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1. Introduction

This article studies topological and combinatorial properties of a certain class of Hessenberg
varjeties. Hessenberg varieties, as introduced in ref. [3], are subvarieties of the flag variety. They
are important examples of varieties whose geometry and topology can be characterized using
combinatorial techniques (see, e.g. [1, 10, 11]). The Hessenberg variety Hess(X, h) is parametrized
by two pieces of data: a matrix X € gl,(C) and a non-decreasing function % : [n] — [n], known
as a Hessenberg function.

Most of the existing literature on Hessenberg varieties considers only Hessenberg functions
with the property that h(i) > i for all i. Tymoczko has shown that the Hessenberg varieties corre-
sponding to such Hessenberg functions have a paving by affines [17]. This article investigates
Hessenberg varieties corresponding to Hessenberg functions such that k(i) < i for all i. In this
case, the Hessenberg space of the function h is an ad-nilpotent ideal and Hess(X, k) is a subvari-
ety of the Springer fiber for X. We construct an affine paving for these varieties and explore add-
itional geometric and combinatorial properties.

The fact that Hessenberg varieties of this kind are paved by affines is not new; Fresse proves
this statement for a more general class of Hessenberg varieties in ref. [6]. While the arguments
used in that article are broader in scope, they do not compute the dimension of each affine cell
in the paving. Our methods are constructive and we obtain combinatorial formulas for the
dimension of the cells, recovering Tymoczko’s results in this setting. In Section 5 below, we
define explicit coordinates for an affine paving of the Springer fiber. We then obtain a paving of
the Hessenberg variety Hess(X, h) by setting certain coordinates equal to zero; this is recorded in
Theorem 5.7. Our arguments are of a similar flavor as those given by Spaltenstein in ref. [16].

CONTACT Martha Precup @ martha.precup@wustl.edu e Department of Mathematics and Statistics, Washington University
in St. Louis, St. Louis, MO, USA.
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We give two applications of our results in Section 6. Recall that the irreducible components of
the Springer fibers are in bijection with standard tableaux. This is one of the key conclusions of
Springer theory. The Hessenberg varieties we consider here may not be equidimensional, so the
cells in the affine paving of maximal dimension are not in bijection with irreducible components.
However, Theorem 6.3 below shows that these cells are still indexed by standard tableaux. The
second main result of Section 6, namely Theorem 6.5, proves that the Hessenberg varieties we
consider are always connected (in the type A case). Example 6.7 shows that this property may
not be true for analogous Hessenberg varieties defined using other classical groups.

The constructions in this article are motivated by the goal of better understanding the geom-
etry of the affine paving. Determining the closure relations between cells in the paving and identi-
fying singularities of the irreducible components of Hess(X,h) are both interesting open
questions. Even in the case of the Springer fiber, the answer to these questions is unknown,
although progress has been made in special cases [5, 8, 9]. Since the Hessenberg varieties consid-
ered here are all subvarieties of a Springer fiber, a thorough study of their geometry has the
potential to shed new light on these subjects.

The organization of this article is as follows. In Section 2, we review necessary definitions and
prior results. In Section 3 we study the notion of Hessenberg inversions, originally introduced by
Tymoczko in ref. [17]. We define certain subgroups of matrices crucial to the construction of our
paving in Section 4. Our affine paving is defined in Section 5 and we prove our main result,
which is Theorem 5.7. Finally, we explore some combinatorial properties of our construction in
Section 6.

2. Preliminaries

Let n be a positive integer and [n] denote the set of positive integers {1,2,...,n}. We work in
type A throughout (except for Example 6.7 in Section 6), where GL,(C) is the group of invertible
n x n complex matrices and gl,(C) is the Lie algebra of all n x n complex matrices. Let B be the
Borel subgroup of GL,(C) consisting of upper triangular matrices and U be the subgroup of
upper triangular matrices with diagonal entries equal to 1.

The Weyl group of GL,(C) is S,, which we identify with the subgroup of permutation matri-
ces in GL,(C). Given w € S,,, let

inv(w) := {(i,j) [ > j and w(i) < w(j)}

denote the set of inversions of w. Note that we adopt the nonstandard notation of listing the
larger number in the pair (i,j) € inv(w) first; this simplifies our exposition below. The Bruhat
length of a permutation w € S, is {(w) := [inv(w) |.

2.1. Hessenberg varieties
The flag variety is the collection of all full flags in C",
Flags(C") :={Veo=({0} CV; CV, C ... CC") |dimc(V;) =i for all i€ [n]}.

Given a full flag Vi, let {vy,v,,...,v,} be a basis of C" such that for each i, {v,v,,...,v;} is a

basis for V;. We denote the flag V, by Vo = (vi|va| -+ |v,). Let {e1,e;,...,e,} be the standard
basis of C". The standard flag E, is the full flag E, = (e;|e;| --- |e,). Every flag V, is of the
form gE, where g € GL,(C) such that ge; = vi and gE, := (ge; | gex| - -+ | gen).

Remark 2.1. The flag variety identifies with the homogeneous space GL,(C)/B via the map
gB—gE,. In this article, we interchange notation for the flag gE, and coset ¢B whenever it
is convenient.
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A Hessenberg variety in Flags(C") is specified by two pieces of data: a Hessenberg function
and an element of gl,(C). A Hessenberg function is a function h: [n] — [n] such that h(i) <
h(i+1) for all i € [n— 1]. We frequently write a Hessenberg function by listing its values in
sequence, that is, h = (h(1),h(2),....,h(n)). We now define the main objects of interest in
this article.

Definition 2.2. Let h : [n] — [n] be a Hessenberg function and X € gl,(C). The Hessenberg var-
iety associated to h and X is

Hess(X, h) := {V, € Flags(C") | X(V;) C V5 for all i€ [n]}.

If Vo= (vi|va] -+ |vy) then V, € Hess(X, h) if and only if Xv; € span{v,, ..., vy} for all i €
[n]. When X € g is a nilpotent matrix and h = (0,1,..,n —2,n — 1), the variety B(X,h) is the
Springer fiber of X, which we denote by B*.

The following remark indicates that we may choose any matrix within a given conjugacy class
for our computations without alternating the geometric invariants of the corresponding
Hessenberg variety.

Remark 2.3. Given a fixed Hessenberg function h, we have Hess(X,h) ~ Hess(g"'Xg, h) for
all g € GL,(C).

Most of the existing literature on Hessenberg varieties assumes that the Hessenberg function
also satisfies the condition that h(i) >i. The main reason is that this condition on the
Hessenberg function ensures Hess(X, h) # 0 for all X € gl,,(C). One of the main purposes of this
article is to explore Hessenberg varieties corresponding to Hessenberg functions with the property
that h(i) < i for all i. This is exactly the case in which the corresponding Hessenberg space,
defined by:

H(h) := span{E; |i < h(j)} C gl.(C),

is an ad-nilpotent ideal (that is, its lower central series is finite). Thus, for the remainder of this
manuscript we assume that any Hessenberg function 4 : [n] — [n] satisfies h(i) < i for all i € [n].

Let H:={h:[n] — [n]|h(i + 1) > h(i) and h(i) < i} denote the set of all Hessenberg func-
tions satisfying the condition that h(i) < i. There is a partial ordering on this set defined by

hlj ]’lz <~ h1<l> < hz(l) for all i

for hy,hy € (. A partial order like this one is studied by Drellich in ref. [4]. It follows directly
from the definition that if hjh, then Hess(X, ;) C Hess(X, hy) for all X € gl,(C). Note that our
set of Hessenberg functions contains a unique maximal element with respect to <, namely the
Hessenberg function h = (0,1,...,n — 1). Thus Hess(X,h) C BX for any nilpotent matrix X €
gl,(C) and h € H.

2.2. Affine pavings

The first main goal of this manuscript is to demonstrate an affine paving of the Hessenberg var-
iety Hess(X,h) obtained by intersecting with the Schubert cells. We do so by first constructing
an explicit affine paving of the Springer fiber B*. We then prove that this paving restricts to a
paving of Hess(X,h) in a natural way. Note that it is very well known that Springer fibers are
paved by affines [5, 16], and Tymoczko’s results prove that such a paving can be obtained by
intersecting with the Schubert cells [17], so our result in that case is not new.
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Definition 2.4. A paving of an algebraic variety Y is a filtration by closed subvarieties
YoCY,C---CY,C---CYy;=Y.

A paving is affine if every Y; — Y;_; is isomorphic to a finite disjoint union of affine spaces;
we calls these spaces the affine cells of the paving.

An affine paving allows us to compute the Betti numbers of an algebraic variety Y, as shown
in ref. [7, 1.9.1, 19.1.11]. In the statement below, H!(Y) denotes cohomology with compact sup-
port of the algebraic variety Y.

Lemma 2.5. Let Y be an algebraic variety with an affine paving, Y, CY,C---
CY;C - CY;=Y. Then the nonzero cohomology groups of Y are given by H*(Y) = Z™ where
ni denotes the number of affine components of dimension k.

In this article we apply the lemma for Y a complex projective variety, so H*(Y) = H(Y).
There is a well-known affine paving of Flags(C") induced by the Bruhat decomposition:

Flags(C") = L C,, where C,, = BwE,.
weS,

The B-orbit C, is called the Schubert cell indexed by w € §,. It is well known that each
Schubert cell is isomorphic to the subgroup U" := UNwU w! where U is the subgroup of
lower triangular matrices with diagonal entries equal to 1. In other words, each flag bwE, € C,
can be written uniquely as bwE, = uwE, for some u € U". Since U" is a unipotent subgroup we
have U" ~ Lie(U"), where Lie(U") an affine space of dimension ¢(w). Therefore C, ~ C'™. It
is well known that C, = Uy<w Cy, where < denotes the Bruhat order on S,. Thus, the Schubert
cells are affine cells for the paving of Flags(C") defined by

By C By C -+ C Bunyy = Flags(C") where B;:= U Cy.

o(w)=
We prove Hess(X, h) has an affine paving by considering the intersections C,, N Hess(X, h).

Remark 2.6. It follows from the discussion in ref. [14, §2.2] that in order to prove Hess(X, h) is
paved by affines, it suffices to prove Hess(X, h) N C,, is isomorphic to affine space C? with d € Zs.

2.3. Factorization

We now describe a method for identifying a portijon of any Schubert cell in Flags(C") with a
Schubert cell in the flag variety associated to GLnT%:E), namely Flags(C"""). We view GL,_,(C)
as a subgroup of GL,(C) by identifying it with its image under the map:

GL,—1(C) — GL,(C); a — {g (1)} for all a € GL,_;(C). (2.1)

Let U, be the unipotent subgroup of GL,_;(C) of upper triangular matrices with diagonal
entries equal to 1. We view U, as a subgroup of GL,(C) via Uy ={u € U|u;, =0 if i # n}.
Similarly, we identify S,_; with the subgroup {g € S, | a(n) = n} of S,.

Each permutation w € S, can be factorized uniquely as

vy where v = s;s;41 - Sy_28,—1, for i =w(n) and y € S,,_;. (2.2)

Here s; denotes the simple transposition swapping j and j+ 1. Note that v in the factorization
above is called the shortest left coset representative for w = vy with respect to the Young sub-
group S,_1 = ($1,...,8,-2), see [2, Proposition 2.4.4]. In one-line notation, we have that v is the
permutation with the property that v(n) = i and all remaining values are placed in positions
1,2,...,n — 1 of the one-line notation for v in increasing order; y is the unique permutation with
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the property that y(n) = n and the rest of the entries in the one-line notation for y are in the
same relative order as the entries of w.
The factorization given in (2.2) satisfies the condition that ¢(w) = ¢(v) + £(y) and:

inv(w) = inv(y) Uy ' (inv(v)). (2.3)

Example 2.7. Let w = [3,4,1,2] = 55535152 € Ss. Then w(4) = 2 and we see that
w=vy where v=s5 and y=s;s,.
In one-line notation, v = [1,3,4,2] and y = [2,3,1,4]. We have that
inv(w) = {(3,2), (1), (4,2), (4, 1)}
where inv(y) = {(3,2),(3,1)} and y '(inv(v)) = {(4,2),(4,1)}, confirming (2.3).

Recall that U” := UNwU w™l. In the special case where v = s;s;,, -+, 25,1 for some i €
[n] we have U" = {u € U|u; =0 for all k#i, k<j}, thatis, U" is the i-th row of U, which
we denote by U,. The next lemma tells us there is a factorization of the elements of U" that is
compatible with the factorization of permutations given in (2.2) above. This is a special case of
[12, Proposition 28.1].

Lemma 2.8. Suppose weS, and let w=vy be the factorization given in (2.2) with
i = w(n) = v(n). For each u € U" the product uw can be written uniquely as

uw = upvugy for some u; € U; = U’ and uy € U

Lemma 2.8 gives us an inductive decomposition of each Schubert cell, as we now explain. Let
w € S, and w = vy be the factorization from (2.2). Given uwE, with u € U, by Lemma 2.8 we
may write uwE, = u;vugyE, with u; € U; and up € Uy. (Note that since y(n) = n we have
U? C Up.) We obtain an isomorphism,

p:C, — CU x C,» uwE, = uvugyEe — (u;, ugyE,) (2.4)

where E, := (e; | e,|...|e,_1) is the standard flag in C"~' = span{e;,e,,....e, 1} and we identify
U; withp affine space via u;— (u;);.,, where u; =1I,+ Zj>iuijEij' We make the identification
U; ~ C'V) implicitly throughout this article. Let

p:Cy— C'"), uwE, = u;vuoEe — u; (2.5)

be the map obtained from p via composition with projection to the first factor. Denote by P the
maximal standard parabolic subgroup with Levi subgroup equal to the image of (2.1). That is,
P = {g € G|g, = Oforall j<n}. The map p; can be identified with the restriction to C, of the
canonical projection G/B — G/P; in the notation of cosets we have p,(uwB) = uwP = u;vP.
Thus p; is a morphism of varieties and commutes with the action of B.

3. Hessenberg inversions

Let A = (41,42, ..., &) be a weak composition of n and Par(4) be the partition we obtain from A
by rearranging the parts of 4 in decreasing order. We begin by fixing an element X, in the conju-
gacy class Opy(;) of nilpotent matrices of Jordan type /.

Definition 3.1. Let 1 = (41,4, ..., 4x) be a weak composition of n drawn as a diagram, namely
with k rows of boxes so that the ith row from the top has Z; boxes. The base filling of A is
obtained as follows. Fill the boxes of 4 with integers 1 to n starting at the bottom of the leftmost
column and moving up the column by increments of one. Then move to the lowest box of the
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next column and so on. Denote the base filling of 4 by R(e). We now define:

X;=Y Eg (3.1)

(b5 1)

where the sum is taken over the set of all pairs (¢,7) such that r labels the box directly to the
right of £ in the base filling of 4.
Example 3.2. If n=7 and 1 = (2,3,1,1) then the bdsg fillingyof ¢ ip
1 16 000 0
5|7

and we have X(;3 1) =

3
2 |
1

(= e ell = =]
OO = O O OO

O O O O O
O O O O O
S O O O O
O O O O O
(=N elolNeoN =

For each w € §,,, let R(w) denote the tableau of composition shape 4 obtained by labeling the i-
th box in the base filling of 2 by w™!(i). We say that R(w) is h-strict if £ < h(r) whenever ¢ labels
a box directly to the left of r in R(w). Let RS;,(1) denote the set of all h-strict tableaux of compos-
ition shape A. The set of h-strict tableaux determines which Schubert cells intersect the
Hessenberg variety. This is proved by Tymoczko in ref. [17, Theorem 7.1] for Hessenberg vari-
eties associated to Hessenberg functions such that /(i) > i for all i. The proof below is the same;
we give a sketch using our notation for the reader’s convenience.

Lemma 3.3. Let w € S, and h € H. Then C,, N Hess(X,,h) # 0 if and only if R(w) € RS;(4).

Sketch of proof. By definition, wE, € Hess(X;, h) if and only if
Xieu(r) € span{e, (1) - €w(h(r)) }

for all r € [n]. Suppose ¢ labels the box directly to the left of r in R(w). The w({) labels the box
directly to the left of w(r) in R(e). Since X;e, () = e, we therefore have wE, € Hess(X, h) if
and only if £ < h(r) for any such pair (¢,7).

To complete the proof we have only to show that Hess(X;,h)NC, # 0 implies wE, €
Hess(X;, h). Assume uwE, € Hess(X;, h) for some u € U”. Then

Xy ue, () € span{ue, i), ... Uey(u(r) } <= (u ' Xu)e, ) € span{ey(1)s .- €u(i(r) }

for all r € [n]. The desired statement now follows immediately from the fact that the pivots of
u~'X,u are in the same position as the pivots of X, (as proved by Tymoczko in ref. [17,
Proposition 4.6]). O

When h = (0,1,...,n — 1) we have that RS;(1) =: RS(4) is the set of tableaux of composition
shape 4 which are row-strict, that is, increasing across rows. By definition, RS;(4) C RS(4) for all
Hessenberg functions h € J{. Our next definition comes from [17, Theorem 7.1], see [15] also.

Definition 3.4 . Let A be a weak composition of n and k, £ € [n]. We say (k,£) is a Hessenberg
inversion of R(w) for w € S, if k > ¢ and:

(1)  k occurs in a box below ¢ and in the same column or in any column strictly to the left of
the column containing ¢ in R(w), and
(2)  if the box directly to the right of £ in R(w) is labeled by r, then k < h(r).

Denote the set of Hessenberg inversions in R(w) by invy ;(w).
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Note that if the pair (k,¢) satisfies condition (1), then (k,¢) € inv(w); so Hessenberg inver-
sions are a subset of the inversions of w.

Remark 3.5. If (k,41), (k,¢;) € invy ;(w) then k, ¢, and ¢, are all in different rows of R(w), or
equivalently, w(k), w(¢;), and nw(¢,) are all in different rows of R(e). Indeed if ¢, fills a box to
the left of ¢, and in the same row, the assumption that (k,¢;) is a Hessenberg inversion implies
that k is less than every entry to the right of ¢;, implying (k, ¢;) cannot be an inversion.

Now suppose ¢, and k occur in the same row. Since (k,¢;) is a Hessenberg inversion, k must
occur to the left of ;. On the other hand, R(w) must be row-strict and k > #; so we obtain a
contradiction.

Example 3.6. Let n=7 and 1= (2,3,1,1). The tableau R(w) for w=1[4,3,1,6,5,7,2] is
shown below.

56|

|U)|\] N | =

If h=(0,1,2,3,4,56) then R(w) has inversion set inv,,(w)={(7,6),(7,4),
(5,4),(3,2),(3,1),(2,1)}. Note that (7,5) € inv(w) but (7, 5) is not a Hessenberg inversion since
7#5=h(6). If h=1(0,0,1,2,3,3,3) then the inversion set becomes inv;,(w)={(7,6),
(7,4),(5,4),(3,2),(2,1)} since 3 %2 = h(4) now.

When h = (0,1,2,..,n — 1), we called the pairs in Definition 3.4 above Springer inversions,
denoted inv,(w) in this case. We let

invk(w) := {(k,£)|1 < ¢ < k and (k,¢) € inv;(w)}

so inv; (w) = LI, invE(w). We set di := |invk(w)| for all 2 < k < n.

Let w € S,, such that R(w) € RS(4). Since R(w) is row-strict, the box labeled by n must appear
at the end of a row. Let 2’ be the composition of n—1 we obtain from A by deleting the box
labeled by n in R(w), or equivalently, deleting the box labeled by i = w(n) in R(e). Our next
lemma shows that the Hessenberg inversions of w are well-behaved with respect to the decom-
position of inv(w) given in (2.3).

Lemma 3.7. Suppose R(w) € RS(A) and w=vy is the factorization from (2.2) with i = w(n). Then
R(y) € RS() and

invy(y) = inv,(w) \ inv}(w).

where J is the composition of n — 1 we obtain from A by deleting the box labeled by n in R(w).

Proof. Recall that v is the permutation whose one-line notation has i in the n-th position and all
remaining entries are placed in positions 1,2,...,n — 1 in increasing order. In particular, we
obtain the base filling of the composition A’ from the base filling of 4 by deleting the box con-
taining i and applying v~! to the remaining entries. It follows immediately that R(y) is the tableau
of composition shape 4" we obtain by deleting the box containing n from R(w) so R(y) € RS(1).
Thus inv, (y) = L—linvi (w) as desired. O

Motivated by the inductive formula from Lemma 3.7, we let X, € gl,_;(C) be the nilpotent
matrix defined as in (3.1) for the composition A’ of n — 1. The proof of the lemma implies X, is
the matrix corresponding to the linear transformation obtained by restricting v~'X;v
to C" ! ~ span{e;, e, ....,e, 1 }.
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Remark 3.8. Let B*/ denote the Spring fiber in Flags(C"') corresponding to X, € gl, (C).
The discussion above implies that for all uy € Uy, vugyE. € B if and only if ugyE, € B*".

4. The By (w)-subgroups

We now introduce a collection of subgroups of U associated to each w € S, with R(w) € RS(4).
We use these subgroups in the next section to construct an affine paving of the Springer fiber B*
that restricts to a paving of the subvariety Hess(X, h). Throughout this section, let 1 be a fixed
weak composition of #n and X; € Opy(;) the matrix from Definition 3.1 above.

Suppose wE, € B¥, or equivalently by Lemma 3.3, that R(w) € RS(A). Using the factorization
from (2.2) we write w = vy for v =s;5;11 - Sy—28,—1 where i = w(n) = v(n). Recall the mor-
phism p, : C,, — C‘") defined in (2.5). The next lemma tells us that if uwE, € BY, then certain
entries of u; = p, (uwE,) must be zero.

Lemma 4.1. Suppose uwE, € B and p,(uwE,) = u; € U; for i = w(n). Let uy; for j>i denote the
entry in the i-th row and j-th column of u; Then u; = 0 unless j appears at the end of a row in
the base filling R(e). In particular, the morphism of varieties p, : C,, — C') defined in (2.5)
restricts to a morphism

p\):c, BN -t (4.1)
where d,, ;== |inv}(w) |.

Proof. By Lemma 2.8 we may write uwE, = u;vigyE, for some uy € Uy and w; = p,(uwE,).
Suppose j>i does not fill a box at the end of a row in the base filling R(e) of A. This implies
e €im(X;). Let Vo= (vi|va]...|v,) where vi=uw(er). Since V., € B we must have
im(X;) € V,—; and so e; € span{vy,...,v,_1}. Thus e = ZZ;II ceve for some cy,...,c,—1 € C.
Applying (4;v) " to both sides we obtain

-1 n—1
~1
v (e — ujer) = Y _crtioy(er) = e, 1) — e, = Y _citioey(h
k=1 k=1
n—1
= —Ujjep = —€,1(j) + chuoey(k)
k=1

The RHS of the above equation is in span{ey,...,e,—1}, implying u; = 0 as desired. Finally,
we note that j>i and j appears at the end of a row in the base filling R(e) if and only if
(w (i), w '(j)) = (m,w'(j)) is a Springer inversion of R(w) in inv/(w). This shows

inv(w) = {(n,w '(j))|i <jand j lables abox at the endof a row inR(e)}

Thus if uwE, € B** we get
pr(wwB) =wi =L+ > wuky

i<j

(my wI () invi ()
This yields the description of the restriction of p; to C,, N B% in (4.1). O

The goal of the next section is to construct a generic element of C,, N B** whenever this inter-
section is nonempty. We do so by introducing a collection of subgroups of U associated to each
R(w) € RS(4). Recall that inv,(w) denotes the set of Hessenberg inversions corresponding to h =
(0,1,2,...,n — 1), namely the Springer inversions.

Definition 4.2. Let 2 < k < n. We define Bi(w) to be the set of all matrices g such that:
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(1) if (k,¢) € invk(w) and e,; = X"e,,) for some m € Z, then
gkew(j) = ew(j) +xw<k)w(g)X;”ew<k) for some xw(k)w(g) € (C,
(2)  and g, = e,j otherwise.

From the definition above, we see that each element g of Bi(w) is uniquely determined by the
values of (X (k)w(t,)s - Xw(kpw(t,)) for inv’)f(w) ={(k,01), ..., (k,€3)} and d = dj. To emphasize this,
we sometimes write gk = gk(Xu(kjw(t1)> - Xw(kyw(e,)) and say that (Xugw(e,)s - Xw(w(e,)) are the
coordinates of g;.

Example 4.3. Let n=7 and /1= (3,2,2). We consider w = [3,2,6,1,7,4,5] with corresponding
tableau R(w) € RS(4) as shown below; the base filling R(e) is also below.

1]3]5] 3167
Rw)yH2|7 R(e) =|2 |5
1] 14

In this case, inv;(w)={(7,5),(6,5),(4,2),(4,3),(2,1)} so, in particular, inv}(w)=
{(4,2),(4,3)}. We have (w(4),w(2)) = (1,2) and (w(4),w(3)) = (1,6). Since X;e,4) =0, the
elements of By(w) are matrices of the form

17 + X12E12 + x16E16 where X12,X16 € C.

For another example, consider inv§(w) = {(6,5)}; we have (w(6), w(5)) = (4,7). In this case,
X;ewe) = X,e, = e and X%ew(ﬁ) = X%e4 = 0. Therefore the elements of Bg(w) are matrices of the
form

I7 + X47E47 + X47E16 where X47 € C.

Let 2 <k <n and g € Bx(w). Then (gi),, =1 for all a € [n]. Suppose (g),, 7 0 for a # b.
By definition, (a,b) = (w({'),w(K')) where ¢,k € [n] such that X™e,q) = e, and X"e, ) =
ey (k) for some m € Z>,. Since the action of X; on the standard basis vectors is determined by
the base filling R(e) € RS(4), it follows that w(k') fills the m-th box to the left of w(k) in R(e)
and w(#) fills the m-th box to the left of w(¢) in R(e). Equivalently, k' fills the m-th box to the
left of k in R(w) and ¢ fills the m-th box to the left of £ in R(w).

Since (k,£) € inv;(w), we know that the box labeled by k appears below the box labeled by ¢
and in the same column or in any column strictly to the left of £ in R(w). Therefore the same
must be true of the pair (K, ¢'), that is, the box labeled by k’ appears below the box labeled by ¢’
and in the same column or in any column strictly to the left of ¢ in R(w); and similarly for the
boxes labeled by w(k') and w(¢') in R(e). By definition of the base filling R(e), we conclude that
a=wk)<wl')=bsog €U.

We summarize the discussion above in the following remark.

Remark 4.4 . Let 2 < k < n and w € S, such that such that R(w) € RS(4). Then Bx(w) C U and
furthermore, given gi € By we have (g),, # 0 if and only if a=5 (in which case (g),, = 1) or
(a,b) = (w(¢'),w(K')) where k' fills the m-th box to the left of k in R(w) and ¢ fills the m-th box
to the left of ¢ in R(w) for some m € Zx, and (k,£) € invk(w).

The remainder of this section contains results describing the structure of the matrices in
Bi(w); in most cases, our proofs consist of straightforward computations using linear algebra.

Lemma 4.5. Let 2 <k <n and w € S, such that R(w) € RS(1). The set of matrices Bi(w) from
Definition 4.2 is an abelian subgroup of U of dimension |invk(w)|.

Proof. Let g, hx € Bx(w), where g; has coordinates (x,()w(¢,)> - Xw(kyw(¢,)) and h has coordinates
Dwipw(er)> -+ Ywiw(ey)) for d = d. We will prove gihy is the matrix in Bx(w) with coordinates
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(Xuw(w(ty) F Yllw(tr)s - Xw(kyw(ta) T Yw(kyw(t,))- In other words, we prove that if (k, /) € invlj(w)
and e, = X/'e, ) for some m € Z>o, then

(grhr)ewi) = ew(j) + (Xuttywe) T Yuiiywe)) X ewik) (4.2)

and (gihx)e, () = e, () otherwise. It follows directly from this formula that Bi(w) is an abelian
subgroup of U.

Now consider the action of gihy on any basis element e, ;. If w(j) does not appear in R(e) to
the left and in the same row as any w(¢) for (k,¢) € inv(w), that is, if e, ;) # X!"e,(, for some
m € Zxo, then both g and h; map e, to itself and (gchx)e, ) = ey)-

If w(j) is to the left and in the same row of R(e) as w(¢) for some (k, /) € invk(w), then
gkey(j) = €y(j) + xw(k)w(g)X?ew(@ and hkew(j) = €y(j) +yw(k)w(é)X;Tlew(k) for some m € Z>o. Write
X7'e, (k) = () Where w(k') labels the m-th box to the left of w(k) in R(e). Then k' labels the m-
th box to the left of k in R(w) and hence k' is not in the same row as £ for any (k,¢) € invk(w)
by Remark 3.5. This implies gie,, ) = €, ) = hre,x) and formula (4.2) now follows. The asser-
tion that the dimension of this subgroup is |invk(w)| is clear from the definition. O

Lemma 4.6. Let 2 < k < n and w € S, such that R(w) € RS(A). For all g, € Bx(w) we have
gk(span{e, 1), €,(2), - € }) = span{e, 1), €u2)s s i }

and gre, ;) = e, for all j > k. Furthermore, gi(ker(X;)) C ker(X;).

Proof. By definition, if e, = X"e,, for some m € Zxo and (k,¢) € invk(w) then w(j) fills the
m-th box to the left of w({) in R(e). Therefore j fills the m-th box to the left of ¢ in R(w) and
since R(w) € RS(4) we have j < /¢ < k. This shows gie,; = e, for all j> k. Similarly, if
X7'e,() = eywy then K fills the m-th box to the left of k in R(w) and k' < k. The first assertion
of the lemma now follows.

To prove the second, suppose e, ;) € ker(X;) with e, = X7'e,) for some m € Z>, and
(k. €) € invk(w). We must show ge,;, € ker(X;), or equivalently, if XI'e, ) 7 0 then X”e, ) €
ker(X;). Since gr € U, if XJ'e, ) # 0 then X7'e,,x) = e,) where w(k') < w(j). The assumption
that e,,(;) € ker(X;) implies w(j) fills a box in the first column of R(e) and the fact that w(k') <
w(j) implies that w(k’) fills a box below w(j) in the first column of R(e) so X;e,u) =0
as desired. |

The next lemma shows that the matrices in Bi(w) for k <n almost commute with X; and the
elements of B,(w) always commute with X).

Lemma 4.7. Suppose R(w) € RS(1) and let 2 < k < n. Given { € [n], let r; denote the label of the
box directly to the right of the box labeled by ( in R(w), if such a box exists. Then for all
8k € Be(w),

(X0 — Xigk)ew() = {xw(k)Mew(k) s, (o0 € ma) (4.3)

0 otherwise
where x,,(0(r) € C for (k,£) € invi(w) is a coordinate of g € Bi(w). In particular, if k=7 this

formula shows that X; and g, commute.

Proof. First, suppose j = r; for some ¢ € [n] such that (k,/) € inv5(w). By definition, this is the
case if and only if X e, = e, and k <j. In particular, Lemma 4.6 tells us gie,; = e, ). We
now have:

(gkX/l - X),gk)ew(j) = 8kCw(t) — Cw(t) = Xw(k)w(t)Cw(k)

where the last equation follows directly from Definition 4.2.
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It remains to show that if j  r, for any ¢ € [n] such that (k,¢) € invi(w), then giX e, =
X;8key(j)- This is straightforward to prove using Definition 4.2, so we omit the details.

Finally, when k=n we have (n,¢) € inv,(w) only if ¢ labels a box at the end of a row in R(e).
Thus (4.3) tells us X; and g, commute. O

Our goal is to use induction to analyze the flags in C, N B**. In particular, the next statement
shows that we can naturally identify the group Bi(w) for k < n with a subgroup of the same type
in GL,_(C) using the map from (2.1).

Proposition 4.8. Suppose w € S,, such that R(w) € RS(A) and w=vy is the factorization defined in
(2.2), with i = w(n).

(1) For all 2<k<n-—1, we have v !'Bi(w)v = Bi(y) where Bi(y) is the subgroup of Uy C
GL, 1(C) corresponding to R(y) € RS(Z).

(2) Each g, € B,(w) can be factored uniquely as g, = u;b, where u; € U;, b, € vUpv™!, and
the i-th row of u; is equal to the i-th row of g,. In particular, u; = p(li) (gnwE.) and there

exists an isomorphism of varieties C* — B, (w) with inverse given by g, — p(li) (gnWE,).

Proof. The proof of Lemma 3.7 shows that R(y) is the row-strict tableau we obtain by deleting
the box labeled by n from R(w). This lemma also tells us that R(y) € RS(1') where 2’ is the com-
position of n corresponding to R(y), and for all k <n —1, (k,¢) € invy(y) if and only if (k,¢) €
inv;(w). Recall that X is given by the restriction of v"'X;v to C"~! = span{e;, ...,e, 1 }.

Let gr € Bx(w) have coordinates (X, (kw(e,)s - Xw(kpw(c,)) Where d = d. We prove v 'gv €
Bi(y) by showing v 'gv acts on the basis vectors {ej,...e,_1} by the formulas given in
Definition 4.2 where A is replaced by /' and w is replaced by y. Suppose (k,¥) € inv,(y) and
e ;) = X/e,y for some m € Z>o. By definition of X, this is the case if and only if e, =
X"e,( for (k,¢) € invk(w). Thus v~'gv is the matrix such that:

(g (ey) = v (grews) = v (@wg) + X X7 €uik)
= €y(j) + X)X €y (k) -

By similar reasoning, we have (v_'giv)e,;) = ey if e, # X7le, for any (k,£) € inv;(y) and
m € Zg. This proves v~'Bi(w)v C Bi(y), after relabeling the coordinate x,,()w(¢) by Xy),()- The
proof that Bi(y) C v~ 'Bi(w)v follows in exactly the same way.

To prove statement (2), suppose g, € B,(w) with coordinates (Xu(nyw(s,)s - Xw(nw(t) =
(Xiw(t,)> -+ Xiw(e,)) Where d = d,,. Let u; be the matrix defined uniquely by the equation

A _fewn +ximper i (n,€) € inv(w)
ui(ew(e)) = {ew(,;) otherwise.

Then u; € U; and by definition u; has i-th row equal to g,. Furthermore, b,, is uniquely deter-
mined by the formula

b (e — | &) T xm@Xpe i (n,0) € invi(w), e, = Xy for some m > 1
n(ew(j)) = ew) otherwise.

for all m > 1.

By the previous paragraph, the matrix u; is uniquely determined by, and uniquely determines,
gn- We now show that b, := u;'g, € vUyv!. It is straightforward to see from the definition of u;
and g, that u;'g, has the same entries as g, except for the i-th row, which is 0 in all off-diagonal
entries. Thus u; 'g, may only have a nonzero off-diagonal entry in positions (w(n'), w(¢)) with
w(n') < w(¢') where n’ labels the m-th box to the left of n in R(w) and ¢ labels the m-th box to
the left of ¢ in R(w) for some m € Z>;. In particular, n’ # n. It follows that v~'(u; 'g,)v may
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only have nonzero off-diagonal entries in positions (y(n'), y(¢')) where y(n') # n, y(¢') # n, and
y(n') < y(¢') so b, € vUpv™! as desired.

Finally, the map Ch - By(w) defined by (Xiw(s,)> > Xiw(t)) 7 &n(Xiw(ey)> -+ Xin(e,)) is clearly a
morphism of varieties. By the above, we may write g, = u;b,. Since g, commutes with X, we get
gwE. € B and:

guWE. = uvugyE, where uy =v"'b,v € Uy, u; € U,

This shows that pli) (gnWE.) = u;, where p@ is the morphism defined in Lemma 4.1. The
inverse map B,(w) — C% is precisely g, — u; = pgi) (g.wE,). This proves C* — B, (w) is an iso-
morphism of varieties. |

Example 4.9. We illustrate the previous proposition with an example. Let n=6 and 4 = (2,2,2)
and w = [3,6,2,1,5,4]. In this case, v =[1,2,3,5,6,4] and y = [3,5,2,1,4,6].

12 3]6
Rw)=[35 Rle)=] 25
46 14

We have invé(w) = {(6,5),(6,2)} where (w(6),w(5)) = (4,5) and (w(6),w(2)) = (4,6). An
arbitrary element of Bg(w) is of the form:

86 = I + xu5(Ess + E12) + x46(Es6 + Er3)
= (Is + x45Es5 + Xa6Ess) (Is + Xa5E12 + x46E13) = usbs

where x45,x16 € C are the coordinates of g5, us = Is + Xa5Es5 + XaEss and be = I + x45E12 +
x46E13. Note that v~ 'bgv = bs € Uy, confirming statement (2) of Proposition 4.8. The isomorph-
ism C* — Bg(w) is defined by

(%45, X46) — (Is + Xa5Ea5 + Xa6Eas) (Is + Xa5E12 + XasE13) = go(X45, X46)-

Now consider invi(w) = {(4,2),(4,3)}; we have (w(4),w(2)) = (1,6) and (w(4),w(3)) =
(1,2). An arbitrary element of By(w) is of the form:

g4 = Is + x12E12 + x16E16

where x5, x,¢ are the coordinates of g, We have v 'gv = I + x12E1; + x16E15 € B4(y) C Up.
Since By(y) = {Is + x12E12 + x15E15 | x12, %15} We obtain v~ 'By(w)v = B4(y) via the identification
from (2.1), confirming statement (1) of Proposition 4.8.

5. An affine paving

In this section, we prove our first main theorem. In particular, Theorem 5.7 below tells us that
Hess(X,, h) is paved by affines for all & € H. As noted above, this result is not new, but our con-
structive methods are elementary and provide more insight into the structure of the paving. We
obtain our paving of Jess(X;,h) by restricting an affine paving for the Springer fiber B**. As a
consequence, we recover Tymoczko’s formulas for the dimension of each affine cell, originally
proved in [17, Theorem 7.1] for Hessenberg varieties in the flag variety of GL,(C) corresponding
to Hessenberg functions such that k(i) > i for all i.

We begin by constructing an affine paving of the Springer fiber B using the subgroups
Bi(w) introduced above. Throughout this section, 41 denotes a fixed composition of n. The next
proposition is the lynchpin of our inductive arguments; our proof resembles that of ref. [16,
Lemma 1] (see also [13, §11.3]).
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Proposition 5.1. Suppose R(w) € RS(1) and w=vy is the factorization from (2.2) with i = w(n).
Let /' be the composition of n — 1 obtained from J. by deleting the box labeled by n in R(w) and
X, denote the restriction of v-'X;v to C""' = span{ey,e,,...,e, 1 }. There exists an isomorphism
of varieties

¢, : C" x (C,NnBY) — C, NnBY
where d, = |inv(w)|.

Proof. We use the isomorphism C% — B,(w) from Proposition 4.8(2) throughout the proof.
Given a flag V! € BY" we write V! = uyyE, for some uy € Up. It suffices to show that

@, Ba(w) x (C,N CBXLZ) — C,y N B, (g, ugyE,) — guviioVEs

is an isomorphism of varieties. Note first that ¢,, is well defined since g, commutes with X, by
Lemma 4.7 and vugyE, € B by Remark 3.8.

To begin, we argue that ¢, is a bijection. Suppose first that g,vugyE, = h,vu,yE, for some
g hy € By(w) and ug, uy € Uy. By Proposition 4.8(2), we may write g, = u;b, for u; € U; such
that the i-th row of u; is equal to the i-th row of g, and b, € vUyv™!. Similarly, we have h, =
u/b!, for u; € U; such that the i-th row of i/ is equal to the i-th row of h, and ¥, € vUyv~'. Thus

w; = p\ (guvuoEa) = pi” (yvil)Es) =
where pi” is the map defined in (4.1) above. Proposition 4.8(2) now implies g, = h,, and conse-
quently ugyE, = uyyE, as well. This shows that ¢,, is injective.

To prove surjectivity, let uwE, € C,, N B** for some u € U". Using Lemma 2.8 we may write
uwE, = uvugyE, for uy € Uy and u; € U;. By Lemma 4.1, we have that pg )(qu ) = u; € C.
Let g, € B,(w) have coordinates determined by ot >(qu ) via the isomorphism from
Proposition 4.8(2). Thus we have g, = u;b, where u; = p]Y')(qu.) and b, € vUyv~'. Now

g, 'uwE, = vuyyE, € BX where uf = v 'b,vu, € Up.

This shows that ¢,,(gs, uyVE,) = uwE,, so ¢,, is also surjective.

The bijection ¢,, is in fact a morphism of varieties since C* — B,(w) and the action map
GL,_1(C) x Flags(C") — Flags(C") are morphisms of varieties. The inverse map, defined by
@ (uwEy) = (guv~'g, 'uwE,) where g, € B,(w) has coordinates determined by p\" (uwE,), is
also a morphism of varieties. This concludes the proof. O

We now introduce flags constructed using the subgroups Bi(w) of the previous section. We
use these flags to give an explicit description of our affine paving of the Springer fibers below.

Definition 5.2. Let w € S, such that R(w) € RS(1). We define a subset D,, C C,, inductively as
follows. First, set @}V = {w(E,)}. Then for each 2 < k < n let

DF = {g(V.) | gk € Be(w) and V, € D51

Let D,, := D;.. In other words, bwE, € D,, if and only if b = g,g,_1...g with g € Bi(w) for
all k.

The definition of D,, depends on our choice of composition A (since R(w) € RS(4) and the
definition of By(w) depends on R(w)), but we suppress this dependence in the notation for D,,.
Note that for any composition, we have D, = {E,}.



14 (&) C JIAND M. PRECUP

Example 5.3. Continuing Example 4.9, let n=6 and 1 = (2,2,2) and w = [3,6,2,1,5,4].

1 (2 316
R(w)=13]5 R(e)=| 2 |5
416 1 (4

In this case, inv,(w)={(6,5),(6,2),(5,2),(4,3),(4,2),(3,2)}. Computing the Bi(w) sub-

groups, we have that B;(w) = {Is} and:

1 0 0 0 O 0 1 X12 0 0 O X16
01 0 0 0 x 01 000 0
00100 0 00 100 0

Bs{w)=910 0010 ol B™=910 0 010 o](
00001 0 00 001 0
00000 1 0 0 000 1
10 0 00 0 1 X5 % 0 0 0
01 x6 0 0 0 0O 1 0 0 0 0
00 1 00 0 00 1 0 0 0

Bs{wW) =910 0 0 10 ol %™=l0 0 o 1 Xis  Xag
00 0 0 1 xs 00 0 0 1 0
00 0 00 1 00 0 0 0 1

where X6, X12, X16> X356, X45, X146 € C. This gives:

D, =D;, = {(es|es|ex|er]es|es)}

93\/ = {(es | es +x26e2 | €2 ] €1 | 5] eq)}

94,4, = {(es | es + x15€1 + x26(€2 + x12€1) | €2 + x12€1 | €1 | €5 | €4) }

D>, = {(es + xs6€2 | €6 + Xs6€5 + X16€1 + X26(€2 + x12€1) | €2 + X12€1 | €1 | €5 | €s)},
D?v = {(e3 + x46€1 + x56(€2 + Xx45€1) | €5 + Xa6€s + Xs56(€5 + x45€4) + X16€1 - - -

-+ xp6(€2 + Xg5€1 + X12€1) | € + x45€1 + x12€1 | €1 | €5 + xyseq | eq)}.

The set D,, has an inductive structure. Indeed, if w(n) = i write w = vy where y € S,_; and
V= §iSit1 - Sn—25n—1 as in (2.2). Let Vo = g.gn_1---@WE., € D,,. Statement (1) of Proposition
4.8 implies g :=vigwveB(y) for all 2<k<n-—1, so V,:=g,  ---gy(E,)eD,C
Flags(C""). Here D, is the collection of flags determined as in Definition 5.2 for y € S,_; with
R(y) € RS(Z"). We obtain a surjective map:

By (w) x Dy — Dyys (gns V.)— V.. (5.1)
The next result gives our affine paving of B*.

Theorem 5.4. Let w € S, and A a composition of n such that R(w) € RS(1). There exists an iso-
morphism of varieties ¢,, : C* — C,, N B with image equal to D,

Proof. We argue using induction on n > 1. The base case of n=1 is trivial since Flags(C) =
{E.} where E, = span{e;} in this case. The required isomorphism @, is the map 0— E,.

Now suppose n > 2. Let w = vy be the factorization of w from (2.2), A’ the composition of
n— 1 obtained from A by deleting the box labeled by # in R(w), and X, the restriction of v~ 'X;v
to C"~' = span{ej, e,,...,e,_1 }. Consider C, N B* C Flags(C" ). By induction, there exists an
isomorphism of varieties @,, : Cch — N B # with image equal to D,. Here d, = |invy(y)| and
D, is the collection of flags determmed as in Definition 5.2 for y € S,_; with R(y) € RS(4). By
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Lemma 3.7 we have d, =d, +d, and Proposition 4.8(2) gives us an isomorphism Ch ~
B, (w) x C%. Using this identification we define

@t Ba(w) X ch - Cc,NBY, ?(gnX) = ¢, (gn> gND},(X))

where ¢, is the isomorphism of Proposition 5.1. This is an isomorphism of varieties since both
¢,, and @, are isomorphisms. Using the description of the image of ¢, and definition of ¢,, it
follows that the image of ¢,, is equal to the image of the map (5.1), which is D,,. O

By the theorem, C,, N B* = D,, for all R(w) € RS(/). The main theorem of this section ana-
lyzes the structure of the intersections D,, N Hess(X;, h) in greater detail. We begin with a tech-
nical statement generalizing Lemma 4.7; it shows that the flags in D, satisfy strong
linear conditions.

Lemma 5.5. Let R(w) € RS(A) and g, € Bi(w) for each k. Furthermore, for each 2 < k < n let

= 8k8k—1 "+ * 82€w(j) for all 1 <j<n.

y
Given ( € [n], let r; denote the label of the box directly to the right of the box labeled by ¢ in

R(w), if such a box exists. Then

(k=1)

N . N k
(86X — Xagi vy = § Knlm( Vi if j=r, (k) € invi(w) (5.2)
0 otherwise

where X,w() € C for (k,£) € invk(w) is a coordinate of g € Bi(w).
Proof. Since v}kil) = gk-1" "2, and v,((kil) = gk-1°"Le€y(x)> by Lemma 4.7 it suffices to show
that the matrices A = g - - - & and g X, — X;gx commute.

In order to establish this claim, note that Lemma 4.7 also implies

ker(gxX; — X;gk) = span{e,; | j # r¢ for (k,£) € inv(w)}.

In particular, we have span{e,,), ..., &, } C ker(gxX; — X;g).

If e, & ker(gxX, — X,g¢) then j = r, for some (k,¢) € inv5(w) and j > k. Lemma 4.6 implies
Aey () = €y and A€y (k) = €y (k) SO

(&Xs — Xagk)Aey(j) = X Cwin) = A X: — Xogk)ew()

by Lemma 4.7. Now suppose e, () € ker(gX; — X;gx). Lemma 4.6 implies that for all j < k, Ae,, ;) €

span{e, (1), ... &,k } and if j > k, Ae,, ;) = e,;). Thus Ae,(;) € ker(gX; — X;gx) so
(& X — Xogr)Ae,j) = 0 = A(giX; — X;gk)eyw)

in this case. O

The following proposition records a key property satisfied by flags in D,,. This statement is
the technical heart of the proof of our main theorem below.

Proposition 5.6. Suppose R(w) €RS(A) and Vo= (vi|va|---|v,) €D, so V.=
gngn—1 - @W(E,) for g € Be(w), 2 <k <mn. Let { € [n]. Suppose { does not label a box at the end of
a row in R(w) and let r = r; denote the label of the box directly to the right of { in R(w). Then

vi=X,v, + Z Xoy(t)w(e) Ve- (5.3)

(<t<n
(t, 0)€inv;(w)

We assume the sum appearing above is zero whenever the index set is empty and x,, ;)¢ € C
for (¢,¢) € inv,(w) are coordinates of g; € B;(w) for each t.
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Proof. Let V! := w(E,) and
VE = gigi 1 gowl(E) = (W VP |- )

with v](k) as in the statement of Lemma 5.5. By definition, V, = V! and v, = v}(cn) for all k € [n].
. . (k—1) _ (k)
Note that Lemma 4.6 implies v, ' = e, = v, for all k € [n].
Since r appears in the box directly to the right of £ in R(w), we know X;e,,(,) = e,(,). We will show

k k
Vé ) - X)'VSk) = Z xw(t)w(i)vg ) (54)

(<t<k

(t, 0)€inv, (w)

for every 2 < k < n. This gives us (5.3) when k=n, proving the desired result.
We proceed by induction on k. When k=2 the formula in Lemma 4.7 implies

(22X — Xig)ewr = Z Xu(2)w(t)€w(2)
(2, 0)einv; (w)

where the RHS is zero whenever the index set is empty, that is, whenever (2,/) ¢ invi(w).
Applying the identities vﬁz) = £&y()» v$2> = g€,(y), and e, = v22 we obtain

vexaP = 3w
(2, 0)€inv; (w)
as desired.
Next, assume k > 2 and (5.4) holds for k — 1. Applying g to both sides of this equation, we obtain
VEk) —gkX;Lvﬁk_l) = E xw(t)w(g)vgk). (5.5)
<t<k—1
(t, 0)€inv, (w)

The formula of Lemma 5.5 shows that

g XD = {X"g"vgkl) +xuuove | f (k0) € invi(w)
r

X)ungﬁk_l) otherwise.
Substitute this formula for gkXAvgk_U into the LHS of (5.5). Since gkvﬁk_l) — v and V1(<k_1) -
v,(p, this substitution yields the desired result. 0

We can now prove our main result.

Theorem 5.7. Let h : [n] — [n] be a Hessenberg function such that h(i) < i for all i, A be a compos-
ition of n, and w € S, such that R(w) € RSy(4). Suppose Vo = gugn_1--- 2WE. € D,, where g €
Bi(w) for all 2 < k < n.

(1)  We have V, € Hess(X;,h) if and only if x, e =0 for all (k,£) € inv;(w) \ inv; 5 (w),
where x,,()(r) € C is a coordinate of gj.

(2) The isomorphism of Theorem 5.4 restricts to an isomorphism C%* — C,, N Hess(X;,h)
where d,, , = |inv; ,(w)]|.

In particular, there is an affine paving of Hess(X;, h) with affine cells obtained by intersecting
Hess(X;, h) with the Schubert cells.

Proof. By Lemma 4.6, each gx € Bx(w) preserves the kernel of X,. If follows immediately that if r
labels a box in the first column of R(w) (that is, if e, € ker(X;)), then v, = g,g, 1~ g€y €
ker(X;). Thus, in this case, the condition that X,v, € span{v;,v,, ...,vhm} is vacuously true.

Next, we consider the case in which r is not in the first column of R(w). Rewriting formula
(5.3) from Proposition 5.6 we have,
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XV =vi — Z Xuw(t)w(e)Vt
i<t<n
(t,£)€inv, (w)
where ¢ is the label of the box immediately to the left of r in R(w). Since (t,¢) € inv;(w) \ inv; ,(w)
if and only if ¢ > ¢ and h(r) < t < r it follows immediately that X;v, € span{vy, vy, ..., vy} if and
only if x,(yw(e) = 0 for all (¢,£) € inv;(w) \ inv; ,(w). This proves statement (1).

Let X = (Xu(kpw(0)) (k ¢)ciny; (w)- BY definition, ¢,,(x) = gngn—1...g2WE. where g has coordinates
(Xww(tr)s - Xwik,wiey)) for d = di and invi(w) = {(k,£1), ..., (k,£4)}. Statement (1) implies
¢,,(x) € C, N Hess(X;,h) = Dy, N Hess(X;,h) if and only if xppwey) =0 for all (k£) &
inv; (w). Thus, the restriction of ¢, obtained by setting X)) = 0 for all (k,£) & inv; ,(w)
yields an isomorphism C*** — C,, N Hess(X;,h). This proves (2) and the final assertion of the
theorem follows from Remark 2.6. |

Remark 5.8. One can also recover the results of Theorem 5.7 using similar methods as the
second author in ref. [14]. It is an exercise to show that the formula for dim(C, N Hess(X;, h))
given in Proposition 3.7 of ref. [14] is equal to |inv, ,(w)|.

Our next example continues the work of Examples 4.9 and 5.3.

Example 5.9 . Let n=6 and A = (2,2,2) and w = [3,6,2,1,5,4]. Consider the Hessenberg func-
tion h = (0,0,1,1,3,4). Then

D,, N Hess(X;, h) = {(e3 + xs6€1 + x56 (€2 + Xu5€1) | €6 + Xag€4 + X56(€5 + X45€4) + X16€1 - - -
-4 x6(€2 + x45€1) | €2 + xa5€1 | €1 | €5 + xuses | e4) ).
and

D, = {(e3 + x45€1 + xs6(€2 + x45€1) | €6 + Xa6€4 + X56(€5 + Xa5€4) + X16€1 - - -

o+ Xg6(€2 + xas5€1 + x12€1) | €2 + Xg5€1 + x12€1 | €1 | es + Xuseys | ey) )

Since (4,3) € inv;(w) \ inv, 5(w) and (w(4),w(3)) = (1,2), to get the former paving from the
latter we set x5, = 0.

6. Geometric and combinatorial properties

In this section, we use the affine paving from above to study the geometry of Hess(X;, h) using
the combinatorics of h-strict tableaux. We prove two main results, generalizing known facts about
the Springer fiber to the Hessenberg varieties studied in this article. The first is that, when 4 is a
partition and the cell C,, N Hess(X;, h) has maximal dimension, then R(w) € RSy,(4) is a standard
tableau. Our second result proves that Hess(X;, k) is connected.

Assume for now that A is a partition. If R is a row-strict tableau of shape A, we let std(R)
denote the standard tableau obtained by reordering the entries in each column so that they
increase from top to bottom. The next result generalizes Theorem 3.5 in ref. [15].

Lemma 6.1. Let A be a partition of n. If R € RSy (1) then std(R) € RS, ().

Proof. Suppose g; is the entry in row i and column k>1 of std(R). Then g; is greater than pre-
cisely i — 1 other entries of the k-th column in R. Since R € RSy(4), h(a;) is greater than or equal
to at least i distinct entries in column k — 1. Thus k(g;) is greater than or equal to the entry in
the box to the immediate left of 4; in std(R). This implies that std(R) € RS,(4). O

We now prove the first of the main results in this section. In general, the varieties Hess(X;, h)
need not be equidimensional, but the following theorem shows that the maximal dimension cells
in our affine paving correspond to standard tableaux. First we require the following definition.
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Definition 6.2. Suppose R € RS;,(4) has m columns. Let dr(i,j) for 1 <i <j < m be the number
of Hessenberg inversions (k, ¢) with k in column i and ¢ in column j of R.

Note that in the definition above, i and j may be equal. In the proof of the theorem below, we
will consider a process that alters the entries of a tableau R. We use the notation d(i, j) to refer
to the number of Hessenberg inversions in columns i and j at each step of the process in
our proof.

Theorem 6.3. If w € S, such that dim(C,, N Hess(X,,h)) = |inv, ,(w)| is maximal, then R(w) is
a standard tableau.

Proof. Suppose R € RS,(4) is not a standard tableau. Write R = R(y) and std(R) = R(w) for
some y,w € S,. We claim that dr(i,) < dgqr)(i-j) for all pairs (i, j), and furthermore, at least
one inequality is strict. This implies |inv, ,(y)| < |inv, ,(w)|, proving the theorem.

We prove this claim by describing a process which, when applied to any three columns i,,j + 1,
will sort them. Furthermore, each step in this process will not increase the value of d(j, j). (If i =},
then there are only two columns.) This will imply that dr (i, j) < dgar) (is j)-

We now describe this process; the idea is to “bubble sort columns.” If there is an inversion
between two adjacent boxes in column i, we exchange them as well as the entries in that same
row for column j and column j+ 1. We consider all rows to have the same number of squares
and count blank squares as having a value of +oco. Note that this means that, in the middle of
this process, we may end up with a composition of # that is not a partition. Continue this until
column i is increasing. Then do this for column j; bubble sort out the inversions while simultan-
eously exchanging the corresponding entries in column j+ 1. Finally, bubble sort column j+ 1.
This results in the entries of columns i, j, and j+ 1 being reordered so that they increase from
top to bottom (i.e. we obtain the corresponding columns of std(R)).

First we analyze what happens when i=j. Our goal is to prove that this process does not
increase the number of Hessenberg inversions (k,¢) with k and ¢ in column i. In this case, any
such pair (k,¢) will still be a pair after sorting column i because k > £ so k will still label a box
below ¢ in column i, and the number in the box to the right of £ does not change. Note that sort-
ing column i does not change the fact that columns i and i+ 1 are h-strict.

Now consider sorting column j+ 1 =i+ 1. Suppose £ > s are adjacent entries in column i (so
¢ appears directly below s) and that we swap r, and r; (the entries to the right of £ and s, respect-
ively) as we sort column i+ 1, so r; < r,. We first prove that the h-strictness of columns i and
i+ 1 is preserved. Indeed, if s < h(r;) and ¢ < h(ry) then

¢ < h(ry) <h(rs) and s < £ < h(r)

Since r; < r; implies h(r;) < h(rs). Now, if we lose any pair counted by d(j, j), it must be of the
form (k, s), where k> s appears below s in column i and h(r¢) < k < h(r;). Note that k # ¢ in
this case, since ¢ < h(r;). Since k> s and ¢ appears immediately below s, we get that k > ¢ labels
a box below £ in column i. Since k is below £ and r, now labels the box directly to the right of ¢
after the swap, we gain the Hessenberg inversion (k,¢). Thus d(i, j) does not decrease.

Now suppose i <j and consider the operations on column i first. Because every move swaps
entire rows, bubble sorting column i will not result in the loss of any Hessenberg inversions, and
the columns j and j+1 remain h-strict. Now consider sorting column j. This clearly does not
affect the inversions in d(i, j) for the same reason, namely the columns j and j+ 1 are being sim-
ultaneously swapped. Columns j and j+ 1 remain h-strict in this case also.

Finally, consider the operations on column j+ 1. Say s is directly above ¢ in column j (so
s < f) and r, > r;, as above. Swapping r; and r; preserves the h-strictness of columns j and j+ 1;
the argument is the same as above. If we lose any Hessenberg inversion (k, s) where k appears in
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column i, then we must have h(r;) < k < h(r;), just as above. But we gain the pair (k,¢) after
swapping r; and r; since ¢ < h(r;) <k and k < h(r;). Once again, we see that d(i, j) does
not decrease.

Now we show that dyq(g)(i,j) > dr(i,j) for some (i, j). Let column k be the last column of R
whose entries are not already increasing from top to bottom. Consider the first instance the bub-
ble sorting process swaps two elements when i=j = k. Say we swap ¢ and s with £ > s. Since col-
umn j+ 1 begins sorted, we have ry < r,. Now ¢ < h(ry), so we gain the Hessenberg inversion
(¢,s). Moreover, as we showed in the general case where i=j, we do not lose any pairs counted
by d(i, i) when sorting column i, and every pair we lose when sorting column i+ 1 matches with
one we gain upon doing so. Thus dq)(k, k) > dr(k, k), as desired. 0

We demonstrate the algorithm in the previous proof with an example.

Example 6.4. Let n=12 and h:[12] — [12] the Hessenberg function defined by h(i) =
max{0,i — 2}. Consider beginning with the following h-strict tableaux R and std(R) :

2 14]8 |10 1147 |10
157 [11 258 |11

R= 1579712 = sdR) = =TT
(6 6

When i =j =1, we check that dgr(i,j) does not decrease during the operations described in
the proof. Each step of the process is displayed below; in this case there are only two steps.

214 115 1|4
1|5 214 215
— —

319 319 319

6 | 6] 6

We see dr(1,1) = 2 < 3 = dgqr)(1,1), as desired. Next, when i=1 and j=2:

214 |8 115|7 11418 1147
115 |7 214 |8 215 21518
— — —

319 |12 31912 319 (12 319112

6 6 | 6] L6

and we again have dg(1,2) = 1 <1 = dgq(g)(1,2). Since column 3 is the last column of R in
which the values do not increase from top to bottom, we check that when
i=j=3, dR(i,j) < dstd(R)(iaj)-

8 |10 7 10
7 11| — |8 |11
12 12

Indeed, dr(3,3) = 0 and dw(3,3) = 1.

We now return to the setting in which 4 is any composition of n. We prove that each
Hessenberg variety Hess(X;,h) is connected. Recall that the dimension of the 0-cohomology
group of any algebraic variety is equal to the number of connected components of that space.
Thus, by Lemma 2.5 and Theorem 5.7 it suffices to show that there is a unique permutation w €
Sn such that dim(C,, N Hess(X,, h)) = 0.

Theorem 6.5. For any Hessenberg function h € H and composition J, the Hessenberg variety
Hess(X,, h) is connected whenever it is nonempty.
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Proof. By Remark 2.3, we may assume without loss of generality that 4 is a partition of n. It suffi-
ces to prove that there exists a unique h-strict tableau that has no Hessenberg dimension pairs.
Consider the following algorithm. Begin at the right-most column of 4. Label the boxes in this
column from top to bottom, assigning n to the first box and decreasing by one at a time. Then
move to the next right-most column, filling the boxes from top to bottom with the largest avail-
able number subject to the constraint that doing so does not violate h-strictness. Continue in this
way and denote the resulting tableau by R,. We first show that this algorithm results in an h-
strict tableau whenever Hess(X,, ) # 0; then we will show that R, is the unique tableaux satisfy-
ing the desired properties.

If Hess(X;, h) is nonempty, then at least one intersection C,, N Hess(X;, h) must be nonempty.
Let R = R(w) be the corresponding h-strict tableau. We show that R can be transformed into an
h-strict tableau obtained via the algorithm above by a sequence of swaps. Given ¢ € [n], recall
that we denote by r, the label of the box directly to the right of ¢, if it exists.

Going in order from top to bottom in each column, starting the right-most column and mov-
ing left, take the first square in R whose label differs from that dictated by the algorithm. In other
words, we consider the first square in R with label ¢ such that there exists k > ¢ with k < r, and
such that k appears below the box containing £ and in the same column or in any column strictly
to the left of the column containing /. We may assume k is the maximal with respect to these
properties. Let ¢,, and k,, be the values m boxes to the left of £ and k in tableau R, respectively.

Define R’ to be the following h-strict tableau obtained from R. Exchange the positions of k
and ¢ in R. If this is an h-strict tableau, then stop. Otherwise, the only problem that can arise is
that k; > h({). In that case, we must also have k; > ¢;. Now exchange the positions of k; and /;;
if this results in an h-strict tableau then stop. Otherwise note that swapping k; into its new row
does not change the fact that that row is h-strict. The only problem that can occur is if k, >
h(¢;) (and therefore k, > ¢;). Continue this process of swapping until the tableau is h-strict.
Indeed, because k originally appeared in a ‘later’ box than ¢, we will always be able to perform
this swap until the entire tableau is h-strict. The resulting R’ is h-strict and has labels as dictated
by the algorithm up through the box which now contains k.

Repeating the operation of the previous two paragraphs yields an h-strict tableau whose entries
are dictated by the algorithm. This shows that the algorithm does indeed produce a completed k-
strict tableau, Ro. Now consider any pair (k, £) with k > £ such that k labels a box in R, below ¢
and in the same column or in any column to the left of the column containing ¢. By construc-
tion, placing k in the box containing ¢ would lead to a violation of h-strictness, that is, k > h(r).
This proves that Ry has no Hessenberg inversions.

Finally, we show there are no other h-strict tableau R(w) with |inv, ,(w)| = 0. Suppose
R(w) = R € RS;,(4) such that R # Ry and that in the first box (using the same ordering as above)
in which R differs from Ry, R is labeled by ¢ rather than a k. Then k > ¢ since our algorithm for
constructing R, always chooses the largest available number. The value k must be placed in a
‘later’ box of R than the box containing ¢, so (k,¢) is an inversion of w. Since k could have been
placed in the box containing ¢ (as it is in Ry), we have that k < h(ry), so (k, ) is a Hessenberg
inversion pair. This shows that all other h-strict tableaux have at least one Hessenberg inversion
pair. Thus Ry is the unique h-strict tableau with the desired properties. O

In the Springer fiber case, the unique row-strict tableau without any Springer inversions is the
base filling from Definition 3.1 above. However, in general the base filling may not be h-strict, as
the next example demonstrates.

Example 6.6. Let n=12 and h:[12] — [12] the Hessenberg function defined by h(i) =
max{0,i — 3}. The base filling for 4 = (4,4,3,1) and the h-strict tableau RO constructed in the
proof of Theorem 6.5 are displayed below.
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4l7]10]12 369 [12

Rle)= |3]6]9 [11]R = [2]5 11
258 4|7 (10
1 | 1]

Note that R(e) is not h-strict, since 10 and 12 appear as consecutive entries in the first row,
but 10 # 9 = h(12). The unique row-strict tableau with no Hessenberg inversions is R.

Finally, we conclude with an example which shows that analogous Hessenberg varieties defined
for other classical groups need not be connected.

Example 6.7. Consider the symplectic group SP4(C). Our convention is that the inner product
on C* = span{ey, e, €3, e} is determined by the following matrix

sp = {_04]“0% where | = {(1) (1)}

In other words, given g € GL4(C) we have g € SP4(C) if and only if g’s;g =s; where g"
denotes the transpose of g The symplectic group has Lie algebra sp,(C)=
{X € gly(C) | 55X = —XTs;}.

The flag variety of SP4(C) consists of full flags of isotropic subspaces. Let

€ 5p,(C)

b
Il

o O O O

S O O O

SO O ==

S O = O

and h be the Hessenberg function (0,1, 1,3). This Hessenberg function gives a well-defined sub-
variety of the flag variety for SP,;(C) using the Hessenberg space H = H(h) Nsp,(C); see, for
example, [14, Section 2.2] for the definition of the Hessenberg variety in an arbitrary flag variety.
The variety of isotropic flags V, = (vi | v, |v3|v4) such that:

Xvy = 0; Xvy,Xv; € Vy =span{vi}; and Xvs € V3 = span{v;,v,,v3} (6.1)

is the Hessenberg variety Hess(X,H) in the flag variety of SP4(C). It is a subvariety of the
Springer fiber corresponding to X. In this small dimensional case, it is easy to show that
Hess(X, H) is paved by affines, and this paving is obtained by intersecting Hess(X, H) with each
Schubert cell. Let s, be the element of the Weyl group of SP4;(C) such that sie; = e;, s;e; =
e, s1€3 = ey, 1€y = e3, and let e denote the identity element. The Schubert cell C;, consists of all
flags of the form:

(ea+ce|e|eg—ces|es) for some c € C
and C, = {E,}. The conditions from (6.1) now imply:
C.NHess(X,H) = {E.} and C, N Hess(X,H) = {s1E.}

so dim(C, N Hess(X, H)) = dim(C,, N Hess(X,H)) = 0. Since the 0-cohomology group of
Hess(X, H) has dimension 2, Hess(X, H) is not connected.
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