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Abstract 11 
The lack of biologically relevant protein structures can hinder rational design of small molecules 12 
to target G protein-coupled receptors (GPCRs). While ensemble docking using multiple models 13 
of the protein target is a promising technique for structure-based drug discovery, model clustering 14 
and selection still need further investigations to achieve both high accuracy and efficiency. In this 15 
work, we have developed an original ensemble docking approach, which identifies the most 16 
relevant conformations based on the essential dynamics of the protein pocket. This approach is 17 
applied to the study of small-molecule antagonists for the PAC1 receptor, a class B GPCR and a 18 
regulator of stress. As few as four representative PAC1 models are selected from simulations of 19 
a homology model and then used to screen three million compounds from the ZINC database and 20 
23 experimentally validated compounds for PAC1 targeting. Our essential dynamics ensemble 21 
docking (EDED) approach can effectively reduce the number of false negatives in virtual 22 
screening and improve the accuracy to seek potent compounds. Given the cost and difficulties to 23 
determine membrane protein structures for all the relevant states, our methodology can be useful 24 
for future discovery of small molecules to target more other GPCRs, either with or without 25 
experimental structures. 26 
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Introduction 35 
 36 

Many G protein-coupled receptors (GPCRs) are being investigated as important 37 
therapeutic targets, but the success rate of structure-based drug design (SBDD) for GPCRs 38 
remains to be further improved.1-3 One of the primary challenges is that the three-dimensional 39 
(3D) structures of most GPCRs have not been fully determined. Even with latest breakthroughs 40 
in protein structure prediction like AlphaFold,4 the available structures may not represent the 41 
conformational states needed for accurate SBDD. The receptor (ADCYAP1R1, hereafter referred 42 
to as PAC1R) of the pituitary adenylate cyclase-activating peptide (PACAP), an emerging 43 
therapeutic target for stress-related disorders,5-9 is a good example. Currently, the full-length 44 
PAC1R structures in the Protein Data Bank (PDB) are short isoforms (Uniprot ID: P41586-3),10-11 45 
but the structures of the most prevalent long isoforms — PAC1null (Uniprot ID: P41586) or 46 
PAC1hop (Uniprot ID: P41586-2) — are still unavailable.12 All the published structures of PAC1R 47 
are complexed with peptide agonists and a heterotrimeric G protein complex (Figure 1), and thus 48 
do not represent the inactive conformations required for antagonist development. So far, it is 49 
thought that over 40% of GPCRs have more than one isoforms,13 and each GPCR can adopt 50 
multiple conformational states which can be stabilized upon interactions with binding partners.14-51 
15 For accurate SBDD, it is important to employ conformations of the most medically relevant 52 
isoform, as it is to this ensemble of 3D pocket structures that the drug must show affinity. Here, 53 
we used PAC1R as a model system and investigated how to improve modeling accuracy and to 54 
gain predictive power for SBDD with limited 3D structural information, using the method of 55 
Essential Dynamics Ensemble Docking (EDED). With the proof of principle, this method can be 56 
readily generalized to develop new therapeutic targets to target a wider range of GPCRs. 57 

 58 
 59 

 60 
Figure 1. Cartoon illustrations of the PACAP-bound PAC1R model (PDBID: 6M1I, PAC1very 61 
short) and our homology model (template PDBID: 4L6R, PAC1null, simulation snapshot at 62 
500 ns). The PAC1null isoform is more biomedically relevant than the very short isoform. The 63 
PACAP peptide is shown as a helix cartoon (pale green); the 21-amino acid ECD insert (see the 64 
sequence in Figure S1) is shown as a flexible coil (purple). This study focused on docking to the 65 
peptide-binding pocket. 66 
 67 
 68 

PAC1R and its endogenous peptide hormone PACAP play an important role in neural 69 
development, calcium homeostasis, glucose metabolism, circadian rhythm, thermoregulation, 70 
inflammation, feeding behavior, pain modulation, as well as stress and related endocrine 71 



responses.16-18 For example, increased levels of PACAP in the blood have been reported in 72 
women diagnosed with post-traumatic stress disorder,8 implicating chronic activation of the 73 
PAC1R in the disorder. Other studies7, 19 have suggested that PAC1R activation mediates the 74 
adverse emotional consequences of chronic pain via downstream MAPK/ERK activation. Thus, 75 
these prior studies indicate that PAC1R antagonism, especially with small-molecule antagonists, 76 
represents a new strategy to treat stress, chronic pain, and related disorders.8 Similar to other 77 
class B GPCRs, PAC1R possesses a heptahelical transmembrane domain (7TM) and an 78 
extracellular domain (ECD).1 Most of the neural and peripheral tissues known to date contain the 79 
PAC1null or PAC1hop isoforms that includes a 21-amino acid insert in the ECD (Figure 1), which 80 
is missing in available PAC1R structures in the PDB.20 This ECD insert was found highly dynamic 81 
in our previous modeling studies,21-22 but its role in regulating PAC1R remains unknown. While 82 
PAC1R antagonists are being developed as potential treatments for stress-related disorders, the 83 
agonist-bound cryo-EM structures are not directly applicable to computational design or screening 84 
of PAC1R antagonists. GPCRs spontaneously adapt active and inactive signaling states, each of 85 
which are characterized by broad conformational ensembles. In a conformational selection view, 86 
agonists and antagonists stabilize GPCR conformations of the active and inactive ensembles, 87 
respectively.19, 23 It is now well accepted that to accurately design GPCR ligands as drug 88 
candidates, one should use active conformations for agonist design and inactive conformations 89 
for antagonist design. With the transition between active and inactive GPCR conformations 90 
occurring on the millisecond timescale,24-27 it is computationally demanding to obtain the inactive 91 
PAC1R conformations from the agonist-bound cryo-EM structures via molecular dynamics (MD) 92 
simulations. Instead, we seek to use a homology model in this work and test with the EDED 93 
method.  94 

 95 
Ensemble docking utilizes multiple receptor models for pocket sampling, obtained from 96 

clustering the conformations sampled by MD simulations for molecular docking, and displays 97 
noted improvement at identifying GPCR ligands when compared to docking against a single 98 
experimental structure.28-38 EDED is distinct from prior ensemble docking approaches, mainly in 99 
clustering and selection of receptor models. Global root mean square deviation (RMSD) is 100 
convenient to cluster similar structures, but the highly dynamic extracellular and intracellular loops 101 
(ECLs and ICLs) of GPCRs can significantly compromise the otherwise good similarity between 102 
the 7TM structures. Thus, clustering based on global RMSD can generate many models that, 103 
while representative of global changes, are irrelevant to the intricate differences within the local 104 
binding pocket of the GPCR. This additional overhead ultimately lowers both the efficiency and 105 
accuracy of ensemble docking when using the global RMSD approach for clustering. EDED 106 
avoids this issue by focusing on both local similarity and essential dynamics of the binding pocket. 107 
Although computational power is more accessible than ever, streamlined workflows which expend 108 
computational resources only on worthwhile calculations are always desirable. Herein, we applied 109 
EDED to PAC1R with as few as four receptor models, whose results show a reduced false 110 
negative rate and a good correlation between the small molecule efficacy and the predicted score. 111 
Our results provide the evidence for initial success to develop small-molecule antagonists for 112 
PAC1R and pave the way for future structure-based GPCR drug discovery. 113 

 114 
 115 
Results and Discussion. 116 
 117 
1. Inactive conformations of PAC1null and key interactions with small molecules 118 

Towards discovery of novel PAC1R antagonists, the inactive state conformational 119 
ensemble of PAC1R was estimated using an all-atom MD simulation of a ligand-bound PAC1R 120 
model from homology modeling (Figure 1). Our reference ligand is an analog of known PAC1 121 
antagonists39 that were discovered previously using structure activity relationships. We created 122 



the antagonist-bound model by docking the reference compound into the PAC1R homology model. 123 
This complex model was simulated in the POPC membrane for 500 ns, and for the entire length 124 
of the simulation the ligand remained bound in roughly the starting conformation (Figure S2). 125 
Other features like the closed ECD and straight transmembrane helix six (TM6), as well as short 126 
separation between TM3, TM5 and TM6, are consistent with a deactivated structure of a class B 127 
GPCR.40  128 

 129 

 130 
 131 
Figure 2. Four representative PAC1R conformations using in EDED reveal important changes in 132 
the binding pocket. The protein is shown in cartoon and the reference ligand is shown as sticks. 133 
The histogram of all trajectory frames projected onto the first two principal components of residues 134 
within the ligand-binding pocket of PAC1R. Black dots labelled with numbers from 0 to 3 are the 135 
representative structures (S0, S1, S2, and S3) determined by the K-means clustering algorithm.  136 

 137 
Despite the overall appearance of an inactivated receptor, there were critical changes 138 

within the orthosteric pocket during the MD simulations. Using EDED, four members of the 139 
inactive conformational ensemble (states S0, S1, S2, and S3 ordered by observed population) 140 
were extracted and reveal distinct conformations of the 7TM helices and different side chain 141 
orientations within the binding pocket (Figure 2). For one, bending of TM1 was observed to follow 142 
S0 < S2 < S3 < S1, where the most populated state (S0) was the most straightened helix. This 143 
correlated with local changes to residues Y161, L165, and S164 on TM1, and most significantly 144 
the stiffened TM1 in the S0 state enabled both p-stacking (with Y161) and hydrogen bonding (with 145 
S164) interactions. On the other hand, displacement of TM7 in the S1 state relative to S0 caused 146 
replacement of the hydrogen bond with S164 in the S0 state with a new hydrogen bond with S390. 147 
The interactions between the indole on the ligand and V368, L388, and E392 were modulated 148 
between the different receptor states with generally tighter interactions in the S1 and S3 states, 149 
in comparison with the S0 and S2 states. In addition, changes in TM5 affected the ability of K310 150 
to form the stable interactions with the electron rich substituents on the ligand in states S0 and 151 
S3 which were diminished in the S1 and S2 states. Ultimately, this analysis reveals how EDED is 152 
able capture the subtle changes in pocket structure that are highly relevant for accurate modeling 153 
of ligand-receptor interactions when performing SBDD. 154 

 155 
2. Comparison of Docking to a Single Receptor Model and to the Conformational 156 

Representatives. 157 
Compared with docking to the ligand-free homology model and ligand-free cryo-EM 158 

structure, EDED significantly improved the identification of candidate compounds (Figure 3). The 159 
average binding score of the top 350 (approximately 2.5%) of compounds docked to the ligand-160 
free homology model improved from -5.9 to -9.4 kcal/mol when docked against the ensemble. 161 



Likewise, it improved from an average of -5.8 to -9.4 kcal/mol when compared to the PACAP-162 
bound model (PDBID: 6M1I). This gives an average 3.6 kcal/mol improvement in average docking 163 
score of the top selected compounds. Additionally, EDED identified six compounds predicted to 164 
bind to PAC1R with comparable binding score (-11.2 kcal/mol) as our reference ligand. 165 

To gain physical insight into the improvement of the docking scores, the binding pose(s) 166 
of the top compounds from both methodologies were examined. We have previously reported the 167 
key role of R199 in PACAP-induced activation of PAC1R.11 This is further corroborated by strong 168 
cation-pi interactions with the residue in our models. Interaction with R199 across all the ensemble 169 
conformations became a critical determining factor for which top ensemble docking compounds 170 
should be prioritized for synthesis and/or computational optimization. Examining the compounds 171 
which have ensemble docking scores close to or better than our reference ligand, this interaction 172 
is present for all six top scoring ligands in at least one of the docking poses. This is in contrast 173 
with the homology model and the PACAP-bound model where only relatively few of the top 174 
compounds from this methodology were able to engage in this key interaction. Also, of note are 175 
induced fit effects where the MD simulation of our reference ligand in the pocket may affect the 176 
binding pocket through subtle shifts in the backbone and the rotation of side chains. In the rigid 177 
receptor docking to the homology model, the 7TM helical bundle is closer together, defining a 178 
more compact orthosteric pocket. Thus, it is only accessible for small ligands to bind deep into 179 
the pocket below R199. In contrast, the conformations in the ensemble docking are more open, 180 
better allowing ligands to access the pocket. This can be seen by where most ligands found their 181 
best pose. Although both datasets were docked against a grid centered on R199, the ensemble 182 
docking results have the majority of top ligands below the residue, low in the pocket. When docked 183 
against the homology model, the top ligands are higher in the pocket at lowest in line with R199. 184 

The new ligands examined within the orthosteric pocket showcased the ability of ensemble 185 
docking to provide integral confirmations omitted by static modelling, with the ensemble approach 186 
providing key ligand poses corresponding to interactions with new side chains revealed in the 187 
ensemble. Aside from R199, several key contacts were discovered from study of the top ligands 188 
bound to each receptor in the ensemble (Figure S3). These contacts expand the understanding 189 
of the orthosteric pocket dynamics and can be exploited in small molecule rational design. In 190 
comparison with consistent interactions to the ligand-binding pocket of the homology model, these 191 
results suggests that EDED may reveal new crucial ligand-receptor interactions even from a rigid 192 
template. 193 

 194 

 195 
Figure 3. Violin plots of the docking score distribution of the top 350 compounds to different 196 
receptor models. The dash line shows the -9.0 kcal/mol cutoff used to prioritize compounds for 197 
synthesis.  198 



 199 
A thermodynamically driven approach to scoring the binding poses of a given compound 200 

to multiple receptor structures was used to assess the binding affinity of the docked ligands. This 201 
approach quantitatively captures various physical phenomena that are often considered when 202 
computing overall docking scores: (i) the relative likelihood of the receptor obtaining the different 203 
conformations are explicitly included, and (ii) the binding of the ligand to the receptor changes the 204 
energies of the complex differentially in the distinct conformations. Importantly, this model 205 
properly handles confounding cases that other approaches, such as a simple direct averaging of 206 
different docking score, would not describe well. For instance, for any given ligand, a protein is 207 
hypothetically able to adopt on an unlikely conformation ( ∆𝐸_𝑐𝑜𝑛𝑓!,# ≫ 0 , i.e., much higher score 208 
than the structure with lowest score) where the binding of the ligand to the protein could be quite 209 
favorable (−∆𝐸$#%&#  approximately equal to 10 kT). Simply including this state in an average of 210 
docking scores would treat it as equivalently important as conformations that are far more relevant 211 
to the signaling states of the protein. Our approach avoids such errors, by including the energetics 212 
of binding in the model, assuring that the overall energy of these rare states is indeed still relatively 213 
high and do not contribute significantly to the final score in Eq. 1. In sum, our docking score 214 
considers the difference in overall energies of the bound receptor conformations and is 215 
appropriate for comparison with a physical experiment that is unlikely to be able to distinguish 216 
between different bound conformations (Eq. 1). 217 
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 220 
Where 𝐸$12%& and 𝐸2%$12%& are the energies associated with the ligand being bound or 221 

unbound to any receptor conformation, respectively, 𝑃$12%&  and 𝑃2%$12%&  are the total 222 
probabilities of the ligand being bound or unbound to any receptor conformation in the ensemble, 223 
respectively, 𝑃3425678	# is the probability of a specific receptor conformation (calculated from the 224 
MD, see SI for more information), and 𝑃31:;47<	# is the probability of the ligand being bound to that 225 
specific ensemble conformation. We note that our model is still more appropriate than equal 226 
weighting for cases where one does not trust the relative energies of the different conformations 227 
obtained directly from the MD simulations. In such cases setting the ∆𝐸_𝑐𝑜𝑛𝑓!,#  to 0 for each 228 
conformation (i.e., each conformation is equally likely) reduces Eq. 1 to Eq. 2. 229 

 230 
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 232 
Clearly, Eq. 2 is not a simple weighted average of the different binding scores, however to our 233 
knowledge this analysis is lacking in the literature. 234 
 235 
3. Evaluation of EDED predictions. 236 

Additional to testing EDED with compounds from ZINC, we also tested 23 small-molecule 237 
compounds which were classified as strong, moderate, and weak antagonists in PAC1R activity 238 
assays (unpublished data from Prof. Victor May). The design of these small molecules was based 239 
on previously published work outlining the structure-activity relationship between small molecules 240 
and the PAC1 receptor.39 Ligand-based virtual screening was then performed and yielded the 23 241 
compounds which were experimentally tested. Docking each analog against all four 242 
conformations in the ensemble and scoring them as previous described (Eq. 1) shows modest 243 
correlation to experimental results (Figure 4). The strong experimental antagonist had the highest 244 
predicted binding affinities with an average -10.4 kcal/mol, while the moderate and weak 245 



antagonists both had worse predicted binding affinities -9.8 kcal/mol and -8.5 kcal/mol, 246 
respectively. 247 
 248 

 249 
 250 
Figure 4. Ensemble weighted glide scores (ΔGbind) of 23 experimentally tested compounds. 251 
Compounds with strong, modest, and poor ERK inhibitive activity are depicted in green, blue, and 252 
red, respectively. Corresponding colored lines represent the average ensemble weighted glide 253 
score for that category. A cutoff of -9 kcal/mol was applied for predicted antagonists to be 254 
compared to their experimental results showing either strong or medium inhibition (active) or weak 255 
inhibition (inactive). 256 
 257 

It is worth noting that our EDED method is best used to identify potential antagonists from 258 
a collection of compounds, but the dockings scores (like Glide SP, XP, and our EDED score) to 259 
estimate binding energies should be interpreted with caution.41-43 While we successfully reduced 260 
the false negative rate (FNR) with EDED, there is still a high false positive rate (FPR). A delicate 261 
balance between ensemble size and the FPR has previously been reported, inspiring us to select 262 
a relatively small ensemble for analysis.44 Our FPR is comparable to prior studies employing both 263 
ensemble and static methods for virtual screening.45-47 Additionally, the experimental assays 264 
provided here are a measure of antagonistic ability, and not binding affinity. As quantitative 265 
binding assays remain to be performed, it is possible some of the false positives (compounds with 266 
poor experimental results but high ensemble docking scores) bind tightly but are not effective 267 
antagonists, i.e., they do not stabilize the inactive conformations or prevent cognate ligand binding 268 
in other ways. With the extended view provided by EDED, we envision that the chance of obtaining 269 
a false negative prediction is likely reduced in our model when compared with static Glide docking. 270 
This added width within the sampled energy landscape (from the new side chain confirmations) 271 
allows our EDED method to achieve more accurate sampling of potential ligand-receptor 272 
interactions, thus increasing the chances of finding a hit compound otherwise overlooked in the 273 
static model. Overall, EDED displayed an accuracy of 57% in predicted binding affinity when 274 
compared to our experimental results, an increase when compared with Glide’s empirical scoring 275 
function48. Combined with the overall low variance in EDED docking scores for the top 350 276 
compounds analyzed (Figure 3), we believe our methodology represents a robust route for the 277 
recognition of small molecules with high receptor affinity. 278 

 279 
Conclusions. 280 

In conclusion, we have developed and implemented EDED, an ensemble docking inspired 281 
methodology for SBDD. By focusing on the essential dynamics of the ligand binding pocket, our 282 
method is distinct from many prior studies that built receptor clusters solely based on the root 283 



mean square deviation (RMSD) of the entire protein backbone.49 Further, the use of clustering 284 
within this reduced dimensionality conformational space directly considers the local structural 285 
similarity of the ligand-binding pocket. We demonstrate that EDED captures the critical changes 286 
in the 3D structure of the binding pocket that are known to correlate strongly with binding affinity 287 
of ligands. Our approach is partially based on the assumption that differences in the binding 288 
pocket itself (as opposed to the protein as a whole) predominately give rise to the different binding 289 
poses and energies that are the goal of any ensemble docking workflow. Using the EDED derived 290 
representative structures, we screened a large dataset of compounds and successfully identified 291 
novel small molecule antagonists of the PAC1 receptor. However, EDED is not specific to a single 292 
GPCR and will likely accelerate the design of small molecule drugs that target other GPCRs with 293 
currently unknown conformational states. 294 

 295 
 296 

 297 
 298 
Figure 5. Overview of computational workflow for development of PAC1R antagonists. Right 299 
Column: selection of input ligands from a structure database (in this example the ZINC1550 300 
database). Custom filters were used to select raw structures with desirable properties (molecular 301 
weight, logP, etc.). These structures are then prepared using Schrödinger’s ligprep software 302 
program. Left column): the PAC1null homology model is constructed from the protein’s sequence, 303 
simulated for 500 ns, and the raw coordinates are analyzed. The representative structures are 304 
used in ensemble docking. Hit compounds are selected based on visual inspection of the results. 305 
 306 
 307 
 308 



Methods and Models. 309 
Receptor Model Preparation in EDED. One key idea of EDED is to obtain chemically relevant 310 
receptor models for docking. Instead of using the agonist-bound PAC1R structure, we generated 311 
a homology model of inactive PAC1R (with the canonical variant sequence, Uniprot ID: P41586) 312 
with a template of the glucagon receptor (PDBID: 4L6R, ~40% similarity).19 This PAC1R model 313 
incorporated the inactive features of class B GPCRs such as a continuous helix along TM6 and 314 
a closed ECD. A small-molecule PAC1R antagonist, our reference ligand, was placed in the 315 
orthosteric pocket via molecular docking (Glide, Schrödinger Inc.). The complex model was later 316 
simulated to sample the inactive conformational ensemble.  317 
 318 
Receptor Model Sampling in EDED. To sample inactive conformations for docking, the ligand-319 
bound PAC1R model was simulated with the OPLS351 force field in explicit SPC solvent in the 320 
NPT ensemble (300K, 1 atm, Martyna-Tuckerman Klein coupling scheme) using classical MD 321 
simulations. A POPC membrane was place around the 7TM using the Orientations of Proteins in 322 
Membrane (OPM) database.52 The simulation was performed in the Maestro-Desmond program53 323 
(GPU version 5.4) with a timestep of 2 fs, recording interval of 4.8 ps, and a total simulation time 324 
of 500 ns. The Ewald technique was used for the electrostatic calculations. The van der Waals 325 
and short-range electrostatic interactions were cut off at 9 Å. Hydrogen atoms were constrained 326 
using the SHAKE algorithm. Two extended simulations were also examined to confirm the ligand 327 
poses and receptor confirmations. Once again, a POPC membrane was placed around the 7TM 328 
bundle using OPM. NAMD 2.11 was used as the simulation package for these replicates54. The 329 
CHARMM36 forcefield55 was used with a TIP3 solvent model in a NPT ensemble (310K, 1 atm) 330 
Force switching was utilized at the range of 10-12 Å to approximate the LJ interactions. Langevin 331 
piston/Nose-Hoover56-57 methods were utilized for the pressure control with a piston period of 50fs 332 
and a decay time of 25 fs. Langevin coupling of these simulations with a dampening coefficient of 333 
1 ps-1 was also utilized. Long range electrostatic interactions were modeled with the particle mesh 334 
Ewald method.58 These simulations were run with a 2 fs timestep and combined for 350ns of data.  335 
MD trajectories were analyzed using in-house Python and TCL scripts as well as Visual Molecular 336 
Dynamics (VMD).59 337 

 338 
Receptor Ensemble Selection in EDED. We first aligned the 7TM of PAC1R (residues 156-405) 339 
to the homology model to reduce noise due to translational movement. Next, the coordinates of 340 
the centers of mass for any residue whose side chain was within 3 Å of any ligand atom in the 341 
static model were collected and parsed using in-house designed TCL and python scripts. A 342 
dimension reduction based on principal component analysis (PCA) was used to determine which 343 
collective motions (termed principal components, PCs) contributed most to variations in the 344 
overall conformations of the binding pocket. The first fifteen PCs (accounting for 90% of the 345 
cumulative variance) were clustered using a K-means clustering algorithm implemented by 346 
PyEmma.22 Based on inspection of the first two PCs (Figure 5), four cluster centers were identified. 347 
As these cluster centers are not precise frames within the trajectory but are instead points in the 348 
PC space, the cluster centers’ PC coordinates were approximately projected back to the original 349 
Cartesian coordinates. Frames from the trajectory which had PC values closest to the centers 350 
based on a RMSD measurement, were then selected as the ensemble docking receptor 351 
structures. This approach allowed a minimum of representative frames to capture the most 352 
variance of the binding pocket as opposed to other methodologies which often have many 353 
structures. Also, our physics-based approach is transferrable to other GPCRs and expanded 354 
clustering. In fact, our focus on the relevant receptor models likely requires less sampling in MD 355 
simulations and fewer clusters for subsequent docking, a practical advantage for large-scale 356 
screening.  357 
 358 



 359 
Docking and Scoring of Potential PAC1R Antagonists. Receptor grid models were generated 360 
using the three-dimensional structures selected as detailed above with R199 selected as the 361 
center of the docking box with an 18-Å cutoff. Docking was carried out using Schrödinger Virtual 362 
Screening Workflow60 (VSW) at three consecutive levels of precision, both for small molecules 363 
docked to the static homology model and to the conformation ensemble. Small molecules docked 364 
to our PAC1null ensembled were given an overall score, Ensemble ∆Gbind, based on Eq. 3. 365 

 366 
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 368 
In Eq. 3,  ∆𝐸_𝑐𝑜𝑛𝑓!,# is the difference in energy (in units of kT) between the lowest energy receptor 369 
conformation and each subsequent conformation calculated using the clustered trajectory, and 370 
−∆𝐸$#%&#  is the corresponding Glide XP docking score to that same conformation. While 371 
∆𝐸_𝑐𝑜𝑛𝑓!,# is representative of the apo receptor free energy, it is worth noting that simulation data 372 
used to generate these confirmations included the ligand bound within the pocket. 373 

Docking was carried out against compounds (i) pseudo-randomly selected from the 374 
ZINC1550 database, (ii) as analogs of known antagonists to the static ligand-free homology model, 375 
the cryo-EM structure, and the conformational ensemble. In total, a small test set of 10,000 drug-376 
like compounds were selected and download from the ZINC database and docked using 377 
Schrödinger’s VSW as described previously. 378 
 379 
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