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1. Introduction

In this manuscript we study approximation results and central limit theorems
for the Euler characteristic (EC) χ of a simplicial complex K. The EC is a simple
yet major functional in topological data analysis (TDA). Recent contributions
concerning the EC in TDA include Adler [1], Turner et al. [41], Decreusefond et
al. [14] and Crawford et al. [13]. See also [30, 31, 32]. Multivariate central limit
theorems for the EC were proved in Hug et al. [22]. Ergodic theorems for the EC
are given in Schneider and Weil [37]. Thomas and Owada [39] derive a functional
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strong law of large numbers and a functional central limit theorem (FCLT) for
the EC obtained from the Vietoris-Rips complex of a Poisson process in the
critical regime.

Among others, our results extend the findings of this last work to the Čech
filtration and a binomial sampling scheme. More precisely, we obtain a FCLT
and derive rates of convergence in the Kantorovich-Wasserstein distance and in
the Kolmogorov distance at a fixed time parameter t of the empirical process

χn : [0, T ] → R, t �→ n−1/2
(
χ(Kt,n)− E [χ(Kt,n)]

)
, (1.1)

where T ∈ R+ and where Kt,n = Kt(n
1/d

Xn) for certain point clouds Xn (given
in detail below) whose sample size n tends to infinity. The underlying filtration
(Kt,n : t ∈ [0, T ]) is the Čech or Vietoris-Rips complex of a Poisson or binomial
point cloud in the critical regime. We apply these results to a smooth bootstrap
procedure proposed in Roycraft et al. [36] and derive rates of convergence for
the bootstrap procedure of the EC.

The quantification of the rates of convergence relies on normal approxi-
mations for general non-additive functionals in stochastic geometry. Such ap-
proximations are based on Stein’s method and reduce to variance bounding
tasks. These results are obtained from the seminal works of Chatterjee [8]
and Lachièze-Rey and Peccati [26] who derive normal approximations for the
Kantorovich-Wasserstein distance and the Kolmogorov distance.

The EC is an important functional in persistent homology, the current major
branch of TDA. To the best of our knowledge the present contribution is the
first to obtain rates of convergence for this topological invariant. Moreover, the
presented FCLT is the first that also covers the case for Čech filtration, complet-
ing the investigation of Thomas and Owada [39] who observed the additional
technical difficulties that arise when proving the tightness of the processes in
(1.1) for the Čech complex. In addition, we extend the FCLT to a binomial
sampling scheme by a Poissonisation argument, this setting has previously been
not considered.

As a consequence of the continuous mapping theorem, the FCLT opens the
door to obtain the asymptotic distribution of a variety of important functionals
applied to the EC such as smoothed integral statistics or the running supremum.

Modern TDA is founded in the groundbreaking contributions of Edelsbrun-
ner et al. [18], Zomorodian and Carlsson [43] and Carlsson [7]. The presented
central limit theorems rely heavily on the approach of Penrose and Yukich [35],
who define and use the idea of stabilizing functionals of Lee (see [28, 29]). This
approach has also been used to establish central limit theorems for Betti num-
bers and persistent Betti numbers: Yogeshwaran et al. [42] were the first to
establish a central limit theorem for Betti numbers from a stationary Poisson
process with unit intensity. Hiraoka et al. [21] extended this result to persistent
Betti numbers from a stationary Poisson process. Krebs and Polonik [25] estab-
lished the strong stabilizing property of persistent Betti numbers and extended
the validity of the central limit theorem to the binomial point process with a
non-constant density. Krebs and Hirsch [24] studied functional central limit the-
orems for persistent Betti numbers on a cylindrical domain. Betti numbers of
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B-bounded features have been studied by Biscio et al. [5].
So far, bootstrap procedures in TDA mainly were based on the assumption

that an iid sample of persistence diagrams is available; see Chazal et al. [10],
Fasy et al. [19], Berry et al. [2]. Large sample results of these bootstrap methods
are then shown for the number of available persistence diagrams, N , tending to
infinity. An alternative set-up is to consider an individual persistence diagram,
based on a single data set of size n. In this setting, that so far has received
much less attention, the constructions are based on a Lipschitz-type property
of the persistence diagram (also called ‘stability’). However, this approach only
leads to asymptotically conservative results; see [19]. For another application of
the bootstrap, see Shin et al. [38]. For the upper level set filtration of a kernel
density estimator, Chazal et al. [11] successfully construct bootstrap confidence
sets directly, without invoking stability.

Following the ideas of Roycraft et al. [36], we here also consider the second
approach, based on an individual sample of iid date of size n. In contrast to
the existing results in the literature, this approach results in asymptotically
valid bootstrap procedures. More precisely, given a point cloud in R

d of iid data
points which are distributed according to an unknown density κ, our smooth
bootstrap procedure relies on replicate point cloud data drawn from an appro-
priate density estimate κ̂. We quantify the Kantorovich-Wasserstein distance
and the Kolmogorov distance between the bootstrapped EC and the true EC in
terms of the sample size and the supremum norm ‖κ− κ̂‖∞. Depending on the
density estimator used, we obtain rates of convergence for our smooth bootstrap
procedure. In the case of the Kantorovich-Wasserstein distance, we also show a
rate of convergence in the functional setting, where the EC defines a curve on
the interval [0, T ].

A simulation study is provided, investigating the small-sample properties of
the bootstrap applied to the Euler characteristic curve in the functional setting.

The rest of the paper is organized as follows. Section 2 provides relevant
notation and definitions. We present all main results in Section 3. Technical
details are given in Section 4 and Appendix A.

2. Notation and definitions

We write N for the natural numbers {1, 2, . . .} and N0 for N∪{0}. The cardinality
of a (finite) set A is #A. Let P be a point process on R

d and A ⊂ R
d. We

write P (A) = #{x ∈ P : x ∈ A} for the random measure of A under P . For
z ∈ R

d, Q(z) denotes the cube z + [−1/2, 1/2]d. For m ∈ N, the set {1, . . . ,m}
is abbreviated by [m]. Moreover, we write a � b, for a, b ∈ R

d, if a is equal to
b or if a precedes b in the lexicographic ordering, and ed for the all-one vector
(1, . . . , 1) ∈ R

d.
Write Bn = [−n1/d/2, n1/d/2]. Let P ,P ′ be independent homogeneous Pois-

son processes on R
d with unit intensity. For z ∈ Z

d, we let Fz denote the σ-field
σ{P ∩Q(y) : y � z} generated by the Poisson points of P inside the cubes Q(y)
for all y ∈ Z

d equal to or preceding z lexicographically.
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Next, we shortly introduce the main mathematical objects from TDA, which
are needed in this paper. We refer to Boissonnat et al. [6] for a more thorough
introduction to the subject.

Given a finite set P , an (abstract) simplicial complex K is a collection of
non-empty subsets of P which satisfy (i) if x ∈ P , then {x} ∈ K and (ii) if
σ ∈ K and τ ⊆ σ, then τ ∈ K. If σ ∈ K and #σ = k + 1, with k ∈ N0, then the
simplex σ has dimension k, viz., dimσ = k.

The EC of a (finite) simplicial complex K is given by the alternating sum of
its simplex counts Sk(K) = #{σ ∈ K : dimσ = k}, viz.,

χ(K) =
∑
k∈N0

(−1)kSk(K).

In this work, we consider the Čech and Vietoris-Rips complex constructed from
point clouds in R

d. Given a finite subset P of the Euclidean space R
d, the

Čech filtration C(P ) = (Ct(P ) : t ≥ 0) and the Vietoris-Rips filtration R(P ) =
(Rt(P ) : t ≥ 0) are defined through the following simplicial complexes

Ct(P ) = {σ ⊆ P,
⋂
x∈σ

B(x, t) �= ∅},

Rt(P ) = {σ ⊆ P, diam(σ) ≤ t},

where B(x, t) = {y ∈ R
d : ‖x − y‖ ≤ t} is a closed Euclidean ball, and diam(·)

is the diameter of a set.
We use a generic notation and write Kt for either the Čech or the Vietoris-

Rips complex with parameter t obtained from a random point cloud in R
d. The

Čech filtration characterizes simplices in terms of the radius of their circum-
sphere, the smallest closed ball containing the given simplex. The Vietoris-Rips
filtration relies on the pairwise distances between points in the simplex. This
property not only makes the Čech filtration analytically more complex than the
Vietoris-Rips filtration but also more computationally intensive to work with
in practice. The filtration time of a simplex σ, written as r(σ), is the smallest
filtration parameter t such that σ is included in Kt. r(σ) corresponds to the
radius of the circumsphere of σ in the Čech case, and to the maximum pairwise
distance between the points of σ for the Vietoris-Rips filtration.

Given an ordering of the simplices in the simplicial complex K, we can sep-
arate each Sk(K) in positive simplices S+

k (K) and negative simplices S−
k (K), so

Sk(K) = S+
k (K) + S−

k (K). A k-simplex is positive if it creates a k-dimensional
feature. It is negative if it kills a (k − 1)-dimensional feature. The difference
S+
k (K) − S−

k+1(K) is the kth Betti number βk(K) of the simplicial complex K,

see also [6]. Clearly, S0 = S+
0 . This yields the well-known identity

χ(K) = S+
0 (K) +

∞∑
k=1

(−1)kS+
k (K)−

∞∑
k=1

(−1)k−1S−
k (K)

= (S+
0 (K)− S−

1 (K)) +

∞∑
k=1

(−1)k(S+
k (K)− S−

k+1(K)) =

∞∑
k=0

(−1)kβk(K).

(2.1)
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For Čech complexes of a d-dimensional point cloud, the right-hand side of (2.1)
reduces to a sum of finitely many terms. This is because in d-dimensional space
all Betti numbers βk, k ≥ d, are identically zero for the Čech complex, see also
[42]. Using 0 = βk(K) = S+

k (K)−S−
k+1(K) for all k ≥ d, we see that in this case

χ(K) =
∑d−1

k=0(−1)kSk(K) + (−1)dS−
d (K).

Let κ be a density function on [0, 1]d. Moreover, let Xn = {X1, . . . , Xn} be
a binomial process of length n, where the components Xi are independently
distributed with density κ. Furthermore, let Pn be a non-homogenous Poisson
process with intensity function nκ.

The underlying point cloud is allowed to be either the Poisson point cloud
n1/dPn or the scaled binomial point cloud n1/dXn. Here Kt,n equals either
Kt(n

1/dPn) or Kt(n
1/d

Xn) for a filtration parameter t ∈ [0, T ], T < ∞. We
study the empirical process of the EC (χn(t))t∈[0,T ] from (1.1) based on these
filtrations and point clouds. Obviously, χn(0) ≡ 0 for all n ∈ N. To indicate the
dependence on the density, we write χκ,n for the EC obtained from an underly-
ing density function κ. Moreover, N0,1 denotes the law of the standard normal
distribution.

The Kantorovich-Wasserstein distance between two Borel probability mea-
sures μ1 and μ2 on a metric space (M,d) is

dMW (μ1, μ2) := sup

{∣∣∣∣∣
∫

fdμ1 −
∫

fdμ2

∣∣∣∣∣:
f : M → R is Lipschitz with Lipschitz constant Lf ≤ 1

}
.

In the following, we study the Kantorovich-Wasserstein distance on R, denoted
by dW . We abbreviate the space of càdlàg functions by D = D([0, T ]). We
write dDW for the Kantorovich-Wasserstein distance on the normed vector space
(D, ‖ · ‖∞), where ‖ · ‖∞ is the sup-norm. The Kolmogorov distance between
two Borel probability measures μ1, μ2 on the real numbers is

dK(μ1, μ2) := sup{|μ1((−∞, u])− μ2((−∞, u])| : u ∈ R}.

If Z1 ∼ μ1 and Z2 ∼ μ2, we also write dW (Z1, μ2) and dW (Z1, Z2) for dW (μ1, μ2),
and similarly for dK . We adopt the same convention for the metric dDW if Z1, Z2

are D-valued.
Let κ be a bounded density function on [0, 1]d, i.e., ‖κ‖∞ < ∞. Write

B∞(κ, ρ) for the class of all densities ν on [0, 1]d which satisfy ‖κ− ν‖∞ ≤ ρ.

3. Main results

3.1. Approximation and central limit theorems

We make use of the pioneering contributions of Chatterjee [8] (for the
Kantorovich-Wasserstein distance) and of Lachièze-Rey and Peccati [26] (for
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the Kolmogorov distance). We begin with an approximation result, which shows
that the EC is locally Lipschitz-continuous in the underlying density function.

Theorem 3.1 (Approximating property in the Kantorovich-Wasserstein dis-
tance). Let κ be a density on [0, 1]d that is bounded, let ρ ∈ R+, and let
ν ∈ B∞(κ, ρ). There are coupled Poisson processes (Pn,Qn) with intensities
(nκ, nν) and coupled n-binomial processes (Xn,Yn) with densities (κ, ν), re-
spectively, and a constant C0,κ ∈ R+ depending on κ and ρ but not on ν (as
long as ν ∈ B∞(κ, ρ)), such that for all n ∈ N

sup
t∈[0,T ]

Var(χκ,n(t)− χν,n(t)) ≤ C0,κ‖κ− ν‖∞. (3.1)

In particular,

sup
t∈[0,T ]

dW (χκ,n(t), χν,n(t)) ≤
√
C0,κ‖κ− ν‖1/2∞ .

Note that the choice of ρ in the above result is arbitrary and in particular
independent of the density κ. It is known that the EC tends to a Gaussian pro-
cess for a Poisson sampling scheme and the Vietoris-Rips filtration, see [39]. We
generalize this statement in the following to the Čech filtration and the binomial
sampling scheme and quantify the convergence. The given rate is asymptotically
optimal when compared to the classical result of Berry-Esseen for the normal-
ized empirical mean of iid data which is of order n−1/2. The main reasons for
this fast rate are the stabilizing properties of the EC, see Proposition 4.5, which
correspond to m-dependent (and thus nearly iid) observations.

Theorem 3.2 (Normal approximation). Consider the Čech or the Vietoris-
Rips filtration as well as the Poisson or binomial sampling scheme. Let κ be a
bounded density on [0, 1]d and let t ∈ (0, T ]. There is a ρ > 0 and a corresponding
C1,κ ∈ R+, also depending on t, such that for all ν ∈ B∞(κ, ρ){

dK

(
χν,n(t)

Var(χν,n(t))
1/2

,N0,1

)}

∨
{
dW

(
χν,n(t)

Var(χν,n(t))
1/2

,N0,1

)}
≤ C1,κ

n1/2
.

(3.2)

Moreover, there are C2,κ, C̃2,κ ∈ R+, also depending on ρ, t, such that

dK
(
χκ,n(t), χν,n(t)

)
≤ C2,κ

n1/2
+ C̃2,κ‖κ− ν‖1/2∞ . (3.3)

We detail the limiting covariance structure of the process (χn(t))t∈[0,T ] in
Theorem 3.4 below. In particular, we show that limn→∞ Var(χκ,n(t)) ∈ R+

for each t > 0. In order to obtain (3.3), we need to quantify the quotient
Var(χκ,n(t))/Var(χν,n(t)) and its inverse. Both quotients are meaningful if the
limiting variance is bounded away from zero and infinity. Note that the normal
approximation given above does not immediately extend to a uniform result.
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To obtain a FCLT and rates of convergence that consider the entire EC on
an interval [0, T ], we need an understanding of the continuity properties of the
filtration time as a function of the underlying simplex. These depend on the
simplicial complex in use and we highlight this by writing rC(·), resp., rR(·), for
the filtration time of the Čech, resp., Vietoris-Rips complex. We also write r(·) to
refer to either of them if no distinction is necessary. Assume that Z0, Z1, . . . , Zq

are iid according to a density κ on [0, 1]d and let {Z0, Z1, . . . , Zq} denote the
q-simplex spanned by Z0, . . . , Zq. If we use the Vietoris-Rips filtration, we can
easily derive

P(rR({Z0, Z1, . . . , Zq}) ∈ (a, b]) ≤ αd‖κ‖∞ q(q + 1) (bd − ad),

where αd is the d-dimensional Lebesgue measure of the d-dimensional ball
Bd(0, 1), see Lemma 4.3.

If we instead use the Čech filtration, the situation is much more complex
because it is no longer sufficient to study pairwise distances only. Instead, the
filtration time is influenced by the geometry of the embedding space, Rd, and
is determined by the radius of the circumsphere. This radius can be calculated
analytically with the result from Coxeter [12] using the Cayley-Menger matrix;
we also refer to Le Caër [27] for more results on the circumsphere of q+1 points
in d-dimensional Euclidean space. We obtain a similar result in Lemma 4.4,

P(rC({Z0, Z1, . . . , Zq}) ∈ (a, b])

≤ (q + 1)d+2 max
1≤m≤(d∧q)+1

(‖κ‖∞ αd dd/2)m ·
∫ b

a

g∗d(t)dt,

for a certain continuous real-valued function g∗d depending on d only.

With these preparations, we are now able to give the approximation property
in the functional Kantorovich-Wasserstein distance dDW . Here it is of course
necessary that supt∈[0,T ] |χκ,n(t)−χν,n(t)| be measurable, which is true because
the EC functional t �→ χ(Kt,n) is càdlàg.

Theorem 3.3 (Functional approximation). Let κ be a bounded density on [0, 1]d

and let ρ ∈ R+. Let ν ∈ B∞(κ, ρ). Consider the Čech or the Vietoris-Rips
filtration. Let [0, T ] be partitioned into J equidistant intervals of length T/J .

There are coupled Poisson processes (Pn,Qn) with intensities (nκ, nν), cou-
pled n-binomial processes (Xn,Yn) with densities (κ, ν), respectively, and there
are constants C3,κ, C4,κ ∈ R+ depending on κ, T > 0 and ρ but neither on
ν ∈ B∞(κ, ρ), nor on n nor on J , such that the following holds:

E

[
sup

t∈[0,T ]

∣∣∣χκ,n(t)− χν,n(t)
∣∣∣2]

≤ C3,κ(J + T )‖κ− ν‖∞ + C4,κT
2 n J−1 ‖κ− ν‖2∞.

(3.4)

In particular, there are constants C5,κ, C6,κ ∈ R+ depending on κ, T > 0 and ρ,
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but neither on ν ∈ B∞(κ, ρ), nor on n nor on J, such that

dDW ((χκ,n(t))t∈[0,T ], (χν,n(t))t∈[0,T ])

≤ C5,κ J1/2 ‖κ− ν‖1/2∞ + C6,κ

√
n

J
‖κ− ν‖∞.

(3.5)

Obviously, the result in (3.5) is also valid for general (uncoupled) Poisson pro-
cesses Pn,Qn with intensity functions nκ, nν, and general n-binomial processes
Xn,Yn with density functions κ, ν, respectively.

Moreover, using the continuity properties of the Čech filtration, we now ex-
tend the findings of [39] who provide a functional central limit theorem for the
Vietoris-Rips complex and a Poisson sampling scheme. We remark that a func-
tional central limit theorem for the binomial sampling scheme has not been
established yet for either filtration type and follows from a Poissonization argu-
ment covered in the technical details of Section 4.

Using the strong stabilizing property of the EC from Proposition 4.5, the
following limits exist for each t ∈ R+ and z ∈ Zd and can be expressed in terms
of a finite and deterministic radius of stabilization

Δ∞(t) := lim
n→∞

χ(Kt((P ∪ {0}) ∩Bn))− χ(Kt(P ∩Bn))

= χ(Kt((P ∪ {0}) ∩B(0, 2t)))− χ(Kt(P ∩B(0, 2t))) a.s.
(3.6)

D∞(t, z) := lim
n→∞

χ(Kt(P ∩Bn))

− χ(Kt([(P ∩Bn) \Q(z)] ∪ [P ′ ∩Bn ∩Q(z)]))

= χ(Kt(P ∩B(z, 2t+
√
d)))− χ(Kt([(P ∩B(z, 2t+

√
d)) \Q(z)]

∪ [P ′ ∩B(z, 2t+
√
d) ∩Q(z)])) a.s. (3.7)

We assume the following technical condition for the FCLT. We call a density

function blocked if it has the form
∑md

i=1 bi1Ai , where m ∈ N, b1, . . . , bmd ∈
R+ and the Ai are rectangular sets of the form ×d

i=1Ii,ji , where the (Ii,j)
m
j=1

partition [0, 1] in intervals of length m−1. The density function κ is bounded
on [0, 1]d and we assume that there is a sequence of blocked density functions
(κn)n∈N each defined on [0, 1]d with the property

lim
n→∞

‖κn − κ‖∞ = 0. (3.8)

For example, if κ can be approximated uniformly by continuous density func-
tions, then it can also be approximated uniformly by blocked density functions.

We present the FCLT, which enables us to capture the dynamic topological
evolution of Vietoris-Rips and Čech complex as the filtration time runs through
a given interval [0, T ].

Theorem 3.4 (Functional central limit theorem). Let T ∈ R+. Let the filtration
be obtained either from the Vietoris-Rips or the Čech complex. Let κ satisfy
(3.8). There is a Gaussian process G = (G(t) : t ∈ [0, T ]) such that, as n → ∞,

(χn(t) : t ∈ [0, T ]) → G in distribution in the Skorohod J1-topology.
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The covariance structure of G depends on the sampling scheme. In the Poisson
sampling scheme,

E [G(s)G(t)] = E

[
γ(κ(Z)1/d(s, t))

]
,

where the random variable Z has density κ and

γ(s, t) = E [E [D∞(s, 0) | F0] E [D∞(t, 0) | F0]] (3.9)

for s, t ∈ [0,∞) and for F0 being the σ-field generated by {P ∩ Q(z) : z � 0}.
Then sup0≤s,t≤T γ(s, t) < ∞ by the representation in (3.7).

In the binomial sampling scheme

E [G(s)G(t)] = E

[
γ
(
κ(Z)1/d(s, t)

)]
− E

[
α(κ(Z)1/ds)

]
E

[
α(κ(Z)1/dt)

]
,

where α(t) = E[Δ∞(t)]. Furthermore, E
[
G(t)2

]
> 0 for all t ∈ (0, T ] for both

sampling schemes.
For both the Poisson and the binomial sampling scheme, the process G has a

continuous modification which is β-Hölder continuous for each β ∈ (0, 1/2).

An immediate consequence of the functional central limit theorem is the weak
convergence of continuous functionals applied to the EC curve. Let (S, dS) be a
metric space and let J : D([0, T ]) → (S, dS) be continuous (w.r.t. to dS and the
J1-topology). Then, under the assumptions of the above theorem, (J(χn(t)) :
t ∈ [0, T ]) converges weakly to J(G) as n → ∞.

As an example, consider the smooth EC-transform, which is the image of χn

under the continuous integration mapping

I : D([0, T ]) → (C([0, T ]), ‖ · ‖∞), f �→
∫ •

0

f(s) ds.

Crawford et al. [13] consider a similar transform of the EC curve with practical
applications in functional data analysis. Further potential applications of the
smooth EC-transform I(χn) are goodness-of-fit tests as an exploratory tool in
topological data analysis. We refer to [5] and [24] for similar applications in the
context of persistent Betti numbers.

3.2. The bootstrap

Our bootstrap procedure merely requires an estimate for the true density func-
tion κ of the random variables Xi underlying the Poisson or binomial process.
Denote this estimate by κ̂n, where the index n refers to the sample Pn, resp. Xn.
So when considering Pn, we assume implicitely the knowledge of the Poisson
parameter of Nn, which is n. For instance, κ̂n can be obtained from a kernel
density estimate, see [33] and [20].

The bootstrap procedure works as follows: Conditional on the sample Pn or
Xn and the density estimate κ̂n, we resample a Poisson process P∗

n = {X∗
1 , . . . ,
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X∗
N∗

n
} or a binomial process X

∗
n = {X∗

1 , . . . , X
∗
n}, where the X∗

i are iid with

density κ̂n and the random variable N∗
n is independent (of all other random

variables) and Poisson distributed with mean n.
Using the sample P∗

n or X∗
n, we compute the EC of the corresponding Čech or

Vietoris-Rips complex K∗
t , which is either equal to Kt(n

1/dP∗
n) or to Kt(n

1/d
X

∗
n),

t ∈ [0, T ]. The related empirical process is

χ∗
n(t) = n−1/2

(
χ(K∗

t )− E
∗ [χ(K∗

t )]
)
, t ∈ [0, T ], (3.10)

where E
∗ denotes the expectation conditional on the sample Pn or Xn, respec-

tively. In practice we use a kernel estimate κ̂n; this smooth bootstrap is proposed
in [36]. In that contribution we also address in detail possible problems with the
“standard” bootstrap from the empirical distribution, which we sketch in the
following. Hence, the present approach is an alternative, even though estimation
of the true underlying density κ can be challenging, especially in high dimen-
sions.

When compared to the direct bootstrap from the empirical distribution, our
smooth bootstrap procedure has certain advantages. As the empirical distribu-
tion is discrete, the number of unique values in a given bootstrap sample is
random and strictly smaller than n, with an expected number of points ap-
proximately 0.632n. This can be problematic because in the critical regime, we
rescale according to sample size by a factor of n1/d.

Moreover, since the support of the empirical distribution is discrete, the devel-
oped asymptotic theory does not apply, requiring at least an underlying distri-
bution with a density. As such, there is a need for a smooth bootstrap procedure;
we refer to [36] for a more thorough discussion with examples. Our first result
applies to the EC evaluated at a specific point t.

Theorem 3.5 (Pointwise validity of the bootstrap). Let κ be a bounded density
on [0, 1]d and let (κ̂n : n ∈ N) be a sequence of density estimators of κ with the
property that limn→∞ ‖κ− κ̂n‖∞ = 0 a.s. (in probability). Then

‖κ̂n − κ‖−1/2
∞ · sup

t∈[0,T ]

dW (χ∗
n(t), χn(t)) = O(1) a.s. (in probability).

Furthermore, for each t ∈ [0, T ]{
‖κ̂n − κ‖1/2∞ + n−1/2

}−1 · dK(χ∗
n(t), χn(t)) = O(1) a.s. (in probability).

Consider the case of n iid data points Zi, where the density κ has a continuous
pth derivative on [0, 1]d and where the kernel density estimate κ̂n is obtained
from a pth order kernel for an integer p ≥ 1 (see [40] for the definition of the
order of a kernel). In this case,

‖κ̂n − κ‖∞ = O
(
(n−1 logn)p/(d+2p)

)
a.s., (3.11)

see e.g. [20]. Hence, for the Kantorovich-Wasserstein distance

sup
t∈[0,T ]

dW (χ∗
n(t), χn(t)) = O

(
(n−1 logn)p/(2d+4p)

)
a.s.
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A similar result is true for the Kolmogorov distance for fixed t (and not uniformly
in t ∈ [0, T ]), viz.,

dK(χ∗
n(t), χn(t)) = O

(
(n−1 logn)p/(2d+4p)

)
a.s.

for each t ∈ [0, T ]. Moreover, we have the following functional result.

Theorem 3.6 (Functional validity of the smooth bootstrap). Let the assump-
tions of Theorem 3.5 be satisfied. Additionally, let (Jn : n ∈ N) diverge to infinity
such that

Jn‖κ̂n − κ‖∞ → 0 a.s. (in probability)

and √
n

Jn
‖κ̂n − κ‖∞ → 0 a.s. (in probability)

as n → ∞. Set bn = J
1/2
n ‖κ̂n − κ‖1/2∞ +

√
n J−1

n ‖κ̂n − κ‖∞. Then

b−1
n · dDW ((χ∗

n(t))t∈[0,T ], (χn(t))t∈[0,T ]) = O(1) a.s. (in probability).

If we use a kernel estimator κ̂n for κ, we obtain a consistent uniform bootstrap
approximation given that the density is sufficiently smooth, in the above sense,
with p > d. Set Jn = (logn)p/(2d+4p)n(d+p)/(2d+4p). Using (3.11),

dDW ((χ∗
n(t))t∈[0,T ], (χn(t))t∈[0,T ]) = O((log n)αn−β) a.s.,

where α = 3p/(4d+ 2p) > 0 and 1/8 ≥ β = 3p/(4d+ 8p)− 1/4 > 0.

3.3. Simulation study

In this section, we provide the results for a series of simulations using the
smoothed bootstrap procedure described in Section 3.2, establishing its efficacy
in producing valid uniform confidence bands for the mean Euler characteristic
curve of the Čech complex. Due to computational constraints, data generating
distributions were chosen in dimensions 2 and 3 only. A description of the distri-
butions considered is given in Table 1. Visual illustrations are given in Figure 1
for F1 to F4 in dimension 2.

For a given distribution and sample size, the true mean curve of the Euler
characteristic (E

[
χ(Kt(n

1/d
Xn))

]
: t ∈ [0, T ]) was estimated using the average

over a large (nμ = 50000) number of iid replicates from the true distribution.
Betti number calculations for the Čech complex were done using the GUDHI
library via alphaComplexDiag from the TDA R package. Evaluation was done
at a dense (nt = 1000) grid within [0, T ], with the exact value of T changing
depending on sample size and distribution. T was chosen large enough as to not
influence the analysis. The estimation error included in these steps is considered
negligible.

Next, for a given sample size, we generate an original sample Xn, and B =
1000 bootstrap replications, using the smoothed bootstrap procedure. Band-
width selection was done using Hpi.diag from the ks R package.
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Fig 1. Large-sample illustrations of distributions F1-F4 from Table 1, shown from left to
right, respectively.

Table 1

Distributions considered for the simulation study of Section 3.3

Distribution Dimension Description
F1 2 Uniform on [0, 1]2

F2 2 Rotationally symmetric, Exp(1) radius
F3 2 Density with 7 poles, bounded L2 norm
F4 2 Uniform on S1, additive Gaussian noise
F5 3 Uniform on [0, 1]3

F6 3 Linked copies of S1,
uniform sampling with additive Gaus-
sian noise.

F7 3 S2 with smaller-radius S1 handle (ket-
tlebell),
uniform sampling with additive Gaus-
sian noise

The mean curve (E∗[χ(Kt(n
1/d

X
∗
n))] : t ∈ [0, T ]) was estimated using the

average Euler curve over the B bootstrap replicates, again evaluated at a dense
(nt = 1000) grid within [0, T ]. For each bootstrap sample X

∗
n,i, we calculate

ei = sup
t∈[0,T ]

∣∣∣∣∣χ(Kt(n
1/d

X
∗
n,i)

)
− 1

B

B∑
i=1

χ
(
Kt(n

1/d
X

∗
n,i)

)∣∣∣∣∣ .
To establish coverage, the 0.95 quantile of the e1, ..., eB gives the width of

the corresponding uniform confidence band, and is compared to

sup
t∈[0,T ]

∣∣∣χ(Kt(n
1/d

Xn)
)
− E

[
χ(Kt(n

1/d
Xn))

]∣∣∣
using the established estimate of the true mean curve. The entire data generation
and bootstrap procedure was repeated np = 500 times to estimate the coverage
proportion. Coverage proportions and details are provided in Table 2.

We see that the bootstrap procedure is generally conservative, yielding higher
than the nominal 95% coverage proportion in the majority of cases, moving
towards the nominal level with larger sample size. In the case of F5, the uniform
distribution on [0, 1]3, the poor coverage for n = 30 and n = 50 is likely due to
boundary effects not present in the other continuous cases. The stand-out case,
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Table 2

Coverage proportions for the bootstrap simulation study. Red color indicates situations of
interest

Sample Size (n)
30 50 100 200 500

F1 0.980 0.972 0.978 0.978 0.978
F2 0.948 0.954 0.904 0.884 0.880
F3 0.978 0.962 0.966 0.978 0.974

Distribution F4 0.964 0.974 0.972 0.964 0.960
F5 0.914 0.922 0.958 0.958 0.968
F6 0.980 0.982 0.990 0.968 0.956
F7 0.984 0.980 0.986 0.988 0.982

however, is F2, which seems to diverge from the stated level for large samples.
In this case, the density approaches ∞ towards the origin, in such a way that no
Lp norm is bounded. This is likely the driving factor behind the poor coverage
in this case.

For the results in this work, we consider only the case of a bounded den-
sity on [0, 1]. As shown by the provided coverage proportions, it is likely that
these conditions can be greatly weakened, while still providing for bootstrap
consistency.

4. Technical results

Throughout all our proofs, we will use the same terminology and notation. In
the following lines, we introduce more definitions which are exclusively needed
in this section and in the appendix.

Convention about the connectivity. Since we are studying simplicial complexes
built from the Čech and the Vietoris-Rips filtration for filtration parameters in
the range [0, T ], an upper bound on the diameter of the simplex is 2T , resp. T .
We abbreviate this upper bound by δ, e.g., we only need to know the points in a
δ-neighborhood of a given point x in order to determine the simplices containing
x.

Convention about the densities. Throughout this section and the appendix κ
is an arbitrary but fixed bounded density on [0, 1]d. Moreover, for a given ρ ∈
R+, we study density functions ν ∈ B∞(κ, ρ). The choice of the neighborhood
parameter ρ can depend on κ, however, this will then be mentioned. As already
pointed out in Section 3, the constants depend then on κ and ρ but not on
ν ∈ B∞(κ, ρ).

Convention about constants. To ease notation, most constants in this paper
will be denoted by c, c′, C, etc. and their values may change from line to line.
These constants may depend on parameters like the dimension and often we will
not point out this dependence explicitly; however, none of these constants will
depend on the index n, used to index infinite sequences, or on the index i, used
to index martingale differences. Furthermore, these constants will not depend
on ν as long as ν satisfies ‖ν−κ‖∞ ≤ ρ. If we point out this property explicitly,
we say “C is independent* of ν”. Specific constants carry a subscript C1, c1 etc.
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Notation in the Poisson sampling scheme. Let P ,P ′ be independent Poisson
processes on R

d× [0,∞) with unit intensity. We assume the following couplings

P(n) =
{
x ∈ R

d : ∃t ≤ κ(x/n1/d + ed/2), (x, t) ∈ P
}
,

Q(n) =
{
x ∈ R

d : ∃t ≤ ν(x/n1/d + ed/2), (x, t) ∈ P
}
,

P ′(n) =
{
x ∈ R

d : ∃t ≤ κ(x/n1/d + ed/2), (x, t) ∈ P ′
}
,

Q′(n) =
{
x ∈ R

d : ∃t ≤ ν(x/n1/d + ed/2), (x, t) ∈ P ′
}
.

Note that as in Section 3 the density κ is related to the Poisson processes
P(n),P ′(n) whereas the density ν belongs toQ(n),Q′(n). The Poisson processes
P(n),P ′(n) andQ(n),Q′(n) are supported on the cube Bn = [−n1/d/2, n1/d/2]d

and have intensity functions κ(·/n1/d+ed/2) and ν(·/n1/d+ed/2), respectively,
where here ed is the all-one vector (1, . . . , 1) ∈ R

d.
Recall that Pn (resp. Qn) is a non-homogenous Poisson process with intensity

function nκ (resp. nν). Obviously, the distribution of n1/dPn and P(n) are equal
modulo the shift; the same holds for n1/dQn and Q(n). We write B′

n = {z ∈
Z
d : Q(z) ∩ Bn �= ∅} and denote the cardinality of B′

n by b′n. We will use
an enumeration of B′

n given by {zn,i : i ∈ [b′n]}, where zn,i � zn,i+1. Clearly,
b′n/n → 1 as n → ∞.

For A ⊆ [n], we write

P ′A(n) :=
{
P(n) \

( ⋃
i∈A

Q(zn,i)
)}

∪
{
P ′(n) ∩

( ⋃
i∈A

Q(zn,i)
)}

.

In slight abuse of notation we write P ′ i(n) rather than P ′{i}(n), and we write
P ′ z(n) when replacing the points in P(n) ∩ Q(z) by points in P ′(n). We also
use a similar notation with P replaced by Q.

The following filtrations of simplicial complexes will be used to construct
martingale differences:

Kt,n := Kt(P(n)), K̃t,n := Kt(Q(n)),

K′
t,n,i := Kt(P ′ i(n)), K̃′

t,n,i := Kt(Q′ i(n)),

for t ∈ [0, T ], i ∈ [b′n] and n ∈ N. The next two filtrations are needed for
approximation arguments:

K̃∗
t,n,i := Kt([Q(n) \Q(zn,i)] ∪ [P(n) ∩Q(zn,i)]),

K̃′∗
t,n,i := Kt([Q(n) \Q(zn,i)] ∪ [P ′(n) ∩Q(zn,i)]),

for t ∈ [0, T ], i ∈ [b′n] and n ∈ N. Notice that filtrations without a “tilde” in
their notation are based on P(n) (and P ′(n)), while those with a “tilde” are
based on Q(n) (and Q′(n)). The notation “tilde-star” indicates filtrations based
on Q(n) with small parts replaced by points in P(n) and P ′(n), respectively.
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For each n define a filtration of σ-fields by

Gn,j = σ{P(n) ∩Q(zn,k),Q(n) ∩Q(zn,k) : zn,k � zn,j}, (4.1)

for j ∈ [b′n]. Also set Gn,0 = {∅,Ω}. The following notation is convenient for
statements regarding the asymptotic normality. We write

D′
n(t, z) = χ(Kt(P(n)))− χ(Kt(P ′ z(n))),

D̃′
n(t, z) = χ(Kt(Q(n)))− χ(Kt(Q′ z(n))),

for first order differences in a specific point z ∈ Z
d. Moreover, we use the follow-

ing notation for first order differences tied to specific indices for A ⊆ [b′n] and
j ∈ [b′n]:

D′A
n (t, j) := χ(Kt(P ′A(n)))− χ(Kt(P ′A∪{j}(n))),

D̃′A
n (t, j) := χ(Kt(Q′A(n)))− χ(Kt(Q′A∪{j}(n))).

If A = ∅, we omit A in the superscript on the left-hand side, so that D′
n(t, j) =

D′
n(t, zn,j) = χ(Kt,n)− χ(K′

t,n,j).
Notation in the binomial sampling scheme. In order to ease the notation,

we set b′n :≡ n, so that we can treat the binomial and the Poisson sampling
scheme with the same notation. We use coupled binomial processes X = (Xi :
i ∈ N),X′ = (X ′

i : i ∈ N),Y = (Yi : i ∈ N),Y′ = (Y ′
i : i ∈ N) instead. These have

the property that (X,Y) and (X′,Y′) are independent and the components of
X,X′ and Y,Y′ have a density κ and ν, respectively, such that

P(Xi �= Yi)∨P(X ′
i �= Y ′

i ) =
1

2
‖κ−ν‖TV =

1

4
‖κ−ν‖1 ≤ 1

4
‖κ−ν‖∞, ∀i ∈ N,

see for instance [15], Theorem 2.12. (Later, we will apply this coupling to the
case where ‖κ− ν‖∞ is small.)

In what follows, we will use the fact that the binomial processes are defined
as sequences and not as point clouds. Define the filtration of σ-fields Gn,i =
σ{Xj , Yj : j ∈ [i]} for i ∈ [n] and Gn,0 = {∅,Ω}. Also, write Xn for the elements
Xi of X with i ∈ [n], and similarly define Yn,X

′
n and Y

′
n. Furthermore, let

X
′A
n := (Xn \ {Xi, i ∈ A}) ∪ {X ′

i, i ∈ A}, A ⊆ [n].

We write X
′ i
n for X

′{i}
n . A similar notation is used with Xn replaced by Yn. The

following definitions of filtrations of simplicial complexes parallel those of the
Poisson case:

Kt,n := Kt(n
1/d

Xn), K̃t,n := Kt(n
1/d

Yn),

K′
t,n,i := Kt(n

1/d
X

′ i
n , ), K̃′

t,n,i := Kt(n
1/d(Y′ i

n )),

for t ∈ [0, T ], i ∈ [n] and n ∈ N, as well as

K̃∗
t,n,i := Kt(n

1/d([Yn \ {Yi}] ∪ {Xi})), K̃′∗
t,n,i := Kt(n

1/d([Yn \ {Yi}] ∪ {X ′
i})),
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for t ∈ [0, T ], i ∈ [n] and n ∈ N. Compared to the Poisson case, we replace
P(n),P ′(n) by n1/d

Xn, n
1/d

X
′
n and Qn,Q′

n by n1/d
Yn, n

1/d
Y

′
n, respectively. For

A ⊆ [b′n] = [n] and j ∈ [b′n], we set

D′A
n (t, j) = χ(Kt(X

′A
n ))− χ(Kt(X

′A∪{j}
n )),

D̃′A
n (t, j) = χ(Kt(Y

′A
n ))− χ(Kt(Y

′A∪{j}
n )).

Again, if A = ∅, we omit A in the superscript on the left-hand side.
Recall that in the Poisson sampling scheme the processes χn were defined

in Section 2 from the Poisson processes n1/dPn (resp. n1/dQn) and not P(n)
(resp. Q(n)). However, it is not difficult to see that we can define Pn and Qn on
the same probability space such that the joint distributions of (n1/dPn, n

1/dQn)
and (P(n),Q(n)) are equal (modulo the shift by ed/2). To see this define

Pn := {x : (x, t) ∈ P , 0 ≤ t ≤ nκ(x)}
and Qn := {x : (x, t) ∈ P , 0 ≤ t ≤ nν(x)}.

(4.2)

The joint distribution of (P(n),Q(n)) is determined by the random variables
(P(n)(A), Q(n)(B)), where A,B are Borel sets of R

d. The same holds for
(n1/dPn, n

1/dQn). Using the independence property of the Poisson process,
it is sufficient to consider the distributions of the type [P(n) \ Q(n)](A) and
[n1/dPn \ n1/dQn](A) or [P(n)∩Q(n)](A) and [n1/dPn ∩ n1/dQn](A). Both fol-
low the same Poisson distribution because∫

A

∫ κ(x/n1/d)

ν(x/n1/d)

dt dx =

∫
{y:n1/dy∈A}

∫ κ(x)

ν(x)

n dt dy =

∫
n−1/dA

∫ nκ(x)

nν(x)

dt dy

and ∫
A

∫ ν(x/n1/d)∧κ(x/n1/d)

0

dt dx

=

∫
{y:n1/dy∈A}

∫ ν(x)∧κ(x)

0

n dt dy =

∫
n−1/dA

∫ n(ν(x)∧κ(x))

0

dt dy.

For the rest of the manuscript we will use the following definitions that apply
to both the Poisson and the binomial case:

χκ,n(t) := n−1/2(χ(Kt,n)− E [χ(Kt,n)]),

χν,n(t) := n−1/2(χ(K̃t,n)− E[χ(K̃t,n)]),

χκ,n,i(t) := n−1/2(χ(K′
t,n,i)− E

[
χ(K′

t,n,i)
]
),

χν,n,i(t) := n−1/2(χ(K̃′
t,n,i)− E[χ(K̃′

t,n,i)]),

for t ∈ [0, T ] and i ∈ [b′n].

Lemma 4.1. Let m ∈ N0. There is a constant C ∈ R+ not depending on m
such that (

m

k

)
=

m!

k!(m− k)!
≤ C

2m

m1/2
, ∀k ∈ {0, . . . ,m}.
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In particular, if λ ∈ R+ and X ∼ Poi(λ), then E[|
∑X

k=0

(
X
k

)
|q] < ∞ for all

q ∈ R+.

Proof. The result relies on the Stirling formula

√
2πnn+1/2e−n ≤ n! < enn+1/2e−n for n ∈ N.

It is well-known that the binomial coefficient is maximal at m/2 if m is even
and at (m+ 1)/2 if m is odd. Thus, if m is even,

m!

k!(m− k)!
≤ m!

((m/2)!)2
≤ m! 2m+1

2π mm+1 e−m
≤ e 2m

π m1/2
.

A similar result is valid if m is odd. The claim regarding the moment of the
Poisson random variable follows immediately because E[eδX ] = exp(λ(eδ − 1))
is finite for all δ < ∞. This completes the proof.

Lemma 4.2 (Bounded moments condition). Let ρ > 0, p ∈ N and ν ∈
B∞(κ, ρ). Then there is a constant Cp ∈ R+ depending on ρ but not on ν
such that

sup
n∈N+

sup
i∈[b′n]

sup
t∈[0,T ]

E

[
|χ(K̃t,n)− χ(K̃′

t,n,i)|p
]
≤ Cp < ∞

in the Poisson and in the binomial sampling scheme and for both the Čech and
the Vietoris-Rips complex.

Proof of Lemma 4.2. Let Y,Z be two point clouds. Then

|χ(Kt(Y))− χ(Kt(Z))|
≤

∑
k≤#Y−1

#{σ ∈ Kt(Y) : σ is a k-simplex intersecting with Y \ Z}

+
∑

k≤#Z−1

#{σ ∈ Kt(Z) : σ is a k-simplex intersecting with Z \ Y}.

Consequently, it suffices to study the expression

E

⎡⎣( ∑
k≤#Y−1

#{σ ∈ Kt(Y) : σ is a k-simplex intersecting with Y \ Z}
)p⎤⎦ .

(4.3)

We put Y = Q(n),Z = Q′ i(n) = (Q(n) \ Q(zn,i)) ∪ (Q′(n) ∩ Q(zn,i)) in the
Poisson case, and Y = n1/d

Yn,Z = n1/d
Y

′ i = n1/d({Y ′
i } ∪ [Yn \ {Yi}]) in the

binomial case, where i is a generic index. (Exchanging the roles of Y and Z, the
following arguments stay the same.)

In the Poisson case, the result is an immediate consequence of Lemma 4.1.
Indeed, let δ > 0 be defined as in the beginning of Section 4. Let U be a Poisson
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random variable with mean |Q(0)(δ)| (supκ+ρ). Then there is a constant such
that (4.3) is at most

E

[( ∑
k∈N0

#{k-simplices σ ∈ KT (Q(n)) : σ ∩Q(zn,i) �= ∅}
)p]

≤ C
∑
m∈N

P(U = m)

(
m−1∑
k=0

(
m

k + 1

))p

≤ Cp < ∞,

where we use that conditional on m there are at most
(

m
k+1

)
possible k-simplices,

so the last result follows from Lemma 4.1. Clearly, the constant Cp is indepen-
dent of t ∈ [0, T ], z ∈ Z

d, n and ν as long as ‖ν − κ‖∞ ≤ ρ.
In the binomial case, the reasoning is quite similar and we can use that the

number of points is deterministic. Conditional on the realization n1/dY ′
i = x,

(4.3) amounts to

E

[( n−1∑
k=0

#
{
σ ∈ Kt({x} ∪ [n1/d

Yn \ {Yi}]) : σ is a k-simplex intersecting with {x}
})p

]

≤ E

⎡⎣( n−1∑
k=0

∑
{j1,...,jk}⊆[n]\{i}

1
{
r({x, Yi1 , . . . , Yik}) ≤ n−1/dT

} )p

⎤⎦
≤

⎛⎝n−1∑
k=0

∑
{j1,...,jk}⊆[n]\{i}

(
C(d, T )(‖κ‖∞ + ρ)

n

)k
⎞⎠p

≤
(

n−1∑
k=0

(
n− 1

k

)(
C(d, T )(‖κ‖∞ + ρ)

n

)k
)p

,

where the constant C(d, T ) depends on d, T but not on the location x. For the
last sum we have

n−1∑
k=0

(n− 1)!

(n− 1− k)!k!

(
C(d, T )(‖κ‖∞ + ρ)

n

)k

≤
n−1∑
k=0

(n− 1)k

nk

(C(d, T )(‖κ‖∞ + ρ))k

k!
≤ exp(C(d, T )(‖κ‖∞ + ρ)).

4.1. Continuity properties of the filtration time

The following properties are crucial for the desired tightness results of the EC
which we will prove below. We begin with the Vietoris-Rips complex, see also
[39] for a similar result for this filtration.

Lemma 4.3 (Continuity in the Vietoris-Rips filtration). Let q ≥ 1 and Z0, Z1, . . . , Zq

be independent and identically distributed on B(0, 1) with density κ.
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Let rR({Z0, Z1, . . . , Zq}) be the filtration time of the simplex {Z0, Z1, . . . , Zq}
in the Vietoris-Rips filtration. Then for all 0 ≤ a ≤ b < ∞

P(rR({Z0, Z1, . . . , Zq}) ∈ (a, b]) ≤ αd‖κ‖∞ q(q + 1) (bd − ad). (4.4)

Proof. We use that {rR({Z0, Z1, . . . , Zq}) ∈ (a, b]} is contained in the finite
union ∪i 
=j{rR({Zi, Zj}) ∈ (a, b]} to deduce that the left-hand side of (4.4)
is at most (q + 1)q P(rR({Z0, Z1}) ∈ (a, b]) where the last probability is at
most ‖κ‖∞(|Bd(0, b)|−|Bd(0, a)|). Noting that the Lebesgue measure of Bd(0, b)
equals αd bd, yields the result.

The next lemma gives the corresponding continuity properties in the Čech
filtration.

Lemma 4.4 (Continuity in the Čech filtration). Let q ≥ 1 and Z0, Z1, . . . , Zq

be independent and identically distributed on B(0, 1) with density κ. Let rC({Z0,
Z1, . . . , Zq}) be the filtration time of the simplex {Z0, Z1, . . . , Zq} in the Čech
filtration. Then there is a continuous function g∗d only depending on d, such that
for all 0 ≤ a ≤ b < ∞

P(rC({Z0, Z1, . . . , Zq}) ∈ (a, b])

≤ (q + 1)d+2 max
1≤m≤(d∧q)+1

(‖κ‖∞ αd)
m ·

∫ b

a

g∗d(t)dt.

Proof. To ease the notation we write r for the filtration time and begin as
follows. Let z = (z0, z1, . . . , zq) ∈ B(0, 1)q+1 be (q+1) points in general position
on B(0, 1). The circumsphere is the smallest d-dimensional ball containing all
elements of z; its center is the circumcenter. Let I ⊂ J := {0, 1, . . . , q} and write
r[I](z) for the filtration time of the simplex {zi : i ∈ I}.

Then the following observation is crucial: For almost every z ∈ B(0, 1)q+1,
there are {i0, i1, . . . , im} ⊂ {0, 1, . . . , q} with m ≤ (q + 1) ∧ (d + 1) such
that r(z) = r({zi0 , zi1 , . . . , zim}), and {i0, i1, . . . , im} ⊂ {0, 1, . . . , q} is minimal
w.r.t. inclusion (i.e. the filtration time of each strict subset of {i0, i1, . . . , im}
is smaller). Indeed, the circumsphere and the circumcenter of q + 1 points in
general position in R

d is determined by at most d+ 1 points. Thus, depending
on z, we find such a subset with cardinality at most d+ 1. In particular, given
d and q the number of these minimal index sets is bounded above by

L := L(d, q) :=

(
q + 1

2

)
+ . . .+

(
q + 1

(d+ 1) ∧ (q + 1)

)
≤ (q + 1)d+2.

In the following, let {ij,0, . . . , ij,mj}, j ∈ [L], be an enumeration of these subsets.
The above insights allow us to construct the following upper bound given an

arbitrary density function κ on B(0, 1).

P(r({Z0, Z1, . . . , Zq}) ∈ (a, b])

≤
L∑

j=1

P(r({Zij,0 , Zij,1 , . . . , Zij,mj
}) ∈ (a, b])
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≤
L∑

j=1

‖κ‖mj+1
∞

∫
B(0,1)mj+1

1
{
r({y0, y1, . . . , ymj}) ∈ (a, b]

}
dy. (4.5)

Set Y = {Y0, Y1, . . . , Ym}, where the Yi are iid on B(0, 1) following a uniform
distribution. Using the result of [17, Lemma 6.10], r(Y) has a bounded density
w.r.t. the Lebesgue measure on the real line, viz.,

α
−(m+1)
d

∫
B(0,1)m+1

1{r({y0, y1, . . . , ym}) ∈ (a, b]}dy =

∫ b

a

g(u;m) du

for a bounded density function g( · ;m) depending on m only. Consequently,
(4.5) is at most

max
1≤m≤(d∧q)+1

[‖κ‖∞ αd]
m

∫ b

a

L∑
j=1

g(u;mj) du.

Setting g∗d = max{g( · ;m) : m ∈ [d]} yields the result.

4.2. Approximation properties

Proof of Theorem 3.1. Let t ∈ [0, T ]. Using martingale differences and the defi-
nition of the σ-fields from (4.1), we obtain

Var(χκ,n(t)− χν,n(t))

= n−1

b′n∑
i=1

E

[(
E [χκ,n(t)− χν,n(t)|Gn,i]− E [χκ,n(t)− χν,n(t)|Gn,i−1]

)2]

= n−1

b′n∑
i=1

E

[
E [χκ,n(t)− χν,n(t)− χκ,n,i(t) + χν,n,i(t) | Gn,i]

2
]

≤ n−1

b′n∑
i=1

E

[(
χκ,n(t)− χν,n(t)− χκ,n,i(t) + χν,n,i(t)

)2]
. (4.6)

For the summands in (4.6) we have by using the definition of the EC that

E

[( ∑
k∈N0

(−1)k
(
Sk(Kt,n)− Sk(K′

t,n,i)− Sk(K̃t,n) + Sk(K̃′
t,n,i)

))2]

≤ 3E

[( ∑
k∈N0

∣∣∣Sk(Kt,n)− Sk(K′
t,n,i)− Sk(K̃∗

t,n,i) + Sk(K̃′∗
t,n,i)

∣∣∣)2] (4.7)

+ 3E

[( ∑
k∈N0

∣∣∣Sk(K̃t,n)− Sk(K̃∗
t,n,i)

∣∣∣)2]

+ 3E

[( ∑
k∈N0

∣∣∣Sk(K̃′
t,n,i)− Sk(K̃′∗

t,n,i)
∣∣∣)2] . (4.8)
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With ε := ‖κ− ν‖∞, it remains to show that each of the last three expectations
is of order ε uniformly in i ∈ [b′n], n and t ∈ [0, T ]. For this, we consider the two
sampling schemes separately.

The Poisson case. We define W (n) as the union of P(n),Q(n),P ′(n),Q′(n).
Also define symmetric differences of Poisson processes:

Wn,ε = P(n)�Q(n) and W ′
n,ε = P ′(n)�Q′(n).

When restricted to a cube Q = Q(zn,i), Wn,ε and W ′
n,ε are not empty with

a probability of order at most ε. Clearly, given a point Z in Wn,ε, this point
can only be involved in simplices which lie inside the δ-neighborhood Q(δ) of
Q, where δ is the upper bound on the diameter of the simplices (defined at the
beginning of Section 4), which is only depending on T and d but neither on n
nor on i ∈ [b′n].

First we consider (4.8), here we give the details for the first term only; the
second term can be treated very similarly. Write W (n) = Wn,ε ∪W ′

n,ε ∪W (n),
where W (n) is the Poisson process that collects all remaining points from

W (n) \ (Wn,ε ∪W ′
n,ε), so it has a finite intensity. Then |Sk(K̃t,n,i)− Sk(K̃∗

t,n,i)|
is stochastically dominated by the random variable∑

Z∈Wn,ε∩Q

∑
(Y1,...,Yk)⊆W (n)∩Q(δ)

Yi 
=Yj

1{r({Z, Y1, . . . , Yk}) ≤ T}

≤ Wn,ε(Q)

(
W (n)(Q(δ))

k

)
≤ C 1

{
Wn,ε(Q

(δ)) > 0
}√

W (n)(Q(δ)) 2W (n)(Q(δ)), (4.9)

where the last inequality follows from Lemma 4.1, and by bounding Wn,ε(Q) by
W (n)(Q(δ)).

We can compute moments of this last expression by exploiting the indepen-
dence between (P ,Q) and (P ′,Q′). Indeed, the components Wn,ε, W

′
n,ε and

W (n) are independent, and so it is sufficient to consider (for C̃ ∈ R+)

E

[
1
{
Wn,ε(Q

(δ)) > 0
}

C̃Wn,ε(Q
(δ))
]
=

∞∑
k=1

P(Wn,ε(Q
(δ)) = k) C̃k

≤ C1(1− e−C2ε) ≤ C3ε,

for constants C1, C2, C3 < ∞; the last inequality follows by the mean-value
theorem. This completes the considerations for (4.8).

Second, we study the term in (4.7). This second order difference

|Sk(Kt,n)− Sk(K′
t,n,i)− Sk(K̃∗

t,n,i) + Sk(K̃′∗
t,n,i)|

can only be non zero if Wn,ε(Q
(δ)) > 0. The conclusion follows now in a similar

fashion as before (see (4.9)). Reasoning as we did after (4.2), we deduce (3.1).
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The binomial case. The structure of the proof works in the same fashion.
Since after applying the decomposition in martingale differences both (4.7) and
(4.8) do not depend on the σ-field Gn,i, we consider w.l.o.g. the case i = 1 (this
simplifies the notation). We begin with the first term in (4.8):

n−1∑
k=0

∣∣∣Sk(Kt(n
1/d{Y1, Y2, . . . , Yn}))− Sk(Kt(n

1/d{X1, Y2, . . . , Yn}))
∣∣∣

≤ 1{Y1 �= X1}
n−1∑
k=0

∑
i1,...,ik

1
{
r({Y1, Yi1 , . . . , , Yik}) ≤ n−1/d T

}
+ 1

{
r({X1, Yi1 , . . . , , Yik}) ≤ n−1/d T

}
,

where the second sum is taken over all combinations (i1, . . . , ik) in {2, . . . , n}
with pairwise different indices.

Also, for k1, k2 ≤ n−1 and for two sets {i1, . . . , ik1}, {j1, . . . , jk2}, which have
� common elements, the probabilities

P(r({Y1, Yi1 , . . . , , Yik1
}) ≤ n−1/d T, r({X1, Yj1 , . . . , Yjk2

}) ≤ n−1/d T | X1, Y1)

and

P(r({Y1, Yi1 , . . . , , Yik1
}) ≤ n−1/d T, r({Y1, Yj1 , . . . , Yjk2

}) ≤ n−1/d T | X1, Y1)

are at most (A/n)k1+k2−	 for a constant A ≥ Cd,T (‖κ‖∞ + ρ), where the
constant Cd,T only depends on d and T . Using this last insight, elementary
combinatorial calculations unveil

E

[( n−1∑
k=0

∣∣∣Sk(Kt(n
1/d{Y1, Y2, . . . , Yn}))− Sk(Kt(n

1/d{X1, Y2, . . . , Yn})))
∣∣∣ )2]

≤ ε
n−1∑

k1,k2=0

k2∧k1∑
	=0

(
n− 1

�

) (
n− 1− �

k1 − �

) (
n− 1− k1
k2 − �

)(A
n

)k1+k2−	

= ε
n−1∑

k1,k2=0

k1∧k2∑
	=0

(n− 1)!

(n− 1− k2 − k1 + �)! nk1+k2−	

A	

�!

Ak1−	

(k1 − �)!

Ak2−	

(k2 − �)!

≤ ε

n−1∑
k1,k2=0

k1∧k2∑
	=0

A	

�!

Ak1−	

(k1 − �)!

Ak2−	

(k2 − �)!
≤ Cε,

for a constant C < ∞.
The bound for the second order difference in (4.7) follows in a similar fashion;

we omit most of the details here, but refer to the proof of Theorem 3.3, where
second order differences are studied in great detail. We have,∣∣∣Sk(Kt(n

1/d{X1, X2, . . . , Xn}))− Sk(Kt(n
1/d{X ′

1, X2, . . . , Xn}))

− Sk(Kt(n
1/d{X1, Y2, . . . , Yn})) + Sk(Kt(n

1/d{X ′
1, Y2, . . . , Yn}))

∣∣∣
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=
∣∣∣ ∑
i1,...,ik

(
1
{
r({X1, Xi1 , . . . , Xik}) ≤ n−1/d t

}
− 1

{
r({X ′

1, Xi1 , . . . , Xik}) ≤ n−1/d t
})

−
∑

i1,...,ik

(
1
{
r({X1, Yi1 , . . . , Yik}) ≤ n−1/d t

}
− 1

{
r({X ′

1, Yi1 , . . . , Yik}) ≤ n−1/d t
})∣∣∣

≤
∑

i1,...,ik

∣∣∣1{r({X1, Xi1 , . . . , Xik}) ≤ n−1/d t
}

− 1
{
r({X1, Yi1 , . . . , Yik}) ≤ n−1/d t

} ∣∣∣
+

∑
i1,...,ik

∣∣∣1{r({X ′
1, Yi1 , . . . , Yik}) ≤ n−1/d t

}
− 1

{
r({X ′

1, Xi1 , . . . , Xik}) ≤ n−1/d t
} ∣∣∣,

where the sums are taken over all
(
n−1
k

)
k-element subsets (i1, . . . , ik) of

{2, . . . , n}. Clearly, a term only contributes to the sum if there is at least one
index u ∈ {i1, . . . , ik} for which Xu �= Yu. By using similar arguments as in the
proof of Theorem 3.3), we arrive at:

E

[( n−1∑
k=0

∣∣∣Sk(Kt(n
1/d{X1, X2, . . . , Xn}))− Sk(Kt(n

1/d{X ′
1, X2, . . . , Xn}))

− Sk(Kt(n
1/d{X1, Y2, . . . , Yn})) + Sk(Kt(n

1/d{X ′
1, Y2, . . . , Yn}))

∣∣∣ )2] ≤ Cε.

This yields (3.1). The rate of convergence in the Kantorovich-Wasserstein dis-
tance is an immediate consequence.

Proof of Theorem 3.3. The proof has the same structure as the proof of The-
orem 3.1. Let ν be arbitrary but fixed with ε := ‖κ − ν‖∞ ≤ ρ. Let [0, T ] be
partitioned into J equidistant intervals of length T/J marked by the points
t0, t1, . . . , tJ . We apply the fundamental decomposition

E

[
sup

t∈[0,T ]

|χκ,n(t)− χν,n(t)|2
]

≤ 2 J max
i≤J

E
[
|χκ,n(ti)− χν,n(ti)|2

]
+ 2 J max

i≤J
E

[
sup

t∈[ti−1,ti]

|χκ,n(t)− χν,n(t)− χκ,n(ti) + χν,n(ti)|2
]
.

(4.10)

The first term in (4.10) can be treated with the result in (3.1). In order to obtain
a bound on the second term, we use the monotonicity of the EC. It is enough
to study a generic index i ∈ [J ], so we set a = ti−1 and b = ti. Also, we write
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t∗ for the time in [a, b], where the supremum is attained. So t∗ is random and
measurable.

First, we decompose the EC in two terms which contain the simplices of even,
resp. odd, dimension. So, the first term is indexed by I1 = {k ∈ N0 : k is even},
the second by I2 = N0 \ I1. We only consider the index set I1, I2 works in a
similar fashion. The part of the second term in (4.10), which is related to I1, is
then

n−1
E

[( ∑
k∈I1

Sk(Kt∗,n)− Sk(K̃t∗,n)− Sk(Kb,n)− Sk(K̃b,n)

− E

[ ∑
k∈I1

Sk(Kt∗,n)− Sk(K̃t∗,n)− Sk(Kb,n)− Sk(K̃b,n)
])2]

.

(4.11)

We have for a specific dimension k ∈ N0

Sk(Kt∗,n)− Sk(K̃t∗,n)− Sk(Kb,n) + Sk(K̃b,n)

=
∑

σ∈K̃b,n\Kb,n,
dim(σ)=k

1{r(σ) ∈ (t∗, b]} −
∑

σ∈Kb,n\K̃b,n,
dim(σ)=k

1{r(σ) ∈ (t∗, b]} ,

all other simplices cancel. Using this insight, we split (4.11) in two terms as
follows

n−1
E

[∣∣∣∣∣ ∑
k∈I1

∑
σ∈Kb,n\K̃b,n,

dim(σ)=k

1{r(σ) ∈ (t∗, b]}

− E

[ ∑
k∈I1

∑
σ∈Kb,n\K̃b,n,

dim(σ)=k

1{r(σ) ∈ (t∗, b]}
]∣∣∣∣∣

2]
,

n−1
E

[∣∣∣∣∣ ∑
k∈I1

∑
σ∈K̃b,n\Kb,n,

dim(σ)=k

1{r(σ) ∈ (t∗, b]}

− E

[ ∑
k∈I1

∑
σ∈K̃b,n\Kb,n,

dim(σ)=k

1{r(σ) ∈ (t∗, b]}
]∣∣∣∣∣

2]
.

(4.12)

Clearly, it is enough to study the first term (4.12). If it is positive, then the
double sum in the first term in (4.12) is at most

∑
k∈I1

∑
σ∈Kb,n\K̃b,n,

dim(σ)=k

1{r(σ) ∈ (a, b]} − E

[ ∑
k∈I1

∑
σ∈Kb,n\K̃b,n,

dim(σ)=k

1{r(σ) ∈ (a, b]}
]
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+ E

[ ∑
k∈I1

∑
σ∈Kb,n\K̃b,n,

dim(σ)=k

1{r(σ) ∈ (a, b]} − 1{r(σ) ∈ (t∗, b]}
]

≤
∣∣∣∣∣ ∑
k∈I1

∑
σ∈Kb,n\K̃b,n,

dim(σ)=k

1{r(σ) ∈ (a, b]} − E

[ ∑
k∈I1

∑
σ∈Kb,n\K̃b,n,

dim(σ)=k

1{r(σ) ∈ (a, b]}
]∣∣∣∣∣

+ E

[ ∑
k∈I1

∑
σ∈Kb,n\K̃b,n,

dim(σ)=k

1{r(σ) ∈ (a, b]}
]
.

(4.13)

Otherwise, if it is negative, then the double sum in the first term in (4.12) is at
most

E

[ ∑
k∈I1

∑
σ∈Kb,n\K̃b,n,

dim(σ)=k

1{r(σ) ∈ (a, b]}
]
,

and this term is already contained in the estimate in (4.13). Hence, it is enough
to derive upper bounds for

n−1
E

[∣∣∣∣∣ ∑
k∈I1

∑
σ∈Kb,n\K̃b,n,

dim(σ)=k

1{r(σ)∈(a, b]} − E

[ ∑
k∈I1

∑
σ∈Kb,n\K̃b,n,

dim(σ)=k

1{r(σ)∈(a, b]}
]∣∣∣∣∣

2]

(4.14)

and n−1
E

[ ∑
k∈I1

∑
σ∈Kb,n\K̃b,n,

dim(σ)=k

1{r(σ)∈(a, b]}
]2

(4.15)

separately. We begin with (4.14), which can be treated with an MDS approach
similar as in the proof of Lemma 4.2 and Theorem 3.1. By using this MDS
approach we obtain that the expression in (4.14) is at most

n−1

b′n∑
i=1

E

[∣∣∣∣∣ ∑
k∈I1

∑
σ∈Kb,n\K̃b,n,

dim(σ)=k

1{r(σ)∈(a, b]} −
∑

σ′∈K′
b,n,i\K̃′

b,n,i,

dim(σ)=k

1{r(σ′)∈(a, b]}
∣∣∣∣∣
2]

(4.16)

We continue by estimating (4.16) and (4.15) in the Poisson and the binomial
case separately.
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The Poisson case. Using the fact that the simplices σ with σ ∩ Q(zn,i) = 0
appear in both of the double sums inside the expectation in (4.16), we can bound
(4.16) by

2 n−1

b′n∑
i=1

E

[∣∣∣∣∣ ∑
k∈I1

∑
σ∈Kb,n\K̃b,n,

dim(σ)=k

1{σ ∩Q(zn,i) �= ∅, r(σ) ∈ (a, b]}
∣∣∣∣∣
2]

+ 2 n−1

b′n∑
i=1

E

[∣∣∣∣∣ ∑
k∈I1

∑
σ′∈K′

b,n,i\K̃
′
b,n,i,

dim(σ)=k

1
{
σ′ ∩Q(zn,i) �= ∅, r(σ′) ∈ (a, b]

} ∣∣∣∣∣
2]

.

(4.17)

Clearly, it is enough to study the first term in (4.17). We show that there is
a constant, which is uniform in i and n, such that each expectation is at most
C|b − a|ε, where ε is an upper bound for the supremum distance between the
densities κ and ν. Let i ∈ [b′n] be arbitrary but fixed and set Q = Q(zn,i).
Moreover, we let

Wn = P(n) ∩ Q(n), Pn,ε = P(n) \ Q(n), Qn,ε = Q(n) \ P(n).

These processes are independent. First, we compute the expectation on the
cube Q given that Wn(Q

(δ)) = m and Pn,ε(Q
(δ)) = m̃, so that we can write

Pn,ε∩Q(δ) = {Z1, . . . , Zm̃} and P(n)∩Q(δ) = {Y1, . . . , Ym∗}, wherem∗ = m+m̃.
Then the expectation is dominated by

E

⎡⎣∣∣∣∣∣
m−1∑
k=0

m̃∑
u=1

∑
(i1,...,ik)⊆[m∗]

1{r({Zu, Yi1 , . . . , Yik}) ∈ (a, b]}
∣∣∣∣∣
2
⎤⎦ , (4.18)

note that this expression is 0 if m̃ = 0 because each simplex necessarily contains
at least one Poisson point of Pn,ε. In order to compute the expectation, we need
to control

P(r({Zu, Yi1 , . . . , Yik}) ∈ (a, b], r({Zu′ , Yj1 , . . . , Yjk′ }) ∈ (a, b]) (4.19)

for arbitrary tuples (i1, . . . , ik), (j1, . . . , jk′) and indices k, k′, u, u′. For this,
we simply omit the simplex with the higher dimension. We obtain for the
Vietoris-Rips filtration the uniform upper bound Cd,T,‖κ‖∞,ρ(k ∧ k′)2|b − a|,
as in Lemma 4.3. The constant Cd,T,‖κ‖∞,ρ only depends on d, T , ‖κ‖∞, ρ and
is independent* of ν. Then (4.18) is at most

C
m∗∑

k,k′=1

m̃∑
u,u′=1

(
m∗

k

)(
m∗

k′

)
(k ∧ k′)2|b− a| (4.20)

≤ C(m∗)p22m
∗ |b− a|1{m̃ > 0} , (4.21)

for some p ∈ R+, and a constant C independent of i ∈ [b′n], n and independent*
of ν.
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If the Čech filtration is used instead, we bound above the probability in (4.19)
by C ′

d,T,‖κ‖∞,ρ(k ∧ k′)d+2|b− a| for a constant C ′
d,T,‖κ‖∞,ρ, which only depends

on d, T , ‖κ‖∞, ρ and which is independent* of ν, see Lemma 4.4. So the upper
bound in (4.21) changes only in terms of the constants but not in its structure.

Finally, we have to weigh this last upper bound according to the distribution
of Pn,ε(Q

(δ)) and Wn(Q
(δ)). Note that the Poisson parameter of Pn,ε(Q

(δ)) is

at most ε |Q(δ)|. It is now straightforward to show that (for each C̃ < ∞)∑
m∈N0

∑
m̃∈N0

(
P(Wn(Q

(δ)) = m) P(Pn,ε(Q
(δ)) = m̃) (m∗)peC̃m∗ |b− a|1{m̃ > 0}

)
≤ Cε|b− a|

for a constant C that is also independent of i ∈ [κ] and n and independent* of
ν. This shows the claim for (4.14) because |b− a| = T/J .

The claim regarding (4.15) follows in a similar fashion by partitioning again
the simplices according to their position:

n−1
E

[ b′n∑
i=1

∑
k∈I1

∑
σ∈Kb,n\K̃b,n,

dim(σ)=k

1{σ ∩Q(zn,i) �= ∅, r(σ) ∈ (a, b]}
]2

≤ n−1

⎛⎝ b′n∑
i=1

Cε|b− a|

⎞⎠2

≤ Cn|b− a|2ε2.

This last upper bound is of order CT 2ε2nJ−2.
The binomial case. Again, we begin with (4.16). Here the martingale differ-

ence sequence is constructed by replacing points Xi and Yi with independent
points X ′

i and Y ′
i , respectively. For a fixed i, we have the following relation. A

k-simplex σ in Kb,n not containing n1/dXi, also lies in K′
b,n,i, and thus cancels in

(4.16). The same holds for a k-simplex σ′ not containing n1/dX ′
i: if σ

′ ∈ K′
b,n,i,

then σ′ ∈ Kb,n. Again, these simplices cancel in (4.16). Clearly, this relation

similarly holds for the simplicial complexes K̃b,n and K̃b,n,i. Hence, (4.16) is at
most

2 n−1
n∑

i=1

E

[∣∣∣∣∣ ∑
k∈I1

∑
σ∈Kb,n\K̃b,n,

dim(σ)=k

1
{
σ = n1/d{Xi, Xj1 , . . . , Xjk}, {j1, . . . , jk} ⊆ [n]

}

1{r(σ) ∈ (a, b], Xi �= Yi or Xj� �= Yj� for at least one � ∈ [k]}
∣∣∣∣∣
2]

(4.22)

+ 2 n−1
n∑

i=1

E

[∣∣∣∣∣ ∑
k∈I1

∑
σ∈Kb,n\K̃b,n,

dim(σ)=k

1
{
σ = n1/d{X ′

i, Xj1 , . . . , Xjk}, {j1, . . . , jk} ⊆ [n]
}
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1
{
r(σ) ∈ (a, b], X ′

i �= Y ′
i or Xj� �= Yj� for at least one � ∈ [k]

} ∣∣∣∣∣
2]

.

It suffices to consider the expectation in (4.22) for an arbitrary but fixed index
i. Let N be the number of observations Xj in the δ-neighborhood of Xi, so,

N =
∑
j:j 
=i

1
{
n1/dXj ∈ B(n1/dXi, δ)

}
+ 1.

Conditional on N and Xi, we can then compute the expectation. To this end,
consider a generic simplex {n1/dXi, Z1, . . . , Zk}, where Zi are iid onB(n1/dXi, δ)
from Xn with a strictly positive and bounded density function. In the same
fashion, we write Z̃i for the corresponding elements from Yn. Then, for the
Vietoris-Rips complex, by using Lemma 4.3,

P

(
r({n1/dXi, Z1, . . . , Zk}) ∈ (a, b],

Xi �= Yi or Zj �= Z̃j for a j ∈ {1, . . . , k}
)
≤ C(k + 1)k |b− a|ε.

(4.23)

where C only depends on d, T , ‖κ‖∞ and ρ. If the Čech filtration is used instead,
we exchange the factor C(k+1)k by kd+2 (multiplied by a certain constant which
only depends on d, T , ‖κ‖∞ and ρ); see Lemma 4.4.

Consequently, similar to the Poisson case, we obtain as an upper bound for
a single expectation in (4.22)

n∑
m=1

P(N = m)

m∑
k,k′=1

(
m

k

)(
m

k′

)
P

(
r({n1/dXi, Z1, . . . , Zk}) ∈ (a, b],

Xi �= Yi or Zj �= Z̃j for a j ∈ {1, . . . , k}
)

≤ C|b− a|ε
n∑

m=1

P(N = m)ec̃mmq (4.24)

for certain constants q, c̃, C < ∞. The conclusion now follows from a Poissoniza-
tion argument as the probability of n1/dXj hitting B(n1/dXi, δ) is αn−1 for a
constant α ∈ [0 ∨ (inf κ − ρ), supκ + ρ]. This shows that (4.16) (and thus also
(4.14)), is at most C T J−1 ε for a certain C < ∞ which is independent of
i ∈ [n], n and independent* of ν.

It is now straightforward to see that the term in (4.15) is bounded above in
a similar fashion by Cn(T J−1 ε)2. We omit the details.

4.3. Asymptotic normality

In order to verify the asymptotic normality, we first show the strong stabilizing
property of the EC.
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Proposition 4.5 (Strong stabilization). Let t ∈ [0,∞). Consider the Čech or
the Vietoris-Rips complex Kt(P ) obtained from a locally finite point cloud P .

Write Δ(t, P ) = χ(Kt({0}∪P ))−χ(Kt(P )). Define the radius of stabilization
S := 2t. There is a random variable Δ∞(t, P ) ∈ R such that

Δ(t, (P ∩B(0, S)) ∪A) = Δ∞(t, P )

for all finite A ⊆ R
d \B(0, S).

In particular, the equalities in (3.6) and (3.7) are true.

Proof. Consider the difference

Δ(t, P ) = χ(Kt({0} ∪ P ))− χ(Kt(P ))

=

∞∑
k=0

(−1)k {Sk(Kt({0} ∪ P ))− Sk(Kt(P ))}

which is determined by the points inside the S-neighborhood of 0, B(0, S).
Moreover, let n be the number of points of P in B(0, S), i.e. P ∩ B(0, S) =
{z1, . . . , zn} for generic points z1, . . . , zn. Then Δ∞(t, P ) equals

Δ∞(t, P ) =

n∑
k=0

(−1)k
∑

(i1,...,ik)

1{r(0, zi1 , . . . , zik) ≤ t} ,

where the second sum is taken over all k-tuples {i1, . . . , ik} ⊆ [n] such that
iu �= iv for all pairs (u, v), u �= v.

Finally, we prove the amendment. It is clear from the above that (3.6) is true.
Moreover, noting that a change of the configuration of Poisson points inside a
box Q(z) with edge length 1 only affects points inside a (2t+

√
d)-neighborhood

of z, shows (3.7).

Proposition 4.6 (Positive variance). Let α(t) = E[Δ∞(t)], and let Z be a
random variable with a bounded density κ. Then, using the definition of γ in
(3.9)

E

[
γ(κ(Z)1/d(t, t))

]
− E

[
α(κ(Z)1/dt)

]2
> 0,

that is, the limit variances of (χn(t))n are positive for each t > 0.

Proof. We begin with the case of a uniform distribution κ ≡ 1. Then the limit
variance in the binomial sampling scheme equals

γ(t, t)− α(t)2 = E

[
E [D∞(t, 0)|F0]

2
]
− E [Δ∞(t)]

2
> 0 (4.25)

for each t > 0, the positivity follows from the fact that the distribution of Δ∞(t),
t > 0, is non degenerate and Penrose and Yukich [35, Theorem 2.1]. (Observe
that the second term in the last formula does not occur in the Poisson sampling
scheme).
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Let now κ be a general density. We infer from Proposition A.1 that the limit
variance in the binomial sampling scheme takes the form∫

[0,1]d
γ(κ(x)1/d(t, t))κ(x)dx−

(∫
[0,1]d

α(κ(x)1/dt)κ(x)dx
)2

≥
∫
[0,1]d

{
γ(κ(x)1/d(t, t))− (α(κ(x)1/dt))2

}
κ(x)dx,

which is positive for t > 0 by (4.25).

Proof of Theorem 3.2. Let t ∈ (0, T ] be arbitrary but fixed. The proof is divided
in two parts. First we derive (3.2), then (3.3).

Derivation of (3.2). Recall the definitions of D̃′
n(t, i) and D̃′A

n (t, i) given early
in Section 4. Let μn,t denote the distribution of χν,n(t)/Var(χν,n(t))

1/2, and
define

S =
1

2

∑
A�[b′n]

∑
i/∈A

D̃′
n(t, i)D̃

′A
n (t, i)( b′n

|A|
)
(b′n − |A|)

and S| =
1

2

∑
A�[b′n]

∑
i/∈A

D̃′
n(t, i) |D̃′A

n (t, i)|( b′n
|A|
)
(b′n − |A|)

.

Then, using [8, Theorem 2.2.] in case of the Kantorovich-Wasserstein distance,
and [26, Theorem 4.2] for the Kolmogorov distance, respectively, we obtain the
following two inequalities:

dW (μn,t,N0,1)

≤ 1

σ2
Var(S)1/2 +

1

2σ3

b′n∑
i=1

E

[
|D̃′

n(t, i)|3
]
, (4.26)

dK(μn,t,N0,1)

≤ 1

σ2
Var(S)1/2 +

1

σ2
Var(S|)1/2

+
1

4σ3

b′n∑
i=1

E

[
|D̃′

n(t, i)|6
]1/2

+

√
2π

16σ3

b′n∑
i=1

E

[
|D̃′

n(t, i)|3
]
,

(4.27)

where σ2 = Var(χν,n(Kt)). It thus remains to bound the terms on the right-hand
sides.

Using Fatou’s lemma, lim infn→∞ Var(χν,n(t)) ≥ c∗ for some positive c∗ ∈
R for all ν ∈ B∞(κ, ρ). Here ρ must be sufficiently small, see (4.28) below.
Moreover, we will see that c∗ depends on t. Indeed, lim infn→∞ Var(χκ,n(t))

1/2 ≥
c1 > 0 by Proposition 4.6, where c1 depends on t. Furthermore, using the result
of Theorem 3.1, there is a constant c2 such that E[(χκ,n(t) − χν,n(t))

2]1/2 ≤
c2‖κ− ν‖1/2∞ whenever ‖κ− ν‖∞ ≤ ρ̃, for some ρ̃ > 0 which is fixed. (Note that
c2 can be chosen uniformly in t ∈ [0, T ].) Hence,

lim inf
n→∞

{
inf

ν∈B∞(κ,ρ)

√
Var(χν,n(t))

}
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= lim inf
n→∞

{
inf

ν∈B∞(κ,ρ)

√
E
[
χ2
ν,n(t)

]}
≥ lim inf

n→∞

√
E
[
χ2
κ,n(t)

]
−
{

inf
ν∈B∞(κ,ρ)

sup
n∈N

√
E
[
(χκ,n(t)− χν,n(t))

2
]}

≥ c1 − c2ρ
1/2 (4.28)

which is positive if ρ is sufficiently small. This implies, σ2 ≥ c∗n for all but
finitely many n and uniformly in ν ∈ B∞(κ, ρ) for some c∗ > 0, which depends
on t.

Furthermore, Lemma 4.2 says that, for each p ∈ N, E[|D̃′
n(t, i)|p] is bounded

above uniformly over all n, i ∈ [b′n] and ν ∈ B∞(κ, ρ̃). Hence given t, the second
term in (4.26) and the third and fourth term in (4.27) are of order b′n/n

3/2 which
is of order n−1/2. It remains to obtain bounds for Var(S) and Var(S′). We only
study Var(S) in detail. The calculations will show that Var(S′) admits a very
similar upper bound.

Var(S) =
1

4

∑
i∈[b′n]

∑
i′∈[b′n]

∑
A�[b′n]:A 
�i

∑
A′�[b′n]:A

′ 
�i′

Cov(D̃′
n(t, i)D̃

′A
n (t, i), D̃′

n(t, i
′)D̃′A′

n (t, i′))( b′n
|A|
)
(b′n − |A|)

( b′n
|A′|

)
(b′n − |A′|)

,

(4.29)

where all covariances are uniformly bounded by Lemma 4.2.
First consider the Poisson case. Clearly, D̃′

n(t, i), D̃
′A
n (t, i) both only involve

Poisson points in a δ-neighborhood of zn,i and δ does not depend on t, A, zn,i,
see also Proposition 4.5. Consequently, exploiting the independence property
of the Poisson process, for a given i, the number of indices i′ such that the
covariances in (4.29) are non zero does not depend on n and is bounded above
by some constant. Moreover, a combinatorial argument shows that∑

A�[b′n],A
�i

1( b′n
|A|
)
(b′n − |A|)

≡ 1.

Hence, Var(S) is of order b′n. This completes the calculations in the Poisson
case.

Now we bound (4.29) in the binomial case. If i = i′, then the remaining double
sum is bounded above by a constant. To see this we use Cauchy-Schwarz and
the boundedness of the variances together with the previous displayed formula.
If i �= i′, then we need to consider the covariances between simplices in a δ-
neighborhood around Xi, X

′
i and Xi′ , X

′
i′ . The covariance is only non zero if

the distance between {Xi, X
′
i} and {Xi′ , X

′
i′} is at most δ. This happens with a

probability proportional to n−1. This shows once more that Var(S) is of order
n and establishes the claim in the case of a binomial sampling scheme. This
demonstrates (3.2).

Derivation of (3.3) is now straightforward. Letting N0,1(·) denote the law of
the standard normal distribution, write

dK(χν,n(t), χκ,n(t)) ≤ dK

(
χν,n(t)/

√
Var(χν,n(t)),N0,1

)
(4.30)
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+ dK

(
N0,1

(
· /
√

Var(χν,n(t))
)
,

N0,1

(
· /
√

Var(χκ,n(t))
)) (4.31)

+ dK

(
N0,1, χκ,n(t)/

√
Var(χκ,n(t))

)
. (4.32)

If ν ∈ B∞(κ, ρ), where ρ is selected as above, the previous results regarding
the normal approximation show that (4.30) and (4.32) attain the rate Cn−1/2,
which is uniform in ν ∈ B∞(κ, ρ) for a given t ∈ [0, T ].

Regarding (4.31), we use the following continuity result of the standard nor-
mal distribution

sup
u∈R

|N0,1(a+ bu)−N0,1(u)| ≤ |a|+ |b| ∨ (|b|−1)− 1.

Thus, we are left to study the quotients∣∣∣∣∣
√

Var(χν,n(t))

Var(χκ,n(t))
− 1

∣∣∣∣∣ and

∣∣∣∣∣
√

Var(χκ,n(t))

Var(χν,n(t))
− 1

∣∣∣∣∣ . (4.33)

Given two centered square integrable random variables Z1, Z2, we have by the
reverse triangle inequality

|E
[
Z2
1

]1/2 − E
[
Z2
2

]1/2 | ≤ E
[
(Z1 − Z2)

2
]1/2

.

Thus, recalling Theorem 3.1, |Var(χν,n(t))
1/2 − Var(χκ,n(t))

1/2| ≤
√
C0,κ‖ν −

κ‖1/2∞ uniformly over ν ∈ B∞(κ, ρ̃). Using (4.28), we see that both terms in

(4.33) are of order ‖ν−κ‖1/2∞ uniformly over ν ∈ B∞(κ, ρ) for some ρ > 0 small
enough given t. This completes the proof.

Proof of Theorem 3.4. Convergence of the finite dimensional distributions is
shown in Proposition A.1. In the subsequent propositions, we show stochas-
tic equicontinuity (Proposition 4.7) and the Hölder continuity of the sample
paths (Proposition 4.8).

Proposition 4.7 (Tightness). Consider a Poisson or a binomial sampling
scheme and assume the conditions of Theorem 3.4. The family of probability
measures {L((χn(t) : t ∈ [0, T ])) : n ∈ N} is tight in the Skorohod J1-topology.

Proof of Proposition 4.7. The tightness will be established with [3, Theorem
3] (which is an extension of [4, Theorem 15.6]) and the remark following this
theorem. Let I1 be the even integers in N0 and let I2 be the odd integers in N.
Define the two càdlàg processes

[0, T ] � t �→ Σi,n(t) =
∑
q∈Ii

Sq(Kt,n)

for n ∈ N and i ∈ {1, 2}. Then

|χn(t)| ≤
1√
n

∑
i=1,2

∣∣∣Σi,n(t)− E [Σi,n(t)]
∣∣∣.
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and

|χn(s)− χn(t)| ≤
1√
n

∑
i=1,2

∣∣∣Σi,n(s)− Σi,n(t)− E [Σi,n(s)− Σi,n(t)]
∣∣∣.

Hence, (n−1/2(χn(·)− E [χn(·)]))n≥1 is tight if (n−1/2(Σi,n(·)− E [Σi,n(·)]))n≥1

is for both i = 1 and i = 2 (we refer to [4] for classical tightness results in terms
of the modulus of continuity).

Consequently, the rest of the proof is dedicated to verify the tightness of
the sequence (n−1/2(Σi,n(·)− E [Σi,n(·)]))n≥1 for i ∈ {1, 2}. We proceed in two
parts. Using the amendment of the main theorem in [3], we first show that it is
sufficient to compute the modulus of continuity of the processes (n−1/2(Σi,n(·)−
E [Σi,n(·)]))n≥1 on a reduced grid Γn of (n+1) equidistant points on [0, T ]. In the
second part, we verify the moment condition. The calculations are essentially
the same for the binomial and the Poisson sampling scheme.

Part 1. We show that for i ∈ {1, 2}

sup
s,t∈[0,T ]

1√
n

∣∣∣Σi,n(s)− Σi,n(t)− E [Σi,n(s)− Σi,n(t)]
∣∣∣

≤ sup
s,t∈Γn

1√
n

∣∣∣Σi,n(s)− Σi,n(t)− E [Σi,n(s)− Σi,n(t)]
∣∣∣+ C√

n
,

(4.34)

for some constant C ∈ R+ not depending on n. To see this, let 0 ≤ s ≤ t ≤ T
and s, s, t, t ∈ Γn with s ≤ s ≤ s, t ≤ t ≤ t and |t − t| ≤ T/n, |s − s| ≤ T/n.
Then, due to monotonicity of s �→ Σi,n(s),(

Σi,n(t)−E [Σi,n(t)]
)
−
(
Σi,n(s)− E [Σi,n(s)]

)
≤
(
Σi,n(t)− E

[
Σi,n(t)

] )
−
(
Σi,n(s)− E [Σi,n(s)]

)
+
(
E
[
Σi,n(t)

]
− E [Σi,n(t)]

)
−
(
E [Σi,n(s)]− E [Σi,n(s)]

)
.

This gives together with a similar lower bound

sup
s,t∈[0,T ]

1√
n

∣∣∣Σi,n(s)− Σi,n(t)− E [Σi,n(s)− Σi,n(t)]
∣∣∣

≤ sup
s,t∈Γn

1√
n

∣∣∣Σi,n(s)− Σi,n(t)− E [Σi,n(s)− Σi,n(t)]
∣∣∣

+ 2 sup
s,t∈Γn

|s−t|≤T/n

(
E [Σi,n(t)]− E [Σi,n(s)]

)
.

It remains to show that the last summand can be bounded by a constant C > 0.
To this end, let 0 ≤ s ≤ t ≤ T with a distance of at most T/n. Then

E [Σi,n(t)]− E [Σi,n(s)]

=
∑
q∈Ii

E [Sq(Kt,n)− Sq(Ks,n)]

≤
b′n∑
i=1

∑
q∈N0

E

⎡⎣ ∑
σ∈Kt,n,dimσ=q

1{σ ∩Q(zn,i), r(σ) ∈ (s, t]}

⎤⎦ .

(4.35)
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Let M = Mn,i be the number of points of P(n) resp. n1/d
Xn lying in Q(zn,i)

(δ)

with δ = 2T . Using Lemmas 4.3 and 4.4, we have conditional on M

E

⎡⎣ ∑
σ∈Kt,n,dimσ=q

1{σ ∩Q(zn,i), r(σ) ∈ (s, t]}

⎤⎦
≤ 1{q ≤ M − 1}

(
M

q + 1

)
Cq|t− s|

for a constant Cq which is uniform in n, i ∈ [b′n] and s, t, moreover Cq is
independent* of ν and satisfies Cq ≤ cecq. In the Poisson sampling scheme,
one uses that M has a Poisson distribution with a parameter λ ∈ R+ that is
uniformly bounded above in n and i ∈ [b′n]. Then using Lemma 4.1, we find that
the right-hand side of (4.35) is of order

b′n∑
i=1

∞∑
m=0

P(Mn,i = m)

m−1∑
q=0

(
M

q + 1

)
ecq|s− t|

≤ C

∞∑
m=0

e−λλ
m

m!

m−1∑
q=0

2qecqmc b′n|s− t|

≤ C

∞∑
m=0

e−λλ
m

m!

(
2mecmmc

)
b′n |s− t|

≤ Cb′n|s− t|.

Since |s− t| ≤ T/n and b′n/n → 1, we see that, in the Poisson sampling scheme,
E [|Σi,n(s)− Σi,n(t)|] is bounded above by a constant uniformly in s, t with
|s− t| ≤ T/n and n ∈ N.

It is a standard routine to verify the same statement for the binomial sampling
scheme, using the fact that in this case Mn,i tends to a Poisson distribution.
This concludes the proof of (4.34).

Part 2. We verify the moment condition from Bickel and Wichura (1971) for
the maps

Γn � t �→ n−1/2
∑
q∈I

Sq(Kt,n)− E [Sq(Kt,n)] ,

where I ∈ {I1, I2}. We write Δq,n(s, t) for Sq(Kt,n)−Sq(Ks,n). Let 0 ≤ r ≤ s ≤
t ≤ T be elements in Γn. We show

n−2
E

[(∑
q∈I

Δq,n(r, s)− E [Δq,n(r, s)]
)2

(∑
q∈I

Δq,n(s, t)− E [Δq,n(s, t)]
)2]

≤ C|s− r||t− s|

(4.36)

for a constant C not depending on n and r, s, t ∈ Γn, r ≤ s ≤ t.
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First, for any s ≤ t, we rewrite Δq,n(s, t) − E [Δq,n(s, t)] as a martingale
difference sequence

Δq,n(s, t)− E [Δq,n(s, t)] =

b′n∑
i=1

E

[
Δq,n(s, t)− Δ̃q,n,i(s, t)|Gn,i

]
,

where the filtration (Gn,i : i = 1, . . . , b′n) is introduced at the beginning of

Section 4 and where Δ̃q,n,i(s, t) = Sq(K′
t,n,i)−Sq(K′

s,n,i). With these abrevations
the left-hand side of (4.36) equals∑

i,j,k,	∈DM

∑
q1,...,q4∈I

n−2
E

[
E

[
Δq1,n(s, t)− Δ̃q1,n,i(s, t) | Gn,i

]
E

[
Δq2,n(s, t)− Δ̃q2,n,j(s, t)) | Gn,j

]
E

[
Δq3,n(r, s)− Δ̃q3,n,k(r, s) | Gn,k

]
E

[
Δq4,n(r, s)− Δ̃q4,n,	(r, s) | Gn,	

] ]
,

(4.37)

where the outer summation is extended over DM, the set of quadruples with
“(at least a) double maximum” meaning the set of elements in [b′n]

4 for which
the greatest index appears at least twice. All other index combinations have
expectation 0 and thus do not enter the sum. We divide the remainder of the
proof in two steps.

Step 1. We show that we can reduce the sum over DM to a few smaller sums,
each of which is extended over only O((b′n)

2) indices, and one sum over three
indices (of the order O(b′n)

3 indices), but with an extra factor of n−1. This then
enables us to derive the desired bounds, which is indicated in Step 2 below.

Due to the symmetry of the situation, it is enough to study the subcases of
(4.37) with i < j < � = k and i < k < � = j. In these cases the summands in
(4.37) have the structure E[F (W,V )G(W,V,R)], where W are the observations
with index less than i, V are the observations with index i and R are the observa-
tions larger than i. To be more precise, the first conditional expectation in (4.37)
is F (W,V ) with W = P(n)∩ (Q(zn,1 ∪ · · · ∪Q(zn,i−1), or W = (X1, . . . , Xi−1),
respectively, and V = P(n) ∩ Q(zn,i), or V = Xi, respectively. The last three
conditional expectations in (4.37) are not only functions of V and W , but also
of R = P(n) ∩ (Q(zn,i+1) ∪ · · · ∪Q(zn,	), or R = (Xi+1, . . . , X	), respectively.

Clearly, W,V,R are independent. Hence, if we omit the variable V as in-
put in the second factor, we see by using an independence argument that
E[F (W,V )G(W,R)] = 0 because E[F (w, V )] = 0 for almost every realization
w = W . It thus suffices to study the difference F (W,V )(G(W,V,R)−G(W,R)).
To make this more clear, let

Δ′
q,n,i(s, t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Sq(Kt(P(n) \Q(zn,i))), Poisson sampling,

−Sq(Ks(P(n) \Q(zn,i)))

Sq(Kt(n
1/d[Xn \ {Xi}])), binomial sampling,

−Sq(Ks(n
1/d[Xn \ {Xi}]))



Approximation theorems and bootstrap for the EC 4497

Δ̃′
q,n,j,i(s, t)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sq(Kt({[P(n) \Q(zn,j)]

∪[P ′(n) ∩Q(zn,j)]} \Q(zn,i)))

−Sq(Ks({ [P(n) \Q(zn,j)]

∪[P ′(n) ∩Q(zn,j)] } \Q(zn,i))), Poisson sampling,

Sq(Kt({n1/d[{X ′
j} ∪ (Xn \ {Xi, Xj})]))

−Sq(Ks({n1/d[{X ′
j}

∪(Xn \ {Xi, Xj})])), binomial sampling.

Let us consider the case i < j < k = �, and set

D(q1, i) = E

[
Δq1,n(s, t)− Δ̃q1,n,i(s, t) | Gn,i

]
and D′(q1, j, i) = E

[
Δ′

q1,n,i
(s, t)− Δ̃′

q1,n,j,i
(s, t) | Gn,i

]
. Similarly we define

D(q2, i) and D′(q2, j, i), while D(q3, �), and D′(q3, �, i) are defined with (s, t)
replaced by (r, s), and the same holds for D(q4, �), and D′(q4, �, i).

Using this notation, the expression F (W,V )(G(W,V,R)−G(W,R)) is of the
form

E

[
D(q1, i)

[
D(q2, j)D(q3, �)D(q4, �)−D′(q2, j, i)D(q3, �, i)D(q4, �, i)

]]
and withD(q3, q4, �)=D(q3, �)D(q4, �) andD′(q3, q4, �, i)=D′(q3, �, i)D

′(q4, �, i),
straightforward calculations show that this can be written as

E

[
D(q1, i)

[
D(q2, j)−D′(q2, j, i)

]
D(q3, q4, �)

]
+ E

[
D(q1, i)

[
D(q3, �)−D′(q3, �, i)

]
D(q4, �)D

′(q2, j, i)
]

+ E

[
D(q1, i)

[
D(q4, �)−D′(q4, �, i)

]
D′(q3, �, i)D

′(q2, j, i)
]
.

Each of the last three summands involves a factor of the form

D(q, j)−D′(q, j, i)

= E

[
Δq,n(s, t)− Δ̃q,n,i(s, t)−Δ′

q,n,i(s, t)− Δ̃′
q,n,j,i(s, t) | Gn,i

] (4.38)

for some q and j �= i (note that (r, s) can also take the role of (s, t) here).
We now study this difference inside this conditional expectation. In the Poisson
case, we write i � j for Q(zn,i)

(δ) ∩Q(zn,j)
(δ) �= ∅, and i �� j otherwise. In the

binomial sampling scheme, the notation i � j (resp. ��) simply means i = j
(resp. �=).

Using this notation, one finds that in the Poisson sampling scheme (4.38) is

only non zero if i � j because both Δq,n(s, t) − Δ̃q,n,j(s, t)) and Δ′
q,n,i(s, t) −

Δ̃′
q,n,j,i(s, t)) only involve q-simplices with filtration times in (s, t] which intersect

with Q(zn,j); and these are identical if i �� j. So the sum over three indices in
(4.36) reduces to a sum over essentially two indices only; more precisely, the
number of summands is of the order O

(
(b′n)

2
)
.
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If i � j in the binomial sampling, then we obviously have a sum over two
indices only, and (4.38) consists of the q-simplices containing an element of
{Xj , X

′
j}. If i �� j, (4.38) consists of q-simplices containing and element of both

{Xj , X
′
j} and {Xi, X

′
i}, and crucially, this event is of order n−1. So the latter

sum, which is a sum over three indices, has an additional correction factor
n−1. With these insights and the techniques presented in the next step, it is
straightforward to verify the claim for these subcases.

Similar arguments hold in the case i < k < j = �. We omit further details in
this step and continue with Step 2.

Step 2. After having reduced the sums in Step 1, we now go back to (4.37)
and study this sum in the reduced settings. We verify the claim for the index
combinations containing two pairs or one triple, so that the relevant index set
has order (b′n)

2. Due to the symmetry of the situation, it is sufficient to study
(a) i = j, k = �, (b) i = k, j = � and (c) i < j = k = �. So, we have (at most)
two indices only in each subcase (a) to (c); we write i and � for these.

The difference Δq,n(s, t)− Δ̃q,n,i(s, t) consists only of simplices in a δ-neigh-
borhood of Q(zn,i), or in a δ-neighborhood of Xi or X ′

i, respectively, with a
filtration time in (s, t], i.e.,

|Δq,n(s, t)− Δ̃q,n,i(s, t)|

≤
{∑

σ∈Kt∪K′
t,n,i

1{r(σ) ∈ (s, t], σ ∩Q(zn,i) �= ∅} , Poi. sampling,∑
σ∈Kt∪K′

t,n,i
1{r(σ) ∈ (s, t], σ ∩ {Xi, X

′
i} �= ∅} , bin. sampling.

(4.39)

Furthermore, we can apply the following super-positioning principle of point
processes. Clearly, we can compute the conditional expectation in (4.37) using

five independent processes P(0)(n), . . . ,P(4)(n), resp. X
(0)
n , . . . ,X

(4)
n . We use the

process indexed by 0 for the outer expectation and the other four for each
conditional expectation. Since this last upper bound is non decreasing in the
number of points, we can use the joint process P∗(n) = P(0)(n)∪ . . .∪P(4)(n),

resp. X
∗
n = X

(0)
n ∪ . . . ∪ X

(4)
n in the increments in (4.39) and obtain for the

corresponding right-hand sides the following upper bounds{∑
σ∈K∗

t
1{r(σ) ∈ (s, t], σ ∩Q(zn,i) �= ∅} , Pois. sampling,∑

σ∈K∗
t
1
{
r(σ) ∈ (s, t], σ ∩ {X(0)

i , X
(1)
i , . . . , , X

(4)
i } �= ∅

}
, bin. sampling,

(4.40)

where K∗
t equals Kt(P∗(n)) resp. Kt(X

∗
n).

It is now a straightforward task, to calculate the relevant probabilities in the
Poisson and binomial sampling scheme. We begin with the Poisson sampling
scheme, where we use the spatial independence. For this let σ1 (resp. σ2, σ3, σ4)
be a generic simplex intersecting with Q(zn,i) (resp. Q(zn,j), Q(zn,k), Q(zn,	)).
Then by Lemma 4.3 and Lemma 4.4

P(r(σ1) ∈ (s, t], r(σ2) ∈ (s, t], r(σ3) ∈ (r, s], r(σ4) ∈ (r, s],
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σ1 ∩Qzn,i �= ∅, σ2 ∩Qzn,j �= ∅, σ3 ∩Qzn,k
�= ∅, σ4 ∩Qzn,�

�= ∅)
≤ P(r(σ1) ∈ (s, t], r(σ4) ∈ (r, s], σ1 ∩Qzn,i �= ∅, σ4 ∩Qzn,�

�= ∅)
≤ Cdimσ1Cdimσ4 |t− s||s− r|1{i �� �}+ Cdimσ1 |t− s|1{i � �} . (4.41)

Note that this upper bound applies to each subcase (a), (b) and (c) because we
only need to study the interplay between the random variables associated to i
and �.

Before completing the proof, we first provide similar bounds in the binomial
sampling scheme. This time σ1 is a generic simplex intersecting with the set

{X(0)
i , . . . , X

(4)
i }, a similar notation is used for the indices j, k, �. Again, we can

reduce the situation as follows

P(r(σ1) ∈ (s, t], r(σ2) ∈ (s, t], r(σ3) ∈ (r, s], r(σ4) ∈ (r, s], σ1 ∩ {X(0)
i , . . . , X

(4)
i } �= ∅,

σ2 ∩ {X(0)
j , . . . , X

(4)
j } �= ∅, σ3 ∩ {X(0)

k , . . . , X
(4)
k } �= ∅, σ4 ∩ {X(0)

� , . . . , X
(4)
� } �= ∅)

≤ P(r(σ1) ∈ (s, t], r(σ4) ∈ (r, s], σ1 ∩ {X(0)
i , . . . , X

(4)
i } �= ∅, σ4 ∩ {X(0)

� , . . . , X
(4)
� } �= ∅)

≤ Cdimσ1Cdimσ4 |r − s||s− t|P
(
d(n1/d{X(0)

i , . . . , X
(4)
i }, n1/d{X(0)

� , . . . , X
(4)
� }) ≥ δ

)
+ Cdimσ1 |r − s|P

(
d(n1/d{X(0)

i , . . . , X
(4)
i }, n1/d{X(0)

� , . . . , X
(4)
� }) ≤ δ

)
≤ Cdimσ1Cdimσ4 |s− r||t− s|+ Cdim σ1 |s− r| cn−1. (4.42)

We can now complete (4.37) using the upper bounds from (4.39) and (4.40)
for the martingale differences, and the upper bounds on the probabilities from
(4.41) and (4.42) for the Poisson and the binomial sampling scheme, respectively.

In the Poisson sampling scheme, we have to consider the quantity

n−2

b′n∑
i,	=1

∞∑
q1,...,q4=0

E

[ ∑
σ1∈K∗

t ,
dimσ1=q1

∑
σ2∈K∗

t ,
dimσ2=q2

∑
σ3∈K∗

t ,
dimσ3=q3

∑
σ4∈K∗

t ,
dimσ4=q4

1{r(σ1) ∈ (s, t], σ1 ∩Q(zn,i) �= ∅}
1{r(σ2) ∈ (s, t], σ2 ∩Q(zn,j) �= ∅}
1{r(σ3) ∈ (r, s], σ3 ∩Q(zn,k) �= ∅}

1{r(σ4) ∈ (r, s], σ4 ∩Q(zn,	) �= ∅}
]
.

(4.43)

In the binomial sampling scheme, we replace the “cube intersection conditions”
in (4.43) with the second line in (4.41) containing the “point intersection con-
ditions”.

We begin with the Poisson sampling scheme. Denote by pn,i(m) (resp. pn,	(m))
the probability that Q(zn,i)

(δ) (resp. Q(zn,	)
(δ)) contains m Poisson points of

P∗(n). We write pn,0(m) for the probability that Q(zn,i)
(δ) ∪Q(zn,	)

(δ) contain
m Poisson points of P∗(n). pn,i, pn,	 and pn,0 follow a Poisson distribution with
a Poisson parameter which can depend on the indices but which is uniformly
bounded above.
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We begin with the subcase (a), where i = j and k = �. Then (4.43) amounts
to

n−2

b′n∑
i,	=1

1{i �� �}
∞∑

m1,m2=0

pn,i(m1)pn,	(m2)

m1−1∑
q1,q2=0

m2−1∑
q3,q4=0

(
m1

q1 + 1

)(
m1

q2 + 1

)(
m2

q3 + 1

)(
m2

q4 + 1

)
× Cq1Cq4 |s− r||t− s|

+ n−2

b′n∑
i,	=1

1{i � �}
∞∑

m0=0

pn,0(m0)

m0−1∑
q1,...,q4=0

(
m0

q1 + 1

)(
m0

q2 + 1

)(
m0

q3 + 1

)(
m0

q4 + 1

)
Cq1 |t− s|

≤ C(|s− r||t− s|+ |t− s|n−1) ≤ 2C|s− r||t− s|,

where the last inequality follows because the interval length is bounded below
by n−1. The subcases (b) and (c) follow similarly, the only difference is that the
binomial coefficients change somewhat. The conclusion is the same. So we find
in all three cases that (4.43) is at most C|s− r||t− s|.

In the binomial sampling scheme, we replace the Poisson distributions pn,i, pn,	

and pn,0 by their binomial approximations conditional on the sets {X(0)
i , . . . ,

X
(4)
i }, {X(0)

	 , . . . , X
(4)
	 } and {X(0)

i , . . . , X
(4)
i } ∪ {X(0)

	 , . . . , X
(4)
	 }. Also, we re-

place the factor n−1 by |t− s| or |s− r| because the interval length is bounded
below by n−1. With these preparations, it is a routine to verify that (4.43) is
bounded above by C|s− r||t− s| for a C ∈ R+ independent of n.

Proposition 4.8. There is a continuous modification of G, whose sample paths
are locally β-Hölder continuous for each β ∈ (0, 1/2).

Proof of Proposition 4.8. First we prove the claim for the Poisson sampling
scheme. The claim for the binomial sampling scheme is then an immediate con-
sequence as shown below.

Let 0 ≤ s ≤ t ≤ T . We write Gκ for the Gaussian limit of the EC, when
the underlying density is κ. We use G for the Gaussian limit if κ is the uniform
distribution on [0, 1]d.

Since Gκ(t)−Gκ(s) follows a normal distribution, we have for each k ∈ N

E
[
(Gκ(t)−Gκ(s))

2k
]
=

k∏
i=1

(2i− 1)E
[
(Gκ(t)−Gκ(s))

2
]k

. (4.44)

Using the representation of the covariance function, we obtain in the Poisson
case

E
[
(Gκ(t)−Gκ(s))

2
]
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=

∫
[0,1]d

{
γ(κ(z)1/d(t, t))− 2γ(κ(z)1/d(t, s)) + γ(κ(z)1/d(s, s))

}
κ(z)dz

=

∫
[0,1]d

E

[
(G(κ(z)1/dt)−G(κ(z)1/ds))2

]
κ(z)dz. (4.45)

Consider the expectation in (4.45). Using the definition of γ, we have for s, t ≥ 0,

E
[
(G(t)−G(s))2

]
= E

[
E [D∞(t, 0)−D∞(s, 0)|F0]

2
]

≤ E
[
(D∞(t, 0)−D∞(s, 0))2

]
(4.46)

Given a simplicial complex K and the set Q = Q0, we write Sk(K;Q) for the
number of k-simplices in K with one vertex in Q. Given the upper bound T ,
there is an R ≥ 0 such that for all 0 ≤ t ≤ T , the limit D∞(t, 0) admits the
representation

D∞(t, 0) =

∞∑
q=0

(−1)q
{
Sq(Kt(P ∩B(0, R));Q)

− Sq(Kt([(P ∩B(0, R)) \Q] ∪ [P ′ ∩Q]);Q)
} (4.47)

(see proof of Proposition 4.5).

We can use the representation in (4.47) to obtain the following upper bound
for (4.46) (up to a universal multiplicative constant)

E

[( ∞∑
q=0

{
Sq(Kt(P ∩B(0, R));Q)− Sq(Ks(P ∩B(0, R));Q)

})2]
. (4.48)

We follow the calculations as in (A.1) to see that the expectation in (4.48) is at
most C|s− t| for a universal constant C, which only depends on T .

Combining the estimates from (4.44) to (4.48) yields that E
[
(Gκ(t)−

Gκ(s))
2k
]
≤ Ck|t − s|k for all 0 ≤ s, t ≤ T for a universal constant Ck ∈ R+

for all k ∈ N. Hence, by the Kolmogorov-Chentsov continuity theorem there
is a continuous modification of G, which is β-Hölder continuous with exponent
β ∈ ∪k≥1(0, (k − 1)/(2k)).

If the binomial sampling scheme is used, we have

E
[
(Gκ(t)−Gκ(s))

2
]
=

∫
[0,1]d

E

[
(G(κ(z)1/dt)−G(κ(z)1/ds))2

]
κ(z)dz

−
{∫

[0,1]d

(
α(κ(z)1/dt)− α(κ(z)1/ds)

)
κ(z)dz

}2

≤
∫
[0,1]d

E

[
(G(κ(z)1/dt)−G(κ(z)1/ds))2

]
κ(z)dz.

Consequently, the claim follows from the previous arguments.
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4.4. Results on the bootstrap

Proof of Theorem 3.5. The estimate κ̂n is uniformly consistent, i.e. there is a
random integer N0 such that ‖κ̂n − κ‖∞ ≤ ρ for all n ≥ N0. So, we can apply
(3.1) from Theorem 3.1 and (3.3) from Theorem 3.2 to obtain the desired result.

Proof of Theorem 3.6. The assertion of Theorem 3.6 is an immediate applica-
tion of Theorem 3.3.

Appendix A: Multivariate asymptotic normality

The proof is quite similar to the proof of Theorem 2.1 and 3.1 in [35]. However,
we cannot immediately apply their theorem because it formally only applies to
the density function κ = 1. Moreover, the EC is not necessarily polynomially
bounded. Straightforward calculations show, however, that it is exponentially
bounded. Indeed, let P be a finite point cloud, then

χ(Kt(P )) =

#P−1∑
k=0

(−1)kSk(Kt) ≤
#P−1∑
k=0

(
#P

k + 1

)
= 2#P − 1 ≤ exp(#P ).

Furthermore, as we treat the multivariate case, we want to obtain an analytic
expression of the covariance structure of the Gaussian process appearing in the
limit. For this we have to carry out the entire proof. However, since the EC is
closely related to persistent Betti numbers, we can use the ideas laid out in [25]
as a blueprint and so we will only sketch the main points here.

Proposition A.1 (Multivariate asymptotic normality). Let m ∈ N, a1, . . . ,
am ∈ R and t1, . . . , tm ∈ [0, T ] be arbitrary but fixed. Let Zn be either the Poisson
process P(n) or the binomial process n1/d

Xn. Then
∑m

u=1 au χ(Ktu(Zn)) tends
to a normal distribution as n → ∞ with mean zero. In the Poisson case, the
covariance is determined by the limit

lim
n→∞

Cov(χ(Ks(P(n))), χ(Kt(P(n)))) = E[γ(κ(Z)1/d(s, t))],

where Z has density κ and γ(s, t) = E [E [D∞(s, 0) | F0] E [D∞(t, 0) | F0]], and
in the binomial case by

lim
n→∞

Cov(χ(Ks(n
1/d

Xn)), χ(Kt(n
1/d

Xn)))

= E[γ(κ(Z)1/d(s, t))]− E[α(κ(Z)1/ds)]E[α(κ(Z)1/dt)],

where α(t) = E[Δ∞(t)].

Proof of Proposition A.1. Define H by n−1/2H(Zn) =
∑m

u=1 au χ(Ktu(Zn)).
First, we consider the
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Poisson sampling scheme. Recalling that P ′ z(n) = (P(n) \ Q(z) ∪ (P ′(n) ∩
Q(z)) and P ′ i(n) = P ′ zn,i(n) for i ∈ [n], write

n−1/2(H(P(n))− E [H(P(n))]) = n−1/2

b′n∑
i=1

E
[
H(P(n))−H(P ′ i(n))|Gn,i

]
=: n−1/2

b′n∑
i=1

Dn,i.

We verify the conditions of the central limit theorem given in [34]:

(1) supn∈N
1
b′n
E
[
max1≤i≤b′n D2

n,i

]
< ∞.

(2) 1√
b′n

max1≤i≤b′n |Dn,i| → 0 in probability as n → ∞.

(3) 1
b′n

∑b′n
i=1 D

2
n,i → σ2 in L1(P ) for some σ > 0 depending on (a1, . . . , am)′

and (t1, . . . , tm)′.

The positivity of σ follows from Proposition 4.6. Conditions (1) and (2)
follow from Lemma 4.2. Indeed, consider (1), which is less than
supn∈N max1≤i≤b′n E

[
D2

n,i

]
. Now E[D2

n,i] is bounded above in terms of the sin-

gle differences E[|χ(Ktu,n)−χ(K′
tu,n,i

)|2], 1 ≤ u ≤ m, and these expressions are
bounded above uniformly in n and i by Lemma 4.2. Regarding the property (2),
we use that

E

[(
b′n

−1/2
max

1≤i≤b′n
|Dn,i|

)4]
≤ sup

n∈N

(
b′n

−1
max

1≤i≤b′n
E
[
D4

n,i

] )
,

which tends to zero by Lemma 4.2. This shows (2). Finally, we verify (3). Clearly,

b′n∑
i=1

D2
n,i =

m∑
u,v=1

auav

b′n∑
i=1

Dn,i(tu)Dn,i(tv),

where Dn,i(t) = E
[
χ(Kt(P(n)))− χ(Kt(P ′ i(n))) | Gn,i

]
. We show that for each

pair (s, t) the random variable b′n
−1∑b′n

i=1 Dn,i(s)Dn,i(t) attains the limit stated
in the theorem. This is done in three steps. (i) We derive the covariance structure
in the case where κ ≡ 1. (ii) We verify the claim if κ is a blocked density of the

form
∑md

i=1 bi1Ai . (iii) Finally, using the approximation result Theorem 3.1, we
show the result for general density functions which satisfy (3.8).

Step (i). In this step, let κ ≡ 1 and let s, t ∈ R+. By construction P(n) is the
restriction of a homogeneous Poisson process to the cube [−n1/d/2, n1/d/2]d.
It is an immediate consequence of the strong stabilizing property outlined in
Proposition 4.5 that there is an N0 depending on z and T such that for all
n ≥ N0 and t ≤ T

χ(Kt(P(n)))− χ(Kt(P ′ z(n))) = D′
n(t, z) =: D∞(t, z) a.s.
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for a certain random variable D∞(t, z). Applying similar techniques as in the
proof of Proposition 5.5 in [25], it can be shown that

b′n
−1

b′n∑
i=1

Dn,i(s)Dn,i(t) → E [E [D∞(s, 0) | F0] E [D∞(t, 0) | F0]]

=: γ(s, t) a.s. and in L1(P ) (n → ∞).

Furthermore, the function γ is continuous, this follows from the continuity of
the variance function σ2(t) = γ(t, t) which we will prove now. Clearly, the vari-
ance function is bounded on each finite interval [0, T ] by the bounded moments
condition from Lemma 4.2. We have by construction

|σ2(t)− σ2(s)| =
∣∣ lim
n→∞

E
[
χn(t)

2 − χn(s)
2
] ∣∣

≤
√
2 lim sup

n→∞
E
[
(χn(t)− χn(s))

2
]1/2

lim
n→∞

(
E
[
χn(t)

2
]1/2

+ E
[
χn(s)

2
]1/2 )

≤
√
2 lim sup

n→∞
E
[
(χn(t)− χn(s))

2
]1/2

(
√
σ2(t) +

√
σ2(s)).

Consider the difference χn(t)−χn(s) which can be written in terms of martingale
differences as

E
[
|χn(t)− χn(s)|2

]
≤ n−1

b′n∑
i=1

E
[
|χ(Kt,n)− χ(Ks,n)− χ(K′

t,n,i) + χ(K′
s,n,i)|2

]
.

Hence, it suffices to show that for a given offset Q′ = Q(z)(δ), for some δ > 0,

E

[∣∣∣ ∞∑
q=0

#{σ ∈ Kt,n \ K′
t,n,i | σ ⊂ Q′, dimσ = q, r(σ) ∈ (s, t]}

∣∣∣2]
≤ C|s− t|

(A.1)

for some constant C which is independent of z and n. To this end, denote the
number of Poisson points in Q′ by N . Then N is Poisson with parameter λ, say,
that is bounded above by the Lebesgue measure of Q′ (because κ = 1). Let σ1

be a q1-simplex and σ2 a q2-simplex. One can show that

P(r(σ1) ∈ (s, t], r(σ2) ∈ (s, t]) ≤ P(r(σ1) ∈ (s, t]) ≤ Cqp1 |s− t|

for a certain p ∈ R+ which depends on the filtration (see Lemma 4.3 and
Lemma 4.4). Furthermore, we obtain for the factorial moment E[N !/(N −
q)!1{N ≥ q}] = λq for each q ∈ N0. Then, up to a multiplicative constant
and using � for the number of common points of the simplices σ1 and σ2, the
left-hand side of (A.1) is at most

∞∑
q2=0

q2∑
q1=0

q1+1∑
�=0

E

[(
N

�

)(
N − �

q1 + 1− �

)(
N − (q1 + 1)

q2 + 1− �

)
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× 1{N ≥ (q1 + 1 + q2 + 1− �}
]
qp1 |s− t|

=

∞∑
q2=0

q2∑
q1=0

q1+1∑
�=0

E

[
N !1{N ≥ (q1 + 1 + q2 + 1− �}
(N − (q1 + 1 + q2 + 1− �))!

]
qp1

�!(q1 + 1− �)!(q2 + 1− �)!
|s− t|

≤
∞∑
�=0

∞∑
q2=�−1

∞∑
q1=�−1

λq1+1+q2+1−� qp1
�!(q1 + 1− �)!(q2 + 1− �)!

|s− t|

=
∞∑
�=0

∞∑
q2=�−1

∞∑
q1=�−1

λq1−(�−1)qp1
(q1 − (�− 1))!

λq2−(�−1)

(q2 − (�− 1))!

λ�

�!
|s− t| ≤ C|s− t|.

This shows |σ2(t)− σ2(s)| ≤ C
√
|t− s| for all 0 ≤ s, t ≤ T and completes step

(i).

Step (ii). Let κ be a blocked density of the form
∑md

i=1 bi1Ai for positive

numbers bi and a partition (Ai)
md

i=1 of [0, 1]
d into rectangular sets Ai = ×d

i=1Ii,ji ,
where the (Ii,j)

m
j=1 partition [0, 1] in intervals of length m−1. We have that

b′n
−1

b′n∑
i=1

Dn,i(s)Dn,i(t) → E

[
γ(κ(Z)1/d(s, t))

]
a.s. and in L1(P)

for a random variable Z, which is distributed according to the blocked density
κ. The calculations are similar to those in the proof of Proposition 5.7 in [25],
we omit the details. This completes step (ii).

Step (iii). Let ε > 0. Let ν be a blocked density function which approximates
κ uniformly such that ‖ν−κ‖∞ ≤ ε. Note that this is possible because κ satisfies
(3.8). Using the result from Theorem 3.1, supt∈[0,T ] Var(χκ,n(t)−χν,n(t)) ≤ Cε,
for a certain constant C ∈ R+, which is independent of n. Hence, there is a
constant C ′ ∈ R+, which is independent of n such that

sup
s,t∈[0,T ]

∣∣Cov(χκ,n(s), χκ,n(t))− Cov(χν,n(s), χν,n(t))
∣∣ ≤ Cε.

Together with the continuity of (s, t) �→ γ(s, t) and the results from Step (ii), this

shows that b′n
−1∑b′n

i=1 Dn,i(s)Dn,i(t) → E[γ(κ(Z)1/d(s, t))] a.s. and in L1(P),
where Z has density κ. In particular, Var(χκ,n(t)) → E[γ(κ(Z)1/d(t, t))]. So the
calculations of step (3) are complete.

The binomial sampling scheme. The result follows as in [25] using Poissoniza-
tion arguments and the ideas of [35]; we only give a sketch and omit the technical
details. (The arguments are very straightforward for the EC because the radius
of stabilization is bounded, see also [23] for approximation results in the bino-
mial sampling scheme.)

Using the just cited sources, it is not difficult to show that for a general
density κ on [0, 1]d

Cov(χκ,n(s), χκ,n(t))

→ E

[
γ(κ(Z)1/d(s, t))

]
− E

[
E[Δ∞(s,Ph

Z)]
]
E
[
E[Δ∞(t,Ph

Z)]
]
,
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where we extend the definition of Δ∞ from (3.6) to the homogeneous Poisson
process on R

d with intensity τ > 0, which we denote by Ph
τ at this point. This

is we formally replace P by Ph
τ in (3.6); obviously the limit exists a.s. by the

same arguments. Then using the scaling properties of the Čech and Vietoris-
Rips filtration, Kat(P ) = Kt(aP ) for any (finite) point cloud P and filtration
parameters a, t > 0. Moreover, the distributions of the two homogeneous Poisson
processes aPh

τ and Ph
a−dτ coincide for all τ, a > 0. This implies E[Δ∞(t,Ph

τ )] =

E[Δ∞(τ1/dt,Ph
1 )].
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