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ABSTRACT: The creeping-flow theory describing evolution and
steady-state shape of two-dimensional ionic-conductor drops
under the action of surface tension and the subcritical (in terms
of the electric Bond number) electric field imposed in the substrate
plane is developed. On the other hand, the experimental data are
acquired for drops impacted or softly deposited on dielectric
surfaces of different wettability and subjected to an in-plane
subcritical electric field. Even though the experimental situation
involves viscous friction of drops with the substrates and
wettability-driven motion of the contact line, the comparison to
the theory reveals that it can accurately describe the steady-state drop shape on a non-wettable substrate. In the latter case, the drop
is sufficiently raised above the substrate, which diminishes the three-dimensional effects, making the two-dimensional description
(lacking the no-slip condition at the substrate and wettability-driven motion of the contact line) relevant. Accordingly, it is
demonstrated how the subcritical electric field deforms the initially circular drops until an elongated steady-state configuration is
reached. In particular, the surface tension tends to round off the non-circular drops stretched by the electric Maxwell stresses
imposed by the electrodes. A more pronounced substrate wettability leads to more elongated steady-state configurations observed
experimentally than those predicted by the two-dimensional theory. The latter cases reveal significant three-dimensional effects in
the electrically driven drop stretching. In the supercritical electric fields (corresponding to the supercritical electric Bond numbers),
the electrical stretching of drops predicted by the present linearized two-dimensional theory results in splitting into two separate
droplets. This scenario is corroborated by the predictions of the fully nonlinear results for similar electrically stretched bubbles in the
creeping-flow regime available in the literature as well as by the present experimental results on a substrate with slip.

1. INTRODUCTION

Electrowetting (EW) is of interest in a wide range of
applications and involves significant fundamental aspects.1−4

Control of drop deposition on a solid surface is important for
numerous industrial processes. In particular, EW allows for an
active switching between wettable and non-wettable surface
states without changing the liquid and surface properties.
Moreover, drop deposition and spraying in many cases aim at
enhanced spreading and reduction or complete suppression of
drop splashing and bouncing.5 This can be achieved by
employing EW controlled by electrodes attached to the
substrate.6,7 Similar situations emerge in spray-painting and
spray-cooling applications. An applied electric field also
facilitates drop motion over dielectric substrates in three-
dimensional (3D) printing8 or jet deposition on uneven
substrates in direct writing applications9 as well as can enhance
adhesion of deposited solidified liquid to the substrate.10

The physical reason for EW is the rapid motion of ions
(always present in liquids5,11,12) toward the underneath
substrate as a result of the electrical migration caused by the
Coulomb force attracting them to the substrate parts of

opposite polarity. Then, the surface tension (surface energy) at
the substrate−liquid interface is diminished from its original
value corresponding to the case without the electric field by the
value of the electric energy of ions accumulated at the
interface. This is because the ions repel each other.
Accordingly, in the presence of the electric field, the Young
equation transforms into the Young−Lippmann equation,
which describes how the contact angle diminishes as a result of
the action of the electric field applied; i.e., the substrate
becomes more wettable.2−5,8 The decrease in the equilibrium
contact angle modifies the dynamics of drop spreading13 and
can facilitate drop coalescence on dielectric solid substrates
with embedded electrodes.9,14−16
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The key element in the evolution of the drop shape under
the action of the applied electric field is the competition of the
stretching electric Maxwell stresses acting at the drop surface
with the restoring surface tension, which is accompanied by
viscous dissipation inside the drop (assuming that the process
is slow and the inertial effects are negligibly small). It is worth
theoretical exploration of these mechanisms first considering a
two-dimensional (2D) “free” drop and avoiding complications
related to the presence of a substrate (the three-phase contact
line and the overall three-dimensionality of the problem). The
2D flows in 2D drops and around 2D bubbles can be described
by solutions of the biharmonic equation for the stream
function,17,18 which yields powerful theoretical tools available
for such problems. The theoretical approach used in the
present work dates back to the method developed in ref 19 (cf.
ref 12) and based on solution of the biharmonic equation for
the stream function with linearized boundary conditions. Even
though linearized, such solutions reveal an amazing accuracy
far outside of their formal range of validity, as shown by
comparison to the experimental data in ref 19 in the case when
only surface tension and no electric field is involved. Here, a
comparison to the experimental and numerical data of the
present work is also used to verify the accuracy of the analytical
results obtained.
In principle, another approach based on the complexization

of the planar Stokes equations of creeping flows promises
analytical solutions of fully nonlinear problems; albeit, some
form of linearization could still be very handy when dealing
with the electric-field-related effects. Historically, this approach
originated in the theory of elasticity, contact problems, and
fracture mechanics, which effectively employed the general
solution of the biharmonic equation for the Airy stress function
in the form of the Goursat formula with the complex elastic
potentials.20−28 More recently, this approach was used in the
2D Stokesian fluid mechanics, because the 2D flows in 2D
drops and around 2D bubbles can be reduced to the
biharmonic equation for the stream function as, for example,
in refs 29−41.
In the present work, drops on a dielectric substrate under

the action of the electric field are experimentally studied in
section 2, where the experimental setup is described, and in
section 3, which presents the experimental findings. Then, the
2D “free” drop model is pursued, and the electric Maxwell
stresses at the drop surface are calculated in section 4. The
subsequent section 5 describes the transient viscous creeping

flow in the interior of the 2D “free” drop under the action of
the Maxwell stresses and surface tension. Section 6 is devoted
to the subcritical (in terms of the electric Bond number) case,
where a steady-state drop shape is found analytically. Section 7
presents several examples of the results of the linearized theory
of sections 4−6, including steady-state non-circular config-
urations and transient evolution up to the drop rupture by the
electric forces. It also includes comparison of the linearized
theory with nonlinear numerical results. Section 8 describes
the comparison of the experimental data to the theoretical
predictions, i.e., is devoted to the results and discussion.
Conclusions are drawn in section 9.

2. EXPERIMENTAL SETUP
Two types of experiments were conducted. In the first type, drops
impacted onto the dielectric substrate were released from a certain
height. The substrate was subjected to the electric field by two in-
plane electrodes, and the drop evolution upon its impact in the
middle of the substrate was recorded. In the second type of
experiments, a drop was softly deposited on the dielectric substrate,
then the electric field was applied by two in-plane electrodes, and the
resulting drop evolution was recorded.

The setup for the experiments of the first type is illustrated in
Figure 1. A polypropylene film was overlaid over a glass slide and used
as the dielectric substrate for drop impact and evolution. Two in-plane
electrodes made of a copper tape were overlaid onto the substrate at a
distance of 1.5 cm from each other, with the polypropylene film in
between being the working space. In addition, the polypropylene film
was carefully cut as a 2 cm (length) × 2 cm (width) piece placed
above the two in-plane copper electrodes. Over the electrodes, the
polypropylene surface was insulated by Teflon. One of the electrodes
was connected to a positive high-voltage direct current (DC) supply
(EL40P1, Glassman High Voltage, Inc., custom built with a 0−20 kV
range). The other copper electrode was grounded.

The glass slide with the polypropylene substrate on top of it
equipped with the electrodes was mounted on the adjustable platform,
which could be controlled in three directions, in particular, changing
the height between the tip of the needle, which released a drop, and
the solid surface (cf. Figure 1). Additionally, a fine-tune control along
one of the horizontal axes allowed one to aim the center of the drop
impact at the interelectrode center. For this particular case, a needle
exit height of h = 12.5 cm was kept constant throughout the
experiments with and without the applied voltage. The average impact
velocity was 1.50 m/s, as measured from the video recording, which is
slightly lower (probably as a result of the effect of the air drag) than
the estimate of gh2 1.57 m/s= , where g is the gravity acceleration.
Water mixed with water-soluble gold oak aniline dye (0.1 wt %

concentration) was used as the working fluid in all of the experiments.

Figure 1. (a) Schematic of the experimental setup for studying drop impact and its electrically driven evolution and (b) image of the experimental
setup.
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A laboratory syringe pump (NE-1000 Series) supplied the liquid to a
90° bent 27-gauge needle at a flow rate of 6 mL/h. The out-of-focus
90° bent 27-gauge needle helped place the camera right above the
needle to visualize the top view in the drop impact. The average drop
diameters were about 2.5 mm when the 27-gauge needle was used.
The drops detached and fell onto the polypropylene substrate as a
result of gravity, and hence, the impact velocity was controlled by the
height of the needle exit with respect to the plane solid surface. Only a
normal drop impact was studied here.
In additional experiments, glycerol was used as a working fluid.
To visualize the side and top views of drop impact and evolution

simultaneously, two high-speed cameras (Phantom V210 and
Phantom Miro 4) were set up. For the side viewing, back lighting
[light-emitting diode (LED) lamp] illuminated the drop, and for the
top viewing, front lighting was used. In recording the side views, the
camera was aligned at the same vertical level as that of the
polypropylene substrate. The images were analyzed in Adobe
Photoshop, MATLAB, and ImageJ. The impact velocity was
determined by the drop motion observed in the side view. All
measurements and experiments were performed at room temperature.
The experimental setup used for the experiments of the second

type was similar to that of Figure 1. Here, either polypropylene or
parafilm films were used as the dielectric substrates. In either case,
polypropylene or parafilm was carefully cut into 2 cm (length) × 2 cm
(width) pieces placed above the two in-plane electrodes (made of a
copper tape) similarly to the experiment of the first type. The area
between the electrodes was used for the experiments with the drop
evolution on either polypropylene or parafilm surfaces. The distance
between the electrodes was reduced to 1 cm. Outside of the
electrodes, both substrate surfaces were insulated by Teflon. The
polypropylene or parafilm films with the overlaid electrodes and
Teflon insulation were stuck on a microscope glass slide. One of the
electrodes was connected to a positive high-voltage DC supply
(EL40P1, Glassman High Voltage, Inc., custom built with a 0−20 kV
range). The other copper electrode was grounded. Note that Teflon
was used to insulate the electrodes from the liquid drops and prevent
a short circuit. Hence, the drops are only in contact with the dielectric
layer after drop impact or after being softly deposited. The Teflon film
was used as a safety measure when performing the experiments,
especially at higher applied voltages.

As in the experiments of the first type, the glass slide with either
one of the substrates equipped with the electrodes was mounted on
the adjustable platform, which could be controlled in three directions,
and another adjustable platform with a fine-tuning three-axes control
was used to aim the center of the dielectric surface at the
interelectrode center and softly place the sessile drop from the bent
needle. The same working fluid was used as in the experiments of the
first type.

3. EXPERIMENTAL RESULTS

3.1. Drop Impact Case. Single drops of water mixed with
aniline dye dripped onto the polypropylene substrate from a
fixed height of 12.5 cm. The top view recorded by a high-speed
camera captured the collision and evolution of drops at a rate
of 1000 fps. Figure 2a depicts the recorded steady-state shapes
achieved by the drop after it impacted onto the polypropylene
surface when no electric field was applied, whereas the steady-
state shapes achieved by the drop with DC voltage applied are
shown in panels b−f of Figure 2. The average diameter of each
drop before the impact was ∼2.5 mm, and the impact velocity
was 1.50 m/s in all cases.
The steady-state drop contour traces corresponding to the

observations in Figure 2 are depicted in Figure 3. The
superposition of the drop shape contours without the electric
field (at 0 kV) and with application of different DC voltages
(4.5, 5, 7, 9, and 10 kV, with the corresponding electric field
strengths of 3.0 × 105, 3.33 × 105, 4.67 × 105, 6.0 × 105, and
6.67 × 105 V/m, respectively) reveals the effect of the electric
force on the drop shape, with the maximum drop stretching
corresponding to the case of 10 kV. The applied electric field
stretches the drop along the substrate (in the direction of the
field lines), and its steady-state footprint area slightly increases
as the electric field strength increases, as shown in Table 1. As
a result of the liquid incompressibility, this means that the drop
as a layer becomes thinner under the action of the electric field
in comparison to the case without an electric field. It should be

Figure 2. Steady-state drop shapes after drop impact onto the polypropylene substrate without an electric field and under the action of the electric
field: (a) 0 kV, (b) 4.5 kV, (c) 5 kV, (d) 7 kV, (e) 9 kV, and (f) 10 kV. The left-hand-side electrode is the anode, and the right-hand-side electrode
is grounded (the cathode). The scale bar is 3 mm.
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emphasized that the area increase recorded in Table 1 is a
purely 3D effect, which cannot be described by a purely 2D
theory attempted below in this work. It is noteworthy that
drops did not acquire their original footprint after switching off
the high-power supply. This occurred at all of the voltages
applied to the dielectric substrate. Such a non-returning effect
presumably reveals the hidden effect of the substrate roughness
on the receding motion of the contact line, which could be
pinned by roughness.
The centers of the drops analyzed in Figure 3 are very close

in all cases presented, which simplifies the analysis of the
steady-state footprint contours obtained from the top view.
The stretching by the electric force is counteracted by the
surface tension, and in transition to a steady state of a drop (in
the cases of subcritical electric fields, as those in Figures 2 and
3), the power supplied by the electric field is partially
“invested” in an increase in the surface energy and partially
spent for viscous dissipation.
3.2. Softly Deposited Drop Case. Here, single drops of

water mixed with aniline dye were softly placed on the
polypropylene and parafilm substrates. The top views recorded
by a high-speed camera at a rate of 500 fps captured the
evolution of the drops when the electric field was applied.

Figure 4 depicts the recorded steady-state shapes of a sessile
drop on the polypropylene surface when no voltage was
applied (the left-hand-side column) and with DC voltage
applied (the right-hand-side column). The same drop is
depicted in each row (with no voltage applied, as shown on the
left) and then after voltage has been applied and a steady state
has been reached (as shown on the right). Thus, each panel in
Figure 4 allows for a direct comparison between the drop
shape before and after voltage has been applied on the
substrate.
Additional experiments on the polypropylene substrate were

conducted at lower voltages (4.5, 5, and 6 kV). However, only
the 6 kV voltage revealed some effect (drop stretching in the x
direction, i.e., the field direction) on the sessile drop, as shown
in Figure 5. The top view recorded by a high-speed camera
captured, at a rate of 500 fps, the evolution of the drop after
the 6 kV voltage was applied. In this case, special efforts were
taken to initially place the drop center right at the substrate
center marked by the center of the cross intersection (cf.
Figure 5 on the left). The steady-state drop is still shifted to
some extent from the center (cf. Figure 5 on the right), which
attests to a certain asymmetry of the electric field.
Furthermore, Figure 6 depicts the recorded steady-state

shapes of a sessile drop on a parafilm surface when no voltage
was applied (the left-hand-side column) and with DC voltage
applied (the right-hand-side column), similar to those shown
in Figures 4 and 5. It should be emphasized that each panel in
Figure 6 allows for a direct comparison between the drop
shape before (on the left-hand side) and after (on the right-
hand side) voltage has been applied.
The steady-state drop contour traces observed on the

polypropylene substrate corresponding to the images in
Figures 4 and 5 are depicted in Figure 7. The superposition
of the contour measured without voltage application with
those measured at voltages of 6, 7, 9, 10, and 10.5 kV (with
electric field strengths of 6 × 105, 7 × 105, 9 × 105, 10 × 105,
and 10.5 × 105 V/m, respectively) reveals the effect of the
electric forces on the drop shape. The maximum stretching
along the field lines corresponds to the case of 10.5 kV shown
in Figure 7e.
When the electric field strength is relatively small (panels a

and b of Figure 7), drop stretching is relatively small. On the
other hand, at the higher field strengths, panels c−e of Figure 7
reveal a significant drop stretching, especially pronounced in
the 10.5 kV case. The repeatability of the results on the
electrically driven drop stretching after it was softly deposited
on the polypropylene substrate was tested in the additional
experiments at the three highest voltages, and the results are
superimposed with those of Figure 7 in Figure 8. The
comparison in Figure 8 reveals a reasonable repeatability,
which slightly deteriorates at the highest voltage studied.
The average footprint surface areas measured in the top

views of Figure 7 along with the additional trials of Figure 8 are
presented in Table 2. The area increase observed in Table 2 is
a purely 3D effect.
The steady-state drop contours measured on the parafilm

substrate corresponding to the experimental observations in
Figure 6 are depicted in Figure 9. They reveal drop stretching
by the electric field at the applied voltages of 8, 9, 10, and 10.5
kV (with electric field strengths of 8 × 105, 9 × 105, 10 × 105,
and 10.5 × 105 V/m, respectively). Unlike the experimental
results shown in Figures 7 and 8 (the polypropylene surface),
the results obtained on the parafilm are quite different. Here,

Figure 3. Steady-state drop contours of a single drop of water with
aniline dye after drop impact onto the polypropylene substrate
without and with the action of the electric field. The left-hand-side
electrode is the anode, and the right-hand-side electrode is grounded
(the cathode). The Cartesian coordinates on the substrate are
denoted as x (in the field direction) and y.

Table 1. Steady-State Footprint Areas of a Single Water−
Aniline Dye Drop Recorded after Drop Impact onto the
Polypropylene Substrate without and with the Applied
Voltage

case area (mm2)

0 kV 11.02
4.5 kV 12.01
5 kV 13.27
7 kV 13.33
9 kV 13.44
10 kV 13.75
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the stretching along the field lines is almost unnoticeable at 8
kV (Figure 9a). At 9, 10, and 10.5 kV corresponding to panels
b−d of Figure 9, the drop stretching is still significantly smaller
than those for the corresponding voltages applied to a drop on
the polypropylene substrate. It should be emphasized that
these experiments were repeatable in multiple trials for each
applied voltage, and the data shown here are representative
trials used to demonstrate the results. The comparison of
Figures 7 and 9 clearly shows that the observed drop stretching
depends upon the substrate material, presumably its wettability
by the liquid of the drop. The difference in the substrate
wettability is determined by the difference in the molecular
interactions of the liquid and the substrate, the substrate
roughness, and the severity of the EW phenomenon on it.
The steady-state footprint surface areas measured from

Figure 9 are listed in Table 3. The areas measured without and
with applied voltage are practically indistinguishable in these
cases. Therefore, the 3D effect is practically immaterial here,
and a comparison with the 2D theory developed below is more
justifiable.

The choice of the substrates is determined by potential
importance of substrate wettability. To characterize the effect
of different wettability of polypropylene and parafilm surfaces
on the behavior of water−aniline dye drops, the equilibrium
contact angles were measured without voltage applied, and the
results are compared in Figure S1 of the Supporting
Information. Characterization of surface wettability by the
equilibrium contact angle is quite standard.13 Accordingly, the
polypropylene surface is more hydrophilic (the contact angle is
less than 90°, i.e., 84.8° in Figure S1a of the Supporting
Information), whereas the parafilm surface is more hydro-
phobic (the contact angle is more than 90°, i.e., 100.4° in
Figure S1b of the Supporting Information). Additional
measurements revealed that the contact angles gradually
decreased as the applied voltage increased for both surfaces
(in accordance with the Young−Lippmann equation). In
particular, the contact angle decreased from 84.8° at 0 kV to
68.2° at 10.5 kV for the polypropylene substrate and from
100.4° at 0 kV to 82.7° at 10.5 kV for the parafilm substrate.
The subsequent trials revealed a secondary dependence of

Figure 4. Steady-state drop shapes on the polypropylene substrate under the action of the electric field. Left-hand-side column, no voltage applied;
right-hand-side column, applied voltages of (a) 7 kV, (b) 9 kV, (c) 10 kV, and (d) 10.5 kV (with corresponding electric field strengths of 7 × 105, 9
× 105, 10 × 105, and 10.5 × 105 V/m, respectively). The left-hand-side electrode is the anode, and the right-hand-side electrode is grounded (the
cathode). The scale bar is 2 mm.

Figure 5. Steady-state drop shapes on the polypropylene substrate under the action of the electric field. Left-hand-side column, no voltage applied;
right-hand-side column, 6 kV voltage applied (with the electric field strength of 6 × 105 V/m). The left-hand-side electrode is the anode, and the
right-hand-side electrode is grounded (the cathode). The drop center is roughly at the cross intersection. The scale bar is 2 mm.
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these results upon, presumably, the surface roughness. Note
that another widely used material relevant to EW is Teflon. It
is reported that Teflon reveals a static contact angle with water
of 96 ± 4°, which decreases to 78 ± 3° when a 6 kV voltage is
applied.6 This range of contact angle is within the range
covered by the cases of polypropylene (more hydrophilic) and
parafilm (more hydrophobic).
It should be emphasized that the outcome is dependent

upon the microstructure of the substrate, which could be
inadvertently altered by the trapped liquid because consecutive
trials were conducted on the same substrate. Hence, the
substrate roughness and wettability could also be modified as a
result of the presence of trapped liquid, with the receding
motion of the contact line arrested, while drops pinned at the
substrate.

4. ELECTRIC MAXWELL STRESS AT THE DROP
SURFACE

Consider a 2D liquid drop subjected to the electric field with
the strength vector directed along the x axis at infinity. The
drop is considered to be a perfect conductor, i.e., equipotential,
with the electric potential being 0 (without the loss of
generality because of the arbitrary addable constant). In the
case of ionic conductors, the approximation of a perfect
conductor is appropriate when the charge relaxation time is
much shorter than the characteristic hydrodynamic time
associated with the rate of the evolution of the drop shape
under the action of the electric field and capillarity.12 Note also
that the drops considered here are originally electroneutral and
do not possess a charge, as those in the seminal works of
Rayleigh and the following works.42,43 Also, the present drops
do not experience shearing electric tractions at their surfaces

and the associated internal circulations or electrorotation, as
the experiments reveal, which makes the situation here
radically different from those considered (mostly for nonplanar
spherical or spheroidal cases) in the literature.44−49

The drop shape is described in the polar coordinates as

R t R t( , ) 1 ( , )0θ ε θ= [ + Ζ ] (4.1)

where R0 is the unperturbed (initial) drop radius and εΖ is its
dimensionless perturbation, which depends upon the polar
angle θ and time t. Note that it is implied that ε is a small
parameter, formally much less than 1, whereas Ζ is of the order
of 1.
Equation 4.1 shows that here small deformations of a drop

relative to the initial circular shape are sought, albeit relaxation
of the requirement of such smallness would be aimed in
comparison to the experimental data. Because the stretching
electric force on the order of 1 acts even on an unperturbed
circular drop, the rate of stretching could be high, even without
shape perturbations (at Ζ = 0) or when such perturbations are
still small. As a consequence, even though the shape
perturbations can grow relatively fast, there is a period of
time when they are still small. That is exactly the period of time
of interest here. During this time period, linearization would be
possible, and thus, a linearized theory could be developed, as
below. In the inertialess approximation (the creeping flow) of
interest here, the following four physical parameters govern the
problem: the unperturbed (initial) drop radius R0, the viscosity
and surface tension of liquid μ and σ, respectively, and the
electric field strength E∞. Keeping in mind the CGS system of
units, these four parameters incorporate three independent
units, and thus, according to the Buckingham π theorem,50,51

Figure 6. Steady-state drop shapes achieved under the action of the electric field on the parafilm substrate. Left-hand-side column, no voltage
applied; right-hand-side column, shapes achieved with applied voltages of (a) 8 kV, (b) 9 kV, (c) 10 kV, and (d) 10.5 kV (with corresponding
electric field strengths of 8 × 105, 9 × 105, 10 × 105, and 10.5 × 105 V/m, respectively). The left-hand-side electrode is the anode, and the right-
hand-side electrode is grounded (the cathode). The drop center is roughly at the cross intersection. The scale bar is 2 mm.
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there is a single dimensionless group, the electric Bond
number, given by the following expression:

E R
BoE

2
0

σ
= ∞

(4.2)

The duration of time when perturbations are small enough is,
accordingly, dictated by the dimensional considerations as t <
(μR0/σ)f(BoE), where f(BoE) is the dimensionless function of

the electric Bond number. One can expect that the time period

shortens when the electric field strength increases, and thus,

f(BoE) ∼ 1/BoE, and accordingly, the time period when shape

perturbations are small is t < μR0/σBoE. A more accurate

estimate is derived a posteriori, as discussed in relation to eq

5.19, namely

Figure 7. Steady-state water−aniline dye drop contours measured on the polypropylene substrate without and with electric fields of (a) 6 kV, (b) 7
kV, (c) 9 kV, (d) 10 kV, and (e) 10.5 kV. The left-hand-side electrode is the anode, and the right-hand-side electrode is grounded (the cathode).
The Cartesian coordinates on the substrate are denoted as x (in the field direction) and y.

Figure 8. Steady-state water−aniline dye drop contours measured on the polypropylene substrate without and with the electric field of (a) 9 kV,
(b) 10 kV, and (c) 10.5 kV. The left-hand-side electrode is the anode, and the right-hand-side electrode is grounded (the cathode). The Cartesian
coordinates on the substrate are denoted as x (in the field direction) and y. Trial 1 corresponds to Figure 7, and trials 2−4 result from additional
experiments.
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Note also that in a subcritical field (in terms of the electric
Bond number) drop evolution can come to a steady state, in
which stretching by the electric field (by the Maxwell stresses
at the surface) is compensated pointwise by the capillary
pressure associated with the surface tension. If, in such a case,
the drop distortion compared to its initial circular shape is
small, then the time limit of eq 4.3 becomes immaterial and the
linearized small deformation description sought here is valid
indefinitely.
To find the drop shape, one needs to find the time-

dependent coefficients cn(t) and bn(t) in the expansion of the
surface perturbation in the Fourier series

t
b t

c t n b n( , )
( )
2

( )sin (t)cos
n

n n
0

1

∑θ θ θΖ = + [ + ]
=

∞

(4.4)

where the coefficients are of the order of 1 during the time
interval of eq 4.3.
The electric field surrounding the drop is described by the

electric potential φ, which is sought as the solution of the
Laplace equation in polar coordinates
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where r is the radial coordinate.
The solution is subjected by the following boundary

conditions:

r
E0, cosr R

r
(1 )0

φ φ θ| = ∂
∂

= −ε= + Ζ
=∞

∞
(4.6)

The second condition in eq 4.6 stems from the fact that the
unperturbed electric field at infinity is parallel to the x axis, i.e.,

E x E r cosrφ θ| = − = −=∞ ∞ ∞ (4.7)

and it is implied that E∞ > 0; i.e., the anode is located at x =
−∞, and the cathode is located at x = ∞.
The unperturbed solution of φ = φ0 of eq 4.5 corresponding

to the following boundary conditions:

r
E0, cosr R

r
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φ
φ
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(4.8)
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This is the order of one electric field (and the corresponding
electric field strength) experienced by an initially circular drop.
Figure 10 corresponds to the structure of the field lines found
using eq 4.9 and the Cauchy−Riemann conditions, which
determine the field lines γ (which is related by the Cauchy−
Riemann conditions to the electric potential). The electric field
vector E = −∇φ is directed outward of the drop on the right-
hand side (x > 0) and inward on the left-hand side (x < 0)
because the cathode is at x = +∞ and the anode is at x = −∞.
It should be emphasized that then cations are located at the
drop surface at x < 0 (on the anode side) and anions are
located at the drop surface at x > 0 (on the cathode side).
Accordingly, the Coulomb force acting on the drop, which is
the product of the surface charge with E, is directed
everywhere outward at the drop surface. Therefore, the drop
is not only stretched along the x axis (toward the anode and
cathode on the left- and right-hand sides, respectively) but is
also pulled upward and downward along the y axis.
Because of the stretching, the circular drop will begin to

deform, thus perturbing the electric field of Figure 10. The
perturbed electric potential can be presented in the following
form:

Table 2. Steady-State Average Footprint Areas of a Single
Water−Aniline Dye Drop Recorded on the Polypropylene
Substrate without and with the Applied Voltage

case no voltage (mm2) with applied voltage (mm2)

6 kV 11.52 ± 0.42 12.20 ± 0.41
7 kV 8.07 ± 0.11 8.57 ± 0.41
9 kV 7.77 ± 0.32 8.90 ± 0.44
10 kV 8.06 ± 0.08 9.33 ± 0.39
10.5 kV 8.01 ± 0.48 10.08 ± 0.85

Figure 9. Steady-state water−aniline dye drop contours measured on the parafilm substrate without and with electric fields of (a) 8 kV, (b) 9 kV,
(c) 10 kV, and (d) 10.5 kV. The left-hand-side electrode is the anode, and the right-hand-side electrode is grounded (the cathode). The Cartesian
coordinates on the substrate are denoted as x (in the field direction) and y.

Table 3. Steady-State Footprint Areas of a Single Water−
Aniline Dye Drop Recorded on the Parafilm Substrate
without and with the Applied Voltage

case no voltage (mm2) with applied voltage (mm2)

8 kV 7.03 7.08
9 kV 7.45 7.82
10 kV 7.42 8.04
10.5 kV 6.72 6.90
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0φ φ εφ= + ̃ (4.10)

where the perturbation is assumed to be small, while φ̃ is of the
order of 1. The perturbation of the electric field stems from the
perturbation of the drop shape.
The perturbation of the potential is found, according to eqs

4.1, 4.6, 4.8, and 4.9 from the following linearized problem:
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=
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It should be emphasized that here and hereinafter linearization
is used; i.e., only the terms of the order of 1 and O(ε) are left,
whereas the higher orders of ε (ε2, etc.) are truncated. In
particular, this is done in eq 4.12, which stems from the O(ε)
term in the expansion of the function φ[R0(1 + εZ)] in the
Taylor series.
The solution of the problem in eqs 4.11−4.13 with Z given

by eq 4.4 is found using the method of variable separation in
the following form:

E R b
R
r

c b b

R
r

c c n b b

n

sin ( )cos

( )sin ( )

cos
n

n

n n n n

0 1
0

2 0 2

2

0
1 1 1 1∑

φ θ θ

θ

θ

̃ = { + [ + + ]

+ [ + + +

]}

∞

=

∞

+ − + −
i
k
jjj

y
{
zzz

(4.14)

In the linear approximation, the unit tangent vector τ and the
outward unit normal vector ν at the drop surface are found as

Z Z
e e e e,r rτ νε

θ
ε

θ
= + ∂

∂
= − ∂

∂θ θ (4.15)

where er and eθ are the unit vectors of the radial and azimuthal

directions of the polar coordinate system.

Then, in the linear approximation, the normal component of

the electric field strength at the drop surface is found as
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Note that eq 4.16 accounts for the fact that ∂φ0/∂θ|r=R0
= 0.

Note also that the tangential component of the electric field

strength vector

E 0r R Z(1 )0
| =τ ε= + (4.17)

because the drop is a conductor and, thus, equipotential.

The electric Maxwell stress tensor σE is related to the electric

field strength vector E as follows:52
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This expression is written in CGS units, and the unit tensor is

denoted as I.

Equations 4.17 and 4.18 yield zero shear stress at the drop

surface

0r R Z
E

(1 )0
σ | =ντ ε= + (4.19)

whereas the normal stress pulling the drop surface outward is

given in the linear approximation according to eqs 4.16 and

4.18 by the following expression:
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Substituting eqs 4.4, 4.9, and 4.14 into eq 4.20, one obtains the

expression for the normal stress at the drop surface as

Figure 10. Electric field lines surrounding the original drop occupying
the white circle of radius 1 at t = 0. The coordinates x and y and the
drop radius are rendered dimensionless by R0. The corresponding
structure of the electric field lines is found via function γ related by
the Cauchy−Riemann conditions to the electric potential φ0. The line
on which γ is a constant is the field line. Note that γ is rendered
dimensionless by E∞R0.
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It should be emphasized that the first term in eq 4.19 describes
the electric stress acting at the unperturbed circular drop
(which is of the order of 1), whereas the other terms arise as a
result of the perturbations (and are of the order of ε).
Note also that the surface tension at the drop surface causes

the capillary pressure pcap. In the approximation of small
perturbations (the linear approximation) employed here, it
reduces to the following expression:

p
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where σ is the surface tension coefficient.
Using eq 4.4, eq 4.22 is transformed to the following form:
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The first term in eq 4.23 describes the capillary pressure acting
on the unperturbed circular drop, whereas the other terms
arise as a result of the perturbations. The capillary pressure
yields the capillary stress

pr R Z
cap

(1 ) cap0
σ | = −νν ε= + (4.24)

which will counteract to the electric stress in eq 4.21.

5. VISCOUS CREEPING FLOW IN THE DROP INTERIOR

The general solution of the biharmonic equation for the stream
function ψ in polar coordinates given by ref 19 also yields the
general expressions for the velocity components and stresses.
In the present case, all of the expressions should be finite at r =
0, which determines that two of the coefficients of the general
expressions found by ref 19 should vanish and the expressions
for the viscous stresses important here read

r n n Dr n n

A n B n

r A B K

( 2 4 2 ) (2 2 )

( cos sin )

4 ( cos sin )

rr
n

n n

n n

visc

2

2 2 2

1 1

∑σ μ

θ θ

μ θ θ

= [ − − + + − ]

̃ + ̃

− ̃ + ̃ −

=

∞
−

(5.1)

r n n Dr n n

A n B n

r A B

( 2 2 ) ( 2 2 )

( sin cos )

4 ( sin cos )

r
n

n n

n n

visc

2

2 2 2

1 1

∑σ μ

θ θ

μ θ θ

= [ − − + − + ]

̃ − ̃

− ̃ − ̃

θ
=

∞
−

(5.2)

In eqs 5.1 and 5.2, μ is the viscosity and D, K, Ãn, and B̃n are
the functions of time t to be found.
In the linear approximation employed here, according to ref

19

,r R rr r R r R r r R
visc

(1 )
visc visc

(1 )
visc

0 0 0 0
σ σ σ σ| = | | = |νν ε ντ ε θ= + Ζ = = + Ζ =

(5.3)

On the other hand, at the drop surface, the following dynamics
boundary conditions for the stresses hold:
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Using eqs 4.19 and 5.2 and the second boundary condition in
eq 5.4, one finds
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− + (5.5)

and

A B 01 1̃ = ̃ = (5.6)

Equations 4.21, 4.23, 4.24, and 5.1 and the first boundary
condition in eq 5.4 yield
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Note that, in eqs 5.8 and 5.9, eq 5.6 has already been used.
Substituting eq 5.5 and 5.6 into eq 5.1, one finds
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Then, eqs 4.21, 4.23, 4.24, and 5.10 and the first boundary
condition in eq 5.4 yield
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In eqs 5.13 and 5.14, the electric Bond number is given by eq
4.2.
The next step is to consider the kinematic boundary

condition at the drop surface. It would require the expression
for the radial component of velocity vr. The general expression
for the latter was found by ref 19. Accounting for the fact that
here vr should be finite at r = 0 and using eqs 5.6, the
expression for vr reduces to
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1 1∑ θ θ= + ̃ + ̃
=

∞
+ −

(5.15)

The linearized kinematic boundary condition at the drop
surface reads19

v R
tr r R 00

ε| = ∂Ζ
∂= (5.16)

Then, substituting eqs 4.4, 5.5, and 5.11−5.15 into eq 5.16,
one finds the following system of the ordinary differential
equations, which determine the dependence of the coefficients
of the Fourier series in eq 4.2 for the surface perturbation:
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and for n ≥ 3
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where b̃n = εbn and cñ = εcn.
The initial conditions for the system of eqs 5.17−5.21

corresponding to a circular drop are the following:

t b c b n0: 0, 1n n0= ̃ = ̃ = ̃ = ∀ ≥ (5.22)

It should be emphasized that, in the system of eqs 5.17−5.21,
only eq 5.19 for b̃2 contains the order of 1 term on the right-
hand side, E∞

2 /12πμ. Only this term is operational when the
initial drop is circular, because even a circular drop is stretched
by the imposed electric field (cf. Figure 11). This triggers
growth of the coefficient b̃2, which makes the drop elliptical
and, in turn, through eq 5.21 triggers growth of all coefficients
b̃n with even values of n. Note that even the largest coefficient
b̃2 still stays small for the linear approximation being formally
valid during the time period given by eq 4.3.

Figure 11. Evolution of an initially circular drop under the action of the stretching electric field with the electric Bond number BoE = 10 and surface
tension. (a) Short-term evolution: the dimensionless time for the consecutive time moments t ̃= 0, 0.99, 1.99, 2.99, 3.99, and 4.99 corresponding to
the consecutive drop shapes depicted by curves with colors from red to pink, respectively. (b) Long-term evolution: the dimensionless time for
consecutive time moments t ̃ = 0, 9.99, 19.99, 29.99, 39.99, and 49.99 corresponding to the consecutive drop shapes depicted by curves with colors
from red to pink, respectively. Coordinates x and y are rendered dimensionless by R0.
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On the other hand, as a result of the initial conditions in eq
5.22, eqs 5.17−5.21 yield the following solutions:

t c n

b b n k k

0: 0, 1;

0; 0 for 2 1, 1
n

n0

> ̃ ≡ ∀ ≥
̃ ≡ ̃ ≡ = − ∀ ≥ (5.23)

Accordingly, rendering time dimensionless as

t
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(5.24)

the system of equations to solve reduces to
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and for n = 2k (with k > 1)
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It is also expected that the highest harmonics corresponding to
a sufficiently high value of n ≥ N + 2 (where N is even and
sufficiently large) would be suppressed by surface tension (i.e.,
bn ≈ 0 for n ≥ N + 2), and thus, the system of eqs 5.25 and
5.26 could be truncated to the following equation:
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To find transient drop shapes, the system of eqs 5.25−5.27 is
to be solved numerically using the Kutta−Merson method with
the following initial conditions corresponding to an initial
circle:

t b n k k0: 0, 2 with 1ñ = ̃ = ∀ = ≥ (5.28)

Also, according to eqs 4.1 and 4.4, the drop shape is found as

R t b t n( , ) 1 ( )cos
n

N

n
2even

∑θ θ̃ ̃ = + ̃ ̃
= (5.29)

where the radius is rendered dimensionless by R0. The
Cartesian coordinates of the drop contour are found as
x̃ = R̃ cos θ and ỹ = R̃ sin θ (rendered dimensionless by R0).
It should be emphasized that the drop area change

corresponding to eq 5.29 would be of the order of b̃n
2,

which means that it is negligibly small in the linear
approximation.

6. STEADY-STATE DROP SHAPE
At sufficiently low values of the electric Bond number, the
transient evolution of a drop stretched by the imposed electric
field will lead to a steady state, in which the restoring action of
the surface tension will be able to fully (and pointwise)
compensate for the stretching action of the electric Maxwell
stresses at the drop surface.

The steady-state solutions are sought for eqs 5.25, 5.26 (with
4 ≤ n ≤ N − 2), and 5.27, with the time derivatives being 0;
i.e., the following system of linear algebraic equations is to be
solved:
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Equation 6.2 with 4 ≤ n ≤ N − 2 corresponds to the system of
algebraic equations with a three-diagonal matrix. Solutions of
this system are found using the Thomas algorithm53 in the
following form:

b L b Pn n n n2
̃ = ̃ ++ (6.4)

where the coefficients Ln and Pn (for any even n) are to be
found.
When eq 6.4 is substituted in eq 6.1, one finds the following

first pair of the coefficients:
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2

2 12 /Bo
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1
2 12 /Bo2

E
2

Eπ π
= −

−
= −

− (6.5)

Then, substituting eq 6.4 into eq 6.2, one finds the following
recurrent formulas required to find all of the coefficients Ln and
Pn (for 4 ≤ n ≤ N − 2) with the ascending even values of n:

L
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After that, substituting eq 6.4 into eq 6.3, one fully finds the
coefficient bN as
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and then the double sweep is finalized as

b L b P N n, 2 2n n n n2
̃ = ̃ + − ≥ ≥+ (6.9)

which allows one to find the succession of all of the other
coefficients bn with descending even values of n.
It should be emphasized that eqs 6.6−6.8 show that that, at

large n (and N), the coefficients Ln and Pn tend to 0 as well as
b̃N → 0. Accordingly, eq 6.9 shows that, in the steady-state
solutions, all of the coefficients b̃n are small (under the
condition of eq 4.3) and the perturbed drop shape is mostly
determined by the coefficients with the lowest values of n, b̃2,
and maybe b̃4.
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7. EXAMPLES OF TRANSIENT AND STEADY-STATE
SOLUTIONS

The transient solution at the electric Bond number BoE = 10
predicted by solving numerically the system of eqs 5.25−5.27
is illustrated in Figure 11, where in panel a in the short-time
range, the drop shape varies significantly, whereas in panel b at
longer times, the drop shape approaches the steady-state and
saturates. This steady-state shape can also be predicted
analytically using eqs 6.5−6.9, as depicted in Figure 12.

It should be emphasized that according to eq 4.3 the time
period when the linear approximation is formally valid is t ̃ <
12π/BoE, which yields t ̃ < 3.8 for the value of BoE = 10.
Therefore, the predicted dimpled shape of the drop
corresponding to t ̃ = 4.99 in Figure 11a is clearly outside the
range of formal validity of the linear approximation used to
find the analytical solution. Still, it is luring to check the large-
perturbation predictions of the analytical solution constructed
in sections 4−6 versus the nonlinear numerical solution and
the experimental data, which is performed below in this section
and in section 8, respectively.
At BoE = 20, steady state is already impossible and the drop

will be teared apart by the electric Maxwell stresses; i.e., this
value of the electric Bond number is already supercritical. The
drop shape evolves as shown in Figure 13 using numerical
solution of the system of eqs 5.25−5.27. After the moment t ̃ =
1.44 (t ̃ < 1.87 is the ultimate time limit according to eq 4.3 in
this case), the drop will be rapidly teared apart. No steady-state
solution exists in this case. Note that in a very insightful work
of Crowdy,40 deformation of an incompressible equipotential
bubble under the action of a horizontal uniform-at-infinity
electric field was considered in the creeping-flow approx-
imation. The resulting exact numerical solution for the bubble
shape was constructed using the problem complexization and
conformal mapping. It revealed that, at a certain supercritical
value of the electric Bond number, steady-state solutions cease
to exist and the bubble is teared apart into two bubbles very
similarly to the scenario depicted in Figure 13. The
experimental observation, which confirms prediction of the

dimple formation and tearing apart of drops by the electric
field, is discussed in section 8.
It has already been noted that the results shown in Figures

11−13 extend beyond the range of the formal validity of the
linearized, small-perturbation theory of sections 4−6. Never-
theless, direct comparison of similar results to the experimental
data reveals that they, indeed, can be reliable and accurate far
beyond their formal range of validity (cf. Figure 3 in ref 19 and
section 6.9 in ref 12), and additional comparisons of this type
are provided in this section and the following section 8.
The Fourier series coefficients b̃2, b̃4, and b̃6 plotted versus

the dimensionless time t ̃ in Figure 14 ascertain how the
significance of the coefficient b̃n decreases drastically with an
increase in the subscript n (cf. the last paragraph in section 6).
The drive to growth delivered to b̃2 by the electric stretching

Figure 12. Steady-state shape of the drop under the action of the
stretching electric field with the electric Bond number BoE = 10 and
surface tension. Coordinates x and y are rendered dimensionless by
R0.

Figure 13. Evolution of an initially circular drop under the action of
the stretching electric field with the electric Bond number BoE = 20
and surface tension. The dimensionless time for the consecutive time
moments t ̃ = 0, 0.28, 0.57, 0.86, 1.15, and 1.44 corresponding to the
consecutive drop shapes depicted by curves with colors from red to
pink, respectively. Coordinates x and y are rendered dimensionless by
R0.

Figure 14. Coefficients b̃2, b̃4, and b̃6 versus the dimensionless time t.̃
The coefficients are rendered dimensionless by R0. The electric Bond
number BoE = 10, and the results correspond to those of Figure 11a.
The red curve shows b̃2; the green curve shows b̃4; and the blue curve
shows b̃6.
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force (cf. the order of 1 term on the right-hand side in eq 5.25)
determines its significant growth, as in Figure 14. Simulta-
neously, eq 5.26 redistributes the growth of b̃2 to higher
harmonics. However, the higher the harmonic, the stronger the
smoothing effect of the surface tension (cf. the last term on the
right-hand side in eq 5.26), which suppresses growth of the
higher harmonics. Accordingly, the theory of sections 4−6
does not leave a place for the appearance of such short-
wavelength details as, for example, fingering.
It is instructive to compare the linearized analytical steady-

state solution of eqs 6.5−6.9 to the numerical simulation of the
corresponding fully nonlinear problem for a 2D drop under the
action of surface tension and an imposed stretching electric
field. The numerical solution is found using COMSOL. The
incompressible Navier−Stokes equations are solved in the
framework of the phase field modeling (PFM). The free
surface of the drop corresponds to the phase field parameter
equal to 0.5. The domain is taken as 15 mm × 15 mm with a 3
mm drop located at the center, with the high voltage being
applied at the right-hand-side boundary, while the left-hand-
side boundary is grounded. It should be emphasized that, in
these simulations, the drop is not a prefect conductor;
however, the potential difference across it is negligibly small
compared to the overall potential difference applied.
Accordingly, the drop is practically equipotential.
The numerically predicted steady-state drop shapes are

compared to the analytical predictions for two values of the
electric Bond number in Figure 15. The agreement is very

good, even though quite significant drop deformations are
involved. As expected, the agreement is better for the lower
value of BoE. At the higher value of BoE, the analytical solution
slightly underestimates the drop stretching. It should be
emphasized that the PFM simulations required intensive mesh
quality for the interface tracking and mass conservation, and
they are also strongly dependent upon selection of the artificial
parameter, namely, the mobility tuning parameter. Both
requirements make it difficult for case verification. As a result,

the present analytical solution can also serve as a useful
benchmark case for such time-consuming numerical simu-
lations.

8. RESULTS AND DISCUSSION: COMPARISON OF THE
THEORY TO EXPERIMENTAL DATA
8.1. Drop Impact Case. The steady-state drop contours

observed on the polypropylene substrate, which were recorded
in the images in Figure 2 and depicted in Figure 3 are
compared to the theoretical predictions in Figure 16 for
voltages of 4.5, 5, 7, 9, and 10 kV. The comparison reveals a
fairly good agreement of the analytical prediction of eqs
6.5−6.9 with the experimental data in the entire voltage range
up to the voltage of 10 kV, corresponding to the maximum
drop stretching along the field lines in Figure 16e.
The comparison in Figure 16 shows that, in this case, the 2D

theory, which completely disregards the 3D effects and the
influence of the substrate, is sufficiently accurate despite these
simplifying assumptions. Note also that we have found
experimentally that the gold oak aniline dye incorporates
both anion- and cation-like pigments. The electrical con-
ductivity of regular water is already relatively high, and the dye
effect would increase it even more. In any case, the charge
relaxation time in both cases would be on the scale of 1 μs,
which is at least 3 orders of magnitude lower than the
characteristic drop impact time. Accordingly, the theoretical
assumption of fluid to be a perfect conductor holds for regular
water or water−aniline dye. The effect of the dye pigments (at
the concentration of 0.1 wt %) on surface tension of water is
presumably not very strong, as the data on the surface tension
of seawater at different salinity levels imply.54

8.2. Softly Deposited Drop Case. The steady-state drop
contours measured on the polypropylene substrate using the
images in Figures 4 and 6 and depicted in Figures 7 and 8 are
compared to the theoretical predictions of eqs 6.5−6.9 in
Figure 17. A similar comparison to the data on the parafilm
surface from Figures 6 and 9 is presented in Figure 18. The
results on the polypropylene surface reveal fairly good
agreement between the theory and experiment only at the
lower voltages of 6 and 7 kV in panels a and b of Figure 16,
respectively. However, the theory underpredicts the maximum
drop deformation, which becomes especially visible at 10.5 kV
in Figure 17e. This reveals the effect of polypropylene with
higher wettability in comparison to parafilm (cf. Figure S1 in
Supporting Information). Also, polypropylene seemingly
reveals a stronger electrowettability effect than parafilm. All
of these facilitate drop stretching on polypropylene above the
limit corresponding to the theoretically accounted effect of the
electric Maxwell stresses.
On the other hand, a comparison of the theory to the data

on less wettable parafilm reveals good agreement, as shown in
Figure 18. In the case of parafilm, the effects of the substrate
wettability are negligibly small compared to the effect of the
pulling electric Maxwell stresses, which makes the predictions
of the 2D theory accurate. The latter is also true despite the
potential 3D effects, with friction losses at the drop footprint in
contact with the substrate and additional friction losses at the
moving contact line when the drop evolves to the steady-state
shape. Note, however, that the experimental data for drops
softly deposited on parafilm seemingly reveal the maximum
stretching along the field lines for 10 kV (Figure 18c) rather
than for 10.5 kV (Figure 18d), whereas the theory predicts a
monotonously increasing stretching with voltage.

Figure 15. Comparison of the numerically and analytically predicted
steady-state drop shapes. The yellow and red lines depict the
analytically predicted drop shapes with BoE = 1.483 and 3.796,
respectively, and the green and blue lines depict the numerically
predicted drop shapes with BoE = 1.483 and 3.796, respectively.
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Note also that, in the case of parafilm, the water static
contact angle decreased from 100.4° at 0 kV to 82.7° at 10.5
kV, as mentioned above. Accordingly, for the cases of high
enough applied voltages, the contact angles were less than 90°
and the droplet footprints on parafilm were fully visible in the
top view. On the other hand, in the cases of contact angles
greater than 90°, the difference between the droplet footprint
and its diameter in the top view on parafilm is on the scale of
micrometers, which, in turn, means very few pixels of
difference in the images taken for analysis using top and side
views. For this reason, the possible errors associated with
imaging the droplet footprint from above in the latter cases are
negligibly small and could not considerably affect the results
used for comparison to the theoretical predictions.
8.3. Tearing the Drop Apart in the Supercritical

Electric Field. Viscous friction of stretching drop on a
substrate is one of the two main factors that differs in the
experiment and the 2D theory. Such a friction can be
dramatically diminished by depositing a thin layer of silicone
oil on the parafilm surface and then using it as a substrate for a
drop. An experiment of this type was conducted using glycerol
as a working fluid. Figure 19 reveals that, in such an experiment
where the no-slip condition at the substrate surface was,
essentially, eliminated, a transient drop evolution correspond-
ing to the effect of the supercritical electric field is revealed.
Specifically, the drop develops a dimple and is teared apart by
the electric field in qualitative agreement with the predictions
of the 2D theory illustrated in Figure 13 as well as with similar

predictions for bubbles subjected to a stretching electric field.40

It should be emphasized that this type of drop breakup differs
from the electrical instability-driven jetting at drop tips,
followed by capillary breakup of the jets and formation of
multiple tiny drops.55

9. CONCLUSION
The creeping-flow theory of 2D Stokesian drops was
developed and compared and also validated experimentally
to steady-state drops under the action of surface tension and
the subcritical electric field on different dielectric surfaces. The
observations of the evolution of water−aniline dye drops after
an impact from the height of 12.5 cm onto polypropylene
revealed that the electric field strength of 6.67 × 105 V/m
corresponding to the applied voltage of 10 kV stretched the
drop and increased its steady-state area compared to the case
without voltage by 19.8% (the footprint in the top view). This
reveals significant 3D effects in drop spreading on the
polypropylene substrate, which is attributed to its relative
wettability. Despite this fact, the linearized 2D theory
developed in this work successfully describes the experimental
data for the steady-state water−aniline dye drops after an
impact from the height of 12.5 cm onto polypropylene for all
applied voltages of 4.5, 5, 7, 9, and 10 kV.
The experimental measurements with a softly deposited

sessile drop of water−aniline dye on polypropylene revealed
that electric field strengths of 6 × 105, 7 × 105, 9 × 105, 10 ×
105, and 10.5 × 105 V/m corresponding to applied voltages of

Figure 16. Comparison of the theoretical prediction of eqs 6.5−6.9 to the experimental data for the steady-state water−aniline dye drop contours
measured on the polypropylene substrate with electric fields of (a) 4.5 kV, (b) 5 kV, (c) 7 kV, (d) 9 kV, and (e) 10 kV. These voltages correspond
to electric field strengths of 3.0 × 105, 3.33 × 105, 4.67 × 105, 6.0 × 105, and 6.67 × 105 V/m, respectively. The left-hand-side electrode is the
anode, and the right-hand-side electrode is grounded (the cathode). The Cartesian coordinates on the substrate are denoted as x (in the field
direction) and y. The experimental data are shown by black symbols, while the theoretical predictions are shown by red lines. The drop was
deposited by impact.
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6, 7, 9, 10, and 10.5 kV, respectively, stretched the drops along
the field lines and increased their steady-state average footprint
areas compared to the case without voltage applied by 5.6, 5.8,
12.7, 13.6, and 20.5%, respectively. This is also related to a
relative wettability of polypropylene by water−aniline dye
drops, which is also enhanced by the additional electro-
wettability. Because of the pronounced effect of the substrate
wettability in this case, the linearized 2D theory developed in
this work significantly underpredicts stretching of the softly
deposited water−aniline dye drops on the polypropylene
substrate.

Additionally, the observations of a softly deposited sessile
drop of water−aniline dye on the parafilm substrate revealed
that electric field strengths of 8 × 105, 9 × 105, 10 × 105, and
10.5 × 105 V/m corresponding to applied voltages of 8, 9, 10,
and 10.5 kV, respectively, stretched the drops and increased
their steady-state areas compared to the case without voltage
by only 0.71, 4.7, 7.7, and 2.6%, respectively. These results
show that drop stretching on the parafilm surface is close to the
2D flow, which is related to the fact that parafilm is relatively
non-wettable by water−aniline dye drops, and thus, wettability
does not play any role in drop stretching compared to the
electrically driven stretching. This makes the experiments on

Figure 17. Comparison of the theoretical prediction of eqs 6.5−6.9 to the experimental data for the steady-state water−aniline dye drop contours
measured on the polypropylene substrate with electric fields of (a) 6 kV, (b) 7 kV, (c) 9 kV, (d) 10 kV, and (e) 10.5 kV. The corresponding electric
field strengths are 6 × 105, 7 × 105, 9 × 105, 10 × 105, and 10.5 × 105 V/m, respectively. The left-hand-side electrode is the anode, and the right-
hand-side electrode is grounded (the cathode). The Cartesian coordinates on the substrate are denoted as x (in the field direction) and y. The
experimental data are shown by black symbols, while the theoretical predictions are shown by red lines. The drop was deposited softly.

Figure 18. Comparison of the theoretical prediction of eqs 6.5−6.9 to the experimental data for the steady-state water−aniline dye drop contours
measured on the parafilm substrate with electric fields of (a) 8 kV, (b) 9 kV, (c) 10 kV, and (d) 10.5 kV, which correspond to electric field
strengths of 8 × 105, 9 × 105, 10 × 105, and 10.5 × 105 V/m, respectively. The left-hand-side electrode is the anode, and the right-hand-side
electrode is grounded (the cathode). The Cartesian coordinates on the substrate are denoted as x (in the field direction) and y. The experimental
data are shown by black symbols, while the theoretical predictions are shown by red lines. The drop was deposited softly.
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drop stretching on parafilm prone to comparison to the 2D
theory developed in this work, and the theoretical predictions
agree with the experimental data fairly well in this case.
The results reveal that the present 2D creeping-flow theory

is in good agreement with the experimental data and nonlinear
numerical results for drops on non-wettable substrates (where
a drop is raised over the substrate and, thus, differs from a thin
lubrication model) subjected to a subcritical electric field. The
present 2D model is also in good qualitative agreement with
experimental observations with droplets on substrates where
the no-slip condition is removed and a supercritical electric
field is applied. In the latter case drops developed a dimple in
the middle and teared apart.
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