

1 **Biogeochemistry goes viral: Towards a multifaceted approach to study viruses and**
2 **biogeochemical cycling**

4 Patricia Q. Tran^{1,2}, Karthik Anantharaman¹

6 ¹ Department of Bacteriology, University of Wisconsin-Madison

7 ² Department of Integrative Biology, University of Wisconsin-Madison

9 **ABSTRACT**

11 Viruses are ubiquitous on Earth and are keystone components of environments, ecosystems, and
12 human health. Yet, viruses remain poorly studied because most cannot be isolated in a
13 laboratory. In the field of biogeochemistry, which aims to understand the interactions between
14 biology, geology, and chemistry, there is progress to be made in understanding the different roles
15 played by viruses in nutrient cycling, food webs, and elemental transformations. In this
16 commentary, we outline current microbial ecology frameworks for understanding
17 biogeochemical cycling in aquatic ecosystems. Next, we review some existing experimental and
18 computational techniques that are enabling us to study the role of viruses in biogeochemical
19 cycling, using examples from aquatic environments. Finally, we provide a conceptual model that
20 balances limitations of computational tools when combined with biogeochemistry and ecological
21 data. We envision meeting the grand challenge of understanding how viruses impact
22 biogeochemical cycling by using a multifaceted approach to viral ecology.

24 **COMMENTARY**

26 **The importance of viruses in aquatic biogeochemistry**

28 Microbial communities are central to biogeochemical cycling, as observed in marine (1), soil (2),
29 and freshwater environments (3). Over the past decades, technological advances have led to the
30 increase of genomic sequencing, resulting in discoveries about the roles of microbes, particularly
31 bacteria and archaea. However, few studies in aquatic microbial ecology transcend the domains
32 of life to the realm of viruses. This lack of understanding of viruses prevents their inclusion in
33 next-generation models that are being used to inform long-term predictions of metabolism,
34 ecosystems, and biogeochemistry.

36 Most studies either focus on bacteria, archaea, or viruses individually. When combined, studies
37 can explain how sudden shifts in biogeochemical processes in otherwise stable communities are
38 driven by viruses (4). Microorganisms form complex communities that interact with each other
39 through predation mechanisms such as cell lysis, grazing, and competition for resources (Figure
40 1A). Therefore, studying how all these drivers interact with each other may provide a
41 mechanistic understanding that goes beyond descriptive ecology.

43 Viral ecology studies have demonstrated that viral roles in ecosystems cannot be ignored. For
44 example, lytic viruses can target microbes, release carbon that fuels the microbial food web (the
45 viral shunt) (5), and have direct effects on the microbial community composition (6).

46 Additionally, viruses encoding auxiliary metabolic genes (AMGs) can manipulate their hosts and

47 impact microbial metabolism, and processes such as carbon, nitrogen, sulfur, and iron cycling
48 (7). These biogeochemical pathways are often tightly associated with environmental conditions
49 such as oxyclines or chemoclines in aquatic ecosystems (Figure 1B). Most viral genomic studies
50 that specifically address biogeochemical pathways concern marine environments. Other aquatic
51 environments including inland lakes, coastal regions, streams, and rivers, also have dynamic
52 spatio-temporal patterns which are related to microbial (bacterial, archaeal, eukaryotic) roles in
53 biogeochemical cycling but remain understudied in the context of viruses. Evidence points to
54 similarly prominent viral communities in ecosystems such as lakes, where AMG-containing
55 viruses are potentially involved in biogeochemical cycling (4, 8–10). With growing evidence of
56 viral roles in biogeochemical cycling, obtaining a more holistic understanding of functional
57 roles, interactions, and effects of these communities can be achieved by bridging across the
58 bacteria-archaea-eukaryote-virus boundaries.

59

60 **Techniques to study the role of environmental viruses**

61

62 Experimental and laboratory techniques exist and provide an initial set of tools to begin
63 integrating different scales of biology (Figure 1). Some methods rely on the ability to culture
64 viruses with their host, whereas others can be performed without. Enumeration of viruses by
65 phage plaque assays show that virus counts vary within an aquatic ecosystem (11). In a global
66 analysis of virus morphology in the oceans, researchers used microscopy to observe that non-
67 tailed viruses dominated surface ocean microbial communities (12). By incorporating ecological
68 context, follow-up studies have showed that non-tailed viruses in marine environments are a
69 major predation mechanism on bacteria (13). Yet, most viruses studied in culture are tailed,
70 thereby showing the importance of both cultivation-based and cultivation-independent lines of
71 evidence for understanding ecological relevance. Dilution-to-extinction, another laboratory
72 method, involves filtering water, followed by enrichment, purification, and isolation to finally
73 obtain a virus-host system (14). Model host-virus systems are useful to explore targeted
74 biogeochemical pathways and host-virus interactions since the controlled environment provides
75 higher reproducibility. For example, carbon regeneration could be addressed by changing the
76 abundance of viruses and measuring the host growth rate and biomass over time. Similarly, a
77 host known to be involved in denitrification can be measurably impaired or improved upon the
78 addition of a virus that targets it, by tracking host, viral, and chemical characteristics over time.

79

80 One step towards a more holistic understanding of biogeochemical processes in ecosystems is to
81 move beyond studying model organisms to learn about other components of an ecosystem
82 (biological, chemical, geological). Additionally, biogeochemistry relies on biology, geology, and
83 chemistry, all of which have various techniques that can help understand the overall impact of
84 viral ecology. Whereas there is a generalized recognition of the need to study uncultured
85 microorganisms (archaea, bacteria, eukaryotes) to understand ecosystem processes, this concept
86 is not as common in the field of virology. Since viruses are dependent on a host for cultivation,
87 and most microorganisms in nature cannot be cultivated, few environmentally relevant viruses
88 have been cultured to date.

89

90 To circumvent the limitations of culture-dependent viral ecology, the ongoing development of
91 computational techniques that address the interpretative challenges of viral ‘omics’ data will
92 facilitate their analysis in complex environmental ecosystems. In the past years, the field of

93 microbial metagenomics (mostly bacteria, archaea) has seen a shift from bulk read-based
94 metagenome characterization towards functional understanding at the scale of metagenome-
95 assembled genomes, and even at strain-level understanding of evolutionary processes and
96 ecological patterns. The improved ability to leverage information from metagenomics is in part
97 due to computational advances like high-throughput sequence processing, genome binning,
98 improved algorithmic efficiency, and standardization of data. Such computational advances may
99 be possible in the future for viral omics. Viral genomic tools are being written, tested, compared,
100 and used to gain ecological insights (15–17), and information is becoming standardized (18). In
101 time, these tools will facilitate a better understanding of viruses and their complex
102 biogeochemical interactions.

103
104 Transcending laboratory-only and genomics-only boundaries can lead to novel methods for
105 studying viral ecology that take advantage of both strengths. Single-cell viral tagging and
106 sequencing, analogous in some ways to single-cell genome sequencing of bacteria, relies on
107 tagging viruses, using cell sorting and sequencing and was developed for the human-gut (19).
108 Another technique, epicPCR, consists of linking phylogenetic genes to functional genes, and
109 then uses sequencing to obtain high-throughput ecologically relevant information about cells
110 (20). EpicPCR has been adapted to study viral-host interactions without cultivation in estuarine
111 environments (21). All these techniques highlight the future of viral ecology, and the potential
112 for their application across aquatic ecosystems.

113
114 **Looking forward: Combining multifaceted approaches is important to get a holistic
115 understanding of ecosystem ecology**

116
117 The amount of genomic data generated has exponentially increased in recent years, and their
118 interpretation benefits from a thorough understanding of the historical and ecological context,
119 and of future challenges that the ecosystem may encounter (Figure 2). We believe that the ability
120 to interpret viral ecology data, particularly omics-based, will be facilitated by collecting metadata
121 and contextualizing the study system. For example, one could study the impact of carbon on
122 bacterial growth at various resolutions ranging from simple studies focused on positive
123 feedbacks at an organismal or community level (Figure 2A), to increasing complexity of
124 interactions (Figure 2B, C). Moving towards more integrative studies, the incorporation of
125 multiple species, multiple realms of life, comprehensive metadata about biogeochemistry and the
126 environment will allow us to determine complex positive and negative feedbacks in the system
127 (Figure 2). Specifically in the case of viral ecology, we suggest that standard virus sampling
128 methods be coupled with detailed metadata collection of biogeochemistry, and microbial
129 communities (bacteria, archaea, eukaryotes), which could greatly increase the ability to interpret
130 and synthesize results.

131
132 Figure 2D demonstrates how computational techniques and their results, while offering a
133 glimpse into viral ecology, remain challenging to interpret. In the simplified example, a
134 metagenome generated from a given sample is used as a starting point to computationally
135 identify viruses. Along each step of the pipeline, context is lost because a relatively low
136 percentage of viruses are identified, of which most viral genomes are partial, and even fewer of
137 the identified viruses have an identified ecological function or role. The analysis of viral
138 genomics can be challenging on its own, especially where viral bioinformatics methods remain

139 in constant development and have their own shortcomings. Given the same genomic dataset and
140 outcome, the ability to interpret ecological functions is significantly increased with the
141 availability of comprehensive metadata and biogeochemical data (Figure 2C, D) compared to
142 without (Figure 2A).

143
144 Finally, we envision that full integration of viral ecology into measurable and predictable
145 outcomes would involve its integration into biogeochemical and ecosystem models. Substantial
146 efforts have been made to integrate metagenomic and metatranscriptomic data of
147 microorganisms (bacteria and archaea) in predicting biogeochemical processes such as carbon,
148 nitrogen and sulfur cycling across redox gradients (22, 23). Realistically, it has taken over a
149 decade of work for the field of (bacterial and archaeal) metagenomics to move on from
150 descriptive studies of biodiversity towards mechanistic and predictive models that integrate
151 multiple lines of experimental and genomic evidence. Even so, these integrative studies are not
152 the norm. While challenges and opportunities in viral ecology will involve overcoming resource
153 limitations and cross-disciplinary learning curves, we envision the ability to closely couple viral
154 ecology and biogeochemistry to be made through these multifaceted efforts.

155
156 **Acknowledgements**
157 We thank Laura Hug and Jack Gilbert for the invitation to contribute to this special series. We
158 thank members of the Anantharaman laboratory at the University of Wisconsin-Madison for
159 helpful feedback and discussions. Figures were created with BioRender.com. P.Q.T is funded by
160 a Natural Science and Engineering Research Council of Canada (NSERC) fellowship. K.A
161 acknowledges support from the National Science Foundation under Grant No. NSF-DBI
162 2047598.

163
164
165
166
167

References

- 170 1. Fuhrman JA. 1999. Marine viruses and their biogeochemical and ecological effects. Nature 399:541–548.

171 2. Jin M, Guo X, Zhang R, Qu W, Gao B, Zeng R. 2019. Diversities and potential
172 biogeochemical impacts of mangrove soil viruses. *Microbiome* 7:58.

173 3. Zimmerman AE, Howard-Varona C, Needham DM, John SG, Worden AZ, Sullivan MB,
174 Waldbauer JR, Coleman ML. 2020. Metabolic and biogeochemical consequences of viral
175 infection in aquatic ecosystems. *Nat Rev Microbiol* 18:21–34.

176 4. Okazaki Y, Nishimura Y, Yoshida T, Ogata H, Nakano S-I. 2019. Genome-resolved viral
177 and cellular metagenomes revealed potential key virus-host interactions in a deep
178 freshwater lake. *Environ Microbiol* 21:4740–4754.

179 5. Wilhelm SW, Suttle CA. 1999. Viruses and Nutrient Cycles in the SeaViruses play
180 critical roles in the structure and function of aquatic food webs. *Bioscience* 49:781–788.

181 6. Weitz JS, Wilhelm SW. 2012. Ocean viruses and their effects on microbial communities
182 and biogeochemical cycles. *F1000 Biol Rep* 4:17.

183 7. Mara P, Vik D, Pachiadaki MG, Suter EA, Poulos B, Taylor GT, Sullivan MB, Edgcomb
184 VP. 2020. Viral elements and their potential influence on microbial processes along the
185 permanently stratified Cariaco Basin redoxcline. *ISME J* 14:3079–3092.

186 8. Coutinho FH, Cabello-Yeves PJ, Gonzalez-Serrano R, Rosselli R, López-Pérez M,
187 Zemskaya TI, Zakharenko AS, Ivanov VG, Rodriguez-Valera F. 2020. New viral
188 biogeochemical roles revealed through metagenomic analysis of Lake Baikal.
189 *Microbiome* 8:163.

190 9. Kieft K, Breister AM, Huss P, Linz AM, Zanetakos E, Zhou Z, Rahlff J, Esser SP, Probst
191 AJ, Raman S, Roux S, Anantharaman K. 2021. Virus-associated organosulfur
192 metabolism in human and environmental systems. *Cell Rep* 36:109471.

193 10. Chen L-X, Méheust R, Crits-Christoph A, McMahon KD, Nelson TC, Slater GF, Warren
194 LA, Banfield JF. 2020. Large freshwater phages with the potential to augment aerobic
195 methane oxidation. *Nat Microbiol* 5:1504–1515.

196 11. Ortmann AC, Suttle CA. 2005. High abundances of viruses in a deep-sea hydrothermal
197 vent system indicates viral mediated microbial mortality. *Deep Sea Res Part I* 52:1515–
198 1527.

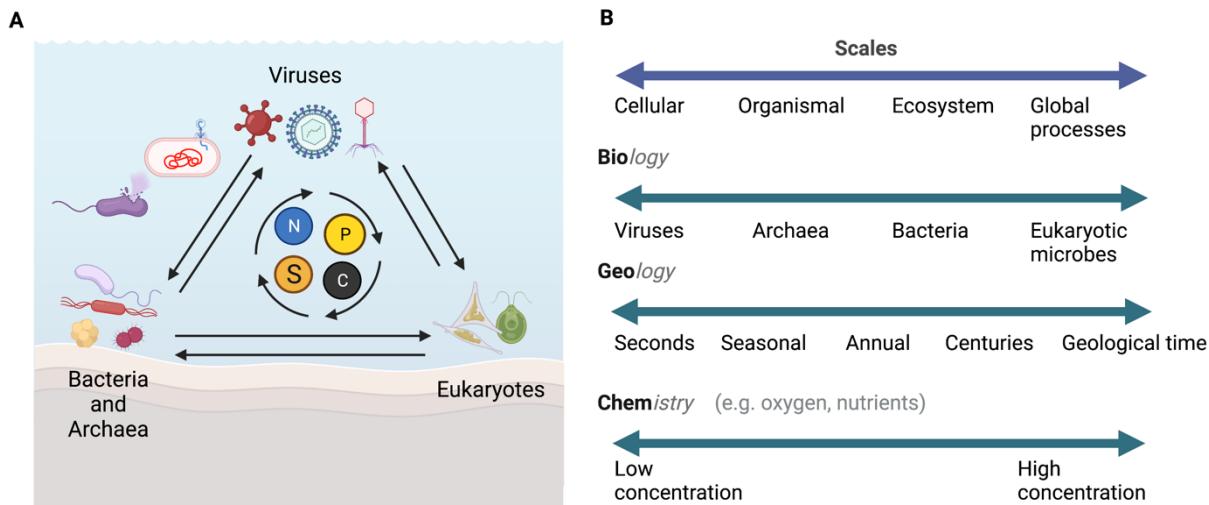
199 12. Brum JR, Schenck RO, Sullivan MB. 2013. Global morphological analysis of marine
200 viruses shows minimal regional variation and dominance of non-tailed viruses. *ISME J*
201 7:1738–1751.

202 13. Kauffman KM, Hussain FA, Yang J, Arevalo P, Brown JM, Chang WK, VanInsberghe
203 D, Elsherbini J, Sharma RS, Cutler MB, Kelly L, Polz MF. 2/2018. A major lineage of
204 non-tailed dsDNA viruses as unrecognized killers of marine bacteria. *Nature* 554:118–
205 122.

206 14. Buchholz HH, Michelsen ML, Bolaños LM, Browne E, Allen MJ, Temperton B. 2021.
207 Efficient dilution-to-extinction isolation of novel virus-host model systems for fastidious
208 heterotrophic bacteria. *ISME J* 15:1585–1598.

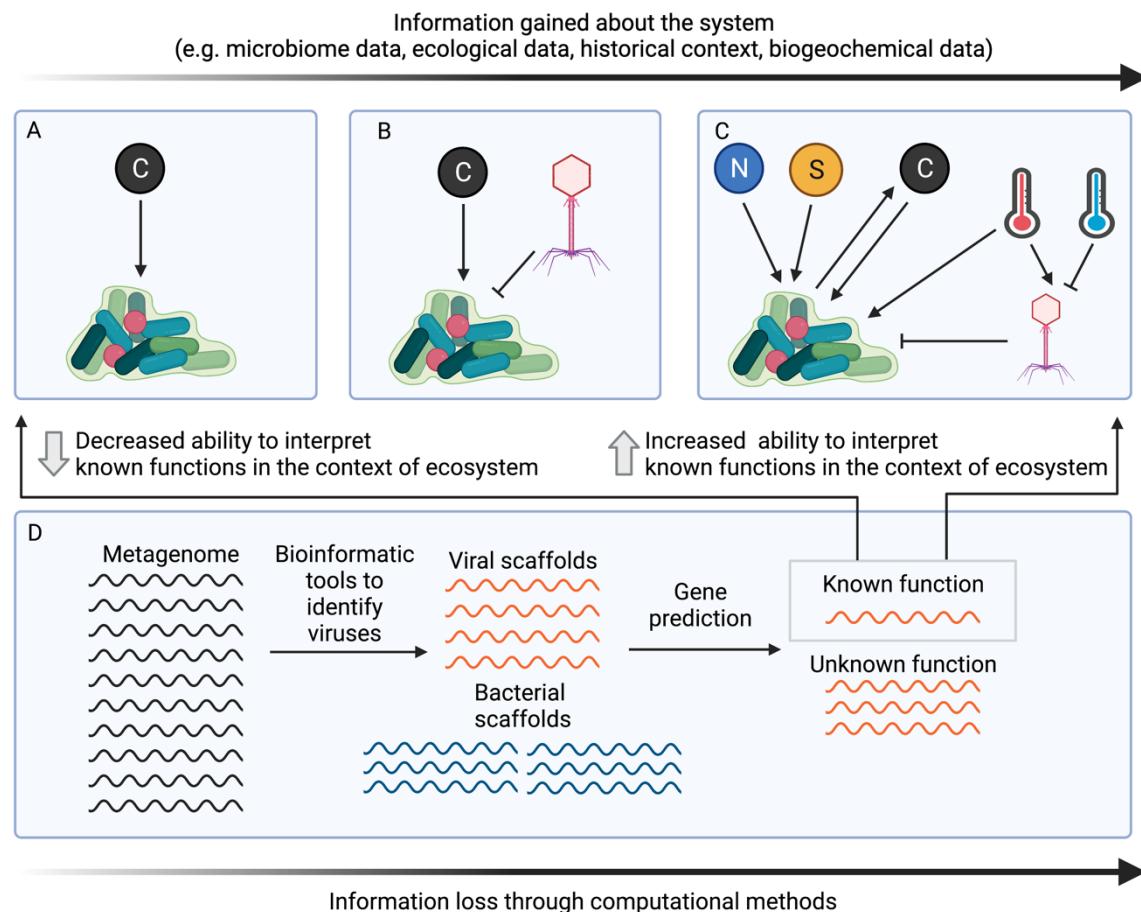
209 15. Kieft K, Zhou Z, Anantharaman K. 2019. VIBRANT: Automated recovery, annotation
210 and curation of microbial viruses, and evaluation of virome function from genomic
211 sequences. *Bioinformatics*.

212


- 213 16. Nayfach S, Camargo AP, Schulz F, Eloé-Fadrosch E, Roux S, Kyrpides NC. 2021.
214 CheckV assesses the quality and completeness of metagenome-assembled viral genomes.
215 *Nat Biotechnol* 39:578–585.
- 216 17. Bolduc B, Jang HB, Doulcier G, You Z-Q, Roux S, Sullivan MB. 2017. vConTACT: an
217 iVirus tool to classify double-stranded DNA viruses that infect Archaea and Bacteria.
218 *PeerJ* 5:e3243.
- 219 18. Roux S, Adriaenssens EM, Dutilh BE, Koonin EV, Kropinski AM, Krupovic M, Kuhn
220 JH, Lavigne R, Brister JR, Varsani A, Amid C, Aziz RK, Bordenstein SR, Bork P,
221 Breitbart M, Cochrane GR, Daly RA, Desnues C, Duhaime MB, Emerson JB, Enault F,
222 Fuhrman JA, Hingamp P, Hugenholtz P, Hurwitz BL, Ivanova NN, Labonté JM, Lee K-
223 B, Malmstrom RR, Martinez-Garcia M, Mizrachi IK, Ogata H, Páez-Espino D, Petit M-
224 A, Putonti C, Rattei T, Reyes A, Rodriguez-Valera F, Rosario K, Schriml L, Schulz F,
225 Steward GF, Sullivan MB, Sunagawa S, Suttle CA, Temperton B, Tringe SG, Thurber
226 RV, Webster NS, Whiteson KL, Wilhelm SW, Wommack KE, Woyke T, Wrighton KC,
227 Yilmaz P, Yoshida T, Young MJ, Yutin N, Allen LZ, Kyrpides NC, Eloé-Fadrosch EA.
228 1/2019. Minimum Information about an Uncultivated Virus Genome (MIUViG). *Nat*
229 *Biotechnol* 37:29–37.
- 230 19. Džunková M, Low SJ, Daly JN, Deng L, Rinke C, Hugenholtz P. 2019. Defining the
231 human gut host-phage network through single-cell viral tagging. *Nat Microbiol* 4:2192–
232 2203.
- 233 20. Spencer SJ, Tamminen MV, Preheim SP, Guo MT, Briggs AW, Brito IL, A Weitz D,
234 Pitkänen LK, Vigneault F, Juhani Virta MP, Alm EJ. 2016. Massively parallel
235 sequencing of single cells by epicPCR links functional genes with phylogenetic markers.
236 *ISME J* 10:427–436.
- 237 21. Sakowski EG, Arora-Williams K, Tian F, Zayed AA, Zablocki O, Sullivan MB, Preheim
238 SP. 2021. Interaction dynamics and virus–host range for estuarine actinophages captured
239 by epicPCR. *Nat Microbiol* <https://doi.org/10.1038/s41564-021-00873-4>.
- 240 22. Louca S, Hawley AK, Katsev S, Torres-Beltran M, Bhatia MP, Kheirandish S, Michiels
241 CC, Capelle D, Lavik G, Doeblei M, Crowe SA, Hallam SJ. 2016. Integrating
242 biogeochemistry with multiomic sequence information in a model oxygen minimum
243 zone. *Proc Natl Acad Sci U S A* 113:E5925–E5933.
- 244 23. Reed DC, Algar CK, Huber JA, Dick GJ. 2014. Gene-centric approach to integrating
245 environmental genomics and biogeochemical models. *Proc Natl Acad Sci U S A*
246 111:1879–1884.
- 247
248

249 **Figures**

250


251

252

253
254 **Figure 1.** A. Complex microbial communities made up of viruses, bacteria, archaea, and
255 eukaryotes interact with each other and their environment through mechanisms such as predation
256 and competition for resources. B. Different levels of organization contribute to a holistic
257 understanding of ecology, and are associated with challenges of studying viruses. Each of the
258 biology, geology, and chemistry components can be studied across a range of scales, from
259 cellular to global processes.

260

261
262
263
264
265
266
267
268
269
270
271
272

Figure 2. Conceptual framework for maximizing information about viral ecology and biogeochemistry in nature. Along the upper axis are ways to gain more information about a system. A. Example showing the positive feedback of carbon on bacterial growth. B. Addition of viruses increases complexity over A. C. Further adding detailed biogeochemical and environmental metadata such as carbon, nitrogen, sulfur, and temperature can relate complex environmental conditions to ecology but increases complexity over A and B. Examples of positive (arrow tip) and negative (inhibitor tip) interaction shown. D. Loss of information across various steps of computational analyses in viral ecology. The loss of information from computational analysis can be balanced by information gained from biogeochemical and environmental metadata.