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Abstract

The lack of biologically relevant protein structures can hinder rational design of small molecules
to target G protein-coupled receptors (GPCRs). While ensemble docking using multiple models
of the protein target is a promising technique for structure-based drug discovery, model clustering
and selection still need further investigations to achieve both high accuracy and efficiency. In this
work, we have developed an original ensemble docking approach, which identifies the most
relevant conformations based on the essential dynamics of the protein pocket. This approach is
applied to the study of small-molecule antagonists for the PAC1 receptor, a class B GPCR and a
regulator of stress. As few as four representative PAC1 models are selected from simulations of
a homology model and then used to screen three million compounds from the ZINC database and
23 experimentally validated compounds for PAC1 targeting. Our essential dynamics ensemble
docking (EDED) approach can effectively reduce the number of false negatives in virtual
screening and improve the accuracy to seek potent compounds. Given the cost and difficulties to
determine membrane protein structures for all the relevant states, our methodology can be useful
for future discovery of small molecules to target more other GPCRs, either with or without
experimental structures.

Key words: Computer Aided Drug Design, PAC1 Receptor, Antagonist, Virtual Screening,
Molecular Dynamics, Principal Component Analysis
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Introduction

Many G protein-coupled receptors (GPCRs) are being investigated as important
therapeutic targets, but the success rate of structure-based drug design (SBDD) for GPCRs
remains to be further improved.’ One of the primary challenges is that the three-dimensional
(3D) structures of most GPCRs have not been fully determined. Even with latest breakthroughs
in protein structure prediction like AlphaFold,* the available structures may not represent the
conformational states needed for accurate SBDD. The receptor (ADCYAP1R1, hereafter referred
to as PAC1R) of the pituitary adenylate cyclase-activating peptide (PACAP), an emerging
therapeutic target for stress-related disorders,*® is a good example. Currently, the full-length
PAC1R structures in the Protein Data Bank (PDB) are short isoforms (Uniprot ID: P41586-3),"%""
but the structures of the most prevalent long isoforms — PAC1null (Uniprot ID: P41586) or
PAC1hop (Uniprot ID: P41586-2) — are still unavailable.' All the published structures of PAC1R
are complexed with peptide agonists and a heterotrimeric G protein complex (Figure 1), and thus
do not represent the inactive conformations required for antagonist development. So far, it is
thought that over 40% of GPCRs have more than one isoforms,' and each GPCR can adopt
multiple conformational states which can be stabilized upon interactions with binding partners.'*
'® For accurate SBDD, it is important to employ conformations of the most medically relevant
isoform, as it is to this ensemble of 3D pocket structures that the drug must show affinity. Here,
we used PAC1R as a model system and investigated how to improve modeling accuracy and to
gain predictive power for SBDD with limited 3D structural information, using the method of
Essential Dynamics Ensemble Docking (EDED). With the proof of principle, this method can be
readily generalized to develop new therapeutic targets to target a wider range of GPCRs.
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PDBID: 6M11 Homology Model

Figure 1. Cartoon illustrations of the PACAP-bound PAC1R model (PDBID: 6M11, PAC1very
short) and our homology model (template PDBID: 4L6R, PAC1null, simulation snapshot at
500 ns). The PAC1null isoform is more biomedically relevant than the very short isoform. The
PACAP peptide is shown as a helix cartoon (pale green); the 21-amino acid ECD insert (see the
sequence in Figure S1) is shown as a flexible coil (purple). This study focused on docking to the
peptide-binding pocket.

PAC1R and its endogenous peptide hormone PACAP play an important role in neural
development, calcium homeostasis, glucose metabolism, circadian rhythm, thermoregulation,
inflammation, feeding behavior, pain modulation, as well as stress and related endocrine
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responses.'®'® For example, increased levels of PACAP in the blood have been reported in
women diagnosed with post-traumatic stress disorder,® implicating chronic activation of the
PAC1R in the disorder. Other studies” ' have suggested that PAC1R activation mediates the
adverse emotional consequences of chronic pain via downstream MAPK/ERK activation. Thus,
these prior studies indicate that PAC1R antagonism, especially with small-molecule antagonists,
represents a new strategy to treat stress, chronic pain, and related disorders.® Similar to other
class B GPCRs, PAC1R possesses a heptahelical transmembrane domain (7TM) and an
extracellular domain (ECD)." Most of the neural and peripheral tissues known to date contain the
PAC1null or PAC1hop isoforms that includes a 21-amino acid insert in the ECD (Figure 1), which
is missing in available PAC1R structures in the PDB.? This ECD insert was found highly dynamic
in our previous modeling studies,?™? but its role in regulating PAC1R remains unknown. While
PAC1R antagonists are being developed as potential treatments for stress-related disorders, the
agonist-bound cryo-EM structures are not directly applicable to computational design or screening
of PAC1R antagonists. GPCRs spontaneously adapt active and inactive signaling states, each of
which are characterized by broad conformational ensembles. In a conformational selection view,
agonists and antagonists stabilize GPCR conformations of the active and inactive ensembles,
respectively.’® 2 It is now well accepted that to accurately design GPCR ligands as drug
candidates, one should use active conformations for agonist design and inactive conformations
for antagonist design. With the transition between active and inactive GPCR conformations
occurring on the millisecond timescale,*?’ it is computationally demanding to obtain the inactive
PAC1R conformations from the agonist-bound cryo-EM structures via molecular dynamics (MD)
simulations. Instead, we seek to use a homology model in this work and test with the EDED
method.

Ensemble docking utilizes multiple receptor models for pocket sampling, obtained from
clustering the conformations sampled by MD simulations for molecular docking, and displays
noted improvement at identifying GPCR ligands when compared to docking against a single
experimental structure.?®3® EDED is distinct from prior ensemble docking approaches, mainly in
clustering and selection of receptor models. Global root mean square deviation (RMSD) is
convenient to cluster similar structures, but the highly dynamic extracellular and intracellular loops
(ECLs and ICLs) of GPCRs can significantly compromise the otherwise good similarity between
the 7TM structures. Thus, clustering based on global RMSD can generate many models that,
while representative of global changes, are irrelevant to the intricate differences within the local
binding pocket of the GPCR. This additional overhead ultimately lowers both the efficiency and
accuracy of ensemble docking when using the global RMSD approach for clustering. EDED
avoids this issue by focusing on both local similarity and essential dynamics of the binding pocket.
Although computational power is more accessible than ever, streamlined workflows which expend
computational resources only on worthwhile calculations are always desirable. Herein, we applied
EDED to PAC1R with as few as four receptor models, whose results show a reduced false
negative rate and a good correlation between the small molecule efficacy and the predicted score.
Our results provide the evidence for initial success to develop small-molecule antagonists for
PAC1R and pave the way for future structure-based GPCR drug discovery.

Results and Discussion.

1. Inactive conformations of PAC1null and key interactions with small molecules

Towards discovery of novel PAC1R antagonists, the inactive state conformational
ensemble of PAC1R was estimated using an all-atom MD simulation of a ligand-bound PAC1R
model from homology modeling (Figure 1). Our reference ligand is an analog of known PAC1
antagonists® that were discovered previously using structure activity relationships. We created
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the antagonist-bound model by docking the reference compound into the PAC1R homology model.
This complex model was simulated in the POPC membrane for 500 ns, and for the entire length
of the simulation the ligand remained bound in roughly the starting conformation (Figure S2).
Other features like the closed ECD and straight transmembrane helix six (TM6), as well as short
separa’iié)n between TM3, TM5 and TM6, are consistent with a deactivated structure of a class B
GPCR.

o
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Figure 2. Four representative PAC1R conformations using in EDED reveal important changes in
the binding pocket. The protein is shown in cartoon and the reference ligand is shown as sticks.
The histogram of all trajectory frames projected onto the first two principal components of residues
within the ligand-binding pocket of PAC1R. Black dots labelled with numbers from 0 to 3 are the
representative structures (S0, S1, S2, and S3) determined by the K-means clustering algorithm.

Despite the overall appearance of an inactivated receptor, there were critical changes
within the orthosteric pocket during the MD simulations. Using EDED, four members of the
inactive conformational ensemble (states S0, S1, S2, and S3 ordered by observed population)
were extracted and reveal distinct conformations of the 7TM helices and different side chain
orientations within the binding pocket (Figure 2). For one, bending of TM1 was observed to follow
S0 < S2 < S3 < S1, where the most populated state (S0) was the most straightened helix. This
correlated with local changes to residues Y161, L165, and S164 on TM1, and most significantly
the stiffened TM1 in the SO state enabled both n-stacking (with Y161) and hydrogen bonding (with
S164) interactions. On the other hand, displacement of TM7 in the S1 state relative to SO caused
replacement of the hydrogen bond with S164 in the SO state with a new hydrogen bond with S390.
The interactions between the indole on the ligand and V368, L388, and E392 were modulated
between the different receptor states with generally tighter interactions in the S1 and S3 states,
in comparison with the SO and S2 states. In addition, changes in TM5 affected the ability of K310
to form the stable interactions with the electron rich substituents on the ligand in states SO and
S3 which were diminished in the S1 and S2 states. Ultimately, this analysis reveals how EDED is
able capture the subtle changes in pocket structure that are highly relevant for accurate modeling
of ligand-receptor interactions when performing SBDD.

2. Comparison of Docking to a Single Receptor Model and to the Conformational
Representatives.

Compared with docking to the ligand-free homology model and ligand-free cryo-EM
structure, EDED significantly improved the identification of candidate compounds (Figure 3). The
average binding score of the top 350 (approximately 2.5%) of compounds docked to the ligand-
free homology model improved from -5.9 to -9.4 kcal/mol when docked against the ensemble.
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Likewise, it improved from an average of -5.8 to -9.4 kcal/mol when compared to the PACAP-
bound model (PDBID: 6M1l). This gives an average 3.6 kcal/mol improvement in average docking
score of the top selected compounds. Additionally, EDED identified six compounds predicted to
bind to PAC1R with comparable binding score (-11.2 kcal/mol) as our reference ligand.

To gain physical insight into the improvement of the docking scores, the binding pose(s)
of the top compounds from both methodologies were examined. We have previously reported the
key role of R199 in PACAP-induced activation of PAC1R."" This is further corroborated by strong
cation-pi interactions with the residue in our models. Interaction with R199 across all the ensemble
conformations became a critical determining factor for which top ensemble docking compounds
should be prioritized for synthesis and/or computational optimization. Examining the compounds
which have ensemble docking scores close to or better than our reference ligand, this interaction
is present for all six top scoring ligands in at least one of the docking poses. This is in contrast
with the homology model and the PACAP-bound model where only relatively few of the top
compounds from this methodology were able to engage in this key interaction. Also, of note are
induced fit effects where the MD simulation of our reference ligand in the pocket may affect the
binding pocket through subtle shifts in the backbone and the rotation of side chains. In the rigid
receptor docking to the homology model, the 7TM helical bundle is closer together, defining a
more compact orthosteric pocket. Thus, it is only accessible for small ligands to bind deep into
the pocket below R199. In contrast, the conformations in the ensemble docking are more open,
better allowing ligands to access the pocket. This can be seen by where most ligands found their
best pose. Although both datasets were docked against a grid centered on R199, the ensemble
docking results have the majority of top ligands below the residue, low in the pocket. When docked
against the homology model, the top ligands are higher in the pocket at lowest in line with R199.

The new ligands examined within the orthosteric pocket showcased the ability of ensemble
docking to provide integral confirmations omitted by static modelling, with the ensemble approach
providing key ligand poses corresponding to interactions with new side chains revealed in the
ensemble. Aside from R199, several key contacts were discovered from study of the top ligands
bound to each receptor in the ensemble (Figure S3). These contacts expand the understanding
of the orthosteric pocket dynamics and can be exploited in small molecule rational design. In
comparison with consistent interactions to the ligand-binding pocket of the homology model, these
results suggests that EDED may reveal new crucial ligand-receptor interactions even from a rigid
template.

Top 350 from 3 Million ZINC Compounds

Docking Score (kcal/mol)

Homology PDB  Cluster Cluster Cluster Cluster EDED
6M1lI 0 1 2

Figure 3. Violin plots of the docking score distribution of the top 350 compounds to different
receptor models. The dash line shows the -9.0 kcal/mol cutoff used to prioritize compounds for
synthesis.
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A thermodynamically driven approach to scoring the binding poses of a given compound
to multiple receptor structures was used to assess the binding affinity of the docked ligands. This
approach quantitatively captures various physical phenomena that are often considered when
computing overall docking scores: (i) the relative likelihood of the receptor obtaining the different
conformations are explicitly included, and (ii) the binding of the ligand to the receptor changes the
energies of the complex differentially in the distinct conformations. Importantly, this model
properly handles confounding cases that other approaches, such as a simple direct averaging of
different docking score, would not describe well. For instance, for any given ligand, a protein is
hypothetically able to adopt on an unlikely conformation ( AE_conf; ; > 0, i.e., much higher score
than the structure with lowest score) where the binding of the ligand to the protein could be quite
favorable (—AEp;,q; approximately equal to 10 kT). Simply including this state in an average of
docking scores would treat it as equivalently important as conformations that are far more relevant
to the signaling states of the protein. Our approach avoids such errors, by including the energetics
of binding in the model, assuring that the overall energy of these rare states is indeed still relatively
high and do not contribute significantly to the final score in Eq. 1. In sum, our docking score
considers the difference in overall energies of the bound receptor conformations and is
appropriate for comparison with a physical experiment that is unlikely to be able to distinguish
between different bound conformations (Eq. 1).

n .
eAE/kT = e(Ebound_Eunbound)/kT = Punbound _ 2iz1 Peluster i (Eq 1)

n
Phound Zi=1pcomplexi

Where Epouna @and E npouna are the energies associated with the ligand being bound or
unbound to any receptor conformation, respectively, Pyouna and Punpouna are the total
probabilities of the ligand being bound or unbound to any receptor conformation in the ensemble,
respectively, P.ster i 1S the probability of a specific receptor conformation (calculated from the
MD, see Sl for more information), and P mpiex i is the probability of the ligand being bound to that
specific ensemble conformation. We note that our model is still more appropriate than equal
weighting for cases where one does not trust the relative energies of the different conformations
obtained directly from the MD simulations. In such cases setting the AE_conf;; to 0 for each
conformation (i.e., each conformation is equally likely) reduces Eq. 1 to Eq. 2.

n
AEping,equat weighting = In (Z’-l e‘AEbindi) kT (Ea.2)
i=1

Clearly, Eq. 2 is not a simple weighted average of the different binding scores, however to our
knowledge this analysis is lacking in the literature.

3. Evaluation of EDED predictions.

Additional to testing EDED with compounds from ZINC, we also tested 23 small-molecule
compounds which were classified as strong, moderate, and weak antagonists in PAC1R activity
assays (unpublished data from Prof. Victor May). The design of these small molecules was based
on previously published work outlining the structure-activity relationship between small molecules
and the PAC1 receptor.®® Ligand-based virtual screening was then performed and yielded the 23
compounds which were experimentally tested. Docking each analog against all four
conformations in the ensemble and scoring them as previous described (Eq. 1) shows modest
correlation to experimental results (Figure 4). The strong experimental antagonist had the highest
predicted binding affinities with an average -10.4 kcal/mol, while the moderate and weak
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antagonists both had worse predicted binding affinities -9.8 kcal/mol and -8.5 kcal/mol,
respectively.
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Figure 4. Ensemble weighted glide scores (AGyuing) Of 23 experimentally tested compounds.
Compounds with strong, modest, and poor ERK inhibitive activity are depicted in green, blue, and
red, respectively. Corresponding colored lines represent the average ensemble weighted glide
score for that category. A cutoff of -9 kcal/mol was applied for predicted antagonists to be
compared to their experimental results showing either strong or medium inhibition (active) or weak
inhibition (inactive).

It is worth noting that our EDED method is best used to identify potential antagonists from
a collection of compounds, but the dockings scores (like Glide SP, XP, and our EDED score) to
estimate binding energies should be interpreted with caution.*'** While we successfully reduced
the false negative rate (FNR) with EDED, there is still a high false positive rate (FPR). A delicate
balance between ensemble size and the FPR has previously been reported, inspiring us to select
a relatively small ensemble for analysis.** Our FPR is comparable to prior studies employing both
ensemble and static methods for virtual screening.***" Additionally, the experimental assays
provided here are a measure of antagonistic ability, and not binding affinity. As quantitative
binding assays remain to be performed, it is possible some of the false positives (compounds with
poor experimental results but high ensemble docking scores) bind tightly but are not effective
antagonists, i.e., they do not stabilize the inactive conformations or prevent cognate ligand binding
in other ways. With the extended view provided by EDED, we envision that the chance of obtaining
a false negative prediction is likely reduced in our model when compared with static Glide docking.
This added width within the sampled energy landscape (from the new side chain confirmations)
allows our EDED method to achieve more accurate sampling of potential ligand-receptor
interactions, thus increasing the chances of finding a hit compound otherwise overlooked in the
static model. Overall, EDED displayed an accuracy of 57% in predicted binding affinity when
compared to our experimental results, an increase when compared with Glide’s empirical scoring
function*®. Combined with the overall low variance in EDED docking scores for the top 350
compounds analyzed (Figure 3), we believe our methodology represents a robust route for the
recognition of small molecules with high receptor affinity.

Conclusions.

In conclusion, we have developed and implemented EDED, an ensemble docking inspired
methodology for SBDD. By focusing on the essential dynamics of the ligand binding pocket, our
method is distinct from many prior studies that built receptor clusters solely based on the root
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mean square deviation (RMSD) of the entire protein backbone.*® Further, the use of clustering
within this reduced dimensionality conformational space directly considers the local structural
similarity of the ligand-binding pocket. We demonstrate that EDED captures the critical changes
in the 3D structure of the binding pocket that are known to correlate strongly with binding affinity
of ligands. Our approach is partially based on the assumption that differences in the binding
pocket itself (as opposed to the protein as a whole) predominately give rise to the different binding
poses and energies that are the goal of any ensemble docking workflow. Using the EDED derived
representative structures, we screened a large dataset of compounds and successfully identified
novel small molecule antagonists of the PAC1 receptor. However, EDED is not specific to a single
GPCR and will likely accelerate the design of small molecule drugs that target other GPCRs with
currently unknown conformational states.

Receptor Model Selection Ligand Selection
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Figure 5. Overview of computational workflow for development of PAC1R antagonists. Right
Column: selection of input ligands from a structure database (in this example the ZINC15%
database). Custom filters were used to select raw structures with desirable properties (molecular
weight, logP, etc.). These structures are then prepared using Schrédinger’s ligprep software
program. Left column): the PAC1null homology model is constructed from the protein’s sequence,
simulated for 500 ns, and the raw coordinates are analyzed. The representative structures are
used in ensemble docking. Hit compounds are selected based on visual inspection of the results.
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Methods and Models.

Receptor Model Preparation in EDED. One key idea of EDED is to obtain chemically relevant
receptor models for docking. Instead of using the agonist-bound PAC1R structure, we generated
a homology model of inactive PAC1R (with the canonical variant sequence, Uniprot ID: P41586)
with a template of the glucagon receptor (PDBID: 4L6R, ~40% similarity)."® This PAC1R model
incorporated the inactive features of class B GPCRs such as a continuous helix along TM6 and
a closed ECD. A small-molecule PAC1R antagonist, our reference ligand, was placed in the
orthosteric pocket via molecular docking (Glide, Schrédinger Inc.). The complex model was later
simulated to sample the inactive conformational ensemble.

Receptor Model Sampling in EDED. To sample inactive conformations for docking, the ligand-
bound PAC1R model was simulated with the OPLS3®' force field in explicit SPC solvent in the
NPT ensemble (300K, 1 atm, Martyna-Tuckerman Klein coupling scheme) using classical MD
simulations. A POPC membrane was place around the 7TM using the Orientations of Proteins in
Membrane (OPM) database.® The simulation was performed in the Maestro-Desmond program®>?
(GPU version 5.4) with a timestep of 2 fs, recording interval of 4.8 ps, and a total simulation time
of 500 ns. The Ewald technique was used for the electrostatic calculations. The van der Waals
and short-range electrostatic interactions were cut off at 9 A. Hydrogen atoms were constrained
using the SHAKE algorithm. Two extended simulations were also examined to confirm the ligand
poses and receptor confirmations. Once again, a POPC membrane was placed around the 7TM
bundle using OPM. NAMD 2.11 was used as the simulation package for these replicates®. The
CHARMMS36 forcefield®® was used with a TIP3 solvent model in a NPT ensemble (310K, 1 atm)
Force switching was utilized at the range of 10-12 A to approximate the LJ interactions. Langevin
piston/Nose-Hoover®®*” methods were utilized for the pressure control with a piston period of 50fs
and a decay time of 25 fs. Langevin coupling of these simulations with a dampening coefficient of
1 ps™ was also utilized. Long range electrostatic interactions were modeled with the particle mesh
Ewald method.®® These simulations were run with a 2 fs timestep and combined for 350ns of data.
MD trajectories were analyzed using in-house Python and TCL scripts as well as Visual Molecular
Dynamics (VMD).%®

Receptor Ensemble Selection in EDED. We first aligned the 7TM of PAC1R (residues 156-405)
to the homology model to reduce noise due to translational movement. Next, the coordinates of
the centers of mass for any residue whose side chain was within 3 A of any ligand atom in the
static model were collected and parsed using in-house designed TCL and python scripts. A
dimension reduction based on principal component analysis (PCA) was used to determine which
collective motions (termed principal components, PCs) contributed most to variations in the
overall conformations of the binding pocket. The first fifteen PCs (accounting for 90% of the
cumulative variance) were clustered using a K-means clustering algorithm implemented by
PyEmma.?? Based on inspection of the first two PCs (Figure 5), four cluster centers were identified.
As these cluster centers are not precise frames within the trajectory but are instead points in the
PC space, the cluster centers’ PC coordinates were approximately projected back to the original
Cartesian coordinates. Frames from the trajectory which had PC values closest to the centers
based on a RMSD measurement, were then selected as the ensemble docking receptor
structures. This approach allowed a minimum of representative frames to capture the most
variance of the binding pocket as opposed to other methodologies which often have many
structures. Also, our physics-based approach is transferrable to other GPCRs and expanded
clustering. In fact, our focus on the relevant receptor models likely requires less sampling in MD
simulations and fewer clusters for subsequent docking, a practical advantage for large-scale
screening.
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Docking and Scoring of Potential PAC1R Antagonists. Receptor grid models were generated
using the three-dimensional structures selected as detailed above with R199 selected as the
center of the docking box with an 18-A cutoff. Docking was carried out using Schrédinger Virtual
Screening Workflow® (VSW) at three consecutive levels of precision, both for small molecules
docked to the static homology model and to the conformation ensemble. Small molecules docked
to our PAC1null ensembled were given an overall score, Ensemble AGying, based on Eq. 3.

(Ea. 3)

e‘AEconf1 i‘AEbindi

Ensemble AGyipng = 1n< -

i=1

—-AE .
1+Z?=2 e Confl'l )

In Eq. 3, AE_conf;; is the difference in energy (in units of kT) between the lowest energy receptor
conformation and each subsequent conformation calculated using the clustered trajectory, and
—AEpinq; is the corresponding Glide XP docking score to that same conformation. While
AE_conf ; is representative of the apo receptor free energy, it is worth noting that simulation data
used to generate these confirmations included the ligand bound within the pocket.

Docking was carried out against compounds (i) pseudo-randomly selected from the
ZINC15% database, (ii) as analogs of known antagonists to the static ligand-free homology model,
the cryo-EM structure, and the conformational ensemble. In total, a small test set of 10,000 drug-
like compounds were selected and download from the ZINC database and docked using
Schrddinger’'s VSW as described previously.
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