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ABSTRACT: Characterizing variability in the global water cycle is fundamental to predicting impacts of future

climate change; understanding the role of the Pacific Walker circulation (PWC) in the regional expression of global

water cycle changes is critical to understanding this variability. Water isotopes are ideal tracers of the role of the

PWC in global water cycling because they retain information about circulation-dependent processes including

moisture source, transport, and delivery. We collated publicly available measurements of precipitation d18O

(d18OP) and used novel data processing techniques to synthesize long (34 yr), globally distributed composite rec-

ords from temporally discontinuous d18OP measurements. We investigated relationships between global-scale

d18OP variability and PWC strength, as well as other possible drivers of global d18OP variability—including El

Niño–Southern Oscillation (ENSO) and global mean temperature—and used isotope-enabled climate model

simulations to assess potential biases arising from uneven geographical distribution of the observations or our data

processing methodology. Covariability underlying the d18OP composites is more strongly correlated with the PWC

(r5 0.74) than any other index of climate variability tested. We propose that the PWC imprint in global d18OP arises

from multiple complementary processes, including PWC-related changes in moisture source and transport length,

and a PWC- or ENSO-driven ‘‘amount effect’’ in tropical regions. The clear PWC imprint in global d18OP implies a

strong PWC influence on the regional expression of global water cycle variability on interannual to decadal time

scales, and hence that uncertainty in the future state of the PWC translates to uncertainties in future changes in the

global water cycle.

SIGNIFICANCE STATEMENT: Anthropogenically driven climate change has repercussions beyond global warming.

One of the most impactful changes is to the global water cycle, but future changes to regional precipitation patterns on

land are not well constrained. The Pacific Walker circulation (PWC) affects weather and climate far beyond the Pacific

Ocean, and thus likely plays a role in global-scale precipitation patterns. But traditional approaches for assessing the

PWC’s role in the global water cycle do not capture the full range of circulation-dependent processes including vari-

ability inmoisture source, transport, and delivery. Here, we usedwater isotopes as a novel water cycle tracer, and found a

strong PWC imprint in global water isotope patterns.

KEYWORDS: Pacific Ocean; Atmospheric circulation; Dynamics; ENSO; Hydrologic cycle; Teleconnections; Walker

circulation; Climate change; Isotopic analysis; Empirical orthogonal functions; Climate variability

1. Introduction

As climate change progresses, many societally relevant im-

pacts will be hydrological (e.g., drought and floods); these

impacts are strongly linked with the global water cycle.

Measures of the ‘‘global water cycle’’ evaluated in terms of

ratios of global-mean or zonally averaged precipitation relative

to evaporation have shown that the global water cycle has in-

tensified in past decades, in response to global warming

(Huntington 2006; Durack et al. 2012; Cheng et al. 2020). This

intensification follows the thermodynamical dependence of the

atmospheric component of the globally averaged water cycle

on global temperature (Held and Soden 2006; Del Genio et al.

1991), and the trend is expected to continue with future

warming (Allen and Ingram 2002; Meehl et al. 2000; Stephens

andHu 2010;O’Gorman 2015; Chou and Lan 2012; Greve et al.

2014). However, the spatial pattern of regional precipitation

changes associated with an enhanced global water cycle is less

well understood, due to the relative complexity of the changes

and the importance of associated shifts in atmospheric circu-

lation (Vecchi and Soden 2007; Pfahl et al. 2017; Allan et al.

2020; Held and Soden 2006; Norris et al. 2019). Additionally,

the zonal-mean approach commonly used to characterize the

global water cycle masks the impacts of atmosphere–ocean
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dynamical processes—including the Pacific Walker circulation

(PWC)—that drive geographic variability in the response of

the global water cycle to global temperature change.

The PWC—the zonal component of atmospheric circulation

over the equatorial Pacific Ocean—is an important driver of

regional water cycle variability (Deser andWallace 1990; Held

and Soden 2006; DiNezio et al. 2010; Vecchi et al. 2006). The

PWC can be characterized by a zonal sea level pressure (SLP)

gradient across the equatorial Pacific, with deep convection

over the Indo-Pacific warm pool (low SLP), westerlies in the

upper troposphere, subsidence and radiative cooling over the

equatorial eastern Pacific (high SLP), and surface easterlies

(the Pacific trade winds) (Bjerknes 1969). On interannual time

scales, the PWC is tightly coupled with equatorial Pacific sea

surface temperature (SST) anomalies (Walker and Bliss 1932,

1937; Alexander et al. 2002) via El Niño–Southern Oscillation

(ENSO), which is the dominant mode of interannual global

climate variability.

Changes in the intensity of the PWC have known global

consequences: for example, a strengthened PWC contributed

to the decreased rate of global warming in the early 2000s

(England et al. 2014; Kosaka and Xie 2013; Watanabe et al.

2014; Dai et al. 2015; Dong and McPhaden 2017). In the con-

text of ENSO, the PWC also has known impacts on regional

precipitation in the tropics (Soden 2000; Han et al. 2020) and

beyond (e.g., Ropelewski and Halpert 1996; Domeisen et al.

2019; Ropelewski andHalpert 1987, 1989; Cole and Cook 1998;

Dai et al. 1998; Kong and Chiang 2020), but uncertainties re-

main in the magnitude and geographic distribution of its im-

pact (Seager et al. 2010), particularly on interannual to decadal

time scales. This is in part because the combined local and

remote PWC influence on atmospheric circulation has been

difficult to evaluate with networks of in situ observations.

Dynamically driven changes in the global water cycle (e.g.,

regional circulation changes) are not well captured by com-

monly used metrics such as precipitation and/or evaporation

(Schneider et al. 2017; Trenberth et al. 2007; Schlosser and

Houser 2007; Dagan et al. 2019) or related variables such as

freshwater runoff (Dai et al. 2009), ocean salinity (Skliris

et al. 2016; Yu et al. 2020), atmospheric moisture content (Dai

et al. 2011), or combinations of these water cycle components

(Huntington 2006; Zhang et al. 2019).

The oxygen stable isotopic composition of precipitation (the

ratio of 18O to 16O in precipitation relative to the ratio of 18O to
16O in a standard reference material; d18OP) is an ideal tool for

characterizing circulation changes, including those associated

with the PWC. Precipitation with lower d18O has less of the

heavy isotope (18O); precipitation with higher d18O has rela-

tivelymore 18O.Water phase changes (such as evaporation and

condensation) are mass dependent, and result in isotopic

fractionation; water molecules containing an 18O condense

more readily than isotopologues with only 16O. Conversely,

isotopologues with only 16O evaporate more readily than those

with the heavier isotope. For example, when liquid water

evaporates, the evaporate is depleted in 18O relative to the

liquid water’s initial isotopic composition (i.e., the vapor will

have lower d18O); accordingly, due to the relatively high loss of
16O, the remaining liquid becomes enriched in 18O (i.e., the

remaining liquid will have higher d18O). The d18O of both

phases depends both on the initial isotopic composition of the

water and on environmental factors such as ambient temper-

ature and relative humidity, which influence the amount of

fractionation. Water phase changes are therefore associated

with a change in that water’s 18O/16O, such that d18OP can

retain information about atmospheric processes operating at

scales from individual hydrometeors to large-scale circulation

systems (Konecky et al. 2019; Bowen et al. 2019; Galewsky

et al. 2016).

Recent studies have identified distinct d18OP signatures of

individual atmospheric processes that the PWC is known to

affect, but that cannot be easily characterized by observations

of precipitation amount and/or evaporation. For example, the

proportion of convective versus stratiform rainfall (Aggarwal

et al. 2016; Araguás-Araguás et al. 2000), below-cloud pro-

cesses (Graf et al. 2019), and changing moisture source and

transport pathways (Nusbaumer and Noone 2018) can each

influence d18OP, depending on local and regional climate. In

some parts of the tropics, d18OP is negatively correlated with

precipitation amount (Conroy et al. 2016; Konecky et al. 2019;

Kurita 2013; Dansgaard 1964; Rozanski et al. 1993). This

simple empirical relationship—the observed negative correla-

tion of precipitation amount with d18OP in tropical climates—is

known as the ‘‘amount effect’’ and is the result of many

atmospheric processes (Konecky et al. 2019) including

convective intensity (Risi et al. 2010; Samuels-Crow et al.

2014; Cai and Tian 2016a; Stewart 1975; Dee et al. 2018),

changes in vapor convergence (Moore et al. 2014), and

upstream rainfall and convection (Kurita et al. 2009;

Zwart et al. 2016). Each of these atmospheric processes is

known to be influenced by the PWC, in its role as the at-

mospheric arm of ENSO (e.g., Soden 2000; Han et al. 2020;

Ropelewski and Halpert 1989, 1996). Although d18OP

measurements integrate information from many individual

processes and circulation features, these measurements have

yet to be leveraged to evaluate the holistic imprint of the PWC

in the global water cycle.

Measurements of d18OP have been made since the 1950s,

and tens of thousands of d18OP measurements are freely

available from the Global Network of Isotopes in Precipitation

database (GNIP) (IAEA/WMO 2020) and other online re-

positories (e.g., Bowen et al. 2019; Putman and Bowen 2019).

But the spatial coverage of d18OP datasets is patchy, and

temporal coverage is irregular and often discontinuous even

at individual sites. The shorter records comprising most

published d18OP data have no long common time period of

overlap, precluding characterization of temporal d18OP variabil-

ity at a global scale. Previous global-scale d18OP meta-analyses

have therefore focused on static spatial d18OP patterns (Bowen

and Wilkinson 2002; Bowen 2008; Terzer et al. 2013) or clima-

tological distributions of isotopes in precipitation and vapor

(Araguás-Araguás et al. 2000), or relied on the outputs of

isotope-enabled climate models, calibrated against d18OP cli-

matologies from observations (Brown et al. 2006; Nusbaumer

et al. 2017), with two recent exceptions examining site-level

decadal trends in d18OP (Putman et al. 2021; Vystavna

et al. 2020).
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Here we assess the magnitude and spatial extent of the PWC

imprint in observations of global d18OP. To maximize infor-

mation from temporally and spatially discontinuous d18OP

records, we employed a ‘‘dynamic compositing’’ technique

[section 2h(1)] that had not previously been applied to globally

distributed d18OP observations. We then evaluated the rela-

tionship of global d18OP with the PWC, as well as other modes

of climatic variability. To assess potential biases arising from

inconsistent spatiotemporal data coverage, we repeated sev-

eral analyses using global d18OP simulated by the isotope-

enabled Community Earth System Model Last Millennium

Ensemble (iCESM iLME; Brady et al. 2019; Stevenson

et al. 2019).

Specifically, section 3a describes site-level correlations of

d18OP with the PWC and other climate indices. Section 3b

describes static global d18OP anomalies associated with anom-

alously strong or weak PWC years (analogous to LaNiña and El
Niño events) in observations and the iLME. Section 3c describes

spatiotemporal variability in global d18OP in observations and

the iLME. Sections 4 and 5 summarize the relationship between

global d18OP and the PWC, and discuss implications for regional

variability within the global water cycle.

2. Data and methods

a. Precipitation d18O data

We used monthly water isotope measurements available

from GNIP (IAEA/WMO 2020), supplemented by published

d18OP datasets available from http://waterisotopes.org [the

Water Isotopes Database (wiDB)], with submonthly data con-

verted to monthly means where necessary, following Putman

et al. (2019). We downloaded all monthly data available from

GNIP in March 2020, and all d18OP data from the wiDB in

August 2020. The databases contain measurements of both the

oxygen and hydrogen stable isotopic composition of water. We

use only d18OP, as it has greater spatial and temporal coverage.

We also obtained data from 15 stations in Australia from

the Australian Nuclear Science and Technology Organisation

(ANSTO) (Hollins et al. 2018) (Fig. 1 and supplemental Fig. 1

in the online supplemental material). The d18OP values in all

databases are provided in permille relative toVienna Standard

Mean Ocean Water (VSMOW).

We removed redundant records for sites in multiple data-

bases, preferentially keeping the GNIP data because for most

such datasets these are the original versions. We also filtered

out sites with fewer than two consecutive years of monthly

measurements, resulting in a total of 959 sites (Fig. 1). For

analyses reliant on calculation of anomalies and/or where we

used annually averaged data, we further filtered this dataset to

only include the 307 sites with five or more years of monthly

measurements (supplemental Fig. 1). In both cases, stations are

biased to the Northern Hemisphere midlatitudes (Fig. 1 and

supplemental Fig. 1).

b. Observational and climate reanalysis data

We used gridded monthly-mean observational and re-

analysis datasets to investigate the relationship of d18OP values

with atmospheric and oceanic climate variables. Although

GNIP and ANSTO station data include concurrent precipita-

tion amount observations, datasets available from the wiDB

do not. For terrestrial precipitation, we therefore used the

18 monthly gridded precipitation product from the Global

Precipitation Climatology Centre (GPCC) (Becker et al.

2013). The GPCC grid spans 1891–2016, and is derived from

rain gauge measurements at over 116 000 stations. To maintain

consistency, we used GPCC for all calculations requiring

precipitation amount information; the precipitation data in

the GNIP/ANSTO datasets and GPCC are mostly similar

(supplemental Fig. 2). For calculation of amount-weighted

annual-mean d18OP, we used the GPCC grid point closest to

each water isotope observation station. For d18OP records

extending past 2016, we used the monthly precipitation

amount measurements available in the GNIP/ANSTO datasets.

To visualize precipitation patterns over the oceans, we used the

shorter (1979 to the present) Climate Prediction Centre (CPC)

Merged Analysis of Precipitation product (CMAP), which is

derived from satellite and rain gauge observations and therefore

has global coverage (Xie and Arkin 1997).

Historical sea level pressure (SLP) data are from the Hadley

Centre Sea Level Pressure dataset (HadSLP2r), available at 58
resolution spanning 1850 to the present (Allan and Ansell

2006). Historical sea surface temperature (SST) data are from

theNOAAExtendedReconstructed Sea Surface Temperature

V5 (ERSSTv5) dataset, which spans 1854 to the present, on a

28 grid (Huang et al. 2017). Historical land surface temperature

(LST) data are from the Berkeley Earth surface temperature

dataset, available at 18 resolution spanning 1850 to present

(Rohde and Hausfather 2020). We obtained the zonal (u) and

meridional (y) wind fields at 200, 850, and 1000 hPa from the

ERA5 reanalysis (Copernicus Climate Change Service (C3S)

2017). At the time we performed our analyses, monthly

observations were available at 0.258 resolution, spanning

1979–2018. To compare the ERA5 surface wind field with

observations, we also obtained the u and y components of

10-mwind from theWave andAnemometer-based Sea Surface

Wind (WASWind) dataset, which spans 1950–2009, on a 48 grid
(Tokinaga 2012).

c. Climate model data

We investigated the relationship between d18OP and various

other climate variables in the isotope-enabled LastMillennium

Ensemble (iLME; Stevenson et al. 2019; Brady et al. 2019). The

iLME is a set of eight fully coupled simulations run using the

isotope-enabled Community Earth System Model version 1

(iCESM; Brady et al. 2019), which tracks water isotopologues

and their fractionation through the climate system. Simulations

extend from 850 to 2005 CE at a nominal horizontal resolution

of 18 (ocean) or 28 (atmosphere/land), and include either all an-

thropogenic and natural external forcing factors (‘‘full-forcing’’

simulations) or only one external forcing factor (‘‘single-forcing’’

simulations). In this paper we only use the three full-forcing

simulations, as they provide the most direct comparison with

observations. Here, d18OP simulated by iCESM generally

compares well with d18OP from the GNIP (Brady et al. 2019;

Nusbaumer et al. 2017).
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d. Climate indices

1) INDICES FOR THE STRENGTH OF THE PWC

We calculated a PWC index using data from HadSLP2r,

based on the SLP gradient along the equatorial Pacific Ocean

(Vecchi et al. 2006). The SLP gradient is defined as the dif-

ference between the area-mean SLP anomalies over the

central-eastern Pacific Ocean (1608–808W, 58S–58N) and the

western Pacific/eastern Indian Oceans (808–1608E, 58S–58N).

This gradient is related to the strength of the PWC (Vecchi

et al. 2006), particularly as a reliable proxy for the intensity of

equatorial Pacific zonal winds (Clarke and Lebedev 1996) and

has been used in many other studies of the PWC (e.g., Chung

et al. 2019; Kang et al. 2020; Misios et al. 2019; DiNezio et al.

2013; Hou et al. 2018; Yim et al. 2017; Tian and Jiang 2020).

The DSLP index is the anomaly in the SLP gradient relative to

the monthly climatology for 1960–2019. Positive (negative)

DSLP values represent an increased (decreased) zonal pressure

gradient, and hence stronger (weaker) PWC.

We tested the sensitivity of our analyses to our choice of

DSLP as a PWC proxy by repeating several analyses using two

other indices for equatorial Pacific atmospheric variability:

1) the Southern Oscillation index (SOI), and 2) PWCu_winds, an

index based on surface zonal winds above the equatorial Pacific

Ocean (Chung et al. 2019). The SOI is the standardized

anomaly of the SLP difference between Tahiti and Darwin

(Troup 1965). The PWCu_winds index is the surface zonal wind

anomaly at 1808–1508W, 68S–68N, where positive (negative)

values represent anomalously westerly (easterly) winds,

and hence weaker (stronger) PWC (Chung et al. 2019).

FIG. 1. Spatial and temporal distribution of monthly d18OP observations at stations with at least two years

of data coverage. (a) The temporal availability from each station, arranged by station latitude and colored

by station longitude. (b) The total number of stations in each 108 latitudinal bin, separated by station ele-

vation. (c) The global distribution of stations, colored by the total range in d18OP values recorded at each

station.
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We calculated the PWCu_winds index using both WASWind

and the 1000-hPa (nearest surface) zonal wind field from

ERA5; in the interval of overlap the two indices are very

similar in terms of interannual variability and trends (not

shown). We therefore used the longer ERA5-based PWCu_

winds index. All three PWC indices (DSLP, SOI, PWCu_winds)

are highly correlated (supplemental Fig. 3).

2) OTHER CLIMATE INDICES

We used the Niño-3.4 and ENSO Modoki indices to inves-

tigate the influence of oceanic conditions (ENSO) as opposed

to atmospheric processes on global d18OP values. The Niño-3.4
index is the SST anomaly in the central equatorial Pacific

Ocean (1708–1208W, 58S–58N). The ENSO Modoki index is

based on SST anomalies in three boxes in the Pacific Ocean,

and is more sensitive to central Pacific El Niño events than the

Niño-3.4 index (Ashok et al. 2007). We used both indices be-

cause SST anomalies associated with ENSO events may be

centered in different parts of the Pacific (central vs eastern

Pacific), and these different centers of action incite different

atmospheric responses. By considering both indices we ac-

count for at least some of the potential influence of ENSO

diversity on global d18OP patterns. To investigate the possible

influence of extra-Pacific and extratropical climate modes

on global d18OP values, we also use the Indian Ocean dipole

[the dipole mode index (DMI) as calculated by NOAA], the

southern annular mode (SAM, as calculated by NOAA), and

the Pacific meridional mode (PMM; Chiang andVimont 2004),

as well as global mean surface temperature (GMST; Lenssen

et al. 2019; GISTEMP Team 2020).

e. Calculating annual mean values from monthly data

For all analyses using annually averaged values, we report

results in ‘‘tropical years,’’ where each year starts in May of

calendar year 1 and finishes in April of calendar year 2. For

example, the tropical year starting inMay 1991 and finishing in

April 1992 is designated tropical year 1991. This allows for use

of annual averages while still capturing the growth, peak, and

decay of El Niño/La Niña events, which are relevant to the PWC

on interannual time scales. To calculate precipitation-weighted

annual mean d18OP values, monthly precipitation d18OP values

were weighted by that month’s precipitation amount (from

the nearest GPCC grid point) before calculating annual

mean d18OP.

f. Determining site-level relationships of d18OP and
precipitation with climate modes

We computed the Pearson correlation coefficient for

precipitation-weighted annual mean d18OP with annual

meanDSLP, at individual stations. For this analysis, we used all
stations with five or more years of continuous data (supple-

mental Fig. 1). We performed the same analysis on the GPCC

precipitation field (starting in 1960 to match the d18OP data), as

well as GPCC data downsampled to exactly match the spatial

and temporal coverage of the d18OP data (for easier visual

comparison). To test the sensitivity of the correlation patterns

to interannual versus subannual variability, we repeated this

analysis, but for each site calculating the correlation ofmonthly

(as opposed to annual) DSLP with monthly d18OP anomalies at

all stations with two or more years of continuous data.

g. Spatial d18OP anomalies associated with strong and weak
PWC years

1) SPATIAL d18OP ANOMALIES IN

OBSERVATIONAL DATA

We created anomaly maps for years in which the PWC was

anomalously strong or weak, to determine whether there is a

distinct d18OP spatial fingerprint for DSLP anomalies, as has

been observed with other climate modes (Vuille and Werner

2005; Vuille et al. 2005; Cai et al. 2017), and for ENSO-related

atmospheric water vapor stable isotopic anomalies (Dee et al.

2018; Sutanto et al. 2015). We defined events similarly to the

NOAA operational El Niño and La Niña event definition:

anomalous years (in tropical years as defined in section 2e) are

those in which a 3-month moving average of monthly DSLP
exceeds one standard deviation from the 1960–2019 mean, for

five or more consecutive months. For all d18OP stations with

five or more years of continuous data, we calculated amount-

weighted annual means, and then calculated annual anomalies

relative to the site long-term mean. For each strong or weak

PWC year, we show anomalies for sites that have data in that

year. For comparison, we also calculated the SST anomalies in

the same years.

2) SPATIAL d18OP ANOMALIES IN ICESM DATA

We replicated the analysis described in section 2g(1) using

d18OP data from the three iLME full-forcing simulations. We

determined ‘‘strong’’ and ‘‘weak’’ PWC years exactly as in

section 2g(1), starting in model year 1960. Given the complete

spatial and temporal coverage of the model output, rather than

show d18OP anomaly maps for individual years as is necessary

for the observational data, we calculated composite d18OP

anomalies for each case (one composite each for anomalously

positive and negative DSLP). To highlight areas where the

d18OP anomaly is consistently of the same sign, we stippled grid

cells where $90% of years agree on the sign of the anomaly

(i.e., whether d18OP in that grid cell is consistently positive or

negative relative to the long-term mean). We also masked

areas where fewer than 66% of grid cells agree on the direction

of the d18OP anomaly in each case. To visualize the corre-

sponding atmospheric anomalies, we repeated this analysis

using the iLME SLP fields.

h. Influences on interannual to decadal spatiotemporal
variability in d18OP

1) CALCULATING COMPOSITE d18OP RECORDS

We are particularly interested in the spatiotemporal re-

sponse of d18OP to changes in the strength of the PWC on in-

terannual to decadal time scales. But there is a limit to the

information that can be gleaned from short records covering

disparate time intervals (e.g., Fig. 1). We therefore adapted the

‘‘dynamic compositing’’ method of Kaufman et al. (2020) and

Falster et al. (2019)—developed for discontinuous paleo-

climate time series—to synthesize the global monthly d18OP

data into a smaller number of long, regional d18OP composites.
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Dynamic compositing is an iterative compositing method that

preserves the data structure within the composite (including

trends, if any). Temporal chunks from each original time series

are randomly selected and then used to adjust the d18OP mean

and variance of that time series to match the mean and var-

iance of other records in that composite that have data in the

same time interval. The mean of each d18OP time series is

then iteratively adjusted to minimize the mean offset to all

other records in the composite (again, that have data in the

same time interval). Using this method, time series that only

cover part of the full interval, or have no overlap with some

other time series, are ‘‘slotted’’ into the composite without

causing spurious jumps. The method can therefore produce

robust composite records, while including some time series

that do not overlap. The compositing process is repeated

many times (using different random chunks to dictate time

series alignment) to produce composite ensembles where the

median time series preserves both the trend and interannual

variability.

To determine which station data should be composited

together, we used k-means clustering (k 5 50) to group sta-

tions based on geographic proximity, precipitation season-

ality, and annual-mean d18OP. We quantified precipitation

seasonality using the equation below, which measures how

much the seasonal cycle of precipitation deviates from a

uniform distribution:

Ppt
seasonality

5
1

MAP
3 �

January

December

�
�
�
�
Ppt

Each_Month
2

MAP

12

�
�
�
�
,

where PptEach_Month refers to the mean precipitation amount

in each month, and MAP is the mean annual precipitation at

that site. We started with 50 clusters as this qualitatively

balanced, 1) separating stations with different climatic and

geographic characteristics (e.g., relationship with regional

topography, distance from the coast) and 2) retaining suffi-

cient stations in each cluster to produce composite records

with consistent temporal coverage. After performing the

clustering, we manually checked each cluster for records in

which the annual-mean d18OP or geography was obviously

dissimilar, and further split clusters where necessary, result-

ing in 52 clusters. On average, sites within a cluster are 430 km

from the cluster centroid. Using the dynamic compositing, for

each cluster we calculated 50 composite monthly d18OP rec-

ords, and took the median of that ensemble. We then took

the mean of all GPCC grid cells corresponding to the d18OP

stations in that cluster and calculated a single amount-weighted

annual mean d18OP record for each regional composite. We

truncated the composite records to 1982–2015 inclusive

(tropical years); this interval struck a balance between a

sufficiently long time interval for investigating interannual

to decadal variability and retaining as many records as

possible with good temporal coverage (described in more

detail in the following section).

2) GLOBAL d18OP PRINCIPAL COMPONENT ANALYSIS

From a group of spatially dispersed records, the leading

principal components (PCs) reflect information common to

the records, relegating noise and site-specific climatic variability

to subsequent PCs (Braganza et al. 2009). We therefore per-

formed principal component analysis (PCA) on a subset of the

centered and scaled regional d18OP composites. We used the

data interpolation empirical orthogonal function (DINEOF)

approach (Beckers et al. 2006), which allows robust computa-

tion of PCA on data with some missing values. Interpolation

skill decreases with increasing number of missing values, so we

first filtered the regional composite d18OP records to retain

only the 16 records (from the original 52) with temporal cov-

erage greater than 80%. The sign of a PC is arbitrary, so for

clarity of interpretation we aligned PC1 to be positively cor-

related with DSLP. For comparison, we repeated this analysis

using precipitation amount, downsampled to match the spatial

coverage of the d18OP data (i.e., from the GPCC grid cells

closest to the locations of records contributing to each of the

16 regional composites).

We calculated correlations of the composite d18OP and

precipitation PC1s with DSLP. To test the robustness of the

results to our choice of PWC index, we also calculated corre-

lations with the SOI and PWCu_winds. To examine the role of

tropical Pacific oceanic variability, we assessed the relationship

of the d18OP and precipitation PC1s with the Niño-3.4 and

ENSO Modoki indices. We used the DMI, the SAM index,

the PMM index, and GMST to assess the possible influence of

extra-Pacific and extratropical climate modes.

Finally, to determine the influence of individual regional

composites on the relationship of the composite d18OP PC1

with DSLP, we calculated PC1 of all possible subsets of

the 16 regional composites (i.e., using all possible combinations

of 2–15 of the d18OP composites). We then calculated the

correlations of each of those composite d18OP PC1s withDSLP.

i. Influences on interannual to decadal spatiotemporal
variability in d18OP in iCESM

To test 1) whether our results are biased by the dynamic

compositing described in section 2h(1), 2) whether our results

(interpreted in terms of the global water cycle) are biased by

the locations of available observational data, and 3) whether

d18OP–PWC–climate relationships are similar in climate

model simulations and observations, we performed our data

handling steps and subsequent analyses on d18OP data from the

iLME. We report the mean results from the three full-forcing

simulations.

The spatiotemporally complete nature of iCESM output

allows us to use the simulated d18OP fields to isolate the effects

of sampling biases. Therefore, to test questions 1 and 2 above,

we performed PCAon three d18OP subsets from the iLME full-

forcing simulations, each derived using a different subsampling

method (described below). As the iLME simulations finish in

calendar year 2005, we performed these analyses for 1971–2004

(tropical years). First, we calculated regional composites from

iCESM data as described in section 2h(1) (including the

dynamic compositing), using d18OP from the grid cells corre-

sponding to each station, subsampled to exactly the same

temporal coverage as each component record; this is denoted

the ‘‘dynamic composite’’ subset. Second, for each cluster we

took the mean of the grid cells corresponding to sites within
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that cluster (i.e., spatially but not temporally subsampled); this

is denoted the ‘‘cluster means’’ subset. Third, we simply used

the single iLME grid cell closest to the cluster centroid of each

regional composite; this is denoted the ‘‘cluster centroids’’

subset. We also calculated PC1 of the full d18OP field—to en-

sure equal area weighting, the gridded data were weighted by

the square root of the cosine of latitude. This provides insight

into whether site-level differences, temporal gappiness, or the

compositing method cause artifacts in the regional composite

d18OP PC1, relative to the true global d18OP PC1. We calcu-

lated DSLP as described in section 2d(1), using the iLME

SLP data.

3. Results

a. Correlations of site-level d18OP with DSLP

On the western side of the Pacific Ocean, site-level d18OP

in the tropics and subtropics is negatively correlated with

DSLP, on both monthly and annual time scales (Fig. 2a and

supplemental Fig. 4a); precipitation amount in the same

areas is mostly positively correlated with DSLP, except some

of eastern China (Fig. 2b and supplemental Fig. 4b). This

negative d18OP/positive precipitation correlation pattern is

also the case for the northern tip of South America. The

opposite is broadly true for Japan, southern South America,

and the Galápagos Islands (equatorial eastern Pacific). In

central to western North America, d18OP is mostly nega-

tively correlated with DSLP; in contrast to this, the precip-

itation correlations vary from negative in the subtropics to

positive farther north. Across Europe, correlations of local

d18OP with DSLP are more often positive than negative,

although the spatial distribution of significant relationships

is not particularly coherent. Note that d18OP and precipitation

in most of the rest of North and South America, Greenland,

Africa, and western Europe are not significantly correlated

with DSLP on annual or monthly time scales. Correlations of

precipitation with DSLP are generally weaker than those of

d18OP in the same locations.

b. Isotopic fingerprint of individual anomalously strong and

weak PWC years

1) ISOTOPIC FINGERPRINT OF STRONG AND WEAK PWC
IN OBSERVATIONAL DATA

All six years with anomalously negative DSLP (weak PWC)

coincide with El Niño events; five of the six years with anom-

alously positive DSLP (strong PWC) coincide with La Niña
events (2013/14 being the exception) (Fig. 3a). However, there

is no consistent d18OP spatial fingerprint associated with

individual years of anomalously positive or negative DSLP
(supplemental Figs. 5 and 6). This suggests that—as is the

case for El Niño and La Niña events (Capotondi et al.

2015)—no two anomalously weak or strong PWC years have

an identical impact on global hydroclimate. The influence of

the PWC is transmitted from the tropical Pacific by a wide

variety of teleconnections, many of which are influenced by

other modes of climate variability (Alexander et al. 2002), as

well as by long-term climate trends and stochastically driven

internal atmospheric variability (Stevenson et al. 2015). Most

anomalous PWC years overlap with El Niño or La Niña
events, and global teleconnections—including the atmo-

spheric bridge—during ENSO events are known to be both

nonlinear and nonstationary (Batehup et al. 2015; Coats

et al. 2013).

2) ISOTOPIC FINGERPRINT OF STRONG AND WEAK PWC
IN ICESM

Similar to in observations, there is little consistency in the

spatial d18OP expression of individual anomalously positive or

negative DSLP years in the iLME (supplemental Figs. 7a,b).

This is particularly the case over land (i.e., where observa-

tional data are collected); the signal over the Pacific Ocean

is more coherent. Regarding terrestrial d18OP specifically,

FIG. 2. Pearson correlation coefficients showing the strength and

direction of the relationship between (a) precipitation-weighted

annual-mean d18OP values and DSLP and (b) annual-mean pre-

cipitation andDSLP. In all cases, annual means are calculated from

May to April. Note that (a) only includes sites with five or more

years of data coverage; (b) shows correlations for the full GPCC

precipitation field (1960–2016; shading), as well as precipitation

subsampled to exactly match the spatial and temporal resolution of

the d18OP station data (points). A black border around a point

denotes a significant correlation (p , 0.05).
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anomalies over parts of India, China, and north central

Africa are consistently of the same sign (stippling in sup-

plemental Figs. 7a,b). Such consistency suggests that PWC

teleconnections to these regions during years of anomalous

DSLP may be relatively stable, although this warrants further

investigation. SLP anomalies are also relatively inconsistent

outside the tropical Pacific Ocean, further suggesting that years

of anomalously positive or negative DSLP are associated with

nonstationary atmospheric teleconnections in the iCESMaswell

as in observations.

c. Spatiotemporal variability in d18OP

1) PCA PERFORMED ON OBSERVATIONAL DATA

The leading principal component of the 16 regional d18OP

composites from in situ data (global d18OP PC1) is strongly

linearly correlated with DSLP (r 5 0.74, p , 0.05) (Fig. 4;

shown alongside the corresponding empirical orthogonal

function, global d18OP EOF1). Global d18OP PC1 is more

strongly correlated with the strength of the PWC (whether

from DSLP, PWCu_winds, or the SOI) than with any other

index of climate variability, including SST-based ENSO

metrics (Niño-3.4 and the El Niño Modoki index), and in-

dices of variability outside the tropics (the PMM, the DMI,

and the SAM) (Table 1). This demonstrates that on inter-

annual to decadal time scales globally, d18OP predomi-

nantly responds to atmospheric circulation in the tropical

Pacific. Most regional d18OP composites map negatively

onto global d18OP PC1 (i.e., d18OP decreases as DSLP

increases; blue-colored points in Fig. 4a); for the remainder

of the composites, d18OP increases as DSLP increases. This

is largely consistent with the DSLP correlations with d18OP

at the individual sites contributing to the regional com-

posites (Fig. 2a).

The correlation pattern of global d18OP PC1 with surface

temperature anomalies is similar to that of DSLP with surface

temperature anomalies (Fig. 5b compared with Fig. 3d),

with significant correlations concentrated in the Pacific and

Southern Oceans. The main differences are a relatively strong

positive correlation with SST in the mid- to North Atlantic

Ocean, negative correlations with SST in the Southern Ocean

south of Australia, and stronger correlations with LST across

southern mainland Asia and northern Africa. The correlation

pattern of global d18OP PC1 with SLP anomalies is strongly

reminiscent of the DSLP–SLP correlation pattern (Fig. 5a

compared with Fig. 3b), particularly in the low latitudes of

the Indian and Pacific Oceans. The correlation pattern of ter-

restrial precipitation amount with global d18OP PC1 is virtually

indistinguishable from that between DSLP and precipitation

amount (Fig. 5c compared with Fig. 3b): an increase in global

d18OP PC1 is correlated with positive precipitation anomalies

over Australia, the Maritime Continent, and northwestern

South America; and with negative precipitation anomalies in

southwesternNorthAmerica.Global d18OPPC1 is also associated

with negative precipitation anomalies over the central Pacific and

western Indian Oceans, and positive precipitation anomalies over

the western Pacific, in the Pacific sector of the Southern Ocean,

and the eastern Pacific just south of the equator.

FIG. 3. (a) Monthly anomalies in the equatorial Indo-Pacific SLP gradient (DSLP), calculated as described in

section 2d(1), from 1960 (the first year in which we have d18OP data). Blue (red) lines denote years with anoma-

lously positive (negative) DSLP [defined as per section 2g(1)]. The dashed black line shows one standard deviation

inDSLP. Red and blue windows denote El Niño and LaNiña years, respectively [defined as per section 2g(1)]. Also

shown are the correlation of annual-mean (b) SLP, (c) terrestrial precipitation, (d) land and sea surface temper-

ature (LST and SST) anomalies with annual-mean DSLP, for 1960–2019 (tropical years). Boxes on the three maps

show the regions used to calculate theDSLP index. Stippling denotes a significant correlation (p, 0.05), controlling

for false discovery rate (FDR; Benjamini and Hochberg 1995).

8586 JOURNAL OF CL IMATE VOLUME 34

Unauthenticated | Downloaded 06/30/22 10:04 PM UTC



Tropical locations where a negative loading in global d18OP

EOF1 (black circles in Fig. 5c) co-occurs with a positive cor-

relation between precipitation amount and global d18OP PC1

(and vice versa) likely reflect a PWC-driven amount effect—these

being northern Australia, the Maritime Continent, and northern

South America. Elsewhere—particularly in North America—the

spatial loading pattern of global d18OP EOF1 does not exactly

follow the direction of precipitation anomalies, suggesting that

the PWC imprint on d18OP instead reflects changes in moisture

source regions and atmospheric transport that affect d18OP

without necessarily producing local precipitation anomalies.

Upper-level and near-surface wind anomalies associated

with global d18OP PC1 show coherent circulation changes

(Figs. 5d,e). An increase in global d18OP PC1 is associated

with strengthening of the trade winds over the Pacific Ocean

and westerly anomalies in the northern Indian Ocean, con-

sistent with a strengthening of the PWC (Fig. 5d). This is also

evident in the 200-hPa wind anomalies, with strengthened

westerlies aloft over the equatorial Pacific (Fig. 5e). In both the

upper and lower troposphere, an increase in global d18OP PC1

is associated with zonally asymmetric strengthening of the

westerly wind belt in the Southern Hemisphere, particularly in

the Pacific sector of the Southern Ocean. The wind anomaly

fields also show strengthened westerlies across the northern

United States, and weakened flow across southern North

America. Global d18OP PC1 is not associated with robust cir-

culation anomalies over most of northern Europe, northern

Africa, and the North Atlantic, explaining the lack of coherent

site-level d18OP–DSLP correlations in these regions (Fig. 2a).

TABLE 1. Pearson correlation coefficients showing the strength and

direction of the relationship between global d18OP PC1 and indices for

tropical Pacific atmospheric variability, tropical Pacific oceanic vari-

ability, and extra-Pacific or extratropical variability. For comparison,

correlations of each index with the corresponding global precipitation

PC1 are shown underneath in parentheses. In both cases, an asterisk

denotes a significant correlation (p , 0.05). PWC 5 Pacific Walker

circulation, SOI5 SouthernOscillation index, EMI5ENSOModoki

index, PMM 5 Pacific meridional mode, SAM 5 southern annular

mode,DMI5 dipolemode index.All indices are defined in section 2d.

Tropical Pacific

atmospheric

variability

PWC (DSLP) SOI PWC (u winds)

0.74* 0.7* 20.64*

(0.43*) (0.39*) (20.29)

Tropical Pacific

oceanic

variability

Niño-3.4 EMI

20.58* 20.44*

(20.36*) (20.43*)

Variability outside

the tropical Pacific

PMM SAM DMI

20.33 0.24 20.03

(20.36*) (0.29) (0.06)

FIG. 4. (a) Larger points show the leading empirical orthogonal function from the 16 long

regional d18OP composites (global d18OPEOF1), i.e., the spatial loadings on the first principal

component from the d18OP composites (global d18OP PC1). The smaller gray points show

individual sites that contributed to the 16 regional composites. (b) The red line in shows

global d18OP PC1, i.e., the time series associated with global d18OP EOF1. Global d18OP PC1

explains 56% of the total variance in the dataset. The black line in (b) shows annual-mean

(May–April)DSLP. The correlation between global d18OP PC1 and DSLP over this interval is

0.74 i.e., DSLP explains 55% of the variance in global d18OP PC1 (p , 0.05).
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2) INFLUENCE OF INDIVIDUAL d18OP COMPOSITES ON

THE RELATIONSHIP BETWEEN GLOBAL d18OP PC1
AND DSLP

Themedian correlation ofDSLPwith PC1 from subsets of the 16

regional d18OP composites decreases as fewer composites are in-

cluded in thePCA(supplemental Fig. 8).However, the consistently

high maximum correlations for each group of subsets (i.e., those

containing the same number of composites) suggest that there are

regions where d18OP is particularly strongly correlated with DSLP;
this is reflected in the global d18OP EOF1, where sites close to the

Pacific—particularly on thewestern rim—load particularly strongly

onto global d18OP PC1 (darkest blue points in Fig. 4a).

3) EFFECTS OF DYNAMIC COMPOSITING AND STATION

DISTRIBUTION ON PCA

The first PCs of d18OP variability in the full iLME d18OP field

and the three iLME subsets—dynamic composites, cluster

means, and cluster centroids—are similar (Fig. 6; Table 2). This

suggests 1) that the compositing method used on the obser-

vational data does not strongly bias the results, and 2) that the

16 regional composites from the observational data capture a

realistic approximation of spatiotemporal changes in global

d18OP, at least as simulated by iCESM.

4) PCA PERFORMED ON ILME d18OP DATA

Giving confidence to results presented sections 3c(1) and

3c(3), we see broadly similar d18OP–DSLP relationships in the

iLME to the observations, with strong correlations between

d18OP PC1 and DSLP for the full d18OP field as well as the

subsets (Table 2). The d18OP EOF1 from the iLME d18OP

dynamic composites (d18OP EOF1iLME-dyncomp) is similar to

global d18OPEOF1 around the Pacific margin (points in Fig. 6c

compared with points in Fig. 6d), with some differences in

Europe and northern Africa where loadings are weaker. The

strength of the correlation of the d18OP PC1iLME-dyncomp with

DSLP (0.62) is also similar to the strength of the correlation

FIG. 5. Pearson correlation coefficients showing the strength and direction of the relationship between global d18OP

PC1 and annual-mean (May–April) anomalies in (a) SLP, (b) surface temperature, (c) precipitation, (d) 850-hPawinds,

and (e) 200-hPa winds, for 1982–2015 (tropical years). Points in (a)–(c) show the location of the regional composites

whose variability is summarized by global d18OP PC1; a black circle denotes a negative loading on global d18OP PC1

(i.e., blue points in Fig. 4a), and awhite circle denotes a positive loading on global d18OP PC1 (i.e., red points in Fig. 4a).

Stippling denotes a significant correlation (p , 0.05), controlling for FDR (Benjamini and Hochberg 1995).
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between global d18OP PC1 and DSLP from observations

(Table 2). The correlation of DSLP with the full-field, cluster

centroid, and cluster mean d18OPPC1s is stronger thanwith the

dynamic composite d18OP PC1. This suggests that the true

imprint of the PWC in global d18OPmay be even stronger than

seen in our composited station data.

The most obvious difference between the iCESM and

observation-based analyses is in the DSLP index itself. In

observations,DSLP ismoderately strongly anticorrelated with the

Niño-3.4 index (20.78; supplemental Fig. 3), and global d18OP

PC1 is more strongly correlated with DSLP than the Niño-3.4
index (Table 1). In the iLME, DSLP is almost perfectly anti-

correlated with theNiño-3.4 index (20.98). This is consistent with

previous work indicating an overly strong ENSO amplitude in

CESM1 (Otto-Bliesner et al. 2016; Stevenson et al. 2016) and an

overly activeENSO influence onother oceanbasins in the iCESM

(Midhun et al. 2021), although it also likely reflects noise inherent

to observations-based data. Accordingly, the global d18OP PC1 is

slightly more strongly correlated with Niño-3.4 in iLME than in

observations (r520.6 for the ‘‘dynamic composite’’ subset,

which is most comparable with the observation-based analysis).

4. Discussion

a. Relationship between global d18OP patterns and the PWC

There is a clear imprint of the PWC in global d18OP over

the analysis interval (1982–2015) (Figs. 4 and 5; Table 1).

This result is robust to our choice of PWC index, with similar

results when using SLP gradients (DSLP and the SOI) or

equatorial Pacific zonal wind anomalies as proxies for the

strength of the PWC (Table 1). Even though global d18OP PC1

did not a priori target the PWC, it reproduces the surface

temperature, SLP, and precipitation anomalies associated with

changes in the strength of the PWC (Fig. 5 compared with

Fig. 3). Additionally, out of all possible isotope–climate mode

relationships tested, global d18OP PC1 is most strongly corre-

lated with DSLP (Table 1). Although there is large variation in

FIG. 6. (a)–(c) The leading d18OP empirical orthogonal function (EOF1) for the three iLME subsets (large points;

calculated as described in section 2i), superimposed on EOF1 of the full iLME d18OP field (d18OP EOF1iLME).

Smaller gray points show the location of grid cells contributing to the iLME subsets (equivalent to site locations

shown in Fig. 4a). (d) For ease of comparison, global d18OP EOF1 from the observational data (Fig. 4a) is shown,

similarly superimposed on d18OPEOF1iLME. Scale bars adjacent to eachmap correspond to the points, showing the

loading of each subset on the associated PC1. The scale bar below the four panels corresponds to d18OPEOF1iLME.

The titles above each map refer to the EOF point markers superimposed on d18OP EOF1iLME. All maps show the

mean of the three full-forcing simulations.

TABLE 2. The first column shows the correlation between PC1 of

each iLME subset and PC1 of the full iLME d18OP field (d18OP

PC1iLME). The second column shows the correlation of each PC1

with annual-mean (May–April) DSLP. All correlation coefficients

are the mean of the three full-forcing simulations. For compari-

son, the equivalent correlation coefficient from the observational

data is provided in the last row (in italics). All correlations sig-

nificant (p , 0.05). NA 5 not applicable.

Subset

Correlation with

full field PC1

Correlation

with DSLP

Full field 1 0.96

Cluster centroids 0.81 0.78

Cluster means 0.8 0.78

Dynamic composite 0.61 0.62

Observations NA 0.74
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d18OP anomaly patterns associated with single years of

anomalously strong or weak PWC (supplemental Figs. 5–7),

the close relationship between global d18OP PC1 and DSLP
suggests a strong overall influence of the PWC on global cir-

culation and associated spatiotemporal d18OP patterns.

Notably, global d18OP PC1 has a stronger relationship to

atmospheric than oceanic variability in the equatorial Pacific

(cf. top andmiddle rows of Table 1). This is not entirely surprising

given that SST impacts must be transmitted to d18OP—both

within the Pacific and in more remote teleconnected regions—via

atmospheric processes including evaporation, moisture ad-

vection from the source, changes in atmospheric stability, and

moisture transport aloft. The d18O of vapor in air parcels is

further modified by atmospheric processes on multiple scales

before final condensation and precipitation (Galewsky et al.

2016; Bowen et al. 2019). Changes in atmospheric circulation

therefore have a more direct relationship with d18OP, even

when they are driven in part by SST variability, for example in

the case of ENSO.

Also of interest is that global precipitation PC1 has a weaker

correlation with DSLP than global d18OP PC1 (Table 1; cor-

relation coefficients in parentheses). And unlike d18OP, the

strength of correlations between global precipitation PC1 and

the PWC is similar to correlations with the indices for tropical

Pacific oceanic variability (i.e., ENSO). This suggests that

while global annual-mean precipitation is influenced compa-

rably by the SST and atmospheric circulation expressions of

tropical Pacific climate variability, the isotopic composition of

that precipitation responds more strongly to atmospheric cir-

culation. In other words, while the PWC was already known

to influence atmospheric circulation, our work demonstrates

that d18OP anomalies are more sensitive to this influence than

precipitation anomalies.

b. Proposed mechanisms for the PWC imprint in
global d18OP

The strong relationship between global d18OP PC1 and

DSLP probably arises through a combination of circulation

features, including but not limited to ENSO and associated

changes in the strength of atmospheric overturning circulation

in the Pacific. These processes influence d18OP around the

Pacific and in teleconnected regions, via changes in precipita-

tion amount, precipitation type, precipitation seasonality,

storm organization and intensity, and moisture source and

transport path (Konecky et al. 2019; Galewsky et al. 2016;

Bowen et al. 2019). For example, over the Maritime Continent

and northern Australia, an increase in global d18OP PC1 is

associated with increased precipitation but decreased d18OP

(Fig. 5c). This is a region where ENSO-related large-scale at-

mospheric circulation changes produce a clear amount effect

(Suwarman et al. 2017; Kurita et al. 2009; Conroy et al. 2013).

Additionally, a stronger PWC is associated with a southward

shift of the southern margin of the intertropical convergence

zone over the Maritime Continent (Freitas et al. 2017), which

increases precipitation over northern Australia and decreases

d18OP via an amount effect, and also increases the incidence

of tropical cyclones, which typically have lower d18OP than

noncyclonic rainfall (Hollins et al. 2018; Haig et al. 2014;

Gedzelman et al. 2003; Lawrence and Gedzelman 1996).

Likewise, the PWC influences the strength of the Australian

monsoon, which in turn affects both tropical cyclone genesis

and precipitation amounts in northern Australia (McBride and

Keenan 1982). In short, d18OP variability in this region reflects

information about multiple large-scale atmospheric and oce-

anic processes with a strong connection to the PWC (Conroy

et al. 2013; Kurita et al. 2009).

The multiple complementary mechanisms by which the

PWC can influence d18OP are also evident in other regions. For

example, in southeastern China and Southeast Asia, interan-

nual variability in d18OP is negatively correlated with the PWC,

via dynamical mechanisms including changes in convection

intensity (Cai and Tian 2016b; Ruan et al. 2019; Cai et al. 2017)

and changes in moisture source region and transport distance

(Sun et al. 2018; Tan 2014; Ishizaki et al. 2012;Wolf et al. 2020),

and via an amount effect (Ichiyanagi and Yamanaka 2005).

While these are only two regional examples, there are clearly

many mechanisms by which PWC strength could contribute

to a single local loading pattern in our global d18OP EOF1.

Theoretical and site-level studies outline many possible

mechanisms for the observed PWC imprint in extratropical

d18OP—including locations without a strong amount effect.

For instance, over North America, precipitation and wind

anomalies associated with an increase in global d18OP PC1

suggest a northward shift of the climatological westerlies

(Fig. 5). This is similar to the relationship of the westerlies with

ENSO, where during La Niña events a high pressure anomaly

develops over the North Pacific, steering the storm track

northward and leading to reduced precipitation across south-

ern North America (Ellis and Barton 2012; Johnson et al. 2020;

Liu and Alexander 2007), and also resulting in a larger pro-

portion of precipitation over central North America sourced

from the Pacific Ocean (Berkelhammer et al. 2012). d18OP in

southwestern North America depends in part on the moisture

source region, where precipitation coming from easterly or

proximal southwesterly sources generally has higher d18OP,

while precipitation from westerly sources (the North Pacific)

generally has lower d18OP (Hu and Dominguez 2015; Liu

et al. 2014; Friedman et al. 1992; Berkelhammer et al. 2012;

McCabe-Glynn et al. 2013). These mechanisms likely all con-

tribute to the North American d18OP loading pattern. The

PWC imprint in d18OP in western Europe, northwestern

Africa, and southern South America is relatively weak (e.g.,

weaker loadings of these sites on global d18OP PC1 in Fig. 4a).

Temperature and/or precipitation anomalies in these regions

have been linked to the tropical Pacific via teleconnections (e.g.,

Rimbu et al. 2003; Nicholson and Selato 2000; Nicholson and

Kim 1997; Chiang and Sobel 2002; Lin and Qian 2019; Oehrlein

et al. 2019; Shaman 2014; Brönnimann et al. 2006; Rutllant and

Fuenzalida 2007; Tedeschi et al. 2013;Aceituno 1988; Strub et al.

2019), although relationships between the PWC and climate in

these remote regions are likely nonlinear (Wu and Hsieh 2004;

Domeisen et al. 2019) and nonstationary (Rimbu et al. 2003).

c. d18OP and the PWC in iCESM

PC1 of the subsampled iLME d18OP is similar to PC1 of the

fully sampled d18OP field (Fig. 6; Table 2), particularly in the
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case of the spatially (but not temporally) subsampled data. This

gives confidence that our results are not biased by the location

of the observations, but rather faithfully represent global

d18OP variability. The d18OP response to changes in DSLP in

the iLME is also consistent with observations (Table 2), as are

the precipitation and SLP anomalies associated with global

d18OP PC1 within the iLME (Fig. 7). The similarity of the

d18OP–DSLP relationship in the model and observations sug-

gests that the response of d18OP to changes in the strength of

the PWC is well simulated by iCESM. The d18OP spatial fin-

gerprinting analysis also demonstrates that iCESM accurately

captures the diversity of d18OP anomaly patterns associated

with the most positive and negative DSLP anomalies (supple-

mental Fig. 7 compared with supplemental Figs. 5 and 6). The

iCESM simulations are therefore a useful tool with which to

delve deeper into the dynamical processes linking the PWC

and the global water cycle, and this will be leveraged in

future work.

d. Relationship of global d18OP variability with GMST

Paleoclimate proxy data suggest that on millennial time

scales, d18O of the global meteoric water pool primarily reflects

the thermodynamic component of the global water cycle,

where global d18O increases along with GMST (Falster et al.

2019). However, GMST and global d18OP PC1 are not sig-

nificantly correlated over the interval that we examined

(supplemental Fig. 9). Considering this lack of obvious

GMST influence, combined with the strong imprint of the

PWC in global d18OP, our results suggest that on interannual

to decadal time scales, global d18OP patterns record more

information about regional- to large-scale atmosphere–ocean

dynamics than the global thermodynamic component of the

water cycle.

5. Conclusions

On interannual to decadal time scales, the PWC has a

dominant impact on global spatiotemporal patterns of d18OP

variability. Given that d18OP integrates information from all

parts of the water cycle, we conclude that the regional ex-

pressions of global water cycle variability are linked to changes

in tropical Pacific atmospheric circulation. Hence, while pre-

vious studies demonstrated that the globally averaged water

cycle will intensify with future warming, our results suggest

that uncertainty in future changes in PWC trend and vari-

ability (Plesca et al. 2018) may translate to uncertainty in the

FIG. 7. Regression coefficients showing the structure and direction of the relationship between d18OP PC1

and climatic variables (a),(b) in observations and (c),(d) within iCESM. The d18OP PC1 from observations is

global d18OP PC1 as described in the main text (Fig. 4b), and d18OP PC1 from the iLME is d18OP PC1iLME as

described in the main text, i.e., the first PC of the full iLME d18OP fields. Panels (a) and (c) show the regression

of d18OP PC1 on annual-mean SLP; (b) and (d) show the regression of d18OP PC1 on annual-mean precipi-

tation amount. Stippling denotes a significant relationship (p , 0.05), controlling for FDR (Benjamini and

Hochberg 1995).
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regional-scale hydroclimate response to global warming, even

in areas where PWC teleconnections to precipitation amount

are not as readily apparent.

Regional-scale hydroclimate variability associated with changes

in the strength of the PWC manifests as changes in mois-

ture source and transport path, seasonality, precipitation

type, degree of storm organization, and other dynamical

processes, rather than simply changes in local precipita-

tion amount. Our findings therefore highlight the useful-

ness of d18OP (and by extension, also d2HP) as a single

variable able to characterize changes in the fundamental

processes underlying hydroclimate variability, at a global

scale. The sensitivity of d18OP to many different processes

means that isotope-enabled climate models will continue

to offer more detailed insights into the global water cycle and

its response to climate change (Dee et al. 2018; Nusbaumer

et al. 2017; Nusbaumer and Noone 2018). Additionally,

the clear imprint of the PWC in global d18OP provides

new avenues for exploring PWC variability, both in the

recent past and on longer time scales, via water isotope

proxy data.
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