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ABSTRACT

Viruses are ubiquitous on Earth and are keystone components of environments, ecosystems, and
human health. Yet, viruses remain poorly studied because most cannot be isolated in a
laboratory. In the field of biogeochemistry, which aims to understand the interactions between
biology, geology, and chemistry, there is progress to be made in understanding the different roles
played by viruses in nutrient cycling, food webs, and elemental transformations. In this
commentary, we outline current microbial ecology frameworks for understanding
biogeochemical cycling in aquatic ecosystems. Next, we review some existing experimental and
computational techniques that are enabling us to study the role of viruses in biogeochemical
cycling, using examples from aquatic environments. Finally, we provide a conceptual model that
balances limitations of computational tools when combined with biogeochemistry and ecological
data. We envision meeting the grand challenge of understanding how viruses impact
biogeochemical cycling by using a multifaceted approach to viral ecology.

COMMENTARY
The importance of viruses in aquatic biogeochemistry

Microbial communities are central to biogeochemical cycling, as observed in marine (1), soil (2),
and freshwater environments (3). Over the past decades, technological advances have led to the
increase of genomic sequencing, resulting in discoveries about the roles of microbes, particularly
bacteria and archaea. However, few studies in aquatic microbial ecology transcend the domains
of life to the realm of viruses. This lack of understanding of viruses prevents their inclusion in
next-generation models that are being used to inform long-term predictions of metabolism,
ecosystems, and biogeochemistry.

Most studies either focus on bacteria, archaea, or viruses individually. When combined, studies
can explain how sudden shifts in biogeochemical processes in otherwise stable communities are
driven by viruses (4). Microorganisms form complex communities that interact with each other
through predation mechanisms such as cell lysis, grazing, and competition for resources (Figure
1A). Therefore, studying how all these drivers interact with each other may provide a
mechanistic understanding that goes beyond descriptive ecology.

Viral ecology studies have demonstrated that viral roles in ecosystems cannot be ignored. For
example, lytic viruses can target microbes, release carbon that fuels the microbial food web (the
viral shunt) (5), and have direct effects on the microbial community composition (6).
Additionally, viruses encoding auxiliary metabolic genes (AMGs) can manipulate their hosts and
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impact microbial metabolism, and processes such as carbon, nitrogen, sulfur, and iron cycling
(7). These biogeochemical pathways are often tightly associated with environmental conditions
such as oxyclines or chemoclines in aquatic ecosystems (Figure 1B). Most viral genomic studies
that specifically address biogeochemical pathways concern marine environments. Other aquatic
environments including inland lakes, coastal regions, streams, and rivers, also have dynamic
spatio-temporal patterns which are related to microbial (bacterial, archaeal, eukaryotic) roles in
biogeochemical cycling but remain understudied in the context of viruses. Evidence points to
similarly prominent viral communities in ecosystems such as lakes, where AMG-containing
viruses are potentially involved in biogeochemical cycling (4, 8-10). With growing evidence of
viral roles in biogeochemical cycling, obtaining a more holistic understanding of functional
roles, interactions, and effects of these communities can be achieved by bridging across the
bacteria-archaea-eukaryote-virus boundaries.

Techniques to study the role of environmental viruses

Experimental and laboratory techniques exist and provide an initial set of tools to begin
integrating different scales of biology (Figure 1). Some methods rely on the ability to culture
viruses with their host, whereas others can be performed without. Enumeration of viruses by
phage plaque assays show that virus counts vary within an aquatic ecosystem (11). In a global
analysis of virus morphology in the oceans, researchers used microscopy to observe that non-
tailed viruses dominated surface ocean microbial communities (12). By incorporating ecological
context, follow-up studies have showed that non-tailed viruses in marine environments are a
major predation mechanism on bacteria (13). Yet, most viruses studied in culture are tailed,
thereby showing the importance of both cultivation-based and cultivation-independent lines of
evidence for understanding ecological relevance. Dilution-to-extinction, another laboratory
method, involves filtering water, followed by enrichment, purification, and isolation to finally
obtain a virus-host system (14). Model host-virus systems are useful to explore targeted
biogeochemical pathways and host-virus interactions since the controlled environment provides
higher reproducibility. For example, carbon regeneration could be addressed by changing the
abundance of viruses and measuring the host growth rate and biomass over time. Similarly, a
host known to be involved in denitrification can be measurably impaired or improved upon the
addition of a virus that targets it, by tracking host, viral, and chemical characteristics over time.

One step towards a more holistic understanding of biogeochemical processes in ecosystems is to
move beyond studying model organisms to learn about other components of an ecosystem
(biological, chemical, geological). Additionally, biogeochemistry relies on biology, geology, and
chemistry, all of which have various techniques that can help understand the overall impact of
viral ecology. Whereas there is a generalized recognition of the need to study uncultured
microorganisms (archaea, bacteria, eukaryotes) to understand ecosystem processes, this concept
is not as common in the field of virology. Since viruses are dependent on a host for cultivation,
and most microorganisms in nature cannot be cultivated, few environmentally relevant viruses
have been cultured to date.

To circumvent the limitations of culture-dependent viral ecology, the ongoing development of
computational techniques that address the interpretative challenges of viral ‘omics’ data will
facilitate their analysis in complex environmental ecosystems. In the past years, the field of
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microbial metagenomics (mostly bacteria, archaea) has seen a shift from bulk read-based
metagenome characterization towards functional understanding at the scale of metagenome-
assembled genomes, and even at strain-level understanding of evolutionary processes and
ecological patterns. The improved ability to leverage information from metagenomics is in part
due to computational advances like high-throughput sequence processing, genome binning,
improved algorithmic efficiency, and standardization of data. Such computational advances may
be possible in the future for viral omics. Viral genomic tools are being written, tested, compared,
and used to gain ecological insights (15-17), and information is becoming standardized (18). In
time, these tools will facilitate a better understanding of viruses and their complex
biogeochemical interactions.

Transcending laboratory-only and genomics-only boundaries can lead to novel methods for
studying viral ecology that take advantage of both strengths. Single-cell viral tagging and
sequencing, analogous in some ways to single-cell genome sequencing of bacteria, relies on
tagging viruses, using cell sorting and sequencing and was developed for the human-gut (19).
Another technique, epicPCR, consists of linking phylogenetic genes to functional genes, and
then uses sequencing to obtain high-throughput ecologically relevant information about cells
(20). EpicPCR has been adapted to study viral-host interactions without cultivation in estuarine
environments (21). All these techniques highlight the future of viral ecology, and the potential
for their application across aquatic ecosystems.

Looking forward: Combining multifaceted approaches is important to get a holistic
understanding of ecosystem ecology

The amount of genomic data generated has exponentially increased in recent years, and their
interpretation benefits from a thorough understanding of the historical and ecological context,
and of future challenges that the ecosystem may encounter (Figure 2). We believe that the ability
to interpret viral ecology data, particularly omics-based, will be facilitated by collecting metadata
and contextualizing the study system. For example, one could study the impact of carbon on
bacterial growth at various resolutions ranging from simple studies focused on positive
feedbacks at an organismal or community level (Figure 2A), to increasing complexity of
interactions (Figure 2B, C). Moving towards more integrative studies, the incorporation of
multiple species, multiple realms of life, comprehensive metadata about biogeochemistry and the
environment will allow us to determine complex positive and negative feedbacks in the system
(Figure 2). Specifically in the case of viral ecology, we suggest that standard virus sampling
methods be coupled with detailed metadata collection of biogeochemistry, and microbial
communities (bacteria, archaea, eukaryotes), which could greatly increase the ability to interpret
and synthesize results.

Figure 2D demonstrates how computational techniques and their results, while offering a
glimpse into viral ecology, remain challenging to interpret. In the simplified example, a
metagenome generated from a given sample is used as a starting point to computationally
identify viruses. Along each step of the pipeline, context is lost because a relatively low
percentage of viruses are identified, of which most viral genomes are partial, and even fewer of
the identified viruses have an identified ecological function or role. The analysis of viral
genomics can be challenging on its own, especially where viral bioinformatics methods remain
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in constant development and have their own shortcomings. Given the same genomic dataset and
outcome, the ability to interpret ecological functions is significantly increased with the
availability of comprehensive metadata and biogeochemical data (Figure 2C, D) compared to
without (Figure 2A).

Finally, we envision that full integration of viral ecology into measurable and predictable
outcomes would involve its integration into biogeochemical and ecosystem models. Substantial
efforts have been made to integrate metagenomic and metatranscriptomic data of
microorganisms (bacteria and archaea) in predicting biogeochemical processes such as carbon,
nitrogen and sulfur cycling across redox gradients (22, 23). Realistically, it has taken over a
decade of work for the field of (bacterial and archaeal) metagenomics to move on from
descriptive studies of biodiversity towards mechanistic and predictive models that integrate
multiple lines of experimental and genomic evidence. Even so, these integrative studies are not
the norm. While challenges and opportunities in viral ecology will involve overcoming resource
limitations and cross-disciplinary learning curves, we envision the ability to closely couple viral
ecology and biogeochemistry to be made through these multifaceted efforts.
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Figure 1. A. Complex microbial communities made up of viruses, bacteria, archaea, and
eukaryotes interact with each other and their environment through mechanisms such as predation
and competition for resources. B. Different levels of organization contribute to a holistic
understanding of ecology, and are associated with challenges of studying viruses. Each of the
biology, geology, and chemistry components can be studied across a range of scales, from
cellular to global processes.
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Figure 2. Conceptual framework for maximizing information about viral ecology and
biogeochemistry in nature. Along the upper axis are ways to gain more information about a
system. A. Example showing the positive feedback of carbon on bacterial growth. B. Addition of
viruses increases complexity over A. C. Further adding detailed biogeochemical and
environmental metadata such as carbon, nitrogen, sulfur, and temperature can relate complex
environmental conditions to ecology but increases complexity over A and B. Examples of
positive (arrow tip) and negative (inhibitor tip) interaction shown. D. Loss of information across
various steps of computational analyses in viral ecology. The loss of information from
computational analysis can be balanced by information gained from biogeochemical and
environmental metadata.



