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ABSTRACT

Background: Advances in microbiome science are being driven in large part due to our ability
to study and infer microbial ecology from genomes reconstructed from mixed microbial
communities using metagenomics and single-cell genomics. Such omics-based techniques
allow us to read genomic blueprints of microorganisms, decipher their functional capacities
and activities, and reconstruct their roles in biogeochemical processes. Currently available
tools for analyses of genomic data can annotate and depict metabolic functions to some extent,
however, no standardized approaches are currently available for the comprehensive
characterization of metabolic predictions, metabolite exchanges, microbial interactions, and
microbial contributions to biogeochemical cycling.

Results: We present METABOLIC (METabolic And BiogeOchemistry analyses In
miCrobes), a scalable software to advance microbial ecology and biogeochemistry studies
using genomes at the resolution of individual organisms and/or microbial communities. The
genome-scale workflow includes annotation of microbial genomes, motif validation of
biochemically validated conserved protein residues, metabolic pathway analyses, and
calculation of contributions to individual biogeochemical transformations and cycles. The
community-scale workflow supplements genome-scale analyses with determination of
genome abundance in the microbiome, potential microbial metabolic handoffs and metabolite
exchange, reconstruction of functional networks, and determination of microbial contributions
to biogeochemical cycles. METABOLIC can take input genomes from isolates, metagenome-
assembled genomes, or single-cell genomes. Results are presented in the form of tables for
metabolism and a variety of visualizations including biogeochemical cycling potential,
representation of sequential metabolic transformations, community-scale microbial functional
networks using a newly defined metric ‘MW-score’ (metabolic weight score), and metabolic
Sankey diagrams. METABOLIC takes ~3 hours with 40 CPU threads to process ~100
genomes and corresponding metagenomic reads within which the most compute-demanding
part of hmmsearch takes ~45 mins, while it takes ~5 hours to complete hmmsearch for ~3600
genomes. Tests of accuracy, robustness, and consistency suggest METABOLIC provides
better performance compared to other software and online servers. To highlight the utility and
versatility of METABOLIC, we demonstrate its capabilities on diverse metagenomic datasets
from the marine subsurface, terrestrial subsurface, meadow soil, deep sea, freshwater lakes,
wastewater, and the human gut.

Conclusion: METABOLIC enables the consistent and reproducible study of microbial
community ecology and biogeochemistry using a foundation of genome-informed microbial
metabolism, and will advance the integration of uncultivated organisms into metabolic and
biogeochemical models. METABOLIC is written in Perl and R and is freely available at
https://github.com/AnantharamanLab/METABOLIC under GPLv3.

Keywords:  functional traits, = metagenome-assembled  genomes, microbiome,
biogeochemistry, metabolic potential, microbial functional networks.
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INTRODUCTION

Metagenomics and single-cell genomics have transformed the field of microbial ecology by
revealing a rich diversity of microorganisms from diverse settings, including terrestrial [1-3]
and marine environments [4, 5] and the human body [6]. These approaches can provide an
unbiased and insightful view into microorganisms mediating and contributing to
biogeochemical activities at a number of scales ranging from individual organisms to
communities [7-9]. Recent studies have also enabled the recovery of hundreds to thousands of
genomes from a single sample or environment [8, 10, 11]. However, analyses of ever-increasing
datasets remain a challenge. For example, there is a lack of scalable and reproducible
bioinformatic approaches for characterizing metabolism and biogeochemistry, as well as

standardizing their analyses and representation for large datasets.

Microbially-mediated biogeochemical processes serve as important driving forces for the
transformation and cycling of elements, energy, and matter among the lithosphere, atmosphere,
hydrosphere, and biosphere [12]. Microbial communities in natural environmental settings exist
in the form of complex and highly connected networks that share and compete for metabolites
[13-15]. The interdependent and cross-linked metabolic and biogeochemical interactions within
a community can provide a relatively high level of plasticity and flexibility [16]. For instance,
multiple metabolic steps within a specific pathway are often separately distributed in a number
of microorganisms and they are interdependent on utilizing the substrates from the previous
step [2, 17, 18]. This scenario, referred to as ‘metabolic handoffs’, is based on sequential
metabolic transformations, and provides the benefit of high resilience of metabolic activities
which make both the community and function stable in the face of perturbations [17, 18]. It is
therefore highly valuable to obtain the information of microbial metabolic function from the

perspective of individual genomes as well as the entire microbial community.

Currently, there are many quantitative software and platforms for reconstructing species and
community-level metabolic networks [19-25]. They are largely based on building microbial
metabolic models containing reactions for substrate utilization and product generation [15, 19].
Based on individual microbial models, metabolic phenotypes for the whole community can be
further predicted [15]. These approaches allow providing mechanistic bases for predicting and
thus operating community metabolisms based on the given environmental conditions and
predicted microbial phenotypes [26]. Thus they are more focused on illustrating the operating
principles of community metabolisms and the underlying metabolic networks of connected
reactions to achieve better outcomes for metabolite production [21, 22], industrial applications
[19], drug discovery [19], etc.

Yet, seldom have approaches been developed to study the functional role of microorganisms in
the context of biogeochemistry and community-level functional networks [27, 28]. Such tools
are based on the principles of facilitating the understanding of microbially-mediated
biogeochemical activities. The tools ask for identifying and providing metabolic predictions on

the functional details, transformations of nutrients and energy, and functional connections for
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microorganisms within the community [29]. The resulting genome-informed microbial
metabolisms are important for understanding the microbial roles within a whole community in
mediating the biogeochemical processes. Currently, such quantitative approaches to interpret
functional details, reconstruct metabolic relationships, and visualize microbial functional
networks are still limited [27, 28].

Prediction of microbial metabolism relies on the annotation of protein function for
microorganisms using a number of established databases, e.g., KEGG [30], MetaCyc [31],
Pfam [32], TIGRfam [33], SEED/RAST [34], and eggNOG [35]. However, these results are
often highly detailed, and therefore can be overwhelming to users. Obtaining a functional
profile and identifying metabolic pathways in a microbial genome can involve manual
inspection of thousands of genes [36]. Organizing, interpreting, and visualizing such datasets
remains a challenge and is often untenable especially with datasets larger than one microbial
genome. There is a critical need for approaches and tools to identify and validate the presence
of metabolic pathways, biogeochemical function, and connections in microbial communities in
a user-friendly manner. Such tools addressing this gap would also allow standardization of
methods and easier integration of genome-informed metabolism into biogeochemical models,
which currently rely primarily on physicochemical data and treat microorganisms as black
boxes [37]. A recent statistical study indicates that incorporating microbial community structure
in biogeochemical modeling could significantly increase model accuracy of processes that are
mediated by narrow phylogenetic guilds via functional gene data, and processes that are
mediated by facultative microorganisms via community diversity metrics [38]. This highlights
the importance of integrating microbial community and genomic information into the

prediction and modeling of biogeochemical processes.

Here we present the software METABOLIC (METabolic And BiogeOchemistry anaLyses In
miCrobes), a toolkit to profile metabolic and biogeochemical traits, and functional networks in
microbial communities based on microbial genomes. METABOLIC integrates annotation of
proteins using KEGG [30], TIGRfam [33], Pfam [32], custom hidden Markov model (HMM)
databases [2], dbCAN2 [39], and MEROPS [40], incorporates a protein motif validation step
to accurately identify proteins based on prior biochemical validation, and determines presence
or absence of metabolic pathways based on KEGG modules. METABOLIC also produces user-
friendly outputs in the form of tables and figures including a summary of microbial functional
profiles, biogeochemically-relevant pathways, functional networks at the scale of individual

genomes and community levels, and microbial contribution to the biogeochemical processes.

METHODS

HMM databases used by METABOLIC

To generate a broad range of metabolic gene HMM profiles, we integrated three sets of HMM-
based databases, which are KOfam [41] (July 2019 release, containing HMM profiles for
KEGG/KO with predefined score thresholds), TIGRfam [33] (Release 15.0), Pfam [32]
(Release 32.0), and custom metabolic HMM profiles [2]. In order to achieve a better HMM
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search result excluding non-specific hits, we have tested and manually curated cutoffs for those
HMM databases listed above into the resulting HMMs: KOfam database - KOfam suggested
values; TIGRfam/Pfam/Custom databases - manually curated by adjusting noise cutoffs (NC)
or trusted cutoffs (TC) to avoid potential false positive hits. For the KOfam suggested cutoffs,
we considered both the score type (full length or domain) and the score value to assign whether
an individual protein hit is significant or not. HMM databases were used as the reference for
hmmsearch [42] to find protein hits of input genomes. Prodigal [43] was used to annotate
genomic sequences (the method used to find ORFs by Prodigal can be set by METABOLIC as
“meta” or “single”), or a user can provide self-annotated proteins (with extensions of “.faa”) to
facilitate incorporation into existing pipelines. Methods on the manual curation of these HMM
databases are described in the next section.

Curation of cutoff scores for metabolic HMMs

Two curation methods for adjusting NC or TC of TIGRfam/Pfam/Custom databases were used
for a specific HMM profile. First, we parsed and downloaded representative protein sequences
according to either the corresponding KEGG identifier or UniProt identifier [44]. We then
randomly subsampled a small portion of the sequences (10% of the whole collection if this was
more than 10 sequences, or at least 10 sequences) as the query to search against the
representative protein collections [42]. Subsequently, we obtained a collection of hmmsearch
scores by pairwise sequence comparisons. We plotted scores against hmmsearch hits and
selected the mean value of the sharpest decreasing interval as the adjusted cutoff
(approximately the F1 score). Second, we downloaded a collection of proteins that belong to a
specific HMM profile and pre-checked the quality and phylogeny of these proteins by
reconstructing and manually inspecting phylogenetic trees. We applied pre-checked protein
sequences as the query search against a set of training metagenomes (data not shown). We then
obtained a collection of hmmsearch scores of resulting hits from the training metagenomes. By
using a similar method as described above, the cutoff was selected as the mean value of the
sharpest decreasing interval.

The following example demonstrates how the method above was used to curate the cutoffs for
hydrogenase enzymes. We then expanded this method to all genes using a similar method. We
downloaded the individual protein collections for each hydrogenase functional group from the
HydDB [45], which included [FeFe] Group A-C series, [Fe] Group, and [NiFe] Group 1-4
series. The individual hydrogenase functional groups were further categorized based on the
catalyzing directions, which included H,-evolution, H»-uptake, H»-sensing, electron-
bifurcation, and bidirection. To define the NC cutoff (‘--cut_nc’ in hmmsearch) for individual
hydrogenase groups, we used the protein sequences from each hydrogenase group as the query
to hmmsearch against the overall hydrogenase collections. By plotting the resulting hmmsearch
hit scores against individual hmmsearch hits, we selected the mean value of the sharpest
decreasing interval as the cutoff value.

Motif validation
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To automatically validate protein hits and avoid false positives, we introduced a motif
validation step by comparing protein motifs against a manually curated set of highly conserved
residues in important proteins. This manually curated set of highly conserved residues is
derived from either reported works or protein alignments from this study. We chose 20 proteins
associated with important metabolisms (with a focus on important biogeochemical cycling
steps) that are prone to be misannotated into proteins within the same protein family. Details of
these proteins are provided in Additional file 8: Dataset S1. For example, DsrC (sulfite
reductase subunit C) and TusE (tRNA 2-thiouridine synthesizing protein E) are similar proteins
that are commonly misannotated. Both of them are assigned to the family KO:K11179 in the
KEGG database. To avoid assigning TusE as a sulfite reductase, we identified a specific motif
for DsrC but not TusE (GPXKXXCXXXGXPXPXXCX”, where “X” stands for any amino
acid) [46]. We used these specific motifs to filter out proteins that have high sequence similarity

but functionally divergent homologs.

Annotation of carbohydrate-active enzymes and peptidases

For carbohydrate-active enzymes (CAZymes), dbCAN?2 [39] was used to annotate proteins with
default settings. The hmmscan parser and HMM database (2019-09-05 release) were
downloaded from the dbCAN?2 online repository (http://bcb.unl.edu/dbCAN2/download/) [39].
The non-redundant library of protein sequences which contains all the peptidase/inhibitor units
from the peptidase (inhibitor) database MEROPS [40] (known as the ‘MEROPS pepunit’
database) was used as the reference database to search against putative peptidases and inhibitors
using DIAMOND. The settings used for the DIAMOND BLASTP search were “-k 1 -e le-10
--query-cover 80 --id 50” [47]. We used the ‘MEROPS pepunit’ database due to the fact that it
only includes the functional unit of peptidases/inhibitors [40] which can effectively avoid

potential non-specific hits.

Implementation of METABOLIC-G and METABOLIC-C

To target specific applications in processing omics datasets, we have implemented two versions
of METABOLIC: METABOLIC-G (genome version) and METABOLIC-C (community
version). METABOLIC-G intakes only genome files and provides analyses for individual
genome sequences (including three kinds of genomes, e.g., single-cell genomes, isolate
genomes, and metagenome-assembled genomes). The analyzing procedures of METABOLIC-
G for all these three kinds of genomes are the same.

METABOLIC-C includes an option for users to include metagenomic reads for mapping to
metagenome-assembled genomes (MAGs). Using Bowtie 2 (version > v2.3.4.1) [48],
metagenomic BAM files were generated by mapping all input metagenomic reads to gene
collections from input genomes. Subsequently, SAMtools (version > v0.1.19) [49], BAMtools

(version >v2.4.0) [50], and CoverM (https://github.com/wwood/CoverM) were used to convert

BAM files to sorted BAM files and to calculate the gene coverage. To calculate the relative
abundance of a specific biogeochemical cycling step, all the coverage of genes that are
responsible for this step were summed up and normalized by overall gene coverage. Reads from



232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273

single-cell and isolate genomes can also be mapped in an identical manner to metagenomes.
The gene coverage result generated by metagenomic read mapping was further used in

downstream processing steps to conduct community-scale interaction and network analyses.

Classifying microbial genomes into taxonomic groups

To study community-scale interactions and networks of each microbial group within the whole
community, we classified microbial genomes into individual taxonomic groups. GTDB-Tk
v0.1.3 [51] was used to assign taxonomy of input genomes with default settings. GTDB-Tk can
provide automated and objective taxonomic classification based on the rank-normalized
Genome Taxonomy Database (GTDB) taxonomy within which the taxonomy ranks were
established by a sophisticated criterion counting the relative evolutionary divergence (RED)
and average nucleotide identity (ANI) [51, 52]. Subsequently, genomes were clustered into
microbial groups at the phylum level, except for Proteobacteria which were replaced by its
subordinate classes due to its wide coverage. Taxonomic assignment information for each

genome was used in the downstream community analyses.

Analyses and visualization of metabolic outputs, biogeochemical cycles, MW-scores,
functional networks, and metabolic Sankey diagrams

To visualize the outputted metabolic results, the R script “draw_biogeochemical cycles.R” was
used to draw the corresponding metabolic pathways for individual genomes. We integrated
HMM profiles that are related to biogeochemical activities and assigned HMM profiles to 31
distinct biogeochemical cycling steps (See details in “METABOLIC template and database”
folder on the GitHub page). The script can generate figures showing biogeochemical cycles for
individual genomes and the summarized biogeochemical cycle for the whole community. By
using the results of metabolic profiling generated from hmmsearch and gene coverage from the
mapping of metagenomic reads, we can depict metabolic capacities of both individual genomes
and all genomes within a community as a whole. The community-level diagrams, including
sequential transformation diagrams, functional network diagrams, and metabolic Sankey
diagrams, were generated using both metabolic profiling and gene coverage results. The
diagrams are made by the scripts “draw sequential reaction diagram.R”,
“draw_metabolic_Sankey diagram.R”, and “draw_functional network_diagram.R”,

respectively (For details, refer to GitHub wiki pages).

MW-score (metabolic weight score) is a metric reflecting the functional capacity and
abundance of a microbial community in co-sharing functional networks. It was calculated at
the community-scale level based on results of metabolic profiling and gene coverage from
metagenomic read mapping as described above. We divided metabolic/biogeochemical cycling
steps (31 in total) into a finer level — function (51 functions in total) — for better resolution on
reflecting functional networks. By using similar methods for determining metabolic
interactions (as described above), we selected functions that are shared among genomes. MW-
score for each function was calculated by summing up all the coverage values of each function
(calculated by summing up all coverage values of genomes that contain this function) and
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subsequently normalizing it by the overall function coverage. For each function, the
contribution percentage of each microbial phylum (the default taxonomic level setting) was
also calculated accordingly. One can also change the taxonomic level setting to the resolution
of “class”, “order”, “family”, or “genus” to calculate the corresponding contribution percentage
of each microbial group. Two equations are provided as follows to calculate each function’s
MW-score (1) and the percentage of contribution of each microbial group to the MW-score (2):

gn .
Xg=g, Cgn'Sf;

MWf. = (1)
i gn.fn .
Xg=91.f=f1 Con'Srn
¥ CgnSy, ¥9n c, -Sp
Cpercy., = 929k 70 1 9=01 9 >fi ) % 100% (2)
fipj Zgn-fn C. .S Zgn.fn C. .S
9=91.f=f1 ~9n">fn 9=91.f=f1 ~9n">fn

within which g ...g1 € p;

In equation (1), MW refers to MW-score. firefers to the studied function (f) which ranks in the
(1) position amongst all functions. g; and g, indicate the first and the last genome amongst all
genomes. fi and f; indicate the first and the last function amongst all functions. C, means the
coverage of a genome and Symeans the presence (denoted as 1) or absence (denoted as 0) state
of a function within that genome. In equation (2), Cprec refers to the contribution percentage
of a microbial group to the MW-score. p; means the studied group (p) which ranks in the (j)
position amongst all groups. gx and g indicate the genomes which rank in the (k) position and
the () position amongst all genomes; the additional note gy ..g; € p; indicates all the

genomes between these two belong to the studied group p;.

Example of METABOLIC analysis

An example of community-scale analyses including element biogeochemical cycling and
sequential reaction analyses, functional network and metabolic Sankey visualization, and MW-
score calculation were conducted using a metagenomic dataset of microbial community
inhabiting deep-sea hydrothermal vent environment of Guaymas Basin in the Pacific Ocean
[53]. It contains 98 MAGs and 1 set of metagenomic reads (genomes were available at NCBI
BioProject PRINA522654 and metagenomic reads were deposited to NCBI SRA with
accession as SRR3577362).

A metagenomic-based study of the microbial community from an aquifer adjacent to Colorado
River, located near Rifle, has provided an accurate reconstruction of the metabolism and
ecological roles of the microbial majority [2]. From underground water and sediments of the
terrestrial subsurface at Rifle, 2545 reconstructed MAGs were obtained (genomes are under
NCBI BioProject PRINA288027). They were used as the in silico dataset to test
METABOLIC’s performance. First, all the microbial genomes were dereplicated by dRep
v2.0.5 [54] to pick the representative genomes for downstream analysis using the setting of -
comp 85°. Then, METABOLIC-G was applied to profile the functional traits of these
representative genomes using default settings. Finally, the metabolic profile chart was depicted
by assigning functional traits to GTDB taxonomy-clustered genome groups.
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Test on software performance for different environments

To benchmark and test the performance of METABOLIC in different environments, eight
datasets of metagenomes and metagenomic reads from marine, terrestrial, and human
environments were used. These included marine subsurface sediments [55] (Deep biosphere
beneath Hydrate Ridge offshore Oregon), freshwater lake [56] (Lake Tanganyika, eastern
Africa), colorectal cancer (CRC) patient gut [57], healthy human gut [57], deep-sea
hydrothermal vent [53] (Guaymas Basin, Gulf of California), terrestrial subsurface sediments
and water [2] (Rifle, CO, USA), meadow soils [58] (Angelo Coastal Range Reserve, CA, USA),
and advanced water treatment facility [59] (Groundwater Replenishment System, Orange
County, CA, USA). Default settings were used for running METABOLIC-C.

Comparison of community-scale metabolism

To compare the metabolic profile of two environments at the community scale, MW-score was
used as the benchmarker. Two sets of environment pairs were compared, including the pair of
marine subsurface sediments [55] and terrestrial subsurface sediments [2] and the pair of
freshwater lake [56] and deep-sea hydrothermal vent [53]. To demonstrate differences between
these environments in specific biogeochemical processes, we focused on the biogeochemical
cycling of sulfur. The sulfur biogeochemical cycling diagrams were depicted with the
annotation of the number and the coverage of genomes that contain each biogeochemical
cycling step.

Metabolism in human microbiomes

To inspect the metabolism of microorganisms in the human microbiome (associated with skin,
oral mucosa, conjunctiva, gastrointestinal tracts, etc.), a subset of KOfam HMMs (139 HMM
profiles) were used as markers to depict the human microbiome metabolism (parsed by
HuMiChip targeted functional gene families [60]). They included 10 function categories as
follows: amino acid metabolism, carbohydrate metabolism, energy metabolism, glycan
biosynthesis and metabolism, lipid metabolism, metabolism of cofactors and vitamins,
metabolism of other amino acids, metabolism of terpenoids and polyketides, nucleotide
metabolism, and translation. The CRC and healthy human gut (healthy control) sample datasets
were used as the input (Accession IDs: BioProject PRIEB7774 Sample 31874 and Sample
532796). Heatmap of presence/absence of these functions were depicted by R package
“pheatmap” [61] with 189 horizontal entries (there are duplications of HMM profiles among
function categories; for detailed human microbiome metabolism markers, refer to Additional
file 9: Dataset S2).

Representation of microbial cell metabolism

To provide a schematic representation of the metabolism of microbial cells, two microbial
genomes were used as examples, Hadesarchaea archacon 1244-C3-H4-B1 and Nitrospirae
bacteriaM_DeepCast 50m_m?2 151. METABOLIC-G results of these two genomes, including
functional traits and KEGG modules, were used to draw the cell metabolism diagrams.
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Metatranscriptome analysis by METABOLIC

METABOLIC-C can take metatranscriptomic reads as input into transcript coverage
calculation and integrate the result into downstream community analyses. METABOLIC-C
uses a similar method to that of gene coverage calculation, including mapping transcriptomic
reads to the gene collection from input genomes, converting BAM files to sorted BAM files,
and calculating the transcript coverage. The raw transcript coverage was further normalized by
the gene length and metatranscriptomic read number in Reads Per Kilobase of transcript, per
Million mapped reads (RPKM). Hydrothermal vent and background seawater transcriptomic
reads from Guaymas Basin (NCBI SRA accessions: SRR452448 and SRR453184) were used
to test the outcome of metatranscriptome analysis.

RESULTS

Given the ever-increasing number of microbial genomes from microbiome studies, we
developed METABOLIC to enable the metabolic pathway analysis and the visualization of
biogeochemical cycles and community-scale functional networks. METABOLIC has an
improved methodology to get fast, accurate, and robust annotation results, and it integrates a
variety of visualization functions for better interpreting the community-level functional
interactions and microbial contributions. While METABOLIC relies on microbial genomes and
metagenomic reads for underpinning its analyses for community-level functional interactions,
it can easily integrate transcriptomic datasets to provide an activity-based measure of
community networks. The scalable capacity, wide utility, and compatibility for analyzing
datasets from various environments make it a well-tailored tool for metabolic profiling of large
sets of genomes. In the following sections, the microbial community consisting of 98 MAGs
from a deep-sea hydrothermal vent was used as the input dataset if not mentioned otherwise.

Workflow to determine the presence of metabolic pathways

METABOLIC is written in Perl and R and is expected to run on Unix, Linux, or macOS. The
prerequisites are described on  METABOLIC’s GitHub wiki  pages
(https://github.com/AnantharamanLab/METABOLIC/wiki). The input folder requires
microbial genome sequences in FASTA format and an optional set of genomic/metagenomic
reads which were used to reconstruct those genomes (Figure 1). The annotated proteins from
input genomic sequences are queried against HMM databases (KEGG KOfam, Pfam,
TIGRfam, and custom HMMs) using hmmsearch implemented within HMMER [42] which
applies methods to detect remote homologs as sensitively and efficiently as possible. After the
hmmsearch step, METABOLIC subsequently validates the primary outputs by a motif-
checking step for a subset of protein families; only those protein hits which successfully pass
this step are regarded as positive hits.

METABOLIC relies on matches to the above databases to infer the presence of specific
metabolic pathways in microbial genomes. Individual KEGG annotations are inferred in the
context of KEGG modules for a better interpretation of metabolic pathways. A KEGG module
is comprised of multiple steps with each step representing a distinct metabolic function. We

10
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parsed the KEGG module database [62] to link the existing relationship of KO identifiers to
KEGG module identifiers to project our KEGG annotation result into the interactive network
which was constructed by individual building blocks — modules — for better representation of
metabolic blueprints of input genomes. In most cases, we used KOfam HMM profiles for
KEGG module assignments. For a specific set of important metabolic marker proteins and
commonly misannotated proteins, we also applied the TIGRfam/Pfam/custom HMM profiles
and motif-validation steps. The software has customizable settings for increasing or decreasing
the priority of specific databases, primarily meant to increase annotation confidence by
preferentially using custom HMM databases over KEGG KOfam when both targeting the same
set of proteins.

Since individual genomes from metagenomes and single-cell genomes can often have
incomplete metabolic pathways due to their low completeness compared to isolate genomes,
we provide an option to determine the completeness of a metabolic pathway (or a module here).
A user-defined cutoff is used to set the threshold of completeness for a given module to be
assigned as present (the default cutoff is the presence of 75% of metabolic steps/genes within
a given module), which is then used to produce a KEGG module presence/absence table. All
modules exceeding the cutoff value are determined to be present. Meanwhile, the
presence/absence information for each module step is also summarized in an overall output

table to facilitate further detailed investigations.

Outputs consist of six different results that are reported in an Excel spreadsheet (Additional file
1: Figure S1). These contain details of protein hits (Additional file 1: Figure S1A) which include
both presence/absence and protein names, presence/absence of functional traits (Additional file
1: Figure S1B), presence/absence of KEGG modules (Additional file 1: Figure S1C),
presence/absence of KEGG module steps (Additional file 1: Figure S1D), carbohydrate-active
enzyme (CAZyme) hits (Additional file 1: Figure S1E) and peptidase/inhibitor hits (Additional
file 1: Figure S1F). For each HMM profile, the protein hits from all input genomes can be used
to construct phylogenetic trees or further be combined with reference protein collections for
detailed evolutionary analyses.

Quantitative visualization of biogeochemical cycles and sequential reactions

After METABOLIC generates protein and pathway annotation results, the software further
identifies and highlights specific pathways of importance in microbiomes associated with
energy metabolism and biogeochemistry. To visualize pathways of biogeochemical
importance, it generates schematic profiles for nitrogen, carbon, sulfur, and other elemental
cycles for each genome. The set of genomes used as input is considered the “community”, and
each genome within is considered an “organism”. A summary schematic diagram at the
community level integrates results from all individual genomes within a given dataset (Figure
2) and includes computed abundances for each step in a biogeochemical cycle if the
genomic/metagenomic read datasets are provided. The genome number labeled in the figure
indicates the number/quantity of genomes that contain the specific gene components of a
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biogeochemical cycling step (Figure 2) [2]. In other words, it represents the number of
organisms within a given community inferred to be able to perform a given metabolic or
biogeochemical transformation. The abundance percentage indicates the relative abundance of
microbial genomes that contain the specific gene components of a biogeochemical cycling step

among all microbial genomes in a given community (Figure 2) [2].

Microorganisms in nature often do not encode pathways for the complete transformation of
compounds. For example, microorganisms possess partial pathways for denitrification that can
release intermediate compounds like nitrite, nitric oxide, and nitrous oxide in lieu of nitrogen
gas which is produced by complete denitrification [63]. A greater energy yield could be
achieved if one microorganism conducts all steps associated with a pathway (such as
denitrification) [2] since it could fully use all available energy from the reaction. However, in
reality, few organisms in microbial communities carry out multiple steps in complex pathways;
organisms commonly rely on other members of microbial communities to conduct sequential
reactions in pathways [2, 64, 65]. Thus, to study this metabolic scenario in microbial
communities, METABOLIC summarizes and enables visualization of the genome number and
coverage (relative abundance) of microorganisms that are putatively involved in the sequential
transformation of both important inorganic and organic compounds (Figure 3). This provides a
quantitative calculation of microbial interactions and connections using shared metabolites
associated with inorganic and organic transformations. Additionally, it shows the intuitive
pattern of quantity and abundance of microorganisms that are able to conduct partial or all steps
for a given pathway, which potentially reflects the degree of resilience of a microbial

community.

Calculation and visualization of functional networks, metabolic weight scores (MW-
scores), and microbial contribution to metabolic reactions

Given the microbial pathway abundance information generated by METABOLIC, we identified
co-existing metabolisms in microbial genomes as a measure of connections between different
metabolic functions and biogeochemical steps. In the context of biogeochemistry, this approach
allows the evaluation of relatedness among biogeochemical steps and the connection
contribution by microorganisms. This is enabled at the resolution of individual microbial
groups based on the phylogenetic classification (Figure 4) assigned by GTDB-Tk [51]. As an
example, we have demonstrated this approach on a microbial community inhabiting deep-sea
hydrothermal vents. We divided the microbial community of deep-sea hydrothermal vents into
18 phylum-level groups (except for Proteobacteria which were divided into their subordinate
classes). The functional network diagrams were depicted at the resolution of both individual
phyla and the entire community level (Additional file 10: Dataset S3). Figure 4 demonstrates
metabolic connections that were represented with individual metabolic/biogeochemical cycling
steps depicted as nodes, and the connections between two given nodes depicted as edges. The
size of a given node is proportional to the degree (number of connections to each node). The
thickness of a given edge was depicted based on the average of gene coverage values of two
biogeochemical cycling steps (the connected nodes). More edges connecting two nodes
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represent more connections between these two steps. The color of the edge corresponds to the
taxonomic group. At the whole community level, more abundant microbial groups were more
represented in the diagram (Figure 4). Overall, METABOLIC provides a comprehensive
approach to construct and visualize functional networks associated with important pathways of

energy metabolism and biogeochemical cycles in microbial communities and ecosystems.

To address the lack of quantitative and reproducible measures to represent potential metabolic
interactions in microbial communities, we developed a new metric that we termed MW-score
(metabolic weight scores) (Equations 1 and 2). MW-scores quantitatively measure “function
weights” within a microbial community as reflected by the metabolic profile and gene coverage.
As metabolic potential for the whole community was profiled into individual functions that
either mediated specific pathways or transformed certain substrates into products, a function
weight that reflects the abundance fraction for each function can be used to represent the overall
metabolic potential of the community. MW-scores resolved the functional capacity and
abundance in the co-sharing functional networks as studied and visualized in the above section.
More frequently shared functions and their higher abundances lead to higher MW-scores, which
quantitatively reflects the function weights in functional networks (Figure 5). MW-score
reflects the same functional networking pattern as the above description on the edges
(networking lines) connecting the nodes (metabolic steps) that — more edges connecting two
nodes indicates two steps are more co-shared, thicker edges indicate higher gene abundance for
the metabolic steps. The MW-scores can integratively represent these two networking patterns
and serve as metrics to measure these function weights. At the same time, we also calculated
each microbial group’s (phylum in this case) contribution to the MW-score of a specific
function within the community (Figure 5). A higher microbial group contribution percentage
value indicates that one function is more represented by the microbial group (for both gene
presence and abundance) in the functional networks. MW-scores provide a quantitative
measure of comparing function weights and microbial group contributions within functional

networks.

To understand the contributions of microbial groups associated with specific metabolic and
biogeochemical transformations, we developed an approach to visualize the connections among
specific taxonomic groups, metabolic reactions, and entire biogeochemical cycles such as
carbon, nitrogen, and sulfur cycles. Our approach involves the use of Sankey diagrams (also
called ‘Alluvial’ plots) to represent the fractions of metabolic functions that are contributed by
various microbial groups in a given community (Figure 6). It allows visualization of metabolic
reactions as the link between microbial contributors clustered as taxonomic groups and
biogeochemical cycles at a community level (Figure 6 and Additional file 10: Dataset S3). The
function fraction was calculated by accumulating the genome coverage values of genomes from
a specific microbial group that possesses a given functional trait. The width of curved lines
from a specific microbial group to a given functional trait indicates their corresponding
proportional contribution to a specific metabolism (Figure 6). Alternatively, the
genomic/metagenomic datasets which are used in constructing the above two diagrams:
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functional network diagram (Figure 4) and metabolic Sankey diagram (Figure 6), can be
replaced by transcriptomic/metatranscriptomic datasets, and correspondingly, the gene
coverage values will be replaced by gene expression values, and therefore, diagrams will
represent the transcriptional activity patterns of functional network and microbial contribution
to metabolic reactions (Additional file 2, 3, 4, and 5: Figure S2, S3, S4, and S5).

To demonstrate this part of the workflow in reality, the microbial community consisting of 98
MAGs from a deep-sea hydrothermal vent was used as a test dataset. After running the
bioinformatic analyses described above, resulting tables and diagrams were compiled and
visualized accordingly (Figure 4, 5, 6 and Additional file 10: Dataset S3). Results for functional
networks and MW-scores of the deep-sea hydrothermal vent environment indicate that the
microbial community depends on mixotrophy and sulfur oxidation for energy conservation and
involves arsenate reduction potentially responsible for detoxification/arsenate resistance [66].
MW-scores indicate that amino acid utilization, complex carbon degradation, acetate oxidation,
and fermentation are the major heterotrophic metabolisms for this environment; CO,-fixation
and sulfur oxidation also occupy a considerable functional fraction, which indicates
heterotrophy and autotrophy both contribute to energy conservation (Figure 5). As represented
by both MW-scores and metabolic Sankey diagram, Gammaproteobacteria are the most
numerically abundant group in the community and they occupy significant functional fractions
amongst both heterotrophic and autotrophic metabolisms (MW-score contribution ranging from
59-100%) (Figure 5, 6), which is consistent with previous findings in the Guaymas Basin
hydrothermal environment [53, 67]. Meanwhile, MW-scores also explicitly reflect the
involvement of other minor electron donors in energy conservation which are mainly
contributed by Gammaproteobacteria, such as hydrogen and methane (Figure 5). This is also
consistent with previous findings [53, 67] and indicates the accuracy and sensitivity of MW-
scores to reflect metabolic potentials.

METABOLIC performance demonstration

To test METABOLIC’s performance on speed, we applied the software (METABOLIC-C
mode) to analyze the metagenomic dataset which includes 98 MAGs from a deep-sea
hydrothermal vent, and two sets of metagenomic reads (that are subsets of original reads with
10 million reads for each pair comprising ~10% of the total reads). The total running time was
~3 hours using 40 CPU threads in a Linux version 4.15.0-48-generic server (Ubuntu v5.4.0).
The most compute-demanding step is hmmsearch, which took ~45 mins. When tested on
another dataset comprising ~3600 microbial genomes (data not shown), METABOLIC could
complete hmmsearch in ~5 hours by using 40 CPU threads, indicating its scalable capability on
analyzing thousands of genomes.

In order to test the accuracy of the results predicted by METABOLIC, we picked 15 bacterial
and archaeal genomes from Chloroflexi, Thaumarchaeota, and Crenarchacota which are
reported to have 3 hydroxypropionate cycle (3HP) and/or 3-hydroxypropionate/4-
hydroxybutyrate cycle (3HP/4HB) for carbon fixation. METABOLIC predicted results in line
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with annotations from the KEGG genome database which can be visualized in KEGG Mapper
(Table 1). Our predictions are also in accord with biochemical evidence of the existence of
corresponding carbon fixation pathways in each microbial group: 1) 3 out of 5 Chloroflexi
genomes are predicted by both METABOLIC and KEGG to possess the 3HP pathway and none
of all these Chloroflexi genomes are predicted to possess the 3HP/4HB pathway. This is
consistent with current reports based on biochemical and molecular experiments that only
organisms from the phylum Chloroflexi are known to possess the 3HP pathway [68] (Table 1).
2) All 5 Thaumarchaeota genomes and 2 out of 5 Crenarchaeota genomes are predicted by
both METABOLIC and KEGG to possess the 3HP/4HB pathway and none of these
Thaumarchaeota and Crenarchaeota genomes are predicted to possess the 3HP pathway. This
is consistent with current reports that only the 3HP/4HB pathway could be detected in
Crenarchaeota and Thaumarchaeota [69, 70] (Table 1). We have also applied METABOLIC
on a large well-studied dataset comprising 2545 metagenome-assembled genomes from
terrestrial subsurface sediments and groundwater [2]. The annotation results of METABOLIC
are consistent with previously described reports (Additional file 6, 10: Figure S6, Dataset S3).
These results suggest that METABOLIC can provide accurate annotations and perform well as

a functional predictor for microbial genomes and communities.

Currently, several software packages and online servers are available for genome annotation
and metabolic profiling. Comparing to other software/online servers including GhostKOALA
[71], BlastKOALA [71], KAAS [72], RAST/SEED [34], and eggNOG-mapper [73],
METABOLIC is unique in its ability to integrate multi-omic information towards elucidating
and visualizing community-level functional connections and the contribution of
microorganisms to biogeochemical cycles (Figure 7A). Additionally, in order to compare the
prediction performance of METABOLIC to others, we conducted parallel in silico experiments
(Figure 7B). We used two representative bacterial genomes as the test datasets. We randomly
picked 100 protein sequences from individual genomes and submitted them to annotation by
these six software/online servers. Predicted protein annotations by individual software and
online servers were compared to their original annotations that were provided by the NCBI
database (Additional file 11, 12: Dataset S4, S5). According to statistical methods of evaluating
binary classification [74], the following parameters were used to make the comparison: 1) recall
(also referred to as the sensitivity) as the true positive rate, 2) precision (also referred to as the
positive predictive value) which indicates the reproducibility and repeatability of a
measurement system, 3) accuracy which indicates the closeness of measurements to their true
values, and 4) F; value which is the harmonic mean of precision and recall, and reflects both
these two parameters. Among the tested software/online servers, the performance parameters
of METABOLIC consistently placed it as the top 3 and top 2 software for recall and F; and the
top 1 and top 2 software for precision and accuracy. These results demonstrate that
METABOLIC (Figure 7B) provides robust performance and consistent metabolic prediction
that facilitate accurate and reliable applicability for downstream data visualization and

community-level analyses.
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To demonstrate the application and performance of METABOLIC in different samples, we
tested eight distinct environments (marine subsurface, terrestrial subsurface, deep-sea
hydrothermal vent, freshwater lake, gut microbiome from patients with colorectal cancer, gut
microbiome from healthy control, meadow soil, wastewater treatment facility). Overall, we
found METABOLIC to perform well across all the environments to profile microbial genomes
with functional traits and biogeochemical cycles (Additional file 10: Dataset S3). Among these
tested environments, we also performed community-scale metabolic comparisons based on the
MW-score (Figure 8). MW-score fraction at the community scale reflects the overall metabolic
profile distribution pattern. Specifically, we compared samples from terrestrial and marine
subsurface and samples from hydrothermal vent and freshwater lake. We observed that
terrestrial subsurface contains more abundant metabolic functions related to nitrogen cycling
compared to the marine subsurface (Figure 8A), consistent with the previous characterization
of these two environments [2, 75]. Deep-sea hydrothermal vent samples had a considerably
high concentration of methane and hydrogen [53] as compared to Lake Tanganyika (freshwater
lake). Consistent with this phenomenon, the deep-sea hydrothermal vent microbial community
has more abundant metabolic functions associated with methanotrophy and hydrogen oxidation
(Figure 8B). In order to focus on a specific biogeochemical cycle, we applied METABOLIC to
compare sulfur-related metabolisms at the community scale for these two environment pairs
(Additional file 7: Figure S7). Terrestrial subsurface contains genomes covering more sulfur
cycling steps compared to marine subsurface (7 steps vs 3 steps) (Additional file 7: Figure
S7A). Freshwater lake contains genomes involving almost all the sulfur cycling steps except
for sulfur reduction, while deep-sea hydrothermal vent contains less sulfur cycling steps (8
steps vs 6 steps) (Additional file 7: Figure S7B). Nevertheless, deep-sea hydrothermal vent has
a higher fraction of genomes (59/98) and a higher relative abundance (73%) of these genomes
involving sulfur oxidation compared to the freshwater lake (Additional file 7: Figure S7B). This
indicates that the deep-sea hydrothermal vent microbial community has a more biased sulfur
metabolism towards sulfur oxidation, which is consistent with previous metabolic
characterization on the dependency of elemental sulfur in this environment [53, 76-78].
Collectively, by characterizing community-scale metabolism, METABOLIC can facilitate the
comparison of overall functional profiles as well as for a particular elemental cycle.

METABOLIC enables accurate reconstruction of cell metabolism

To demonstrate applications of reconstructing and depicting cell metabolism based on
METABOLIC results, two microbial genomes were used as an example (Figure 9). As
illustrated in Figure 9A, Hadesarchaea archacon 1244-C3-H4-B1 has no TCA cycling gene
components, which is consistent with previous findings in archaea within this class [79].
Gluconeogenesis/glycolysis pathways are also lacking in the genome; since gluconeogenesis is
the central carbon metabolism responsible for generating sugar monomers which will be further
biosynthesized to polysaccharides as important cell structural components [80], the lack of this
pathway could be due to genome incompleteness. As an enigmatic archaeal class newly
discovered in the recent decade, Hadesarchaea have distinctive metabolisms that separate them
from conventional euryarchaeotal groups. They almost lost all TCA cycle gene components for
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the production of acetyl-CoA; while they could metabolize amino acids in a heterotrophic
lifestyle [79]. It is posited that the Hadesarchaea genome has been subjected to a streamlining
process possibly due to nutrient limitations in their surrounding environments [79]. Due to their
metabolic novelty and limited available genomes at the current time, there are still uncertainties
on unknown/hypothetical genes and pathways and unclassified metabolic potential across the
whole class. The previous metabolic characterization on four Hadesarchaea genomes indicates
Hadesarchaea members could anaerobically oxidize CO, and H, was produced as the side
product [79]. In the Hadesarchaea archacon 1244-C3-H4-B1 genome, METABOLIC results
indicate the loss of all anaerobic carbon-monoxide dehydrogenase gene components, which
suggests the distinctive metabolism of this Hadesarchaea archaeon from others and highlights
the accuracy of METABOLIC in reflecting functional details.

We also reconstructed the metabolism for Nitrospirae bacteria M_DeepCast 50m m2 151, a
member of the Nitrospirae phylum reconstructed from Lake Tanganyika [56] (Figure 9B). It
contains the full pathway for the TCA cycle and gluconeogenesis/glycolysis. Furthermore, it
also has the full set of oxidative phosphorylation complexes for energy conservation and
functional genes for nitrite oxidation to nitrate. Other nitrogen cycling metabolisms identified
in this genome include ammonium oxidation, urea utilization, and nitrite reduction to nitric
oxide. The reverse TCA cycle pathway was identified for carbon fixation. The metabolic
profiling result is in accord with the fact that Nitrospirae is a well-known nitrifying bacterial
class capable of nitrite oxidation and living an autotrophic lifestyle [80]. Additionally, their
more abundant distribution in nature compared to other nitrite-oxidizing bacteria such as
Nitrobacter indicates their significant contribution to nitrogen cycling in the environment [80].
This highlights the ability of METABOLIC in reflecting functional details of more common
and prevalent microorganisms compared to the Hadesarchaea archaeon. Notably as discovered
from METABOLIC analyses, this bacterial genome also contains a wide range of transporter
enzymes on the cell membrane, including mineral and organic ion transporters, sugar and lipid
transporters, phosphate and amino acid transporters, heme and urea transporters,
lipopolysaccharide and lipoprotein releasing system, bacterial secretion system, etc., which
indicates its metabolic versatility and potential interactive activities with other organisms and
the ambient environment. Collectively, METABOLIC result of functional profiling provides
an intuitively-represented summary of a single microbial genome which enables depicting cell
metabolism for better visualizing the functional capacity.

METABOLIC accurately represents metabolism in the human microbiome

In addition to resolving microbial metabolism and biogeochemistry in environmental
microbiomes, METABOLIC also accurately identifies metabolic traits associated with human
microbiomes. The implications of microbial metabolism on human health largely remain a
black box, much like microbial contributions to biogeochemical cycling. We demonstrate the
utility of METABOLIC in human microbiomes using publicly available data from stool
samples collected from patients with colorectal cancer and healthy individuals. From this study,
we selected stool metagenomes from one colorectal cancer (CRC) and an age and sex-matched
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healthy control to conduct the comparison. The heatmap indicates the human microbiome
functional profiles of both samples based on the marker gene presence/absence patterns (Figure
10). As an example of METABOLIC’s application, we demonstrate that there were 28 markers
with variations > 10% in terms of the marker-containing genome fractions between these two
samples (Figure 10, Additional file 13: Dataset S6). These 28 markers involved all the ten
metabolic categories except for lipid metabolism and translation, suggesting the broad
functional differences between these two samples. In addition to analyzing human microbiome
specific functional markers, METABOLIC can be used to visualize elemental nutrient cycling
and analyze metabolic interactions in human microbiomes. Overall it enables systematic
characterization of the composition, structure, function, and interaction of microbial
metabolisms in the human microbiome and facilitates omics-based studies of microbial

community on human health [60].

DISCUSSION

The rapid increase in the availability of sequenced microbial genomes, metagenome-assembled
genomes, and single-cell genomes has significantly benefited ecogenomic research on
unraveling microbial functional roles and their metabolic contribution to biogeochemical
cycles. Tools that enable to conduct accurate and reproducible functional profiling on genomic
blueprints at the scale of both individual microorganisms and the whole microbial community
offered significant applications and advances. They are fundamental to facilitate understanding
of community-level functions, activities, interactions, and functional contributions in the era of
multi-omics. An ideal tool for microbial biogeochemical profiling needs consideration on better
organizing, interpreting, and visualizing the functional profile information; this is especially
important for dealing with thousands of genomes reconstructed from metagenomes and
studying the community-scale interactive metabolisms. Meanwhile, fast, accurate, robust
performance and wide usage of the tool will allow for providing reliability and efficiency.

Here we developed METABOLIC for profiling metabolisms, biogeochemical pathways, and
community-scale functional networks. Instead of solely depending on widely adopted protein
annotation databases, in METABOLIC two additional steps were added in order to accurately
predict protein functions and reconstruct metabolic pathways. First, for
TIGRfam/Pfam/Custom HMM profile databases, default NC/TC thresholds are often set too
low to avoid noisy signals especially for annotating proteins from large sets of metagenomes
wherein similar protein families often co-exist. This frequently leads to misannotations. To
avoid this, we collected hmmsearch scores of previous annotation results and plotted these
scores as a function of all annotations, and manually curated NC/TC by specifically picking the
sharpest decreasing interval as the adjusted cutoff. Second, the motif validation step involves
comparing potential hits to a set of manually curated highly conserved amino acid residues.
This helps to distinguish two protein families with high sequence identity but different
functions which are often difficult to separate by HMM profile-based annotations. These two
steps help to filter out non-specific and cross-talking hits of important functional proteins for
downstream bioinformatic analyses. After obtaining predicted metabolic pathways, many other
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software/online servers mostly provide raw annotation results with overwhelming yet
unorganized details on characterizing protein functions. For microbial ecologists it is
fundamental to provide organized and intuitive results to facilitate understanding on the whole
landscape of biogeochemical cycling capacities. In METABOLIC, such a function was
developed to enable visualizing the presence/absence state of each step of biogeochemical
cycles for individual genomes and the whole microbial community. Combined with gene
abundance information calculated by metagenomic read mapping, we can identify the relative
abundance for each step of biogeochemical cycles. Furthermore, METABOLIC can also
visualize sequential reaction patterns for important organic and inorganic compound
transformations. This visualization function of METABOLIC is practical for representing the
“metabolic handoff” scenario of within-community interactions [2]. METABOLIC can be
implemented in human microbiome with the same performance. Recently, METABOLIC was
applied to stool metagenomic samples from 667 individuals who either were healthy or had
adenomas or carcinomas of the colon, to profile organic/inorganic sulfate reduction and sulfide
production [81]. This has considerably enlarged the utility of METABOLIC in community-
scale investigation on human microbiomes for purposes of systematic microbiota-disease

studies

Previously, the community networks reflected by microbial genomes mostly focused on
modeling reactions that are linked by metabolizing substrates and generating products [15, 19,
26]. On the contrary, METABOLIC was developed for a different purpose to study microbially-
mediated biogeochemical processes. In METABOLIC the community-scale functional network
provides an intuitive perspective on the metabolic connectivity among
biogeochemical/metabolic steps and microbial contributions to these functions. MW-score, a
metric that was built based on the same notion and methodology, offers quantitative
measurement for these connected functions. Combined together they represent which functions
are more centralized (connected with others) and important (weighted with higher relative
abundance) in the co-sharing functional networks and which groups of microbial players
contribute to these functions. Additionally, metabolic Sankey diagrams can be drawn to further
visualize the microbial group contributions to different functions and biogeochemical cycles.
As gene coverages generated by metagenomic read mapping can be replaced by transcript
coverages generated by transcriptomic reads mapping, we broaden the usage in reflecting active
function connections and weights. In practical applications, functional networks and MW-
scores can be made in a standardized, reproducible, and normalized manner, so parallel
comparisons between communities (or samples) are applicable. The visualized network and
Sankey diagram can also offer intuitive representations of functional connections and microbial
contribution at both individual function and community-scale levels by using customized color
schemes. There are other read-based metagenomic profiling tools, e.g., MetaPhlAn [28] and
MEGAN [82], that can study the taxonomical and functional composition of microbiome at the
community-scale level. Compared to read-based approaches which largely depend on the
comprehensiveness of reference databases to capture microbial organisms, METABOLIC
depends on the annotation of MAGs that is free from the limitation of reference databases on
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novel and rare organism characterization. METABOLIC specifically provides additional
functionalities on annotation validation, result organization, and visualization which are
meaningful to give reliable and easily accessible functional profiling results for microbial
ecologists and biogeochemists to have a comprehensive understanding on the whole landscape
of biogeochemical cycling capacities.

CONCLUSIONS

Metabolic functional profile of microbial genomes at the scale of individual organisms and
communities is essential to have a comprehensive understanding of ecosystem processes, and
as a conduit for enabling functional trait-based modeling of biogeochemistry. We have
developed METABOLIC as a metabolic functional profiler that goes above and beyond current
frameworks of genome/protein annotation platforms in providing protein annotations and
metabolic pathway analyses that are used for inferring the contribution of microorganisms,
metabolism, interactions, activity, and biogeochemistry at the community-scale. METABOLIC
facilitates standardization and integration of genome-informed metabolism into metabolic and
biogeochemical models. We anticipate that METABOLIC will enable easier interpretation of
microbial metabolism and biogeochemistry from metagenomes and genomes and enable

microbiome research in diverse fields.
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FIGURE AND TABLE LEGENDS

Figure 1. An outline of the workflow of METABOLIC. Detailed instructions are available
at https://github.com/AnantharamanLab/METABOLIC/wiki. METABOLIC-G workflow is
specifically shown in the blue box and METABOLC-C workflow is shown in the green square.

Figure 2. Summary scheme of biogeochemical cycling processes at the community scale.
Each arrow represents a single transformation/step within a cycle. Labels above each arrow are
(from top to bottom): step number and reaction, number of genomes that can conduct these
reactions, metagenomic coverage of genomes (represented as a percentage within the
community) that can conduct these reactions. The numbers in brackets next to the nitrogen or
sulfur-containing compounds are chemical states of the nitrogen or sulfur atoms in these
compounds.

Figure 3. Schematic figure of sequential metabolic transformations. (A) the sequential
transformation of inorganic compounds; (B) the sequential transformation of organic
compounds. X-axes describe individual sequential transformations indicated by letters. The
two panels describe the number of genomes and genome coverage (represented as a percentage
within the community) of organisms that are involved in certain sequential metabolic
transformations. The deep-sea hydrothermal vent dataset was used for these analyses.

Figure 4. Functional network showing connections between different functions in the
microbial community. Nodes represent individual steps in biogeochemical cycles; edges
connecting two given nodes represent the functional connections between nodes, which are
enabled by organisms that can conduct both biogeochemical processes/steps. The size of the
node was depicted according to the degree (number of connections to each node). The thickness
of the edge was depicted according to the average gene coverage values of the two connected
biogeochemical cycling steps — for example, thiosulfate oxidation and organic carbon
oxidation. The color of the edges was assigned based on the taxonomy of the represented
genome. The deep-sea hydrothermal vent dataset was used for these analyses.

Figure 5. Description, calculation, and result table of MW-scores. (A) The calculation
method for the MW-score within a community based on a given metagenomic dataset.
Each circle stands for a genome within the community, and the adjacent bar stands for its
genome coverage within the community. The coverage values of encoded genes for all
functions were summed up as the denominator, and the coverage value of encoded genes for
each function was used as the numerator, and the MW-score was calculated accordingly for
each function. (B) The resulting table of MW-score for the deep-sea hydrothermal vent
metagenomic dataset. MW-score for each function was given in a separated column, and the
rest of the table indicates the contribution percentage to each MW-score of the genomes
grouped in each phylum. The MW-score of “N-S-07:Nitrous oxide reduction” was not exactly
0 but rounded to 0 due to the original number being less than 0.05. Additionally, contribution
percentages were also rounded to only retain one digit after the decimal points; consequently,
the sum contribution percentages for some functions slightly deviate from 100%.
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Figure 6. Metabolic Sankey diagram representing the contributions of microbial genomes
to individual metabolic and biogeochemical processes and entire elemental cycles.
Microbial genomes are represented at the phylum-level resolution. The three columns from left
to right represent taxonomic groups scaled by the number of genomes, the contribution to each
metabolic function by microbial groups calculated based on genome coverage, and the
contribution to each functional category/biogeochemical cycle. The colors were assigned based
on the taxonomy of the microbial groups. The deep-sea hydrothermal vent dataset was used for
these analyses.

Figure 7. Comparison of METABOLIC with other software packages and online servers.
(A) Comparison of the workflows and services, (B) Comparison of performance of protein
prediction for two representative genomes, Pseudomonas aeruginosa PAOI1, and
Escherichia coli O157H7 str. sakai.

Figure 8. Community metabolism comparison based on MW-scores. (A) Comparison
between terrestrial subsurface (left red bars) and marine subsurface (right blue bars); (B)
Comparison between deep-sea hydrothermal vent (left red bars) and freshwater lake
(right blue bars). MW-scores were calculated as gene coverage fractions for individual
metabolic functions. Functions with MW-scores in both environments as zero were removed
from each panel, e.g., N-S-02:Ammonia oxidation, N-S-09:Anammox, S-S-02:Sulfur
reduction, and S-S-06:Sulfite reduction in Panel (A), and C-S-07:Methanogenesis, N-S-01:N»
fixation, N-S-09:Anammox, S-S-02:Sulfur reduction, and S-S-06:Sulfite reduction in Panel
(B). Details for MW-score and each microbial group contribution refer to Supplementary
Dataset S3.

Figure 9. Cell metabolism diagrams of two microbial genomes. (A) cell metabolism
diagram of Hadesarchaea archaeon 1244-C3-H4-B1 (B) cell metabolism diagram of
Nitrospirae bacteria M_DeepCast_ SO0m_m2_151. The absent functional
pathways/complexes were labeled with dash lines.

Figure 10. Presence/Absence map of human microbiome metabolisms of a colorectal
cancer (CRC) patient and a healthy control gut sample. The heatmap has summarized 189
horizontal entries (189 lines) based on 139 key functional gene families that covered 10
function categories. Purple cells indicate presence and gray cells indicate absence. Detailed
KEGG KO identifier IDs and protein information for each function category were described in
Supplementary Dataset S2.
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Table 1. The carbon fixation metabolic traits of 15 tested bacterial and archaeal genomes
predicted by both METABOLIC and KEGG genome database

METABOLIC

result

KEGG genome

pathway

Carbon fixation

Carbon fixation

Accession ID Organism KEGG Group 3HP 3HP/4 3HP 3HP/4HB
Organism cycle HB cycle cycle
Code cycle
GCA_000011905.1 | Dehalococcoides mccartyi 195 det Chloroflexi Absent | Absent Absent Absent
GCA_000017805.1 | Roseiflexus castenholzii DSM 13941 rca Chloroflexi Present | Absent | Present Absent
GCA_000018865.1 | Chloroflexus aurantiacus J-10-fl cau Chloroflexi Present | Absent | Present Absent
GCA_000021685.1 | Thermomicrobium roseum DSM 5159 tro Chloroflexi Absent | Absent Absent Absent
GCA_000021945.1 | Chloroflexus aggregans DSM 9485 cag Chloroflexi Present | Absent | Present Absent
GCA_000299395.1 | Nitrosopumilus sediminis AR2 nir Thaumarchaeota | Absent | Present Absent Present
GCA_000698785.1 | Nitrososphaera viennensis EN76 nvn Thaumarchaeota | Absent | Present Absent Present
GCA_000875775.1 | Nitrosopumilus piranensis D3C nid Thaumarchaeota | Absent | Present Absent Present
GCA_000812185.1 | Nitrosopelagicus brevis CN25 nbv Thaumarchaeota | Absent | Present Absent Present
GCA_900696045.1 | Nitrosocosmicus franklandus NFRAN1 nfn Thaumarchaeota | Absent | Present Absent Present
GCA_000015145.1 | Hyperthermus butylicus DSM 5456 hbu Crenarchaeota Absent | Absent Absent Absent
GCA_000017945.1 | Caldisphaera lagunensis DSM 15908 clg Crenarchaeota Absent | Present Absent Present
GCA_000148385.1 | Vulcanisaeta distributa DSM 14429 vdi Crenarchaeota Absent | Absent Absent Absent
GCA_000193375.1 | Thermoproteus uzoniensis 768-20 tuz Crenarchaeota Absent | Present Absent Present
GCA_003431325.1 | Acidilobus sp. TA acia Crenarchaeota Absent | Absent Absent Absent
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