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ABSTRACT 22 
Background: Advances in microbiome science are being driven in large part due to our ability 23 
to study and infer microbial ecology from genomes reconstructed from mixed microbial 24 
communities using metagenomics and single-cell genomics. Such omics-based techniques 25 
allow us to read genomic blueprints of microorganisms, decipher their functional capacities 26 
and activities, and reconstruct their roles in biogeochemical processes. Currently available 27 
tools for analyses of genomic data can annotate and depict metabolic functions to some extent, 28 
however, no standardized approaches are currently available for the comprehensive 29 
characterization of metabolic predictions, metabolite exchanges, microbial interactions, and 30 
microbial contributions to biogeochemical cycling.  31 
 32 
Results: We present METABOLIC (METabolic And BiogeOchemistry anaLyses In 33 
miCrobes), a scalable software to advance microbial ecology and biogeochemistry studies 34 
using genomes at the resolution of individual organisms and/or microbial communities. The 35 
genome-scale workflow includes annotation of microbial genomes, motif validation of 36 
biochemically validated conserved protein residues, metabolic pathway analyses, and 37 
calculation of contributions to individual biogeochemical transformations and cycles. The 38 
community-scale workflow supplements genome-scale analyses with determination of 39 
genome abundance in the microbiome, potential microbial metabolic handoffs and metabolite 40 
exchange, reconstruction of functional networks, and determination of microbial contributions 41 
to biogeochemical cycles. METABOLIC can take input genomes from isolates, metagenome-42 
assembled genomes, or single-cell genomes. Results are presented in the form of tables for 43 
metabolism and a variety of visualizations including biogeochemical cycling potential, 44 
representation of sequential metabolic transformations, community-scale microbial functional 45 
networks using a newly defined metric ‘MW-score’ (metabolic weight score), and metabolic 46 
Sankey diagrams. METABOLIC takes ~3 hours with 40 CPU threads to process ~100 47 
genomes and corresponding metagenomic reads within which the most compute-demanding 48 
part of hmmsearch takes ~45 mins, while it takes ~5 hours to complete hmmsearch for ~3600 49 
genomes. Tests of accuracy, robustness, and consistency suggest METABOLIC provides 50 
better performance compared to other software and online servers. To highlight the utility and 51 
versatility of METABOLIC, we demonstrate its capabilities on diverse metagenomic datasets 52 
from the marine subsurface, terrestrial subsurface, meadow soil, deep sea, freshwater lakes, 53 
wastewater, and the human gut. 54 
 55 
Conclusion: METABOLIC enables the consistent and reproducible study of microbial 56 
community ecology and biogeochemistry using a foundation of genome-informed microbial 57 
metabolism, and will advance the integration of uncultivated organisms into metabolic and 58 
biogeochemical models. METABOLIC is written in Perl and R and is freely available at 59 
https://github.com/AnantharamanLab/METABOLIC under GPLv3. 60 
 61 
Keywords: functional traits, metagenome-assembled genomes, microbiome, 62 
biogeochemistry, metabolic potential, microbial functional networks.63 
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INTRODUCTION 64 
Metagenomics and single-cell genomics have transformed the field of microbial ecology by 65 
revealing a rich diversity of microorganisms from diverse settings, including terrestrial [1-3] 66 
and marine environments [4, 5] and the human body [6]. These approaches can provide an 67 
unbiased and insightful view into microorganisms mediating and contributing to 68 
biogeochemical activities at a number of scales ranging from individual organisms to 69 
communities [7-9]. Recent studies have also enabled the recovery of hundreds to thousands of 70 
genomes from a single sample or environment [8, 10, 11]. However, analyses of ever-increasing 71 
datasets remain a challenge. For example, there is a lack of scalable and reproducible 72 
bioinformatic approaches for characterizing metabolism and biogeochemistry, as well as 73 
standardizing their analyses and representation for large datasets. 74 
 75 
Microbially-mediated biogeochemical processes serve as important driving forces for the 76 
transformation and cycling of elements, energy, and matter among the lithosphere, atmosphere, 77 
hydrosphere, and biosphere [12]. Microbial communities in natural environmental settings exist 78 
in the form of complex and highly connected networks that share and compete for metabolites 79 
[13-15]. The interdependent and cross-linked metabolic and biogeochemical interactions within 80 
a community can provide a relatively high level of plasticity and flexibility [16]. For instance, 81 
multiple metabolic steps within a specific pathway are often separately distributed in a number 82 
of microorganisms and they are interdependent on utilizing the substrates from the previous 83 
step [2, 17, 18]. This scenario, referred to as ‘metabolic handoffs’, is based on sequential 84 
metabolic transformations, and provides the benefit of high resilience of metabolic activities 85 
which make both the community and function stable in the face of perturbations [17, 18]. It is 86 
therefore highly valuable to obtain the information of microbial metabolic function from the 87 
perspective of individual genomes as well as the entire microbial community.  88 
 89 
Currently, there are many quantitative software and platforms for reconstructing species and 90 
community-level metabolic networks [19-25]. They are largely based on building microbial 91 
metabolic models containing reactions for substrate utilization and product generation [15, 19]. 92 
Based on individual microbial models, metabolic phenotypes for the whole community can be 93 
further predicted [15]. These approaches allow providing mechanistic bases for predicting and 94 
thus operating community metabolisms based on the given environmental conditions and 95 
predicted microbial phenotypes [26]. Thus they are more focused on illustrating the operating 96 
principles of community metabolisms and the underlying metabolic networks of connected 97 
reactions to achieve better outcomes for metabolite production [21, 22], industrial applications 98 
[19], drug discovery [19], etc.  99 
 100 
Yet, seldom have approaches been developed to study the functional role of microorganisms in 101 
the context of biogeochemistry and community-level functional networks [27, 28]. Such tools 102 
are based on the principles of facilitating the understanding of microbially-mediated 103 
biogeochemical activities. The tools ask for identifying and providing metabolic predictions on 104 
the functional details, transformations of nutrients and energy, and functional connections for 105 
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microorganisms within the community [29]. The resulting genome-informed microbial 106 
metabolisms are important for understanding the microbial roles within a whole community in 107 
mediating the biogeochemical processes. Currently, such quantitative approaches to interpret 108 
functional details, reconstruct metabolic relationships, and visualize microbial functional 109 
networks are still limited [27, 28]. 110 
  111 
Prediction of microbial metabolism relies on the annotation of protein function for 112 
microorganisms using a number of established databases, e.g., KEGG [30], MetaCyc [31], 113 
Pfam [32], TIGRfam [33], SEED/RAST [34], and eggNOG [35]. However, these results are 114 
often highly detailed, and therefore can be overwhelming to users. Obtaining a functional 115 
profile and identifying metabolic pathways in a microbial genome can involve manual 116 
inspection of thousands of genes [36]. Organizing, interpreting, and visualizing such datasets 117 
remains a challenge and is often untenable especially with datasets larger than one microbial 118 
genome. There is a critical need for approaches and tools to identify and validate the presence 119 
of metabolic pathways, biogeochemical function, and connections in microbial communities in 120 
a user-friendly manner. Such tools addressing this gap would also allow standardization of 121 
methods and easier integration of genome-informed metabolism into biogeochemical models, 122 
which currently rely primarily on physicochemical data and treat microorganisms as black 123 
boxes [37]. A recent statistical study indicates that incorporating microbial community structure 124 
in biogeochemical modeling could significantly increase model accuracy of processes that are 125 
mediated by narrow phylogenetic guilds via functional gene data, and processes that are 126 
mediated by facultative microorganisms via community diversity metrics [38]. This highlights 127 
the importance of integrating microbial community and genomic information into the 128 
prediction and modeling of biogeochemical processes. 129 
 130 
Here we present the software METABOLIC (METabolic And BiogeOchemistry anaLyses In 131 
miCrobes), a toolkit to profile metabolic and biogeochemical traits, and functional networks in 132 
microbial communities based on microbial genomes. METABOLIC integrates annotation of 133 
proteins using KEGG [30], TIGRfam [33], Pfam [32], custom hidden Markov model (HMM) 134 
databases [2], dbCAN2 [39], and MEROPS [40], incorporates a protein motif validation step 135 
to accurately identify proteins based on prior biochemical validation, and determines presence 136 
or absence of metabolic pathways based on KEGG modules. METABOLIC also produces user-137 
friendly outputs in the form of tables and figures including a summary of microbial functional 138 
profiles, biogeochemically-relevant pathways, functional networks at the scale of individual 139 
genomes and community levels, and microbial contribution to the biogeochemical processes. 140 
 141 
METHODS 142 
HMM databases used by METABOLIC 143 
To generate a broad range of metabolic gene HMM profiles, we integrated three sets of HMM-144 
based databases, which are KOfam [41] (July 2019 release, containing HMM profiles for 145 
KEGG/KO with predefined score thresholds), TIGRfam [33] (Release 15.0), Pfam [32] 146 
(Release 32.0), and custom metabolic HMM profiles [2]. In order to achieve a better HMM 147 
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search result excluding non-specific hits, we have tested and manually curated cutoffs for those 148 
HMM databases listed above into the resulting HMMs: KOfam database - KOfam suggested 149 
values; TIGRfam/Pfam/Custom databases - manually curated by adjusting noise cutoffs (NC) 150 
or trusted cutoffs (TC) to avoid potential false positive hits. For the KOfam suggested cutoffs, 151 
we considered both the score type (full length or domain) and the score value to assign whether 152 
an individual protein hit is significant or not. HMM databases were used as the reference for 153 
hmmsearch [42] to find protein hits of input genomes. Prodigal [43] was used to annotate 154 
genomic sequences (the method used to find ORFs by Prodigal can be set by METABOLIC as 155 
“meta” or “single”), or a user can provide self-annotated proteins (with extensions of “.faa”) to 156 
facilitate incorporation into existing pipelines. Methods on the manual curation of these HMM 157 
databases are described in the next section. 158 
 159 
Curation of cutoff scores for metabolic HMMs 160 
Two curation methods for adjusting NC or TC of TIGRfam/Pfam/Custom databases were used 161 
for a specific HMM profile. First, we parsed and downloaded representative protein sequences 162 
according to either the corresponding KEGG identifier or UniProt identifier [44]. We then 163 
randomly subsampled a small portion of the sequences (10% of the whole collection if this was 164 
more than 10 sequences, or at least 10 sequences) as the query to search against the 165 
representative protein collections [42]. Subsequently, we obtained a collection of hmmsearch 166 
scores by pairwise sequence comparisons. We plotted scores against hmmsearch hits and 167 
selected the mean value of the sharpest decreasing interval as the adjusted cutoff 168 
(approximately the F1 score). Second, we downloaded a collection of proteins that belong to a 169 
specific HMM profile and pre-checked the quality and phylogeny of these proteins by 170 
reconstructing and manually inspecting phylogenetic trees. We applied pre-checked protein 171 
sequences as the query search against a set of training metagenomes (data not shown). We then 172 
obtained a collection of hmmsearch scores of resulting hits from the training metagenomes. By 173 
using a similar method as described above, the cutoff was selected as the mean value of the 174 
sharpest decreasing interval. 175 
 176 
The following example demonstrates how the method above was used to curate the cutoffs for 177 
hydrogenase enzymes. We then expanded this method to all genes using a similar method. We 178 
downloaded the individual protein collections for each hydrogenase functional group from the 179 
HydDB [45], which included [FeFe] Group A-C series, [Fe] Group, and [NiFe] Group 1-4 180 
series. The individual hydrogenase functional groups were further categorized based on the 181 
catalyzing directions, which included H2-evolution, H2-uptake, H2-sensing, electron-182 
bifurcation, and bidirection. To define the NC cutoff (‘--cut_nc’ in hmmsearch) for individual 183 
hydrogenase groups, we used the protein sequences from each hydrogenase group as the query 184 
to hmmsearch against the overall hydrogenase collections. By plotting the resulting hmmsearch 185 
hit scores against individual hmmsearch hits, we selected the mean value of the sharpest 186 
decreasing interval as the cutoff value. 187 
 188 
Motif validation 189 
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To automatically validate protein hits and avoid false positives, we introduced a motif 190 
validation step by comparing protein motifs against a manually curated set of highly conserved 191 
residues in important proteins. This manually curated set of highly conserved residues is 192 
derived from either reported works or protein alignments from this study. We chose 20 proteins 193 
associated with important metabolisms (with a focus on important biogeochemical cycling 194 
steps) that are prone to be misannotated into proteins within the same protein family. Details of 195 
these proteins are provided in Additional file 8: Dataset S1. For example, DsrC (sulfite 196 
reductase subunit C) and TusE (tRNA 2-thiouridine synthesizing protein E) are similar proteins 197 
that are commonly misannotated. Both of them are assigned to the family KO:K11179 in the 198 
KEGG database. To avoid assigning TusE as a sulfite reductase, we identified a specific motif 199 
for DsrC but not TusE (GPXKXXCXXXGXPXPXXCX”, where “X” stands for any amino 200 
acid) [46]. We used these specific motifs to filter out proteins that have high sequence similarity 201 
but functionally divergent homologs. 202 
 203 
Annotation of carbohydrate-active enzymes and peptidases 204 
For carbohydrate-active enzymes (CAZymes), dbCAN2 [39] was used to annotate proteins with 205 
default settings. The hmmscan parser and HMM database (2019-09-05 release) were 206 
downloaded from the dbCAN2 online repository (http://bcb.unl.edu/dbCAN2/download/) [39]. 207 
The non-redundant library of protein sequences which contains all the peptidase/inhibitor units 208 
from the peptidase (inhibitor) database MEROPS [40] (known as the ‘MEROPS pepunit’ 209 
database) was used as the reference database to search against putative peptidases and inhibitors 210 
using DIAMOND. The settings used for the DIAMOND BLASTP search were “-k 1 -e 1e-10 211 
--query-cover 80 --id 50” [47]. We used the ‘MEROPS pepunit’ database due to the fact that it 212 
only includes the functional unit of peptidases/inhibitors [40] which can effectively avoid 213 
potential non-specific hits.  214 
 215 
Implementation of METABOLIC-G and METABOLIC-C 216 
To target specific applications in processing omics datasets, we have implemented two versions 217 
of METABOLIC: METABOLIC-G (genome version) and METABOLIC-C (community 218 
version). METABOLIC-G intakes only genome files and provides analyses for individual 219 
genome sequences (including three kinds of genomes, e.g., single-cell genomes, isolate 220 
genomes, and metagenome-assembled genomes). The analyzing procedures of METABOLIC-221 
G for all these three kinds of genomes are the same.  222 
 223 
METABOLIC-C includes an option for users to include metagenomic reads for mapping to 224 
metagenome-assembled genomes (MAGs). Using Bowtie 2 (version ≥ v2.3.4.1) [48], 225 
metagenomic BAM files were generated by mapping all input metagenomic reads to gene 226 
collections from input genomes. Subsequently, SAMtools (version ≥ v0.1.19) [49], BAMtools 227 
(version ≥ v2.4.0) [50], and CoverM (https://github.com/wwood/CoverM) were used to convert 228 
BAM files to sorted BAM files and to calculate the gene coverage. To calculate the relative 229 
abundance of a specific biogeochemical cycling step, all the coverage of genes that are 230 
responsible for this step were summed up and normalized by overall gene coverage. Reads from 231 
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single-cell and isolate genomes can also be mapped in an identical manner to metagenomes. 232 
The gene coverage result generated by metagenomic read mapping was further used in 233 
downstream processing steps to conduct community-scale interaction and network analyses. 234 
 235 
Classifying microbial genomes into taxonomic groups 236 
To study community-scale interactions and networks of each microbial group within the whole 237 
community, we classified microbial genomes into individual taxonomic groups. GTDB-Tk 238 
v0.1.3 [51] was used to assign taxonomy of input genomes with default settings. GTDB-Tk can 239 
provide automated and objective taxonomic classification based on the rank-normalized 240 
Genome Taxonomy Database (GTDB) taxonomy within which the taxonomy ranks were 241 
established by a sophisticated criterion counting the relative evolutionary divergence (RED) 242 
and average nucleotide identity (ANI) [51, 52]. Subsequently, genomes were clustered into 243 
microbial groups at the phylum level, except for Proteobacteria which were replaced by its 244 
subordinate classes due to its wide coverage. Taxonomic assignment information for each 245 
genome was used in the downstream community analyses. 246 
 247 
Analyses and visualization of metabolic outputs, biogeochemical cycles, MW-scores, 248 
functional networks, and metabolic Sankey diagrams 249 
To visualize the outputted metabolic results, the R script “draw_biogeochemical_cycles.R” was 250 
used to draw the corresponding metabolic pathways for individual genomes. We integrated 251 
HMM profiles that are related to biogeochemical activities and assigned HMM profiles to 31 252 
distinct biogeochemical cycling steps (See details in “METABOLIC_template_and_database” 253 
folder on the GitHub page). The script can generate figures showing biogeochemical cycles for 254 
individual genomes and the summarized biogeochemical cycle for the whole community. By 255 
using the results of metabolic profiling generated from hmmsearch and gene coverage from the 256 
mapping of metagenomic reads, we can depict metabolic capacities of both individual genomes 257 
and all genomes within a community as a whole. The community-level diagrams, including 258 
sequential transformation diagrams, functional network diagrams, and metabolic Sankey 259 
diagrams, were generated using both metabolic profiling and gene coverage results. The 260 
diagrams are made by the scripts “draw_sequential_reaction_diagram.R”, 261 
“draw_metabolic_Sankey_diagram.R”, and “draw_functional_network_diagram.R”, 262 
respectively (For details, refer to GitHub wiki pages).  263 
 264 
MW-score (metabolic weight score) is a metric reflecting the functional capacity and 265 
abundance of a microbial community in co-sharing functional networks. It was calculated at 266 
the community-scale level based on results of metabolic profiling and gene coverage from 267 
metagenomic read mapping as described above. We divided metabolic/biogeochemical cycling 268 
steps (31 in total) into a finer level – function (51 functions in total) – for better resolution on 269 
reflecting functional networks. By using similar methods for determining metabolic 270 
interactions (as described above), we selected functions that are shared among genomes. MW-271 
score for each function was calculated by summing up all the coverage values of each function 272 
(calculated by summing up all coverage values of genomes that contain this function) and 273 



 8 

subsequently normalizing it by the overall function coverage. For each function, the 274 
contribution percentage of each microbial phylum (the default taxonomic level setting) was 275 
also calculated accordingly. One can also change the taxonomic level setting to the resolution 276 
of “class”, “order”, “family”, or “genus” to calculate the corresponding contribution percentage 277 
of each microbial group. Two equations are provided as follows to calculate each function’s 278 
MW-score (1) and the percentage of contribution of each microbial group to the MW-score (2): 279 
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 283 
In equation (1), MW refers to MW-score. fi refers to the studied function (f) which ranks in the 284 
(i) position amongst all functions. g1 and gn indicate the first and the last genome amongst all 285 
genomes. f1 and fn indicate the first and the last function amongst all functions. Cg means the 286 
coverage of a genome and Sf means the presence (denoted as 1) or absence (denoted as 0) state 287 
of a function within that genome. In equation (2), Cprec refers to the contribution percentage 288 
of a microbial group to the MW-score. pj means the studied group (p) which ranks in the (j) 289 
position amongst all groups. gk and gl indicate the genomes which rank in the (k) position and 290 
the (l) position amongst all genomes; the additional note 𝑔' …𝑔( 	 ∈ 𝑝)  indicates all the 291 
genomes between these two belong to the studied group pj.  292 
 293 
Example of METABOLIC analysis 294 
An example of community-scale analyses including element biogeochemical cycling and 295 
sequential reaction analyses, functional network and metabolic Sankey visualization, and MW-296 
score calculation were conducted using a metagenomic dataset of microbial community 297 
inhabiting deep-sea hydrothermal vent environment of Guaymas Basin in the Pacific Ocean 298 
[53]. It contains 98 MAGs and 1 set of metagenomic reads (genomes were available at NCBI 299 
BioProject PRJNA522654 and metagenomic reads were deposited to NCBI SRA with 300 
accession as SRR3577362).   301 
 302 
A metagenomic-based study of the microbial community from an aquifer adjacent to Colorado 303 
River, located near Rifle, has provided an accurate reconstruction of the metabolism and 304 
ecological roles of the microbial majority [2]. From underground water and sediments of the 305 
terrestrial subsurface at Rifle, 2545 reconstructed MAGs were obtained (genomes are under 306 
NCBI BioProject PRJNA288027). They were used as the in silico dataset to test 307 
METABOLIC’s performance. First, all the microbial genomes were dereplicated by dRep 308 
v2.0.5 [54] to pick the representative genomes for downstream analysis using the setting of ‘-309 
comp 85’. Then, METABOLIC-G was applied to profile the functional traits of these 310 
representative genomes using default settings. Finally, the metabolic profile chart was depicted 311 
by assigning functional traits to GTDB taxonomy-clustered genome groups.  312 
 313 
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Test on software performance for different environments 314 
To benchmark and test the performance of METABOLIC in different environments, eight 315 
datasets of metagenomes and metagenomic reads from marine, terrestrial, and human 316 
environments were used. These included marine subsurface sediments [55] (Deep biosphere 317 
beneath Hydrate Ridge offshore Oregon), freshwater lake [56] (Lake Tanganyika, eastern 318 
Africa), colorectal cancer (CRC) patient gut [57], healthy human gut [57], deep-sea 319 
hydrothermal vent [53] (Guaymas Basin, Gulf of California), terrestrial subsurface sediments 320 
and water [2] (Rifle, CO, USA), meadow soils [58] (Angelo Coastal Range Reserve, CA, USA), 321 
and advanced water treatment facility [59] (Groundwater Replenishment System, Orange 322 
County, CA, USA). Default settings were used for running METABOLIC-C. 323 
 324 
Comparison of community-scale metabolism 325 
To compare the metabolic profile of two environments at the community scale, MW-score was 326 
used as the benchmarker. Two sets of environment pairs were compared, including the pair of 327 
marine subsurface sediments [55] and terrestrial subsurface sediments [2] and the pair of 328 
freshwater lake [56] and deep-sea hydrothermal vent [53]. To demonstrate differences between 329 
these environments in specific biogeochemical processes, we focused on the biogeochemical 330 
cycling of sulfur. The sulfur biogeochemical cycling diagrams were depicted with the 331 
annotation of the number and the coverage of genomes that contain each biogeochemical 332 
cycling step. 333 
 334 
Metabolism in human microbiomes 335 
To inspect the metabolism of microorganisms in the human microbiome (associated with skin, 336 
oral mucosa, conjunctiva, gastrointestinal tracts, etc.), a subset of KOfam HMMs (139 HMM 337 
profiles) were used as markers to depict the human microbiome metabolism (parsed by 338 
HuMiChip targeted functional gene families [60]). They included 10 function categories as 339 
follows: amino acid metabolism, carbohydrate metabolism, energy metabolism, glycan 340 
biosynthesis and metabolism, lipid metabolism, metabolism of cofactors and vitamins, 341 
metabolism of other amino acids, metabolism of terpenoids and polyketides, nucleotide 342 
metabolism, and translation. The CRC and healthy human gut (healthy control) sample datasets 343 
were used as the input (Accession IDs: BioProject PRJEB7774 Sample 31874 and Sample 344 
532796). Heatmap of presence/absence of these functions were depicted by R package 345 
“pheatmap” [61] with 189 horizontal entries (there are duplications of HMM profiles among 346 
function categories; for detailed human microbiome metabolism markers, refer to Additional 347 
file 9: Dataset S2). 348 
 349 
Representation of microbial cell metabolism 350 
To provide a schematic representation of the metabolism of microbial cells, two microbial 351 
genomes were used as examples, Hadesarchaea archaeon 1244-C3-H4-B1 and Nitrospirae 352 
bacteria M_DeepCast_50m_m2_151. METABOLIC-G results of these two genomes, including 353 
functional traits and KEGG modules, were used to draw the cell metabolism diagrams. 354 
 355 
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Metatranscriptome analysis by METABOLIC 356 
METABOLIC-C can take metatranscriptomic reads as input into transcript coverage 357 
calculation and integrate the result into downstream community analyses. METABOLIC-C 358 
uses a similar method to that of gene coverage calculation, including mapping transcriptomic 359 
reads to the gene collection from input genomes, converting BAM files to sorted BAM files, 360 
and calculating the transcript coverage. The raw transcript coverage was further normalized by 361 
the gene length and metatranscriptomic read number in Reads Per Kilobase of transcript, per 362 
Million mapped reads (RPKM). Hydrothermal vent and background seawater transcriptomic 363 
reads from Guaymas Basin (NCBI SRA accessions: SRR452448 and SRR453184) were used 364 
to test the outcome of metatranscriptome analysis. 365 
 366 
RESULTS 367 
Given the ever-increasing number of microbial genomes from microbiome studies, we 368 
developed METABOLIC to enable the metabolic pathway analysis and the visualization of 369 
biogeochemical cycles and community-scale functional networks. METABOLIC has an 370 
improved methodology to get fast, accurate, and robust annotation results, and it integrates a 371 
variety of visualization functions for better interpreting the community-level functional 372 
interactions and microbial contributions. While METABOLIC relies on microbial genomes and 373 
metagenomic reads for underpinning its analyses for community-level functional interactions, 374 
it can easily integrate transcriptomic datasets to provide an activity-based measure of 375 
community networks. The scalable capacity, wide utility, and compatibility for analyzing 376 
datasets from various environments make it a well-tailored tool for metabolic profiling of large 377 
sets of genomes. In the following sections, the microbial community consisting of 98 MAGs 378 
from a deep-sea hydrothermal vent was used as the input dataset if not mentioned otherwise. 379 
 380 
Workflow to determine the presence of metabolic pathways 381 
METABOLIC is written in Perl and R and is expected to run on Unix, Linux, or macOS. The 382 
prerequisites are described on METABOLIC’s GitHub wiki pages 383 
(https://github.com/AnantharamanLab/METABOLIC/wiki). The input folder requires 384 
microbial genome sequences in FASTA format and an optional set of genomic/metagenomic 385 
reads which were used to reconstruct those genomes (Figure 1). The annotated proteins from 386 
input genomic sequences are queried against HMM databases (KEGG KOfam, Pfam, 387 
TIGRfam, and custom HMMs) using hmmsearch implemented within HMMER [42] which 388 
applies methods to detect remote homologs as sensitively and efficiently as possible. After the 389 
hmmsearch step, METABOLIC subsequently validates the primary outputs by a motif-390 
checking step for a subset of protein families; only those protein hits which successfully pass 391 
this step are regarded as positive hits. 392 
 393 
METABOLIC relies on matches to the above databases to infer the presence of specific 394 
metabolic pathways in microbial genomes. Individual KEGG annotations are inferred in the 395 
context of KEGG modules for a better interpretation of metabolic pathways. A KEGG module 396 
is comprised of multiple steps with each step representing a distinct metabolic function. We 397 
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parsed the KEGG module database [62] to link the existing relationship of KO identifiers to 398 
KEGG module identifiers to project our KEGG annotation result into the interactive network 399 
which was constructed by individual building blocks – modules – for better representation of 400 
metabolic blueprints of input genomes. In most cases, we used KOfam HMM profiles for 401 
KEGG module assignments. For a specific set of important metabolic marker proteins and 402 
commonly misannotated proteins, we also applied the TIGRfam/Pfam/custom HMM profiles 403 
and motif-validation steps. The software has customizable settings for increasing or decreasing 404 
the priority of specific databases, primarily meant to increase annotation confidence by 405 
preferentially using custom HMM databases over KEGG KOfam when both targeting the same 406 
set of proteins. 407 
  408 
Since individual genomes from metagenomes and single-cell genomes can often have 409 
incomplete metabolic pathways due to their low completeness compared to isolate genomes, 410 
we provide an option to determine the completeness of a metabolic pathway (or a module here). 411 
A user-defined cutoff is used to set the threshold of completeness for a given module to be 412 
assigned as present (the default cutoff is the presence of 75% of metabolic steps/genes within 413 
a given module), which is then used to produce a KEGG module presence/absence table. All 414 
modules exceeding the cutoff value are determined to be present. Meanwhile, the 415 
presence/absence information for each module step is also summarized in an overall output 416 
table to facilitate further detailed investigations. 417 
 418 
Outputs consist of six different results that are reported in an Excel spreadsheet (Additional file 419 
1: Figure S1). These contain details of protein hits (Additional file 1: Figure S1A) which include 420 
both presence/absence and protein names, presence/absence of functional traits (Additional file 421 
1: Figure S1B), presence/absence of KEGG modules (Additional file 1: Figure S1C), 422 
presence/absence of KEGG module steps (Additional file 1: Figure S1D), carbohydrate-active 423 
enzyme (CAZyme) hits (Additional file 1: Figure S1E) and peptidase/inhibitor hits (Additional 424 
file 1: Figure S1F). For each HMM profile, the protein hits from all input genomes can be used 425 
to construct phylogenetic trees or further be combined with reference protein collections for 426 
detailed evolutionary analyses.  427 
 428 
Quantitative visualization of biogeochemical cycles and sequential reactions 429 
After METABOLIC generates protein and pathway annotation results, the software further 430 
identifies and highlights specific pathways of importance in microbiomes associated with 431 
energy metabolism and biogeochemistry. To visualize pathways of biogeochemical 432 
importance, it generates schematic profiles for nitrogen, carbon, sulfur, and other elemental 433 
cycles for each genome. The set of genomes used as input is considered the “community”, and 434 
each genome within is considered an “organism”. A summary schematic diagram at the 435 
community level integrates results from all individual genomes within a given dataset (Figure 436 
2) and includes computed abundances for each step in a biogeochemical cycle if the 437 
genomic/metagenomic read datasets are provided. The genome number labeled in the figure 438 
indicates the number/quantity of genomes that contain the specific gene components of a 439 
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biogeochemical cycling step (Figure 2) [2]. In other words, it represents the number of 440 
organisms within a given community inferred to be able to perform a given metabolic or 441 
biogeochemical transformation. The abundance percentage indicates the relative abundance of 442 
microbial genomes that contain the specific gene components of a biogeochemical cycling step 443 
among all microbial genomes in a given community (Figure 2) [2]. 444 
 445 
Microorganisms in nature often do not encode pathways for the complete transformation of 446 
compounds. For example, microorganisms possess partial pathways for denitrification that can 447 
release intermediate compounds like nitrite, nitric oxide, and nitrous oxide in lieu of nitrogen 448 
gas which is produced by complete denitrification [63]. A greater energy yield could be 449 
achieved if one microorganism conducts all steps associated with a pathway (such as 450 
denitrification) [2] since it could fully use all available energy from the reaction. However, in 451 
reality, few organisms in microbial communities carry out multiple steps in complex pathways; 452 
organisms commonly rely on other members of microbial communities to conduct sequential 453 
reactions in pathways [2, 64, 65]. Thus, to study this metabolic scenario in microbial 454 
communities, METABOLIC summarizes and enables visualization of the genome number and 455 
coverage (relative abundance) of microorganisms that are putatively involved in the sequential 456 
transformation of both important inorganic and organic compounds (Figure 3). This provides a 457 
quantitative calculation of microbial interactions and connections using shared metabolites 458 
associated with inorganic and organic transformations. Additionally, it shows the intuitive 459 
pattern of quantity and abundance of microorganisms that are able to conduct partial or all steps 460 
for a given pathway, which potentially reflects the degree of resilience of a microbial 461 
community.  462 
 463 
Calculation and visualization of functional networks, metabolic weight scores (MW-464 
scores), and microbial contribution to metabolic reactions 465 
Given the microbial pathway abundance information generated by METABOLIC, we identified 466 
co-existing metabolisms in microbial genomes as a measure of connections between different 467 
metabolic functions and biogeochemical steps. In the context of biogeochemistry, this approach 468 
allows the evaluation of relatedness among biogeochemical steps and the connection 469 
contribution by microorganisms. This is enabled at the resolution of individual microbial 470 
groups based on the phylogenetic classification (Figure 4) assigned by GTDB-Tk [51]. As an 471 
example, we have demonstrated this approach on a microbial community inhabiting deep-sea 472 
hydrothermal vents. We divided the microbial community of deep-sea hydrothermal vents into 473 
18 phylum-level groups (except for Proteobacteria which were divided into their subordinate 474 
classes). The functional network diagrams were depicted at the resolution of both individual 475 
phyla and the entire community level (Additional file 10: Dataset S3). Figure 4 demonstrates 476 
metabolic connections that were represented with individual metabolic/biogeochemical cycling 477 
steps depicted as nodes, and the connections between two given nodes depicted as edges. The 478 
size of a given node is proportional to the degree (number of connections to each node). The 479 
thickness of a given edge was depicted based on the average of gene coverage values of two 480 
biogeochemical cycling steps (the connected nodes). More edges connecting two nodes 481 
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represent more connections between these two steps. The color of the edge corresponds to the 482 
taxonomic group. At the whole community level, more abundant microbial groups were more 483 
represented in the diagram (Figure 4). Overall, METABOLIC provides a comprehensive 484 
approach to construct and visualize functional networks associated with important pathways of 485 
energy metabolism and biogeochemical cycles in microbial communities and ecosystems. 486 
 487 
To address the lack of quantitative and reproducible measures to represent potential metabolic 488 
interactions in microbial communities, we developed a new metric that we termed MW-score 489 
(metabolic weight scores) (Equations 1 and 2). MW-scores quantitatively measure “function 490 
weights” within a microbial community as reflected by the metabolic profile and gene coverage. 491 
As metabolic potential for the whole community was profiled into individual functions that 492 
either mediated specific pathways or transformed certain substrates into products, a function 493 
weight that reflects the abundance fraction for each function can be used to represent the overall 494 
metabolic potential of the community. MW-scores resolved the functional capacity and 495 
abundance in the co-sharing functional networks as studied and visualized in the above section. 496 
More frequently shared functions and their higher abundances lead to higher MW-scores, which 497 
quantitatively reflects the function weights in functional networks (Figure 5). MW-score 498 
reflects the same functional networking pattern as the above description on the edges 499 
(networking lines) connecting the nodes (metabolic steps) that – more edges connecting two 500 
nodes indicates two steps are more co-shared, thicker edges indicate higher gene abundance for 501 
the metabolic steps. The MW-scores can integratively represent these two networking patterns 502 
and serve as metrics to measure these function weights. At the same time, we also calculated 503 
each microbial group’s (phylum in this case) contribution to the MW-score of a specific 504 
function within the community (Figure 5). A higher microbial group contribution percentage 505 
value indicates that one function is more represented by the microbial group (for both gene 506 
presence and abundance) in the functional networks. MW-scores provide a quantitative 507 
measure of comparing function weights and microbial group contributions within functional 508 
networks. 509 
 510 
To understand the contributions of microbial groups associated with specific metabolic and 511 
biogeochemical transformations, we developed an approach to visualize the connections among 512 
specific taxonomic groups, metabolic reactions, and entire biogeochemical cycles such as 513 
carbon, nitrogen, and sulfur cycles. Our approach involves the use of Sankey diagrams (also 514 
called ‘Alluvial’ plots) to represent the fractions of metabolic functions that are contributed by 515 
various microbial groups in a given community (Figure 6). It allows visualization of metabolic 516 
reactions as the link between microbial contributors clustered as taxonomic groups and 517 
biogeochemical cycles at a community level (Figure 6 and Additional file 10: Dataset S3). The 518 
function fraction was calculated by accumulating the genome coverage values of genomes from 519 
a specific microbial group that possesses a given functional trait. The width of curved lines 520 
from a specific microbial group to a given functional trait indicates their corresponding 521 
proportional contribution to a specific metabolism (Figure 6). Alternatively, the 522 
genomic/metagenomic datasets which are used in constructing the above two diagrams: 523 
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functional network diagram (Figure 4) and metabolic Sankey diagram (Figure 6), can be 524 
replaced by transcriptomic/metatranscriptomic datasets, and correspondingly, the gene 525 
coverage values will be replaced by gene expression values, and therefore, diagrams will 526 
represent the transcriptional activity patterns of functional network and microbial contribution 527 
to metabolic reactions (Additional file 2, 3, 4, and 5: Figure S2, S3, S4, and S5).  528 
 529 
To demonstrate this part of the workflow in reality, the microbial community consisting of 98 530 
MAGs from a deep-sea hydrothermal vent was used as a test dataset. After running the 531 
bioinformatic analyses described above, resulting tables and diagrams were compiled and 532 
visualized accordingly (Figure 4, 5, 6 and Additional file 10: Dataset S3). Results for functional 533 
networks and MW-scores of the deep-sea hydrothermal vent environment indicate that the 534 
microbial community depends on mixotrophy and sulfur oxidation for energy conservation and 535 
involves arsenate reduction potentially responsible for detoxification/arsenate resistance [66]. 536 
MW-scores indicate that amino acid utilization, complex carbon degradation, acetate oxidation, 537 
and fermentation are the major heterotrophic metabolisms for this environment; CO2-fixation 538 
and sulfur oxidation also occupy a considerable functional fraction, which indicates 539 
heterotrophy and autotrophy both contribute to energy conservation (Figure 5). As represented 540 
by both MW-scores and metabolic Sankey diagram, Gammaproteobacteria are the most 541 
numerically abundant group in the community and they occupy significant functional fractions 542 
amongst both heterotrophic and autotrophic metabolisms (MW-score contribution ranging from 543 
59-100%) (Figure 5, 6), which is consistent with previous findings in the Guaymas Basin 544 
hydrothermal environment [53, 67]. Meanwhile, MW-scores also explicitly reflect the 545 
involvement of other minor electron donors in energy conservation which are mainly 546 
contributed by Gammaproteobacteria, such as hydrogen and methane (Figure 5). This is also 547 
consistent with previous findings [53, 67] and indicates the accuracy and sensitivity of MW-548 
scores to reflect metabolic potentials. 549 
 550 
METABOLIC performance demonstration 551 
To test METABOLIC’s performance on speed, we applied the software (METABOLIC-C 552 
mode) to analyze the metagenomic dataset which includes 98 MAGs from a deep-sea 553 
hydrothermal vent, and two sets of metagenomic reads (that are subsets of original reads with 554 
10 million reads for each pair comprising ~10% of the total reads). The total running time was 555 
~3 hours using 40 CPU threads in a Linux version 4.15.0-48-generic server (Ubuntu v5.4.0). 556 
The most compute-demanding step is hmmsearch, which took ~45 mins. When tested on 557 
another dataset comprising ~3600 microbial genomes (data not shown), METABOLIC could 558 
complete hmmsearch in ~5 hours by using 40 CPU threads, indicating its scalable capability on 559 
analyzing thousands of genomes.  560 
 561 
In order to test the accuracy of the results predicted by METABOLIC, we picked 15 bacterial 562 
and archaeal genomes from Chloroflexi, Thaumarchaeota, and Crenarchaeota which are 563 
reported to have 3 hydroxypropionate cycle (3HP) and/or 3-hydroxypropionate/4-564 
hydroxybutyrate cycle (3HP/4HB) for carbon fixation. METABOLIC predicted results in line 565 
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with annotations from the KEGG genome database which can be visualized in KEGG Mapper 566 
(Table 1). Our predictions are also in accord with biochemical evidence of the existence of 567 
corresponding carbon fixation pathways in each microbial group: 1) 3 out of 5 Chloroflexi 568 
genomes are predicted by both METABOLIC and KEGG to possess the 3HP pathway and none 569 
of all these Chloroflexi genomes are predicted to possess the 3HP/4HB pathway. This is 570 
consistent with current reports based on biochemical and molecular experiments that only 571 
organisms from the phylum Chloroflexi are known to possess the 3HP pathway [68] (Table 1). 572 
2) All 5 Thaumarchaeota genomes and 2 out of 5 Crenarchaeota genomes are predicted by 573 
both METABOLIC and KEGG to possess the 3HP/4HB pathway and none of these 574 
Thaumarchaeota and Crenarchaeota genomes are predicted to possess the 3HP pathway. This 575 
is consistent with current reports that only the 3HP/4HB pathway could be detected in 576 
Crenarchaeota and Thaumarchaeota [69, 70] (Table 1). We have also applied METABOLIC 577 
on a large well-studied dataset comprising 2545 metagenome-assembled genomes from 578 
terrestrial subsurface sediments and groundwater [2]. The annotation results of METABOLIC 579 
are consistent with previously described reports (Additional file 6, 10: Figure S6, Dataset S3). 580 
These results suggest that METABOLIC can provide accurate annotations and perform well as 581 
a functional predictor for microbial genomes and communities. 582 
 583 
Currently, several software packages and online servers are available for genome annotation 584 
and metabolic profiling. Comparing to other software/online servers including GhostKOALA 585 
[71], BlastKOALA [71], KAAS [72], RAST/SEED [34], and eggNOG-mapper [73], 586 
METABOLIC is unique in its ability to integrate multi-omic information towards elucidating 587 
and visualizing community-level functional connections and the contribution of 588 
microorganisms to biogeochemical cycles (Figure 7A). Additionally, in order to compare the 589 
prediction performance of METABOLIC to others, we conducted parallel in silico experiments 590 
(Figure 7B). We used two representative bacterial genomes as the test datasets. We randomly 591 
picked 100 protein sequences from individual genomes and submitted them to annotation by 592 
these six software/online servers. Predicted protein annotations by individual software and 593 
online servers were compared to their original annotations that were provided by the NCBI 594 
database (Additional file 11, 12: Dataset S4, S5). According to statistical methods of evaluating 595 
binary classification [74], the following parameters were used to make the comparison: 1) recall 596 
(also referred to as the sensitivity) as the true positive rate, 2) precision (also referred to as the 597 
positive predictive value) which indicates the reproducibility and repeatability of a 598 
measurement system, 3) accuracy which indicates the closeness of measurements to their true 599 
values, and 4) F1 value which is the harmonic mean of precision and recall, and reflects both 600 
these two parameters. Among the tested software/online servers, the performance parameters 601 
of METABOLIC consistently placed it as the top 3 and top 2 software for recall and F1 and the 602 
top 1 and top 2 software for precision and accuracy. These results demonstrate that 603 
METABOLIC (Figure 7B) provides robust performance and consistent metabolic prediction 604 
that facilitate accurate and reliable applicability for downstream data visualization and 605 
community-level analyses.  606 
 607 
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To demonstrate the application and performance of METABOLIC in different samples, we 608 
tested eight distinct environments (marine subsurface, terrestrial subsurface, deep-sea 609 
hydrothermal vent, freshwater lake, gut microbiome from patients with colorectal cancer, gut 610 
microbiome from healthy control, meadow soil, wastewater treatment facility). Overall, we 611 
found METABOLIC to perform well across all the environments to profile microbial genomes 612 
with functional traits and biogeochemical cycles (Additional file 10: Dataset S3). Among these 613 
tested environments, we also performed community-scale metabolic comparisons based on the 614 
MW-score (Figure 8). MW-score fraction at the community scale reflects the overall metabolic 615 
profile distribution pattern. Specifically, we compared samples from terrestrial and marine 616 
subsurface and samples from hydrothermal vent and freshwater lake. We observed that 617 
terrestrial subsurface contains more abundant metabolic functions related to nitrogen cycling 618 
compared to the marine subsurface (Figure 8A), consistent with the previous characterization 619 
of these two environments [2, 75]. Deep-sea hydrothermal vent samples had a considerably 620 
high concentration of methane and hydrogen [53] as compared to Lake Tanganyika (freshwater 621 
lake). Consistent with this phenomenon, the deep-sea hydrothermal vent microbial community 622 
has more abundant metabolic functions associated with methanotrophy and hydrogen oxidation 623 
(Figure 8B). In order to focus on a specific biogeochemical cycle, we applied METABOLIC to 624 
compare sulfur-related metabolisms at the community scale for these two environment pairs 625 
(Additional file 7: Figure S7). Terrestrial subsurface contains genomes covering more sulfur 626 
cycling steps compared to marine subsurface (7 steps vs 3 steps) (Additional file 7: Figure 627 
S7A). Freshwater lake contains genomes involving almost all the sulfur cycling steps except 628 
for sulfur reduction, while deep-sea hydrothermal vent contains less sulfur cycling steps (8 629 
steps vs 6 steps) (Additional file 7: Figure S7B). Nevertheless, deep-sea hydrothermal vent has 630 
a higher fraction of genomes (59/98) and a higher relative abundance (73%) of these genomes 631 
involving sulfur oxidation compared to the freshwater lake (Additional file 7: Figure S7B). This 632 
indicates that the deep-sea hydrothermal vent microbial community has a more biased sulfur 633 
metabolism towards sulfur oxidation, which is consistent with previous metabolic 634 
characterization on the dependency of elemental sulfur in this environment [53, 76-78]. 635 
Collectively, by characterizing community-scale metabolism, METABOLIC can facilitate the 636 
comparison of overall functional profiles as well as for a particular elemental cycle.  637 
 638 
METABOLIC enables accurate reconstruction of cell metabolism 639 
To demonstrate applications of reconstructing and depicting cell metabolism based on 640 
METABOLIC results, two microbial genomes were used as an example (Figure 9). As 641 
illustrated in Figure 9A, Hadesarchaea archaeon 1244-C3-H4-B1 has no TCA cycling gene 642 
components, which is consistent with previous findings in archaea within this class [79]. 643 
Gluconeogenesis/glycolysis pathways are also lacking in the genome; since gluconeogenesis is 644 
the central carbon metabolism responsible for generating sugar monomers which will be further 645 
biosynthesized to polysaccharides as important cell structural components [80], the lack of this 646 
pathway could be due to genome incompleteness. As an enigmatic archaeal class newly 647 
discovered in the recent decade, Hadesarchaea have distinctive metabolisms that separate them 648 
from conventional euryarchaeotal groups. They almost lost all TCA cycle gene components for 649 
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the production of acetyl-CoA; while they could metabolize amino acids in a heterotrophic 650 
lifestyle [79]. It is posited that the Hadesarchaea genome has been subjected to a streamlining 651 
process possibly due to nutrient limitations in their surrounding environments [79]. Due to their 652 
metabolic novelty and limited available genomes at the current time, there are still uncertainties 653 
on unknown/hypothetical genes and pathways and unclassified metabolic potential across the 654 
whole class. The previous metabolic characterization on four Hadesarchaea genomes indicates 655 
Hadesarchaea members could anaerobically oxidize CO, and H2 was produced as the side 656 
product [79]. In the Hadesarchaea archaeon 1244-C3-H4-B1 genome, METABOLIC results 657 
indicate the loss of all anaerobic carbon-monoxide dehydrogenase gene components, which 658 
suggests the distinctive metabolism of this Hadesarchaea archaeon from others and highlights 659 
the accuracy of METABOLIC in reflecting functional details.  660 
 661 
We also reconstructed the metabolism for Nitrospirae bacteria M_DeepCast_50m_m2_151, a 662 
member of the Nitrospirae phylum reconstructed from Lake Tanganyika [56] (Figure 9B). It 663 
contains the full pathway for the TCA cycle and gluconeogenesis/glycolysis. Furthermore, it 664 
also has the full set of oxidative phosphorylation complexes for energy conservation and 665 
functional genes for nitrite oxidation to nitrate. Other nitrogen cycling metabolisms identified 666 
in this genome include ammonium oxidation, urea utilization, and nitrite reduction to nitric 667 
oxide. The reverse TCA cycle pathway was identified for carbon fixation. The metabolic 668 
profiling result is in accord with the fact that Nitrospirae is a well-known nitrifying bacterial 669 
class capable of nitrite oxidation and living an autotrophic lifestyle [80]. Additionally, their 670 
more abundant distribution in nature compared to other nitrite-oxidizing bacteria such as 671 
Nitrobacter indicates their significant contribution to nitrogen cycling in the environment [80]. 672 
This highlights the ability of METABOLIC in reflecting functional details of more common 673 
and prevalent microorganisms compared to the Hadesarchaea archaeon. Notably as discovered 674 
from METABOLIC analyses, this bacterial genome also contains a wide range of transporter 675 
enzymes on the cell membrane, including mineral and organic ion transporters, sugar and lipid 676 
transporters, phosphate and amino acid transporters, heme and urea transporters, 677 
lipopolysaccharide and lipoprotein releasing system, bacterial secretion system, etc., which 678 
indicates its metabolic versatility and potential interactive activities with other organisms and 679 
the ambient environment. Collectively, METABOLIC result of functional profiling provides 680 
an intuitively-represented summary of a single microbial genome which enables depicting cell 681 
metabolism for better visualizing the functional capacity. 682 
 683 
METABOLIC accurately represents metabolism in the human microbiome 684 
In addition to resolving microbial metabolism and biogeochemistry in environmental 685 
microbiomes, METABOLIC also accurately identifies metabolic traits associated with human 686 
microbiomes. The implications of microbial metabolism on human health largely remain a 687 
black box, much like microbial contributions to biogeochemical cycling. We demonstrate the 688 
utility of METABOLIC in human microbiomes using publicly available data from stool 689 
samples collected from patients with colorectal cancer and healthy individuals. From this study, 690 
we selected stool metagenomes from one colorectal cancer (CRC) and an age and sex-matched 691 
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healthy control to conduct the comparison. The heatmap indicates the human microbiome 692 
functional profiles of both samples based on the marker gene presence/absence patterns (Figure 693 
10). As an example of METABOLIC’s application, we demonstrate that there were 28 markers 694 
with variations > 10% in terms of the marker-containing genome fractions between these two 695 
samples (Figure 10, Additional file 13: Dataset S6). These 28 markers involved all the ten 696 
metabolic categories except for lipid metabolism and translation, suggesting the broad 697 
functional differences between these two samples. In addition to analyzing human microbiome 698 
specific functional markers, METABOLIC can be used to visualize elemental nutrient cycling 699 
and analyze metabolic interactions in human microbiomes. Overall it enables systematic 700 
characterization of the composition, structure, function, and interaction of microbial 701 
metabolisms in the human microbiome and facilitates omics-based studies of microbial 702 
community on human health [60]. 703 
 704 
DISCUSSION 705 
The rapid increase in the availability of sequenced microbial genomes, metagenome-assembled 706 
genomes, and single-cell genomes has significantly benefited ecogenomic research on 707 
unraveling microbial functional roles and their metabolic contribution to biogeochemical 708 
cycles. Tools that enable to conduct accurate and reproducible functional profiling on genomic 709 
blueprints at the scale of both individual microorganisms and the whole microbial community 710 
offered significant applications and advances. They are fundamental to facilitate understanding 711 
of community-level functions, activities, interactions, and functional contributions in the era of 712 
multi-omics. An ideal tool for microbial biogeochemical profiling needs consideration on better 713 
organizing, interpreting, and visualizing the functional profile information; this is especially 714 
important for dealing with thousands of genomes reconstructed from metagenomes and 715 
studying the community-scale interactive metabolisms. Meanwhile, fast, accurate, robust 716 
performance and wide usage of the tool will allow for providing reliability and efficiency. 717 
 718 
Here we developed METABOLIC for profiling metabolisms, biogeochemical pathways, and 719 
community-scale functional networks. Instead of solely depending on widely adopted protein 720 
annotation databases, in METABOLIC two additional steps were added in order to accurately 721 
predict protein functions and reconstruct metabolic pathways. First, for 722 
TIGRfam/Pfam/Custom HMM profile databases, default NC/TC thresholds are often set too 723 
low to avoid noisy signals especially for annotating proteins from large sets of metagenomes 724 
wherein similar protein families often co-exist. This frequently leads to misannotations. To 725 
avoid this, we collected hmmsearch scores of previous annotation results and plotted these 726 
scores as a function of all annotations, and manually curated NC/TC by specifically picking the 727 
sharpest decreasing interval as the adjusted cutoff. Second, the motif validation step involves 728 
comparing potential hits to a set of manually curated highly conserved amino acid residues. 729 
This helps to distinguish two protein families with high sequence identity but different 730 
functions which are often difficult to separate by HMM profile-based annotations. These two 731 
steps help to filter out non-specific and cross-talking hits of important functional proteins for 732 
downstream bioinformatic analyses. After obtaining predicted metabolic pathways, many other 733 
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software/online servers mostly provide raw annotation results with overwhelming yet 734 
unorganized details on characterizing protein functions. For microbial ecologists it is 735 
fundamental to provide organized and intuitive results to facilitate understanding on the whole 736 
landscape of biogeochemical cycling capacities. In METABOLIC, such a function was 737 
developed to enable visualizing the presence/absence state of each step of biogeochemical 738 
cycles for individual genomes and the whole microbial community. Combined with gene 739 
abundance information calculated by metagenomic read mapping, we can identify the relative 740 
abundance for each step of biogeochemical cycles. Furthermore, METABOLIC can also 741 
visualize sequential reaction patterns for important organic and inorganic compound 742 
transformations. This visualization function of METABOLIC is practical for representing the 743 
“metabolic handoff” scenario of within-community interactions [2]. METABOLIC can be 744 
implemented in human microbiome with the same performance. Recently, METABOLIC was 745 
applied to stool metagenomic samples from 667 individuals who either were healthy or had 746 
adenomas or carcinomas of the colon, to profile organic/inorganic sulfate reduction and sulfide 747 
production [81]. This has considerably enlarged the utility of METABOLIC in community-748 
scale investigation on human microbiomes for purposes of systematic microbiota-disease 749 
studies  750 
 751 
Previously, the community networks reflected by microbial genomes mostly focused on 752 
modeling reactions that are linked by metabolizing substrates and generating products [15, 19, 753 
26]. On the contrary, METABOLIC was developed for a different purpose to study microbially-754 
mediated biogeochemical processes. In METABOLIC the community-scale functional network 755 
provides an intuitive perspective on the metabolic connectivity among 756 
biogeochemical/metabolic steps and microbial contributions to these functions. MW-score, a 757 
metric that was built based on the same notion and methodology, offers quantitative 758 
measurement for these connected functions. Combined together they represent which functions 759 
are more centralized (connected with others) and important (weighted with higher relative 760 
abundance) in the co-sharing functional networks and which groups of microbial players 761 
contribute to these functions. Additionally, metabolic Sankey diagrams can be drawn to further 762 
visualize the microbial group contributions to different functions and biogeochemical cycles. 763 
As gene coverages generated by metagenomic read mapping can be replaced by transcript 764 
coverages generated by transcriptomic reads mapping, we broaden the usage in reflecting active 765 
function connections and weights. In practical applications, functional networks and MW-766 
scores can be made in a standardized, reproducible, and normalized manner, so parallel 767 
comparisons between communities (or samples) are applicable. The visualized network and 768 
Sankey diagram can also offer intuitive representations of functional connections and microbial 769 
contribution at both individual function and community-scale levels by using customized color 770 
schemes. There are other read-based metagenomic profiling tools, e.g., MetaPhlAn [28] and 771 
MEGAN [82], that can study the taxonomical and functional composition of microbiome at the 772 
community-scale level. Compared to read-based approaches which largely depend on the 773 
comprehensiveness of reference databases to capture microbial organisms, METABOLIC 774 
depends on the annotation of MAGs that is free from the limitation of reference databases on 775 
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novel and rare organism characterization. METABOLIC specifically provides additional 776 
functionalities on annotation validation, result organization, and visualization which are 777 
meaningful to give reliable and easily accessible functional profiling results for microbial 778 
ecologists and biogeochemists to have a comprehensive understanding on the whole landscape 779 
of biogeochemical cycling capacities. 780 
 781 
CONCLUSIONS 782 
Metabolic functional profile of microbial genomes at the scale of individual organisms and 783 
communities is essential to have a comprehensive understanding of ecosystem processes, and 784 
as a conduit for enabling functional trait-based modeling of biogeochemistry. We have 785 
developed METABOLIC as a metabolic functional profiler that goes above and beyond current 786 
frameworks of genome/protein annotation platforms in providing protein annotations and 787 
metabolic pathway analyses that are used for inferring the contribution of microorganisms, 788 
metabolism, interactions, activity, and biogeochemistry at the community-scale. METABOLIC 789 
facilitates standardization and integration of genome-informed metabolism into metabolic and 790 
biogeochemical models. We anticipate that METABOLIC will enable easier interpretation of 791 
microbial metabolism and biogeochemistry from metagenomes and genomes and enable 792 
microbiome research in diverse fields.  793 
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FIGURE AND TABLE LEGENDS  1102 
Figure 1. An outline of the workflow of METABOLIC. Detailed instructions are available 1103 
at https://github.com/AnantharamanLab/METABOLIC/wiki. METABOLIC-G workflow is 1104 
specifically shown in the blue box and METABOLC-C workflow is shown in the green square. 1105 
 1106 
Figure 2. Summary scheme of biogeochemical cycling processes at the community scale. 1107 
Each arrow represents a single transformation/step within a cycle. Labels above each arrow are 1108 
(from top to bottom): step number and reaction, number of genomes that can conduct these 1109 
reactions, metagenomic coverage of genomes (represented as a percentage within the 1110 
community) that can conduct these reactions. The numbers in brackets next to the nitrogen or 1111 
sulfur-containing compounds are chemical states of the nitrogen or sulfur atoms in these 1112 
compounds. 1113 
 1114 
Figure 3. Schematic figure of sequential metabolic transformations. (A) the sequential 1115 
transformation of inorganic compounds; (B) the sequential transformation of organic 1116 
compounds. X-axes describe individual sequential transformations indicated by letters. The 1117 
two panels describe the number of genomes and genome coverage (represented as a percentage 1118 
within the community) of organisms that are involved in certain sequential metabolic 1119 
transformations. The deep-sea hydrothermal vent dataset was used for these analyses.   1120 
 1121 
Figure 4. Functional network showing connections between different functions in the 1122 
microbial community. Nodes represent individual steps in biogeochemical cycles; edges 1123 
connecting two given nodes represent the functional connections between nodes, which are 1124 
enabled by organisms that can conduct both biogeochemical processes/steps. The size of the 1125 
node was depicted according to the degree (number of connections to each node). The thickness 1126 
of the edge was depicted according to the average gene coverage values of the two connected 1127 
biogeochemical cycling steps – for example, thiosulfate oxidation and organic carbon 1128 
oxidation. The color of the edges was assigned based on the taxonomy of the represented 1129 
genome. The deep-sea hydrothermal vent dataset was used for these analyses.   1130 
 1131 
Figure 5. Description, calculation, and result table of MW-scores. (A) The calculation 1132 
method for the MW-score within a community based on a given metagenomic dataset. 1133 
Each circle stands for a genome within the community, and the adjacent bar stands for its 1134 
genome coverage within the community. The coverage values of encoded genes for all 1135 
functions were summed up as the denominator, and the coverage value of encoded genes for 1136 
each function was used as the numerator, and the MW-score was calculated accordingly for 1137 
each function. (B) The resulting table of MW-score for the deep-sea hydrothermal vent 1138 
metagenomic dataset. MW-score for each function was given in a separated column, and the 1139 
rest of the table indicates the contribution percentage to each MW-score of the genomes 1140 
grouped in each phylum. The MW-score of “N-S-07:Nitrous oxide reduction” was not exactly 1141 
0 but rounded to 0 due to the original number being less than 0.05. Additionally, contribution 1142 
percentages were also rounded to only retain one digit after the decimal points; consequently, 1143 
the sum contribution percentages for some functions slightly deviate from 100%.   1144 
 1145 
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Figure 6. Metabolic Sankey diagram representing the contributions of microbial genomes 1146 
to individual metabolic and biogeochemical processes and entire elemental cycles. 1147 
Microbial genomes are represented at the phylum-level resolution. The three columns from left 1148 
to right represent taxonomic groups scaled by the number of genomes, the contribution to each 1149 
metabolic function by microbial groups calculated based on genome coverage, and the 1150 
contribution to each functional category/biogeochemical cycle. The colors were assigned based 1151 
on the taxonomy of the microbial groups. The deep-sea hydrothermal vent dataset was used for 1152 
these analyses.   1153 
 1154 
Figure 7. Comparison of METABOLIC with other software packages and online servers. 1155 
(A) Comparison of the workflows and services, (B) Comparison of performance of protein 1156 
prediction for two representative genomes, Pseudomonas aeruginosa PAO1, and 1157 
Escherichia coli O157H7 str. sakai. 1158 
 1159 
Figure 8. Community metabolism comparison based on MW-scores. (A) Comparison 1160 
between terrestrial subsurface (left red bars) and marine subsurface (right blue bars); (B) 1161 
Comparison between deep-sea hydrothermal vent (left red bars) and freshwater lake 1162 
(right blue bars). MW-scores were calculated as gene coverage fractions for individual 1163 
metabolic functions. Functions with MW-scores in both environments as zero were removed 1164 
from each panel, e.g., N-S-02:Ammonia oxidation, N-S-09:Anammox, S-S-02:Sulfur 1165 
reduction, and S-S-06:Sulfite reduction in Panel (A), and C-S-07:Methanogenesis, N-S-01:N2 1166 
fixation, N-S-09:Anammox, S-S-02:Sulfur reduction, and S-S-06:Sulfite reduction in Panel 1167 
(B). Details for MW-score and each microbial group contribution refer to Supplementary 1168 
Dataset S3. 1169 
 1170 
Figure 9. Cell metabolism diagrams of two microbial genomes. (A) cell metabolism 1171 
diagram of Hadesarchaea archaeon 1244-C3-H4-B1 (B) cell metabolism diagram of 1172 
Nitrospirae bacteria M_DeepCast_50m_m2_151. The absent functional 1173 
pathways/complexes were labeled with dash lines. 1174 
 1175 
Figure 10. Presence/Absence map of human microbiome metabolisms of a colorectal 1176 
cancer (CRC) patient and a healthy control gut sample. The heatmap has summarized 189 1177 
horizontal entries (189 lines) based on 139 key functional gene families that covered 10 1178 
function categories. Purple cells indicate presence and gray cells indicate absence. Detailed 1179 
KEGG KO identifier IDs and protein information for each function category were described in 1180 
Supplementary Dataset S2. 1181 



 30 

Table 1. The carbon fixation metabolic traits of 15 tested bacterial and archaeal genomes 1182 
predicted by both METABOLIC and KEGG genome database 1183 
 1184 

  
 

METABOLIC 

result 

KEGG genome 

pathway 

Carbon fixation Carbon fixation 

Accession ID Organism KEGG 

Organism 

Code 

Group 3HP 

cycle 

3HP/4

HB 

cycle 

3HP 

cycle 

3HP/4HB 

cycle 

GCA_000011905.1 Dehalococcoides mccartyi 195 det Chloroflexi Absent Absent Absent Absent 

GCA_000017805.1 Roseiflexus castenholzii DSM 13941 rca Chloroflexi Present Absent Present Absent 

GCA_000018865.1 Chloroflexus aurantiacus J-10-fl cau Chloroflexi Present Absent Present Absent 

GCA_000021685.1 Thermomicrobium roseum DSM 5159 tro Chloroflexi Absent Absent Absent Absent 

GCA_000021945.1 Chloroflexus aggregans DSM 9485 cag Chloroflexi Present Absent Present Absent 

GCA_000299395.1 Nitrosopumilus sediminis AR2 nir Thaumarchaeota Absent Present Absent Present 

GCA_000698785.1 Nitrososphaera viennensis EN76 nvn Thaumarchaeota Absent Present Absent Present 

GCA_000875775.1 Nitrosopumilus piranensis D3C nid Thaumarchaeota Absent Present Absent Present 

GCA_000812185.1 Nitrosopelagicus brevis CN25 nbv Thaumarchaeota Absent Present Absent Present 

GCA_900696045.1 Nitrosocosmicus franklandus NFRAN1 nfn Thaumarchaeota Absent Present Absent Present 

GCA_000015145.1 Hyperthermus butylicus DSM 5456 hbu Crenarchaeota Absent Absent Absent Absent 

GCA_000017945.1 Caldisphaera lagunensis DSM 15908 clg Crenarchaeota Absent Present Absent Present 

GCA_000148385.1 Vulcanisaeta distributa DSM 14429 vdi Crenarchaeota Absent Absent Absent Absent 

GCA_000193375.1 Thermoproteus uzoniensis 768-20 tuz Crenarchaeota Absent Present Absent Present 

GCA_003431325.1 Acidilobus sp. 7A acia Crenarchaeota Absent Absent Absent Absent 
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