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E N V I R O N M E N T A L  S T U D I E S

U.S. fires became larger, more frequent, and  
more widespread in the 2000s
Virginia Iglesias1*, Jennifer K. Balch1,2, William R. Travis1,2

Recent fires have fueled concerns that regional and global warming trends are leading to more extreme burning. 
We found compelling evidence that average fire events in regions of the United States are up to four times the 
size, triple the frequency, and more widespread in the 2000s than in the previous two decades. Moreover, the 
most extreme fires are also larger, more common, and more likely to co-occur with other extreme fires. This 
documented shift in burning patterns across most of the country aligns with the palpable change in fire dynamics 
noted by the media, public, and fire-fighting officials.

INTRODUCTION
Fire is an integral component of numerous terrestrial ecosystems (1). 
Recent record-breaking events, unprecedented losses, and escalating 
suppression costs, however, have raised concerns over a “new normal” 
of increased fire activity and the onset of an era of megafires (2–4). 
In the contiguous United States (CONUS), burning between 2011 
and 2016 resulted in ~3.5 billion USD of property and crop damage, 
~12.4 billion USD in suppression efforts, and the loss of 162 lives 
(5). Trends toward increasing total burned area over the past several 
decades have been documented in western CONUS (6). Recent large 
fires in the central grasslands and eastern forests suggest that high-
cost, high-loss events may be a continental phenomenon (7). None-
theless, it has yet to be determined whether these changes have been 
associated with a detectable shift in fire dynamics. We analyzed 
over 28,000 fires in the Monitoring Trends in Burn Severity (MTBS) 
dataset (8) to (i) test for the presence of shifts in number of fires and 
area burned; (ii) describe fires before and after shifts in terms of size 
and frequency; and (iii) quantify how these differences affected the 
spatial aggregation and probability of co-occurrence of fires. This 
approach allowed us to rigorously assess the perception that fire be-
havior has changed across CONUS, recognizing that this is critical 
to reassessing fire-fighting efforts and delineating priorities for 
action and strategic resource allocation.

RESULTS
Trends in fire frequency and size shifted in the 2000s
The MTBS program couples the Landsat archive with federal and 
state fire reports to map burns across the United States. Consistent 
mapping requires high-quality satellite imagery and reliable fire 
occurrence information. To satisfy these conditions, MTBS only 
documents large events, i.e., fires greater than 4 km2 in western 
CONUS and larger than 2 km2 in the east portion of the country (8). 
Between 1984 and 2019, 7841, 2490, and 2759 fires were recorded in 
the West, Great Plains, and East, affecting ~354,240, 75,760, and 
40,410 km2, respectively. Breakpoint analysis performed with five 
algorithms with different parameters, penalization criteria (P values, 
Bayesian information criterion, deviance reduction, and penalized 

likelihood), and distribution assumptions (Gaussian, negative bino-
mial, and distribution free; see the Supplementary Materials for 
details) reveals that fire patterns were marked by a shift that occurred 
around the year 2000 (Fig. 1, A to I). Specifically, all five tests iden-
tified structural changes in the time series of weekly area burned 
in the West and Great Plains, and median fire size in the West in 
1998–2002, while three tests point to shifts in weekly area burned in 
the East and fires ignited per week in the West over the same period. 
Two breakpoints are inferred for fires ignited per week in the Great 
Plains, the first one in 1999 and the most recent one in 2005. These 
two breakpoints are supported by three and four tests, respectively. 
No changes in median fire size in the Great Plains or East were in-
dicated by more than one test (figs. S1 to S5). The consistency of 
the results suggests that the structural changes in fire detected in the 
time series are robust to the methodological assumptions of the 
breakpoint tests.

The power of the series at 1-year periods has increased since 
1984 in the three areas. In the West, it was significant in 1984–2018 
with the exception of 1989–1993. In the Great Plains and East, it 
became continuously significant after 2005 (pseudo-P < 0.05; 
Fig. 1, J to L). After ~2000, this yearly recurrence was superimposed 
on a ~5-year cycle of burning across the country. Fires in the West 
and Great Plains additionally exhibited more pronounced seasonal 
oscillations (at 3 to 6 months) starting in ~1994 and ~2005, 
respectively.

At daily time scales, area burned in the West and Great Plains 
presents mean Hölder exponents −1.0 <    

_
 h    < −0.5, indicating that 

fire dynamics in these regions are strongly antipersistent and sta-
tionary. In the East, mean Holder exponents    

_
 h    = −1.06 ± 0.02 point 

to antipersistent but slightly nonstationary behavior (9). Comparison 
of the Hölder exponents estimated before the year 2000 and after 
2004 reveals that whereas no statistically significant changes in    

_
 h    are 

observed (pseudo-P > 0.05), their SD decreased by a factor of 5 and 
2 in the West and Great Plains, respectively, and nearly doubled in 
the East (fig. S6). These changes in the width of the spectrum can be 
interpreted as the emergence of more regular patterns of burning in 
the West and Great Plains and more unpredictable fires in the East 
(10). Together, analyses of the time and frequency domains of fires 
in CONUS suggest that 2000–2004 were transitional years, and fire 
dynamics in the West and Great Plains before 2000 and after 2004 
are statistically different in terms of extent, number of events, and 
periodicity. Hereafter, we focus on the comparison of the periods 
before (1984–1999) and after (2005–2019) this shift in fire activity.
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All regions are affected by more fires
Before 1999, fires affected annual medians of 4019 ± 1204 km2 in the 
West, 542 ± 215 km2 in the Great Plains, and 538 ± 356 km2 in the 
East. After 2004, median annual burning rose to 14,249 ± 3164 km2 
and 3354 ± 1314 km2 in the West and Great Plains, respectively 
(Fig. 2 and table S1). These increases were associated with more fires 
in both areas and larger fires in the West. While annual area burned 
did not change significantly in the East (median = 833 ± 219 km2), 

the region experienced an increase in the number of fires per year 
(Fig. 3 and tables S2 and S3).

The general relationship between number of fires and area burned 
is approximately linear, i.e., the total area burned per unit of time is 
directly proportional to the number of fires. This association, how-
ever, does not hold when environmental conditions are conducive 
to a large number of fires. Under these circumstances, the density 
distribution of weekly area burned becomes multimodal, pointing 
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Fig. 1. Temporal trends in fires in the West, Great Plains, and East. (A to C) Weekly area burned, (D to F) number of fires per week, and (G to I) median fire size. Outliers 
are depicted with asterisk (*). The point location (circles) and intervals (horizontal bars) of breaks in the time series detected by three (yellow), four (orange), and five (red) 
algorithms are shown at the bottom of each panel (see fig. S4 for details). Absence of circles/horizontal bars indicates that no shifts were detected by at least three statis-
tical tests. Wavelet power spectrum of daily area burned (J to L). The light shading indicates the cone of influence where edge effects are important, and the black contour 
lines enclose regions of >95% confidence for departures from a red-noise process.
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to the existence of a separate class of events: extreme events (Fig. 4). 
Insights into these unusual, anomalously large events can be gained 
through exploration of the right tail of the frequency-size distribu-
tion. In 1984–1999, 23 fires larger than 285 km2 (West), 3 fires larger 
than 223 km2 (Great Plains), and 3 fires larger than 208 km2 (East) 
were in the upper 1% of the distribution. After 2005, 92, 23, and 
10 events exceeded those thresholds, and the 99th percentile of the 
distribution escalated to 694 km2 in the West (92 events) and 
425 km2 in the Great Plains (17 events). No changes were detected 
in the East (Figs. 1 to 3 and table S1).

Large fires are temporally concurrent
Fire frequency, whose median before the regime shift was 174 ± 
2 events per year in the West, 34 ± 5 events per year in the Great 
Plains, and 57 ± 8 in the East, rose to 270 ± 21, 113 ± 20, and 94 ± 13, 
respectively. The inverse of the estimated fire frequency [hereafter 
expected fire recurrence interval (FRI)] informs on the average time 
between the ignition of fires in a region. To assess whether fires tend 
to coincide in time, we compared the expected FRI for each region 
with the corresponding observed FRI. Observed FRI’s were calcu-
lated as the time between years when at least one fire was ignited. 

Expected-to-observed recurrence intervals of fire sizes that were 
not observed every year were larger than one and increased as a 
function size, suggesting that large events tend to be concurrent in 
all regions (Fig. 5).

Recent fires are in closer proximity and more widespread 
than in the past
Irrespective of fire size, the average distance between fires in 1984–2018 
was smaller than if burning had occurred randomly across the 
country (pseudo-P < 0.05). This difference suggests that the spatial 
aggregation of fires is heterogeneous, with areas affected by several 
fires coexisting with unburned landscape. The distance between 
burns across the country decreased after 2004, indicating that, on 
average, recent fires were in closer proximity than in previous 
decades (Fig. 6, A to C). Decreased distances between fires do not 
necessarily imply changes in the spatial distribution of fires, as they 
could be the product of more fires concentrated in the same clusters 
as in 1984–1999. To test whether smaller distances had an impact 
on the spatial arrangement of fires, we accounted for the effects of 
changes in fire density by generating one random point pattern per 
year with the same number of points as ignitions were registered 

Fig. 2. Spatial distribution of fires. Fires in the West (leftmost region), Great Plains (central region), and East (rightmost region) in (A) 1984–1999 and (B) 2005–2018. 
Nonextreme fires are shown with small dots, and extreme fires are represented with larger orange (area burned >99th percentile in 1984–1999) or red bubbles (area burned 
>99th percentile in 2005–2018).

Fig. 3. Fire statistics. Probability distributions of (A) annual area burned, (B) annual number of fires, and (C) fire size, in the West, Great Plains, and East, before (1984–1998) 
and after (2005–2018) the transition period identified by the breakpoint analysis.

D
ow

nloaded from
 https://w

w
w

.science.org on M
arch 16, 2022



Iglesias et al., Sci. Adv. 8, eabc0020 (2022)     16 March 2022

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

4 of 10

during the same year. Smaller expected-to-observed distance ratios 
between burns in recent years are consistent with a decrease in 
clustering and indicate that fires now are more widespread than in 
1984–1999 (Fig. 6, D to F).

Testing the robustness of the fire data
Given the dependence of these analyses on robust time series data 
from the satellite record, we also conducted several tests to confirm 
that there were no temporal biases associated with different satellites 
in the Landsat series. This study is based on data obtained from the 
MTBS program, built on observations from three Landsat satellites. 
Fire perimeter delineation is guided by state and federal fire history 
records and performed manually through standardized analysis of 
Landsat imagery (8). The main potential sources of error in this 
product are therefore associated with fire reporting and changes in 

Landsat sensors/imagery availability. Should they be temporally 
biased, errors in MTBS could influence our results. For this reason, 
we compared annual time series generated from MTBS with 
Integrated Reporting of Wildland-Fire Information [IRWIN (11)], 
Landsat Burned Area [LBA (12)], and Fire Events Delineation 
[FIRED (13); see the Supplementary Materials for details].

Improvements in fire detection capabilities arising from better 
quality and/or more satellite imagery could be expected to be asso-
ciated with Landsat 7 and its Enhanced Thematic Mapper Plus sensor 
(ETM+). Those improvements would have resulted in an overesti-
mation of area burned by MTBS with respect to IRWIN after 1999. 
No changes in the MTBS-to-IRWIN area burned ratio argue against 
a temporal bias in the fire time series introduced by the availability 
of imagery from Landsat 7. Time series of annual area burned, fires 
per year, and fire size derived from TM and ETM+ scenes are very 

Fig. 4. Changes in the relationship between number of fires and area burned. Kernel-estimated density distribution of weekly area burned as a function of number 
of fires (bandwidth = 108) in the West (A and B), Great Plains (C and D), and East (E and D), before (1984–1998) and after (2005–2018) the transition period identified by 
the breakpoint analysis. The color gradient depicts the probability of a value being larger or smaller than the mean given the observed distributions (i.e., tail probability). 
Note that the limits of the axes are different.
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similar (figs. S7 and S8). Further, they show no indication of temporal 
biases when compared against the FIRED product, derived from the 
Moderate Resolution Imaging Spectroradiometer (MODIS) Burned 
Area Product (fig. S9). Last, although absolute values differ among 
datasets, the relative difference in median annual area in 2005–2018 
with respect to 1984–1998 is the same regardless of the data product 
used in the analysis (pseudo-P < 0.05). The same is true for the me-
dian and 99th percentile of the annual area burned distribution and 
for fires ignited per year and fire size (Fig. 7 and tables S1 to S9). 
These results suggest that, despite omission and commission errors, 
MTBS time series do not show a temporal bias that could signifi-
cantly condition our conclusions.

DISCUSSION
Projected changes in climate, fuel, and ignitions suggest that the 
future of fires does not look like the past (14, 15). Our analyses show 
that neither does the present. Despite regional differences in effec-
tive moisture, vegetation, and land use, the annual number of fires 
in 2005–2018 nearly doubled in the West and East and quadrupled 
in the Great Plains with respect to 1984–1999. In addition, individual 
fires in the West were significantly more extensive than in previous 
decades. As a result, median annual area burned has quadrupled in 
the West and grown 620% in the Great Plains. In the East, while 
the median area affected by fires has remained constant, the top 

1% annual area burned has doubled (Figs. 1 to 3 and 7). The reported 
differences in annual area burned, number of events, and fire size 
before and after the shift are, in all cases, statistically different from 
those generated under the null hypothesis that the medians for both 
periods were equal (pseudo-P < 0.05).

More worrisome is the increase in magnitude and frequency of 
extreme fires in the West and Great Plains. The term “extreme” has 
multiple meanings in the fire literature (16). Here, we use it to refer 
to the largest fires within a spatiotemporal domain (i.e., 99th 
percentile of the distribution). Fires that are extreme in terms of 
their physical properties, be it size, intensity, or spread rate, are not 
necessarily the most devastating ones, as impact also depends on expo-
sure and vulnerability of social-environmental systems (17). Howev-
er, it is important to understand the dynamics of large fires because 
of the heavy-tailed nature of the fire size-frequency distribution 
(Figs. 3 and 4) (18). This type of distribution has three main conse-
quences of social and ecological relevance: (i) Estimates of the central 
tendency are a less adequate representation of expected fire size than 
for normally distributed populations, (ii) the probability of record- 
breaking fires is nonnegligible, and (iii) extreme fires account for 
a disproportionately large fraction of total area burned and fire emissions, 
substantially affecting air pollution, public health, and climate (19–21).

As predicted for extreme events in theoretical physical systems 
(22), both pre- and postshift extreme fires tend to be concurrent. 
The causes of extreme flammability cannot be generalized, as the 

Fig. 5. Co-occurrence of fires in 1984–1999 and 2005–2018. Years between fires as a function of fire size in the (A) West, (B) Great Plains, and (C) East. Expected years 
between fires (YBFs) relative to fire size in the (D) West, (E) Great Plains, and (F) East. SEs for the estimates are indicated in gray. Note that the limits of the x axis are 
different.
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relative importance of fire drivers, including climate, topography, 
vegetation, and weather, changes when critical thresholds are reached 
(23). It is clear, nonetheless, that some years feature only average 
fires, but when conditions are conducive for extreme fire activity, 
more than one extreme event occurs (Fig. 5). An example of this 
phenomenon comes from the southern Great plains. During the 
second week of April 2011, a low-level thermal ridge associated with 
temperatures of ~37°C, 5 to 15% relative humidity, and wind gusts 
of up to 65 km hour−1 created persistent critical fire weather across 
the area. Four extreme fires in Texas resulted in 96% of the 3000 km2 
burned during this perfect storm (Fig. 4D) and caused more damage 
than in any previous year of Texas fires (24). These nonlinear 
dynamics suggest that extreme fires are an emergent property of 
socioenvironmental systems, and anticipating their future occur-
rence may be challenging (17, 25).

Several studies have documented a strong correlation between 
fuel aridity during the fire season and area burned in the western 
United States [e.g., (26, 27)]. Vapor pressure deficit (the depression 
of the water content of the atmosphere below the saturation point) 
in this region has increased notably over the past few decades (28). 
The resulting aridification, which showed a step-like increase in 
2000–2003, has doubled the extent of fire prone ecosystems in 
the West (29). Although natural variability played a role, up to 

two-thirds of this increase in aridity has been attributed to anthro-
pogenic warming (30, 31).

Anthropogenic effects are likely to have influenced fire patterns 
across the country not only indirectly through regional aridification 
[shown in the West (26), yet to be tested in the Great Plains and 
East] but also in a direct manner. During the last 21 years, for example, 
human ignitions caused 84% of all fires in CONUS, representing 
approximately 40,000 fires per year (32). Concurrent ignition and 
dry fuels are prerequisites for burning. By introducing ignitions 
into dry landscapes, humans have tripled the length of the fire season 
and expanded the size of fire-prone areas. These ignitions are noto-
riously important in regions with sufficient dry fuel to support fires 
but where lightning concurrent with dry fuel is rare, such as large 
portions of the Great Plains and eastern United States (33).

Interactions between climate, topography, and anthropogenic 
impact associated with recreation, ecosystem management, increased 
use of prescribed fire, and development, affect fire behavior in com-
plex ways. Variability in the nature and strength of these interactions 
is reflected in the heterogeneous spatial distribution of large fires 
across CONUS (Fig. 2). Very few events in the Pacific Northwest 
and in the central and northeastern portions of the country contrast 
with clusters of fires in the remaining areas. The geographical ar-
rangement of burns within these fire-prone ecosystems has changed, 

Fig. 6. Spatial aggregation of fires in 1984–1999 and 2005–2018. Locally weighted scatterplot smoothing of median distances between a fire and the ith nearest fire 
in the (A) West, (B) Great Plains, and (C) East. Theoretical distance between fires generated by a random independent process relative to the observed distance between 
a fire and the ith nearest fire in the (D) West, (E) Great Plains, and (F) East. Ninety-five percent of confidence intervals for the estimates are shown in gray. Note that the 
limits of the axes are different.
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as fires today occur in closer proximity than in the past. For exam-
ple, we show that the mean distance between a fire ignition point 
and the 10th nearest fire in 1984–1999 was 120, 160, and 115% larger 
than in 2005–2018 in the West, Great Plains, and East (Fig. 6, A to 
C). Considering that the size of the mean and extreme fire has in-
creased (Fig. 3 and table S1), the decrease in mean distance between 
fire perimeters is likely to be larger than these results would suggest.

Smaller distances can be expected from an increase in the number 
of events observed across the country. When accounting for changes 
in fire density, we found that burns are not randomly distributed in 
space but rather tend to be grouped in “fire hot spots” within flam-
mable ecosystems. In recent years, fires have become less clustered 
than before, possibly reflecting increases in the size of these hot 
spots associated with higher probability of ignition and, at least in 
the West, a growing fire-prone landscape largely resulting from 
climate change (Fig. 6, D to F).

In addition to changes in size, frequency, and spatial distribution 
of fires that we report, an overall eightfold increase in annual area 
burned at high severity has been documented in 1985–2017 (34). It 
has yet to be assessed whether other properties of the fire regime, 
such as fire spread rates and intensity, remain stationary. Potential 
impacts of the shift in fire patterns are already manifest across 
ecoregions. Young conifer stands in subalpine and alpine forests, 
for instance, are reburning before developing fire resistance, which 
hinders tree regeneration and possibly delays aboveground carbon 
recovery for >150 years (35). Changing burning patterns, in cases 
mediated by invasive species (36), have also been registered at lower 
elevations where fires once played a vegetation-maintenance role 
(37). As a result, certain fires now threaten the persistence of spe-
cies they once favored. Further, fire has emerged as one of the 
main drivers of the tree mortality that the western United States 
is facing (38).

Fig. 7. Summary statistics in 2005–2018 relative to 1984–1998 (%) as estimated from MTBS, IRWIN, and LBA. Changes in area burned in the (A) West, (B) Great 
Plains, and (C) East. Changes in the number of fires per year in the (D) West, (E) Great Plains, and (F) East. Changes in fire size in the (G) West, (H) Great Plains, and (I) East.
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Fire impacts propagate through ecosystem processes, potentially 
altering land surface dynamics. This is evident in burned forests of 
the intermountain West, where solar forcing on snow has exhibited a 
fourfold increase in the 2000s and led to earlier snowmelt and lower 
streamflow during the summer (39). Cascading impacts could ulti-
mately compromise ecosystem services including water supply, rec-
reation, tourism, and air quality for the 30 million Americans and 
>900,000 residential properties exposed to significant fire hazard (40, 41).

The record-breaking fire season in 2020 in the West speaks to 
continuation of the altered fire patterns that we documented. Even 
if our data do not point to a statistically significant increase in annual 
area burned in the East, it is possible that changes in fire dynamics 
may also be underway, signaled by (i) increased fire frequency, 
(ii) potential nonstationarity of the daily area burned time series, 
(iii) changes in the tail of the fire size-frequency distribution reflecting 
devastating events such as the Great Smokies fire complex in 2016, 
and (iv) in the spatial rearrangement of ignition points. As housing 
developments continue to expand into flammable vegetation (41), fires 
will increasingly jeopardize lives and properties, and suppression 
costs, which already represent >50% of U.S. Forest Service budget, 
will rise (42). High-cost, high-loss events like the 2018 Camp Fire 
in California, which resulted in 85 fatalities and damage estimated 
at 16.5 billion USD, exemplify this rising risk and indicate that fire 
suppression capabilities may have already been exceeded. Extreme,  
co-occurring fires will further challenge fire-fighting efforts, emer-
gency response, and resource allocation (43), disproportionately 
affecting vulnerable communities (44) and groups that have not 
been as exposed to large fires in the past. The apparent shift to 
more extreme burning in the United States has evoked a searching 
discussion about our relationship with fires, which have “joined the 
forlorn polar bear as an emblem of a climate crisis” (45). Adaptation 
to these emerging regimes requires that we rethink our priorities for 
action, especially given large discrepancies in ecological and social 
vulnerability.

MATERIALS AND METHODS
We acquired fire data for the conterminous United States released 
on 27 September 2020 by the MTBS program (www.mtbs.gov). MTBS 
products are generated through standardized analysis of Landsat 
imagery and the best available state and federal fire history records 
(8). The resulting datasets have consistent coverage of public and 
private lands and include fires greater than 4 km2 in the western 
United States and greater than 2 km2 in the east from 1984 to 2018.

Recent studies show pronounced differences in fire characteris-
tics across the United States, with larger, infrequent or moderately 
frequent, mostly lightning-ignited fires in the west of the country, 
and smaller, frequent fires, mainly started by humans in the east 
(33). To avoid differences in fire size and frequency between eco-
systems from dominating the signal, we followed (12) and divided 
CONUS into three broad areas. The western sector (“West”) com-
prises ecoregions 6, 7, and 10 to 12, the “Great Plains” overlaps with 
ecoregion 13, and the eastern sector (“East”) groups ecoregions 5, 8, 
9, and 15, as defined by the Commission for Environmental Coop-
eration (46). It is noteworthy that fire behavior within these mapping 
zones is heterogeneous, and analyses at this scale smooth out im-
portant ecosystem-specific variability.

We aggregated the fire data at daily time steps and calculated the 
number of fire events and total area burned in the West and in the 

East for every day between 1 February 1984 and 31 December 2018. 
MTBS reports total area burned per event but does not provide 
information about the daily evolution of each fire. For this reason, 
“number of fires” refers to the sum of fires ignited on any given day, 
and “area burned” corresponds to the final size of each fire scar. In 
both cases, the date assigned to the fire is that of the day of ignition. 
The resulting time series were used to (i) test for the presence of 
shifts in number of fires and area burned, (ii) describe fires before 
and after the shift in terms of size and frequency, and (iii) quantify 
how these differences affected the spatial aggregation and probability 
of co-occurrence of fires.

Statistical analysis
Detection of temporal changes in fire
We took a twofold approach to identifying and testing for the pres-
ence of changes in temporal patterns of fire occurrence and extent. 
First, we used breakpoint analysis to estimate the optimal number 
and location of shifts in weekly area burned, fires ignited per week, 
and median fire size in the West, Great Plains, and the East. In all 
cases, data at weekly time scales were used in the analyses to reduce 
the noise of the time series of daily burning. Given that breakpoint 
estimation is sensitive to the methodological assumptions of the 
analysis, we used five different algorithms to identify the optimal 
number of breakpoints and evaluate them against the null hypothesis 
of no change in the mean (i.e., optimal number of breakpoints = 0). 
We then compared the output of the tests to identify the location of 
the breakpoints (see the Supplementary Materials and figs. S1 to 
S5 for details).

Second, we decomposed the time series of daily area burned into 
the frequency space to determine dominant modes of variability 
and their temporal dynamics. Specifically, we computed the power 
spectrum of each series by applying the continuous Morlet wavelet 
transform at a daily resolution (47). Spectral estimates were tested 
against the null hypothesis that they were indistinguishable from 
red noise as defined by the autocorrelation of the time series at 
lag one (1000 simulations; pseudo-P < 0.05). Last, we followed 
Scafetta et al. (10) to estimate the local Hölder exponent of the 
singularities of each time series and assess changes in the stationarity 
and/or persistence of daily area burned in the West, Great Pains, 
and East (see Supplementary Materials and fig. S6 for details).
Differences in area burned, number of fires, and fire size before 
and after the shift
We calculated changes in area burned as the difference in weekly 
area burned corresponding to the median and 99th percentile of the 
distribution before and after the shifts. We estimated the probability 
of observing such differences under the null hypothesis that the sta-
tistics for both periods were equal. The distribution of the null 
hypothesis was generated by randomly shuffling weekly area burned 
values (5000 permutations) and calculating the difference in the 
simulated medians and 99th percentiles before and after the shift. 
The same approach was followed to evaluate changes in the number 
of fires ignited per week and fire size. In all cases, SEs were estimated 
on the basis of 5000 bootstrap replicates.
Assessment of co-occurrence and spatial arrangement of fires
To evaluate changes in the probability of correlated fires (i.e., two or 
more fires being ignited in the same region during the same year) of 
sizes 2 to 2000 km2, we calculated the expected (Eq. (1) and observed 
(Eq. 2) FRIs for the West and the Great Plains, before and after 
the shift. In the East, we assessed the co-occurrence of fires up to 
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1000 km2 because very few fires larger than this size have been ob-
served in the area

   FRIe  (P,R)   =  l  (P)   *   fires  (P,R)     −1   (1)

where FRIe(P,R) is the expected FRI for periods P = (1984–1999 and 
2005–2018) and regions R = (West, Great Plains, and East), l(P) is 
length of the period P, in years, and fires(P,R) is the total number of 
fires during the period P in region R

   FRIo  (P,R)   = mean( time  (P,R)  )  (2)

where FRIo(P,R) is the observed FRI for periods P = (1984–1999 and 
2005–2018) and regions R = (West, Great Plains, and East), and 
time(P,R) is the time between years with at least one fire in region R 
during period P.

FRIe(P,R) is the inverse of fire frequency and, therefore, a func-
tion of all the fires registered in each area before and after the shift. 
Conversely, FRIo(P,R) is based on the binary classification of time 
into years without fires and years when burning occurred, irrespec-
tively of the number of events. For this reason, observed FRIs larger 
than expected FRIs are indicative of correlated fires.

Last, we assessed the spatial aggregation of fires by computing 
the mean distance between the location of the ignition point of each 
fire and the first, second, …, 50th nearest ignition point for every 
year in the series. Differences in these series in the pre- and postshift 
periods inform on changes in the proximity of fires. Next, we com-
pared these distances to those resulting from point patterns gener-
ated by processes that assumed that (i) all locations had equal 
probability of burning and (ii) the locations of fires were indepen-
dent of each other. This comparison allowed us to evaluate whether 
the observed fires were more or less dispersed than a random inde-
pendent point pattern.

However, differences in the distance between ignition points 
before and after the shift do not necessarily imply variations in the 
spatial clustering of fires, as they may result only from changes in 
the number of fires on the landscape (i.e., more fires in the same 
area imply smaller distances). For this reason, we accounted for the 
effects of fire density by generating one random point pattern per 
year with the same number of points as ignitions were registered 
during the same year. In total, we produced 34 random processes, 
which allowed us to calculate the ratio between random and ob-
served distances between ignition points. We interpret contrasts 
in these ratios before and after the shifts as evidence of temporal 
changes in clustering.
Testing the robustness of the fire data
Our results depend on robust time series data from the satellite 
record. For this reason, we compared the time series of annual area 
burned, fires ignited per year, and fire size to those derived from 
IRWIN (11), LBA (12), and MODIS FIRED algorithm (13). We 
then evaluated whether there were differences among products in 
the mean, median, and 99th percentile of the distributions before 
and after the shift. This allowed us to assess the potential presence 
of a temporal bias in the MTBS time series that could influence our 
results. All analyses and figures were performed with R program-
ming language version 3.6.2 (48), packages boot 1.3-23 (49), break-
point 1.2 (50), changepoint 2.2.2 (51), ggridges 0.5.2 (52), maptools 
1.0-2 (53), raster 3.3-13 (54), rgdal 1.15-17 (55), rgeos 0.5-5 (56), sp. 
1.4-4 (57), spatstat 1-42 (58), tidyverse 1.3.0 (59), tree 1.4-40 (60), 

viridis 0.5.1 (61), WaveletComp 1.1 (62), wmtsa 2.1 (63), zoo 1.8-8 
(64), and corresponding dependencies.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abc0020
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