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Abstract

Viruses are diverse biological entities that influence all life. Even with limited genome
sizes, viruses can manipulate, drive, steal from, and kill their hosts. The field of virus genomics,
using sequencing data to understand viral capabilities, has seen significant innovations in recent
years. However, with advancements in metagenomic sequencing and related technologies, the
bottleneck to discovering and employing the virosphere has become the analysis of genomes rather
than generation. With metagenomics rapidly expanding available data, vital components of virus
genomes and features are being overlooked, with the issue compounded by lagging databases and
bioinformatics methods. Despite the field moving in a positive direction, there are noteworthy
points to keep in mind, from how software-based virus genome predictions are interpreted to what
information is overlooked by current standards. In this review, we discuss conventions and
ideologies that likely need to be revised while continuing forward in the study of virus genomics.

Introduction

Genomics approaches for the study of viruses (infecting eukarya and archaea) and
bacteriophages (phage; viruses infecting bacteria) has taken off in the last few years, much in part
due to our ability to understand and interpret viral genomes from metagenomes. In fact, it is
common to find a publication describing environmental virus genomics from the last few years
that indicate viruses as the most abundant and diverse biological entities on the planet. As a
scientific community, we are recognizing the extensive footprint viruses leave on all environments
where life exists. For example, examining viral genomes has allowed us to discover metabolic
genes encoded by viruses such as for photosynthesis and sulfur oxidation, and extrapolate the
impacts of virus-directed metabolism on various biogeochemical processes [1-8]. Investigating
viral genomes has also aided in the innovation of novel CRISPR-based genome editing
technologies [9—-11], further development of phage therapy applications [12,13], broader
understanding of human gut dysbiosis [14—16], and more.

Unseen to our daily lives, viruses and phages are constantly modifying the planet around
us through manipulation and/or lysis of their hosts [17]. Unfortunately, only a small fraction of all
viruses that are estimated to exist have been cultivated in the laboratory. This has led to great
interest in utilizing next-generation sequencing and metagenomics specifically, to catalog, explore,
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describe, and understand the diversity of viral genomes [18-21]. Through metagenomic methods
and technologies, thousands of viral genomes can be acquired from a single mixed metagenome

(mixed community) or virome
(virus-specific) sample.

There are two general
methods by which to obtain genomic
information to study viruses using
metagenomics:  extraction  and
sequencing of viromes, and virus
prediction from mixed microbial
metagenomes (Figure 1). A virome
differs from a conventional mixed
microbial metagenome in that it is
the physical separation, collection,
and sequencing of virus-like
particles (VLPs) from a sample.
Methodologies of VLP collection
vary considerably and require
modification depending on the
source environment (e.g., soil,
aquatic, human gut). Each method
comes with its own use-case utilities,
biases, and ease-of-use, and no one
method is globally accepted in the
field. A virome can be described as
an in situ method of virus discovery.
On the other hand, virus prediction is
the in silico discovery of virus
sequences from a metagenome, or
even a virome; a software tool or
manual sequence inspection is used
to separate viral from non-viral
sequences  within a  mixed
community. Notably, there are
distinct differences between these
two methods that impact the way in
which the data is analyzed. For
studies specifically focused on the
viral fraction of an ecosystem, VLP
sequencing of the virome can yield
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Figure 1. Sample collection and metagenomic
sequencing of viruses. Virus genomes can be identified
by physical separation from cells (left) or by software
tool prediction (right) preceding downstream analyses.
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results best suited for studying viral communities [22]. Virome samples are often better at
capturing low abundance viruses but may exclude viral genomes that are in an intracellular state
(e.g., non-replicating proviruses and virocells) [17]. Conversely, predicting viral sequences from
bulk metagenomes can provide context of the viruses and microbes together within the same
sample, such as allowing for more accurate host predictions or identifying intracellular viral
genomes [23,24].

In the last few years there has been a rapid expansion in the knowledge of viruses on a
global genomics level by using metagenomes. Here, we slow down and take a step back to ask
what is being overlooked? Considering the current state of virus genomics, where should
conventions be broken, and innovations be made? To do this, we will explore some of the methods
available to extract viral sequences from metagenomes and describe best practices of how those
sequences can or should be analyzed. Here, we will focus on software-based virus prediction
methods and their benefits, utilities, flaws, biases, and future directions.

Sweeping contamination under the rug: balancing recovery and false discovery

Virus prediction from mixed metagenomes is powerful in that it allows for an entire sample
to have nucleotides extracted and sequenced while maintaining the integrity of the original
microbial community comprised of organisms and viruses. A substantial number of software tools
are currently available to predict viruses from nucleotides with varying methods, degrees of
precision, and recovery capabilities [25-36]. In all cases, it is vital to consider the reality of these
predictions in that all computational methods have drawbacks (Figure 2a, Table 1).

Virus prediction, for the vast majority of implementations, do not encompass all viruses in
a sample due to loss in recovery, low sequencing depth of the viruses compared to microbes, or
biases against certain viral families. Therefore, when using software to predict viral sequences, the
recovered viruses will represent a subset of the true composition. These results can be influenced
by the specific computational methods utilized by different tools or universal limitations in
available methods [37]. For example, all currently available tools are limited by known virus
diversity and struggle to predict viruses with entirely novel sequences. Many tools are also biased
toward dsDNA viruses and phages due to dsDNA-centric databases and sequencing methods.
Likewise, viral genome sequences comprised mostly of genes or features common to both viruses
and organisms are difficult to identify accurately. These biases have the potential to leave behind
viruses with novelty to reference databases or regions of recent recombination without close
inspection [38,39]. In general, all software tools can only find viruses that appear similar to what
we already know about due to reliance on reference-based prediction methods (see the reference-
free fallacy below). This limitation has been addressed by incorporating non-reference (e.g.,
metagenomic) sequences into software training algorithms, but with the caveat that contamination
of virus predictions or virome extractions is not uncommon [25,40].

Contamination, or false discovery, of non-viral sequences is a feature of all virus prediction
software and should not be ignored. That is, not all recovered sequences predicted to be viruses
should be included haphazardly into analyses [41]. In most cases, the time, expertise, and/or
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Figure 2. Conceptual summary diagram. A: comparison of general virus prediction strategies
utilized by software tools, from variable recall and precision capabilities to a balanced approach.
B: categorization of virus predictions as “not novel” or “novel” according to similarity to
reference databases and datasets of uncultivated viral sequences. C: the reference-free fallacy;
visualization of how virus prediction software tools, whether protein annotation-based (left) or
nucleotide feature-based (right), are all inherently referenced-based. D: the fate of complete linear
versus circular viral genomes in interpreting metagenomic data. E: illustration of a viral genome
either binned into a VMAG (left) or analyzed as individual fragments (right); each sequence

fragment is represented by puzzle pieces.
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computational resources are not available to manually validate all recovered viruses. However, the
reality behind the precision of predictions should be made clear, such as providing details of how
the prediction results may have been validated including software-specific cutoffs and
identification of viral hallmark genes [42]. This is especially relevant when considering the ratio
of recovery to precision. For example, reporting numbers of high virus identifications (high
recovery) at the expense of the validity of those identifications (low precision) yields seemingly
valuable but fundamentally flawed data. Low precision can result from the poor performance of a
software tool, incorrect usage of a software tool (e.g., wrong implementation or retaining low
probability or scored predictions), inclusion of many short sequence fragments (e.g., less than 3
kb), and other factors.

The following sections stem from the original biases and limitations of the current state of
virus prediction. By exploring these topics, we aim to shed light on the potential advancements in
computational methods or inconsistencies in interpretations for viral metagenomic data.

Of reference and reality

Many of the gold standards (i.e., trusted reference sequences) for viral genomes are
deposited in public repositories such as NCBI databases [43,44]. These sequences are utilized by
various software tools beyond virus prediction, such as for prediction of hosts of viruses,
prediction of virus taxonomy, functional annotation, genome quality assessment, and more [45—
47]. However, this presents significant biases owing to the small and non-diverse composition of
NCBI databases, relative to nature. The diversity of viruses by taxonomy and sequence
composition within NCBI databases is estimated to be far less than what can be identified in nature
and is primarily limited to viruses that have been cultivated on a limited number of hosts, mostly
those of clinical significance or as a model research system [48]. Considering virus prediction
software tools are reliant on these reference databases, it is clear that there are pitfalls associated
with assuming that reference sequences fully mimic natural reality.

Similarly, the designation of viral genomes as “novel” according to a database search is
not equivalent to true novelty. True novelty refers to if a given genome has yet to be identified by
other sources and is not deposited in another database. For example, a search of NCBI databases
excludes the majority of metagenome-derived viral sequences, many of which can be found
throughout the literature and in curated databases [21,23,40,49]. Therefore, a virus may be novel
with regard to reference database sequences, but not actually represent a truly novel sequence.
Another source of novelty can be if the given sequence contains features yet to be discovered or
broader implications that have yet to be identified. For example, the identification of crAssphages
as highly abundant in the human gut came after representative sequences were deposited into
databases [50] (Figure 2b, Table 1).

The reference-free fallacy: no such thing as a reference-free virus prediction
Many virus prediction software tools are based on bona fide genomes derived from NCBI
RefSeq, which is mainly composed of isolated and cultivated viruses that serve as reference
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systems. There are two broad categories of tools according to the methods used: nucleotide
sequence features (e.g., VirFinder) and protein similarity (e.g., VIBRANT), or a hybrid of both
(e.g., VirSorter2) [25-27]. For either category, machine learning has become a powerful approach
for identifying patterns to increase prediction reliability and specificity [51]. However, this has led
to some misconceptions to believe that “reference-free” refers to complete independence from
reference databases, whereas “reference-based” refers to the use of protein annotation methods
based on the annotations of reference viruses. Conversely, we advocate there is no tool completely
reference-free and rather all tools are inherently reference-based in some manner (Figure 2c, Table
1).

For a tool that utilizes protein annotation, the reliance on reference sequences is in the form
of prediction models built from a protein database [52—54], which is a clear reference-dependent
method. Namely, only reference proteins are able to be annotated, queried, and subsequently
analyzed. On the other hand, a tool that strictly uses sequence features (e.g., tetra-nucleotide
frequency) does not necessarily need to rely on a database, but can rather rely on a machine
learning model. This machine learning model can be perceived as reference-free, but similar to a
protein database, the model too is dependent on the reference sequences used to train it. Therefore,
for both categories of tools there is a direct reliance on reference sequences, making them both
inherently reference based. A more accurate distinction would be ‘“database-dependent” or
“database-free” methods. Even manual verification of virus predictions is not reference-free as this
method typically involves searching through protein annotations (e.g., phage structural hallmark
proteins) and other reference-informed signatures (e.g., gene density and gene strand switch
frequency) [55].

Moreover, it is important to note that the reference sequences used to compare, train and
test software tools and/or machine learning models typically all come from the same genetic pool
(i.e., NCBI databases). This perpetuates biases: biases against rare virus groups and biases in
accurate comparisons. First, it is estimated that the true diversity of viruses in nature has yet to be
captured by the sequences available on NCBI databases [19,49,56]. This results in a lack of
representation of more rare viruses or simply those that have yet to be isolated/cultivated [39,57—
59]. Since virus prediction tools are inherently reference-based, this leads to perpetual biases
towards identifying viruses we already know about, with rare occasions of identifying a truly novel
species [57]. Second, the utilization of NCBI databases for assessing available software tools
results in an inherent loss of fair comparisons. It is becoming increasingly difficult to generate a
comparison dataset of gold standard viral sequences that does not, in some capacity, represent the
sequences used to train existing tools. This is due to the limited size of NCBI databases. Especially
for tools that utilize machine learning, evaluating a tool with a sequence that was used to train that
tool results in inflated, positive performance. The common work around is to only include viral
sequences submitted to NCBI databases after the dates of publication for tools to compare, but this
also results in biases, such as the inclusion of viruses nearly identical to those submitted previously.
This latter example can be addressed by removing any identical sequences via dereplication,
though this is seldom employed. In attempts to solve this issue and generate comprehensive, fair
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datasets for future software tool development and comparison, more focus and better curation
standards need to be placed on the construction of reference sequence datasets.

Linear genomes can be complete: where did all the linear genomes go?

Identifying complete viral genomes from sequencing data allows for more robust analyses
compared to fragmented, partial genomes. Automated methods to predict complete viral genomes
focus on circularization signatures, namely the identification of terminal nucleotide repeats (direct
or inverted) of free viral sequences or insertion sites of viruses integrated into their host’s genome
(proviruses) [25,26,29,30,34,47]. For free (lytic cycle) viruses, the identification of circularization
can typically indicate with confidence that the given genome is complete. However, this method
discounts complete linear genomes, such as those without identifiable terminal repeats [60].

Thus far, no high-throughput informatics method exists for the identification of complete
linear genomes in the absence of circularization signatures [47,61]. This results in over-
emphasizing circular genomes as the only gold standards in generating metagenomic-based
reference genomes or the highest quality genomes in genomic datasets. Though these conclusions
are not flawed on their own as correctly identified circular genomes are certainly of high quality,
barring false positives [62], this overall bias against linear genomes has infiltrated the currently
available literature (Figure 2d, Table 1). Speculatively, the ability to identify complete, linear virus
genomes may allow for a more holistic view of a viral community or lead to novel discoveries of
underappreciated viral groups.

Metagenomes are puzzles: an unfinished puzzle is still just pieces

Metagenomic assemblies reconstruct thousands to millions of sequence fragments
(contigs) representing partial genomes, and rarely complete genomes. A common practice in the
study of bacterial and archaeal genomes is to reconstruct metagenome-assembled genomes
(MAGs) [63,64]. This is typically done through a method termed binning where anywhere from
two to hundreds or even thousands of contigs may be grouped into a single, putative genome (bin).
When using short read (e.g., 75-300 bp) sequencing technology and assembly, many resulting
contigs are less than 5 kb in length, with relatively few exceeding 20 kb. Consequently, bacterial
and archaeal genomes that generally exceed 1,000 kb must be computationally binned into MAGs.
Though long-read (e.g., 1-20 kb) technologies are advancing these boundaries, the construction of
MAG:s is typically still required. For bacteria and archaea, several software tools are available for
binning and constructing MAGs [65-70].

Viral genomes range from as small as 3 kb to greater than 2,000 kb. Many identified phages
are members of the class Caudoviricetes (formerly Caudovirales) which range considerably in
size, but most are approximately 30 kb to 200 kb [71]. Interestingly, the convention accepted in
descriptions of viruses derived from viromes or predicted from metagenomes is that a single contig
represents an uncultivated viral genome (UViG) or virus population [19]. To assume each
sequence represents a separate genome likely far overestimates viral diversity within a sample
given the expected fragmentation of viral genomes. This is especially true for viruses that are rarer



242
243
244
245
246
247
248
249
250
251
252
253

and would likely result in high genome fragmentation after assembly. The construction of viral
metagenome-assembled genomes (VMAGs) would better represent the true composition of viruses
within a sample. Importantly, UViGs still have utility in that any viral sequence left unbinned may
represent an entire viral population, contrary to what is accepted for bacteria and archaea where
unbinned sequences are typically discarded (Figure 2e, Table 1). This can be achieved by binning
VMAGs using short- or long-read sequencing [72]. Despite this, few studies bin vMAGs, and those
that do bin typically focus on viruses with the largest genomes [5,73—75]. This conspicuous
discrepancy of binning bacteria and archaea, but not viruses, is a convention that likely hinders
advancement in the field of viral metagenomics. Development of virus binning tools, such as
vRhyme [76], will fuel this advancement.

Table 1. Recommendations for the questions, biases, and pitfalls posed in each section.

Sweeping contamination under the rug: balancing recovery and false discovery
All software tools that predict viruses from metagenomes can make mistakes

1. Using multiple virus prediction tools and combining results can strengthen predictions by mitigating
the biases and pitfall of each individual tool

2. In published work, report all parameters and thresholds used for predicting viruses, including
methods of manual curation

3. Selecting low thresholds when running software or retaining low probability predictions will often
generate “more data” at the expense of that data being low quality (i.e., contaminated)

4. Read the tool’s publication (if available) in addition to the software documentation to best understand
the tool’s utility, pitfalls, and performance benchmarks

Of reference and reality
The reliance of most software tools on reference databases is a source of bias

1. Consider homology search to additional curated databases in addition to NCBI databases when
reporting novel sequences or gene features

The reference-free fallacy: no such thing as a reference-free virus prediction
No current tool for predicting virus sequences is reference-free

1. Repeated training tools on NCBI databases has led to overlap in training and testing datasets across
tools, making benchmarks increasingly difficult to perform without bias. Including non-NCBI
databases in training, testing, and curating databases can reduce bias

2. Avoid falsely assuming database-independent machine learning models, whether trained on protein
annotations or nucleotide features, overcome the necessity for reference-based searches

Linear genomes can be complete: where did all the linear genomes go?
Emphasis is placed on circular genomes as complete, excluding linear genomes
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1. Although complete, linear genomes may be identified as high quality or near complete, the lack of
circularization signatures underemphasizes these genomes in databases or analyses

2. A metagenomics-scale approach to identify complete viral genomes without terminal repeats may
reduce the bias towards circular genomes. Until such a tool is available, it is necessary to keep in
mind the possibility of underrepresenting linear genomes

Metagenomes are puzzles: an unfinished puzzle is still just pieces
Not all metagenomic viral scaffolds represent the whole genome

1. The inclusion of binning in virus analysis pipelines and constructing viral metagenome-assembled
genomes (VMAGs) will likely better represent true composition of viruses and viral diversity

Conclusions

Virus genomics, specifically metagenomics, allows for the circumvention of conventional
cultivation approaches to study viruses, their impacts on microbial communities, biogeochemistry,
applications for biotechnology, human medicine, and more. After sequencing a sample, it has
become just a few keystrokes and a click of a button to obtain a list of the viruses present. The
outcome is that our knowledge of viral genomic diversity has increased at a near exponential rate
over the last few years, opening new and exciting opportunities. However, this has been at the
expense of biasing conclusions due to tools, methodologies, and conventions that lag data
acquisition.

We are led to several overarching questions. Are virus predictions capturing the true nature
of a community of viruses? Are heavily reference-guided predictions making it easy to miss any
undiscovered novelty without studious inspection? Are conventions in identifying high-quality and
complete viral genomes ignoring entire viral groups with unique genome architecture? Is the field
as a whole moving too fast to fully consider the scope of the genomes presented?

There is no single set of answers to address all these questions easily. Rather, recognizing
the limitations of the available methods will help to best work towards an optimized, efficient, and
accurate approach to handle the rapid, near-constant flow of sequencing information. The goal is
a fair, holistic representation of the global virosphere to best understand how viruses influence all
life.
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