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Abstract

We introduce the (p, q)-Fair Clustering problem. In this problem, we are given a set of points P and a
collection of different weight functions W . We would like to find a clustering which minimizes the ℓq-norm of
the vector over W of the ℓp-norms of the weighted distances of points in P from the centers. This generalizes
various clustering problems, including Socially Fair k-Median and k-Means, and is closely connected to other
problems such as Densest k-Subgraph and Min k-Union.

We utilize convex programming techniques to approximate the (p, q)-Fair Clustering problem for different

values of p and q. When p ≥ q, we get an O(k(p−q)/(2pq)), which nearly matches a kΩ((p−q)/(pq)) lower
bound based on conjectured hardness of Min k-Union and other problems. When q ≥ p, we get an
approximation which is independent of the size of the input for bounded p, q, and also matches the recent
O((log n/(log log n))1/p)-approximation for (p,∞)-Fair Clustering by Makarychev and Vakilian (COLT 2021).

1 Introduction

Clustering is one of the fundamental problems in various areas including theoretical computer science, machine
learning and operations research. Due to its broad range of applications, different researchers have considered
different cluster models. A typical model in theoretical computer science is the centroid model which contains the
classic k-Median, k-Means, k-Center and more generally, k-Clustering with ℓp-norm objective. In k-Clustering
with ℓp-norm objective, we are given a set of points in a metric space and the goal is to find a set of k centers C
so as to minimize the total ℓp distance of points to C. These problems are all known to be NP-hard and admit
various efficient approximation algorithms [Gonzalez, 1985, Hochbaum and Shmoys, 1985, Charikar et al., 2002,
Kanungo et al., 2004, Gupta and Tangwongsan, 2008, Li and Svensson, 2016, Ahmadian et al., 2020].

Recently, clustering has been widely studied under fairness constraints to prevent or alleviate the bias and
discrimination in the solution constructed by the existing algorithms [Chierichetti et al., 2017, Ahmadian et al.,
2019, Bera et al., 2019, Bercea et al., 2019, Backurs et al., 2019, Schmidt et al., 2019, Huang et al., 2019,
Kleindessner et al., 2019, Chen et al., 2019, Micha and Shah, 2020, Jung et al., 2020, Mahabadi and Vakilian,
2020, Kleindessner et al., 2020, Brubach et al., 2020]. In particular, the notion we consider in this paper is inspired
by the notion of Socially Fair Clustering introduced by Abbasi et al. [2021], Ghadiri et al. [2021]. In Socially
Fair Clustering, points in the input belong to different groups and the goal is to pick k centers so as to minimize
the maximum clustering cost incurred to any of the different (demographic) groups in the input. We note that
the objective of Socially Fair Clustering was also previously examined by Anthony et al. [2010] in the context of
Robust k-Clustering where a set of possible scenarios (i.e., a set of clients) are given in the input and the goal is
to find a set of centers which is a good solution for all scenarios.

Here, we consider a generalization of both Socially Fair Clustering and Robust Clustering which is denoted as
(p, q)-Fair Clustering and is formally defined as below. Besides the fact that (p, q)-Fair Clustering generalizes
various known problems, the new formulation is a generalization of the classic k-Clustering problem and
understanding the complexity of the problem under different values of p and q is of interest in itself.

Definition 1.1. ((p, q)-Fair Clustering) An instance I consists of a metric space ([m], d) on m points, n
different groups of points which are represented by non-negative weight functions w1, . . . , wn (for each i ∈ [n],
wi : [m] → R≥0) and a target number of centers k. For each i ∈ [n], the ℓp-cost of group i w.r.t. a set of centers
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C ⊆ [m] is defined as

costIp (C,wi) =

 m∑
j=1

wi(j) · d(j, C)p

1/p

,(1.1)

where d(j, C) = minj′∈C d(j, j′). Moreover, the (ℓp, ℓq)-cost of a set of k centers C ⊆ [m] is defined as the ℓq-norm
of the vector consisting the ℓp-cost of the groups w.r.t. C is defined as

costIp,q(C) =

(
n∑

i=1

costp(C,wi)
q

)1/q

=

 n∑
i=1

 m∑
j=1

wi(j) · d(j, C)p

q/p


1/q

(1.2)

In (p, q)-Fair Clustering, the goal is to find a set of k centers C ⊆ [m] so as to minimize costIp,q(C).

Remark 1.1. In the above definition, we may omit the superscript I indicating the instance relative to which we
compute the cost when it is clear from the context.

By setting q = ∞, (p, q)-Fair Clustering captures Socially Fair Clustering with ℓp-cost. Moreover, compared
to Socially Fair Clustering, the formulation of (p, q)-Fair Clustering allows for a “relaxed” way of enforcing the
fairness requirement. In particular, by varying the value of q from p to ∞, the objective interpolates between
the objective of classic k-Clustering with ℓp-cost and that of Socially Fair Clustering with ℓp-cost.1 Depending
on how accurate the group membership information is, the user can set the value of q accordingly and aim for a
clustering with a “reasonable” fairness constraint w.r.t. the extracted group membership information: the more
accurate the group membership information gets, the higher value can be assigned to q.

We remark that the special case of (∞, 1)-Fair Clustering was previously studied by Anthony et al. [2010] under
the name of Stochastic k-Center where the intuition is that we have a potential set of (client) scenarios and know
that one of them is likely to happen but do not know which one. Anthony et al. proved that Stochastic k-Center is
as hard to approximate as the Densest k-Subgraph. In particular, (∞, 1)-Fair Clustering with 0-1 weight functions
can be seen to be equivalent to the Min s-Union problem (a generalization of Densest k-Subgraph) [Chlamtáč
et al., 2018, 2017], in which we are given a collection of m sets and an integer s ∈ [m] and the goal is to choose
s sets from the input whose union has minimum cardinality. In addition to the hardness result for Stochastic
k-Center, Anthony et al. also provided an O(logm)-approximation for the Stochastic k-Median problem which is
equivalent to (1, 1)-Fair Clustering with arbitrary weight functions w1, · · · , wn.

In a different direction, Goyal and Jaiswal [2021] designed constant factor approximation FPT algorithms for
Socially Fair k-Median and k-Means and provided hardness results as well.

Remark 1.1. Chakrabarty and Swamy [2019] observed that a slightly modified variant of standard existing
algorithms for k-Median (e.g., Charikar et al. [2002]) can be applied to obtain a constant factor approximation
algorithm for the more general (weighted) k-Clustering with ℓp-cost (for p ∈ [1,∞)). This can also be achieved by
applying the algorithm of [Makarychev and Vakilian, 2021] for (p,∞)-Fair Clustering when the number of groups
is one.

1.1 Our Results and Techniques. In this paper, we design approximation algorithms for (p, q)-Fair
Clustering for all values of p, q ∈ [1,∞). The following theorems are our main contributions in this work.

Theorem 1.1. (p ≥ q) In the regime p ≥ q, there exists a polynomial time algorithm that computes an O
(
k

p−q
2pq

)
-

approximation for (p, q)-Fair Clustering.

1We remark that in Socially Fair Clustering with ℓp-cost as defined by Makarychev and Vakilian [2021], the goal is to minimize
the maximum over all groups i of costp(C,wi)

p. However, in (p,∞)-Fair Clustering the goal is to minimize the maximum over all

groups i of costp(C,wi). Note that an α-approximation algorithm for (p,∞)-Fair Clustering implies an αp-approximation guarantee
for Socially Fair Clustering with ℓp-cost and vice versa.
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This approximation may be nearly optimal in the following sense. As we show in Appendix B, assuming certain
hardness conjectures for Min s-Union and related problems, it is in fact not possible to get an algorithm for (p, q)-
Fair Clustering in the regime p > q with an approximation factor less than mΩ((p−q)/(pq)) (note that k ≤ m). See
Theorem B.1 for details. Moreover, when k ≪ m our algorithm achieves a much better approximation which is
independent of m.

Theorem 1.2. (p ≤ q) In the regime p ≤ q, there exists a polynomial time algorithm that computes an

O

((
q

ln (1+q/p)

)1/p)
-approximation for (p, q)-Fair Clustering.

Note that (p, p)-Fair Clustering (i.e., p = q) with 0-1 weight functions is equivalent to the classic k-Clustering
with ℓp-cost. In this setting, Theorem 1.2 gives a constant factor approximation which is essentially optimal.

This bound implies an O
(

( logn
log log n )1/p

)
-approximation for (p,∞)-Fair Clustering2, which matches the recent

approximation algorithm of [Makarychev and Vakilian, 2021] and the hardness result of [Bhattacharya et al.,
2014]. Thus, for any value of p, the approximation guarantee of Theorem 1.2 smoothly interpolates between the
optimal approximation bounds for the previously studied special cases of q = ∞ and q = p.

Finally, we remark that for any p, q it is possible to get an O(n|1/p−1/q|) approximation by approximating
the outer ℓq-norm in the formulation of (p, q)-Fair Clustering with ℓp-norm and solving the obtained instance
of (p, p)-Fair Clustering with one of the existing constant factor approximation algorithms of k-Clustering with
ℓp-cost.

Overview of our algorithms. At a high-level, our approach is to solve a convex programming relaxation
of (p, q)-Fair Clustering and then round the fractional solution to get an approximate integral solution. However,
even coming up with an efficient convex program of the problems is non-trivial and introducing such a relaxation
is one of our contributions in this paper. While a generalization of the standard LP relaxations for clustering
problems (e.g., k-Median [Charikar et al., 2002]) results in a natural convex programming relaxation of (p, q)-Fair
Clustering when p ≤ q, it is less clear how to even come up with a valid convex program relaxation of (p, q)-Fair
Clustering for the other scenario, p ≥ q. In particular, the natural constraint we need to add is not convex when
p > q. In the p ≤ q regime, we cannot use the natural convex relaxation, or even the stronger relaxation which
generalizes the LP-relaxation for (p,∞)-Fair Clustering used by Makarychev and Vakilian, since even the latter

has a simple Ω(n(q−p)/q2) integrality gap construction. To overcome this polynomial lower-bound, we use the
round-or-cut framework (see Carr et al. [2000], An et al. [2017], Li [2017], Chakrabarty and Negahbani [2019]):
we have an exponential family of constraints with a separation oracle based on our rounding algorithm; we add a
constraint from the family only if the rounding algorithm detects that it is violated. These constraints are needed
to bound different moments of the cost function applied to a set of clusters generated by the first step of our
rounding.

Next, we employ a slightly modified version of a reduction technique introduced by Charikar et al. [2002]
which yields a simplified instance of the same problem along with a corresponding convex programming solution.
After performing the reduction on the input instance and solution to the corresponding convex program, we will
get a sparsified instance (i.e., the number of points becomes O(k)) along with an adjusted feasible solution that
together satisfy several useful properties which relate to our convex programming relaxations and are crucial
for our rounding algorithm. More details on the reduction and the properties guaranteed by it are provided in
Section 3.

Finally, we perform a rounding procedure on the sparsified instance and obtain an approximate integral
solution. By the properties of the reduction, using the output integral solution for the sparsified instance, we
can construct an integral solution of the original instance without increasing the cost by more than a constant
factor. We remark that the analysis of our rounding algorithm crucially relies on the properties guaranteed by
the “non-standard” constraints we added to the relaxations of the problem in both p ≤ q and p ≥ q regimes.

1.2 Paper Organization. We start with providing the convex programming relaxations of (p, q)-Fair
Clustering in Section 2. In Section 3, we concisely state the properties of the reduction by [Charikar et al.,
2002] that is used in our rounding algorithm – its proof is deferred to Appendix A. Then, in Section 4, we

2This is the case, since the (ℓp, ℓ∞)-cost objective is equal to the (ℓp, ℓlogn)-cost objective up to a constant factor.
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describe our rounding algorithm and in Sections 5 and 6 we analyze the approximation guarantee of the rounding
algorithm in the regimes p ≥ q and p ≤ q respectively. Finally, in Appendix B, we explore the connection of
(p, q)-Fair Clustering to Min s-Union and prove polynomial hardness of approximation for the problem assuming
standard hardness conjectures for Min s-Union.

2 Convex Programming Relaxations

We will use somewhat different convex programming relaxations in the two parameter regimes, when p ≥ q and
p ≤ q. However, the relaxations for both regimes will use the following common assignment/clustering polytope,
which is often used for problems such as k-Median or Facility Location:

Pk
cluster := {(x, y) ∈[0, 1]m×m × [0, 1]m satisfying the following}

m∑
ℓ=1

xjℓ = 1 ∀j ∈ [m](2.3)

xjℓ ≤ yℓ := xℓℓ ∀j ∈ [m], ℓ ∈ [m] \ {j}(2.4)
m∑
j=1

yj ≤ k(2.5)

xjℓ ≥ 0 ∀j, ℓ ∈ [m](2.6)

In the intended solution, xjℓ is a 0-1 variable which is 1 if and only if ℓ is a center and j is assigned to a
cluster centered at ℓ. The variable yj = xjj is 1 if and only if j is a center.

2.1 Convex Relaxation for the Case p ≥ q. Our algorithm will use the following convex program. We think
of B as a fixed parameter of the convex program, which we can use in a binary search.

min B

s.t.
n∑

i=1

zi ≤ Bq(2.7)

(x, y) ∈ Pk
cluster(2.8)

zi ≥

 m∑
j=1

wi(j)

 m∑
j′=1

d(j, j′)qxjj′

p/q


q/p

∀i ∈ [n](2.9)

The variable zi represents the cost incurred by group i, raised to the q. The natural constraint to express the
connection between zi and the clustering variables xjj′ would be

(2.10) zi ≥

 m∑
j=1

wi(j)
m∑

j′=1

d(j, j′)pxjj′

q/p

.

However, this is not a convex constraint in the p > q regime, so we further relax this connection and write
Constraint (2.9) instead.

2.2 Convex Relaxation for the Case p ≤ q. To motivate our relaxation, first consider the natural convex
relaxation which is identical to the relaxation in the previous section but with Constraint (2.9) replaced by the
more natural Constraint (2.10) above (which is convex in the p ≤ q regime). Consider even a simple case where
all distances are 1, and the points can be partitioned into sets (J1, J2) such that yj = 1 for every j ∈ J2, and for
every j ∈ J1 there is exactly one j′ ∈ J2 such that xjj′ = ε and yj = xjj = 1− ε, and xjj′′ = 0 for all j′′ ̸∈ {j, j′}.
Also suppose every weight function wi is an indicator function for some set Pi ⊆ J1 of cardinality |Pi| = t (see
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J1 J2

d = 1

j j′

xjj′ = ε
1− ε

Figure 1: In this example, the natural convex program has a large integrality gap.

Figure 1). Note that in this case, the natural cost constraints would give us zi ≥ (
∑

j∈Pi
d(j, j′)p ·ε)q/p = (ε · t)q/p

and B ≥
(∑n

i=1 zi

)1/q
≥ n1/q · (ε · t)1/p. It would be natural to apply the following randomized rounding:

• assign each j ∈ J1 to center j′ independently with probability yjj′ = ε, and otherwise make j a center;

• make each j ∈ J2 a center (since yj = 1).

Denote the obtained set of centers by C. Let us see what the cost of group i w.r.t. C is. We have

E
[
costp(C,wi)

p
]

= E
[∑
j∈Pi

d(j, C)p
]

= εt.

Now, we are interested in the expectation E
[(∑

j∈Pi
d(j, C)p

)q/p]
, as out ultimate goal is to upper bound the

expectation of costp,q(C)q (see formula (1.2)). Observe that if ε · t = Ω(log n), then
∑

j∈Pi
d(j, C)p is concentrated

around the mean and

E
[( m∑

j∈Pi

d(j, C)p
)q/p]

∼ (εt)q/p = O(zi),

as desired. However, if εt = o(1), then
∑m

j=1 d(j, C)p is close to a Poisson random variable with rate εt. Thus,

the expectation of
(∑m

j=1 d(j, C)p
)q/p

is at least ∼ εt, which is much greater than (εt)q/p (in this regime). Thus,

E
[ n∑
i=1

( m∑
j=1

d(j, C)p
)q/p]1/q

≳ n1/q(εt)1/q,

which is a factor of
(

1
ε·t
)(q−p)/(pq)

larger than our bound for B.
To overcome this potentially polynomially-large gap, we need to introduce different constraints to handle

different moments in the randomized rounding (we will use Lata la’s inequality in the analysis, which basically
allows us to handle the two cases above separately). For instance, to decrease the integrality gap and improve
the performance of the rounding w.r.t. the relaxation in the above example when εt = o(1), we may want to add
constraints of the form

zi ≥
m∑
j=1

(1 − yj)wi(j)
q/pd(j, [m] \ j)q.

However, it is not enough to introduce such constraints for the original points, since we apply our randomized
rounding to an instance produced by the reduction of Charikar et al. Loosely speaking, the reduction partitions
the set of points [m] into O(k) initial clusters {Vℓ}; it is guaranteed that there is a k-clustering that for each
ℓ, assigns all points in Vℓ to the same center, and has cost at most a constant times greater than the optimum
clustering. In our algorithm, for every ℓ, we will find one center that serves all points in Vℓ using randomized
rounding. For this approach to work, we need to introduce new constraints that depend on the partition {Vℓ}.
The challenge is that sets {Vℓ} returned by the reduction depend on the convex program solution, so we do not
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U

j

d(j, [m] \ U)

Figure 2: To compute voli(U), we find the distance from every point j in U to the closest point outside of U .

know them when we solve the convex program. To deal with this problem, we introduce a family of exponentially-
many constraints for all possible choices of sets {Vℓ}. Since we only need these constraints to hold for the set of
clusters arising in the reduction and not all possible collections of clusters, we will check these constraints with a
“rounding separation oracle.” That is, we will only check that the constraints hold for the set of clusters arising in
the reduction, and if they do not, we will use a separating hyperplane to continue solving the convex program with
the Ellipsoid Method. In order to describe our non-standard constraints, we introduce the following definition
(see Figure 2).

Definition 2.1. Consider a set of points U ⊂ [m]. Let voli(U) =
∑

j∈U wi(j)d(j, [m] \ U)p.

We briefly discuss the motivation for this definition. Consider a set of points U ⊂ [m] (later this set will
be one of the clusters returned by the reduction). Assume that our algorithm opens a set of centers C. By
Definition 1.1, costp(C,wi)

p =
∑m

j=1 wi(j)d(j, C)p. We want to lower bound the contribution of points in U to
costp(C,wi)

p assuming that there are no centers from C in U . We show that this contribution is at least voli(U).
Indeed, observe that d(j, C) ≥ d(j, [m] \ U) for every j ∈ U , since C ⊆ [m] \ U . Therefore,

(2.11)
∑
j∈U

wi(j)d(j, C)p ≥
∑
j∈U

wi(j)d(j, [m] \ U)p = voli(U).

In the following claim we generalize this inequality for the case where we have many disjoint sets.

Claim 2.1. Consider a collection (Vℓ)ℓ∈Λ of pairwise disjoint subsets of [m], indexed by some set of indices Λ.
Let C ⊆ [m] be a set of centers. Then for every group i ∈ [n], the following lower bounds on costp(C,wi) hold.

costp(C,wi)
p ≥

∑
ℓ∈Λ:Vℓ∩C=∅

voli(Vℓ) and(2.12)

costp(C,wi)
q ≥

∑
ℓ∈Λ:Vℓ∩C=∅

voli(Vℓ)
q/p if p ≤ q.(2.13)

Proof. Using Definition 1.1, inequality (2.11), and that sets Vℓ are pairwise disjoint, we get,

costp(C,wi)
p =

m∑
j=1

wi(j)d(j, C)p ≥
∑

ℓ∈Λ:Vℓ∩C=∅

∑
j∈Vℓ

wi(j)d(j, C)p
by (2.11)

≥
∑

ℓ∈Λ:Vℓ∩C=∅

voli(Vℓ),

as required. We obtain inequality (2.13) from inequality (2.12) by applying the inequality ∥a∥1 ≥ ∥a∥q/p (note
that p ≤ q) to the vector a = (voli(Vℓ))ℓ∈Λ:Vℓ∩C=∅.

We rewrite inequalities (2.12) and (2.13) as follows.

costp(C,wi)
q ≥

(∑
ℓ∈Λ

max (0, 1 − |C ∩ Vℓ|) voli(Vℓ)

)q/p

,(2.14)

costp(C,wi)
q ≥

∑
ℓ∈Λ

max (0, 1 − |C ∩ Vℓ|) (voli(Vℓ))
q/p

.(2.15)
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Note that the term max (0, 1 − |C ∩ Vℓ|) equals 1 if C ∩ Vℓ = ∅ and equals 0 otherwise. To state our convex
relaxation, we will use the following notation for disjoint collections of sets:

Π(m) := {(Λ, (Vℓ)ℓ∈Λ) | Λ ⊆ [m] and (Vℓ)ℓ∈Λ are disjoint subsets of [m]}.

We are now ready to present our relaxation for the case p ≤ q.

min B

s.t. (x, y) ∈ Pk
cluster(2.16)

n∑
i=1

zi ≤ Bq(2.17)

zi ≥
( m∑

j=1

wi(j)
m∑

j′=1

d(j, j′)pxjj′

)q/p

∀i ∈ [n](2.18)

zi ≥
(∑

ℓ∈Λ

max
(
0, 1 −

∑
j∈Vℓ

yj
)
· voli(Vℓ)

)q/p

∀i ∈ [n], ∀(Λ, (Vℓ)ℓ∈Λ) ∈ Π(m)(2.19)

zi ≥
∑
ℓ∈Λ

max
(
0, 1 −

∑
j∈Vℓ

yj
)
· voli(Vℓ)

q/p ∀i ∈ [n], ∀(Λ, (Vℓ)ℓ∈Λ) ∈ Π(m)(2.20)

It follows from inequalities (2.14) and (2.15) that this is a valid relaxation.
As noted in the following remark, it will be easy to check Constraints (2.19) and (2.20) once the set of clusters

is fixed.

Remark 2.1. The correctness of the reduction of Charikar et al. does not require Constraints (2.19) and (2.20),
so they do not need to be checked before applying the reduction. The reduction will yield a set of centers K along
with the corresponding Voronoi cells (Vℓ)ℓ∈K . To check that Constraints (2.19) and (2.20) hold for these sets for
any Λ ⊆ K, it suffices to check that they hold for Λ = {ℓ ∈ K |

∑
j∈Vℓ

yj < 1}.

Remark 2.2. Let us briefly compare our relaxation with the one used by Makarychev and Vakilian for solving
(p,∞)-Fair Clustering (let us call the latter the (p,∞)-relaxation). The (p,∞)-relaxation has Constraints (2.16)–
(2.18) and additional non-standard constraints. These non-standard constraints are essentially equivalent to
Constraints (2.19) for a very special family of (Λ, (Vℓ)ℓ∈Λ): |Λ| = 1 and set Vℓ is a ball around some point in [m]
(note that Constraints (2.19) and (2.20) are equivalent when |Λ| = 1). Since there are polynomially many different
balls in ([m], d), the (p,∞)-relaxation has polynomially-many constraints. However, if we simply adapted this
relaxation to the (p, q)-Fair Clustering problem, we would get a relaxation with a polynomially large integrality
gap.

3 Reduction à la Charikar et al.

We will use a slight modification of the reduction, which was used by Charikar et al. to get the first constant factor
approximation algorithm for k-Median. We use the same reduction to solve the (p, q)-Fair Clustering problem in
both regimes, p ≤ q and p ≥ p.

We will refer to a not-necessarily-optimal solution (x, y, z) that satisfies Constraints (2.7)–(2.9) when p ≥ q
and Constraints (2.16)–(2.18) but when p ≤ q as a fractional clustering solution (when p ≤ q, the solution might
not satisfy Constraints (2.19) and (2.20).

Theorem 3.1. There is a polynomial-time reduction that given an instance I of (p, q)-Fair Clustering, a fractional
clustering solution (x, y, z) of value B, and a parameter γ ∈ (0, 1/2) returns an instance I ′ on a subset of points
K ⊂ [m] of size |K| ≤ k

1−γ with weights w′
i(ℓ) (where i ∈ [n] and ℓ ∈ K), and a fractional clustering solution

(x′, y′, z′) such that the following properties hold.

1. The cost of (x′, y′, z′) is at most twice that of solution (x, y, z).
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2. Let σ(ℓ) ∈ K be the closest point to ℓ ∈ K other than ℓ itself. The solution (x′, y′, z′) assigns each point
ℓ ∈ K only to centers ℓ and σ(ℓ). Specifically, for all ℓ ∈ K:

x′
ℓℓ = y′ℓ; x′

ℓσ(ℓ) = 1 − y′ℓ; x′
ℓj = 0 for j /∈ {ℓ, σ(ℓ)}.

Further, x′
ℓσ(ℓ) ≤ γ.

3. Let {Vℓ}ℓ∈K be the Voronoi partition of [m] induced by the set of centers K (Voronoi sites). Then, for every

ℓ, y′ℓ = min
(

1,
∑

j∈Vℓ
yj

)
.

4. The costs of combinatorial solutions for I and I ′ are related as follows: For every set of centers L ⊆ [m]
there is a set of centers L′ ⊆ K of cost

(3.21) costI
′

p,q(L′) ≤ 2costIp,q(L) +
4

γ1/ν
B,

and moreover for any set of centers L ⊆ K, the cost of L as a solution for I is bounded by

(3.22) costIp,q(L) ≤ costI
′

p,q(L) +
2

γ1/ν
B.

5. If Λ ⊆ K is a set of centers such that σ(ℓ) ̸∈ Λ for every ℓ ∈ Λ, then the cost of centers K \Λ w.r.t. instance
I is bounded by

costIp,q(K \ Λ) ≤ 6

γ1/ν
B + 2

 n∑
i=1

(∑
ℓ∈Λ

voli(Vℓ)

)q/p
1/q

.

Charikar et al. presented this reduction and proved that it satisfies properties 1–3 and (3.22). As far as we know,
Property (3.21) has not been explicitly stated or used before, but its proof is similar to that of Property (3.22).
Finally, Property 5 is new – we need it to use our new CP Constraints (2.19) and (2.20). We will also use the
following observation from [Charikar et al., 2002].

Observation 3.1. We can efficiently find a partition (K1,K2) of K such that σ(K1) ⊆ K2, σ(K2) ⊆ K1, and∑
ℓ∈K1

x′
ℓσ(ℓ) ≥

|K| − k

2
.

For completeness, we provide proofs of Theorem 3.1 and Observation 3.1 in Appendix A.

4 A Randomized Rounding

In this section, we describe two steps that will be used in the rounding algorithms for both parameter regimes.
All our algorithms will begin by applying the reduction from Theorem 3.1 for γ = 1/5. Let K be the set of
points obtained by applying this reduction, let (x′, y′, z′) be the corresponding convex programming solution, as
described in the theorem, and let K1 be as in Observation 3.1. Note that if |K| ≤ k, then the current centers
already give a constant factor approximation (since their cost in the new instance is 0, and so by Property (3.22)
in Theorem 3.1, the cost in the original instance is at most 2B/γ1/ν ≤ 10B (and we can simply add |K| − k
centers to K from [m] \K in the original instance only reducing the cost). Thus, we assume that |K| > k below.
Consider the following rounding:

• Let

K ′ =

{
ℓ ∈ K1

∣∣∣∣ x′
ℓσ(ℓ) ≥

|K| − k

4|K1|

}
,

and note by Observation 3.1 that∑
ℓ∈K′

x′
ℓσ(ℓ) ≥

∑
ℓ∈K1

x′
ℓσ(ℓ) −

|K| − k

4|K1|
· |K1 \K ′| ≥ |K| − k

2
− |K| − k

4
≥ |K| − k

4
.
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• Let L = K ′. Independently close (remove from L) every center ℓ ∈ K ′ with probability 5x′
ℓσ(ℓ) (recall that

x′
ℓσ(ℓ) ≤ γ = 1/5 by item 2 of Theorem 3.1).

• If |L| < k, reopen (add to L) an arbitrary collection of k − |L| centers at no additional cost.

The expected number of centers that we close in the second step is 5
∑

ℓ∈K′ x′
ℓσ(ℓ) ≥ 5

4 (|K| − k). By a

Chernoff bound this number is at least |K| − k centers w.h.p. (unless |K| − k is bounded by some sufficiently
large constant, in which case we can enumerate over all possible solutions to get a constant factor approximation).
While the analysis of the cost of this rounding depends on the specific parameter regime we are in, we introduce
the following notation which we will use in both cases. For every group i and center ℓ ∈ K ′, we define random
variables specifying the per-center and total costs incurred to every group i ∈ [n] by this rounding:

(4.23) Ziℓ :=

{
voli(Vℓ) if we close center ℓ,
0 otherwise,

and Zi =
∑
ℓ∈K′

Ziℓ.

For the simpler analysis in Section 5, it will suffice to analyze the cost in the new instance I ′ (produced by
the reduction from Theorem 3.1), for which we define the following variables:

(4.24) Z ′
iℓ :=

{
w′

i(ℓ)d(ℓ, σ(ℓ))p if we close center ℓ,
0 otherwise,

and Z ′
i =

∑
ℓ∈K′

Z ′
iℓ.

Claim 4.1. The (ℓp, ℓq)-cost in I of the clustering found by randomized rounding is bounded by3

min

30B + 2

(
n∑

i=1

Z
q/p
i

)1/q

, 10B +

(
n∑

i=1

(Z ′
i)

q/p

)1/q


Proof. Note that if we close a center ℓ then we do not close σ(ℓ), since (i) we only close centers ℓ in K ′ ⊆ K1 and
(ii) if ℓ ∈ K ′ then σ(ℓ) ∈ K2. Therefore, we can apply item 5 of Theorem 3.1 with Λ = K \ L (the set of centers
we closed). We get,

costIp,q(L) ≤ 6

γ1/ν
B + 2

 n∑
i=1

(∑
ℓ/∈L

voli(Vℓ)

)q/p
1/q

=
6

γ1/ν
B + 2

(
n∑

i=1

Z
q/p
i

)1/q

.

where ν = min(p, q), γ = 1/5, and thus 6/γ1ν ≤ 30. Also, the cost of L w.r.t. instance I ′ is

 n∑
i=1

(∑
ℓ∈K

w′
i(ℓ)d(ℓ, L)p

)q/p
1/q

=

 n∑
i=1

 ∑
ℓ∈K\L

w′
i(ℓ)d(ℓ, σ(ℓ))p

q/p


1/q

=

(
n∑

i=1

(Z ′
i)

q/p

)1/q

.

Here, we used that d(ℓ, L) = 0 if ℓ is not closed and d(ℓ, L) = d(ℓ, σ(ℓ)), otherwise. By Theorem 3.1, item 4, the
cost of L w.r.t. instance I is

costIp,q(L) ≤ 2

γ1/ν
B +

(
n∑

i=1

(Z ′
i)

q/p

)1/q

≤ 10B +

(
n∑

i=1

(Z ′
i)

q/p

)1/q

.

3Note that terms 30B and 10B only add a constant to the approximation factor of the randomized rounding scheme, since B is at

most the cost of the optimal clustering. Thus, the main challenge will be to upper bound either
(∑n

i=1 Z
q/p
i

)1/q
or

(∑n
i=1(Z

′
i)

q/p
)1/q

.
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5 Approximation Algorithm for the Case p ≥ q

In this section, we present our rounding algorithm for the convex program from Section 2.1.
We start out by applying the reduction described in Theorem 3.1. We now consider two cases. If |K|−k ≥

√
k,

then we apply the randomized rounding from Section 4. Otherwise, we re-weight the points and run an
approximation algorithm for k-Clustering with ℓq-norm objective. Let us first analyze the the performance
of randomized rounding when p ≥ q.

Lemma 5.1. The expected cost of the randomized rounding is at most O
(
B · (k/(|K| − k))

p−q
pq

)
.

Proof. By Claim 4.1, it suffices to bound the expectation of
(∑n

i=1(Z ′
i)

q/p
)1/q

. Let us do that now. By Jensen’s
inequality, and linearity of expectation, we have

E

( n∑
i=1

(Z ′
i)

q/p

)1/q
 ≤

(
E

[
n∑

i=1

(Z ′
i)

q/p

])1/q

=

(
n∑

i=1

E
[
(Z ′

i)
q/p
])1/q

≤

(
n∑

i=1

E [Z ′
i]
q/p

)1/q

(5.25)

Let us now bound the expectation E[Z ′
i]. First, recall that by definition of K ′ and Theorem 3.1, for every

ℓ ∈ K ′, we have

(5.26) x′
ℓσ(ℓ) ≥

|K| − k

4|K1|
≥ |K| − k

4|K|
≥ |K| − k

4k/(1 − γ)
=

|K| − k

5k
.

From the definition of Z ′
i, using that (x′, y′, z′) satisfies Constraint (2.9) by Theorem 3.1, we have

E[Z ′
i] =

∑
ℓ∈K′

E [Z ′
iℓ] = 5

∑
ℓ∈K′

x′
ℓσ(ℓ)w

′
i(ℓ)d(ℓ, σ(ℓ))p

≤ 5

(
5k

|K| − k

) p−q
q ∑

ℓ∈K′

(x′
ℓσ(ℓ))

p/qw′
i(ℓ)d(ℓ, σ(ℓ))p by (5.26)

= 5

(
5k

|K| − k

) p−q
q

(z′i)
p/q. by Constraint (2.9)

Plugging this bound back into (5.25), we get

E

( n∑
i=1

(Z ′
i)

q/p

)1/q
 ≤

(
5q/p

(
5k

|K| − k

) p−q
p

z′i

)1/q

= 51/p
(

5k

|K| − k

) p−q
pq

· (
n∑

i=1

z′i)
1/q,

By Constraint (2.7) and Theorem 3.1 (
∑n

i=1 z
′
i)

1/q ≤ 2B. We get

E

( n∑
i=1

(Z ′
i)

q/p

)1/q
 ≤ 10

(
5k

|K| − k

) p−q
pq

·B,

as required.

Thus, as mentioned earlier, the randomized rounding indeed gives the desired approximation when |K| − k ≥√
k. Let us see a different rounding algorithm, which gives the desired guarantee when |K| − k ≤

√
k. In this

rounding, we define a new weight function ŵ : K → R≥0 as follows:

ŵ(ℓ) :=
n∑

i=1

w′
i(ℓ)

q/p.

Recall that for any q ∈ [1,∞), k-Clustering with ℓq-cost can be approximated up to a constant factor (see
Remark 1.1). Our rounding algorithm in this case is simple:
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• Apply a constant-factor approximation for k-Clustering with ℓq-cost to the current input (on K) with new
weights ŵ and return the set of centers L chosen by this algorithm.

Let us analyze the approximation guarantee. Recall that the new instance (obtained by the reduction from
Theorem 3.1) has optimum value B′ = O(γ−1/q)(B∗+B) = O(B∗), where B∗ is the optimum value of the original
instance. Then for the above algorithm applied to the new instance, we have the following guarantee.

Lemma 5.2. The cost costI
′

p,q(L) is at most O
(
B′ · (|K| − k)

p−q
pq

)
.

Proof. Since we use a constant-factor approximation for the ℓq objective, it suffices to show that for every set

K̂ ⊂ K of k centers, the following values

• the (ℓp, ℓq)-cost of K̂ w.r.t. the original weights w′
i (from the reduction of Theorem 3.1), and

• the ℓq-cost of K̂ w.r.t. the new weights ŵi

are within a factor of (|K| − k)
p−q
pq of each other. Indeed, let K̂ ⊆ K be any set of k centers. Then

costI
′

p,q(K̂) =

 n∑
i=1

(∑
ℓ∈K

w′
i(ℓ)d(ℓ, K̂)p

)q/p
1/q

≤

(
n∑

i=1

∑
ℓ∈K

w′
i(ℓ)

q/pd(ℓ, K̂)q

)1/q

since ∥ · ∥p/q ≤ ∥ · ∥1

=

(∑
ℓ∈K

(
n∑

i=1

w′
i(ℓ)

q/p

)
︸ ︷︷ ︸

ŵ(ℓ)

d(ℓ, K̂)q
)1/q

,

which is exactly the ℓq objective of our new instance applied to this set of centers.

On the other hand, again for any set K̂ ⊆ K of k centers, we can bound the q-norm objective of the instance
with weights ŵ as follows

(∑
ℓ∈K

ŵ(ℓ)d(ℓ, K̂)q
) 1

q

=

 ∑
ℓ∈K\K̂

ŵ(ℓ)d(ℓ, K̂)q

 1
q

=

 ∑
ℓ∈K\K̂

n∑
i=1

w′
i(ℓ)

q/pd(ℓ, K̂)q

 1
q

=

 n∑
i=1

∑
ℓ∈K\K̂

w′
i(ℓ)

q/pd(ℓ, K̂)q

 1
q

by Hölder

≤

 n∑
i=1

 ∑
ℓ∈K\K̂

1
p

p−q


p−q
p
 ∑

ℓ∈K\K̂

w′
i(ℓ)d(ℓ, K̂)p


q
p


1
q

= |K \ K̂|
p−q
pq

 n∑
i=1

(∑
ℓ∈K

w′
i(ℓ)d(ℓ, K̂)p

) q
p

 1
q

= (|K| − k)
p−q
pq costI

′

p,q(K̂),

and the proof follows.

Proof. (Proof of Theorem 1.1.) We solve the convex programming relaxation for the problem and then apply the
reduction from Theorem 3.1. If the set of points K found by the reduction is of cardinality |K| ≤ k, we add k−|K|
points from [m] and return the resulting set, which as noted earlier has cost O(B). Otherwise, if |K|−k >

√
k, we

run the randomized rounding procedure, which by Lemma 5.1 yields an O(k(p−q)/(2pq))-approximation. Finally,
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if 0 < |K| − k ≤
√
k, we run a constant-factor approximation for the ℓq norm k-Clustering with weights ŵ and

obtain a solution L. Let B∗
I′ be the (ℓp, ℓq)-cost of the optimal solution for I ′ and B∗ be the (ℓp, ℓq)-cost of the

optimal solution for I. By Lemma 5.2,

costI
′

p,q(L) ≤ O(k(p−q)/(2pq))B∗
I′ .

By Theorem 3.1, item 4:

costp,q(L) ≤ costI
′

p,q(L) + 10B

(3.22)

≤ O(k(p−q)/(2pq))B∗
I′ + 10B

(3.21)

≤ O(k(p−q)/(2pq))(2B∗ + 20B) + 10B = O(k(p−q)/(2pq))B∗,

here we used that B ≤ B∗. We conclude that the algorithm gives an O(k
p−q
pq ) approximation, as required.

6 Approximation Algorithm for the Case p ≤ q

In this section, we upper bound the cost of the solution produced by the rounding procedure. In the analysis, we
will use Lata la’s inequality.

Theorem 6.1. (Lata la [1997], Corollary 3) There exists a universal constant M such that if Z1, . . . , ZN

are independent non-negative random variables and α ≥ 1, then(
E
[( N∑

i=1

Zi

)α])1/α

≤ Mα

ln(1 + α)
max

( N∑
i=1

E[Zi],
( N∑
i=1

E[Zα
i ]
)1/α)

.

We will use Lata la’s inequality with α = q/p. Denote Mpq =
(

Mq
p ln(1+q/p)

)q/p
. Then,

(6.27) E
[( N∑

i=1

Zi

)q/p]
≤ Mpq

(( N∑
i=1

E[Zi]
)q/p

+

N∑
i=1

E[Z
q/p
i ]

)
.

The algorithm for (p, q)-Fair Clustering in the case p ≤ q simply solves the convex problem, applies the reduction
from Theorem 3.1, and then runs the randomized rounding procedure. We denote the obtained set of centers by
L. Now we are ready to prove the main result of this section.

Lemma 6.1. The rounding procedure outputs a solution for I of cost at most O

((
q

ln(1+q/p)

)1/p)
B in expectation.

Proof. We use random variables Ziℓ defined in (4.23). By Claim 4.1, the cost of the solution for instance I ′ found by

the rounding procedure is
(∑n

i=1

(∑
ℓ∈K′ Ziℓ

)q/p)1/q
. We upper bound this cost using Lata la’s inequality (6.27).

For every i ∈ [m], we have

E
[(∑

ℓ∈K′

Ziℓ

)q/p]
≤ Mpq

((
E
[∑
ℓ∈K′

Ziℓ

])q/p
+
∑
ℓ∈K′

E[Z
q/p
iℓ ]

)
Now,

E
[ n∑
i=1

(∑
ℓ∈K′

Ziℓ

)q/p]
≤ Mpq

(
n∑

i=1

(
E
[∑
ℓ∈K′

Ziℓ

])q/p
+

n∑
i=1

∑
ℓ∈K′

E[Z
q/p
iℓ ]

)

Using that E[Ziℓ] = 5x′
ℓσ(ℓ) · vol(Vℓ), we get

n∑
i=1

(
E
[∑
ℓ∈K′

Ziℓ

])q/p
≤ 5q/p

n∑
i=1

(∑
ℓ∈K′

x′
ℓσ(ℓ) · voli(Vℓ)

)q/p
.
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By items 2 and 3 of Theorem 3.1, x′
ℓσ(ℓ) = 1 − y′ℓ = max(0, 1 −

∑
j∈Vℓ

yj), so from Constraint (2.19) we get

n∑
i=1

(
E
[∑
ℓ∈K′

Ziℓ

])q/p
≤ 5q/p

n∑
i=1

zi ≤ 5q/pBq.

We also have,
n∑

i=1

∑
ℓ∈K′

E
[
Z

q/p
iℓ

]
≤ 5q/p

n∑
i=1

∑
ℓ∈K′

x′
ℓσ(ℓ) · voli(Vℓ)

q/p.

And by the same argument as above, but using Constraint (2.20), we also get

n∑
i=1

∑
ℓ∈K′

E
[
Z

q/p
iℓ

]
≤ 5q/p

n∑
i=1

zi ≤ 5q/pBq.

We conclude that the expected cost of the clustering is at most,

E

[( n∑
i=1

(∑
ℓ∈K′

Ziℓ

)q/p)1/q] Jensen’s
inequality

≤

E
[ n∑
i=1

(∑
ℓ∈K′

Ziℓ

)q/p]1/q

≤ O
(
M1/q

pq

)
B = O

(( q

ln(1 + q/p)

)1/p)
B.

Proof. (Proof of Theorem 1.2.) We solve the convex programming relaxation for the problem, apply the reduction,

and run the randomized rounding procedure. This gives us a solution of cost at most O

((
q

ln(1+q/p)

)1/p)
B in

expectation.
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A Proof of Theorem 3.1 and Observation 3.1

Proof. (Proof of Theorem 3.1.) Let ν = min(p, q). We define the Convex Program (CP) cost of point j ∈ [m] as

(A.1) C(j, x) ≡ C(j) =

 ∑
j′∈[m]

xjj′d(j, j′)ν

1/ν

.

We sort all points according to the value of C(j). Renaming the points if necessary, we may assume that

C(1) ≤ · · · ≤ C(m).

Now we choose a subset of points K and assign each point to exactly one point in K. Initially, K = ∅ and all
points are unassigned. Then we process points one by one, starting with 1 and ending with m. When we process
point j, we perform the following steps if j has not been assigned to any vertex j′ yet.

• Add j to K and assign j to j.

• For every unassigned j′ > j, if d(j, j′) ≤ 2
γ1/ν C(j′), assign j′ to j.

After all the points are processed, each of them is assigned to some ℓ ∈ K (some points are assigned to
themselves). For ℓ ∈ K, let

• Uℓ be the set of points assigned to ℓ.

• Vℓ be the set of points that are closer to ℓ than to any other point in K (we break ties arbitrarily).

• σ(ℓ) be the closest point to ℓ in K other than ℓ itself. We break ties arbitrarily but consistently; then the
set of edges (ℓ, σ(ℓ)) forms a forest.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited2678

D
ow

nl
oa

de
d 

06
/3

0/
22

 to
 2

05
.1

78
.8

4.
19

7 
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



For a set of points A ⊆ [m], denote wi(A) =
∑

j∈A wi(j). Define new weights w′
ℓ for ℓ ∈ K by

w′
i(ℓ) = wi(Uℓ) =

∑
j∈Uℓ

wi(j).

We obtained the desired instance I ′ of (p, q)-Fair Clustering on K with weights {w′
i(j)}j∈K . Now we define the

CP solution.

y′ℓ = min(1,
∑
j∈Vℓ

yj)

x′
ℓℓ = y′ℓ; x′

ℓσ(ℓ) = 1 − y′ℓ; x′
ℓj = 0 for j /∈ {ℓ, σ(ℓ)}

z′i = 2qzi

We verify that all the required properties hold.

We verify that (x′, y′, z′) is a fractional clustering solution and item 1 holds. From the definition of
(x′, y′, z′), it follows right away that Constraints (2.3), (2.4), (2.5), and (2.6) are satisfied. We need to check that
Constraints (2.9) and (2.18). We rewrite CP Constraints (2.9) and (2.18) uniformly using notation C(j).

(A.2) zi ≥

∑
j

wi(j)C(j)p

q/p

.

Note that for all j ∈ Uℓ, j ≥ ℓ and therefore C(ℓ) ≤ C(j). We have,

z
p/q
i ≥

∑
j∈[m]

wi(j)C(j)p =
∑
ℓ∈K

∑
j∈Uℓ

wi(j)C(j)p ≥
∑
ℓ∈K

∑
j∈Uℓ

wi(j)C(ℓ)p =
∑
ℓ∈K

w′
i(ℓ)C(ℓ)p.

Now consider ℓ ∈ K and j /∈ Vℓ. Let us say j ∈ Vℓ′ . Then d(ℓ, j) ≥ d(ℓ′, j) and d(ℓ, j) + d(ℓ′, j) ≥ d(ℓ, ℓ′).
Therefore,

(A.3) d(ℓ, j) ≥ d(ℓ, ℓ′)/2 ≥ d(ℓ, σ(ℓ))/2

here we used that σ(ℓ) is the closest to ℓ point in K other than ℓ itself. We have,

C(ℓ)ν =
∑
j∈[m]

d(ℓ, j)νxℓj ≥
∑
j /∈Vℓ

d(ℓ, j)νxℓj ≥
∑
j /∈Vℓ

(
d(ℓ, σ(ℓ))

2

)ν

xℓj =

(
d(ℓ, σ(ℓ))

2

)ν ∑
j /∈Vℓ

xℓj .

If y′ℓ < 1 then ∑
j /∈Vℓ

xℓj = 1 −
∑
j∈Vℓ

xℓj ≥ 1 −
∑
j∈Vℓ

yj = 1 − y′ℓ = x′
ℓσ(ℓ).

If y′ℓ = 1, then
∑

j /∈Vℓ
xℓj ≥ 0 = 1 − y′ℓ = x′

ℓσ(ℓ). In either case,

(A.4)
∑
j /∈Vℓ

xℓj ≥ 1 − y′ℓ = x′
ℓσ(ℓ).

Similarly to (A.1), define C ′(ℓ, x′) ≡ C ′(ℓ) =
(∑

ℓ′∈K x′
ℓℓ′d(ℓ, ℓ′)ν

)1/ν
= d(ℓ, σ(ℓ)) · (x′

ℓσ(ℓ))
1/ν . Then,

C(ℓ)ν ≥ 1

2ν
d(ℓ, σ(ℓ))νx′

ℓσ(ℓ) =
1

2ν
C ′(ℓ)ν .

We conclude that C(ℓ) ≥ C ′(ℓ)/2 and hence z
p/q
i ≥ 1

2p

∑
ℓ∈K w′

i(ℓ)C
′(ℓ)p. Therefore,

(z′i)
p/q = 2p · zp/qi ≥ 2p · 1

2p

∑
ℓ∈K

w′
i(ℓ)C

′(ℓ)p =
∑
ℓ∈K

w′
i(ℓ)C

′(ℓ)p,
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as required by CP Constraints (2.9) and (2.18). Note that since z′i = 2qzi, cost B′ of solution (x′, y′, z′) is at most
twice that of (x, y, z).

Now we verify that item 2 holds and |K| ≤ k/(1 − γ). Formulas for x′ and y′ follow from their definitions.
First, we show that 1 − y′ℓ ≤ γ. By (A.4), 1 − y′ℓ ≤

∑
j /∈Vℓ

xℓj . Applying (A.3), we get

1 − y′ℓ ≤
∑
j /∈Vℓ

xℓj ≤
∑

j /∈Vℓ
xℓjd(ℓ, j)ν

(d(ℓ, σ(ℓ))/2)ν
≤ (2C(ℓ))ν

d(ℓ, σ(ℓ))ν
.

Now, both points ℓ and σ(ℓ) are in K. Therefore, neither ℓ was assigned to σ(ℓ) nor σ(ℓ) was assigned to ℓ. This

means that d(ℓ, σ(ℓ)) > 2
γ1/ν max(C(ℓ), C(σ(ℓ))) ≥ 2C(ℓ)

γ1/ν . We conclude that 1 − y′ℓ ≤ γ, as required. Finally, the

bound |K| ≤ k/(1 − γ) follows from the following inequality k ≥
∑

ℓ∈K y′ℓ ≥ (1 − γ)|K|.

It is immediate that item 3 holds.

Now we verify that item 4 holds. We first prove inequality (3.21). Consider a set of centers L ⊂ [m]. Note
that points in L are not necessarily in K. So L is not necessarily a valid set of centers for instance I ′. However,
we can think of L as a set of Steiner centers and then compute the cost of L with respect to instance I ′. Formally,
we write  n∑

i=1

(∑
ℓ∈K

w′
i(ℓ) · d(ℓ, L)p

)q/p
1/q

=

 n∑
i=1

∑
ℓ∈K

∑
j∈Uℓ

wi(j) · d(ℓ, L)p

q/p


1/q

≤

 n∑
i=1

∑
ℓ∈K

∑
j∈Uℓ

wi(j) · (d(ℓ, j) + d(j, L))p

q/p


1/q

Consider function ∥ · ∥ : Rm → R defined by

∥v∥ =

 n∑
i=1

 m∑
j=1

wi(j) · |vj |p
q/p


1/q

=

 n∑
i=1

∑
ℓ∈K

∑
j∈Uℓ

wi(j) · |vj |p
q/p


1/q

.

Let Λi be a linear map that sends v ∈ Rm to (wi(1)1/pv1, . . . , wi(j)
1/pvj , . . . , wi(m)1/pvm). Note that

∥v∥ =
∥∥∥∥Λ1v∥p, . . . , ∥Λnv∥p

∥∥∥
q
. Therefore, ∥ · ∥ is a seminorm on Rm. In particular,

 n∑
i=1

∑
ℓ∈K

∑
j∈Uℓ

wi(j) · (d(ℓ, j) + d(j, L))p

q/p


1/q

≤

 n∑
i=1

∑
ℓ∈K

∑
j∈Uℓ

wi(j) · d(ℓ, j)p

q/p


1/q

+

 n∑
i=1

∑
ℓ∈K

∑
j∈Uℓ

wi(j) · d(j, L)p

q/p


1/q

The second term on the right is simply the cost of L with respect to instance I and thus equals costIp,q(L). Now,

we upper bound the first term. Since every j ∈ Uℓ is assigned to ℓ, d(ℓ, j) ≤ 2
γ1/ν C(j). Thus the first term is

upper bounded by n∑
i=1

∑
ℓ∈K

∑
j∈Uℓ

wi(j) ·
( 2

γ1/ν
C(j)

)pq/p


1/q

by (A.2)

≤ 2

γ1/ν

(
n∑

i=1

zi

)1/q

≤ 2

γ1/ν
B.
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We conclude that  n∑
i=1

(∑
ℓ∈K

w′
i(ℓ) · d(ℓ, L)p

)q/p
1/q

≤ costIp,q(L) +
2

γ1/ν
B.

Now we construct a proper solution L′ for K. For every point in j ∈ L, we choose a closest to j point ℓ in K
(breaking ties arbitrarily) and add it to L′. It is immediate that for every ℓ ∈ K, d(ℓ, L′) ≤ 2d(ℓ, L). Thus,

costI
′

p,q(L′) =
( n∑

i=1

(∑
ℓ∈K

w′
i(ℓ) · d(ℓ, L′)p

)q/p)1/q
≤ 2
(

costIp,q(L) +
2

γ1/ν
B
)
.

As required, we constructed a feasible solution for I ′ of cost at most 2costIp,q(L) + 4
γ1/ν B.

Now we prove that inequality (3.22) holds. The proof is almost identical to that of inequality (3.21).

costIp,q(L) =
( n∑

i=1

( ∑
j∈[m]

wi(j) · d(j, L)p
)q/p)1/q

=
( n∑

i=1

(∑
ℓ∈K

∑
j∈Uℓ

wi(j) · d(j, L)p
)q/p)1/q

≤
( n∑

i=1

(∑
ℓ∈K

∑
j∈Uℓ

wi(j) · (d(ℓ, j) + d(ℓ, L))p
)q/p)1/q

≤
( n∑

i=1

(∑
ℓ∈K

∑
j∈Uℓ

wi(j) · d(ℓ, j)p
)q/p)1/q

+
( n∑

i=1

(∑
ℓ∈K

∑
j∈Uℓ

wi(j) · d(ℓ, L)p
)q/p)1/q

As we showed above, the first term is at most 2
γ1/ν B; the second term equals costI

′

p,q(L). Therefore,

costIp,q(L) ≤ costI
′

p,q(L) +
2

γ1/ν
B.

Now we verify that item 5 holds. Take a point ℓ ∈ Λ and point j ∈ Vℓ. Let j′ be the closest point to j
outside Vℓ and let ℓ′ be the closest point in K to it (so j′ ∈ Vℓ′). Then we have

d(j,K \ Λ) ≤ d(j, σ(ℓ)) since σ(ℓ) ̸∈ Λ

≤ d(j, ℓ) + d(ℓ, σ(ℓ)) by triangle inequality

≤ d(j, ℓ) + d(ℓ, ℓ′) by choice of σ(ℓ)

≤ d(j, ℓ) + 2d(j′, ℓ) by (A.3)

≤ d(j, ℓ) + 2d(j′, j) + 2(j, ℓ) by triangle inequality

= 3d(j, ℓ) + 2d(j, j′) = 3d(j,K) + 2d(j, [m] \ Vℓ)

Of course, if ℓ ∈ K \ Λ and j ∈ Vℓ, then d(j,K \ Λ) = d(j,K). Thus, for any center ℓ ∈ K we have

d(j,K \ Λ) ≤ 3d(j,K) + 2 · 1ℓ∈Λ · d(j, [m] \ Vℓ).

Using that ∥ · ∥ is a seminorm as in the proof of item 4, we get

costIp,q(K \ Λ) =
( n∑
i=1

( m∑
j=1

wi(j) · d(j,K \ Λ)p
)q/p)1/q

≤ 3
( n∑
i=1

( m∑
j=1

wi(j) · d(j,K)p
)q/p)1/q

+ 2
( n∑
i=1

(∑
ℓ∈Λ

∑
j∈Vℓ

wi(j) · d(j, [m] \ Vℓ)
p
)q/p)1/q

= 3costIp,q(K) + 2
( n∑
i=1

(∑
ℓ∈Λ

voli(Vℓ)
)q/p)1/q
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By item 4, the cost of K w.r.t. instance I, that is, costIp,q(K), is at most the cost of K w.r.t. instance I ′, which

is 0, plus 2γ−1/νB. We conclude that

costp,q(K \ Λ) ≤ 6γ−1/νB + 2
( n∑
i=1

(∑
ℓ∈Λ

voli(Vℓ)
)q/p)1/q

.

Proof. (Proof of Observation 3.1.) Recall that σ(ℓ) is the closest to ℓ point in K other than ℓ itself. We break
ties arbitrarily but consistently so that the set of edges (ℓ, σ(ℓ)) forms a forest on K. We choose an arbitrary root
in every tree in the forest (K, (ℓ, σ(ℓ)). Then we let K1 be the set of vertices of odd depth and K2 be the set of
vertices of even depth. Clearly, σ(K1) ⊆ K2 and σ(K2) ⊆ K1. Now,∑

ℓ∈K

x′
ℓσ(ℓ) =

∑
ℓ∈K

(1 − yℓ) = |K| −
∑
ℓ∈K

yℓ = |K| − k.

Therefore,
∑

ℓ∈K1
x′
ℓσ(ℓ) ≥

|K|−k
2 or

∑
ℓ∈K2

x′
ℓσ(ℓ) ≥

|K|−k
2 . We are done if the former inequality holds. Otherwise,

we simply swap K1 and K2.

B Connection to Min s-Union and Conjectured Hardness

Let us see how known hardness conjectures for other problems imply polynomial hardness of approximation for
(p, q)-Fair Clustering when q < p− Ω(1).

In the Min s-Union problem, we are gives a collection of m sets S1, . . . , Sm ⊆ [n], and a parameter s ∈ [m],
and wish to find a collection J ⊆ [m] of (indices of) sets of size |J | = s as to minimize the cardinality of their
union |

⋃
j∈J Sj |. It has been conjectured (see Chlamtáč et al. [2017]) that the following distinguishing problem,

slightly rephrased here, is hard (and implies polynomial hardness of approximation for Min s-Union):

Conjecture B.1. (Dense versus Random Conjecture) For any constants 0 < ε < δ < 1, it is hard to
distinguish between the following cases when s ≤

√
m:

• Random: n = mε and each of the sets S1, . . . , Sm is sampled independently by selecting 10 lnm elements
in [n] independently at random.

• Dense: n = 10mε lnm, and an adversary may select the sets, with an additional guarantee that there exist
sets J ⊆ [m] and I ⊆ [n] such that |J | = s and |I| = (10s lnm)δ, and for every j ∈ J , Sj ⊆ I (that is, there

are s input sets contained in a single set of cardinality Õ(sδ)).

This conjecture is supported by Sherali-Adams integrality gaps (cf. Chlamtáč et al. [2017], Chlamtáč and
Manurangsi [2018]) and is related to similar conjectures for related problems, and in particular to the Projection
Games Conjecture. Bhaskara et al. [2012] show a somewhat weaker (but still polynomial) lower bound for this
problem is also supported by a matching integrality gap in the Sum of Squares hierarchy.

A straightforward reduction gives the following:

Theorem B.1. For any 1 ≤ q ≤ p and constants 0 < ε < δ < 1, where ε ≤ 1
2 , if the Dense versus Random

Conjecture holds for δ, ε, then (p, q)-Fair Clustering is hard to approximate to within less than mε(1−δ)(p−q)/(pq).

Proof. Let us see a reduction from Min s-Union with these parameters to (p, q)-Fair Clustering, and analyze the
optimum clustering value in both cases.

Given an instance (S1, . . . , Sm, s) of Min s-Union, construct a clustering instance as follows: Identify the
points [m] with the sets S1, . . . , Sm and let the distance between any two points be 1. For all i ∈ [n] and j ∈ [m],
let wi(j) = 1i∈Sj

. Finally, let the target number of centers be k = m− s. In the context of the reduction, let us
consider instances for which s = mε(≤

√
m).

Consider first the random case. By a Chernoff bound, w.h.p., for any set J ⊆ m of cardinality |J | = s = mε,
we have ∣∣∣∣∣∣

⋃
j∈J

Sj

∣∣∣∣∣∣ ≥ 1

2
mε lnn.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited2682

D
ow

nl
oa

de
d 

06
/3

0/
22

 to
 2

05
.1

78
.8

4.
19

7 
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



Thus, for any set of centers K of cardinality |K| = k, the cost of K is bounded from below by

costp,q(K) =

 n∑
i=1

 m∑
j=1

1i∈Sj
d(j,K)p

q/p


1/q

=

(
n∑

i=1

|{j ∈ [m] \K | i ∈ Sj}|q/p
)1/q

≥

(
n∑

i=1

1i∈
⋃

j∈[m]\K Sj

)1/q

=

∣∣∣∣∣∣
⋃

j∈[m]\K

Sj

∣∣∣∣∣∣
1/q

≥
(

1

2
mε lnm

)1/q

.

On the other hand, consider the dense case. Let J be the “dense” set as defined in the conjecture, and let
K = [m] \ J . Then as before, the cost of these centers is bounded from above by

costp,q(K) =

(
n∑

i=1

|{j ∈ J | i ∈ Sj}|q/p
)1/q

=

 ∑
i∈

⋃
j∈J Sj

|{j ∈ J | i ∈ Sj}|q/p
1/q

=

(∑
i∈I

|{j ∈ J | i ∈ Sj}|q/p
)1/q

since ∀j ∈ J : Sj ⊆ I

≤

|I|(q−p)/p

(∑
i∈I

|{j ∈ J | i ∈ Sj}|

)q/p
1/q

by Hölder

≤ |I|(q−p)/(pq)

∑
j∈J

|Sj |

1/p

≤ (10s lnm)δ(p−q)/(pq)(10s lnm)1/p

= (10mε lnm)(δ(p−q)+q)/(pq).

Thus, if the conjecture holds for these parameters, then (p, q)-Fair Clustering cannot be approximated to
within less than the ratio between these bounds (the random optimum divided by the dense optimum), which is
at least

20−1/q(10mε lnm)(1/q)−(δ(p−q)+q)/(pq) = 20−1/q(10mε lnm)(1−δ)(p−q)/(pq) ≥ mε(1−δ)(p−q)/(pq).

While not every setting of 0 < ε < δ < 1 with ε ≤ 1
2 in the conjecture is supported by the same evidence (the

Sum of Squares result, for instance, gives a much smaller polynomial gap), it is worth noting that any setting
yields a lower bound of mΩ((p−q)/(pq)) for (p, q)-Fair Clustering, and in particular, if ε and δ are arbitrarily close

to 1
2 , as is permissible in Conjecture B.1, then we get a lower bound of m( 1

4−η) p−q
pq for any constant η > 0.
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