€Y Routledge

g Taylor &Francis Group
COGNITION

INSTRUCTION Cognition and Instruction

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/hcgi20

Leveraging Prediction and Reflection in a
Computational Setting to Enrich Undergraduate
Students’ Combinatorial Thinking

Elise Lockwood

To cite this article: Elise Lockwood (2022): Leveraging Prediction and Reflection in a
Computational Setting to Enrich Undergraduate Students’ Combinatorial Thinking, Cognition and
Instruction, DOI: 10.1080/07370008.2021.2020793

To link to this article: https://doi.org/10.1080/07370008.2021.2020793

@ Published online: 05 Jan 2022.

N
CJ/ Submit your article to this journal &

A
& View related articles '

P

(&) View Crossmark data &'

CrossMark

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalinformation?journalCode=hcgi20

https://www.tandfonline.com/action/journalInformation?journalCode=hcgi20
https://www.tandfonline.com/loi/hcgi20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/07370008.2021.2020793
https://doi.org/10.1080/07370008.2021.2020793
https://www.tandfonline.com/action/authorSubmission?journalCode=hcgi20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=hcgi20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/07370008.2021.2020793
https://www.tandfonline.com/doi/mlt/10.1080/07370008.2021.2020793
http://crossmark.crossref.org/dialog/?doi=10.1080/07370008.2021.2020793&domain=pdf&date_stamp=2022-01-05
http://crossmark.crossref.org/dialog/?doi=10.1080/07370008.2021.2020793&domain=pdf&date_stamp=2022-01-05

COGNITION AND INSTRUCTION
https://doi.org/10.1080/07370008.2021.2020793

Routledge

Taylor & Francis Group

39@I1LN0Y

‘ W) Check for updates

Leveraging Prediction and Reflection in a Computational Setting
to Enrich Undergraduate Students’ Combinatorial Thinking

Elise Lockwood

Department of Mathematics, Oregon State University, Corvallis, OR, USA

ABSTRACT

In this paper, | discuss undergraduate students’ engagement in basic Python programming while
solving combinatorial problems. Students solved tasks that were designed to involve programming,
and they were encouraged to engage in activities of prediction and reflection. | provide data from
two paired teaching experiments, and | outline how the task design and instructional interventions
particularly supported students’ combinatorial reasoning. | argue that emergent computational rep-
resentations and the prompts for prediction and reflection were especially useful in supporting stu-
dents’ reasoning about fundamental combinatorial ideas. | argue that this particular mathematical
example informs broader notions of disciplinary reflexivity and representational heterogeneity, pro-
viding insight into computational thinking practices in the domain of mathematics. Ultimately, |
aim to explore the nature of computing and enumeration, shedding light on why the two disci-
plines are particularly well-suited to support each other. | conclude with implications and avenues
for future research.

Introduction and motivation

In what ways can students’ experiences with computing support and enrich their domain-specific
reasoning? In recent decades, many mathematics and science education researchers have explored
questions like this, which interrogate the ways in which computational thinking practices interact
with students’ understanding of mathematical and scientific concepts. Much of this work is aimed at
fundamental epistemic questions about the nature of computational thinking, a construct popularized
by Wing (2008, 2016), and how such thinking might interact with knowledge in particular domains.
Recent work has argued for phenomenological (e.g., Farris et al., 2020; Sengupta et al., 2018) ways of
framing computational thinking, and of situating computational thinking as practice-oriented rather
than from a strictly cognitive perspective (e.g., Sengupta et al., 2013; Weintrop et al., 2016). Much of
the recent work that examines computational thinking practices has focused on scientific modeling
(e.g., Danish, 2014; Dickes et al, 2020; Farris et al., 2020; Sengupta et al, 2013; Wilensky &
Reisman, 2006), and such studies reveal merits of computing in science classrooms. Here, I present
results from a study involving undergraduate students’ work within the discipline of mathematics
(more specifically, within combinatorics, or the solving of counting problems) while they engaged in
text-based programming in Python. I aim to provide insights into the ways in which computing (via
phenomenological and dialogical perspectives on computational thinking) can support students in
their combinatorial reasoning. Further, I seek to offer additional, unique insights into computational
thinking given my particular disciplinary focus of combinatorics.

Overall, I attempt to highlight how enumeration, which focuses on determining the number of
outcomes of counting processes, is especially well-suited for the use of computing. My goals are

CONTACT Elise Lockwood @ Elise.Lockwood@oregonstate.edu @ Department of Mathematics, Oregon State University, 338
Kidder Hall, Corvallis, OR 97331, USA.
© 2022 Taylor & Francis Group, LLC

http://crossmark.crossref.org/dialog/?doi=10.1080/07370008.2021.2020793&domain=pdf&date_stamp=2022-01-05
http://orcid.org/0000-0002-4118-338X
https://doi.org/10.1080/07370008.2021.2020793
http://www.tandfonline.com

2 (&) E LOCKWOOD

to provide theoretical insight into how computational approaches can support students’ enumer-
ation thinking and activity, to support these theoretical ideas with empirical data, and to tie them
to ongoing conversations about the phenomenological nature of computational thinking.

I draw upon results from two paired teaching experiments in which undergraduate students
solved combinatorial tasks within the context of programming in Python. I explore the ways in
which the practices of prediction and reflection and remixing code, along with the use of multiple
representations, supported the students’ combinatorial reasoning within this computational set-
ting. I build on existing combinatorics education research (specifically Lockwood’s [2013] model
of students’ combinatorial thinking) to frame the tasks developed in this study. While I focus on
combinatorics, the results in this paper provide one example of how computational tasks and
activities may be developed in a way that aligns with what we know about how students reason
about and learn mathematical topics. In a field that is increasingly paying attention to the com-
plexity of students’ experiences of learning to code in disciplinary contexts, this work seeks to
identify and answer epistemological questions related to students’ combinatorial reasoning. That
is, I seek to investigate how students’ computational experiences interact with and support their
reasoning about the particular mathematical domain of combinatorics. I attempt to address the
following research questions:

1. In what ways can computational thinking practices facilitate certain desirable aspects of stu-
dents’ combinatorial thinking and activity?

2. What does this tell us about the nature of students’ combinatorial reasoning and activity as it
relates to computational thinking practices?

Literature review and theoretical perspectives

In this section, I present relevant literature and theoretical perspectives that frame this paper. In
the next section, I offer a brief review of relevant prior literature on computing education in
STEM. In doing so, I particularly highlight a phenomenological perspective on computational
thinking, and I frame computational thinking practices within notions of representational hetero-
geneity and disciplinary reflexivity. I also describe the practices of prediction and reflection and
of remixing, which were an integral aspect of the design of tasks and prompts in the teaching
experiments. Finally, I focus on literature in the discipline of combinatorics education, and I elab-
orate Lockwood’s (2013) model, which frames my theoretical perspective on combinatorial think-
ing and activity.

A brief review of prior work in STEM computing education

In this section, I briefly summarize current work in computing education, highlighting two aspects
of existing literature that frame and motivate my study. First, I point to literature that proposes a
phenomenological view (as opposed to a strictly cognitive view) of computational thinking, and I
connect such work to the notion of representational heterogeneity. I then describe in some detail
how I characterize two computational practices that emerged in my study—a cycle of prediction
and reflection, and the practice of remixing code (e.g., Brennan & Resnick, 2012). Then, I high-
light the theme of disciplinary reflexivity in computing education, noting prior literature that aims
to explore and leverage practices that disciplines share in conjunction with computing.

A phenomenological view of computational thinking
Wing (2008, 2016) re-popularized the term computational thinking, offering broad descriptions
and suggesting that it should be a construct to which more students gain exposure and

COGNITION AND INSTRUCTION @ 3

experience. Since Wing offered these ideas, authors have taken a variety of perspectives on com-
putational thinking, and it has become a source of much interest and debate.' T highlight a trend
that proposes emergent, alternative framings of computational thinking. In particular, researchers
have viewed computational thinking not just as a cognitive construct, but they take a phenom-
enological approach to computational thinking (e.g., Dickes et al, 2020; Farris et al, 2020;
Sengupta et al., 2018; Vieira et al., 2019). Sengupta et al. (2018) argued for “an epistemological
shift from viewing coding and computational thinking as mastery over computational logic and
symbolic forms, to viewing them as a more complex form of experience” (p. 3). This is in line
with Papert’s (1980) warnings against a technocentric perspective toward the use of computers in
mathematics education—specifically, Papert warned that the work on the computer itself was not
the point of the integration of computing. Rather, as Sengupta et al. (2018) emphasized, comput-
ing and computational thinking can and should be considered more broadly. Ultimately,
Sengupta et al. (2018) argued for a move

toward more phenomenological perspectives, both in terms of trying to understand and support the
development of computational thinking as experience in the context of K-12 STEM education.
Epistemologically, we have argued that computational thinking must be re-conceptualized more
appropriately as an intersubjective experience, as opposed to a more cognitivist image of reasoning that can
be assessed through the production of symbolic code. (Sengupta et al., 2018, p. 29)

This phenomenological view of CT, then, focuses on the experience of computational thinking,
and it offers an approach that seeks to understand the experience of coding in context; this per-
spective values heterogeneity and challenges technocentrism.

There have been a number of studies in science and computing education that take a similar
perspective toward computing and computational thinking. For example, Sengupta et al. (2013)
worked in the context of having students engage with modeling in a middle school science class-
room, and they proposed a framework for integrating computational thinking into K-12 science.
They framed computational thinking as involving not just internal cognitive processes, but practi-
ces as well. In another study, Kafai (2016) argued that computational thinking “should be
reframed as computational participation” (p. 26) and said that, “computational thinking is a social
practice” (p. 26). This suggests that computational thinking can be viewed not just in terms of
students’ mental and cognitive actions, but in terms of broader practices in which they engage. In
addition, Vieira et al. (2019) examined undergraduate engineering student’s explanations by look-
ing at their in-code comments. In this context, these authors were attending to students’ dis-
course related to code—what they consider to be an explanation and how they think about and
understand code. Focusing on such explanation practice belies a perspective of computing as
encompassing a range of practices. In a study involving kindergarten and first-grade students
studying honeybees, Danish (2014) attempted to move beyond attending to just one or two
aspects of students’ learning, instead using activity theory to attend to a complex system as a
whole. He considered different kinds of representations, including computer simulations, draw-
ings, and participatory representations to consider many factors at play in students’ learning
within this complex system. This suggests a perspective that does not emphasize a dichotomy of
computational versus non-computational representations, but that embraces a complex system
that may involve many practices and representations.

These researchers emphasized a view both that is different from a purely cognitive view of compu-
tational thinking and is distinct from a computer-centered technocentric framing. Such perspectives
thus open up new possibilities for considering how practices, representations, and experiences may
together inform students’ computing, particularly in the context of another discipline. My work in
this paper is situated within such a perspective, and I aim to contribute to the field’s understanding

1Deﬁning computational thinking is a complex endeavor—see, for example, Grover and Pea (2013) and Tedre and Denning
(2016) for surveys and histories of the development of computational thinking in education.

4 (&) E LOCKWOOD

of computational thinking practices within a mathematical (specifically, combinatorial) context. As
much of this work has been done in with K-12 science students, often in the context of scientific
modeling (e.g., Dickes et al., 2020; Farris et al., 2020; Sengupta et al., 2013; Wilensky & Reisman,
2006), I contribute to this body of literature by exploring phenomena related to students’ computa-
tional thinking practices in a different setting and population of students.

In this paper, I focus on three particular aspects of computational experiences, and I demon-
strate ways in which those aspects interact with and support students’ combinatorial reasoning.
These include representational heterogeneity, the fact that the computer facilitates feedback that
fosters prediction and reflection, and reusing and remixing code. I elaborate these in the follow-
ing sections, first addressing representational heterogeneity, and then discussing prediction and
reflection and reusing and remixing code as computational thinking practices.

Representational heterogeneity. Previous work (such as that discussed above) has demonstrated
that computing can be distributed across a range of computational and non-computational tasks.
In light of this view, we can consider the use of representations across the many different ways in
which computational thinking practices arise. This is related to a notion of representational het-
erogeneity (e.g., Dickes et al., 2020; Farris et al., 2020), in which students use and engage with
multiple representations across computational and physical settings. Goldin (2014) defined math-
ematical representations as “... visible or tangible productions - such as diagrams, number lines,
graphs, arrangements of concrete objects or manipulatives, physical models, mathematical expres-
sions, formulas and equations, or depictions on the screen of a computer or calculator - that
encode, stand for, or embody mathematical ideas or relationships.” I adapt this slightly, to
account also for mental representations and not necessarily external and concrete. Thus, in this
paper, I take a representation to be a mental or physical production that encodes, stands for, or
embodies mathematical ideas or relationships.

To demonstrate representational heterogeneity, in their work in middle school science class-
rooms, Farris et al. (2020) illustrated how fourth and fifth grade students’ scientific modeling
“was distributed across computational and physical representations” (p. 1334), and they con-
tended that “attending to these forms of heterogeneity” (p. 1334) was and is important for under-
standing how relatively novice programmers can meaningfully engage with computational
modeling as a means of doing scientific work. The authors discussed two cases involving students’
work with scientific modeling (specifically in thinking about motion of various objects), which
demonstrated students’ rich engagement with multiple representations that included physical
embodied activities, written drawings, paper-folding, drawn images and graphs, and block-based
computer programming. They suggested that programming can be complemented by attention to
alternative representations. As another example, Danish (2014) saw young students working with
computational representations, representations that were drawn or written by hand, and what he
called participatory representations, in which students enacted certain behaviors (in his case the
behavior of honeybees); in Danish’s study, these representations together were part of a complex
system in which students engaged.

These multiple representations within their environment can not only support individual stu-
dents’ reasoning, but they can also allow for experiences that are not only cognitive. For example,
such experiences may be social in nature (such as facilitating communication both among
students and between students and instructors), embodied (physically manipulating or writing
representations), or affective (feeling proud or confident about a certain representation). In light
of the research that demonstrates representational heterogeneity, in the results of this paper I dis-
cuss various representations that students leveraged, noting that a variety of types of representa-
tions (computational, inscribed, verbal, mental) all contributed to the students’ computational
thinking and combinatorial reasoning within the setting of the study.

COGNITION AND INSTRUCTION @ 5

Computational thinking practices. Given that some researchers investigate computational think-
ing practices, as described above, I now operationalize some of the ways in which computational
thinking practices are defined and used in the literature. The following quote by Sengupta et al.
(2018) highlights this relationship between computational thinking as a cognitive perspective and
as involving practice: “In this perspective, the term “thinking” in computational thinking is per-
haps a semantic reduction of its intended meaning, because phenomenologically it involves both
representational and epistemic work™ (p. 6). As noted, Sengupta and colleagues have focused par-
ticularly on computational thinking practices related to abstraction, especially exploring and
teaching such practices in K-12 science classrooms in modeling settings. Other researchers have
presented practices that reveal the complex nature and possibilities of computational abstractions
as experience. In particular, Weintrop et al. (2016) developed a “taxonomy of practices focusing
on the application of computational thinking to mathematics and science” (p. 128). Weintrop
and colleagues suggested ways in which teachers, administrators, policy makers, curriculum
designers, and researchers might use the taxonomy. For education researchers, they noted that,
“we view this work as both a theoretical and practical contribution to our understanding of the
nature of science and mathematics education in our increasingly technological age” (p. 129). The
very existence of this taxonomy of practices represents a perspective that such computational
thinking practices are a way in researchers and other stakeholders may view, understand, and
assess the construct of computational thinking.

In the study described in this paper, I draw on two of Weintrop et al.’s (2016) computational
problem-solving practices. I focus on students’ engagement with elementary Python program-
ming, and I follow Weintrop et al. in their characterization of programming, which is a computa-
tional thinking practice that “consists of understanding and modifying programs written by
others, as well as composing new programs or scripts from scratch” (p. 139). In my analysis and
discussion, I also address Weintrop et al.’s practice of troubleshooting and debugging. They noted
that “troubleshooting broadly refers to the process of figuring out why something is not working
or behaving as expected” (p. 140) and noted that in computer science the activities involved in
troubleshooting are called “debugging.”

In considering assessment of computational thinking, Brennan and Resnick (2012) offered a
framework that includes computational thinking concepts, computational thinking practices, and
computational thinking perspectives. Among computational thinking practices, they listed practi-
ces they observed among students who were working with Scratch as being incremental and itera-
tive, testing and debugging, reusing and remixing, and abstracting and modularizing (p. 7). I
describe reusing and remixing in detail in a subsequent section as a feature of my students’ work
in this study. Brennan and Resnick’s framework is another example of a study that adopts a
broader view of computational thinking beyond just a cognitive perspective.

In addition to the use of multiple representations, there were two other practices in which the stu-
dents in my study regularly engaged. These include the practice of engaging in a cycle of prediction
and reflection, of remixing and reusing code. I briefly describe these in the following subsections.

Characterizing prediction and reflection. Throughout the study, as they programmed, the stu-
dents regularly discussed their work with other each other and the researcher, and they were
regularly asked for explanations, predictions, and reflections of their work. This kind of practice
is in line with research discussed in Sengupta et al. (2018) and Veiera et al. (2020), in which stu-
dents engage in discursive practice related to their computing. During the interviews, I regularly
asked students to engage in prediction and reflection, and this was a fundamental aspect of the
design of the study and the interview tasks. These constructs are central to the theoretical contri-
butions of this paper, and so in this section I define how I characterize prediction and reflection.
In considering prediction among grade school students, Lim et al. (2010) noted that while predic-
tion is clearly important, relatively little has been studied about prediction in mathematics education.

6 (&) E. LOCKWOOD

I follow Lim’s (2006) characterization of prediction as “the act of conceiving an expectation for the
result of an event without actually performing the operations associated with the event” (p. 103).
Prediction thus entails anticipating and articulating the result of a particular event without first car-
rying out the event, and it was manifest in the interviews through conversation in which students
elaborated their predictions by saying or inscribing them. While prediction could occur in a variety
of contexts or situations, here I particularly mean predicting what the output of a counting process
would be. In the setting in which my study took place, this meant predicting the outcomes generated
by a counting process, both in terms of how the sets of outcomes would be organized (what output
would be displayed) and in terms of how many outcomes appeared on the screen.

Reflection has a prominent role and rich history in education research, including work by
Dewey (1910), who elaborated aspects of thinking, including reflection. According to Rogers
(2002), Dewey outlined criteria for reflection, which involved viewing reflection as a holistic pro-
cess that “is a means to essentially moral ends” (Rogers, 2002, p. 845) and “requires attitudes that
value the personal and intellectual growth of oneself and of others” (Rogers, 2002, p. 845). While
I acknowledge these aspects of reflection, I am particularly interested in the following criterion:
“Reflection is a meaning-making process that moves a learner from one experience into the next
with deeper understanding of its relationships with and connections to other experiences and
ideas” (Rogers, 2002, p. 845). This view of reflection frames it as a process that allows for making
connections and enriching and supporting conceptual understanding. Rogers notes that Dewey
emphasized the importance of taking the time to reflect, where thinkers may explicitly slow down
and pause activity in order to engage in reflection.

Reflection has also received significant attention in mathematics education research. In discus-
sing mathematical problem solving, Wheatley (1992) said, “When solvers reflect on solution activ-
ity, they “distance” themselves from the activity and “hold the activity in thought” (Sigel, 1981).
In this way, they make their activity an object which can be examined” (p. 536). I resonate with
this characterization of reflection as a mental act in which students examine activity in which
they have engaged. I also note that in my case, students could reflect not just on their activity,
but also on the particular representations that emerged during that activity (so, students could
reflect on an expression, a bit of code, the code’s output, as well as on the activity that generated
such representations and outputs). Ultimately, I consider reflection to be a mental act in which a
person (here, a student) examines a mathematical concept, process, object, or activity. In my
study, this typically meant that prediction and reflection were closely connected, as students often
reflected on their prediction after they saw the actual output of a process they had predicted.
Again, the reflection emerged via utterances and conversations between the students and the
interviewers. This is in line with another criteria of Dewey, namely that reflection needs to occur
“in community, in interaction with others” (Rogers, 2002, p. 845).

Reusing and remixing code. Another common practice that occurred in my study was that stu-
dents reused and remixed code. Brennan and Resnick (2012) identified reusing and remixing as a
practice among their students, noting that “[bJuilding on other people’s work has been a longstand-
ing practice in programming, and has only been amplified by network technologies that provide
access to a wide range of other people’s work to reuse and remix” (p. 8). Related to remixing and
reusing is the idea of anchor code, which, according to Wagh et al. (2017), is “a body of code that
creates a stable base from which further explorations take place” (p. 656). These authors examined
seventh-grade students’ programming in the context of biology, and they examined the extent to
which students leveraged a bit of anchor code as they progressed through tasks. They found that
“anchor code is evidence for conceptual learning and computational practices” (p. 656).

Reusing and remixing some fundamental bit of code is a documented computational thinking
practice that can be productive for students, and the students in my study regularly drew upon
this practice in their work. My students often copied and pasted existing code to make tweaks or

COGNITION AND INSTRUCTION @ 7

slight changes to it—sometimes it was code that was provided to them, and sometimes it was
code that they had written themselves. As I will discuss in the results, this practice was useful
and important both because it helped students who were perhaps less familiar with Python and
its syntax, and because it highlighted what features of a segment of code are essential and what
are more superficial (depending on the task at hand). In the results and discussion, I argue that
even while they were remixing, the students were engaged conceptually both in their mathemat-
ical and computational thinking.

Disciplinary reflexivity. By focusing on computational thinking practices that exist in both com-
puting and science, researchers highlight a motivation for disciplinary reflexivity, where common
practices may be leveraged so as to benefit students’ understandings in multiple disciplines.
Increasingly, education researchers conduct studies that leverage connections (both in terms of
concepts and practices) between computing and a given discipline.

Researchers have investigated whether computing can complement and support work in a given
discipline, and whether, reflexively, certain disciplinary ways of thinking or practices can complement
support computing work (e.g., Guzdial, 1994). We have seen this in a variety of STEM disciplines,
including science broadly (e.g., Dickes et al, 2020; Hambrush et al., 2009; Sengupta et al., 2013;
Sengupta et al., 2018; Weintrop et al., 2016), biology (e.g., Danish, 2014; Wagh et al., 2017; Wilensky
& Reisman, 2006), physics (Caballero, 2015, 2019; Odden et al., 2019; Young et al., 2019), engineer-
ing (e.g., Magana et al, 2013, 2016; Vieira et al.,, 2019), and mathematics (e.g., Broley et al.,, 2018;
Buteau et al,, 2015, 2016, 2020; DeJarnette, 2019; Francis & Davis, 2018; Gadanidis et al., 2017;
Lockwood et al,, 2019; Lockwood & De Chenne, 2020, 2021). There are also researchers investigating
connections to non-STEM fields such as social studies (e.g., Hammond et al., 2019; Naimipour et al.,
2019) and art (e.g, Knochel & Patton, 2015). Such initiatives involve a myriad of different
approaches, settings, and participants. In much of this work, researchers have shown that such inte-
grated, disciplinary approaches to having students engage with computing can be beneficial and pro-
ductive, and that students do indeed benefit in terms of their understanding of and engagement
with computing and also with regard to specific disciplinary concepts and practices. Weintrop et al.
(2016) particularly emphasize the disciplinary focus of their taxonomy of computational thinking
practices, noting that their approach to defining computational thinking

takes the form of a taxonomy of practices focusing on the application of computational thinking to
mathematics and science. This approach employs mathematics and science as meaningful contexts in which
to situate the concepts and practices of computational thinking and draws on the ways mathematicians and
scientists are using computational thinking to advance their discipline. (p. 128)

Computing in mathematics education research. Given my focus on mathematics, I briefly elabor-
ate some of the existing work on computing in mathematics education so as to situate my work on
computing within the discipline of mathematics. There is a rich tradition of using a computational
setting to study mathematical understanding, which traces back to Papert’s use of Logo to teach
young children (e.g., Feurzeig et al, 2011; Papert, 1980). There has been an increasing amount of
research aimed at studying the role of computational thinking and activity within mathematics educa-
tion. These studies extend beyond examinations of technology and focus particularly on computing
and programming (e.g., DiSessa, 2018; Kotsopoulos et al, 2017; Sinclair & Patterson, 2018).
They cover a variety of mathematical domains and range from investigating young students (e.g.,
Benton et al., 2017, 2018; Hoyles & Noss, 2015; DeJarnette, 2019; Francis & Davis, 2018; Gadanidis
et al., 2017) to undergraduates (e.g., Lockwood & De Chenne, 2020, 2021; Buteau & Muller, 2017)
and mathematicians (e.g., Broley et al., 2018; Lockwood et al., 2019).

In light of this perspective of disciplinary reflexivity, I now spend some time focusing on the
prior work and constructs within the discipline of combinatorics, which is the focus of this study.
One of the goals of this paper is to offer a theoretical account for why certain aspects of

8 (&) E LOCKWOOD

computing are particularly well-suited to bring out key features of combinatorial thinking and
activity. To do this, I need to go into some detail about findings in combinatorics education.

Combinatorial problems are rich and accessible but are difficult to solve correctly

The importance of teaching and learning combinatorics in K-12 and undergraduate mathematics
curricula is well established in the mathematics education literature (e.g., Batanero et al., 1997;
Eizenberg & Zaslavsky, 2004; English, 1991, 1993, 2005; Hadar & Hadass, 1981; Kapur, 1970;
Lockwood, 2011, 2013, 2014; Lockwood et al., 2015; Maher et al., 2011; Tillema, 2013). In add-
ition to their practical applications, such problems are remarkable because they are accessible to
students at a variety of levels, allowing students to engage in meaningful exploration even with
relatively little mathematical background (e.g., Kapur, 1970; Maher et al., 2011).

Unfortunately, although combinatorial problems are accessible, applicable, and have potential
for developing rich mathematical reasoning, students at all ages struggle to solve them correctly
(e.g., Annin & Lai, 2010; Batanero et al.,, 1997; Lockwood, 2014). Several studies support this
claim by reporting low overall success rates (below 50%) for undergraduates solving basic com-
binatorial problems (e.g., Eizenberg & Zaslavsky, 2004; Lockwood & Gibson, 2016). Researchers
have suggested reasons for such struggles; for example, Eizenberg and Zaslavsky (2004) pointed
out that because of the nature of combinatorial problems and their very large numerical answers,
such problems are difficult to verify.

Researchers have investigated students’ combinatorial thinking in a variety of ways over previ-
ous decades, with attempts to help students improve their success at solving combinatorial prob-
lems. This has included examining phenomena such as: potential errors and pitfalls (e.g.,
Batanero et al., 1997; Hadar & Hadass, 1981), students’ listing strategies (e.g., English, 1991;
Lockwood & Gibson, 2016), and students’ reasoning about combinatorial concepts, including per-
mutations, combinations, the multiplication principle, and combinatorial proof (Lockwood et al.,
2017, 2021; Maher et al., 2011; Reed & Lockwood, 2021; Tillema, 2013; Tillema & Gatza, 2016).
From this corpus of work, I focus on one particular result that has been established in the litera-
ture: students benefit from focusing concretely on sets of outcomes as they solve combinatorial
problems. This notion of sets of outcomes was initially elaborated in Lockwood (2013) and fur-
ther explicated in Lockwood (2014) and Lockwood et al. (2015). I discuss this work in the follow-
ing section.

Lockwood’s (2013) model of students’ combinatorial thinking

In this section I elaborate Lockwood’s (2013) model of students’ combinatorial thinking as a key
part of the literature and as my theoretical perspective toward counting in this paper. It is
important to emphasize that this model was not initially conceived within the context of pro-
gramming or computing. Lockwood’s (2013) model frames students’ combinatorial thinking in
terms of three key components: Formulas/Expressions, Counting Processes, and Sets of Outcomes
(Figure 1). I briefly characterize each of the components.

Counting processes

Lockwood (2013) defined counting processes as referring to “the enumeration process (or series
of processes) in which a counter engages (either mentally or physically) as they solve a counting
problem. These processes consist of the steps or procedures the counter does, or imagines doing,
in order to complete a combinatorial task” (p. 253). As examples, Lockwood offered the imple-
mentation of a case breakdown or successive applications of the multiplication principle. For
instance, consider the Outfits problem: A shirt-pant outfit consists of a shirt and a pair of pants.
Given a set of 3 different shirts and a set of 2 different pairs of pants, how many total shirt-pant

COGNITION AND INSTRUCTION 9

Formulas/

Counting

Processes Expressions

Sets of
Outcomes

Figure 1. Lockwood’s model of students’ combinatorial thinking (as presented in Lockwood et al., 2015).

outfits are possible? We can imagine a process to solve this problem, in particular beginning with
a shirt, and pairing each shirt with a pair of pants. Since each shirt can be paired with two differ-
ent pairs of pants, we get 3-2=26 total outfits. This is a version of an odometer strategy (English,
1991), which involves, “holding one item constant while systematically varying each of the other
items” (English, 1991, p. 451).

When someone engages in a counting process, they commonly enact a sequence of steps or
stages, each of which contributes to some part of a composite outcome. This is typically (though
not always) closely related to the multiplication principle, where we multiply the number of avail-
able independent options at each stage of the process together. Lockwood et al. (2017) raised this
idea when they discussed operational statements of the multiplication principle, which character-
ize the multiplication principle as “counting ways to complete a process (without specifying the
structural outcomes of that process)” (p. 392). Counting processes tend to involve the carrying
out of a series of steps, and, as Lockwood et al. (2017) indicate, if there is also one-to-one corres-
pondence between ways of completing the process and distinct composite outcomes, then we can
conceive of counting ways of completing a process as giving all possible outcomes that satisfy
given constraints (thus providing “the answer” to a counting problem).

Sets of outcomes

Sets of outcomes “refer to the collection of objects being counted - those sets of elements that one
can imagine being generated or enumerated by a counting process” (Lockwood, 2013, p. 253).
Sometimes outcomes can be relatively simple and straightforward to describe or represent, but some-
times they require some additional bit of encoding. For instance, in the PIN problem, How many 5-
digit Personal Identification Numbers are there, using the digits 0 through 9 where repetition is
allowed?, the outcomes are clearly simply 5-digit numbers. However, in the Groups of Students
problem, How many ways are there to split a class of 20 students into four unlabeled groups of five
people?, the outcomes are now partitions of 20 people into four groups of five, which may be a bit
more difficult to describe and represent. In each case, though, the cardinality of the set of outcomes
provides the answer to the counting problem. Lockwood uses the term “outcomes” intentionally to
reflect that they are the outcome of a process. Lockwood and colleagues (e.g., Lockwood, 2013;

10 (&) E. LOCKWOOD

Lockwood & Gibson, 2016) have previously made the case for the importance of outcomes and
having students focus on sets of outcomes.

Formulas/expressions

Formulas/expressions refer to mathematical expressions that yield a numerical value, and
Lockwood (2013) considers “two expressions to be different if they differ in form” (pp. 252-253).
These expressions are combinations of numbers, variables, and operations, and Lockwood has
previously emphasized that these often reflect counting processes or ways in which sets of out-
comes are structured. For instance, consider the Heads and Tails problem: How many outcomes
are there for flipping a fair coin seven consecutive times? We can conceive of a solution to this
problem that has seven independent stages for each consecutive coin flip, and because there are
two options for each stage, we could employ the multiplication principle to generate an expres-
sion of 2-2-2-2-2-2-2. Such an expression is, on the one hand, just a number (128), but it can also
represent a 7-stage process, where the number of options at each stage in the process is 2. While
an actual numerical value (such as 128) can be viewed as a mathematical expression within the
formulas/expressions component, Lockwood has not typically emphasized the numerical values,
focusing instead on what expression generates the numerical value, such as 2-2:2-2-2-2-2.

Relationship among counting processes and sets of outcomes

Lockwood has previously argued that the relationship between sets of outcomes and counting proc-
esses is an essential aspect of successful counting (Lockwood, 2013; 2014; Lockwood et al., 2015).
Specifically, she has described a set-oriented perspective toward counting, which is “a way of thinking
about counting that involves attending to sets of outcomes as an intrinsic component of solving
counting problems” (Lockwood, 2014, p. 31). Lockwood found that this relationship between count-
ing processes and sets of outcomes is important for two reasons. First, when focusing on this relation-
ship, students have to consider the effect that their counting processes have on the set of outcomes.
By linking a counting process to an outcome, one has to be explicit about how outcomes are being
generated and structured. This reduces instances of answers that result from a reliance on formulas
that are not well-understood and can help attune students to instances of overcounting. Second, a
focus on this relationship affords students greater flexibility when they approach combinatorial prob-
lems. Such flexibility can engender meaningful and effective combinatorial problem solving.

In terms of the model, then, one way to frame students’ difficulties with counting is that stu-
dents do not clearly connect their counting processes with the outcomes they are trying to enu-
merate (Lockwood et al., 2015). Thus, a possible avenue for improving students’ combinatorial
problem solving is “to reinforce the relationship between counting processes and sets of out-
comes, and to help students integrate the set of outcomes as a fundamental aspect of their com-
binatorial thinking and activity” (Lockwood, 2014, p. 36). In the remainder of this section, I
describe how the activity of listing can help to build this relationship, and I also discuss limita-
tions of by-hand listing as a motivation to leverage computation.

Researchers have previously hypothesized that having students create lists of outcomes could be
useful for students’ successful counting. In particular, in Lockwood and Gibson’s (2016) study, they
coded undergraduate students” solutions to counting problems as correct or incorrect and as involv-
ing no listing, articulation, partial listing, or complete listing.” The quantitative results showed that list-
ing behavior (taken as partial and complete listing) was positively correlated with correctly answering
counting problems. This prior work suggests that the activity of listing has the potential to strengthen

2A partial listing code was given “if there was some evidence that the student created a list or partial list of the outcomes,
but they may have not written the entire list correctly or may have truncated their listing when they identified a pattern” (p.
254). A complete listing code was given if “a student provided a complete, correct list of outcomes” (pp. 254-255).

COGNITION AND INSTRUCTION 11

the important relationship between counting processes and sets of outcomes, and thus to serve as an
avenue by which students can ultimately solve combinatorial problems more successfully. However,
even though listing is a potentially valuable combinatorial, solutions to combinatorial problems can
be intractable to list by hand but be tractable for a computer (such as listing all 128 outcomes of flip-
ping a coin 7 times, for example). It is often not feasible for students to generate complete lists of
outcomes by hand. Partial listing can be beneficial but also has limitations, as patterns do not always
extend to all cases, and students may not detect subtle errors when they attempt to generalize.
Furthermore, when students partially list, they may think that they understand how a process contin-
ues, but they may not be precise in articulating the full process to completion. So, even if it seems
like one knows how a process is completed, if one doesn’t have to actually list all outcomes, those
details can get lost and glossed over (e.g., Lockwood & Gibson, 2016; Lockwood & Purdy, 2019).

Thus, there is a dilemma—we know that listing can be valuable, but by-hand listing has draw-
backs. This leads to a question of how we can move past limitations of by-hand listing in order
to facilitate generating lists in more complex problems and contexts. Fortunately, there is a nat-
ural answer to this question: we can leverage computational activities, allowing students to reap
benefits of by-hand listing by designing algorithms and computer programs to enumerate lists.
One primary motivation for the study described in this paper, then, is to demonstrate that com-
putational settings can provide natural opportunities for students to strengthen the relationship
described in Lockwood’s (2013) model between counting processes and sets of outcomes, which
in turn can enrich students’ combinatorial reasoning and activity. In this way, the model can offer
a discipline-specific combinatorial framing for how and why computing might serve to reinforce
important combinatorial concepts and practices.

Methods

In this paper, I offer a theoretical argument that is supported by empirical data. For the sake of
space, I provide a brief description of the data that I use to exemplify and support my main ideas.
For more details on the methods, see Lockwood and De Chenne (2020).

Data collection and analysis

Participants and data collection

I present data from two teaching experiments [(TE), in the sense of Steffe & Thompson, 2000]
with undergraduate students at a large public university. The TE methodology allows for research-
ers to investigate students’ reasoning over time, giving an in-depth look at students’ thinking about
particular mathematical concepts. To identify participants for the teaching experiments, the
research team conducted individual selection interviews with 13 students who were recruited from
a vector calculus class. I did not want to interview experienced counters who might recall formulas
or combinatorial ideas, so I recruited students with little combinatorial experience.” I also asked
students about their previous programming experience. From the selection interviews, I selected
three pairs of students to participate in multi-session interviews; I report on two of them here
both due to space, and because the third pair was limited in their scheduling availability and did
not engage with the same tasks as the other pairs. I paired students with similar levels of program-
ming experience to avoid one student with more experience dominating the interviews. My main
goal in reporting on two pairs of students is not to compare and contrast them. Rather, I bring up

3In the selection interviews, | asked what classes they had taken in high school and college. | also showed the students a list
of several symbols, some of which could be associated with combinatorics. | asked students if they had seen each symbol
before and, if so, what they thought the symbol meant. This gave insight into students’ familiarities with combinatorial
formulas. | also had students solve several basic counting problems, which further indicated whether they were trying to
recall formulas and how they were reasoning about these problems.

12 (&) E. LOCKWOOD

examples from each pair to exemplify relevant phenomena, and in some cases, their respective
work on the problems together illustrates certain points. Notably, in prior work involving com-
binatorial tasks, I have often interviewed vector calculus students, finding that they are at an
appropriate level mathematically but are not overly familiar with combinatorial concepts (see, e.g.,
Lockwood & Purdy, 2019; Reed & Lockwood, 2021). My intent is not to make general claims
about all students, or even all vector calculus students, but rather I aim to demonstrate phenom-
ena that inform the nature of combinatorics and computing. I hypothesize that other students
with different mathematical backgrounds may also benefit from computing as these students did.

Pair 1 consisted of two female students (pseudonyms Diana and Charlotte) who were first-
and second-year chemistry majors, respectively. Diana and Charlotte had not taken a combinator-
ics or discrete mathematics course in college, and selection interviews revealed that they did not
have familiarity with basic counting formulas or symbols. They stated that they had no program-
ming experience whatsoever prior to the interviews.

Pair 2 consisted of two male students (pseudonyms CJ and Corey) who were first-year engin-
eering majors. Neither C] nor Corey had taken a combinatorics or discrete mathematics course
in college. During selection interviews, CJ did not recall formulas; Corey mentioned occasionally
that he had seen a combination and permutation formula before, but he engaged in problem
solving that suggested he was not recalling those formulas. CJ had taken an html class in high
school, and Corey had taken an Advanced Placement CS course in high school and was enrolled
in a MATLAB for engineers course at the time of the interviews. However, both CJ and Corey
stated that they did not consider themselves to be strong programmers.

During both of the TEs, the students worked at a large desktop computer in my (the inter-
viewer’s) office. Understanding that agent-based and block-based programs are used in much of
computing education literature (e.g., Farris & Sengupta, 2014; Sengupta et al.,, 2013; Wagh et al,,
2017; Wilensky & Reisman, 2006), I chose Python because it is a relatively straightforward lan-
guage that is used in school and work contexts. I wanted to use an existing language rather than
developing my own language with the hope that these tasks may eventually be more widely used,
and I also chose to prioritize the authentic experience of an existing text-based language over
other affordances of block-based or task-specific programming languages (e.g., Guzdial &
Naimipour, 2019). In addition, there are many free resources for Python-based programming.

I generally kept to simple, fundamental elements of coding, such as nested for loops and con-
ditional if statements, which are not specific to Python. The students used the programming
environment PyCharm, which allowed them to type and edit code into a window. When they ran
the code, the output would appear in an adjacent window. The environment thus enabled the stu-
dents to look at and reflect upon the output of their code—they could scroll through the outputs
they produced. I presented the tasks and prompts both on paper and in the PyCharm environ-
ment. I use the term computational setting to describe this particular setting in which the students
in my study were working. Specifically, they had access to a computer in the form of PyCharm
and programming in Python, and they also could use resources like paper and writing imple-
ments, and they could discuss problems with another student. I distinguish between this setting
and a setting in which students do not have any access to a computer as they solve tasks. I do
not use this phrase to suggest a dichotomy between computational and non-computational envi-
ronments, but rather to specify the interview setting for these students that involved a number of
tools and resources, including a computer.

The interviews were videotaped and audiotaped, and the research team made video captures of
the screen. We created spliced videos that showed both the students and their computer screen.
In concert with a perspective of representational heterogeneity, within each pair, both students
took turns typing and coding, and they also regularly wrote down inscriptions and diagrams on
paper as they worked. Further, they were engaged and worked together, regularly talking with
each other as they reasoned about the problems. The TEs were staggered and both occurred

COGNITION AND INSTRUCTION 13

during the same academic term.* Generally, during the interviews there was a main interviewer
and another interviewer running the camera; both interviewers regularly asked students to explain
their reasoning, to elaborate ideas, and to engage in prediction and reflection. I consider the stu-
dents’ work during the interviews to be reflective of computational thinking, which encompassed
work on the computer, by-hand inscriptions, verbal utterances, and interactions between the
researchers and among the students.

Data analysis

All of the interviews were transcribed, and the research team created enhanced transcripts that
included images from student work and the computer screen. To analyze data for this paper, I
re-watched all of the spliced videos in both TEs, making notes on the enhanced transcripts of epi-
sodes that shed light on the interaction between the computational setting and the students’ com-
binatorial reasoning in terms of Lockwood’s (2013) model. I particularly highlighted episodes that
(a) indicated a connection between components of the model, or (b) involved prediction and
reflection. I selected several episodes from each TE that I thought would be good candidates to
explore in this paper, which gave evidence of students’ engaging in prediction and reflection,
especially where the students related components of the model. I flagged those episodes and put
them in a master document, and then I revisited each of them and further analyzed interplay
between elements of the model and the activities of prediction and reflection. This analysis
involved reviewing enhanced transcripts and taking notes about what ideas and relationships
were occurring.

I then drafted descriptions of counting processes, sets of outcomes, and formulas/expressions,
and relationships among them, using episodes from the master document to inform how these
components related to the practice of computing. Through this process, I reexamined the Outfits
problem, which raised a number of interesting issues that related to the research questions. I
reviewed both pairs of student work on the Outfits problem and wrote up analytical descriptions
of the problem in terms of their combinatorial reasoning (in terms of Lockwood’s model) and
the computational representations. Having fleshed out student work on the Outfits problem, I
identified data excerpts in the License Plate and ROCKET problems that highlighted two other
noteworthy phenomena (specifically, an instance when students tried out two different processes,
and an instance when students reviewed the entire set of outcomes). Further reflection and
reviewing the data also revealed the Coin Flips problem as a noteworthy episode. Through these
episodes, I articulated ways in which the practices of prediction and reflection served to reinforce
connections for students among components of Lockwood’s model as the students engaged
in computing.

Tasks and instructional interventions

Due to space, I focus on four specific tasks that the students solved. I discuss how specific
instructional prompts aimed at fostering prediction and reflection served as an important element
of the tasks and instruction in the TE, contributing to the representational heterogeneity that
emerged in the students’ work. Indeed, the tasks, being situated in a setting in which students
had programs and the computer available to them, afforded students with coding experiences.

“Pair 1 started 2 weeks before Pair 2, which allowed for some refinement of tasks at the beginning of the teaching
experiment with Pair 2. Pair 1 met for a total of 16h, spanning 7 weeks, and Pair 2 met for a total of 12.5h, spanning 4
weeks. Specifically, Pair 1 met over 11 sessions that were each 60-90 min long over the course of 7 weeks. Pair 2 meet over 9
sessions that were each 60-90 min long over the course of 4 weeks.

14 . E. LOCKWOOD

Tasks

The students solved a sequence of counting problems, and these tasks broadly followed a progres-
sion of combinatorial concepts. They solved basic Cartesian product problems, and then problems
involving arrangement with unrestricted repetition. They then worked on problems involving
basic operations of multiplication and addition, arrangement without repetition (or permutation)
problems, and then selection without repetition (or combination) problems. Finally, they solved
problems that targeted particular elements of encoding, such as distribution problems.

I offer data from student work on the Outfits problem, the License Plate problem, and the
ROCKET problem, and the Coin Flips problem. Tables 1-4 show the statements of problems I
will discuss in the results. Note that within these problems, there are a variety of different specific
activities in which students may engage, including reading, interpreting, or modifying code that is
provided to them, and creating their own code either from scratch or by reusing and remixing
other code. This variety highlights the overall range of experiences the students were able to have
as they coded. Some tasks included additional activities like evaluating a given output and writing
code that would generate that output.

Prompts for prediction and reflection

In addition to these task statements, an important aspect of the instruction involved me regularly
prompting the students to engage in activities of prediction and reflection. As noted, this reflects
a more dialogical perspective of computational thinking, where utterances and discussion may
reflect students’ computational thinking. During the course of the TE, I regularly and explicitly
asked the students to predict what they thought the output of the code (the set of outcomes)
would be. Often this included predicting a total number they expected to see, so they often pre-
dicted a mathematical expression as well. Eventually this became a norm in the interviews, and
both pairs came to anticipate this question and would suggest their predictions before they were
asked. Similarly, I tried to establish a norm of having students reflect on their work, particularly
asking questions in which they looked across representations (such as the code, mathematical
expressions, the sets of outcomes, etc.) both to see if their results made sense and to make con-
nections among these representations.

Table 1. All parts of the Outfits problem (we focus particularly on Parts 1a, 1d, and 2b)

1a) Given a set of shirts and a set of pants we would like to know the total type and number of outfit combinations possible.
Look at the code below. What do you think this code does? What will the output of this code be?

Shirts = ['tee','polo’,'sweater']
Pants = ['jeans’,'khaki']

outfits = 0
for i in Shirts:
for j in Pants:
print(i,j)
outfits = outfits+1
print(outfits)

1b) Why is one of our print statements located on the inside of the loops and the other on the outside?

1c) What would happen if we put the print(outfits) statement inside the for loops? First make a guess and then try changing the
code. Discuss the results.

1d) How would your program change if you wanted to print the outfits so the pants are before the shirts?

2a) Create some new code that would use 5 different pieces of clothing to create an outfit. How many outfits have you created?
What is a mathematical expression that represents the number of outputs of your code?

2b) Create some new code that would use 3 loops and have 24 different outfits total. Explain what you did. What is a
mathematical expression that represents the number of outputs of your code?

2¢) Can you write some code (still using the outfits context) that would reflect an expression of 2*3*5%6? Why did you write the
code as you did?

COGNITION AND INSTRUCTION 15

Table 2. Parts a and b of the License Plate problem (we focus on 4a in this paper).

4a) A license plate consists of six characters. How many license plates consist of three numbers (from the digits 0 through 9),
followed by 3 lower case letters (from the first 5 letters in the alphabet), where repetition of characters is allowed? What is a
mathematical expression that represents the number of outputs of your code?

4b) How many license plates consist of 3 upper case letters (from the first 5 letters in the alphabet) followed by three numbers
(from the digits 0 through 9), where repetition of characters is allowed? What is a mathematical expression that represents the
number of outputs of your code? How does this relate to the mathematical expression in 4a?

Table 3. Arrangement problems, including the ROCKET problem (we focus on 1d in this paper).

1a) Consider the problem, “How many ways are there to rearrange 5 people: John, Craig, Brian, Angel, and Dan?" Below is some
code that counts the number of arrangements. What does this code do? Note, the ! symbol means “not,” so j I= i means “j is
not equal to i.”

arrangements = ()
People = ['John', 'Craig', 'Brian’, 'Angel’, 'Dan’]

for pl in People:
for p2 in People:
if p2 !=pl:
for p3 in People:
if p3 !=pl and p3 !=p2:
for p4 in People:
if p4 !=p3 and p4 !=p2 and p4 !=pl:
for pS in People:
if p5!=p4 and p5!=p3 and p5!=p2 and p5!=pl:
arrangements = arrangements+1
print(pl, p2, p3, p4, p5)
print(arrangements)

1b) Write some code to list and count the number of ways to arrange the letters in the word PHONE. How many outcomes are
there? What do you think the output will look like?

Tc) Here is some code output using the numbers 1-5. Can you find a way to correlate each of these outputs with a unique
arrangement of the letters in PHONE? What would the code look like?

(1,2,3,4,5)
(1,2,3,5,4)
(1,2,4,3,5)
(1,2,4,5,3)
(1,2,5,3,4)
(1,2,5,4,3)
(1,3,2,4,5)
(1,3,2,5,4)
(5,3,2,1,4)
(5,3,2,4,1)
(5,3,4,1,2)
(5,3,4,2,1)
(5,4,1,2,3)
(5,4,1,3,2)
(5,4,2,1,3)
(5,4,2,3,1)
(5,4,3,1,2)
(5,4,3,2, 1)
120

1d) Now can you adjust the code from PHONE to list the number of arrangements of the letters in the word ROCKET? Can you list
it both as numbers and as letters? How many arrangements to you expect to get, and why do you think that? How will the list
of outcomes be structured?

Results

I present data from one or both pairs of students on four tasks, and I demonstrate how these
tasks facilitated student engagement with key combinatorial concepts. I argue that the fact that
the students were engaging in the experience of computing gave them access to particular compu-
tational representations of combinatorial concepts, and that these representations, along with
prompts to have students predict and reflect, afforded opportunities for students to interact richly
and deeply with the combinatorial content. Through the students’ work on these tasks and

16 . E. LOCKWOOD

Table 4. The coin flips problem (we focus on 5a in this paper).

5a) Write a program to list (and determine the total number of) all possible outcomes of flipping a coin 7 times.

5b) Your friend Shelly can’t decide whether a mathematical equation to solve this problem is 2” or 7°. What do you think is right
and why?

5¢) Suppose you flip the coin an 8" time. How does this change your code? How does this change your outcomes? What is the
total number of possible outcomes now?

activities, we gain new insight into the nature of students’ combinatorial thinking and activity as
it relates to computing.

Introduction to syntax and combinatorial concepts through the outfits problem

I begin by presenting each pair’s work on the Outfits problem, which was the first task the stu-
dents were given that involved the computer. This problem had a number of parts (all of which
are presented in Table 1), and I focus on Parts la, 1d, and 2b. I aim to demonstrate what it was
like for students to interact with the computational interface of Python programming in
PyCharm, showing that the syntax was not an overwhelming barrier even for Diana and
Charlotte, who had no prior programming experience. I also highlight that prediction and reflec-
tion were computational thinking practices in which the students engaged even from the very
beginning of the interviews.

Outfits problem part 1a—an introduction to syntax via prediction and reflection

I begin with Charlotte and Diana’s initial reasoning about Part la of the Outfits problem, which
says: Given a set of shirts and a set of pants, we would like to know the total type and number of
outfit combinations possible. Look at the code below [Figure 2a]. What do you think this code does?
What will the output of this code be? This is a case where the lists of outcomes are not particu-
larly large or complex, but still there were opportunities for students to develop their combinator-
ial reasoning.

The output of the code is given in Figure 2b. After the students ran the code, I asked them to
reflect on the output of the code (the first underlined portion of the excerpt below). In second
underlined portion, I asked questions that directed the students toward not just the list of out-
comes, but also toward how the computer (via the code) would actually enact a process to list
the outcomes. This was my implicit attempt to emphasize a relationship between counting proc-
esses and sets of outcomes for the students, and I wanted to understand how and why they solved
and reasoned about the problem.

(@) (b)

Shirts = ['tee', 'polo’, 'sweater']

Pants = ['jeans', 'khaki'] tee jeans

outfits = @ tee khaki

for i in Shirts: polo Jeans

for j in Pants: polo khaki

print(i,j) sweater jeans
outfits = outfits+1 sweater khaki

print(outfits) 6

Figure 2. (a,b) Code given in Part 1a of the Outfits problem, and the output of the code.

COGNITION AND INSTRUCTION 17

Interviewer: ... What are you interpreting as what came out of there?

Diana: So, the number on the bottom says 6, so | think that just tells us the total amount of outfits there are, and
then the 6 above outfits, are the actual possibilities.

Interviewer: Okay. Great. And why? Does it make sense that it listed them in that particular order?

Charlotte: Yes, because with shirts it went from tee to polo to sweater. So, it does go from tee to polo to sweater, and
same with the jeans and khakis.

This initial problem reinforced for the students that the code did indeed give a precise list of
outcomes. That is, when Charlotte ran the code she received confirmation not only that the out-
fits would be printed, but, even more, that they would be printed in a particular way. In the next
excerpt, I drew their attention back to the code and its relationship to the organization of the
outcomes. By directing them to these representations of code and outcomes, I attempted to help
students formulate connections among their respective representations, and, thus, combinatorially,
among components of the model. This set the stage for representational heterogeneity and con-
nections among representations that would occur throughout the interviews.

Interviewer: What about the code do you think reflects that way of organizing the outcomes? Like, why are the t-shirts
grouped together for example.

Charlotte: | think maybe because it says, “print i, j,” that it will just start with the same shirt, and then do all the
possibilities of j, and then it will move on to the next i, the next shirt, and do all the possibilities of j.

I emphasize that even though this was Charlotte and Diana’s very first exposure to code, the
syntax and representations were not barriers that prevented them from reasoning about the prob-
lem. Rather, the experience of engaging with representations of both code and output fostered
initial connections between counting processes and outcomes.

In CJ and Corey’s work on Part la of the Outfits problem, we gain insight into how the code
could reflect a particular process. CJ and Corey were more experienced coders, and we reasonably
see different kinds of responses from them. Indeed, they seemed to understand the code as essen-

Corey: Uh, so, alright. It looks like it's taking — starting with the shirts it goes through each shirt. So, it goes to i in
shirts so i would be the place in this set of shirts. So, we'll start with tee, and then it'll go through another
for loop which is basically saying for tee it will match up each pair of pants with that tee and then print out
that value, so like tee, jeans. And then it will add an outfit. And then it will keep going until all the shirts
and pants have been matched up.

tially representing a counting process. In their first attempts at solving the problem, Corey
described the code as completing steps or stages in a process.

Corey: | think it will print each pair of outfits. So, it will print tee jeans, tee khaki, then polo jeans, then polo khaki,
then sweater jeans, then sweater khaki, and then at the end it will print how many outfits there were.

Interviewer: Okay, great. And how many do you think it will be?

Corey: Six.

I then asked what output they would expect to see when they ran the code. Corey gave the fol-
lowing response, and CJ seemed to agree with this thinking.

18 . E. LOCKWOOD

a: So, | guess the i for the shirts is listed before the j in pants. So, when it says for i, and the first one in i is tee,
and then it will go through all the j, tee jeans, tee khaki. And then it'll just move on to the next list in i, or
the next value in i.

They then ran the code and got the output they expected, and I asked why the output was
structured as it was (prompting the students to engage in reflection). In CJ’s response, he
described the listing process that he felt the code represented.

CJ and Corey’s comments suggest that they could interpret the code on the screen as involving
some process that would go through and list (through printing) the outcomes in a particular way.
This episode thus highlights what it could mean for code to represent a counting process. My
question of, “When we run it, what do you think we’ll see on this screen?” shows that I was ask-
ing for prediction, and, in terms of the model, I attempted to draw attention to the idea that a
counting process would generate a set of outcomes. I acknowledge that the set of outcomes for
this problem is very small, and one could easily generate the entire list without the computer.
However, this episode represents an initial instance of students articulating a counting process in
terms of a computational representation (the code itself) and then explicitly connecting it to the
set of outcomes (the output of the code). This use of prediction and reflection, as well as generat-
ing and reflecting upon output is not unique to my study, and computing education researchers
have argued for such features and affordances of the computer. But here we see that this compu-
tational thinking practice supported students’ combinatorial reasoning—specifically connecting
counting process and sets of outcomes.

Outfits problem part 1d—connecting counting processes and lists of outcomes

Part 1d of the Outfits problem referred to the code from Part la, and asked, How would your
program change if you wanted to print the outfits so the pants are before the shirts? Each pair
made slightly different adjustments to their code from Part 1la, and, in each case, the code gener-
ated a list of outcomes they did not expect. These unexpected lists, along with prompts to predict
and reflect, fostered rich discussion with each pair of students about their code and the outcomes,
and I argue that this experience facilitated discussions about, and implicitly reinforced, the funda-
mental combinatorial notion that counting processes generate sets of outcomes that are organized
in particular ways.

To solve Part 1d of the Outfits problem, Diana and Charlotte engaged in remixing code (in
the sense of Brennan & Resnick, 2012), as they began by swapping the i and j in the print state-
ment in their code (Figure 3a)—this is a reasonable and correct way to print pants before shirts.
In the excerpt below, I asked them to predict what the output would be, and Diana suggested

Diana: So, | think you would just swap the, i, and j in the print, so that way the j comes first, instead of the i [Figure 3a].
Interviewer: Okay. Okay. Great. And so, what do you think your output would look like? So, go ahead and switch it, we'll
run it in a second, but what do you think the outcomes are gonna look like?

Diana: | think that it would put like all of the jeans first, with like the shirt combinations, and then all the khakis first.
Interviewer: Great. And what, um, what order do you think the shirts will be in?
Diana: Like tee, polo, sweater.

Charlotte: Yeah.
Interviewer: Oh, so you can try it.

Diana: Oh, it didn’t do that.
Charlotte: Oh. So, it still did jean, khaki, jean, khaki. Interesting.
Diana: Do you think, Charlotte, that that might be because it has the for i in loop first? Like because the i is first there,

and then the j is the next one in.
Charlotte: That makes sense, yeah.

COGNITION AND INSTRUCTION 19

(a) (b)

Shirts = ['tee’','polo’, 'sweater']
Pants = ['jeans', 'khaki']
jeans tee
outfits = 0 khaki tee
for i in Shirts: jeans polo
for j in Pants: khaki polo
print(j,1) jeans sweater
outfits = outfits+1l khaki sweater
print(outfits) 6

Figure 3. (a,b) Charlotte and Diana’s code and output for switching the variables in the print statement.

that the code would print all of the jeans and then all of the khakis, where each shirt would be
paired with each type of pants. The students then ran the code (yielding the output in Figure 3b),
and in the underlined portion they appeared surprised by their output.

Diana and Charlotte’s approach was reasonable—if the initial code that printed (i,j) listed
groups of shirts first, it would stand to reason that switching the variables in the print statements
would simply print groups of pants first. However, the nested for loops structure of the code
meant that the shirts were still being cycled through before the pants, and so the code yields out-
put in Figure 3b. The students were not wrong in that they did in fact produce outcomes with
pants first, but they were clearly surprised by what was printed (based both on their prediction,
and the fact that they said, “Oh, it didn’t do that.”). Diana’s comment to Charlotte explaining
why it printed like it did (the second to last line in the previous excerpt) suggests that she
hypothesized that the order of the loops had something to do with the way the output was
printed. I contend that Charlotte and Diana’s remixing and reusing of code did not prevent them
from engaging meaningfully and conceptually with important ideas—it allowed for them to work
efficiently, and, I would argue, it is not clear that anything was lost in terms of their combinator-

Interviewer: | think you were right. Like, you did list the pants first, like switching the i and the j did list the pants first and
the shirts second. What do you think you would do to your code to get it to be listed in the way that Diana
was describing, where you have jeans and then khakis?

Diana: | think that you could put pants after, like for the i, pants represents i, and then shirts represents j, and we
wanna make sure that i comes first and j comes first.

ial reasoning by remixing code rather than writing their own new code.

I then asked them to try another approach to generate code that would organize outcomes
how Diana had described.

They then again remixed (copied, pasted, and adjusted) to produce the new code below their
initial code (Figure 4). They ran it and generated outputs that were indeed organized how Diana
had initially described, with a group of jeans and a group of khakis in the first column. I note
that Figure 4 shows that the computer can display both two different bits of code (that represent
two different processes), along with the two different outputs of the respective code, which makes

Interviewer: ... What's the differences in those programs, and why is that affecting the way in which they're listed.

Diana: It looks to me like the loops that you set up, and which category goes with which variable, like either i or j,
that kind of determines like the sequential order, but then like the order of i and j in the parentheses after
print, determines like which column they go in.

Charlotte: Yeah.

20 . E. LOCKWOOD

Illl External Libraries # la) Given a set of shirts and a set
know the total type and number of o
Look at the code below. What do you
will the output of this code be?

Shirts = ['tee’,'polo’, 'sweater']
Pants = ['jeans', 'khaki']

outfits = @
for i in Shirts:
for j in Pants:
print(j,1i)
outfits = outfits+1
print(outfits)

outfits = @
for i in Pants:
for j in Shirts:
print(i,j)
outfits = outfits+1
print(outfits)

Run testing

> /Library/Frameworks/Python. framework/Versions/3.6/bin/python
jeans tee

khaki tee

jeans polo

khaki polo

2t jeans sweater

= - khaki sweater

6

jeans tee

jeans polo

jeans sweater

> khaki tee

. khaki polo
khaki sweater
6

4

& cl

Figure 4. The students try another approach for listing outcomes.

apparent what the differences are both in the code and in the output. I asked them to address dif-
ferences in the following exchange.

I infer that for Diana and Charlotte at this point, they were making sense of the output in
relation to the code, but their discussion and reasoning was primarily about making sense of the
code and the syntax. Again, because this was their first exposure to Python and to any program-
ming language, this makes sense. The point is that for Charlotte and Diana, the prediction and
reflection illuminated features of the code and the syntax. As they progressed through the
teaching experiment, they would gain more experience with the code and would come better to
understand the syntax and also make further connections with mathematical and combinatorial
ideas. Furthermore, here the computer and the representations afforded by it gave the students
the chance to see two different processes and two different outputs at once. Indeed, here, multiple
aspects of their coding experience (representational heterogeneity, remixing and reusing code,
and immediate feedback that fostered prediction and reflection) all served to reinforce the

COGNITION AND INSTRUCTION (&) 21

combinatorial idea that different counting processes generate and organize sets of outcomes in
different ways.

CJ and Corey had a very similar experience on this task. They also engaged in remixing and
modified the code from Part la, and they predicted a different set of outcomes than was pro-
duced. This episode, too, generated rich discussion about counting processes and sets of out-
comes, and they engaged in prediction and reflection. As the code in Figure 5a shows, the
students switched the variables in the loops without changing the order of the loops (j being asso-
ciated with Shirts, and i being associated with Pants), and they still printed (i,j). They predicted
the output would be grouped according to jeans (e.g., jeans tee, jeans polo, jeans sweater) and

Interviewer: Okay, so is that what you were expecting?

(@5 Um, not necessarily because still the tee is still -

Corey: Yeah, | was expecting it to be like jeans tee, jeans polo, jeans sweater.

(@5 Well, it’s still calling j shirts and then the i is inside the — the pants is listed inside the shirts. | don’t know if
that -

Corey: Oh, okay. Maybe —um

a: It's listing i before j.

Interviewer: And you still did do - it asked you to print jeans first and then shirts and so you did do that. But, sort of, what
are you trying to make it do?
Corey: Put all the groups on the left side so it would be like jeans, jeans, jeans, khaki, khaki, khaki.

then khakis, but their code produced different output than they expected (Figure 5b); they dis-
cussed this in the excerpt below.

I point out that, again, the students did what was asked of them (printing outfits with pants
first). But, it seemed that they wanted the outcomes to be structured according to groups of
pants, and they initiated changing their code to reflect their desired organization. The exchange

(a) (b)

Given a set of shirts and a set of pants we would like to

know the total type and number of outfit combinations possible.
Look at the code below. What do you think this code does? What
will the output of this code be?

Shirts = ['tee','polo’, 'sweater']

Pants = ['jeans', 'khaki'] jeans tee

outfits = @ khakl te?

for j in Shirts: Jean§ polo

for i in Pants: 'fhakl polo

print(i,j) jeans sweater
outfits = outfits+l khaki sweater

print(outfits) 6

Figure 5. (a,b) The students edited code and the unexpected output.
(a) (b)

Given a set of shirts and a set of pants we would like to

know the total type and number of outfit combinations possible.

Look at the code below. What do you think this code does? What

will the output of this code be?

Shirts = ['tee', 'polo’, 'sweater']

Pants = ['jeans', 'khaki'] -

jeans tee
outfits = 0 jeans polo
for i in Pants: jeans sweater
for j in Shirts: khak:l. tee

print(i,j) khaki polo
outfits = outfits+l khaki sweater

print(outfits) 6

Figure 6. (a,b) Code that prints outcomes with pants first, grouped by jeans and then khakis.

22 (%) E. LOCKWOOD

Corey: There we go.
Interviewer: Okay, so what did you do and why did you think that would fix it?
Corey: | changed the name. So, whereas before it was just shirts and pants. and | changed the variables. But then |

changed the variables back, and then | just changed the names because the names are what really matters,
now that | look at this. Because it looks like changing the variables didn't really do much. It just kind of
switched the words around rather than printing it differently.

Interviewer: Okay. Yeah. And switching the variables did something but maybe didn’t structure it how you wanted it to be.

Corey: Yeah. Didn't do it the right way.

Interviewer: Yeah. What are you thinking, CJ?

ak: Yeah, so we just made it so it was looking at the pants first and then - so it was filing through the pants and
so it looks at jeans and then for inside the pants and then it goes for different types of shirts and then it'll
move on to the next thing.

below shows their process of remixing and adjusting the code from Figure 5a to the code in
Figure 6a to reflect their desired organization, which yielded the outcomes in Figure 6b.

I offer a couple of comments about this problem, as both pairs of students had similar experi-
ences. First, in terms of Lockwood’s model, this task illuminated for the students the idea that
two different counting processes may create two different lists of outcomes. It seemed from the
students’ initial predictions that they wanted to organize pant-shirt pairs according to groups of
pants and then groups of shirts, which is natural and appeals to the odometer strategy of holding
an item constant and systematically varying others (English, 1991). In fact, this kind of organiza-
tion seemed to be how they initially thought about (and perhaps even wanted) those outfits to be
listed—Corey even called such a listing “the right way.” Given their predisposition to list in a par-
ticular way, I contend that it was enlightening for students to see that there was a different way
in which the outcomes could be printed (and, further, the code they had written actually pro-
duced this alternative organization). As Lockwood (2013; 2014) has previously claimed, even
understanding that lists could be generated in different ways is important for students’ combina-
torial thinking and activity. This simple Outfits problem seemed to bring this phenomenon to
light for these students. I also argue that computing played a role in highlighting this phenom-
enon. Because the students could see what code was produced when they pressed the “run” but-
ton, they received feedback on what output the code actually generated. I suggest that having
something other than themselves (in this case, the computer) create the lists lent credence to the
idea that a counting process generates certain outcomes in a particular way. I also contend that
the practice of prediction played an important role in this episode, and we see how prediction
highlighted a disparity between their thinking and what the code actually generated. This, in
turn, enabled the students to reflect on the outcomes and attempt to make sense of the situation,
and the students established important ideas both in terms of the coding and in terms of com-
binatorics. As with Charlotte and Diana, aspects of their coding experience (representational het-
erogeneity, remixing and reusing code, and immediate feedback that fostered prediction and
reflection) reinforced that counting processes generate and organize sets of outcomes.

Outfits problem part 2b—predicting and reflecting on mathematical expressions

The previous two examples of Parts la and 1d of the Outfits problem particularly highlighted cer-
tain elements of Lockwood’s (2013) model, namely connecting counting processes and sets of
outcomes. In this section, I provide an instance in which the students reasoned about the third
component of the model, formulas/expressions, in the context of the Outfits problem. Due to
space, I focus only on CJ and Corey’s work on Part 2b, although Charlotte and Diana’s work on
this problem was similar (and we see evidence of their reasoning about mathematical expressions
on the License Plate problem). Part 2b of the Outfits problem states: Create some new code that
would use 3 loops and have 24 different outfits total. Explain what you did. What is a mathemat-
ical expression that represents the number of outputs of your code? 1 discuss this problem because

COGNITION AND INSTRUCTION (&) 23

it demonstrates an instance in which students’ attention was explicitly on a mathematical expres-
sion, and it further exemplifies how these tasks and prompts within a computational setting could
leverage aspects of Lockwood’s (2013) model of students’ combinatorial thinking. CJ began by
articulating their overall goal for the problem.

CJ: Yeah, we need to change how many shirts, pants, and hats. So when we find the total combinations we
can multiply the amount of shirts times the amount of pants times the amount of hats to hit 24.

They decided that multiplying 2, 2, and 6 would give 24. They produced the code in Figure 7,

Interviewer: What do you think the total will be and how do you think it will be structured?

Corey: 24 should be the total.

a: I think it will go through i is listed first, i is shirts so it'll go through the first shirt tee, jeans, baseball and then we
have tee, jean, winter. And then we have tee, khaki, baseball. Tee, khaki, winter. And then it'll move on to polo.

and before they ran it, I again asked them to predict both the total number of outcomes and the
structure of the output.

I also asked them what they expected a mathematical expression that represented the total
would be, and Corey guessed 2-2:6, and CJ said, “Or 6-2-2.” They predicted a total of 24, and
they ran the code, which produced the output in Figure 8a. Again, I asked them to reflect on
their work, saying, “Did it give you what you expected?” CJ explained, “It’s listing the shirts first
because that’s what i is and we look at i first. That’s our first for loop.”

The students proceeded to discuss the mathematical expression and whether they were think-
ing of it as 2:2:6 or 6-:2-2. We highlight one brief exchange that demonstrates C] making a con-
nection between the expression of 6:2:2 as related to the set of outcomes, and he particularly

ak: The way | — | can’t wrap my brain around the 6 times 2 times 2 exactly, but for every shirt there’s four different
combinations and then so for how many shirts there are there’s going to be that many combinations. So |
can see the 6 times 4 because there are four things for every shirt.

Interviewer: Okay. And are you seeing those four — can you actually use the mouse maybe to point to where are the four?

a: So there’s four combinations of jeans, baseball; jean, winter; khaki, baseball; khaki, winter [highlights the
outcomes in Figure 8b]. And that goes through for every single shirt as well.

Interviewer: Okay, cool. Is there any way to think of that 4 as 2 times 2? You're maybe not thinking of it currently as 2
times 2.

ak: Yeah, | wasn't exactly. But | guess there are two different hats for every pair of pants. And then there’s two
different types of pants. For the other pair of pants you need - it's the same-there’s two combinations for it
so you times it by 2.

Create some new code that would use 3 loops and have 24 different outfits total.
Explain what you did. What is a mathematical expression that represents the
number of outputs of your code?

Shirts = ['tee','polo’, 'sweater’,'cutoff', 'button up','flannel’]
Pants = ['jeans', 'khaki']
Hats = ['baseball’, 'winter']

outfits = 0
for i in Shirts:
for j in Pants:
for k in Hats:
print(i, j, k)
outfits = outfits + 1
print(outfits)

Figure 7. Corey and CJ's code for Part 2b of the Outfits problem.

24 (%) E.LOCKWOOD

tee jeans baseball

tee jeans winter

tee khaki baseball

tee khaki winter

polo jeans baseball
polo jeans winter

polo khaki baseball
polo khaki winter
sweater jeans baseball
sweater jeans winter
sweater khaki baseball
sweater khaki winter
cutoff jeans baseball
cutoff jeans winter
cutoff khaki baseball
cutoff khaki winter
button up jeans baseball
button up jeans winter
button up khaki baseball
button up khaki winter
flannel jeans baseball
flannel jeans winter
flannel khaki baseball

tee jeans baseball

tee jeans winter

tee khaki baseball

tee khaki winter

polo jeans baseball
polo jeans winter

polo khaki baseball
polo khaki winter
sweater JEELENERLE]NE
sweater jeans winter
sweater khaki baseball
sweater khaki winter
cutoff jeans baseball
cutoff jeans winter
cutoff khaki baseball
cutoff khaki winter
button up jeans baseball
button up jeans winter
button up khaki baseball
button up khaki winter
flannel jeans baseball
flannel jeans winter
flannel khaki baseball

flannel khaki winter flannel khaki winter
24 24

Figure 8. (a,b) The students’ output for Part 2b of the Outfits problem, and CJ's four highlighted options within a sweater.

highlighted some of the outcomes within the list of outputs from the computer to demonstrate
the four combinations within each six options for shirt (Figure 8b).

This brief episode highlights a couple of different points about the formulas/expressions compo-
nents of Lockwood’s (2013) model and how students might reason about such expressions via pre-
diction and reflection in a computational setting. One observation is that students can be asked to
predict either a numerical value (such as: What do you expect the total to be?) or to predict an
actual mathematical expression (such as: What is a mathematical expression that would express the
total?). CJ and Corey could use a counter in their code to keep track of individual outcomes,
which had been modeled for them in the very first part of the Outfits problem. Because of this,
the students could determine the total number of outcomes they would get, which offered some
immediate numerical verification for students. This ability to verify solutions is something that is
often difficult to accomplish in combinatorics (e.g., Eizenberg & Zaslavsky, 2004), and so this was
a particularly valuable feature of the students’ engagement with computing.

However, in designing these tasks and conducting these interviews, I ultimately wanted stu-
dents to be able to articulate a mathematical expression and not just a numerical total, because a
mathematical expression can often provide some justification and conceptual foundation for why
the numerical total is what it is. Thus, I was not satisfied simply to have the students see that,
say, their guess of 24 aligned with the 24 in the output (even if such a realization was sometimes
useful). Said another way, I hypothesized that this aspect of their computational experience (pre-
dicting and reflecting) would support certain desirable combinatorial reasoning (namely, justify-
ing a mathematical expression). I thus regularly attempted to draw students’ attention to
mathematical expressions as they engaged in both prediction and reflection.

Overall, the students’ work on this Outfits problem demonstrates how prediction and reflection
afforded opportunities for them to connect counting processes and sets of outcomes, ultimately

COGNITION AND INSTRUCTION . 25

giving them insight into both counting processes and the programs they wrote. The students were
introduced to code and to the idea that code would generate a precise list of outputs that was
organized in some way. These tasks helped students begin to formulate (even implicitly initially,
and then explicitly) connections between counting processes, sets of outcomes, and mathematical
expressions, often through elicited activities of prediction and reflection. In some cases, these activ-
ities also helped students to gain insight into what the code was actually doing in the loops and
print statements. So, even in these initial tasks, some of the features of computing, including cer-
tain computational representations and immediate feedback, served to facilitate and reinforce activ-
ities of prediction and reflection. The Outfits problem was not particularly difficult and did not
have large sets of outcomes. But, perhaps because of the small sets of outcomes and the relatively
simple code structure, students were able to engage in prediction and reflection and to use that
activity to connect components of Lockwood’s model, being introduced to computational repre-
sentations in the process.

Relating components of the model in subsequent episodes in the teaching experiment

I now offer three additional examples of ways in which representations within the computational
setting and prompts for prediction and reflection facilitated students’ productive combinatorial
thinking. I aim to demonstrate that the phenomena observed in the Outfits problem persisted in
subsequent tasks, and I particularly want to show the students” work on problems with larger sets
of outcomes, which allow for some additional insights and points of discussion.

Experimentation and alternative solution methods in the license plate problem

The following example illustrates Diana and Charlotte’s understanding of the relationship
between counting processes and sets of outcomes particularly within the computational setting.
This is especially important in highlighting how the computing experience, and the prediction
and reflection the computer afforded, together served to strengthen combinatorial relationships
within Lockwood’s model. Here, during their second interview session, Diana and Charlotte were
considering Part 4a of the License Plate problem: A license plate consists of six characters. How
many license plates consist of three numbers (from the digits 0 through 9), followed by 3 lower case
letters (from the first 5 letters in the alphabet), where repetition of characters is allowed? Write
some code to solve this problem. What is a mathematical expression that represents the number of
outputs of your code? They had two different ideas for code that could solve the problem, and by
using the computer, they could easily test both approaches. Diana initially suggested that they
code six nested loops, where the first three loops iterate through a set of Numbers, and the last
three loops iterate through a set of Letters. She suggested this correct approach in the excerpt
below, and the students eventually coded this (Figure 11). However, Charlotte suggested an alter-
native approach (underlined below), and they considered a process that was reflected by creating

Diana: Maybe we should figure out a way to have it recognized that there’s three letters — or three numbers in a row,
followed by two letters in a row. So, we could do like a sorting system and like repeat the sets. So, like for i
and numbers for j and numbers for k and numbers, and then keep going with the letters for | and letters for
m and letters for n and letters.

Charlotte: Do you think it would be easier if we kept like these — | say just change them. But then when it comes down
to print, do you like, i comma, i comma, i comma, j,j,j?
Diana: Yeah, we could try that.

Charlotte: | don't really know if that would work or not [they proceeded to write the code in Figure 9].

26 E. LOCKWOOD

A license plate consists of six characters. How many license plates consist

of three numbers (from the digits @ through 9), followed by 3 lower case

letters (from the first 5 letters in the alphabet), where repetition of characters
is allowed? What is a mathematical expression that represents the number

of outputs of your code?
Numbers = ['0','1','2','3",'4"','5"','6"','7',"'8"','9"]
Letters = ['a‘,'b','c','d", e’

Licenseplate = 0
for i in Numbers:
for j in Letters:
Licenseplate = Licenseplate+l
print(Licenseplate)

Figure 9. (a,b) Diana and Charlotte’s initial code and output for the License Plate problem.

will still print outcomes with three numbers followed by three letters, but it does not actually pro-
duce all of the desirable outcomes. They coded this approach, which is seen in Figure 9.

Interviewer: And then, yeah. What do you think will come out of that? Or what are you anticipating the outcomes will look like?
Diana: | think it will definitely give us strings of three numbers, followed by three letters, but I'm a little worried it
might do only the identical numbers, followed by identical letters.
Charlotte: Right.
Diana: But | don't know. | don’t know how it will read it for sure.
[...]
Charlotte: Right. There we go. Okay. And - oops.
Diana: Okay. So, it did give us only the repeats.

I asked them to predict the outcomes. After they made a prediction, they ran the code and
yielded output displayed in Figure 9b.

In the underlined portion of the excerpt above, Diana stated what she expected the out-
comes to be. She reiterated that they wanted outcomes with three numbers followed by three
letters. However, she correctly predicted that perhaps the code would only print identical
numbers and letters. Then, when they actually ran the code, they saw that they had indeed
gotten only a subset (50) of the set of outcomes that they actually wanted (Figure 9b). In
terms of Lockwood’s (2013) model, this underscores the relationship between a counting pro-
cess and a set of outcomes by showing them what their particular process yielded. I infer
that Diana’s prediction, and her caution about why there would only be identical elements,
suggests that she was thinking carefully about what outcomes the counting process repre-
sented by her code might generate.

I reminded Diana of her initial idea of coding 6 nested loops, and she then edited the existing
code to produce the code in Figure 10. I again asked for them to predict the structure of the
outcomes, and, in response, Diana predicted an expression for the total number of outcomes.
This exemplifies that, through prediction about these computational representations, the

Interviewer: So, again, kind of what do you predict will come out of that you think? In terms of ... the structure of
the outcomes?

Charlotte: | mean, hopefully it's gonna give us the — what we actually want. But I'm trying to think about structure.

Diana: Yeah. It'll probably do - it'll keep these — because these are the starting points. So, like the triple 0 and then
it'll probably go like 001, 002, 003, and include all those different combinations. And in terms of like a
mathematical expression, | was thinking, maybe it might multiply the options by each other. So, like with
our paper here — Since this is 0-9, then there are 10 options. And there’s 10 options here, and there’s 10
options here. It might do 10 times 10 times 10 times 5 times 5 times 5. Because there’s five options here.

COGNITION AND INSTRUCTION . 27

A license plate consists of six characters. How many license plates consist

of three numbers (from the digits @ through 9), followed by 3 lower case

letters (from the first 5 letters in the alphabet), where repetition of characters
is allowed? What is a mathematical expression that represents the number

of outputs of your code?

Numbers = ['e0*,'1','2",'3",'4"','5","'6",'7",'8",'9"]

Letters = ['a‘,'b’,"'c"','d", " e"']

Licenseplate = 0
for i in Numbers:
for j in Numbers:
for k in Numbers:
for 1 in Letters:
for m in Letters:
for n in Letters:

print(i,j,k,1,m,n)
Licenseplate = Licenseplate+l

print(Licenseplate)

Figure 10. Diana’s code after their initial exploration of the License Plate problem.

students related sets of outcomes and mathematical expressions with the process reflected by their
code.

They wrote down the product 10-10-10-5-5-5, which I told them was 125,000. They ran the
code,” yielding a numerical output of 125,000, and they confirmed that it had done what
they expected.

In summary, this episode suggests that the students were thinking about the nature of the out-
comes and what they would look like on the screen. They saw that they wanted to print a 6-tuple,
their output. The computational setting allowed them to explore this idea and gave feedback to
confirm that their output would only be repeats. Then, the computer facilitated their testing
another idea of 6 nested for loops, and they surveyed the results of those outcomes to see that
they were in fact not just printing repeating elements as they had in their initial code. In this
way, the computational setting was closely tied to their prediction and reflection. This immediate
feedback, facilitated by the computer, allowed them to get a better sense of what the outcomes
were in that situation, and, in particular, what the outcomes would be of the specific process they
had coded. Here they could reflect on the computational representations of the code and
the outcomes.

Identifying structure in lists of outcomes in the ROCKET problem

I now present an episode from CJ and Corey’s fourth session in which they were working on
arrangement without repetition problems (also called permutation problems). They had ini-
tially been given code that answered the question: How many ways are there to rearrange 5
people: John, Craig, Brian, Angel, and Dan?, and they also then adjusted that code to solve
arrangements of the word PHONE (see Table 3 for exact wording of these problems). I do
not focus on this initial work (some of which is described in Lockwood & De Chenne, 2020),
but I focus on a problem involving arrangements of the word ROCKET. This occurred later
in the teaching experiment (Session 4) and involved a different kind of problem than the
Outfits problem (arrangements without repetition). Here, they used the set of outcomes to
justify an expression, which is something I have not yet demonstrated in the data.

®| briefly note what occurred when they ran the code. It is not relevant to their reasoning about the problem, but it this
highlights a potential computational limitation. When the students went to scroll up on this problem, the computer did not
print outcomes prior to 300eed. Essentially, the computer was not able to print all 125,000 outcomes in PyCharm. We thus
reduced the problem to only involving the numbers 0 through 5, and the students proceeded to work on that problem for
the rest of the session. | bring this up here to note that there was some limitation to what the computer could produce, and
this was something we dealt with during the interview.

28 (%) E.LOCKWOOD

I asked the students the following questions: Now can you adjust the code from PHONE to list
the numbers of arrangements of the letters in the word ROCKET? ... How many arrangements do
you expect to get, and why do you think that? How will the list of outcomes be structured? The stu-
dents began with their code from the PHONE problem (Figure 11a). They remixed their code, as
they adjusted it by changing the initial list (called People, a remnant from the initial arrangement
problem) to include the letters R, O, C, K, E, and T and adding an additional for loop and condi-
tional statement (Figure 11b). I note here that I interpret the remixing as an indicator that they
realized what features of the code were more or less important to preserve. That is, the fact that
they remixed and reused code does not suggest a weaker conceptual understanding, but rather it
highlights that they could attend to the salient features of the program (such as the contents of
the initial list, the structure of the for loops, and the details of the conditional statements) and
not overly focus on superficial features (such as the name of the initial list).

Before they ran the code in Figure 14b, I again asked for prediction, both in terms of a total
number and in terms of some structure of the set of outcomes. Corey said of the total, “I believe
there will be 6-5-4-3-2-1” which he confirmed was 720. Then the students started to write out the
first few outcomes (Figure 12).

I then asked the students to predict what they might expect to see in the whole set of outcomes,
particularly asking about the behavior of the first column. Corey identified a correct overall struc-
ture, noting that the first column would be split into sixths, each starting with a different first letter
of ROCKET, and he articulated structure within each of those six chunks of outcomes. I also asked
them to think about the behavior at the rightmost column, which the students also correctly noted
would cycle through the remaining letters individually. After this conversation, the students ran the
code, yielding 720 as they expected, and Corey said, “A sixth of all 720 will be R and then another
sixth will be O, another sixth will be C, another sixth will be K, and then E and T. And then just
like the last problem—for each of those letters—a fifth of those will be one of these letters.”

Later in the work on these tasks, the students were asked to justify to someone why there
would be 8-7-6-5-4-3-2-1 arrangements of the letters in the word PORTLAND. They struggled a
bit with explaining this, and I asked if creating code to see the whole set of outcomes might
explain why the options are multiplied together. CJ began to scroll through the output of the

a: And just visually seeing how when R is the first one, you can see the second ones shifting from O to C to K to E to
T and then in the third, that's just when R is the first one. And then you can see the third one going C to K to E
to T to O to C. And then you can just see it moving back and forth and so you can see a pattern there.

arrangements = 0 arrangenents = 0
People = ['P','H','0",'N', "E'] People = ['R","0°,"C", K", "E*,"'T"]
g . for pl in People:
for pl in People: for p2 in People:
for p2 in People: $#.52 1ot
if p2 != "15 for p3 in People:
for p3 in People: if p3 != pl and p3 != p2:
if p3 != pl and p3 != p2: for pd in People:
for p4 in People: if p: 1= 23_“: pﬂ\!: p2 and p4 != pl:
if p4 1= 4 1= d p4 != pl: OF B2 2R feop £
T Peer pgai:ngesple- P2 Pl if pSi=p4 and pSi=p3 and pS!=p2 and pSi=pl:
P H) for p6 in People:
if p5!=p4 and p5!=p3 and p5!=p2 and p5!=pl: if p6!=p5 and p6!=p4 and p6!=p3 and p6!=p2 and p6!=pl:
arrangements = arrangements+1 arrangenents = arrangements + 1
print(pl, p2, p3, p4, pS) print(pl, p2, p3, p4, pS5, p6)
print(arrangements) print(arrangements)

Figure 11. (a,b) The students’ code for PHONE, which they adjusted to get code for ROCKET.

Figure 12. Corey and CJ's list of the first eight outcomes.

COGNITION AND INSTRUCTION (%) 29

arrangements of ROCKET. He scrolled through the set of outcomes that had been generated by
the computer, making the following comment:

As he scrolled, he explicitly drew attention to the structure of the list of outcomes and articu-
lated a pattern he saw. I infer that CJ was attending to a structure within the whole set of out-
comes, and the fact that he could scroll through this set of outcomes (which is an activity
afforded by the computer) helped him to explain and justify why multiplication made sense. In
fact, he went on to use a similar explanation to explain his solution to the PORTLAND problem.
The point here is that the students were able to use the computational representation of the set
of outcomes as part of their justification. In this way, the computational setting offered an add-
itional representation that the students could use as a source of justification for why the mathem-
atical expression worked. I consider this to be an instance of the students reflecting on the
outcomes and connecting them to the process of multiplication (and the expression of
8.7-6-5-4:3-2-1). This episode shows that in some more advanced problems, the students were
able to leverage computational thinking practices in order to make connections among compo-
nents of Lockwood’s (2013) model. Similar instances occurred throughout the teach-
ing experiment.

Leveraging multiple representations in the coin flips problem

I now offer one final example that highlights Charlotte and Diana’s uses of multiple representa-
tions and that demonstrates how the computational representations offered some combinatorial
insights for the students into ways in which counting processes generate outcomes. Charlotte and
Diana were working on the Coin Flips problem, which stated the following: Write a program to
list (and determine the total number of) all possible outcomes of flipping a coin 7 times. The stu-
dents remixed code from the License Plate problem discussed previously to solve the Coin Flips
problem, as seen in Figure 13.

I asked the students why they made seven nested loops, and Diana said, “Because there is
seven different digits, or characters in the outcome. So, we’re going to sort it into seven columns
and each one of those is independent and not - like they’re variable, so they don’t depend on
each other.” She explained when she said “sort” she meant, “The first flip of the coin is in the
first column, the second flip of the coin is in the second column, and so on.” This exchange and
discussion of columns suggests that the students were thinking about what the output of the pro-
gram would be, and that they desired to have output that consisted of 7-tuples.

Numbers = ["heads', 'tails’']

Licenseplate = 0
for 1L in Numbers:
for m in Numbers:
for n in Numbers:
for o in Numbers:
for p in Numbers:
for g in Numbers:
for r in Numbers:
print(1,m,n,o0,p,q,r)
Licenseplate = Licenseplate+l
print(Licenseplate)

Figure 13. The students’ code for the Coin Flip problem.

30 . E. LOCKWOOD

Interviewer 1: Great. And sorry, again, what do you think the outcomes are gonna look like then? How will they be
structured? And how many do you think you're gonna get?

Charlotte: So, since there are seven and you can get two possible outcomes for each, you just do two times two,
times two, times two, times two, times two, times two.

Interviewer 1: Cool.

Charlotte: For a total of seven.

Diana: Yeah. So, like two to the seventh.

CAREERWorksheetl o TaskS.py
D e: . Q ok » Tash2 ov » Task2boy » TsQooy » Tesldapy
CAREERWorksheetl -/ AREERW »
j Extra.py

¥ outc

oy Numbers = [;heads','tails;]

Licenseplate = 0
for 1 in Numbers:
for m in Numbers:
for n in Numbers:
for o in Numbers:

A Taskdc. py

2 Taskdd.py for p in Numbers:
A TaskS.py for g in Numbers:
TaskSc.oy for r in Numbers:

Test py

print(1,m,n,o0,p,q,r)
Licenseplate = Licenseplate+l

xternal Ubraries

print(Licenseplate)

n Numbers © for m in Numbers + for Numbers © for 0 In Numbers + for p in Numbers © for g in Numbers

» tails tails heads heads tails tails tails
tails tails heads tails heads heads heads
tails tails heads tails heads heads tails
tails tails heads tails heads tails heads
tails tails heads tails heads tails tails
tails tails heads tails tails heads heads
tails tails heads tails tails heads tails
tails tails heads tails tails tails heads
tails tails heads tails tails tails tails
tails tails tails heads heads heads heads
tails tails tails heads heads heads tails
tails tails tails heads heads tails heads
tails tails tails heads heads tails tails
tails tails tails heads tails heads heads
tails tails tails heads tails heads tails
tails tails tails heads tails tails heads
tails tails tails heads tails tails tails
tails tails tails tails heads heads heads
tails tails tails tails heads heads tails
tails tails tails tails heads tails heads
tails tails tails tails heads tails tails
tails tails tails tails tails heads heads
tails tails tails tails tails heads tails
tails tails tails tails tails tails heads
tails tails tails tails tails tails tails
128

L R

Figure 14. Output from the students’ code.

Before they ran the program, I asked them to predict how the outcomes would be structured
and how many there would be. In the excerpt below, I note that they correctly predicted that
there would be 2” total outcomes.

Importantly, the students were correct and seemed about to reason about the answer of 27.
However, the students getting the correct answer was not the only (or even the primary) aim of
this task. I also wanted the students to reason about the outcomes and to understand a relation-
ship between what the counting process was doing and what code would emerge. Had I only cared
about the answer, we might have been satisfied with their answer of 27; however, since I was

COGNITION AND INSTRUCTION . 31

motivated to see how they would reason about the structure of the outcomes, I asked the students
to predict how the output would be structured. They leveraged the aspect of their computational
experience that afforded prediction and reflection, knowing that they would be able to run the
code and check their prediction. In the exchange, Charlotte’s intonation suggested uncertainty ini-

Interviewer 1: Yeah. And then how do you think they’re gonna be structured?

Charlotte: It'll be like — They all seem - (pauses) | dont know.

Diana: | think it'll probably do like seven heads first, and then six heads and one tails, and five heads and two
tails, maybe?

Charlotte: And go all the way down?

Diana: And go all the way down.

Charlotte: And then go to seven tails, and all the way down?

tially, but then Diana suggested a potential structure of seven heads, then six heads and one tail,
and five heads and two tails. This was an incorrect prediction, as the first three outcomes are not
HHHHHHH, HHHHHHT, HHHHHTT, but rather HHHHHHH, HHHHHHT, HHHHHTH.

In their exchange below, the students were surprised by the actual output that was generated
by the code. They did get an answer of 128 total, but they indicated that this was not what they
had expected. Indeed, Charlotte said, “that’s weird,” and Diana said, “I'm not exactly sure how

Charlotte: It switches back and forth between -

Interviewer 1: Yeah. What do you mean?

Charlotte: So, the last column goes heads, tails, heads, tails, heads, tails. So, it does —

Diana: Oh, yeah. So, it's — yeah. It did have the first one as like seven heads, but then it didn’t go like six heads,
one tails, five heads, two tails. It went still six heads, but the tails was not on the end. It was in the -

Charlotte: Yeah. It goes through each option of - So, it goes from seven, and then it goes like six heads and it
shows you multiple different options. That's weird. Tails, tails, heads.

Diana: Yeah. I'm not exactly sure how it's sorting it.

it’s sorting it.” Note that this offers a contrast with Corey and CJ’s work on the ROCKET prob-
lem described previously, where they almost immediately realized the underlying structure of
the outcomes.

I interpret that the students experienced a perturbation related to their combinatorial reason-
ing, in the sense that they encountered an unexpected result that differed from what they had
predicted. Here, the whole list of outcomes that the computer generated caused the students to
notice an organization of the outcomes that did not match what they had expected to see.

In particular, Charlotte then paused their activity to think about what was going on. She began
to scroll through the output, as she noticed some regularity in the list of outcomes and wanted to
make sense of what was going on in terms of patterns and structure. The following exchange is
important because it demonstrates combinatorial insight that the students were gaining in terms
of the organization and structure of the set of outcomes, which I argue was supported by their
experience computing. Charlotte first saw some regularity in heads; she observed that while the
first column consisted of heads then tails, the second column split each part of the first column

Charlotte: I'm needing to scroll real quick. So, | think it's varying in each column first instead of each row. So, for the first
column it's going through all the heads, and then it goes to all the tails. And then the second column it's
doing like — Then it goes heads, tails within heads category, and then for the tails.

Interviewer: So, show me what you mean in that second column.

Charlotte: Okay. So, in the first column it just goes all heads and then all tails. And then in the second column it goes
heads, and then - Because it splits kind of like the first column into two —

Interviewer: Great.

Charlotte: - between heads and then it eventually it switches over to tails. And then | think it does it for the third column;
it splits it in three, heads, tails, heads. And then the fourth column, heads, tails, head, tails. It keeps going.

Interviewer: Okay. So, check - so, okay —

Diana: | think for the third column it would probably split into four because you have - your lack of heads in the
second column and then it needs to split into heads and tails for the third column. And a new block of tails
in the second column.

Charlotte: Yeah. So, it's kind of like our tree diagram.

Diana: Yeah.

32 (&) E LOCKWOOD

Figure 16. The students’ representations of a tree diagram and an expression.

into two (so, heads were then split into heads and tails for the second column). She made a com-
ment that perhaps the third column would be split into three, but then Diana intervened, suggest-
ing that the heads in the third column would actually get split into four, not three.

Here Charlotte and Diana brought up a different representation, a tree diagram, and the inter-
viewers prompted the students to pause and draw the tree diagram. After they had drawn two
branchings (Figure 15a), Diana connected it to the list by saying, “So, this is what we were talking
about with the third column as like it’s splitting into four.” They drew another set of branches
(Figure 15b) and then Charlotte said, “It just keeps splitting. Like that? Just keep on splitting until
we get to seven. So, we have one, two, three, four, so far. And then it'll do three more.”

The students did not complete the tree, but we discussed their partial tree with them, and they
connected even their partial tree to the mathematical expression of 2’ they had initially found.
Recall that Charlotte had been particularly curious about the fact that the last column switched
back and forth between heads and tails and had not been sure why that was happening. After
having seen the structure of the outcomes and connected them to the tree diagram, Charlotte
said that “it makes way more sense” why the right most column in the set of outcomes was
switching between heads and tails.

As we continued to discuss the code, the tree diagram, and the outcomes, Diana also wrote
out the expression 2-2-2-2-2-2-2 (Figure 16), and she explained that, “There are two options here,
and then that - like for each of those two options there’s two more options [gestures/points to
the tree diagram]. And then for each of those options there are two more options. So, it just mul-
tiplies it each time.” Ultimately, I see this as an interesting instance of representational heterogen-
eity in mathematics, where students were drawing on many different representations as they
engaged in computational thinking practices in combinatorial problem solving.

I conclude this example with a quote in which we see the specific value of the computational
representation of the entire set of outcomes for Charlotte. The interviewer asked Charlotte, “Can
you just talk a little bit more about that process and what you guys were looking for and how

Charlotte: | mean, probably just starting from the beginning and looking at each different row and seeing that it
didn't come out how we thought it would come out. Then | kind of just started looking at other
options and | kind of noticed that the Ts start getting closer and closer to the top in each column, so
then | wanted to see the first and second columns to see how it broke it up between heads and tails.

COGNITION AND INSTRUCTION (&) 33

you made sense of how the outcomes were structured?” Charlotte’s response suggests that some-
thing about the structure of the outcomes themselves, and the ability to survey of the entire out-
comes list, was useful for her.

This feature of computing gave her some insights that she could raise to Diana. Ultimately,
they seemed to gain a better understanding of why the expression 2’ gave the correct answer,
and, importantly, why their process would generate those outcomes in exactly that way. I argue
that this experience of examining and reflecting on outcomes deepened their understanding of
key combinatorial concepts that I wanted them to understand—namely, that there is a relation-
ship between counting processes and sets of outcomes.

This episode highlights an example where even though the students initially got the correct
numerical answer, we have evidence that they did not actually understand that process (and how
exactly that multiplicative process would organize and structure the set of outcomes). This is
because the students did not initially correctly predict how the outcomes would be structured,
and they were unsure and perplexed by the actual outcomes that they saw. Notably, Charlotte
was engaging in activity that was different from listing outcomes herself—instead she was reflect-
ing on an entire set of outcomes. And in reflecting on that output, she ultimately was able to
tease out precisely what happened. Thus, I argue that the experience of actually seeing the repre-
sentation of whole list of outcomes did prompt and encourage them to pause and to make sense
of what was happening in the problem. In the end, they were able to interpret what was happen-
ing within the list of outcomes, and they connected this to another representation of a tree dia-
gram and to a mathematical expression.

Discussion, implications, and avenues for future research

In this paper, I have attempted to demonstrate ways in which students’ computational experien-
ces (in the sense of computational thinking practices they experienced while engage in Python
programming activities) interacted with and supported their combinatorial reasoning. In Table 5,
I summarize these findings; together these address my first research question, which stated: In
what ways can computational thinking practices facilitate certain desirable aspects of students’ com-
binatorial thinking and activity? For each problem presented in this paper, I list the aspects of
computational experience in which the students engaged, and I list the combinatorial insight that
was supported and enriched by those particular experiences. This summary highlights the specific
ways in which students’ experience with computing during the teaching experiment served to
enrich certain desirable aspects of their combinatorial reasoning. In the remainder of this section,
I offer points of discussion and synthesize my findings, highlighting what we learned specifically
about students’ combinatorial reasoning within their computational experiences (which addresses
my second research question: What does this tell us about the nature of students’ combinatorial
reasoning and activity as it relates to computational thinking practices?). I also describe limitations
of the study and conclude with implications and avenues for future research.

The computational setting introduced computational representations, facilitating
representational heterogeneity and connections among representations

By working within the computational setting, students gained access to new computational repre-
sentations of combinatorial ideas. By using the term “computational representation,” I do not
intend to promote a dichotomy or a divide between computational and non-computational repre-
sentations, and indeed I acknowledge that students can and do use a variety of representations in
their computing (e.g., Farris et al., 2020; Sengupta et al,, 2013). However, I maintain that there
are some representations that only exist via the computer, namely the code itself (as written in
the computer) and the output of that code (in the form of entire lists produced in the PyCharm

34 (%) E.LOCKWOOD

Table 5. Connecting computational experience with combinatorial insights the students gleaned.

Problem

Computational experience

Combinatorial insight

Outfits 1a and 1d

Outfits 2b

License Plates

Rocket

Coin Flip

Representational heterogeneity
(code, list of outcomes)
Feedback fostering prediction
and reflection

Reusing and remixing code
Representational heterogeneity
(code, list of outcomes,
mathematical expression)
Feedback fostering prediction
and reflection

Representational heterogeneity
(code, list of outcomes,
mathematical expression)
Feedback fostering prediction
and reflection

Representational heterogeneity
(code, list of outcomes,
mathematical expression)
Reusing and remixing code
Representational heterogeneity
(code, list of outcomes,
mathematical expression,

tree diagram)

Feedback fostering prediction
and reflection

Reusing and remixing code

There is a relationship between
processes and outcomes (different
processes structure outcomes
differently)

A mathematical expression reflects
a process and represents a
structuring of the set of outcomes
Mathematical expressions and
formulas can be justified by
attending to structure in a set

of outcomes

There is a relationship between
processes and outcomes (different
processes structure outcomes
differently)

There is a relationship between
processes and outcomes (different
processes structure outcomes
differently)

There is a relationship between
processes and outcomes (different
processes structure outcomes
differently)

A mathematical expression reflects
a process and represents a
structuring of the set of outcomes
Mathematical expressions and
formulas can be justified by
attending to structure in a set

of outcomes

It is important to understand the
nature of the outcomes one is
trying to count (that is, what
constitutes an outcome)

interface). I consider now these computational representations within the broader perspective of
computational thinking practices, in light of prior work that values representational heterogeneity.
I acknowledge that students draw on a variety of representations—including drawings, dialogue,
inscriptions, and more (e.g., Danish, 2014; Farris et al., 2020; Sengupta et al., 2018)—even as they
engage in computational thinking practices. My goal in this section is to focus on computing par-
ticularly within the context of combinatorics—to acknowledge the existence of such computa-
tional representations broadly but then to focus specifically on what such representations afford
in terms of students’ combinatorial reasoning. In this way, I speak to particular ways in which
combinatorics and computing reflexively interact, thus addressing the research questions I have
posed. In light of the framing of disciplinary reflexivity, I now draw some conclusions about
computing particularly in relation to combinatorial thinking and activity.

Counting processes and computer code as a representation

I begin by discussing counting processes and the role that computing played in introducing and
reinforcing these processes for the students in my study. I interpret that the Python code served
as a representation of counting processes that students could refer to and reason about. Such
code has several elements, including, for instance, the initially defined lists, the loops themselves,
conditional statements within the loops, variables within loops, and print statements. The code
offered students a way to encapsulate a counting process and a way to think about certain

COGNITION AND INSTRUCTION (&) 35

elements of such processes. More specifically, in writing or evaluating code (including reusing or
remixing code), a student has to think precisely through an exact process that they want to have
happen, they have to reason systematically about the step-by-step algorithm of a certain counting
process, and they have to communicate that to the computer. Such communication with the com-
puter implies a necessary level of precision in describing a process. This came out in Charlotte
and Diana’s work on the License Plate and Coin Flips problems and in Part 1d of the Outfits
problem for both pairs of students. In these cases, the students were not initially precise in their
process, but they refined their thinking through refinement of their code to become more exact
in articulating the details of their processes. In particular, in Part 1d of the Outfits problem, they
initially thought that switching variables in their code would produce outfits that were structured
by groups of pants followed by shirts. This is not what was produced though, and they had to
reexamine and refine their process by editing the code. Combinatorially, in articulating a count-
ing process, one could describe it verbally, or one could write down a paragraph or a series
of steps.

This feature of counting and computing emphasizes why these two domains are particularly
well-suited. Thinking about code as a process is common in computing education, and in some
sense the students’ work in this paper is not unexpected in terms of existing research on comput-
ing education. However, taken in the context of combinatorics, this common practice takes on
special meaning and has rich, specific mathematical implications. In particular, the combinatorics
education research has highlighted that counting processes alone can be hard to articulate and
describe, and that students do not always know what their processes are doing (Annin & Lai,
2010; Lockwood, 2014) and, specifically, what the output of a process actually is. In light of this
research, then, we see how the practice of computing connects well with and offers implications
for this existing problem and issue within combinatorics education. This exemplifies disciplinary
reflexivity—we have a common computational thinking practice involving reasoning about proc-
esses and algorithms, and we have a disciplinary setting where careful reasoning about, reflection
on, and understanding of processes is especially vital. Thus, in terms of counting processes and
understanding them, the fact that enumeration as a discipline involves the articulation and imple-
mentation of precise counting processes, it is particularly well suited to benefit from program-
ming and using code to articulate processes precisely.

Sets of outcomes and output as a representation

The computer also afforded the generation of entire sets of outcomes, and these entire sets served
as a representation about which students could reflect and reason. The fact that the students
could survey a whole set of outcomes allowed them to reflect on the overall structure of the out-
put, and they could engage in activities like being able to scroll through and identify regularity
and patterns. Such activity seemed to help with practices like justification, as seen in work on the
ROCKET and Coin Flip problems. In addition, being able to survey whole sets of outcomes
allowed them to critique their own reasoning and reflect on predictions that did not accurately
reflect the output of the code, which we saw in students’ work on the Outfits and License Plates
problems. In this study, the computational setting afforded the generation of entire sets of out-
comes, even large ones, and this showed students how their process created and organ-
ized outcomes.

I acknowledge that the computer is not necessary to give students access to entire sets of out-
comes. Students perhaps could list outcomes for some small problems, and, in theory, they could
generate large sets of outcomes by hand given enough time and resources. Additionally, teachers
or researchers could give entire large sets of outcomes for students to examine. However, I con-
tend that those activities have their limitations—they do not let students generate large sets of
outcomes immediately or flexibly, and students may not be assured to create complete lists

36 (&) E.LOCKWOOD

precisely. Thus, I argue that computing does indeed offer an affordance for students by providing
access to a unique representation via generating entire sets of outcomes quickly and efficiently.

The use of the computer to generate output upon which students can reflect is not new, and
researchers have documented affordances of this in a variety of contexts, like having students see
outcomes of modeling activities, which they can then adjust (such as the predator-prey models in
Wilensky & Reisman, 2006). However, the point is that we see an application of this in the con-
text of mathematics and counting, which highlights the disciplinary-specific implications of this
computational representation. Notably, here the actual outcomes and outputs are extremely
important—not as a visualization or picture of overall modeling—but literally as the output of
particular lines of code (such as each iteration of a loop, each print statement, etc.). Francis and
Davis (2018) highlight the fact that multiplication is related to looping structures in computing,
and they point out ways in which computational experiences can draw out subtleties for students
in the familiar but important operation of multiplication. This common practice of producing
output takes on special, added meaning in the context of combinatorics, particularly as it relates
to multiplication. We know in combinatorics education that understanding and reasoning about
outcomes is important (e.g., Lockwood, 2013, 2014), and here this computational thinking prac-
tice specifically aligns with a fundamental conceptual feature of enumeration.

Further, we see the reflexive nature of how mathematics can inform computational thinking
practices as well. As the students reflected on particular features of these entire sets of outcomes,
they engage in desirable computational thinking practices, including reusing and remixing and
predicting and reflecting. For instance, in considering the structure of the overall set of outcomes
(such as Charlotte and Diana’s reasoning about the Coin Flips problem, or Corey and CJ’s
insights about the ROCKET problem), the students have to make sense of the output. This is not
just a holistic understanding where they get the total value, but they must understand how to
coordinate different columns and rows of outcomes. This pushes them to think about multiple
stages of a process and multiple dimensions of the output, extending their reasoning beyond sim-
ple linear processes. Here, they have opportunities to reason iteration and automation, to think
structurally, and to engage in activities like abstracting and generalizing. As I note in the limita-
tions, I did not explore the impact of combinatorics on computational experiences in depth, but
there is some evidence of ways in which the mathematical setting enriched the students’ compu-
tational experiences.

Execution and implementation of programs as reinforcing connections among
representations
In addition to affording novel representations of combinatorial concepts, the computational set-
ting facilitated students’ formulating connections between these computational representations.
Because students could run the code and generate outcomes, they could directly and explicitly see
that a particular bit of code yielded a specific list of outcomes. This creation of and reflection
upon output is not a newly documented phenomenon; as noted in the literature review, there has
been much work that has examined computational thinking practices and the use of multiple rep-
resentations in light of complex systems in a variety of domains. Previous studies in computing
discuss students’ production of and reflection upon computer output. Often this involves
modeling, where researchers and teachers seek to use features of the computer to handle systems
that might be too complex or difficult to manage by hand (e.g., Danish, 2014; Wilensky &
Reisman, 2006). In particular, the computer can run many simulations, offer visualizations, and
help students to articulate and specify processes. However, here I examine some discipline-
specific implications of such activity.

One notable feature is that the computational setting allowed for the computer to act as an
external, objective arbiter of a counting process that a student might want to employ. This allows
students to get outside of their own thinking and see how an objective machine would implement

COGNITION AND INSTRUCTION (&) 37

their process (as articulated through computer code). We saw this in the students’ work on Part
1d of the Outfits problem and on the License Plate and Coin Flips problems. This is important,
because when counting by hand, it is often difficult to understand and articulate what a process
is actually doing, and it is even harder to evaluate whether one’s own process is correct or incor-
rect. Indeed, Lockwood (2014) has shown that when solving counting problems by hand, students
can be convinced by a seemingly logical process that is, in fact, incorrect (others have described
similar phenomena, too, such as Annin & Lai, 2010; Batanero et al., 1997). By giving a computer
precise instructions to generate outcomes, and by then actually generating output of that process,
students can see how different processes might yield different structures on the same set
of outcomes.

Even more, the computational setting affords immediate feedback, giving students opportuni-
ties to test and experiment with different processes and what the output of these processes will
be. The computational setting offered a built-in, immediate feedback loop that related code with
output. In terms of Lockwood’s (2013) model, I interpret that in the combinatorial context, this
feedback loop allows students to see explicitly how a counting process generates and organizes a
list of outcomes. This immediate feedback is bolstered by the activity of prediction, which
highlights these representations and connections between them. In this way, the computational
thinking practices of prediction and reflection uniquely interact with the computational setting to
support important combinatorial relationships.

As a specific example, we can consider a mathematical operation like multiplication, which the
students regularly used. The multiplicative structure is evident in the code, as the for loops in
their programs reflected repeated addition, which is one way in which students can think about
multiplication (see also Francis & Davis, 2018). It is also evident in the structure of the outcomes,
and the students conveyed the multiplication in their written mathematical formulas and expres-
sions. As noted in the literature review, combinatorics education researchers have focused on
multiplication, and it happens so frequently that there is a fundamental guiding principle called
the Multiplication Principle (also referred to as the Fundamental Counting Principle or the
Fundamental Principle of Counting [see Lockwood et al., 2017]) that describes when multiplica-
tion is appropriate to use in solving combinatorics problems. In counting, there is an idea that
multiplication works because for each option at a given stage in the counting process, there are a
certain number of options for any subsequent stage. This is highlighted and reinforced in the
computational representations, particularly with nested for loops in the code itself. Because multi-
plicative structure is evident across a variety of representations, this is an example in which par-
ticular combinatorial ideas are reinforced by computing.

Understanding that the computer generates outcomes according to whatever set of instructions
it is given can also offer some verification of a process, which we saw in the students’ work on
the Outfits and License Plates problems, where they predicted, tested, and verified a process and
a numerical value. Researchers have indicated that one issue with counting problems is that they
are difficult to verify (e.g., Eizenberg & Zaslavsky, 2004). This feature of the computer can also
help students detect errors in a process, or to recognize when a process might not produce the
outcomes that are desired. We saw this in Part 1d of the Outfits problem and in Charlotte and
Diana’s work on the License Plate problem. The code and the output of code can thus offer some
reasonability check about what a process even entails at all, which is something that researchers
have suggested that students find difficult (e.g., Lockwood, 2014; Lockwood, et al., 2015).

In considering disciplinary reflexivity, the students’ combinatorial experiences of predicting,
running code, and reflecting on outcomes, is related to computational thinking practice of debug-
ging and troubleshooting (e.g., Weintrop et al., 2016). Generally, I have not framed the students’
work in this study as debugging because in the examples I have provided they were not having to
adjust to an error in their code. Rather, they were having to consider an aspect of their combina-
torial understanding, and they rarely debugged code for the sake of improving their code.

38 (%) E.LOCKWOOD

However, in considering the students’ work I have presented, we can see how their engagement
in the prediction and reflection cycle, particularly about the specific combinatorial constructs of
counting processes that generate sets of outcomes, can potentially reflexively inform the computa-
tional practice of debugging. This is also related to one way in which Dewey spoke of reflection,
which is that reflection requires attitudes that value personal growth (Rogers, 2002). The students
were willing to engage in prediction, to be reflective about unexpected results, and to then use
these insights to gain conceptual understanding. This is exactly the kind of disposition and prac-
tice from which students who engage in computing may benefit.

Ultimately, we know from prior research that representational heterogeneity is not uncommon
in computing education, and such use of multiple representations is valuable for students as they
engage in computing (e.g., Danish, 2014; Dickes et al., 2020; Farris et al.,, 2020). By examining
students’ work in a combinatorial setting, we gain particular insight into what specific kinds of
representations actually were used more effectively for students, and in particular, what the
computer afforded in the form of two representations that are particularly salient and important
for combinatorics specifically.

Limitations

I now mention a few limitations both in terms of the study design and with regard to having stu-
dents working in a computational setting as I have described. One disadvantage of considering
counting processes within a computational setting is that sometimes the computer might be able
to convey some process that is useful for some smaller tasks but then becomes impractical. For
instance, the nested loop structure is useful for representing multiplication, and, I would argue, is
important in highlighting multiplicative structure within combinatorial problems. However,
nested loops quickly become impractical—to produce arrangements of all of the letters in the
alphabet would require 26 nested for loops, which would be tedious work for students to code.
This limitation is particularly related to the computational tools and structures used in this study.
I tended to keep the structure simple, highlighting for loops and conditional statements, without
many other computational structures such as recursion, and it would be possible for students to
use additional coding structures to be more efficient in their code. In addition, it might be that
while reusing and remixing code can be productive, if students rely on it too heavily, they might
not be aware of or might be hesitant to explore additional coding structures. I note, though, that
the goal of leveraging the computational setting is to provide some insight into combinatorics.
Students were able to gain such insights and engage in desirable computational activity even
using tools and structures that would not, in practice, generalize (such as nested for loops). Thus,
while I acknowledge this limitation, I maintain that the insights it can offer on tractable problems
outweigh the disadvantages.

There are also limitations of the computational setting that arise when handling sets of out-
comes, and there are problems that the computer cannot easily handle. The limitations can arise
both in the computational efficiency (so, some basic code like nested loops may simply not be
able to have a run time that would appropriately produce all of the outputs), or there are some-
times practical limitations that emerge from the particular coding environment. For instance, we
recall Diana and Charlotte’s work on the License Plate problem. They generated 125,000 and got
the output they expected, but PyCharm itself did not print all 125,000 outcomes, and when they
scrolled up they could not see outcomes before 300eed. This was simply a limitation of the
PyCharm interface and the computing power of the computer—it surprised us as interviewers,
and we had to adjust in the moment. So, while the computational setting opens up many add-
itional kinds of problems with much larger sets of outcomes, it is not a perfect extension, and
there are still many problems that are not computationally feasible. Again, I do not view this as a
fatal flaw, because the additional space of problems for which students can produce outcomes is

COGNITION AND INSTRUCTION (%) 39

still much, much larger than lists they can create by hand, and being able to survey entire sets of
outcomes seemed to be productive for students. I believe that it is important to note this limita-
tion, but it does not undermine the potential value of the computational setting for enriching stu-
dents’ combinatorial thinking and activity.

Another point is that although I draw on disciplinary reflexivity, I have mostly focused on the
ways in which computational experience supports combinatorial reasoning (and not the other dir-
ection). This is largely due to the focus of my study and to space limitations, but I acknowledge
that there is more to explore about the ways in which certain domain-specific thinking might
support and enrich combinatorial experiences. This is also a potential avenue that could be pur-
sued in future research studies.

Finally, I have restricted this set of interviews to a small population of students. However,
based on the students” work on these tasks, I hypothesize that other students with different math-
ematical backgrounds may also benefit from computing as these students did, and there is noth-
ing unique about these students being vector calculus students that afforded their engagement
with these computational thinking practices in solving combinatorial problems. Because of the
accessible nature of combinatorics and the fact that these students were relatively novice counters,
there is reason to believe that younger students or students in less-advanced mathematics courses
could also have similar experiences. Combinatorics education researchers would benefit from
more extensive work with more students and broader populations.

Implications and directions for future research

The results in this paper offer an evidence-based, theoretically grounded instance of ways in
which students’ engagement with computational thinking practices can be leveraged to enrich
their mathematical thinking. I highlight implications and directions for future research both in
terms of combinatorics and for other domains more broadly. I have offered one specific example
within combinatorics, but my intention is that there may be a broader implication for other
domains, which is in line with a perspective of disciplinary reflexivity.

In previous sections I have outlined implications of these findings for combinatorics. In par-
ticular, computational thinking practices provide rich and unique opportunities for students to
engage with representations of counting processes and sets of outcomes and to formulate and
reinforce connections among these representations. An implication of this work, then, is that
researchers and teachers who focus on combinatorics may want to give students opportunities to
engage in combinatorial thinking and activity within computational settings. In terms of future
directions for combinatorics education research, there are many potential paths to pursue. One
option would be to explore additional kinds of counting problems and combinatorial situations,
and to design tasks where students can explore combinatorial ideas computationally. Researchers
could take any of the many particular topics that have been studied previously (such as the multi-
plication principle, issues of order, combinatorial proof, overcounting, set partitions, bijections,
and more) and explore how those ideas might be taught and learned when students have access
to coding and programming in a computational setting. In addition, while I chose Python as a
particular programming environment, there are many other specific computational contexts in
which students’ combinatorial thinking and activity could be explored. For example, researchers
could study whether writing pseudocode has positive effects for students, or whether other lan-
guages, block-based programming, or agent-based programming afford similar combinatorial
insights for students.

In this study, I designed tasks that would use code that is relatively simple, and I drew on
only a few basic computational practices and structures. Even within this simple code there are
components that can be examined, such as loops (whether or not they are nested), initial lists,
print statements, conditional statements, variables, and more. In this paper, I do not focus on

40 (&) E.LOCKWOOD

how students understood various aspects of the code itself, and an avenue for future research
would be to examine how students to reason about some of these elements, particularly in terms
of mathematical ideas (within combinatorics or beyond). Another, related avenue for future
research would be to incorporate tasks with more complex computational tools such as recursion,
more complicated data structures, function definitions, etc. There are many more opportunities
to examine additional kinds of coding structure as they relate to students’ understanding of math-
ematical topics and ideas, in a variety of mathematical domains. Finally, there is much more to
explore about the variety of representations that students use, as well as how they reason about,
use, and move among them. Researchers could investigate students’ experiences with multiple
representations, including exploring what kinds of pedagogical interventions might effectively
help students interpret, develop, and traverse representations.

Acknowledgments

The author would like to thank Zackery Reed, the editor, and the anonymous reviewers for invaluable feedback on ini-
tial versions of the manuscript, as well as Adaline De Chenne and Branwen Schaub for their work on this project.

Funding

This material is based upon work supported by the National Science Foundation under Grant [No. 1650943].

ORCID

Elise Lockwood ([#) http://orcid.org/0000-0002-4118-338X

References

Annin, S. A, & Lai, K. S. (2010). Common errors in counting problems. The Mathematics Teacher, 103(6),
402-409. https://doi.org/10.5951/MT.103.6.0402

Batanero, C., Navarro-Pelayo, V., & Godino, J. (1997). Effect of the implicit combinatorial model on combinatorial
reasoning in secondary school pupils. Educational Studies in Mathematics, 32(2), 181-199. https://doi.org/10.
1023/A:1002954428327

Benton, L., Hoyles, C., Kalas, I., & Noss, R. (2017). Bridging primary programming and mathematics: Some find-
ings of designing research in England. Digital Experiences in Mathematics Education, 3(2), 115-138. https://doi.
org/10.1007/s40751-017-0028-x

Benton, L., Saunders, P., Kalas, 1., Hoyles, C., & Noss, R. (2018). Designing for learning mathematics through pro-
gramming: A case study of pupils engaging with place value. International Journal of Child-Computer
Interaction, 16, 68-76. https://doi.org/10.1016/].ijcci.2017.12.004

Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the development of computational think-
ing. Paper Presented at the Annual American Educational Research Association Meeting, Vancouver, Canada.

Broley, L., Caron, F., & Saint-Aubin, Y. (2018). Levels of programming in mathematical research and university
mathematics education. International Journal of Research in Undergraduate Mathematics Education, 4(1), 38-55.
https://doi.org/10.1007/s40753-017-0066-1

Buteau, C., & Muller, E. (2017). Assessment in undergraduate programming-based mathematics courses. Digital
Experiences in Mathematics Education, 3(2), 97-114. https://doi.org/10.1007/s40751-016-0026-4

Buteau, C., Gueudet, G., Muller, E., Mgombelo, J., & Sacristdn, A. I. (2020). University students turning computer
programming into an instrument for ‘authentic’ mathematical work. International Journal of Mathematical
Education in Science and Technology, 51(7), 1020-1041. https://doi.org/10.1080/0020739X.2019.1648892

Buteau, C., Muller, E., & Marshall, N. (2015). When a university mathematics department adopted core mathemat-
ics courses of an unintentionally constructionist nature: really? Digital Experiences in Mathematics Education,
1(2-3), 133-155. https://doi.org/10.1007/s40751-015-0009-x

Buteau, C., Muller, E., Marshall, N., Sacristin, A. I., & Mgombelo, J. (2016). Undergraduate mathematics students
appropriating programming as a tool for modelling, simulation, and visualization: a case study. Digital
Experiences in Mathematics Education, 2(2), 142-166. https://doi.org/10.1007/s40751-016-0017-5

https://doi.org/10.5951/MT.103.6.0402
https://doi.org/10.1023/A:1002954428327
https://doi.org/10.1023/A:1002954428327
https://doi.org/10.1007/s40751-017-0028-x
https://doi.org/10.1007/s40751-017-0028-x
https://doi.org/10.1016/j.ijcci.2017.12.004
https://doi.org/10.1007/s40753-017-0066-1
https://doi.org/10.1007/s40751-016-0026-4
https://doi.org/10.1080/0020739X.2019.1648892
https://doi.org/10.1007/s40751-015-0009-x
https://doi.org/10.1007/s40751-016-0017-5

COGNITION AND INSTRUCTION 41

Caballero, M. D. (2015). Computation across the curriculum: What skills are needed? The Proceedings of the
Physics Education Research Conference (pp. 79-82).

Caballero, M. D., Chonacky, N., Engelhardt, L., Hilborn, R. C., Lopez del Puerto, M., & Roos, K. R. (2019). Picup:
A community of teachers integrating computation into undergraduate physics courses. The Physics Teacher,
57(6), 397-399. https://doi.org/10.1119/1.5124281

Danish, J. A. (2014). Applying an activity theory lens to designing instruction for learning about the structure,
behavior, and function of a honeybee system. Journal of the Learning Sciences, 23(2), 100-148. https://doi.org/
10.1080/10508406.2013.856793

DeJarnette, A. F. (2019). Students’ challenges with symbols and diagrams when using a programming environment
in mathematics. Digital Experiences in Mathematics Education, 5(1), 36-58. https://doi.org/10.1007/s40751-018-
0044-5

Dewey, J. (1910). How we think. D. C. Heath & Co.

Dickes, A. C., Farris, A. V., & Sengupta, P. (2020). Sociomathematical norms for integrating coding and modeling
with elementary science: A dialogical approach. Journal of Science Education and Technology, 29(1), 35-52.
https://doi.org/10.1007/s10956-019-09795-7

DiSessa, A. A. (2018). Computational literacy and “the big picture” concerning computers in mathematics educa-
tion. Mathematical Thinking and Learning, 20(1), 3-31. https://doi.org/10.1080/10986065.2018.1403544

Eizenberg, M. M., & Zaslavsky, O. (2004). Students’ verification strategies for combinatorial problems.
Mathematical Thinking and Learning, 6(1), 15-36. https://doi.org/10.1207/s15327833mtl0601_2

English, L. D. (1991). Young children’s combinatorics strategies. Educational Studies in Mathematics, 22(5),
451-447. https://doi.org/10.1007/BF00367908

English, L. D. (1993). Children’s strategies for solving two- and three-dimensional combinatorial problems. Journal
of Mathematical Behavior, 24(3), 255-273.

English, L. D. (2005). Combinatorics and the development of children’s combinatorial reasoning. In G. A. Jones
(Ed.), Exploring probability in school: Challenges for teaching and learning (Vol. 40, pp. 121-141). Kluwer
Academic Publishers.

Farris, A. V., & Sengupta, P. (2014). Perspectival computational thinking for learning physics: a case study of collab-
orative agent-based modeling. Proceedings of the 11th International Conference of the Learning Sciences (ICLS
2014) (pp. 1102-1106).

Farris, A. V., Dikes, A. C., & Sengupta, P. (2020). Grounding computational abstractions in scientific experience.
Proceedings of the 13th International Conference of the Learning Sciences (ICLS 2020) (pp. 1333-1340).

Feurzeig, W., Papert, S., & Lawler, B. (2011). Programming-languages as a conceptual framework for teaching
mathematics. Interactive Learning Environments, 19(5), 487-501. https://doi.org/10.1080/10494820903520040

Francis, K., & Davis, B. (2018). Coding robots as a source of instantiations for arithmetic. Digital Experiences in
Mathematics Education, 4(2-3), 71-86. https://doi.org/10.1007/s40751-018-0042-7

Gadanidis, G., Hughes, J. M., Minniti, L., & White, B. J. G. (2017). Computational thinking, grade 1 students and
the binomial theorem. Digital Experiences in Mathematics Education, 3(2), 77-96. https://doi.org/10.1007/
s40751-016-0019-3

Goldin, G. A. (2014). Mathematical Representations. In S. Lerman (Ed.), Encyclopedia of mathematics education.
Springer. https://doi.org/10.1007/978-94-007-4978-8_103

Grover, S., & Pea, R. (2013). Computational thinking in K-12: A review of the state of the field. Educational
Researcher, 42(1), 38- 43. https://doi.org/10.3102/0013189X12463051

Guzdial, M. (1994). Software-realized scaffolding to facilitate programming for science learning. Interactive
Learning Environments, 4(1), 001-044. https://doi.org/10.1080/1049482940040101

Guzdial, M., & Naimipour, B. (2019). Task-specific programming languages for promoting computing integration: A
precalculus example. In 19th Koli Calling International Conference on Computing Education Research (Koli
Calling ’19), November 21-24, 2019, Koli, Finland. ACM. https://doi.org/10.1145/3364510.3364532

Hadar, N., & Hadass, R. (1981). The road to solving a combinatorial problem is strewn with pitfalls. Educational
Studies in Mathematics, 12(4), 435-443. https://doi.org/10.1007/BF00308141

Hambrush, S., Hoffman, C., Korb, J. T., Maugan, M., & Hosking, A. L. (2009). A multidisciplinary approach
towards computational thinking for science majors. ACM Sigcse Bulletin. https://doi.org/10.1145/1508865.
1508931

Hammond, T. C., Oltman, J., & Salter, S. (2019). Using computational thinking to explore the past, present, and
future. Social Education, 83(2), 118-122.

Hoyles, C., & Noss, R. (2015). A computational lens on design research. In S. Prediger, K. Gravemeijer, & J.
Confrey (Eds.), Design research with a focus on learning processes: An overview on achievements and challenges
(pp- 1039-1045). Zdm.

Kafai, Y. B. (2016). From computational thinking to computational participation in K-12 education: Seeking to
reframe computational thinking as computational participation. Communications of the ACM, 59(8), 26-27.
https://doi.org/10.1145/2955114

https://doi.org/10.1119/1.5124281
https://doi.org/10.1080/10508406.2013.856793
https://doi.org/10.1080/10508406.2013.856793
https://doi.org/10.1007/s40751-018-0044-5
https://doi.org/10.1007/s40751-018-0044-5
https://doi.org/10.1007/s10956-019-09795-7
https://doi.org/10.1080/10986065.2018.1403544
https://doi.org/10.1207/s15327833mtl0601_2
https://doi.org/10.1007/BF00367908
https://doi.org/10.1080/10494820903520040
https://doi.org/10.1007/s40751-018-0042-7
https://doi.org/10.1007/s40751-016-0019-3
https://doi.org/10.1007/s40751-016-0019-3
https://doi.org/10.1007/978-94-007-4978-8_103
https://doi.org/10.3102/0013189X12463051
https://doi.org/10.1080/1049482940040101
https://doi.org/10.1145/3364510.3364532
https://doi.org/10.1007/BF00308141
https://doi.org/10.1145/1508865.1508931
https://doi.org/10.1145/1508865.1508931
https://doi.org/10.1145/2955114

42 (&) E LOCKWOOD

Kapur, J. N. (1970). Combinatorial analysis and school mathematics. Educational Studies in Mathematics, 3(1),
111-127.

Knochel, A. D., & Patton, R. M. (2015). If art education then critical digital making: computational thinking and
creative code. Studies in Art Education, 57(1), 21-38. https://doi.org/10.1080/00393541.2015.11666280

Kotsopoulos, D., Floyd, L., Khan, S., Kizito Namukasa, I., Somanath, S., Weber, J., & Yiu, C. (2017). A pedagogical
framework for computational thinking. Digital Experiences in Mathematics Education, 3(2), 154-171. https://doi.
org/10.1007/540751-017-0031-2

Lim, K. H. (2006). Characterizing students’ thinking: Algebraic inequalities and equations. In S. Alatorre, J. L.
Cortina, M. Sdiz, & A. Méndez (Eds.), Proceedings of the 28th Annual Meeting of the North American Chapter of
the Psychology of Mathematics Education (Vol. 2, pp. 102-109). Universidad Pedagégica Nacional.

Lim, K. H., Buendia, G., Kim, O. K., Cordero, F., & Kasmer, L. (2010). The role of prediction in the teaching and
learning of mathematics. International Journal of Mathematical Education in Science and Technology, 41(5),
595-608. https://doi.org/10.1080/00207391003605239

Lockwood, E. (2011). Student connections among counting problems: An exploration using actor-oriented transfer.
Educational Studies in Mathematics, 78(3), 307-322. https://doi.org/10.1007/s10649-011-9320-7

Lockwood, E. (2013). A model of students’ combinatorial thinking. The Journal of Mathematical Behavior, 32(2),
251-265. https://doi.org/10.1016/j.jmathb.2013.02.008

Lockwood, E. (2014). A set-oriented perspective on solving counting problems. For the Learning of Mathematics,
34(2), 31-37.

Lockwood, E., & De Chenne, A. (2020). Using conditional statements in Python to reason about sets of outcomes
in combinatorial problems. International Journal of Research in Undergraduate Mathematics Education, 6(3),
303-346. https://doi.org/10.1007/s40753-019-00108-2

Lockwood, E., & De Chenne, A. (2021). Reinforcing key combinatorial ideas in a computational setting: A case of
encoding outcomes in Python programming. The Journal of Mathematical Behavior, 62, 100857. https://doi.org/
10.1016/j.jmathb.2021.100857

Lockwood, E., & Gibson, B. (2016). Combinatorial tasks and outcome listing: Examining productive listing among
undergraduate students. Educational Studies in Mathematics, 91(2), 247-270. https://doi.org/10.1007/s10649-015-
9664-5

Lockwood, E., & Purdy, B. (2019). Two undergraduate students’ reinvention of the multiplication principle.
Journal for Research in Mathematics Education, 3(50), 225-267.

Lockwood, E., DeJarnette, A. F., & Thomas, M. (2019). Computing as a mathematical disciplinary practice. Online
First in Journal of Mathematical Behavior. https://doi.org/10.1016/j.jmathb.2019.01.004

Lockwood, E., Reed, Z., & Erickson, S. (2021). Undergraduate students’ combinatorial proof of binomial identities.
Journal for Research in Mathematics Education, 52(5), 539-580. https://doi.org/10.5951/jresematheduc-2021-01

Lockwood, E., Reed, Z., & Caughman, J. S. (2017). An analysis of statements of the multiplication principle in
combinatorics, discrete, and finite mathematics textbooks. International Journal of Research in Undergraduate
Mathematics Education, 3(3), 381-416. https://doi.org/10.1007/s40753-016-0045-y

Lockwood, E., Swinyard, C. A., & Caughman, J. S. (2015). Patterns, sets of outcomes, and combinatorial justifica-
tion: Two students’ reinvention of counting formulas. International Journal of Research in Undergraduate
Mathematics Education, 1(1), 27-62. https://doi.org/10.1007/s40753-015-0001-2

Magana, A. J., Falk, M. L, & Reese, M. J. Jr., (2013). Introducing discipline-based computing in undergraduate
engineering education. ACM Transactions on Computing Education, 13(4), 116-122. https://doi.org/10.1145/
2534971

Magana, A. J., Falk, M. L., Vieira, C., & Reese, M. J. Jr., (2016). A case study of undergraduate engineering stu-
dents’ computational literacy and self-beliefs about computing in the context of authentic practices. Computers
in Human Behavior, 61, 427-442. https://doi.org/10.1016/j.chb.2016.03.025

Maher, C. A, Powell, A. B, & Uptegrove, E. B. (Eds.). (2011). Combinatorics and Reasoning: Representing,
Justifying, and Building Isomorphisms. Springer.

Naimipour, B., Guzdial, M., & Shreiner, T. (2019). Helping social studies teachers to design learning experiences
around data: Participatory design for new teacher-centric programming languages [Paper presentation].
Proceedings of ACM ICER conference (ICER’19), August 2019, Toronto, Canada. https://doi.org/10.1145/
3291279.3341211

Odden, T. O. B,, Lockwood, E., & Caballero, M. D. (2019). Physics computational literacy: An exploratory case
study using computational essays. Physical Review Physics Education Research, 15(2), 020152. https://doi.org/10.
1103/PhysRevPhysEducRes.15.020152

Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. Basic Books.

Reed, Z., & Lockwood, E. (2021). Leveraging a categorization activity to facilitate productive generalizing activity
and combinatorial reasoning. Online first. Cognition and Instruction, 39(4), 409-450. https://doi.org/10.1080/
07370008.2021.1887192

https://doi.org/10.1080/00393541.2015.11666280
https://doi.org/10.1007/s40751-017-0031-2
https://doi.org/10.1007/s40751-017-0031-2
https://doi.org/10.1080/00207391003605239
https://doi.org/10.1007/s10649-011-9320-7
https://doi.org/10.1016/j.jmathb.2013.02.008
https://doi.org/10.1007/s40753-019-00108-2
https://doi.org/10.1016/j.jmathb.2021.100857
https://doi.org/10.1016/j.jmathb.2021.100857
https://doi.org/10.1007/s10649-015-9664-5
https://doi.org/10.1007/s10649-015-9664-5
https://doi.org/10.1016/j.jmathb.2019.01.004
https://doi.org/10.5951/jresematheduc-2021-01
https://doi.org/10.1007/s40753-016-0045-y
https://doi.org/10.1007/s40753-015-0001-2
https://doi.org/10.1145/2534971
https://doi.org/10.1145/2534971
https://doi.org/10.1016/j.chb.2016.03.025
https://doi.org/10.1145/3291279.3341211
https://doi.org/10.1145/3291279.3341211
https://doi.org/10.1103/PhysRevPhysEducRes.15.020152
https://doi.org/10.1103/PhysRevPhysEducRes.15.020152
https://doi.org/10.1080/07370008.2021.1887192
https://doi.org/10.1080/07370008.2021.1887192

COGNITION AND INSTRUCTION 43

Rogers, C. (2002). Defining reflection: Another look at John Dewey and reflective thinking. Teachers College
Record, 104(4), 842-866.

Sengupta, P., Dickes, A., & Farris, V. (2018). Toward a phenomenology of computational thinking in K-12 STEM.
In M. Khine (Ed.), Computational thinking in the STEM disciplines. Springer. https://doi.org/10.1007/978-3-319-
93566-9_4

Sengupta, P., Kinnebrew, J. S., Basu, S., Biswas, G., & Clark, D. (2013). Integrating computational thinking with K-
12 science education using agent-based computation: A theoretical framework. Education and Information
Technologies, 18(2), 351-380. https://doi.org/10.1007/s10639-012-9240-x

Sigel, I. A. (1981). Social experience in the development of representational thought: Distancing theory. In I. E.
Sigle, D. M. Brodzinsky, & R. M. Golinkoff (Eds.), New directions in Piagetian theory and practice. Lawrence
Erlbaum.

Sinclair, N., & Patterson, M. (2018). The Dynamic Geometrisation of Computer Programming. Mathematical
Thinking and Learning, 20(1), 54-74. https://doi.org/10.1080/1096065.2018.1403541

Steffe, L. P., & Thompson, P. W. (2000). Teaching experiment methodology: Underlying principles and essential
elements. In R. Lesh & A. E. Kelly (Eds.), Research design in mathematics and science education. Lawrence
Erlbaum Associates.

Tedre, M., & Denning, P. J. (2016). The long quest for computational thinking. Proceedings of the 16th Koli Calling
International Conference on Computing Education Research (pp. 120-129).

Tillema, E. S. (2013). A power meaning of multiplication: Three eighth graders’ solutions of Cartesian product
problems. The Journal of Mathematical Behavior, 32(3), 331-352. https://doi.org/10.1016/j.jmathb.2013.03.006
Tillema, E. S., & Gatza, A. (2016). A quantitative and combinatorial approach to non-linear meanings of multipli-

cation. For the Learning of Mathematics, 36(2), 26-33.

Vieira, C., Magana, A.], Roy, A., & Falk, M. L. (2019). Student explanations in the context of computational sci-
ence and engineering education. Cognition and Instruction, 37(2), 201-231. https://doi.org/10.1080/07370008.
2018.1539739

Wagh, A, Levy, S., Horn, M., Guo, Y., Brady, C., & Wilensky, U. (2017). Anchor code: Modularity as evidence for
conceptual learning and computational practices of students using a code-first environment. In CSCL proceed-
ings (pp. 656-659). International Society of the Learning Sciences.

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., & Wilensky, U. (2016). Defining computa-
tional thinking for mathematics and science classrooms. Journal of Science Education and Technology, 25(1),
127-147. https://doi.org/10.1007/s10956-015-0581-5

Wheatley, G. (1992). The role of reflection in mathematics learning. Educational Studies in Mathematics, 23(5),
529-541. https://doi.org/10.1007/BF00571471

Wilensky, U., & Reisman, K. (2006). Thinking like a wolf, a sheep, or a firefly: Learning biology through construct-
ing and testing computational theories—An embodied modeling approach. Cognition and Instruction, 24(2),
171-209. https://doi.org/10.1207/s1532690xci2402_1

Wing, J. M. (2016). Computational thinking: 10 years later. https://phys.org/news/2016-03-years.html#jCp.

Wing, J. M. (2008). Computational thinking and thinking about computing. Philosophical Transactions. Series A,
Mathematical, Physical, and Engineering Sciences, 366(1881), 3717-3725. https://doi.org/10.1098/rsta.2008.0118
Young, N. T., Allen, G., Aiken, J. M., Henderson, M., & Caballero, M. D. (2019). Using Random Forests to deter-
mine important features for integrating computation into physics courses. Physical Review Physics Education

Research, 1, 010114.

https://doi.org/10.1007/978-3-319-93566-9_4
https://doi.org/10.1007/978-3-319-93566-9_4
https://doi.org/10.1007/s10639-012-9240-x
https://doi.org/10.1080/1096065.2018.1403541
https://doi.org/10.1016/j.jmathb.2013.03.006
https://doi.org/10.1080/07370008.2018.1539739
https://doi.org/10.1080/07370008.2018.1539739
https://doi.org/10.1007/s10956-015-0581-5
https://doi.org/10.1007/BF00571471
https://doi.org/10.1207/s1532690xci2402_1
https://phys.org/news/2016-03-years.html#jCp
https://doi.org/10.1098/rsta.2008.0118

	Abstract
	Introduction and motivation
	Literature review and theoretical perspectives
	A brief review of prior work in STEM computing education
	A phenomenological view of computational thinking
	Representational heterogeneity
	Computational thinking practices
	Characterizing prediction and reflection
	Reusing and remixing code
	Disciplinary reflexivity
	Computing in mathematics education research

	Combinatorial problems are rich and accessible but are difficult to solve correctly
	Lockwood’s (2013) model of students’ combinatorial thinking
	Counting processes

	Sets of outcomes
	Formulas/expressions
	Relationship among counting processes and sets of outcomes

	Methods
	Data collection and analysis
	Participants and data collection
	Data analysis

	Tasks and instructional interventions
	Tasks
	Prompts for prediction and reflection

	Results
	Introduction to syntax and combinatorial concepts through the outfits problem
	Outfits problem part 1a—an introduction to syntax via prediction and reflection
	Outfits problem part 1d—connecting counting processes and lists of outcomes
	Outfits problem part 2b—predicting and reflecting on mathematical expressions

	Relating components of the model in subsequent episodes in the teaching experiment
	Experimentation and alternative solution methods in the license plate problem
	Identifying structure in lists of outcomes in the ROCKET problem
	Leveraging multiple representations in the coin flips problem

	Discussion, implications, and avenues for future research
	The computational setting introduced computational representations, facilitating representational heterogeneity and connections among representations
	Counting processes and computer code as a representation
	Sets of outcomes and output as a representation
	Execution and implementation of programs as reinforcing connections among representations

	Limitations
	Implications and directions for future research
	Acknowledgments
	Funding
	Orcid
	References

