

Virus Genomics: What is Being Overlooked?

Kristopher Kieft^{1,2} and Karthik Anantharaman^{1,*}

¹Department of Bacteriology, University of Wisconsin–Madison, Madison, WI, USA

²Microbiology Doctoral Training Program, University of Wisconsin–Madison, Madison, WI, USA

* Corresponding author

Abstract

Viruses are diverse biological entities that influence all life. Even with limited genome sizes, viruses can manipulate, drive, steal from, and kill their hosts. The field of virus genomics, using sequencing data to understand viral capabilities, has seen significant innovations in recent years. However, with advancements in metagenomic sequencing and related technologies, the bottleneck to discovering and employing the virosphere has become the analysis of genomes rather than generation. With metagenomics rapidly expanding available data, vital components of virus genomes and features are being overlooked, with the issue compounded by lagging databases and bioinformatics methods. Despite the field moving in a positive direction, there are noteworthy points to keep in mind, from how software-based virus genome predictions are interpreted to what information is overlooked by current standards. In this review, we discuss conventions and ideologies that likely need to be revised while continuing forward in the study of virus genomics.

Introduction

Genomics approaches for the study of viruses (infecting eukarya and archaea) and bacteriophages (phage; viruses infecting bacteria) has taken off in the last few years, much in part due to our ability to understand and interpret viral genomes from metagenomes. In fact, it is common to find a publication describing environmental virus genomics from the last few years that indicate viruses as the most abundant and diverse biological entities on the planet. As a scientific community, we are recognizing the extensive footprint viruses leave on all environments where life exists. For example, examining viral genomes has allowed us to discover metabolic genes encoded by viruses such as for photosynthesis and sulfur oxidation, and extrapolate the impacts of virus-directed metabolism on various biogeochemical processes [1–8]. Investigating viral genomes has also aided in the innovation of novel CRISPR-based genome editing technologies [9–11], further development of phage therapy applications [12,13], broader understanding of human gut dysbiosis [14–16], and more.

Unseen to our daily lives, viruses and phages are constantly modifying the planet around us through manipulation and/or lysis of their hosts [17]. Unfortunately, only a small fraction of all viruses that are estimated to exist have been cultivated in the laboratory. This has led to great interest in utilizing next-generation sequencing and metagenomics specifically, to catalog, explore,

41 describe, and understand the diversity of viral genomes [18–21]. Through metagenomic methods
42 and technologies, thousands of viral genomes can be acquired from a single mixed metagenome
43 (mixed community) or virome
44 (virus-specific) sample.

45 There are two general
46 methods by which to obtain genomic
47 information to study viruses using
48 metagenomics: extraction and
49 sequencing of viromes, and virus
50 prediction from mixed microbial
51 metagenomes (Figure 1). A virome
52 differs from a conventional mixed
53 microbial metagenome in that it is
54 the physical separation, collection,
55 and sequencing of virus-like
56 particles (VLPs) from a sample.
57 Methodologies of VLP collection
58 vary considerably and require
59 modification depending on the
60 source environment (e.g., soil,
61 aquatic, human gut). Each method
62 comes with its own use-case utilities,
63 biases, and ease-of-use, and no one
64 method is globally accepted in the
65 field. A virome can be described as
66 an *in situ* method of virus discovery.
67 On the other hand, virus prediction is
68 the *in silico* discovery of virus
69 sequences from a metagenome, or
70 even a virome; a software tool or
71 manual sequence inspection is used
72 to separate viral from non-viral
73 sequences within a mixed
74 community. Notably, there are
75 distinct differences between these
76 two methods that impact the way in
77 which the data is analyzed. For
78 studies specifically focused on the
79 viral fraction of an ecosystem, VLP
80 sequencing of the virome can yield

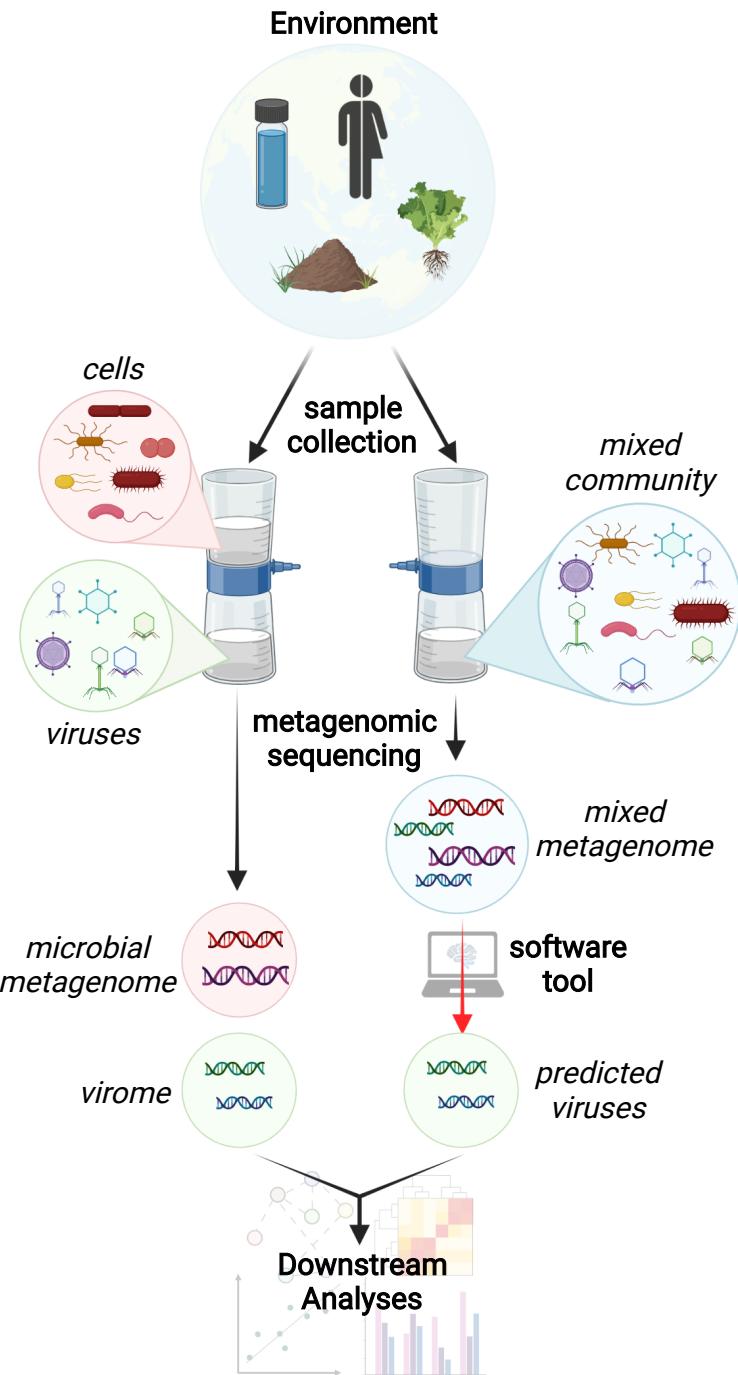


Figure 1. Sample collection and metagenomic sequencing of viruses. Virus genomes can be identified by physical separation from cells (left) or by software tool prediction (right) preceding downstream analyses.

81 results best suited for studying viral communities [22]. Virome samples are often better at
82 capturing low abundance viruses but may exclude viral genomes that are in an intracellular state
83 (e.g., non-replicating proviruses and virocells) [17]. Conversely, predicting viral sequences from
84 bulk metagenomes can provide context of the viruses and microbes together within the same
85 sample, such as allowing for more accurate host predictions or identifying intracellular viral
86 genomes [23,24].

87 In the last few years there has been a rapid expansion in the knowledge of viruses on a
88 global genomics level by using metagenomes. Here, we slow down and take a step back to ask
89 what is being overlooked? Considering the current state of virus genomics, where should
90 conventions be broken, and innovations be made? To do this, we will explore some of the methods
91 available to extract viral sequences from metagenomes and describe best practices of how those
92 sequences can or should be analyzed. Here, we will focus on software-based virus prediction
93 methods and their benefits, utilities, flaws, biases, and future directions.

94

95 **Sweeping contamination under the rug: balancing recovery and false discovery**

96 Virus prediction from mixed metagenomes is powerful in that it allows for an entire sample
97 to have nucleotides extracted and sequenced while maintaining the integrity of the original
98 microbial community comprised of organisms and viruses. A substantial number of software tools
99 are currently available to predict viruses from nucleotides with varying methods, degrees of
100 precision, and recovery capabilities [25–36]. In all cases, it is vital to consider the reality of these
101 predictions in that all computational methods have drawbacks (Figure 2a, Table 1).

102 Virus prediction, for the vast majority of implementations, do not encompass all viruses in
103 a sample due to loss in recovery, low sequencing depth of the viruses compared to microbes, or
104 biases against certain viral families. Therefore, when using software to predict viral sequences, the
105 recovered viruses will represent a subset of the true composition. These results can be influenced
106 by the specific computational methods utilized by different tools or universal limitations in
107 available methods [37]. For example, all currently available tools are limited by known virus
108 diversity and struggle to predict viruses with entirely novel sequences. Many tools are also biased
109 toward dsDNA viruses and phages due to dsDNA-centric databases and sequencing methods.
110 Likewise, viral genome sequences comprised mostly of genes or features common to both viruses
111 and organisms are difficult to identify accurately. These biases have the potential to leave behind
112 viruses with novelty to reference databases or regions of recent recombination without close
113 inspection [38,39]. In general, all software tools can only find viruses that appear similar to what
114 we already know about due to reliance on reference-based prediction methods (see *the reference-
115 free fallacy* below). This limitation has been addressed by incorporating non-reference (e.g.,
116 metagenomic) sequences into software training algorithms, but with the caveat that contamination
117 of virus predictions or virome extractions is not uncommon [25,40].

118 Contamination, or false discovery, of non-viral sequences is a feature of all virus prediction
119 software and should not be ignored. That is, not all recovered sequences predicted to be viruses
120 should be included haphazardly into analyses [41]. In most cases, the time, expertise, and/or

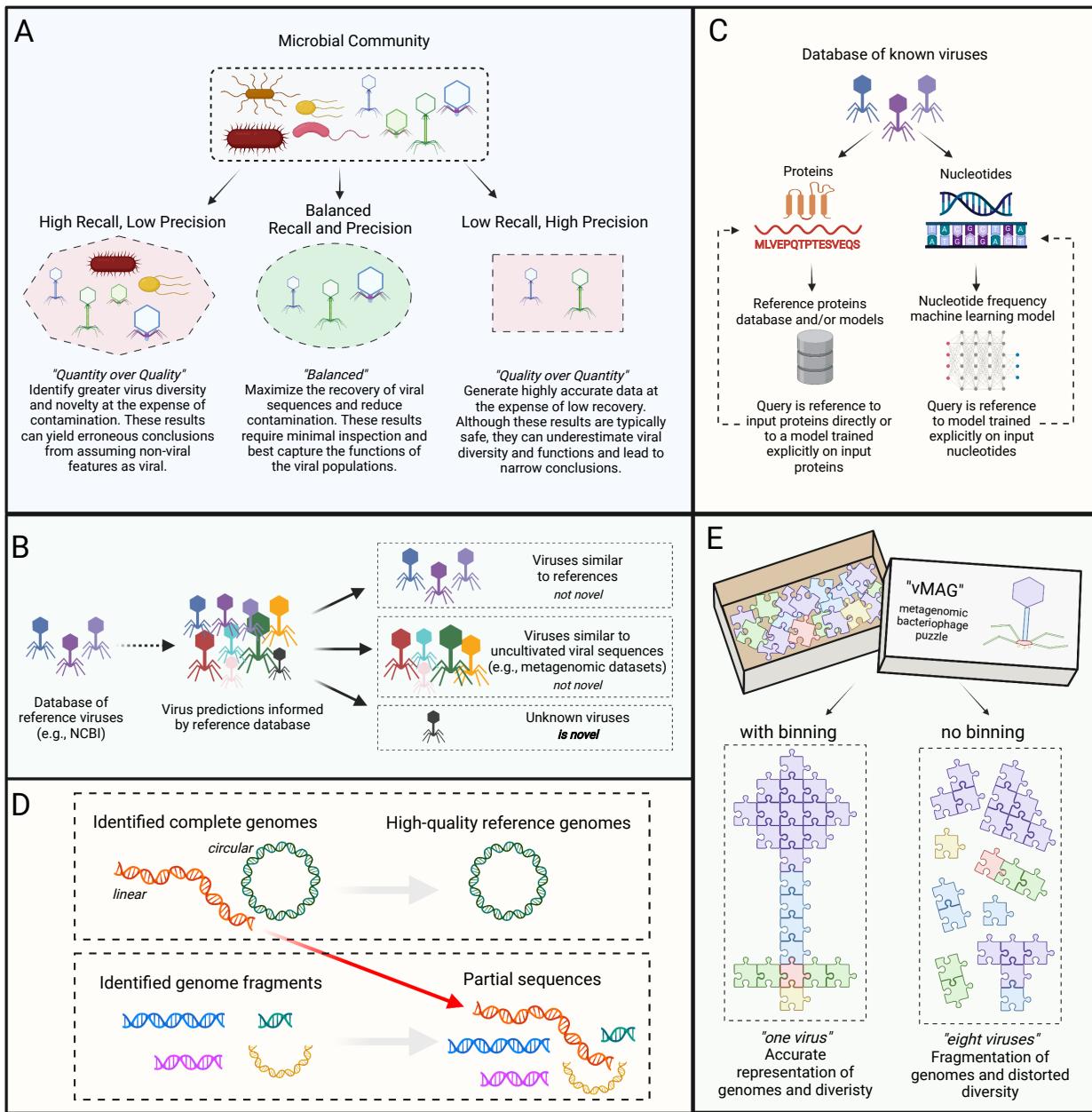


Figure 2. Conceptual summary diagram. **A:** comparison of general virus prediction strategies utilized by software tools, from variable recall and precision capabilities to a balanced approach. **B:** categorization of virus predictions as “not novel” or “novel” according to similarity to reference databases and datasets of uncultivated viral sequences. **C:** the reference-free fallacy; visualization of how virus prediction software tools, whether protein annotation-based (left) or nucleotide feature-based (right), are all inherently referenced-based. **D:** the fate of complete linear versus circular viral genomes in interpreting metagenomic data. **E:** illustration of a viral genome either binned into a vMAG (left) or analyzed as individual fragments (right); each sequence fragment is represented by puzzle pieces.

122 computational resources are not available to manually validate all recovered viruses. However, the
123 reality behind the precision of predictions should be made clear, such as providing details of how
124 the prediction results may have been validated including software-specific cutoffs and
125 identification of viral hallmark genes [42]. This is especially relevant when considering the ratio
126 of recovery to precision. For example, reporting numbers of high virus identifications (high
127 recovery) at the expense of the validity of those identifications (low precision) yields seemingly
128 valuable but fundamentally flawed data. Low precision can result from the poor performance of a
129 software tool, incorrect usage of a software tool (e.g., wrong implementation or retaining low
130 probability or scored predictions), inclusion of many short sequence fragments (e.g., less than 3
131 kb), and other factors.

132 The following sections stem from the original biases and limitations of the current state of
133 virus prediction. By exploring these topics, we aim to shed light on the potential advancements in
134 computational methods or inconsistencies in interpretations for viral metagenomic data.

135

136 **Of reference and reality**

137 Many of the gold standards (i.e., trusted reference sequences) for viral genomes are
138 deposited in public repositories such as NCBI databases [43,44]. These sequences are utilized by
139 various software tools beyond virus prediction, such as for prediction of hosts of viruses,
140 prediction of virus taxonomy, functional annotation, genome quality assessment, and more [45–
141 47]. However, this presents significant biases owing to the small and non-diverse composition of
142 NCBI databases, relative to nature. The diversity of viruses by taxonomy and sequence
143 composition within NCBI databases is estimated to be far less than what can be identified in nature
144 and is primarily limited to viruses that have been cultivated on a limited number of hosts, mostly
145 those of clinical significance or as a model research system [48]. Considering virus prediction
146 software tools are reliant on these reference databases, it is clear that there are pitfalls associated
147 with assuming that reference sequences fully mimic natural reality.

148 Similarly, the designation of viral genomes as “novel” according to a database search is
149 not equivalent to true novelty. True novelty refers to if a given genome has yet to be identified by
150 other sources and is not deposited in another database. For example, a search of NCBI databases
151 excludes the majority of metagenome-derived viral sequences, many of which can be found
152 throughout the literature and in curated databases [21,23,40,49]. Therefore, a virus may be novel
153 with regard to reference database sequences, but not actually represent a truly novel sequence.
154 Another source of novelty can be if the given sequence contains features yet to be discovered or
155 broader implications that have yet to be identified. For example, the identification of crAssphages
156 as highly abundant in the human gut came after representative sequences were deposited into
157 databases [50] (Figure 2b, Table 1).

158

159 **The reference-free fallacy: no such thing as a reference-free virus prediction**

160 Many virus prediction software tools are based on *bona fide* genomes derived from NCBI
161 RefSeq, which is mainly composed of isolated and cultivated viruses that serve as reference

systems. There are two broad categories of tools according to the methods used: nucleotide sequence features (e.g., VirFinder) and protein similarity (e.g., VIBRANT), or a hybrid of both (e.g., VirSorter2) [25–27]. For either category, machine learning has become a powerful approach for identifying patterns to increase prediction reliability and specificity [51]. However, this has led to some misconceptions to believe that “reference-free” refers to complete independence from reference databases, whereas “reference-based” refers to the use of protein annotation methods based on the annotations of reference viruses. Conversely, we advocate there is no tool completely reference-free and rather all tools are inherently reference-based in some manner (Figure 2c, Table 1).

For a tool that utilizes protein annotation, the reliance on reference sequences is in the form of prediction models built from a protein database [52–54], which is a clear reference-dependent method. Namely, only reference proteins are able to be annotated, queried, and subsequently analyzed. On the other hand, a tool that strictly uses sequence features (e.g., tetra-nucleotide frequency) does not necessarily need to rely on a database, but can rather rely on a machine learning model. This machine learning model can be perceived as reference-free, but similar to a protein database, the model too is dependent on the reference sequences used to train it. Therefore, for both categories of tools there is a direct reliance on reference sequences, making them both inherently reference based. A more accurate distinction would be “database-dependent” or “database-free” methods. Even manual verification of virus predictions is not reference-free as this method typically involves searching through protein annotations (e.g., phage structural hallmark proteins) and other reference-informed signatures (e.g., gene density and gene strand switch frequency) [55].

Moreover, it is important to note that the reference sequences used to compare, train and test software tools and/or machine learning models typically all come from the same genetic pool (i.e., NCBI databases). This perpetuates biases: biases against rare virus groups and biases in accurate comparisons. First, it is estimated that the true diversity of viruses in nature has yet to be captured by the sequences available on NCBI databases [19,49,56]. This results in a lack of representation of more rare viruses or simply those that have yet to be isolated/cultivated [39,57–59]. Since virus prediction tools are inherently reference-based, this leads to perpetual biases towards identifying viruses we already know about, with rare occasions of identifying a truly novel species [57]. Second, the utilization of NCBI databases for assessing available software tools results in an inherent loss of fair comparisons. It is becoming increasingly difficult to generate a comparison dataset of gold standard viral sequences that does not, in some capacity, represent the sequences used to train existing tools. This is due to the limited size of NCBI databases. Especially for tools that utilize machine learning, evaluating a tool with a sequence that was used to train that tool results in inflated, positive performance. The common work around is to only include viral sequences submitted to NCBI databases after the dates of publication for tools to compare, but this also results in biases, such as the inclusion of viruses nearly identical to those submitted previously. This latter example can be addressed by removing any identical sequences via dereplication, though this is seldom employed. In attempts to solve this issue and generate comprehensive, fair

202 datasets for future software tool development and comparison, more focus and better curation
203 standards need to be placed on the construction of reference sequence datasets.

204

205 **Linear genomes can be complete: where did all the linear genomes go?**

206 Identifying complete viral genomes from sequencing data allows for more robust analyses
207 compared to fragmented, partial genomes. Automated methods to predict complete viral genomes
208 focus on circularization signatures, namely the identification of terminal nucleotide repeats (direct
209 or inverted) of free viral sequences or insertion sites of viruses integrated into their host's genome
210 (proviruses) [25,26,29,30,34,47]. For free (lytic cycle) viruses, the identification of circularization
211 can typically indicate with confidence that the given genome is complete. However, this method
212 discounts complete linear genomes, such as those without identifiable terminal repeats [60].

213 Thus far, no high-throughput informatics method exists for the identification of complete
214 linear genomes in the absence of circularization signatures [47,61]. This results in over-
215 emphasizing circular genomes as the only gold standards in generating metagenomic-based
216 reference genomes or the highest quality genomes in genomic datasets. Though these conclusions
217 are not flawed on their own as correctly identified circular genomes are certainly of high quality,
218 barring false positives [62], this overall bias against linear genomes has infiltrated the currently
219 available literature (Figure 2d, Table 1). Speculatively, the ability to identify complete, linear virus
220 genomes may allow for a more holistic view of a viral community or lead to novel discoveries of
221 underappreciated viral groups.

222

223 **Metagenomes are puzzles: an unfinished puzzle is still just pieces**

224 Metagenomic assemblies reconstruct thousands to millions of sequence fragments
225 (*contigs*) representing partial genomes, and rarely complete genomes. A common practice in the
226 study of bacterial and archaeal genomes is to reconstruct metagenome-assembled genomes
227 (MAGs) [63,64]. This is typically done through a method termed *binning* where anywhere from
228 two to hundreds or even thousands of contigs may be grouped into a single, putative genome (*bin*).
229 When using short read (e.g., 75-300 bp) sequencing technology and assembly, many resulting
230 contigs are less than 5 kb in length, with relatively few exceeding 20 kb. Consequently, bacterial
231 and archaeal genomes that generally exceed 1,000 kb must be computationally binned into MAGs.
232 Though long-read (e.g., 1-20 kb) technologies are advancing these boundaries, the construction of
233 MAGs is typically still required. For bacteria and archaea, several software tools are available for
234 binning and constructing MAGs [65–70].

235 Viral genomes range from as small as 3 kb to greater than 2,000 kb. Many identified phages
236 are members of the class *Caudoviricetes* (formerly *Caudovirales*) which range considerably in
237 size, but most are approximately 30 kb to 200 kb [71]. Interestingly, the convention accepted in
238 descriptions of viruses derived from viromes or predicted from metagenomes is that a single contig
239 represents an uncultivated viral genome (UViG) or virus population [19]. To assume each
240 sequence represents a separate genome likely far overestimates viral diversity within a sample
241 given the expected fragmentation of viral genomes. This is especially true for viruses that are rarer

242 and would likely result in high genome fragmentation after assembly. The construction of viral
243 metagenome-assembled genomes (vMAGs) would better represent the true composition of viruses
244 within a sample. Importantly, UViGs still have utility in that any viral sequence left unbinned may
245 represent an entire viral population, contrary to what is accepted for bacteria and archaea where
246 unbinned sequences are typically discarded (Figure 2e, Table 1). This can be achieved by binning
247 vMAGs using short- or long-read sequencing [72]. Despite this, few studies bin vMAGs, and those
248 that do bin typically focus on viruses with the largest genomes [5,73–75]. This conspicuous
249 discrepancy of binning bacteria and archaea, but not viruses, is a convention that likely hinders
250 advancement in the field of viral metagenomics. Development of virus binning tools, such as
251 vRhyme [76], will fuel this advancement.

252 **Table 1.** Recommendations for the questions, biases, and pitfalls posed in each section.
253

Sweeping contamination under the rug: balancing recovery and false discovery <i>All software tools that predict viruses from metagenomes can make mistakes</i>
<ol style="list-style-type: none">1. Using multiple virus prediction tools and combining results can strengthen predictions by mitigating the biases and pitfall of each individual tool2. In published work, report all parameters and thresholds used for predicting viruses, including methods of manual curation3. Selecting low thresholds when running software or retaining low probability predictions will often generate “more data” at the expense of that data being low quality (i.e., contaminated)4. Read the tool’s publication (if available) in addition to the software documentation to best understand the tool’s utility, pitfalls, and performance benchmarks
Of reference and reality <i>The reliance of most software tools on reference databases is a source of bias</i>
<ol style="list-style-type: none">1. Consider homology search to additional curated databases in addition to NCBI databases when reporting novel sequences or gene features
The reference-free fallacy: no such thing as a reference-free virus prediction <i>No current tool for predicting virus sequences is reference-free</i>
<ol style="list-style-type: none">1. Repeated training tools on NCBI databases has led to overlap in training and testing datasets across tools, making benchmarks increasingly difficult to perform without bias. Including non-NCBI databases in training, testing, and curating databases can reduce bias2. Avoid falsely assuming database-independent machine learning models, whether trained on protein annotations or nucleotide features, overcome the necessity for reference-based searches
Linear genomes can be complete: where did all the linear genomes go? <i>Emphasis is placed on circular genomes as complete, excluding linear genomes</i>

1. Although complete, linear genomes may be identified as high quality or near complete, the lack of circularization signatures underemphasizes these genomes in databases or analyses
2. A metagenomics-scale approach to identify complete viral genomes without terminal repeats may reduce the bias towards circular genomes. Until such a tool is available, it is necessary to keep in mind the possibility of underrepresenting linear genomes

Metagenomes are puzzles: an unfinished puzzle is still just pieces

Not all metagenomic viral scaffolds represent the whole genome

1. The inclusion of binning in virus analysis pipelines and constructing viral metagenome-assembled genomes (vMAGs) will likely better represent true composition of viruses and viral diversity

254

255 Conclusions

256 Virus genomics, specifically metagenomics, allows for the circumvention of conventional
257 cultivation approaches to study viruses, their impacts on microbial communities, biogeochemistry,
258 applications for biotechnology, human medicine, and more. After sequencing a sample, it has
259 become just a few keystrokes and a click of a button to obtain a list of the viruses present. The
260 outcome is that our knowledge of viral genomic diversity has increased at a near exponential rate
261 over the last few years, opening new and exciting opportunities. However, this has been at the
262 expense of biasing conclusions due to tools, methodologies, and conventions that lag data
263 acquisition.

264 We are led to several overarching questions. Are virus predictions capturing the true nature
265 of a community of viruses? Are heavily reference-guided predictions making it easy to miss any
266 undiscovered novelty without studious inspection? Are conventions in identifying high-quality and
267 complete viral genomes ignoring entire viral groups with unique genome architecture? Is the field
268 as a whole moving too fast to fully consider the scope of the genomes presented?

269 There is no single set of answers to address all these questions easily. Rather, recognizing
270 the limitations of the available methods will help to best work towards an optimized, efficient, and
271 accurate approach to handle the rapid, near-constant flow of sequencing information. The goal is
272 a fair, holistic representation of the global virosphere to best understand how viruses influence all
273 life.

274

275

276 Conflict of interest statement

277 The authors declare no conflicts of interest.

278

279 Acknowledgements

280 We thank Evelien Adriaenssens and Jelle Matthijnssens for the invitation to contribute to this
281 special series. We thank members of the Anantharaman laboratory at the University of Wisconsin-
282 Madison for helpful feedback and discussions. K.K. was supported by a Wisconsin Distinguished
283 Graduate Fellowship Award from the University of Wisconsin-Madison, and a William H.
284 Peterson Fellowship Award from the Department of Bacteriology, University of Wisconsin-

285 Madison. This research was supported by National Institute of General Medical Sciences of the
286 National Institutes of Health under award number R35GM143024. Figures were created with
287 Biorender.com.

288

289

290 **References**

- 291 1. Bragg JG, Chisholm SW: **Modeling the Fitness Consequences of a Cyanophage-Encoded**
292 **Photosynthesis Gene.** *PLOS ONE* 2008, **3**:e3550.
- 293 2. Mann NH, Cook A, Millard A, Bailey S, Clokie M: **Bacterial photosynthesis genes in a virus.**
294 *Nature* 2003, **424**:741.
- 295 3. Roux S, Hawley AK, Beltran MT, Scofield M, Schwientek P, Stepanauskas R, Woyke T,
296 Hallam SJ, Sullivan MB: **Ecology and evolution of viruses infecting uncultivated SUP05**
297 **bacteria as revealed by single-cell- and meta-genomics.** *eLife Sciences* 2014, **3**:e03125.
- 298 4. Trubl G, Jang HB, Roux S, Emerson JB, Solonenko N, Vik DR, Soden L, Ellenbogen J, Runyon
299 AT, Bolduc B, et al.: **Soil Viruses Are Underexplored Players in Ecosystem Carbon**
300 **Processing.** *mSystems* 2018, **3**:e00076-18.
- 301 5. Chen L-X, Méheust R, Crits-Christoph A, McMahon KD, Nelson TC, Slater GF, Warren LA,
302 Banfield JF: **Large freshwater phages with the potential to augment aerobic methane**
303 **oxidation.** *Nat Microbiol* 2020, **5**:1504–1515.
- 304 6. Roux S, Brum JR, Dutilh BE, Sunagawa S, Duhaime MB, Loy A, Poulos BT, Solonenko N, Lara
305 E, Poulaïn J, et al.: **Ecogenomics and potential biogeochemical impacts of globally**
306 **abundant ocean viruses.** *Nature* 2016, **537**:689–693.
- 307 7. Kieft K, Breister AM, Huss P, Linz AM, Zanetakos E, Zhou Z, Rahlf J, Esser SP, Probst AJ,
308 Raman S, et al.: **Virus-associated organosulfur metabolism in human and environmental**
309 **systems.** *Cell Rep* 2021, **36**:109471.
- 310 8. Kieft K, Zhou Z, Anderson RE, Buchan A, Campbell BJ, Hallam SJ, Hess M, Sullivan MB,
311 Walsh DA, Roux S, et al.: **Ecology of inorganic sulfur auxiliary metabolism in widespread**
312 **bacteriophages.** *Nat Commun* 2021, **12**:3503.
- 313 9. Mojica FJM, Díez-Villaseñor C, García-Martínez J, Soria E: **Intervening Sequences of**
314 **Regularly Spaced Prokaryotic Repeats Derive from Foreign Genetic Elements.** *J Mol Evol*
315 2005, **60**:174–182.
- 316 10. Pourcel C, Salvignol G, Vergnaud GY 2005: **CRISPR elements in *Yersinia pestis* acquire new**
317 **repeats by preferential uptake of bacteriophage DNA, and provide additional tools for**
318 **evolutionary studies.** *Microbiology* [date unknown], **151**:653–663.

319 11. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, et
320 al.: **Multiplex Genome Engineering Using CRISPR/Cas Systems**. *Science* 2013, **339**:819–
321 823.

322 12. Fujimoto K, Kimura Y, Shimohigoshi M, Satoh T, Sato S, Tremmel G, Uematsu M,
323 Kawaguchi Y, Usui Y, Nakano Y, et al.: **Metagenome Data on Intestinal Phage-Bacteria**
324 **Associations Aids the Development of Phage Therapy against Pathobionts**. *Cell Host &*
325 *Microbe* 2020, **28**:380-389.e9.

326 13. Chatterjee A, Willett JLE, Nguyen UT, Monogue B, Palmer KL, Dunny GM, Duerkop BA:
327 **Parallel Genomics Uncover Novel Enterococcal-Bacteriophage Interactions**. *mBio* [date
328 unknown], **11**:e03120-19.

329 14. Mangalea MR, Paez-Espino D, Kieft K, Chatterjee A, Chriswell ME, Seifert JA, Feser ML,
330 Demoruelle MK, Sakatos A, Anantharaman K, et al.: **Individuals at risk for rheumatoid**
331 **arthritis harbor differential intestinal bacteriophage communities with distinct**
332 **metabolic potential**. *Cell Host & Microbe* 2021, **29**:726-739.e5.

333 15. Shkoporov AN, Clooney AG, Sutton TDS, Ryan FJ, Daly KM, Nolan JA, McDonnell SA,
334 Khokhlova EV, Draper LA, Forde A, et al.: **The Human Gut Virome Is Highly Diverse, Stable,**
335 **and Individual Specific**. *Cell Host & Microbe* 2019, **26**:527-541.e5.

336 16. Clooney AG, Sutton TDS, Shkoporov AN, Holohan RK, Daly KM, O'Regan O, Ryan FJ, Draper
337 LA, Plevy SE, Ross RP, et al.: **Whole-Virome Analysis Sheds Light on Viral Dark Matter in**
338 **Inflammatory Bowel Disease**. *Cell Host & Microbe* 2019, **26**:764-778.e5.

339 17. Howard-Varona C, Lindback MM, Bastien GE, Solonenko N, Zayed AA, Jang H,
340 Andreopoulos B, Brewer HM, Rio TG del, Adkins JN, et al.: **Phage-specific metabolic**
341 **reprogramming of virocells**. *ISME J* 2020.

342 18. Camarillo-Guerrero LF, Almeida A, Rangel-Pineros G, Finn RD, Lawley TD: **Massive**
343 **expansion of human gut bacteriophage diversity**. *Cell* 2021, **184**:1098-1109.e9.

344 19. Roux S, Adriaenssens EM, Dutilh BE, Koonin EV, Kropinski AM, Krupovic M, Kuhn JH,
345 Lavigne R, Brister JR, Varsani A, et al.: **Minimum Information about an Uncultivated Virus**
346 **Genome (MIUViG)**. *Nature Biotechnology* 2019, **37**:29–37.

347 20. Paez-Espino D, Zhou J, Roux S, Nayfach S, Pavlopoulos GA, Schulz F, McMahon KD, Walsh
348 D, Woyke T, Ivanova NN, et al.: **Diversity, evolution, and classification of virophages**
349 **uncovered through global metagenomics**. *Microbiome* 2019, **7**:157.

350 21. Gregory AC, Zayed AA, Conceição-Neto N, Temperton B, Bolduc B, Alberti A, Ardyna M,
351 Arkhipova K, Carmichael M, Cruaud C, et al.: **Marine DNA Viral Macro- and Microdiversity**
352 **from Pole to Pole**. *Cell* 2019, **177**:1109-1123.e14.

353 22. Santos-Medellin C, Zinke LA, ter Horst AM, Gelardi DL, Parikh SJ, Emerson JB: **Viromes**
354 **outperform total metagenomes in revealing the spatiotemporal patterns of agricultural**
355 **soil viral communities.** *ISME J* 2021, **15**:1956–1970.

356 23. Gregory AC, Zablocki O, Zayed AA, Howell A, Bolduc B, Sullivan MB: **The Gut Virome**
357 **Database Reveals Age-Dependent Patterns of Virome Diversity in the Human Gut.** *Cell*
358 *Host & Microbe* 2020, **28**:724-740.e8.

359 24. Kieft K, Anantharaman K: **Deciphering active prophages from metagenomes.** *bioRxiv*
360 2021, doi:10.1101/2021.01.29.428894.

361 25. Guo J, Bolduc B, Zayed AA, Varsani A, Dominguez-Huerta G, Delmont TO, Pratama AA,
362 Gazitúa MC, Vik D, Sullivan MB, et al.: **VirSorter2: a multi-classifier, expert-guided**
363 **approach to detect diverse DNA and RNA viruses.** *Microbiome* 2021, **9**:37.

364 26. Kieft K, Zhou Z, Anantharaman K: **VIBRANT: automated recovery, annotation and**
365 **curation of microbial viruses, and evaluation of viral community function from genomic**
366 **sequences.** *Microbiome* 2020, **8**:90.

367 27. Ren J, Ahlgren NA, Lu YY, Fuhrman JA, Sun F: **VirFinder: a novel k-mer based tool for**
368 **identifying viral sequences from assembled metagenomic data.** *Microbiome* 2017, **5**:69.

369 28. Saw AK, Raj G, Das M, Talukdar NC, Tripathy BC, Nandi S: **Alignment-free method for DNA**
370 **sequence clustering using Fuzzy integral similarity.** *Scientific Reports* 2019, **9**:3753.

371 29. Arndt D, Grant JR, Marcu A, Sajed T, Pon A, Liang Y, Wishart DS: **PHASTER: a better, faster**
372 **version of the PHAST phage search tool.** *Nucleic Acids Res* 2016, **44**:W16–W21.

373 30. Song W, Sun H-X, Zhang C, Cheng L, Peng Y, Deng Z, Wang D, Wang Y, Hu M, Liu W, et al.:
374 **Prophage Hunter: an integrative hunting tool for active prophages.** *Nucleic Acids Res*
375 2019, **47**:W74–W80.

376 31. Antipov D, Raiko M, Lapidus A, Pevzner PA: **MetaviralSPAdes: assembly of viruses from**
377 **metagenomic data.** *Bioinformatics* 2020, **36**:4126–4129.

378 32. Deaton J, Yu FB, Quake SR: **PhaMers identifies novel bacteriophage sequences from**
379 **thermophilic hot springs.** *bioRxiv* 2017, doi:10.1101/169672.

380 33. Zheng T, Li J, Ni Y, Kang K, Misiakou M-A, Imamovic L, Chow BKC, Rode AA, Bytzer P,
381 Sommer M, et al.: **Mining, analyzing, and integrating viral signals from metagenomic**
382 **data.** *Microbiome* 2019, **7**:42.

383 34. Roux S, Enault F, Hurwitz BL, Sullivan MB: **VirSorter: mining viral signal from microbial**
384 **genomic data.** *PeerJ* 2015, **3**:e985.

385 35. Amgarten D, Braga LPP, da Silva AM, Setubal JC: **MARVEL, a Tool for Prediction of**
386 **Bacteriophage Sequences in Metagenomic Bins.** *Frontiers in Genetics* 2018, **9**:304.

387 36. Aylward FO, Moniruzzaman M: **ViralRecall—A Flexible Command-Line Tool for the**
388 **Detection of Giant Virus Signatures in ‘Omic Data.** *Viruses* 2021, **13**:150.

389 37. Ponsero AJ, Hurwitz BL: **The Promises and Pitfalls of Machine Learning for Detecting**
390 **Viruses in Aquatic Metagenomes.** *Frontiers in Microbiology* 2019, **10**:806.

391 38. Roux S, Krupovic M, Daly RA, Borges AL, Nayfach S, Schulz F, Sharrar A, Carnevali PBM,
392 Cheng J-F, Ivanova NN, et al.: **Cryptic inoviruses revealed as pervasive in bacteria and**
393 **archaea across Earth’s biomes.** *Nature Microbiology* 2019.

394 39. Devoto AE, Santini JM, Olm MR, Anantharaman K, Munk P, Tung J, Archie EA, Turnbaugh
395 PJ, Seed KD, Blekhman R, et al.: **Megaphages infect Prevotella and variants are**
396 **widespread in gut microbiomes.** *Nature Microbiology* 2019, **4**:693–700.

397 40. Paez-Espino D, Eloe-Fadrosh EA, Pavlopoulos GA, Thomas AD, Huntemann M, Mikhailova
398 N, Rubin E, Ivanova NN, Kyrpides NC: **Uncovering Earth’s virome.** *Nature* 2016, **536**:425–
399 430.

400 41. Roux S, Krupovic M, Debroas D, Forterre P, Enault F: **Assessment of viral community**
401 **functional potential from viral metagenomes may be hampered by contamination with**
402 **cellular sequences.** *Open Biology* [date unknown], **3**:130160.

403 42. Pratama AA, Bolduc B, Zayed AA, Zhong Z-P, Guo J, Vik DR, Gazitúa MC, Wainaina JM, Roux
404 S, Sullivan MB: **Expanding standards in viromics: in silico evaluation of dsDNA viral**
405 **genome identification, classification, and auxiliary metabolic gene curation.** *PeerJ* 2021,
406 **9**:e11447.

407 43. O’Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D, McVeigh R, Rajput B, Robbertse B,
408 Smith-White B, Ako-Adjei D, et al.: **Reference sequence (RefSeq) database at NCBI:**
409 **current status, taxonomic expansion, and functional annotation.** *Nucleic Acids Res* 2016,
410 **44**:D733–D745.

411 44. Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW: **GenBank.** *Nucleic Acids Res*
412 2016, **44**:D67–D72.

413 45. Jang HB, Bolduc B, Zablocki O, Kuhn JH, Roux S, Adriaenssens EM, Brister JR, Kropinski AM,
414 Krupovic M, Lavigne R, et al.: **Taxonomic assignment of uncultivated prokaryotic virus**
415 **genomes is enabled by gene-sharing networks.** *Nature Biotechnology* 2019.

416 46. Ecale Zhou CL, Malfatti S, Kimbrel J, Philipson C, McNair K, Hamilton T, Edwards R, Souza B:
417 **multiPhATE: bioinformatics pipeline for functional annotation of phage isolates.**
418 *Bioinformatics* 2019, **35**:4402–4404.

419 47. Nayfach S, Camargo AP, Schulz F, Eloé-Fadrosh E, Roux S, Kyrpides NC: **CheckV assesses**
420 **the quality and completeness of metagenome-assembled viral genomes.** *Nat Biotechnol*
421 2021, **39**:578–585.

422 48. Dion MB, Oechslin F, Moineau S: **Phage diversity, genomics and phylogeny.** *Nature*
423 *Reviews Microbiology* 2020.

424 49. Roux S, Páez-Espino D, Chen I-MA, Palaniappan K, Ratner A, Chu K, Reddy TBK, Nayfach S,
425 Schulz F, Call L, et al.: **IMG/VR v3: an integrated ecological and evolutionary framework**
426 **for interrogating genomes of uncultivated viruses.** *Nucleic Acids Research* 2021, **49**:D764–
427 D775.

428 50. Dutilh BE, Cassman N, McNair K, Sanchez SE, Silva GGZ, Boling L, Barr JJ, Speth DR,
429 Seguritan V, Aziz RK, et al.: **A highly abundant bacteriophage discovered in the unknown**
430 **sequences of human faecal metagenomes.** *Nature Communications* 2014, **5**:4498.

431 51. Auslander N, Gussow AB, Koonin EV: **Incorporating Machine Learning into Established**
432 **Bioinformatics Frameworks.** *International Journal of Molecular Sciences* 2021, **22**:2903.

433 52. Graziotin AL, Koonin EV, Kristensen DM: **Prokaryotic Virus Orthologous Groups (pVOGs):**
434 **a resource for comparative genomics and protein family annotation.** *Nucleic Acids Res*
435 2017, **45**:D491–D498.

436 53. UniProt Consortium T: **UniProt: the universal protein knowledgebase.** *Nucleic Acids Res*
437 2018, **46**:2699–2699.

438 54. Zayed AA, Lücking D, Mohssen M, Cronin D, Bolduc B, Gregory AC, Hargreaves KR,
439 Piehowski PD, White RA, Huang EL, et al.: **efam: an expanded, metaproteome-supported**
440 **HMM profile database of viral protein families.** *Bioinformatics* 2021.

441 55. Shaffer M, Borton MA, McGivern BB, Zayed AA, La Rosa SL, Soden LM, Liu P, Narro AB,
442 Rodríguez-Ramos J, Bolduc B, et al.: **DRAM for distilling microbial metabolism to**
443 **automate the curation of microbiome function.** *Nucleic Acids Research* 2020, **48**:8883–
444 8900.

445 56. Brister JR, Ako-Adjei D, Bao Y, Blinkova O: **NCBI viral genomes resource.** *Nucleic Acids Res*
446 2015, **43**:D571-577.

447 57. Kauffman KM, Hussain FA, Yang J, Arevalo P, Brown JM, Chang WK, VanInsberghe D,
448 Elsherbini J, Sharma RS, Cutler MB, et al.: **A major lineage of non-tailed dsDNA viruses as**
449 **unrecognized killers of marine bacteria.** *Nature; London* 2018, **554**:118-122,122A-122T.

450 58. Krishnamurthy SR, Janowski AB, Zhao G, Barouch D, Wang D: **Hyperexpansion of RNA**
451 **Bacteriophage Diversity.** *PLOS Biology* 2016, **14**:e1002409.

452 59. Callanan J, Stockdale S, Shkorporov A, Draper L, Ross RP, Hill C: **Expansion of known ssRNA**
453 **phage genomes: From tens to over a thousand.** *Science Advances* 2020.

454 60. Casjens SR, Gilcrease EB: **Determining DNA Packaging Strategy by Analysis of the Termini**
455 **of the Chromosomes in Tailed-Bacteriophage Virions.** *Methods Mol Biol* 2009, **502**:91–
456 111.

457 61. Beaulaurier J, Luo E, Eppley JM, Uyl PD, Dai X, Burger A, Turner DJ, Pendleton M, Juul S,
458 **Harrington E, et al.: Assembly-free single-molecule sequencing recovers complete virus**
459 **genomes from natural microbial communities.** *Genome Res* 2020, **30**:437–446.

460 62. Roux S, Emerson JB, Eloe-Fadrosh EA, Sullivan MB: **Benchmarking viromics: an in silico**
461 **evaluation of metagenome-enabled estimates of viral community composition and**
462 **diversity.** *PeerJ* 2017, **5**:e3817.

463 63. Bowers RM, Kyrpides NC, Stepanauskas R, Harmon-Smith M, Doud D, Reddy TBK, Schulz F,
464 Jarett J, Rivers AR, Eloe-Fadrosh EA, et al.: **Minimum information about a single amplified**
465 **genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and**
466 **archaea.** *Nature Biotechnology* 2017, **35**:725–731.

467 64. Tyson GW, Chapman J, Hugenholtz P, Allen EE, Ram RJ, Richardson PM, Solovyev VV, Rubin
468 EM, Rokhsar DS, Banfield JF: **Community structure and metabolism through**
469 **reconstruction of microbial genomes from the environment.** *Nature* 2004, **428**:37–43.

470 65. Wu Y-W, Tang Y-H, Tringe SG, Simmons BA, Singer SW: **MaxBin: an automated binning**
471 **method to recover individual genomes from metagenomes using an expectation-**
472 **maximization algorithm.** *Microbiome* 2014, **2**:26.

473 66. Nissen JN, Johansen J, Allesøe RL, Sønderby CK, Armenteros JJA, Grønbech CH, Jensen LJ,
474 Nielsen HB, Petersen TN, Winther O, et al.: **Improved metagenome binning and assembly**
475 **using deep variational autoencoders.** *Nature Biotechnology* 2021.

476 67. Alneberg J, Bjarnason BS, de Brujin I, Schirmer M, Quick J, Ijaz UZ, Lahti L, Loman NJ,
477 Andersson AF, Quince C: **Binning metagenomic contigs by coverage and composition.**
478 *Nature Methods* 2014, **11**:1144–1146.

479 68. Uritskiy GV, DiRuggiero J, Taylor J: **MetaWRAP—a flexible pipeline for genome-resolved**
480 **metagenomic data analysis.** *Microbiome* 2018, **6**:158.

481 69. Sieber CMK, Probst AJ, Sharrar A, Thomas BC, Hess M, Tringe SG, Banfield JF: **Recovery of**
482 **genomes from metagenomes via a dereplication, aggregation and scoring strategy.**
483 *Nature Microbiology* 2018, **3**:836–843.

484 70. Kang DD, Li F, Kirton E, Thomas A, Egan R, An H, Wang Z: **MetaBAT 2: an adaptive binning**
485 **algorithm for robust and efficient genome reconstruction from metagenome assemblies.**
486 *PeerJ* 2019, **7**:e7359.

487 71. Turner D, Kropinski AM, Adriaenssens EM: **A Roadmap for Genome-Based Phage**
488 **Taxonomy.** *Viruses* 2021, **13**:506.

489 72. Warwick-Dugdale J, Solonenko N, Moore K, Chittick L, Gregory AC, Allen MJ, Sullivan MB,
490 Temperton B: **Long-read viral metagenomics captures abundant and microdiverse viral**
491 **populations and their niche-defining genomic islands.** *PeerJ* 2019, **7**:e6800.

492 73. Moniruzzaman M, Martinez-Gutierrez CA, Weinheimer AR, Aylward FO: **Dynamic genome**
493 **evolution and complex virocell metabolism of globally-distributed giant viruses.** *Nat*
494 *Commun* 2020, **11**:1710.

495 74. Schulz F, Andreani J, Francis R, Boudjemaa H, Bou Khalil JY, Lee J, La Scola B, Woyke T:
496 **Advantages and Limits of Metagenomic Assembly and Binning of a Giant Virus.**
497 *mSystems* 2020, **5**:e00048-20.

498 75. Anantharaman K, Duhaime MB, Breier JA, Wendt KA, Toner BM, Dick GJ: **Sulfur Oxidation**
499 **Genes in Diverse Deep-Sea Viruses.** *Science* 2014, **344**:757–760.

500 76. Kieft K, Adams A, Salamzade R, Kalan L, Anantharaman K: *vRhyme enables binning of viral*
501 *genomes from metagenomes.* *bioRxiv* 2021, doi: 10.1101/2021.12.16.473018.

502