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Abstract

Root zone soil moisture (RZSM) is a dominant control on crop productivity, land-atmosphere
feedbacks, and the hydrologic response of watersheds. Despite its importance, obtaining gap-free
daily moisture data remains challenging. For example, remote sensing-based soil moisture products
often have gaps arising from limits posed by the presence of clouds and satellite revisit period.
Here, we retrieve a proxy of daily RZSM using the actual evapotranspiration (ETa) estimates from
Surface Flux Equilibrium Theory (SFET). Our method is calibration-less, parsimonious, and only
needs widely available meteorological data and standard land-surface parameters. Evaluation of the
retrievals at Oklahoma Mesonet sites shows that our method, overall, matches or outperforms
widely available RZSM estimates from three markedly different approaches, viz. remote sensing
data based Atmosphere-Land EXchange Inversion (ALEXI) model, the Variable Infiltration
Capacity (VIC) model, and the Soil Moisture Active Passive (SMAP) mission RZSM data product.
When compared with in-situ observations, unbiased root mean square difference of retrieved
RZSM were 0.03 (m’ m—), 0.06 (m> m~?), and 0.05 (m> m~?) for our method, the ALEXI model,
and the VIC model, respectively. Better performance of our method is attributed to the use of both
SFET for the estimation of ETa and non-parametric kernel-based method used to relate the RZSM
with ETa. RZSM from our method may serve as a more accurate and temporally-complete
alternative for a variety of applications including mapping of agricultural droughts, assimilation of

RZSM for hydrometeorological forecasting, and design of optimal irrigation schedules.

1. Introduction

Root zone soil moisture (RZSM) plays a critical role
in the regional and global water cycle. The distribu-
tion of RZSM influences the incidence and intens-
ity of floods (Norbiato et al 2008, Chen et al 2015),
and droughts (Wang et al 2011, Samaniego et al
2018), mediates water quality (Zi et al 2016, Guo et al
2019), and has a range of ecohydrological implic-
ations including on crop productivity (Bolten et al
2009, Ines et al 2013, Chakrabarti et al 2014) and
the growth and sustainability of trees (Porporato et al
2002, Anderegg et al 2015, Liu et al 2017). RZSM
also plays a vital role in the partitioning of water and
energy fluxes between land and atmosphere (Mintz
and Serafini 1992, Lettenmaier and Famiglietti 2006,
Trenberth et al 2007, Seneviratne et al 2010, Liu et al

2020). Despite its influence on a range of ecohydro-
logical and atmospheric processes, observed RZSM
data at daily interval is not readily available over
large domains. Estimates of RZSM are often obtained
through application of land surface models (LSMs)
(Manabe 1969, Pan and Mahrt 1987, Xue et al 1991,
Schaake et al 1996). These models, however, need
extensive parameterization which continues to pose
challenge in their application in data scarce envir-
onments, and oftentimes limits their accuracy (Xie
et al 2007, Godfrey and Stensrud 2008, Veldkamp
et al 2018). Recent efforts have incorporated remote
sensing derived surface soil moisture for model-based
predictions of RZSM (Manfreda et al 2014, Baldwin
et al 2017, 2019, Reichle et al 2017). These methods
also require fine spatial resolution data of soil proper-
ties at the least. Oftentimes, they require a full-on land

© 2021 The Author(s). Published by IOP Publishing Ltd
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surface parameterization. In addition, the remote
sensing derived surface soil moisture products that
may be used in these methods, e.g. by (Chauhan et al
2003, Njoku et al 2003, Entekhabi et al 2010, Kerr
et al 2010, Torres et al 2012, Wagner et al 2013),
often suffer from temporal and spatial data gaps
due to presence of cloud cover, narrow swath, and
sparse revisit schedules (Walker and Houser 2004,
Sabaghy er al 2018, Mao et al 2019). For example, the
temporal resolution of the latest 3 km SM product
from the National Aeronautics and Space Admin-
istration Soil Moisture Active Passive (SMAP) mis-
sion, the SMAP/Sentinel-1 L2_SM_SP SM product
(Das et al 2018) is reported to vary between 3 and
12 days depending on the revisit schedules of backs-
catter measurements of Sentinel-1A and Sentinel-1B
sensors (Entekhabi et al 2010, Das et al 2016, Mao
et al 2019). The percentage of missing days for SMAP
L3 Radiometer Global Daily 36 km EASE-Grid Soil
Moisture Version 6 (SPL3SMP) product and SMAP
Enhanced L3 Radiometer Global Daily 9 km EASE-
Grid Soil Moisture Version 3 (SPL3SMP_E) product
at Oklahoma Mesonet sites, the study area under con-
sideration, are over 50% for ascending and descend-
ing overpass and over 15% for composite data during
2015-2019 (see figure S1 in supporting information
(available online at stacks.iop.org/ERL/16/104007/
mmedia)). Another promising approach for estimat-
ing RZSM is based on the use of Atmosphere-Land
EXchange Inversion (ALEXI) surface energy balance
model (Anderson et al 1997, Mecikalski et al 1999,
Anderson et al 2011), which to a large extent reduces
the need for model calibration. ALEXI is a state-of-
the-science tool that has been frequently used to track
soil moisture stress in crops and forests (Anderson
et al 2007a, 2007b, 2016b, Mishra et al 2013, Knipper
et al 2019) and forms the basis for next generation of
moisture stress measurements (Anderson et al 2016a,
Guan et al 2017, Cawse-Nicholson et al 2020, Fisher
et al 2020). However, Anderson et al (2007a) repor-
ted that good quality thermal infrared (TIR) imagery,
which is often used for moisture retrieval over the
continental US, was only available around 30% of the
time in their study area.

Here, we propose a method based on the sur-
face flux equilibrium theory (SFET) to retrieve frac-
tion of available water (fAW), a proxy for root-
zone soil moisture. The proxy is then used to also
obtain volumetric soil moisture (VSM) in the root
zone using data of soil properties. The method yields
gap-free daily estimate of fAW, while only needing
widely available meteorological data and standard
land-surface parameters. The remainder of this paper
is organized as follows: section 2 presents details
of our methodology and a concise overview of the
study area and datasets. Results are presented in
section 3. Section 4 presents conclusions and related
discussion.
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2. Methods

2.1. SFET

McColl et al (2019) presented SFET where it was
hypothesized that in the regions with no or min-
imal advective moisture convergence (e.g. inland con-
tinental regions), the near-surface atmosphere is in
the state of ‘surface flux equilibrium) i.e. the surface
heating and surface moistening terms in the near-
surface relative humidity budget are in the state of
equilibrium at daily to monthly time scale. McColl
and Rigden (2020) provided physical explanations
for why the hypothesis stands using a simple model
of an idealized atmospheric boundary layer. The
approach does not require an explicit parameteriz-
ation of land surface conditions as it assumes that
the turbulent fluxes at the land surface (latent and
sensible heat fluxes) are encoded in the near-surface
atmospheric states (near surface air temperature and
specific humidity, respectively). Using this theory,
the Bowen ratio (B) for a given location can be
estimated as:

R,C,T?
B~
NQ,

where Bis Bowen ratio (= H/AE) [-], H is the sensible
heat flux (W m~2), \ is the latent heat of vaporiza-
tion (Jkg™!), AEis the latent heat flux (W m~2),R, =
461.5is the gas constant for water vapor (Jkg=!' K1),
Cp = 1005 is the specific heat capacity of dry air at
constant pressure (J kg=! K™1), T, is the screen-level
air temperature (K), and Q, is the screen-level spe-
cifichumidity of the air (kgkg™!). The latent heat flux
(AE) can then be obtained using the following relation
derived based on surface energy balance:

(1)

R, —
AE = G (2)
1+B

where R, is the net solar radiation (W m~2), and G is
the ground heat flux (W m™2). More details regard-
ing the calculation of R, and G are provided in sup-
porting information text S1. SFET based estimates of
evapotranspiration have been shown to be remark-
ably accurate, with prediction errors comparable to
errors in the eddy covariance measurements (McColl
and Rigden 2020).

2.2. Soil moisture proxy retrieval

Here we retrieve fraction of available water (fAW), a
commonly used proxy for soil moisture (Anderson
et al 2007a, Hain et al 2009, 2011). fAW is defined as:

0—04p xd

AW = ————
(O — Oyp) x d

(3)
where 0 is the soil moisture content in the root zone
soil layer (m® m™?), ., is the soil moisture content
at wilting point (m* m™?), 6 is the soil moisture
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content at field capacity (m® m~3), and d is the root-
zone depth (m). As latent heat flux is dominantly con-
trolled by evapotranspiration of soil moisture, or its
proxy, e.g. fAW, can be potentially retrieved based
on evapotranspiration estimates. For example, LSMs
(Wigmosta et al 1994, Wood and Lettenmaier 1996,
Panday and Huyakorn 2004, Hanasaki et al 2013,
Wang et al 2013, Camporese et al 2014, Ferguson et al
2016) often use a simple soil moisture stress func-
tion to relate the simulated available water fraction
(fAW) to the ratio of actual evapotranspiration (Eta)
and potential evapotranspiration. This ratio, here-
after referred to as the fraction of potential evapotran-
spiration (fPET), is defined as:
ETa

fPET = PET (4)
where ETa is actual evapotranspiration (mm d—!),
and PET is potential evapotranspiration (mm d—!).
Our method obtains ETa using SFET as described in
the previous section. The PET is estimated using the
Penman—Monteith equation (Penman 1948, Mon-
teith 1965) assuming the soil moisture conditions
are at field capacity (see equation (3) in support-
ing information text S2). Once fPET is evaluated, the
underlying relation between fAW and fPET is used to
retrieve fAW.

The relation between fAW and fPET is usually
derived using pre-defined functions (Mahrt and Pan
1984, Wetzel and Chang 1987, Stewart and Verma
1992, Anderson et al 2007a, Hain et al 2009). By inter-
comparing four different functions that relate fAW
and fPET, Hain et al (2009) reported better estim-
ates of fAW when it is derived as a nonlinear function
of fPET and B}. B} is the plant factor that captures
the effects of stomatal control on the plant transpira-
tion under well-watered conditions (see equation (7)
in supporting information text S2). Instead of using
a pre-defined function structure (for which the res-
ults are shown in figure S2 in supporting informa-
tion), here we fit a single statistical relation between
observed fAW and fPET over all sites using a nonpara-
metric kernel-based regression method (Nadaraya
1964, 1965, Watson 1964). The data used for devel-
oping the regression relation is restricted to a train-
ing period, and excludes the model evaluation period
(more details are in section 2.4). Development of
the relation using regional data is expected to mod-
erate the discrepancy between estimated fAW and
observed soil moisture, especially those arising from
the mismatch in root zone depth (for which fPET
is estimated) and the depth to which soil mois-
ture observations are averaged to obtain fAW for the
training period. The kernel regression method (see
equation (9) in supporting information text S2) has
been demonstrated to successfully capture nonlin-
ear relations effectively in numerous studies (Rubin
et al 2010, Kannan and Ghosh 2013, Salvi and Ghosh
2013, Raghav et al 2020). Here, the predictors of the
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kernel regression are fPET and B, and the predictand
is fAW. The kernel regression algorithm described
by Hayfield and Racine (2008) and implemented in
the R-Package by (R Core Team 2013) is used. Not-
ably, such a relation may be derived using any other
observed soil moisture data sets existent within the
region, such as SCAN and USCRN (Schaefer et al
2007, Diamond et al 2013). In regions where soil
moisture data does not exist, as noted earlier, fAW
may be obtained using the pre-defined nonlinear
functions.

2.3. Retrieving volumetric soil moisture (¢)

fAW (derived in section 2.2) is converted to actual
volumetric soil moisture (6, m®> m~3) using the field
capacity (6¢.) and wilting point (6,,,) data using:

0= efc_ewp fAW+9wp (5)

Here we assume the field capacity to be the volu-
metric water content at —33 kPa and wilting point to
be the water content at —1500 kPa. In absence of site-
specific root zone depth data, 0 and 0., used here
are the average values within 0-100 cm from the soil
surface.

2.4. Data used for model implementation,
validation, and inter-comparison

The model is implemented in the state of Oklahoma
and the results validated at the Oklahoma Mesonet
sites (Brock et al 1995). Data from North American
Land Data Assimilation System-Phase 2 (NLDAS-2)
(Xia et al 2012a) such as air temperature, spe-
cific humidity, wind speed, shortwave downward
radiation, longwave downward radiation, and near-
surface atmospheric pressure are used to obtain
estimates of potential evapotranspiration, ETa, fPET,
and fAW. The data has a temporal resolution of
1 h and spatial resolution of 1/8°, and so are the
corresponding resolutions of our evapotranspiration
estimates. Our method uses two vegetation depend-
ent parameters viz., minimum solar radiation for
transpiration (Ry), and a parameter related to vapor
pressure deficit (k) for the calculation of PET (see
equation (6) in supporting information S2). The
model uses MODIS Global 500 m Collection 5 land
cover (Friedl and Sulla-Menashe 2015) to obtain the
most prevalent land cover by area within a NLDAS
grid. Vegetation dependent land surface paramet-
ers corresponding to this land cover is assigned to
the model grid based on the Noah model lookup
table (Koren et al 2010). Notably, the model does
not require any parameter calibration. Soil proper-
ties used for retrieving VSM are obtained from the
MesoSoil database (Scott et al 2013), which includes
physical properties of 13 soil types for 545 indi-
vidual soil layers across 117 Oklahoma Mesonet
sites. MesoSoil provides the data (e.g. sand-silt-
clay fraction, volumetric water content at —33 kPa,
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—1500 kPa, residual and saturation water content,
saturated hydraulic conductivity etc) at depths of
5cm, 10 cm, 25 cm, 45 ¢cm, 60 cm, and 75 cm.

We validate the estimated fAW against the FWI
measurements at the Oklahoma Mesonet sites (Brock
et al 1995). The observation data network is loc-
ated in the south-central region of the United
States and spans entire Oklahoma with an area of
~181 196 km?. Dominant land cover types include
grassland (~58%), croplands (~15%), and forests
with Savannas (~15%), Woody Savannas (~5%), and
Deciduous Broadleaf Forests (~3%) (see figure 2(a)).
The network has at least one gauging station in each
of Oklahoma’s 77 counties. The Mesonet network has
been extensively used for validation of soil moisture
or proxy products in previous studies (Drusch 2007,
Gu et al 2008, Swenson et al 2008, Hain et al 2009,
Fang et al 2013, Xia et al 2014). Notably, the Mesonet
sites provide the opportunity for intercomparison not
only with in situ data but also with retrievals from the
ALEXI model (Anderson et al 1997, Mecikalski et al
1999, Anderson et al 2011).

The validation is performed for the warm period
(April-September) of 2002-2004. The period allows
model evaluation against both in situ data and ALEXI
model estimates. Figure S3 in supporting information
shows the locations of stations at which we validated
our model results. The selected sites cover a variety
of land covers across Oklahoma (see figure 2(a)), and
were also used in (Hain et al 2009) for evaluation of
estimated fAW. For validation, estimated fAW is com-
pared against observed FWI. FWI has been demon-
strated to be equivalent to observed fAW at Mesonet
sites with a correlation coefficient of 0.97 between
computed fAW and FWI (Hain et al 2009). Although
FWI observations are available at fine temporal resol-
ution (~5 min) and at depths of 5 cm, 25 cm, 60 cm,
and 75 cm (Illston et al 2008), due to the absence of
site-specific root zone distribution data, the observa-
tions at all the sensor depths are averaged to obtain a
depth-averaged FWI (Jackson et al 1996, Wagner et al
1999, Hain et al 2009). Days (~ 17% of the total num-
ber of days during the warm period) with any missing
value across depths were discarded in our compar-
isons. Notably, the nonparametric kernel regression
that establishes a relation between fAW and fPET (as
outlined in section 2.2) is obtained using two years
(2000-2001) of fAWobservation data and fPET estim-
ates at all the Mesonet sites used in this study. This
training period for regression is mutually exclusive
to the model validation period which ranges from
2002 to 2004. Derivation of a single regression rela-
tion that is then used for fAW estimation at all the
sites ensures the generality of the approach, as such a
relation may be developed using any alternative soil
moisture observation data as well.

Model results are also compared against other
widely available temporally continuous root-zone soil
moisture products. This includes variable infiltration
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capacity (VIC) model-based soil moisture product,
that was generated in the NLDAS (Xia ef al 2012b).
The temporal resolution of the VIC simulated soil
moisture within NLDAS is 1 h and its spatial resol-
ution is 1/8°. We use VIC-simulated 0—100 cm soil
moisture for the evaluation of our results. In addition,
comparisons are also performed against the mois-
ture proxy retrieval from the ALEXI model and the
9 km x 9 km SMAP L4 RZSM moisture product
(Reichle etal 2017). As data of ALEXI moisture estim-
ates are not available, the comparison is directly per-
formed against the ALEXI model performance statist-
ics reported in (Hain ef al 2009). In Hain et al (2009),
the ALEXI model was executed at daily temporal res-
olution (but only on cloud-free days) and a spa-
tial resolution of ~10 km. For evaluation, moisture
estimates were averaged over composite periods span-
ning 2-5 days each due to data coverage gaps caused
by clouds. The composite periods included 15-19 Jun
2002, 11-12 May 2003, 28-29 May 2003, 4-5 Jul 2003,
27-31 Jul 2003, 6-7 May 2004, 1-2 Jun 2004, and 1-3
Aug 2004. Although we simulate gap-free daily fAW
and VSM estimates and they are duly used for evalu-
ation against in situ observations, composite estim-
ates are obtained for intercomparison with ALEXI-
derived fAW estimates over the aforementioned com-
posite periods. In contrast, as SMAP RZSM product
is only available since March, 2015, comparison with
it is performed for warm periods of 2015-2019.

Bias error (BE), mean absolute error (MAE), root
mean square difference (RMSD), unbiased root mean
square difference (ubRMSD), and Pearson correla-
tion coefficient (R) are used as performance metrics
to assess the accuracy of fAW estimates against in situ
data. As the standard RMSD is sensitive to biases in
the mean or high extreme values (outliers), here we
also use the ubRMSD, a metric used by SMAP to
quantify the product accuracy (Entekhabi et al 2010).

3. Results and explanations

3.1. Evaluation of temporal variations in

simulated fAW

The retrieved fAW, using the method outlined in
section 2, captures more than 48% (R = 0.69) of
the variations in the observed FWI (see figure 1(a)).
For the same eight composite periods as used in
Hain et al (2009), the model’s performance is bet-
ter during the composite periods (figure 1(b)) i.e.
when clear sky conditions prevail, w.r.t. all periods
(figure 1(a)). The possible reason for this is that the
estimates of net radiation (and therefore latent heat
flux) are generally more accurate during the largely
clear sky, non-raining days. This is demonstrated at
selected FluxNet sites where observed net short wave
radiation data is available for evaluation (see figures
S4 and S5 in supporting information). Overall, with
respect to the observed, the presented method over-
estimates drier conditions and underestimates wetter
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Figure 1. Comparison between daily observed and simulated fraction of available water (fAW) at selected Oklahoma Mesonet
stations (identified in figure S3 in supplement information) during April-September of 2002-2004. The red straight line is the 1:1
line. Figure (a) shows the comparison for all days during April-September, 2002—2004, (b) shows comparisons for the eight
composite periods (see section 2.4 for definition of composite periods).

Table 1. Error statistics for soil moisture proxy retrieved by our method and ALEXI during composite days at Mesonet stations. The
error statistics for ALEXI shown here, have been obtained from Hain et al (2009).

R RMSD (% fAW) BE (% fAW) MAE (% fAW)
Our method 0.77 18.86 8.7 14.58
ALEXI 0.69 21.3 —4.3 17.7

conditions. This is in line with the conclusions in
other studies (Allen et al 1998, Scott et al 2003, Akur-
aju et al 2017), where also it was observed that the
relation between fAW and fPET is ineffective when
soil moisture conditions are above (below) 0 (6,,,).

Comparison of our fAW estimates against those
obtained from ALEXI for the composite periods
shows that our method, overall, matches or outper-
forms the ALEXI results (as reported in table 2 of Hain
et al (2009)) in the study area. ALEXI fAW has a lar-
ger scatter with R? of 0.48 as compared to a R? of 0.60
or R of 0.77 (see figure 1(b) and table 1) from our
method. Our method shows a slightly larger positive
bias, with BE of 8.7% as compared to BE of —4.3%
for ALEXI model. The RMSE and MAE are found
to be 18.86% (21.3%) and 14.58% (17.7%) respect-
ively for our method (ALEXI model). It is to be noted
that Hain et al (2009) used a blended relation between
fAW and fPET but we use a nonparametric kernel-
based method for the same. To assess if better per-
formance of fAW estimates from our method w.r.t.
the ALEXI estimates is due to the use of SFET or the
kernel-based method, we regenerate the fAW estim-
ates using the blended relation used in Hain et al
(2009). Results (figures 1(b) and S2(b)) show our
model performance (R = 0.77) does not change for
the composite periods depending on the use of the
nonparametric kernel-based method and the blended
relation, and the estimates from either are better than
that from ALEXI (R = 0.69, see table 1). Notably,
the nonparametric kernel-based method yields better

model performance when considering estimates from
all the days (see figure 1(a) vs. figure S2(a)). These
comparisons indicate better fAW estimates from our
method is a result of the use of both SFET to obtain
evapotranspiration and the non-parametric kernel-
based method used to obtain the relation between
fAW and fPET. Given that ALEXI derived fAW estim-
ates have been demonstrated to be more effective
than Eta Data Assimilation System (EDAS) for accur-
ate Numerical Weather Prediction (NWP) forecasts
(Hain et al 2009), by extension, it may be claimed
that estimates from our method will overperform
the EDAS product as well. Notably, our method also
provides temporally continuous daily estimates. In
contrast, ALEXI estimates which uses TIR data suf-
fer from large data gaps due to the presence of clouds
and other satellite operational failures (Liou and Kar
2014).

Figures 2(b) and (c) shows the spatial variation
of temporal correlations between daily fAW estimates
for April-September (composite periods) of 2002—
2004 from our method and in-situ observations. The
correlation is positive at all the sites with the highest
correlation of 0.77 (0.99) and the lowest correlation
0f0.18 (0.11) at 0.05 significant level (see figures 2(d)
and (e)). Between different land covers, the highest
correlation is found in Woodland Savanna while the
lowest correlation is observed in cropland areas (see
figure 2(d)). Relatively poor performance in crop-
lands w.r.t. woodland is often attributed to the het-
erogeneity introduced by irrigation and is consistent
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Figure 2. (a) MODIS Global 500 m Collection 5 land cover map of Oklahoma, (b) correlation between daily modeled fAW
estimates and in-situ observations during warm periods of 2002-2004 at Oklahoma Mesonet sites, (c) correlation between

(e) Correlation between modeled and in-situ fAW (composite periods)
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modeled fAW estimates and in-situ observations during the eight composite periods, (d) box plots of correlation coefficients
shown in panel b for different land cover types, and (e) box plots of correlation coefficients shown in panel ¢ for different land
cover types. The dark black line in each boxplot shows the mean correlation for each land cover. The n-value at the top of each

boxplot is the number of Mesonet sites within a particular land cover.

with the conclusions of Naeimi e al (2009). Notably,
the Bowen ratio obtained from SFET (see equation
(1) that is then used here for evaluation of fAW
(using equations (4) and S9), is an integrated land-
atmosphere feedback response of areas surrounding
the Mesonet station. Hence, fAW derived from this
method is likely to represent an effective soil mois-
ture within the grid (of spatial resolution 1/8°), and
may diverge from point estimates especially if the area
experiences significant moisture heterogeneity.

3.2. Evaluation of spatial variations in

simulated fAW

The retrieved fAW, overall, captures the spatial gradi-
ent of root-zone soil moisture conditions within the
study area (figure 3). For example, for the composite
period 15-19 June 2002, observed dry soil moisture
conditions in extreme western Oklahoma and wet soil
moisture conditions in eastern Oklahoma are reflec-
ted in the model estimates as well (see figure 3(a)).
Similarly, our method also retrieves the dry soil mois-
ture conditions all across Oklahoma during the com-
posite period 27-31 July 2003 (figure 3(e)). Although,
the overall spatial variability of soil moisture is cap-
tured by our model, there are disagreements. This

could be due to a number of factors including
scale mismatch between point measurements and our
retrieval which is performed using meteorological
data over a 0.125° x 0.125° grid. Additional sources
of errors may be from varying fAW vs. fPET relations
across different land covers, quality of input data, and
errors in estimate of ET especially on cloudy days.

Next, the average of daily spatial correlations for
all days during April-September of 2002-2004 is
obtained. The average spatial correlation using data
from all aforementioned days is equal to 0.62 (see
figure S6 in supplement information). The corres-
ponding average correlation for the eight composite
periods is 0.71. During the eight composite periods,
the highest correlation is 0.84 for the composite
period 15-19 June 2002 when the soil moisture con-
ditions are wettest (see figure 3(a)) and the lowest
correlation is 0.54 during the composite period 27—
31 July 2003 when the moisture conditions are driest
(see figure 3(e)). The difference in model perform-
ance between wet and dry dates is likely due to mul-
tiple factors, including the existence of a larger spatial
gradient in soil moisture during the wet composite
period, and a smaller sensitivity of moisture dynamics
on evapotranspiration when the ground is dry.
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Figure 3. Spatial maps of fAW over the state of Oklahoma for different composite periods. For each composite period, the left
panel shows in-situ observations of FWI at different mesonet sites and the right panel shows retrieved fAW using our method.
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Figure 4. Comparison between daily observed and simulated volumetric soil moisture at the Oklahoma Mesonet sites (shown in
figure S3 of supplementary information). (a) SM estimates from our method, (b) SM estimates from the VIC model, (c) SM
estimates from our method, (d) SM estimates from the VIC model, and (e) SM estimates from SMAP. Top panel shows the
comparison during April-September of 20022004, the period for which performance statistics of ALEXI based estimate are also
available thus allowing intercomparison with it. The bottom panel shows the comparison during April-September of 2015-2019
during which both SMAP RZSM and VIC model data are available. The red straight line is the 1:1 line.

3.3. Retrieving actual soil moisture

The retrieved fAW estimates are converted to VSM
using the method outlined in section 2.3. A compar-
ison between VSM estimates from our method and

observations is performed (figure 4(a)). The correla-
tion coefficient between the simulated daily soil mois-

7

ture from our model and observed during the warm
period of 2002—2004 is close to 0.90 when considering
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Table 2. Error statistics for volumetric soil moisture (m* m ™) retrieved by our method, ALEXI, and VIC model during composite days
at Mesonet stations. The error statistics for ALEXI shown here, have been taken from Hain et al (2009).

RMSD (m* m™?) BE (m® m~?) MAE (m®> m™) ubRMSD (m® m™)
Our method 0.03 —0.005 0.02 0.03
ALEXI 0.06 —0.01 0.05 0.06
VIC 0.11 0.10 0.10 0.05

all the observation sites into the analysis. The sig-
nificant increase in correlation for VSM w.r.t. that
for fAW (0.9 vs. 0.69 as seen in figures 4(a) and
1(a), respectively) is attributable to spatial hetero-
geneity in soil properties (see supplement figure S7).
The model, overall, captures the temporal dynam-
ics of VSM in diverse land cover types (figure S8 in
supplementary information), although just like for
fAW (see figure 1) lower (higher) moisture values
are overpredicted (underpredicted). We also com-
pare VSM estimates from VIC model (figure 4(b)).
In contrast to VSM estimates from our model, the
VIC model estimates show a larger scatter with a R
of 0.49. Furthermore, the VIC model overestimates
the VSM observations with a bias error of 46.46% of
the observations (see figure 4(b)). These results are
consistent with Xia et al (2015) where it was reported
that VIC model overestimated soil moisture. Overall,
VSM estimates from our model (VIC model) show
correlation, bias, RMSD, MAE, and unbiased RMSD
of 0.90 (0.49), —0.78% (46.46%), 14.79% (54.95%),
11.71% (47.59%), and 0.03 m®> m— (0.06 m*> m~),
respectively. We also evaluate the error statistics for
VSM retrievals during the eight composite periods
(table 2). Results show our method outperformed
both ALEXI and VIC model estimates. VIC model
shows the largest bias errors among the three meth-
ods. Notably, our SM estimates adequately meet
the SMAP mission requirement of ubRMSD to be
less than 0.04 m®> m~—3 (Chan et al 2016). Inter-
comparison of RZSM estimates from the proposed
method, VIC, and SMAP L4 RZSM product for warm
periods of 2015-2019 further affirm the superior per-
formance of the proposed method (see figures 4(c)-
(e)) against these widely available sister products.

4. Conclusions and synthesis

This study presented a new method to obtain daily
estimates of RZSM proxy and volumetric RZSM.
The method was based on SFET, and only needs
readily available meteorological data and standard
land surface parameterizations to obtain estimates
of moisture proxy. In other words, the method is
‘calibration-free’ and thus suitable for predictions in
ungauged basins. Soil moisture proxy estimates from
the method were in good agreement with the in-situ
measurements at the Oklahoma Mesonet sites both
temporally and spatially. The estimate of volumet-
ric soil moisture in the root zone adequately met

the SMAP soil moisture retrievals requirement of
ubRMSD < 0.04 m’ m™—>.

An intercomparison of our estimate with the
ALEXI model, which forms the basis for the next gen-
eration of moisture stress measurements (Anderson
et al 2016a, Guan et al 2017, Cawse-Nicholson et al
2020, Fisher et al 2020), showed our method matched
or outperformed ALEXI derived estimates. Better
performance was found to be due to two reasons, a
better evapotranspiration estimate using SFET and
use of the non-parametric kernel-based method to
obtain the relation between fAW and fPET. Another
advantage of our method is its gap-free nature. In
contrast, ALEXI or other TIR imagery-based retriev-
als of soil moisture provide estimates only during
clear sky days as thermal imagery cannot be collec-
ted on cloudy days. Also, unlike our method, TIR-
based methods for soil moisture proxy retrievals are
dependent on a number of land surface parameters
which are difficult to obtain in many cases. Given
that ALEXI derived moisture proxy estimates have
been demonstrated to be more effective than EDAS
for accurate NWP forecasts (Hain et al 2009), by
extension, it may be claimed that estimates from
our method will overperform the EDAS product as
well. Comparison against estimated moisture from
VIC, a widely used land surface model, and SMAP
L4 RZSM product which is generated by assimilat-
ing SMAP L-band brightness temperature observa-
tions into the NASA Catchment land surface model,
showed our results outperformed them as well. These
results indicate the advantage of our method over
widely used land surface models, even while they use
assimilation.

Although our validation results showed an over-
all satisfactory performance, it is to be noted that the
performance is not competent across all soil mois-
ture states and land covers. Our method especially fell
short to capture extreme dry soil moisture conditions.
Also, the performance was relatively poor in cropland
settings. Subpar performance on occasions can be
from multiple sources including (a) scale mismatch
between the point measurements and model pixel,
(b) quality and resolution of input meteorological
data, (c) heterogeneity in soil properties, especially
when converting moisture proxy to volumetric mois-
ture, (d) absence of strong relation between fractional
moisture content and the ratio of actual to potential
evapotranspiration for extremely wet and dry mois-
ture states, (e) mismatch between the actual root zone
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depth and the depths to which moisture observa-
tions are available and/or averaged for comparison,
and (f) violation of assumptions that are inherent in
SFET. Despite these limitations, this study highlights
the advantages of our method over remote-sensing
retrievals and land surface model predictions for
RZSM retrievals. These advantages make the presen-
ted method apt for continuous assimilation of mois-
ture in land surface and numerical weather predic-
tion models. Gap-free and calibration-free moisture
estimates from this method can be useful for many
applications such as tracking crop stress, monitoring
agriculture drought, irrigation management, estim-
ation of groundwater recharge, etc. Future efforts
towards improving the retrieved moisture estimates
from the method may focus on disaggregation of
evapotranspiration and use of alternative meteorolo-
gical forcing products. To further improve confidence
in the applicability of the method for a wider range of
settings, forthcoming studies may perform evaluation
in other hydroclimatic regions.
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