ewðjÞ 62 kerðgkXk 	 XkgkÞ then j ¼ r‘ for some ðk, ‘Þ 2 invkkðwÞ and j � k: Lemma 4.6 implies

AewðjÞ ¼ ewðjÞ and AewðkÞ ¼ ewðkÞ so:

ðgkXk 	 XkgkÞAewðjÞ ¼ xwkw‘
ewðkÞ ¼ AðgkXk 	 XkgkÞewðjÞ

by Lemma 4.7. Now suppose ewðjÞ 2 kerðgkXk 	 XkgkÞ: Lemma 4.6 implies that for all j � k, AewðjÞ 2
spanfewð1Þ, :::, ewðkÞg and if j � k, AewðjÞ ¼ ewðjÞ: Thus AewðjÞ 2 kerðgkXk 	 XkgkÞ so

ðgkXk 	 XkgkÞAewðjÞ ¼ 0 ¼ AðgkXk 	 XkgkÞewðjÞ

in this case. w

The following proposition records a key property satisfied by flags in Dw: This statement is
the technical heart of the proof of our main theorem below.

Proposition 5.6. Suppose RðwÞ 2 RSðkÞ and V� ¼ ðv1 j v2 j � � � j vnÞ 2 Dw so V� ¼
gngn	1 � � � g2wðE�Þ for gk 2 BkðwÞ, 2 � k � n. Let ‘ 2 ½n�. Suppose ‘ does not label a box at the end of
a row in R(w) and let r ¼ r‘ denote the label of the box directly to the right of ‘ in R(w). Then

v‘ ¼ Xkvr þ
X

ðt, ‘Þ2invkðwÞ
‘<t�n

xwðtÞwð‘Þvt: (5.3)

We assume the sum appearing above is zero whenever the index set is empty and xwðtÞwð‘Þ 2 C

for ðt, ‘Þ 2 invkðwÞ are coordinates of gt 2 BtðwÞ for each t.
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Proof. Let V1
� :¼ wðE�Þ and

Vk
� :¼ gkgk	1 � � � g2wðE�Þ ¼ ðv

ðkÞ
1 j v

ðkÞ
2 j � � � j vðkÞn Þ

with v
ðkÞ
j as in the statement of Lemma 5.5. By definition, V� ¼ Vn

� and vk ¼ v
ðnÞ
k for all k 2 ½n�:

Note that Lemma 4.6 implies v
ðk	1Þ
k ¼ ewðkÞ ¼ v

ðkÞ
k for all k 2 ½n�:

Since r appears in the box directly to the right of ‘ in R(w), we know XkewðrÞ ¼ ewð‘Þ: We will show

v
ðkÞ
‘ 	 Xkv

ðkÞ
r ¼

X

ðt, ‘Þ2invkðwÞ
‘<t�k

xwðtÞwð‘Þv
ðkÞ
t (5.4)

for every 2 � k � n: This gives us (5.3) when k¼ n, proving the desired result.
We proceed by induction on k. When k¼ 2 the formula in Lemma 4.7 implies

ðg2Xk 	 Xkg2ÞewðrÞ ¼
X

ð2, ‘Þ2invkðwÞ
xwð2Þwð‘Þewð2Þ

where the RHS is zero whenever the index set is empty, that is, whenever ð2, ‘Þ 62 inv2kðwÞ:
Applying the identities v

ð2Þ
‘ ¼ g2ewð‘Þ, v

ð2Þ
r ¼ g2ewðrÞ, and ewð2Þ ¼ v

ð2Þ
2 we obtain

v
ð2Þ
‘ 	 Xkv

ð2Þ
r ¼

X

ð2, ‘Þ2invkðwÞ
xwð2Þwð‘Þv

ð2Þ
2 :

as desired.
Next, assume k> 2 and (5.4) holds for k	 1. Applying gk to both sides of this equation, we obtain

v
ðkÞ
‘ 	 gkXkv

ðk	1Þ
r ¼

X

ðt, ‘Þ2invkðwÞ
‘<t�k	1

xwðtÞwð‘Þv
ðkÞ
t : (5.5)

The formula of Lemma 5.5 shows that

gkXkv
ðk	1Þ
r ¼

Xkgkv
ðk	1Þ
r þ xwðkÞwð‘Þv

ðk	1Þ
k if ðk, ‘Þ 2 invkkðwÞ

Xkgkv
ðk	1Þ
r otherwise:

(

Substitute this formula for gkXkv
ðk	1Þ
r into the LHS of (5.5). Since gkv

ðk	1Þ
r ¼ v

ðkÞ
r and v

ðk	1Þ
k ¼

v
ðkÞ
k , this substitution yields the desired result. w

We can now prove our main result.

Theorem 5.7. Let h : ½n� ! ½n� be a Hessenberg function such that h(i) < i for all i, k be a compos-
ition of n, and w 2 Sn such that RðwÞ 2 RShðkÞ. Suppose V� ¼ gngn	1 � � � g2wE� 2 Dw where gk 2
BkðwÞ for all 2 � k � n:

(1) We have V� 2 HessðXk, hÞ if and only if xwðkÞwð‘Þ ¼ 0 for all ðk, ‘Þ 2 invkðwÞ n invk, hðwÞ,
where xwðkÞwð‘Þ 2 C is a coordinate of gk.

(2) The isomorphism of Theorem 5.4 restricts to an isomorphism C
dw, h ! Cw \HessðXk, hÞ

where dw, h ¼ j invk, hðwÞ j :

In particular, there is an affine paving of HessðXk, hÞ with affine cells obtained by intersecting
HessðXk, hÞ with the Schubert cells.

Proof. By Lemma 4.6, each gk 2 BkðwÞ preserves the kernel of Xk: If follows immediately that if r
labels a box in the first column of R(w) (that is, if ewðrÞ 2 kerðXkÞ), then vr ¼ gngn	1 � � � g2ewðrÞ 2
kerðXkÞ: Thus, in this case, the condition that Xkvr 2 spanfv1, v2, :::, vhðrÞg is vacuously true.

Next, we consider the case in which r is not in the first column of R(w). Rewriting formula
(5.3) from Proposition 5.6 we have,
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Xkvr ¼ v‘ 	
X

ðt, ‘Þ2invkðwÞ
‘<t�n

xwðtÞwð‘Þvt

where ‘ is the label of the box immediately to the left of r in R(w). Since ðt, ‘Þ 2 invkðwÞ n invk, hðwÞ
if and only if t > ‘ and hðrÞ < t < r it follows immediately that Xkvr 2 spanfv1, v2, :::, vhðrÞg if and
only if xwðtÞwð‘Þ ¼ 0 for all ðt, ‘Þ 2 invkðwÞ n invk, hðwÞ: This proves statement (1).

Let x ¼ ðxwðkÞwð‘ÞÞðk, ‘Þ2invkðwÞ: By definition, ~uwðxÞ ¼ gngn	1:::g2wE� where gk has coordinates

ðxwðkÞwð‘1Þ, :::, xwðkÞ,wð‘dÞÞ for d ¼ dk and invkkðwÞ ¼ fðk, ‘1Þ, :::, ðk, ‘dÞg: Statement (1) implies

~uwðxÞ 2 Cw \HessðXk, hÞ ¼ Dw \HessðXk, hÞ if and only if xðwðkÞwð‘ÞÞ ¼ 0 for all ðk, ‘Þ 62

invk, hðwÞ: Thus, the restriction of ~uw obtained by setting xðwðkÞwð‘ÞÞ ¼ 0 for all ðk, ‘Þ 62 invk, hðwÞ

yields an isomorphism C
dw, h ! Cw \HessðXk, hÞ: This proves (2) and the final assertion of the

theorem follows from Remark 2.6. w

Remark 5.8. One can also recover the results of Theorem 5.7 using similar methods as the
second author in ref. [14]. It is an exercise to show that the formula for dimðCw \HessðXk, hÞÞ
given in Proposition 3.7 of ref. [14] is equal to j invk, hðwÞ j :

Our next example continues the work of Examples 4.9 and 5.3.

Example 5.9 . Let n¼ 6 and k ¼ ð2, 2, 2Þ and w ¼ ½3, 6, 2, 1, 5, 4�: Consider the Hessenberg func-
tion h ¼ ð0, 0, 1, 1, 3, 4Þ: Then

Dw \HessðXk, hÞ ¼ fðe3 þ x46e1 þ x56ðe2 þ x45e1Þ j e6 þ x46e4 þ x56ðe5 þ x45e4Þ þ x16e1 � � �

� � � þ x26ðe2 þ x45e1Þ j e2 þ x45e1 j e1 j e5 þ x45e4 j e4Þg:

and

Dw ¼ fðe3 þ x46e1 þ x56ðe2 þ x45e1Þ j e6 þ x46e4 þ x56ðe5 þ x45e4Þ þ x16e1 � � �

� � � þ x26ðe2 þ x45e1 þ x12e1Þ j e2 þ x45e1 þ x12e1 j e1 j e5 þ x45e4 j e4Þg:

Since ð4, 3Þ 2 invkðwÞ n invk, hðwÞ and ðwð4Þ,wð3ÞÞ ¼ ð1, 2Þ, to get the former paving from the
latter we set x12 ¼ 0:

6. Geometric and combinatorial properties

In this section, we use the affine paving from above to study the geometry of HessðXk, hÞ using
the combinatorics of h-strict tableaux. We prove two main results, generalizing known facts about
the Springer fiber to the Hessenberg varieties studied in this article. The first is that, when k is a
partition and the cell Cw \HessðXk, hÞ has maximal dimension, then RðwÞ 2 RShðkÞ is a standard
tableau. Our second result proves that HessðXk, hÞ is connected.

Assume for now that k is a partition. If R is a row-strict tableau of shape k, we let stdðRÞ
denote the standard tableau obtained by reordering the entries in each column so that they
increase from top to bottom. The next result generalizes Theorem 3.5 in ref. [15].

Lemma 6.1. Let k be a partition of n. If R 2 RShðkÞ then stdðRÞ 2 RShðkÞ:

Proof. Suppose ai is the entry in row i and column k> 1 of stdðRÞ: Then ai is greater than pre-
cisely i	 1 other entries of the k-th column in R. Since R 2 RShðkÞ, hðaiÞ is greater than or equal
to at least i distinct entries in column k	 1. Thus hðaiÞ is greater than or equal to the entry in
the box to the immediate left of ai in stdðRÞ: This implies that stdðRÞ 2 RShðkÞ: w

We now prove the first of the main results in this section. In general, the varieties HessðXk, hÞ
need not be equidimensional, but the following theorem shows that the maximal dimension cells
in our affine paving correspond to standard tableaux. First we require the following definition.
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Definition 6.2. Suppose R 2 RShðkÞ has m columns. Let dRði, jÞ for 1 � i � j � m be the number

of Hessenberg inversions ðk, ‘Þ with k in column i and ‘ in column j of R.

Note that in the definition above, i and j may be equal. In the proof of the theorem below, we

will consider a process that alters the entries of a tableau R. We use the notation d(i, j) to refer

to the number of Hessenberg inversions in columns i and j at each step of the process in

our proof.

Theorem 6.3. If w 2 Sn such that dimðCw \HessðXk, hÞÞ ¼ j invk, hðwÞ j is maximal, then R(w) is

a standard tableau.

Proof. Suppose R 2 RShðkÞ is not a standard tableau. Write R ¼ RðyÞ and stdðRÞ ¼ RðwÞ for

some y,w 2 Sn: We claim that dRði, jÞ � dstdðRÞði, jÞ for all pairs (i, j), and furthermore, at least

one inequality is strict. This implies j invk, hðyÞ j < j invk, hðwÞ j , proving the theorem.
We prove this claim by describing a process which, when applied to any three columns i, j, jþ 1,

will sort them. Furthermore, each step in this process will not increase the value of d(i, j). (If i¼ j,

then there are only two columns.) This will imply that dRði, jÞ � dstdðRÞði, jÞ:
We now describe this process; the idea is to “bubble sort columns.” If there is an inversion

between two adjacent boxes in column i, we exchange them as well as the entries in that same

row for column j and column jþ 1. We consider all rows to have the same number of squares

and count blank squares as having a value of þ1: Note that this means that, in the middle of

this process, we may end up with a composition of n that is not a partition. Continue this until

column i is increasing. Then do this for column j; bubble sort out the inversions while simultan-

eously exchanging the corresponding entries in column jþ 1. Finally, bubble sort column jþ 1.

This results in the entries of columns i, j, and jþ 1 being reordered so that they increase from

top to bottom (i.e. we obtain the corresponding columns of stdðRÞ).
First we analyze what happens when i¼ j. Our goal is to prove that this process does not

increase the number of Hessenberg inversions ðk, ‘Þ with k and ‘ in column i. In this case, any

such pair ðk, ‘Þ will still be a pair after sorting column i because k > ‘ so k will still label a box

below ‘ in column i, and the number in the box to the right of ‘ does not change. Note that sort-
ing column i does not change the fact that columns i and iþ 1 are h-strict.

Now consider sorting column jþ 1 ¼ iþ 1: Suppose ‘ > s are adjacent entries in column i (so

‘ appears directly below s) and that we swap r‘ and rs (the entries to the right of ‘ and s, respect-

ively) as we sort column iþ 1, so r‘ < rs: We first prove that the h-strictness of columns i and

iþ 1 is preserved. Indeed, if s � hðrsÞ and ‘ � hðr‘Þ then

‘ � hðr‘Þ � hðrsÞ and s < ‘ � hðr‘Þ

Since r‘ < rs implies hðr‘Þ � hðrsÞ: Now, if we lose any pair counted by d(i, j), it must be of the

form (k, s), where k> s appears below s in column i and hðr‘Þ < k � hðrsÞ: Note that k 6¼ ‘ in

this case, since ‘ � hðrsÞ: Since k> s and ‘ appears immediately below s, we get that k > ‘ labels

a box below ‘ in column i. Since k is below ‘ and rs now labels the box directly to the right of ‘
after the swap, we gain the Hessenberg inversion ðk, ‘Þ: Thus d(i, j) does not decrease.

Now suppose i< j and consider the operations on column i first. Because every move swaps

entire rows, bubble sorting column i will not result in the loss of any Hessenberg inversions, and

the columns j and jþ 1 remain h-strict. Now consider sorting column j. This clearly does not

affect the inversions in d(i, j) for the same reason, namely the columns j and jþ 1 are being sim-

ultaneously swapped. Columns j and jþ 1 remain h-strict in this case also.
Finally, consider the operations on column jþ 1. Say s is directly above ‘ in column j (so

s < ‘) and rs > r‘, as above. Swapping rs and r‘ preserves the h-strictness of columns j and jþ 1;

the argument is the same as above. If we lose any Hessenberg inversion (k, s) where k appears in
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column i, then we must have hðr‘Þ < k � hðrsÞ, just as above. But we gain the pair ðk, ‘Þ after
swapping rs and r‘ since ‘ � hðr‘Þ < k and k � hðrsÞ: Once again, we see that d(i, j) does
not decrease.

Now we show that dstdðRÞði, jÞ > dRði, jÞ for some (i, j). Let column k be the last column of R
whose entries are not already increasing from top to bottom. Consider the first instance the bub-
ble sorting process swaps two elements when i¼ j ¼ k. Say we swap ‘ and s with ‘ > s: Since col-
umn jþ 1 begins sorted, we have r‘ < rs: Now ‘ � hðr‘Þ, so we gain the Hessenberg inversion
ð‘, sÞ: Moreover, as we showed in the general case where i¼ j, we do not lose any pairs counted
by d(i, i) when sorting column i, and every pair we lose when sorting column iþ 1 matches with
one we gain upon doing so. Thus dstdðRÞðk, kÞ > dRðk, kÞ, as desired. w

We demonstrate the algorithm in the previous proof with an example.

Example 6.4. Let n¼ 12 and h : ½12� ! ½12� the Hessenberg function defined by hðiÞ ¼
maxf0, i	 2g: Consider beginning with the following h-strict tableaux R and stdðRÞ :

R ¼

2 4 8 10
1 5 7 11
3 9 12
6

! stdðRÞ ¼

1 4 7 10
2 5 8 11
3 9 12
6

When i ¼ j ¼ 1, we check that dRði, jÞ does not decrease during the operations described in
the proof. Each step of the process is displayed below; in this case there are only two steps.

2 4
1 5
3 9
6

!

1 5
2 4
3 9
6

!

1 4
2 5
3 9
6

We see dRð1, 1Þ ¼ 2 � 3 ¼ dstdðRÞð1, 1Þ, as desired. Next, when i¼ 1 and j¼ 2:

2 4 8
1 5 7
3 9 12
6

!

1 5 7
2 4 8
3 9 12
6

!

1 4 8
2 5 7
3 9 12
6

!

1 4 7
2 5 8
3 9 12
6

and we again have dRð1, 2Þ ¼ 1 � 1 ¼ dstdðRÞð1, 2Þ: Since column 3 is the last column of R in
which the values do not increase from top to bottom, we check that when
i ¼ j ¼ 3, dRði, jÞ < dstdðRÞði, jÞ:

8 10
7 11
12

!
7 10
8 11
12

Indeed, dRð3, 3Þ ¼ 0 and dstdð3, 3Þ ¼ 1:

We now return to the setting in which k is any composition of n. We prove that each
Hessenberg variety HessðXk, hÞ is connected. Recall that the dimension of the 0-cohomology
group of any algebraic variety is equal to the number of connected components of that space.
Thus, by Lemma 2.5 and Theorem 5.7 it suffices to show that there is a unique permutation w 2
Sn such that dimðCw \HessðXk, hÞÞ ¼ 0:

Theorem 6.5. For any Hessenberg function h 2 H and composition k, the Hessenberg variety
HessðXk, hÞ is connected whenever it is nonempty.
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Proof. By Remark 2.3, we may assume without loss of generality that k is a partition of n. It suffi-
ces to prove that there exists a unique h-strict tableau that has no Hessenberg dimension pairs.
Consider the following algorithm. Begin at the right-most column of k. Label the boxes in this
column from top to bottom, assigning n to the first box and decreasing by one at a time. Then
move to the next right-most column, filling the boxes from top to bottom with the largest avail-
able number subject to the constraint that doing so does not violate h-strictness. Continue in this
way and denote the resulting tableau by R0. We first show that this algorithm results in an h-
strict tableau whenever HessðXk, hÞ 6¼ ;; then we will show that R0 is the unique tableaux satisfy-
ing the desired properties.

If HessðXk, hÞ is nonempty, then at least one intersection Cw \HessðXk, hÞ must be nonempty.
Let R ¼ RðwÞ be the corresponding h-strict tableau. We show that R can be transformed into an
h-strict tableau obtained via the algorithm above by a sequence of swaps. Given ‘ 2 ½n�, recall
that we denote by r‘ the label of the box directly to the right of ‘, if it exists.

Going in order from top to bottom in each column, starting the right-most column and mov-
ing left, take the first square in R whose label differs from that dictated by the algorithm. In other
words, we consider the first square in R with label ‘ such that there exists k > ‘ with k � r‘ and
such that k appears below the box containing ‘ and in the same column or in any column strictly
to the left of the column containing ‘: We may assume k is the maximal with respect to these
properties. Let ‘m and km be the values m boxes to the left of ‘ and k in tableau R, respectively.

Define R0 to be the following h-strict tableau obtained from R. Exchange the positions of k
and ‘ in R. If this is an h-strict tableau, then stop. Otherwise, the only problem that can arise is
that k1 > hð‘Þ: In that case, we must also have k1 > ‘1: Now exchange the positions of k1 and ‘1;
if this results in an h-strict tableau then stop. Otherwise note that swapping k1 into its new row
does not change the fact that that row is h-strict. The only problem that can occur is if k2 >
hð‘1Þ (and therefore k2 > ‘2). Continue this process of swapping until the tableau is h-strict.
Indeed, because k originally appeared in a ‘later’ box than ‘, we will always be able to perform
this swap until the entire tableau is h-strict. The resulting R0 is h-strict and has labels as dictated
by the algorithm up through the box which now contains k.

Repeating the operation of the previous two paragraphs yields an h-strict tableau whose entries
are dictated by the algorithm. This shows that the algorithm does indeed produce a completed h-
strict tableau, R0. Now consider any pair ðk, ‘Þ with k > ‘ such that k labels a box in R0 below ‘
and in the same column or in any column to the left of the column containing ‘: By construc-
tion, placing k in the box containing ‘ would lead to a violation of h-strictness, that is, k > hðr‘Þ:
This proves that R0 has no Hessenberg inversions.

Finally, we show there are no other h-strict tableau R(w) with j invk, hðwÞ j ¼ 0: Suppose
RðwÞ ¼ R 2 RShðkÞ such that R 6¼ R0 and that in the first box (using the same ordering as above)
in which R differs from R0, R is labeled by ‘ rather than a k. Then k > ‘ since our algorithm for
constructing R0 always chooses the largest available number. The value k must be placed in a
‘later’ box of R than the box containing ‘, so ðk, ‘Þ is an inversion of w. Since k could have been
placed in the box containing ‘ (as it is in R0), we have that k � hðr‘Þ, so ðk, ‘Þ is a Hessenberg
inversion pair. This shows that all other h-strict tableaux have at least one Hessenberg inversion
pair. Thus R0 is the unique h-strict tableau with the desired properties. w

In the Springer fiber case, the unique row-strict tableau without any Springer inversions is the
base filling from Definition 3.1 above. However, in general the base filling may not be h-strict, as
the next example demonstrates.

Example 6.6. Let n¼ 12 and h : ½12� ! ½12� the Hessenberg function defined by hðiÞ ¼
maxf0, i	 3g: The base filling for k ¼ ð4, 4, 3, 1Þ and the h-strict tableau R0 constructed in the
proof of Theorem 6.5 are displayed below.
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RðeÞ ¼

4 7 10 12

3 6 9 11
2 5 8
1

R0 ¼

3 6 9 12
2 5 8 11
4 7 10
1

Note that R(e) is not h-strict, since 10 and 12 appear as consecutive entries in the first row,

but 10� 9 ¼ hð12Þ: The unique row-strict tableau with no Hessenberg inversions is R0.

Finally, we conclude with an example which shows that analogous Hessenberg varieties defined

for other classical groups need not be connected.

Example 6.7. Consider the symplectic group SP4ðCÞ: Our convention is that the inner product

on C
4 ¼ spanfe1, e2, e3, e4g is determined by the following matrix

sJ ¼
0 J
	J 0

� �

where J ¼
0 1
1 0

� �

:

In other words, given g 2 GL4ðCÞ we have g 2 SP4ðCÞ if and only if gTsJg ¼ sJ where gT

denotes the transpose of g. The symplectic group has Lie algebra sp4ðCÞ ¼
fX 2 gl4ðCÞ j sJX ¼ 	XTsJg:

The flag variety of SP4ðCÞ consists of full flags of isotropic subspaces. Let

X ¼

0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

2

6

6

4

3

7

7

5

2 sp4ðCÞ

and h be the Hessenberg function ð0, 1, 1, 3Þ: This Hessenberg function gives a well-defined sub-

variety of the flag variety for SP4ðCÞ using the Hessenberg space H ¼ HðhÞ \ sp4ðCÞ; see, for
example, [14, Section 2.2] for the definition of the Hessenberg variety in an arbitrary flag variety.

The variety of isotropic flags V� ¼ ðv1 j v2 j v3 j v4Þ such that:

Xv1 ¼ 0; Xv2,Xv3 2 V1 ¼ spanfv1g; and Xv4 2 V3 ¼ spanfv1, v2, v3g (6.1)

is the Hessenberg variety HessðX,HÞ in the flag variety of SP4ðCÞ: It is a subvariety of the

Springer fiber corresponding to X. In this small dimensional case, it is easy to show that

HessðX,HÞ is paved by affines, and this paving is obtained by intersecting HessðX,HÞ with each

Schubert cell. Let s1 be the element of the Weyl group of SP4ðCÞ such that s1e1 ¼ e2, s1e2 ¼
e1, s1e3 ¼ e4, s1e4 ¼ e3, and let e denote the identity element. The Schubert cell Cs1 consists of all

flags of the form:

ðe2 þ c e1 j e1 j e4 	 c e3 j e3Þ for some c 2 C

and Ce ¼ fE�g: The conditions from (6.1) now imply:

Ce \HessðX,HÞ ¼ fE�g and Cs1 \HessðX,HÞ ¼ fs1E�g

so dimðCe \HessðX,HÞÞ ¼ dimðCs1 \HessðX,HÞÞ ¼ 0: Since the 0-cohomology group of

HessðX,HÞ has dimension 2, HessðX,HÞ is not connected.
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