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Abstract 11 

Viruses are diverse biological entities that influence all life. Even with limited genome 12 
sizes, viruses can manipulate, drive, steal from, and kill their hosts. The field of virus genomics, 13 
using sequencing data to understand viral capabilities, has seen significant innovations in recent 14 
years. However, with advancements in metagenomic sequencing and related technologies, the 15 
bottleneck to discovering and employing the virosphere has become the analysis of genomes rather 16 
than generation. With metagenomics rapidly expanding available data, vital components of virus 17 
genomes and features are being overlooked, with the issue compounded by lagging databases and 18 
bioinformatics methods. Despite the field moving in a positive direction, there are noteworthy 19 
points to keep in mind, from how software-based virus genome predictions are interpreted to what 20 
information is overlooked by current standards. In this review, we discuss conventions and 21 
ideologies that likely need to be revised while continuing forward in the study of virus genomics.  22 
 23 
Introduction 24 

Genomics approaches for the study of viruses (infecting eukarya and archaea) and 25 
bacteriophages (phage; viruses infecting bacteria) has taken off in the last few years, much in part 26 
due to our ability to understand and interpret viral genomes from metagenomes. In fact, it is 27 
common to find a publication describing environmental virus genomics from the last few years 28 
that indicate viruses as the most abundant and diverse biological entities on the planet. As a 29 
scientific community, we are recognizing the extensive footprint viruses leave on all environments 30 
where life exists. For example, examining viral genomes has allowed us to discover metabolic 31 
genes encoded by viruses such as for photosynthesis and sulfur oxidation, and extrapolate the 32 
impacts of virus-directed metabolism on various biogeochemical processes [1–8]. Investigating 33 
viral genomes has also aided in the innovation of novel CRISPR-based genome editing 34 
technologies [9–11], further development of phage therapy applications [12,13], broader 35 
understanding of human gut dysbiosis [14–16], and more.  36 

Unseen to our daily lives, viruses and phages are constantly modifying the planet around 37 
us through manipulation and/or lysis of their hosts [17]. Unfortunately, only a small fraction of all 38 
viruses that are estimated to exist have been cultivated in the laboratory. This has led to great 39 
interest in utilizing next-generation sequencing and metagenomics specifically, to catalog, explore, 40 



describe, and understand the diversity of viral genomes [18–21]. Through metagenomic methods 41 
and technologies, thousands of viral genomes can be acquired from a single mixed metagenome 42 
(mixed community) or virome 43 
(virus-specific) sample.  44 

There are two general 45 
methods by which to obtain genomic 46 
information to study viruses using 47 
metagenomics: extraction and 48 
sequencing of viromes, and virus 49 
prediction from mixed microbial 50 
metagenomes (Figure 1). A virome 51 
differs from a conventional mixed 52 
microbial metagenome in that it is 53 
the physical separation, collection, 54 
and sequencing of virus-like 55 
particles (VLPs) from a sample. 56 
Methodologies of VLP collection 57 
vary considerably and require 58 
modification depending on the 59 
source environment (e.g., soil, 60 
aquatic, human gut). Each method 61 
comes with its own use-case utilities, 62 
biases, and ease-of-use, and no one 63 
method is globally accepted in the 64 
field. A virome can be described as 65 
an in situ method of virus discovery. 66 
On the other hand, virus prediction is 67 
the in silico discovery of virus 68 
sequences from a metagenome, or 69 
even a virome; a software tool or 70 
manual sequence inspection is used 71 
to separate viral from non-viral 72 
sequences within a mixed 73 
community. Notably, there are 74 
distinct differences between these 75 
two methods that impact the way in 76 
which the data is analyzed. For 77 
studies specifically focused on the 78 
viral fraction of an ecosystem, VLP 79 
sequencing of the virome can yield 80 

Figure 1. Sample collection and metagenomic 
sequencing of viruses. Virus genomes can be identified 
by physical separation from cells (left) or by software 
tool prediction (right) preceding downstream analyses.  
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results best suited for studying viral communities [22]. Virome samples are often better at 81 
capturing low abundance viruses but may exclude viral genomes that are in an intracellular state 82 
(e.g., non-replicating proviruses and virocells) [17]. Conversely, predicting viral sequences from 83 
bulk metagenomes can provide context of the viruses and microbes together within the same 84 
sample, such as allowing for more accurate host predictions or identifying intracellular viral 85 
genomes [23,24].  86 

In the last few years there has been a rapid expansion in the knowledge of viruses on a 87 
global genomics level by using metagenomes. Here, we slow down and take a step back to ask 88 
what is being overlooked? Considering the current state of virus genomics, where should 89 
conventions be broken, and innovations be made? To do this, we will explore some of the methods 90 
available to extract viral sequences from metagenomes and describe best practices of how those 91 
sequences can or should be analyzed. Here, we will focus on software-based virus prediction 92 
methods and their benefits, utilities, flaws, biases, and future directions. 93 
 94 
Sweeping contamination under the rug: balancing recovery and false discovery 95 

Virus prediction from mixed metagenomes is powerful in that it allows for an entire sample 96 
to have nucleotides extracted and sequenced while maintaining the integrity of the original 97 
microbial community comprised of organisms and viruses. A substantial number of software tools 98 
are currently available to predict viruses from nucleotides with varying methods, degrees of 99 
precision, and recovery capabilities [25–36]. In all cases, it is vital to consider the reality of these 100 
predictions in that all computational methods have drawbacks (Figure 2a, Table 1).  101 

Virus prediction, for the vast majority of implementations, do not encompass all viruses in 102 
a sample due to loss in recovery, low sequencing depth of the viruses compared to microbes, or 103 
biases against certain viral families. Therefore, when using software to predict viral sequences, the 104 
recovered viruses will represent a subset of the true composition. These results can be influenced 105 
by the specific computational methods utilized by different tools or universal limitations in 106 
available methods [37]. For example, all currently available tools are limited by known virus 107 
diversity and struggle to predict viruses with entirely novel sequences. Many tools are also biased 108 
toward dsDNA viruses and phages due to dsDNA-centric databases and sequencing methods. 109 
Likewise, viral genome sequences comprised mostly of genes or features common to both viruses 110 
and organisms are difficult to identify accurately. These biases have the potential to leave behind 111 
viruses with novelty to reference databases or regions of recent recombination without close 112 
inspection [38,39]. In general, all software tools can only find viruses that appear similar to what 113 
we already know about due to reliance on reference-based prediction methods (see the reference-114 
free fallacy below). This limitation has been addressed by incorporating non-reference (e.g., 115 
metagenomic) sequences into software training algorithms, but with the caveat that contamination 116 
of virus predictions or virome extractions is not uncommon [25,40].  117 

Contamination, or false discovery, of non-viral sequences is a feature of all virus prediction 118 
software and should not be ignored. That is, not all recovered sequences predicted to be viruses 119 
should be included haphazardly into analyses [41]. In most cases, the time, expertise, and/or 120 



121 

Figure 2. Conceptual summary diagram. A: comparison of general virus prediction strategies 
utilized by software tools, from variable recall and precision capabilities to a balanced approach. 
B: categorization of virus predictions as “not novel” or “novel” according to similarity to 
reference databases and datasets of uncultivated viral sequences. C: the reference-free fallacy; 
visualization of how virus prediction software tools, whether protein annotation-based (left) or 
nucleotide feature-based (right), are all inherently referenced-based. D: the fate of complete linear 
versus circular viral genomes in interpreting metagenomic data. E: illustration of a viral genome 
either binned into a vMAG (left) or analyzed as individual fragments (right); each sequence 
fragment is represented by puzzle pieces. 
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computational resources are not available to manually validate all recovered viruses. However, the 122 
reality behind the precision of predictions should be made clear, such as providing details of how 123 
the prediction results may have been validated including software-specific cutoffs and 124 
identification of viral hallmark genes [42]. This is especially relevant when considering the ratio 125 
of recovery to precision. For example, reporting numbers of high virus identifications (high 126 
recovery) at the expense of the validity of those identifications (low precision) yields seemingly 127 
valuable but fundamentally flawed data. Low precision can result from the poor performance of a 128 
software tool, incorrect usage of a software tool (e.g., wrong implementation or retaining low 129 
probability or scored predictions), inclusion of many short sequence fragments (e.g., less than 3 130 
kb), and other factors. 131 

The following sections stem from the original biases and limitations of the current state of 132 
virus prediction. By exploring these topics, we aim to shed light on the potential advancements in 133 
computational methods or inconsistencies in interpretations for viral metagenomic data.  134 
 135 
Of reference and reality 136 
 Many of the gold standards (i.e., trusted reference sequences) for viral genomes are 137 
deposited in public repositories such as NCBI databases [43,44]. These sequences are utilized by 138 
various software tools beyond virus prediction, such as for prediction of hosts of viruses,  139 
prediction of virus taxonomy, functional annotation, genome quality assessment, and more [45–140 
47]. However, this presents significant biases owing to the small and non-diverse composition of 141 
NCBI databases, relative to nature. The diversity of viruses by taxonomy and sequence 142 
composition within NCBI databases is estimated to be far less than what can be identified in nature 143 
and is primarily limited to viruses that have been cultivated on a limited number of hosts, mostly 144 
those of clinical significance or as a model research system [48]. Considering virus prediction 145 
software tools are reliant on these reference databases, it is clear that there are pitfalls associated 146 
with assuming that reference sequences fully mimic natural reality.   147 

Similarly, the designation of viral genomes as “novel” according to a database search is 148 
not equivalent to true novelty. True novelty refers to if a given genome has yet to be identified by 149 
other sources and is not deposited in another database. For example, a search of NCBI databases 150 
excludes the majority of metagenome-derived viral sequences, many of which can be found 151 
throughout the literature and in curated databases [21,23,40,49]. Therefore, a virus may be novel 152 
with regard to reference database sequences, but not actually represent a truly novel sequence. 153 
Another source of novelty can be if the given sequence contains features yet to be discovered or 154 
broader implications that have yet to be identified. For example, the identification of crAssphages 155 
as highly abundant in the human gut came after representative sequences were deposited into 156 
databases [50] (Figure 2b, Table 1).  157 
 158 
The reference-free fallacy: no such thing as a reference-free virus prediction 159 

Many virus prediction software tools are based on bona fide genomes derived from NCBI 160 
RefSeq, which is mainly composed of isolated and cultivated viruses that serve as reference 161 



systems. There are two broad categories of tools according to the methods used: nucleotide 162 
sequence features (e.g., VirFinder) and protein similarity (e.g., VIBRANT), or a hybrid of both 163 
(e.g., VirSorter2) [25–27]. For either category, machine learning has become a powerful approach 164 
for identifying patterns to increase prediction reliability and specificity [51]. However, this has led 165 
to some misconceptions to believe that “reference-free” refers to complete independence from 166 
reference databases, whereas “reference-based” refers to the use of protein annotation methods 167 
based on the annotations of reference viruses. Conversely, we advocate there is no tool completely 168 
reference-free and rather all tools are inherently reference-based in some manner (Figure 2c, Table 169 
1).  170 

For a tool that utilizes protein annotation, the reliance on reference sequences is in the form 171 
of prediction models built from a protein database [52–54], which is a clear reference-dependent 172 
method. Namely, only reference proteins are able to be annotated, queried, and subsequently 173 
analyzed. On the other hand, a tool that strictly uses sequence features (e.g., tetra-nucleotide 174 
frequency) does not necessarily need to rely on a database, but can rather rely on a machine 175 
learning model. This machine learning model can be perceived as reference-free, but similar to a 176 
protein database, the model too is dependent on the reference sequences used to train it. Therefore, 177 
for both categories of tools there is a direct reliance on reference sequences, making them both 178 
inherently reference based. A more accurate distinction would be “database-dependent” or 179 
“database-free” methods. Even manual verification of virus predictions is not reference-free as this 180 
method typically involves searching through protein annotations (e.g., phage structural hallmark 181 
proteins) and other reference-informed signatures (e.g., gene density and gene strand switch 182 
frequency) [55].  183 

Moreover, it is important to note that the reference sequences used to compare, train and 184 
test software tools and/or machine learning models typically all come from the same genetic pool 185 
(i.e., NCBI databases). This perpetuates biases: biases against rare virus groups and biases in 186 
accurate comparisons. First, it is estimated that the true diversity of viruses in nature has yet to be 187 
captured by the sequences available on NCBI databases [19,49,56]. This results in a lack of 188 
representation of more rare viruses or simply those that have yet to be isolated/cultivated [39,57–189 
59]. Since virus prediction tools are inherently reference-based, this leads to perpetual biases 190 
towards identifying viruses we already know about, with rare occasions of identifying a truly novel 191 
species [57]. Second, the utilization of NCBI databases for assessing available software tools 192 
results in an inherent loss of fair comparisons. It is becoming increasingly difficult to generate a 193 
comparison dataset of gold standard viral sequences that does not, in some capacity, represent the 194 
sequences used to train existing tools. This is due to the limited size of NCBI databases. Especially 195 
for tools that utilize machine learning, evaluating a tool with a sequence that was used to train that 196 
tool results in inflated, positive performance. The common work around is to only include viral 197 
sequences submitted to NCBI databases after the dates of publication for tools to compare, but this 198 
also results in biases, such as the inclusion of viruses nearly identical to those submitted previously. 199 
This latter example can be addressed by removing any identical sequences via dereplication, 200 
though this is seldom employed. In attempts to solve this issue and generate comprehensive, fair 201 



datasets for future software tool development and comparison, more focus and better curation 202 
standards need to be placed on the construction of reference sequence datasets. 203 
 204 
Linear genomes can be complete: where did all the linear genomes go? 205 
 Identifying complete viral genomes from sequencing data allows for more robust analyses 206 
compared to fragmented, partial genomes. Automated methods to predict complete viral genomes 207 
focus on circularization signatures, namely the identification of terminal nucleotide repeats (direct 208 
or inverted) of free viral sequences or insertion sites of viruses integrated into their host’s genome 209 
(proviruses) [25,26,29,30,34,47]. For free (lytic cycle) viruses, the identification of circularization 210 
can typically indicate with confidence that the given genome is complete. However, this method 211 
discounts complete linear genomes, such as those without identifiable terminal repeats [60]. 212 
 Thus far, no high-throughput informatics method exists for the identification of complete 213 
linear genomes in the absence of circularization signatures [47,61]. This results in over-214 
emphasizing circular genomes as the only gold standards in generating metagenomic-based 215 
reference genomes or the highest quality genomes in genomic datasets. Though these conclusions 216 
are not flawed on their own as correctly identified circular genomes are certainly of high quality, 217 
barring false positives [62], this overall bias against linear genomes has infiltrated the currently 218 
available literature (Figure 2d, Table 1). Speculatively, the ability to identify complete, linear virus 219 
genomes may allow for a more holistic view of a viral community or lead to novel discoveries of 220 
underappreciated viral groups. 221 
 222 
Metagenomes are puzzles: an unfinished puzzle is still just pieces 223 
 Metagenomic assemblies reconstruct thousands to millions of sequence fragments 224 
(contigs) representing partial genomes, and rarely complete genomes. A common practice in the 225 
study of bacterial and archaeal genomes is to reconstruct metagenome-assembled genomes 226 
(MAGs) [63,64]. This is typically done through a method termed binning where anywhere from 227 
two to hundreds or even thousands of contigs may be grouped into a single, putative genome (bin). 228 
When using short read (e.g., 75-300 bp) sequencing technology and assembly, many resulting 229 
contigs are less than 5 kb in length, with relatively few exceeding 20 kb. Consequently, bacterial 230 
and archaeal genomes that generally exceed 1,000 kb must be computationally binned into MAGs. 231 
Though long-read (e.g., 1-20 kb) technologies are advancing these boundaries, the construction of 232 
MAGs is typically still required. For bacteria and archaea, several software tools are available for 233 
binning and constructing MAGs [65–70]. 234 

Viral genomes range from as small as 3 kb to greater than 2,000 kb. Many identified phages 235 
are members of the class Caudoviricetes (formerly Caudovirales) which range considerably in 236 
size, but most are approximately 30 kb to 200 kb [71]. Interestingly, the convention accepted in 237 
descriptions of viruses derived from viromes or predicted from metagenomes is that a single contig 238 
represents an uncultivated viral genome (UViG) or virus population [19]. To assume each 239 
sequence represents a separate genome likely far overestimates viral diversity within a sample 240 
given the expected fragmentation of viral genomes. This is especially true for viruses that are rarer 241 



and would likely result in high genome fragmentation after assembly. The construction of viral 242 
metagenome-assembled genomes (vMAGs) would better represent the true composition of viruses 243 
within a sample. Importantly, UViGs still have utility in that any viral sequence left unbinned may 244 
represent an entire viral population, contrary to what is accepted for bacteria and archaea where 245 
unbinned sequences are typically discarded (Figure 2e, Table 1). This can be achieved by binning 246 
vMAGs using short- or long-read sequencing [72]. Despite this, few studies bin vMAGs, and those 247 
that do bin typically focus on viruses with the largest genomes [5,73–75]. This conspicuous 248 
discrepancy of binning bacteria and archaea, but not viruses, is a convention that likely hinders 249 
advancement in the field of viral metagenomics. Development of virus binning tools, such as 250 
vRhyme [76], will fuel this advancement.  251 
 252 
 253 

Sweeping contamination under the rug: balancing recovery and false discovery 
All software tools that predict viruses from metagenomes can make mistakes 

1. Using multiple virus prediction tools and combining results can strengthen predictions by mitigating 
the biases and pitfall of each individual tool  

2. In published work, report all parameters and thresholds used for predicting viruses, including 
methods of manual curation 

3. Selecting low thresholds when running software or retaining low probability predictions will often 
generate “more data” at the expense of that data being low quality (i.e., contaminated) 

4. Read the tool’s publication (if available) in addition to the software documentation to best understand 
the tool’s utility, pitfalls, and performance benchmarks 

 
Of reference and reality 

The reliance of most software tools on reference databases is a source of bias 

1. Consider homology search to additional curated databases in addition to NCBI databases when 
reporting novel sequences or gene features 

 
The reference-free fallacy: no such thing as a reference-free virus prediction 

No current tool for predicting virus sequences is reference-free 

1. Repeated training tools on NCBI databases has led to overlap in training and testing datasets across 
tools, making benchmarks increasingly difficult to perform without bias. Including non-NCBI 
databases in training, testing, and curating databases can reduce bias 

2. Avoid falsely assuming database-independent machine learning models, whether trained on protein 
annotations or nucleotide features, overcome the necessity for reference-based searches 

 
Linear genomes can be complete: where did all the linear genomes go? 

Emphasis is placed on circular genomes as complete, excluding linear genomes 

Table 1. Recommendations for the questions, biases, and pitfalls posed in each section. 



1. Although complete, linear genomes may be identified as high quality or near complete, the lack of 
circularization signatures underemphasizes these genomes in databases or analyses 

2. A metagenomics-scale approach to identify complete viral genomes without terminal repeats may 
reduce the bias towards circular genomes. Until such a tool is available, it is necessary to keep in 
mind the possibility of underrepresenting linear genomes 

Metagenomes are puzzles: an unfinished puzzle is still just pieces 
Not all metagenomic viral scaffolds represent the whole genome 

1. The inclusion of binning in virus analysis pipelines and constructing viral metagenome-assembled 
genomes (vMAGs) will likely better represent true composition of viruses and viral diversity 

 254 
Conclusions 255 

Virus genomics, specifically metagenomics, allows for the circumvention of conventional 256 
cultivation approaches to study viruses, their impacts on microbial communities, biogeochemistry, 257 
applications for biotechnology, human medicine, and more. After sequencing a sample, it has 258 
become just a few keystrokes and a click of a button to obtain a list of the viruses present. The 259 
outcome is that our knowledge of viral genomic diversity has increased at a near exponential rate 260 
over the last few years, opening new and exciting opportunities. However, this has been at the 261 
expense of biasing conclusions due to tools, methodologies, and conventions that lag data 262 
acquisition. 263 

We are led to several overarching questions. Are virus predictions capturing the true nature 264 
of a community of viruses? Are heavily reference-guided predictions making it easy to miss any 265 
undiscovered novelty without studious inspection? Are conventions in identifying high-quality and 266 
complete viral genomes ignoring entire viral groups with unique genome architecture? Is the field 267 
as a whole moving too fast to fully consider the scope of the genomes presented?  268 

There is no single set of answers to address all these questions easily. Rather, recognizing 269 
the limitations of the available methods will help to best work towards an optimized, efficient, and 270 
accurate approach to handle the rapid, near-constant flow of sequencing information. The goal is 271 
a fair, holistic representation of the global virosphere to best understand how viruses influence all 272 
life.  273 
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