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ABSTRACT. A class of two-fast, one-slow multiple timescale dynamical sys-
tems is considered that contains the system of ordinary differential equations
obtained from seeking travelling-wave solutions to the FitzHugh-Nagumo equa-
tions in one space dimension. The question addressed is the mechanism by
which a small-amplitude periodic orbit, created in a Hopf bifurcation, under-
goes rapid amplitude growth in a small parameter interval, akin to a canard
explosion. The presence of a saddle-focus structure around the slow manifold
implies that a single periodic orbit undergoes a sequence of folds as the ampli-
tude grows. An analysis is performed under some general hypotheses using a
combination ideas from the theory of canard explosion and Shilnikov analysis.
An asymptotic formula is obtained for the dependence of the parameter loca-
tion of the folds on the singular parameter and parameters that control the
saddle focus eigenvalues. The analysis is shown to agree with numerical results
both for a synthetic normal-form example and the FitzHugh-Nagumo system.

1. Introduction. Singularly perturbed systems of reaction-diffusion partial differ-
ential equations (PDEs) have shown remarkable success in modelling a wide variety
of biological wave propagation phenomena, including neuronal pulses, cardiac tissue
activation and calcium cell signalling. See, for example [23, 13]. Many of these prob-
lems naturally lead, when posed in a traveling wave frame, to systems of slow-fast
ordinary differential equations (ODEs). One of the most studied canonical models
of this class is that introduced by FitzHugh and Nagumo [14, 30] as a simplification
of the Hodgkin-Huxley model of nerve signal propagation along the axon of the
giant squid.

Individual pulse-solutions of the PDE typically represent homoclinic solution of
the travelling wave ODEs. The bifurcation structure of homoclinic orbits in the 3-
dimensional travelling wave FitzHugh-Nagumo ODE system has been studied by a
number of authors both numerically [8, 18, 17, 28] and analytically [4, 5, 19, 20, 21,

2020 Mathematics Subject Classification. Primary: 34E17; Secondary: 34C23, 37G15, 35C07.

Key words and phrases. Canards, traveling waves, periodic orbits, FitzHugh—Nagumo system,
geometric singular perturbation theory.

The first author is supported by NSF grant DMS-2016216.

* Corresponding author: Paul Carter.


http://dx.doi.org/10.3934/dcdss.2022036

2 PAUL CARTER AND ALAN R. CHAMPNEYS

24]. Within appropriate parameter regions these orbits connect to an equilibrium
solution that is of saddle-focus type. That is the linearization is of the form

T =—axr —wy

Y =wr —ay

=Pz
with «, 8,w > 0. Such homoclinic orbits are often said to be of Shilnikov type,
following the pioneering work of L.P. Shilnikov [33]. Defining § = /8 then under
the condition § < 1 the dynamics in the neighbourhood of the homoclinic orbit
are known to be chaotic, featuring dynamics that is conjugate to shift dynamics on
arbitrary many symbols (see [34] and references therein). (This condition § < 1 is
typically written in the Russian literature as ¢ > 0, where 0 = 5+ « is the so-called
saddle index.)

Also, as first shown by Glendinning and Sparrow [16], in the case § < 1 the
homoclinic orbit is approached by family of periodic orbits of increasing period
that lie on a single wiggly curve in parameter versus period (see e.g. Fig. 10 below
for a topologically equivalent figure, albeit with vertical axis having a different
meaning). The asymptotic calculations in [16] (see also [15]) reveal the asymptotics
of the wiggly curve. Specifically, if A; is the difference in parameter value of the
1th fold from that of the homoclinic orbit and T; is the period of the corresponding
periodic orbit then

Im (Tiq —T;) = 7/w, lim (A\j41 — \;) = —exp(ra/w). (1)
11— 00 11— 00

This theory then shows how a travelling pulse solution is approached by a family
of periodic wave trains as period tends to infinity. In the slow-fast ODE systems,
such wavetrains are represented by relaxation oscillations. Also of interest, and the
main topic of this paper, is the mechanism of birth of such relaxation oscillations.
We shall see that, under certain mild hypotheses, the growth in amplitude (rather
than period) of such orbits follows a kind of wiggly curve that is reminiscent of the
Shilnikov wiggle and obeys asymptotic scalings that are analogous to (1) in the case
6 < 1, under a suitable re-definition of the parameters «, 8, w and T.

This paper specifically concerns three-dimensional systems like the FitzHugh-
Nagumo travelling-wave equation that are of two-fast, one-slow type, although the
results are likely to apply to high-dimensional systems under appropriate centre
manifold reduction, for example the various models for calcium waves considered
in [8]. Such systems with parameter regions where an equilibrium is globally stable
are often said to feature excitability if there is a threshold to the size of perturba-
tion that can elicit large-amplitude transient behaviour before the trajectory settles
back to quiescence. As parameters are varied, the equilibrium can undergo a Hopf
bifurcation, leading to a small amplitude limit cycle. Such a limit cycle is usually
short-lived though and a rapid expansion in its amplitude occurs leading to char-
acteristic large-amplitude relaxations oscillations. Such amplitude growth typically
occurs in a parameter region that is exponentially thin as a function of the singular
parameter €.

Such behavior can be understood using geometric singular perturbation theory
(see [27] and references therein), in particular the existence of canard trajectories [1,
12]. Setting € = 0 to freeze slow variables yields the fast subsystem (also referred
to as layer problem). Similarly, the ¢ = 0 limit of the slow-time dynamics gives the
slow subsystem (also referred to as reduced system) which applies on the critical
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manifold Cy which is both the set of equilibria of the layer problem and the phase
space of the slow subsystem. The classical canard phenomenon can occur in planar
systems such as the unforced van der Pol oscillator, for which the one-dimensional
Cp has a characteristic cubic shape. The canard represents a trajectory that passes
very close to the unstable part of Cy and leads to the birth of large-amplitude
relaxation oscillations from a small amplitude limit cycle.

Subsets of Cy that are not normally hyperbolic provide a challenge and typically
represent points at which solution trajectories can separate from the perturbed slow
manifold C. for small € > 0. One way to resolve such problems is to introduce an
auxiliary system obtained by rescaling time so that the fold points of Cy become
singularities of the slow flow. Folded singularities give a way to analyse canard
solutions, which flow through successively through the attracting and repelling parts
of Cp, by passing close to one of these singularities, see e.g. [26, 36].

Such folded singularities in three-dimensional systems with two slow and one
fast variable can lead to additional oscillations in the large amplitude limit cycles
through either so-called folded nodes or folded saddle nodes. Then a folded node
singularity that connects a region of oscillatory dynamics to a canard trajectory can
lead to the onset of so-called mixed-mode periodic orbits [9, 38].

The mechanism to be addressed in the present study is rather different, and
concerns three-dimensional systems with two fast variables and one slow. Motivated
by what has been observed in the FitzHugh-Nagumo model [5], and in other systems
[7, 8], we consider where the growth in amplitude of a limit cycle coincides with the
addition of additional folds around the slow manifold. In so doing, we find wiggly
curves in amplitude of limit cycles against parameter.

The rest of this paper is outlined as follows. Section 2 introduces the FitzZHugh—
Nagumo equation and its underlying dynamics in the parameter region of concern
here. We present numerical evidence for a wiggly canard explosion. Motivated by
this, in §3, we consider a general three-dimensional slow-fast system which admits
the geometry necessary to produce this behavior and describe how canard orbits
arise in this general system. This construction is used as the basis in §4 for a formal
asymptotic analysis of the folds in the bifurcation diagram associated with the ca-
nard explosion. Then §5 presents detailed numerical evidence for the predictions of
the theory on two examples: a specifically constructed “normal form” example, and
the previously studied FitzHugh-Nagumo system. Finally §6 draws conclusions and
suggests avenues for future work, in particular connections to bifurcation theories
for complex mixed-mode wavetrains.

2. The FitzHugh-Nagumo equations. The analysis in this paper is motivated
by travelling-waves in the classical FitzHugh-Nagumo PDE, given by

vy = Dvge + f(U;0) —w+p

w = € (v — yw) @
where the cubic nonlinearity is given by f(v;A) = v(1 —v)(v — A),0 < A < 1/2,
and the parameters 0 < ¢ < 1, p > 0 and v > 0 taken so that (v,w) = 0 is the
only homogeneous equilibrium of (2). The equation (2) was originally proposed
as a simplification of the Hodgkin Huxley equations describing propagation of im-
pulses along nerve fibers; its variants have been studied in depth the past several
decades. In this context, v is a voltage-like variable, while w is a combined recovery
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variable which acts on a slower timescale. The parameter A represents an excitation
threshold, while p > 0 is an applied current.

Of particular interest are traveling wave solutions (v, w)(x,t) = (v,w)(z + st)
which represent profiles with fixed shape that travel through the domain with con-
stant speed. Such solutions satisfy the associated traveling wave ordinary differential
equation

v=d
1
d:E(sdff(v;)\)+wfp) (3)
b= (v
W= (v —~yw)
where () = d%, and £ = x + st. The system (3) exhibits remarkably rich dynamics

and has since become a prototype model in the study of slow-fast dynamical systems.
System (3) is a two-fast-one-slow ODE with a one-dimensional cubic critical mani-
fold Cy = {d = 0, w = f(v; \)—p}, consisting of two normally hyperbolic saddle-type
outer branches and a repelling middle branch meeting at two nonhyperbolic fold
points. Traveling waves are constructed using geometric singular perturbation the-
ory by perturbing from singular orbits composed of portions of these branches of
the critical manifold concatenated with fast jumps between the branches, which are
solutions of the corresponding layer problem

v=d

.1 (4)

d= E(Sd—f(v;)\) +w—p)
for fixed values of w.

It has been shown, for instance, that (3) admits families of homoclinic orbits,
amounting to traveling pulse solutions of (2). The dynamics and properties of these
pulse solutions have garnered much interest and have been studied in detail. The
current work is concerned with traveling wave-train solutions, or spatially periodic
pulse patterns, of (2), in particular those which arise from canard dynamics. Such
solutions amount to periodic orbits of the traveling wave equation (3). These pe-
riodic waves can either be constructed from orbits which traverse only normally
hyperbolic portions of Cy [35], or can contain orbit segments which pass near one
or both of the non hyperbolic fold points. Both families of orbits represent periodic
pulse patterns of (2), and have been shown to organize invading pattern-forming
fronts in (2) [6].

Here, we are concerned with orbits associated with canard dynamics in (3). These
originate in a singular Hopf bifurcation which occurs at the origin for a suitable
value of A\ = Ag(e) and grow into large-amplitude wave trains along a canard
explosion; see Figures 1 and 2. This transformation resembles the classical planar
canard explosion [26], though with some subtle differences arising due to the three-
dimensional nature of the traveling wave equation (3). In particular, the bifurcation
branch exhibits a series of folds, which are especially pronounced near the upper
part of the bifurcation branch.

Remark 1. While the bifurcation branch in the classical planar canard explosion
can exhibit a finite number of folds (as € — 0) which arise due to zeros in the so-
called way-in-way-out function [26], we will see that the folds appearing in Figure 2
appear due to oscillatory dynamics in the fast subsystem, and the number of folds
grows like O(1/¢) as ¢ — 0. Similar behavior has been observed in the context of
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FicURE 1. Traveling wave trains obtained in the FitzHugh-
Nagumo equation (2) for € = 0.005,7 = p = 0 with wave speed
s = 0.65: small amplitude canard cycle (left), and a large ampli-
tude relaxation oscillation (right), corresponding to the blue and
green orbits, respectively, depicted in Figure 2.

traveling wavetrain solutions in other systems, such as the Oregonator model [32].
We further note that the phenomenon observed here is reminiscent of that which
occurs along a pulse-replicating branch of traveling pulse solutions in the FitzZHugh—
Nagumo system, in which a single pulse transforms into a double pulse via a canard
transition [5], along a so-called homoclinic banana. This branch exhibits a similar
(and closely related) sequence of folds, growing in number as ¢ — 0. We discuss
these connections in further detail in §6.

We note that for p = 0,s > 0 and v > 0 taken small enough, there is a single
equilibrium for the full system (3) which occurs at the origin (v,d,w) = (0,0,0).
In the limit € — 0, this equilibrium lies precisely on the lower left fold point of the
critical manifold Cy when A\ = 0. For sufficiently small € > 0, the canard explosion
in Figure 2 originates in a Hopf bifurcation occurring at this equilibrium at a value
A= )\H(5> = 0(5)

To understand the geometry of the canard explosion in Figure 2, we consider the
slow /fast geometry of (3). Setting € = 0 in (3), we obtain the layer problem (4), in
which w acts as a parameter. The set of equilibria of this system is given by the
critical manifold Cy. Rescaling the traveling wave coordinate via 7 = £, we obtain
the corresponding slow system

ev' =d
edl = & (sd — f(0:X) +w —p) (5)
w' = é(v—’yw)

where / = <L We note that the flow of (5) is identical to that of (3) for any ¢ > 0,
but upon setting € = 0, we obtain the reduced problem

0=d
1
0= (sd=fv;}) +w—p) (6)
;1
w :g(U_'Vw)
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FIGURE 2. Plotted is the traveling canard explosion which emerges
from the Hopf bifurcation at the equilibrium (v,d,w) = (0,0,0) at
the parameter values p = 0, s = 0.65, v = 0, and € = 0.005, when
continuing in the parameter A. The left panel shows the bifur-
cation diagram obtained by plotting the L?-norm of the periodic
orbits along the explosion vs. the parameter \; a zoomed in por-
tion of this bifurcation diagram showing the folds along the canard
explosion is shown in the inset. The colored circles in the bifurca-
tion diagram correspond to the periodic orbits in the right panel
plotted in (v,d,w) phase space along with the cubic critical mani-
fold (shown in red). The explosion encompasses the transition from
small amplitude oscillations (blue) born locally at the Hopf bifurca-
tion, to canards “without head” (yellow) and “with head” (purple),
to large amplitude “relaxation oscillation”-type orbits (green). The
folds in the bifurcation branch are observed primarily along the up-
per part of the branch, associated to the canards with head. We
will discuss why these folds appear only on this part of the branch
in §5.2.

for which the flow is restricted to the critical manifold Cy. It is possible to build
singular ¢ = 0 periodic orbits for (3) by concatenating solutions of the reduced
problem (on the slow manifold Cp) and the layer problem, which describes the fast
dynamics away from Cp.

We now examine the linear stability of the layer problem along the set of equilibria
Co = {d = 0,w = f(v;A\) — p}, which can be naturally parameterized by v. At a
point (v,d,w) = (v,0, f(v; A\) — p) € Co, the linearization of (4) is given by

50,0 = (_pon ) 7)

D D

The eigenvalues are then given by the following expression

+ _ Lfs 52 ['(vA)
V_2<DiD24D> ®)

so that Cy is normally hyperbolic for any s > 0 except at two fold points v = vl
where

0= f'(v;\) = =30vf +2(1 4+ N)vg — A (9)
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FiGURE 3. Shown the singular slow-fast geometry for the
FitzHugh-Nagumo system (3) for A = e = 0.

that is,

vi:%((1+/\)i (1—>\)2—3)\). (10)

This splits the manifold Cy into three normally hyperbolic branches
Co=Con{v<d}, B=Ccn{t <v<dl}, C=Ccn{v>vl} (11)

where the two outer branches C§ and C§ are of saddle type, and the middle branch
C2 is normally repelling. Depending on the values of the parameters \, s, D, for
values of w € (f(vf; ), f(v; X)), between the fold points, there exists a family
of heteroclinic orbits ¢o1(§;w) = (va1,do1)(§;w) and ¢a3(§5w) = (v2s, daz) (5 w)
which connect the repelling middle branch C3 with the outer saddle branches C}
and C3, respectively. For certain values of w, there are potentially also heteroclinic
orbits ¢13(&; w) = (v13,d13)(&; w) or ¢31(&§;w) = (v31,ds1)(§; w) which connect the
outer branches C} and C§, or vice versa. We refer to [6, Figure 2] for a qualitative
description of the possible phase portraits of (4) in the case D = 1,p = 0 for
different values of A and s.

Examining the reduced flow (6) restricted to the critical manifold Cy, we note
that the direction of flow is determined by the nullcline v = ~w; see Figure 3.
When A = 0, the equilibrium (v,d,w) = (0,0,0) sits at the lower left fold point,
which in the singular limit ¢ — 0 takes the form of a canard point. Singular
periodic orbits can be formed by concatenating canard orbits which follow the saddle
critical manifold C} then the repelling middle branch C32, followed by one of the fast
heteroclinic orbits ¢a1 (-;w) or ¢oez(-;w). Following one of the orbits ¢o;(+; w) back
to the saddle branch C} results in a singular canard “without head”; however, if
following ¢a1(+;w), the orbit jumps to the right saddle branch C3 and continues to
the upper right fold point before returning to the left saddle branch CJ, forming a
singular canard “with head”.

In the forthcoming analysis, we will show that the sequence of folds in the bi-
furcation branch that undergoes a canard explosion in Figure 2 is related to the
small amplitude oscillations made by the canard orbits about the middle branch C2
of the critical manifold; these can be seen along the canard orbits in phase space
in Figure 2. These oscillations arise along a portion of the repelling middle branch
C2 in which the associated equilibria of the fast subsystem transition from repelling
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nodes to foci in the layer problem. From (8), the condition to have foci is

2 10y
2l (12)
or equivalently,
52
&P—mA+mv+A+15<o (13)

The equality in equation (13) gives a quadratic equation whose roots are

vy = ;<L+At¢u+AP—3<A+z;>>, (14)

u+AF3<A+:;)>0 (15)

Then, provided

equation (13) has solutions on v € (v_,v; ), and we refer to the points (vy,wy) =
(vg, f(vx; X)) at which the node-to-focus transition occurs as Airy points [5]. Com-
paring (14) and (10), we can conclude that, for values of A, s satisfying (15), the
solutions to the inequality (13) lie on the middle (repelling) branch of the cubic
critical manifold, where the equilibria (of the fast subsystem) are then foci. In
particular, for A =0and 0 < s < %, there exists a portion of C? with this focus
structure, and any canard orbits passing near this portion of slow manifold will
exhibit small oscillations around Cg.

The aim of this paper is to show that, under suitable assumptions, these oscil-
lations organize the folds in the bifurcation curve in Figure 2, and we will obtain
asymptotic estimates for the location and number of these folds in the singular
limit € — 0. After construction of a general theory, we will return to the FitzZHugh-
Nagumo system in §5.2 and show how it fits into this framework.

3. A normal form for wiggly canards. Motivated by the geometry of the
FitzHugh—Nagumo system in the previous section, we consider a 2-fast-1-slow sys-
tem with fast variables (v, d), slow variable w, which we write in the form

0= g1(v,d,w, \€)

d=ga(v,d,w,\,e) (16)

w = ¢eh(v,d,w, \ &),

where = d%, A is a bifurcation parameter, € > 0 is a small parameter and g1, g2, h

are C"T! functions, r > 3. By rescaling 7 = ¢t, we obtain the corresponding slow
system

ev' = g1(v,d,w, \,€)
ed = go(v,d,w, \,€) (17)
wl = h(v7d7 w’ A7 6)7

where ' = %. We outline hypotheses with respect to the slow/fast limits in §3.1.
Also see Figure 4.
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FIGURE 4. The global setup of the slow-fast system (16) according
to Hypotheses 1-4. For convenience the origin is taken to coincide
with the fold point F = (vt, d¢, wr).

3.1. Fast and slow limits. Setting ¢ = 0 in (16) results in the layer problem

v =g1(v,d,w, \,0)

d= g2(v,d,w, A\, 0) (18)
W =0,

which we consider for A € [—Ag, Ao] for some Ag > 0. The dynamics are restricted
to planes w =const, and this system admits a critical manifold of equilibria

o . _ L gl(vvd7w7)‘75)
CO T {(’U, da ’LU) . F(Ua da w, )‘a O) - 0}7 F(Ua da w, )\,6) T (92v7d7w’ )\,E)
(19)

We assume that for w > wg, (18) admits two hyperbolic fixed points: ps(w), and
pr(w), and these collide at a saddle-node bifurcation at w = we. In other words,
we assume that the critical manifold is folded, or U-shaped with two normally
hyperbolic branches Cé, C§ and single fold point at

F = (vg, dg, we). (20)
so that
Co=C5{UFUCE. (21)
Regarding the stability of the hyperbolic branches of the critical manifold, we
have
Hypothesis 1. The left and right branches of the critical manifold Cy satisfy the
following.

(i) The left branch C§ is normally attracting, that is, Dya)F |cg has two eigenva-
lues with negative real part. There exists wy > ws such that for wy < w < wy,
these two eigenvalues are real and denoted by v (w), where v, < v/ < 0,
while for w > wy, the eigenvalues are complex with v (w) = —a(w) + iw(w),
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FIGURE 5. The assumed heteroclinic orbits in the layer problem
according to Hypothesis 2 in the case w < wp (left) and w > wy
(right). In the left panel, the heteroclinic orbits ¢(w) are shown to
converge to C§ in the generic (weak stable) direction, as is the case
for the FitzHugh-Nagumo system (3), but this is not necessary to
satisfy Hypothesis 2 for the construction of periodic orbits.

where a(w),w(w) > 0 for w > wy. The double root v, (wo) = v, (wp) is
geometrically simple.

(ii) The right branch Cy is of saddle type, so that Dy, 4)F|c; has one positive and
one negative eigenvalue, denoted v (w).

We refer to the equilibrium py(wg) at which the fast dynamics transitions from
node to focus as an Airy point. The next hypothesis concerns the existence of
heteroclinic orbits connecting the right branch C to the left branch C§. See Figure 5.

Hypothesis 2. (Behavior of W"(Cj)) For each value of w > wg, the saddle equilib-
rium p,(w) has a one dimensional unstable manifold W" (p, (w)) which is composed
of two orbits W, W1 . For each w > we, W is given by a heteroclinic orbit ¢(w)
which crosses the set {v = vt} transversely and limits onto the stable equilibrium
pe(w) on the left branch C§.
Taking ¢ = 0 in (17) results in the associated reduced problem
0=g1(v,d,w, \,0)
0 = ga(v,d, w, A,0) (22)
w' = h(v,d,w, \,0),
which we assume satisfies the following.
Hypothesis 3. (Slow flow). The function hy(v,d,w) = h(v,d,w,0,0) satisfies
h0|C{§ <0, hO|C§ > 0, ho(ve, dg, we) = 0. (23)
Remark 2. We note that in the case of the FitzZHugh-Nagumo system (3), the
manifolds C} and CZ correspond to Cj and C§, respectively under the reversal £ — —¢

(note that the left /right orientation of C} and C2 in Figure 3 is flipped compared to
that of Cj and C§ in Figure 4). See 5.2 for further details.

Finally we discuss the dynamics near the nonhyperbolic fold point F. We have
the following (see Figure 4).

Hypothesis 4. (Normally attracting canard point) The point F is a normally
attracting canard point, that is,

D(v,d)F(va df7 Wt )‘7 O) (24)
has one negative eigenvalue for A € [—Ag, Ao]. Therefore (16) admits a two-dimen-

sional local center manifold W°(F), on which we assume the point F is a nonde-
generate canard point with unfolding parameter A in the sense of [25, §3.1].
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FIGURE 6. Shown is the setup for Hypothesis 4 in the local coor-
dinates (x,y, z) for the normal form (25) for ¢ = 0.

Hypothesis 4 implies the existence of a local invariant manifold W¢(F), foliated
by one-dimensional strong stable fibers. In a local coordinate system (z, y, z), where
(z,y) parameterize the center manifold, and z parameterizes the transverse direction
(see Figure 6), after a suitable coordinate transformation, we arrive at the following
normal form for a canard point [25]

&= —yhi(z,y,\ ) + 22ha(z,y, X\, &) + ehs(x,y, \, €)
g = e (@ha(@,y,\ ) — Mhs(2,y, A, €) + yhe(x, y, A, €)) (25)
z2=z(—k(X) +0O(z,y, 2,¢))
where k() > 0, and the functions h;,j =1,...,6 are C" and satisfy
hs(z,y, A e) = O(z,y, \€)

26
h](x7y7)\75):1+O(‘r7y7)\78)7 j:1727475' ( )

By standard planar canard theory [26], this system admits a Hopf bifurcation at

A= An(VE) = 3 Kne + O(2), @7)

where K := 0,h3(0,0,0,0)+hs(0,0,0,0), which can be either sub- or supercritical,
depending on certain higher order coefficients in (25); see [26, Theorem 3.1]. From
this Hopf curve bifurcates a family of periodic orbits, given by small amplitude ca-
nard cycles, which grow to small, but O(1) with respect to ¢, size within the center
manifold W¢(F); this constitutes the so-called “local canard explosion” phenome-
non. In particular, by taking A > 0 sufficiently small, one can guarantee that for
all sufficiently small € > 0, this family of canard cycles leaves a A-neighborhood of
the fold point (v, d, w) = (v¢, d¢, we). However, this local result is restricted to those
orbits which are entirely contained in the center manifold W¢(F), and in particular
does not extend to the region of interest w > wy. The center manifold W°(F)
cannot be continued beyond the Airy point at w = wq due to the lack of a spectral
gap in the eigenvalues V?:(’w) for w > wp. To understand orbits which interact with

the fast foci on C§, we must understand the structure of global canard orbits which
leave W¢(F).

3.2. “Global” canard cycles. To construct global canard cycles, which are not
fully contained in the center manifold W¢(F), we must examine the flow away
from the fold point, and in particular, the full three-dimensional nature of the flow
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becomes important. We follow the procedure used in [2] for constructing such global
canard orbits.

For wy,wy > wg, we use the notation Cj[wy,ws], x = £, to denote the intersec-
tion

Cylwr, we] :=C5N{w; < w < wa}. (28)

For each w = w > wy, we can construct a periodic orbit as a perturbation of the
singular e = 0 orbit vo(w) obtained by traversing the left critical manifold C§[wr, 0],
continuing up the right critical manifold C{j[ws,w], then jumping back across the
heteroclinic orbit ¢(w), completing a cycle; a corresponding canard orbit v(w;e) for
0 < e < 1 can be constructed by perturbing from this singular cycle and adjusting
the parameter A = \(w; ) appropriately. We have the following.

Theorem 3.1. (]2, §3]) Consider (16) under Hypotheses 1-4. Fix w,, > w and
A > 0 sufficiently small. There exists 9,7 > 0, p # 0, and a family of locally
unique periodic orbits

{(v(w;e), A(w;€)) : @ € (wr + A, Wp,), € € (0,e0)} (29)
which is C' in (w,+/2). The function \(w;e) satisfies
A@;€) = AB(e) + O (e—"/E) (30)

uniformly in @ € (wf + A, Wy,) and € € (0,&0) where
A () =pe+ 0O (63/2> . (31)

The orbit v(w;e) intersects the section {v = v} at w = w and is O(\/€)-close to
the singular orbit ~o(w).

Remark 3. Due to local uniqueness, by taking A > 0 sufficiently small, we can
guarantee that for @w ~ wr + A, the orbits v(w; e) coincide with those arising from
the local canard explosion as in §3.1, forming a single continuous branch originating
at the Hopf bifurcation (27).

Remark 4. The function Anc(e) which appears in the estimate (29) represents
the location of the so-called maximal canard orbit. All of the periodic orbits of
Theorem 3.1 lie within an exponentially thin interval of this value in parameter
space.

The existence of the periodic orbits of Theorem 3.1 follows from the analysis
in [2, §3.5]. However, below we include a self-contained proof of Theorem 3.1 in
order to explain the origin and geometry of the leading order bifurcation equations,
which will be essential in obtaining the formal asymptotic predictions in §4.

3.2.1. Setup for constructing global orbits. From standard results of geometric sin-
gular perturbation theory, away from the fold point, the normally hyperbolic
branches Cg/ ® of the critical manifold perturb to one-dimensional slow manifolds

Cg/ ‘ for sufficiently small ¢ > 0. Furthermore, the three-dimensional stable man-
ifold W*(C§) of the left branch perturbs to a locally invariant three dimensional
stable manifold W5(C%) of the slow manifold C. Similarly the two-dimensional
stable/unstable manifolds W*/*(Cj) of the saddle manifold Cj perturb for small
£ > 0 to two-dimensional locally invariant stable/unstable manifolds W3/"(CT) of
the saddle slow manifold C{.
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FIGURE 7. (a) Geometric setup for the construction of global ca-
nard orbits as in Theorem 3.1. (b) Setup for matching conditions
in the section X.

Due to the existence of the heteroclinic orbits ¢(w) C W*(C§)NWH(Cy) for e = 0,
away from the fold point F, tracking the unstable manifold W"(CI) forwards, we
note that W(Cr) C W5(CY).

To construct the orbits of Theorem 3.1, we consider a small one-dimensional
manifold T'g(w) lying entirely in the plane w = @ which transversely intersects the
heteroclinic orbit ¢(w); see Figure 7a. This one dimensional manifold therefore
transversely intersects W*(CZ). To construct a periodic orbit which reaches w = w,
we evolve I'g(@w) under the forwards and backwards flow of (16), and search for
intersections near the fold point F, through a matching analysis using the local
coordinates (z,y, z).

Under the forwards flow of (16), I'g(w) is contracted exponentially close to the
manifold C’, arriving in a small neighborhood of the fold point. Under the reverse
flow of (16), since I'o(w) transversely intersects W"(CI), by the exchange lemma
(see [22]) T'o(w) traces out a two-dimensional manifold I'(w) which aligns O(e~"/¢)-
close to W*(CI) upon arriving in a neighborhood of the fold point, for some 1 > 0
fixed independently of €.

3.2.2. Matching analysis near the canard point. We recall that the flow near the
canard point is governed by (25) in the local (x,y, z)-coordinate system. We fix a
Poincaré section given by the set 3 := {& = 0} and proceed to define a suitable
return map on this set in order to construct canard cycles; see Figure 7b.

We note that the (non-unique) slow manifolds Ct /* themselves (in particular C7)
cannot be tracked inside an arbitrarily small neighborhood of the fold point, due
to the normally attracting direction transverse to the local center manifold of the
fold. However, given any fixed small O(1) neighborhood of the fold in which the

center manifold W°(F) is defined, the slow manifolds ¢/t can be tracked up to
the boundary of this neighborhood. Upon reaching this neighborhood, there are
corresponding basepoint solutions C5P3¢ and C7P#s¢ which lie on W€(F), which
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Y2
Cé,base Cr,base

\‘] ----Do(Az,72)

FIGURE 8. Splitting of the manifolds C-P#¢ and C4P2% in the cen-
ter manifold W€ (F).

are shadowed by the slow manifolds CL /% The behavior of these basepoint solutions

can then be analyzed using standard planar canard analysis [25, 26].

Within the center manifold, the shadowed slow-manifolds C5b#¢ and CI*P2¢ can
be tracked down to the fold, where they meet the section ¥ within the subspace z =
0. The distance between these solutions can be measured using blow-up analysis.
In particular, via the blow-up transformation

T = ToTo, y:rgyg, A =129, 5:7'3. (32)

the manifolds C4P#° and CI'P*® reach ¥ in the subspace z = 0 at yo = y4(\2,72) and
Y2 = y5(Aa, 12), respectively; further, we have that the distance between Cf’base and
Cg’base measured in the section ¥ is given by the distance function [25, Proposition
3.5]

yg — y; = D0(>\2,7‘2) = ml)\g + morg + O(’/‘g + /\g) 5 (33)

where the coefficients m1, mo are constants, bounded away from zero independently
of A2, 2. Hence we can solve for the existence of a maximal canard trajectory within
We(F), corresponding to a zero of the distance function Dg(Ag,72), which occurs
when

Ay = AP = pry + O(13), (34)
where p = —% # 0, and the corresponding A value of A™°¢ = roA\J'°; see Figure 8.

Using these blow up coordinates, we can now complete the proof of Theorem 3.1.

Proof of Theorem 3.1. In order to construct the desired family of periodic orbits,
we determine appropriate estimates on the return map II : ¥ — ¥ applied to I'(w).
We first note that by the discussion above, the manifolds C4P2%¢ and CI-P25¢ intersect
X at

CoP™: (y,2) = (y5,0)
CoP™: (y, 2) = (45, 0).

Next, we consider the backwards evolution of the set T'g(w). As already mentioned,
because I'g(w) transversely intersects W"(C[), by the exchange lemma (see [22])

(35)

=

[o(w) traces out a two dimensional manifold I'g(w) which aligns exponentially close
to W*(CL), and hence transversely intersects the center manifold W¢(F). Thus in
backwards time, fo(w) aligns exponentially close to the strong stable fibers of a
basepoint solution on W¢(F) which is exponentially close to C*P**¢ upon arrival in
the section X.
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Hence I'o(w) intersects ¥ in a curve I'(w) which can be represented as a graph
over z for |z| < A, for some A >0

D(w) : yo = yr(z;w), |2| <A (36)
where
yr(0;@) = g5 + O(e™9),  (yr)(0;@) = O(e™"/°). (37)

We now consider the image of T'(w) under the return map II. In forwards time,
I'(w) is contracted exponentially, occupying an exponentially thin interval within
the original manifold I'o(w), which is then itself exponentially contracted to CY,
and hence arrives back in ¥ in a curve II(T'(w)) which is contracted exponentially
close to C5Pase. We parameterize this curve by |s| < A where s denotes the initial
z-coordinate of a point on I'(w) within the section ¥ before applying the map II.
Hence II(T'(w)) is given by

I(T(@)) : (yo,2) = (yn(s; @), zm(s; @) |s| < A (38)
where
yr(s;w) = ys + O(e™),  n(s;w) = O(e™ ) (39)

uniformly in s, w, A2, and the derivatives of these functions with respect to s, w, Ao
satisfy the same estimates.

To find a periodic orbit, we search for a fixed point of II on the set I'(w), that
is, we search for a value of |s| < A such that

yr(zn(s;w); w) = yn(s; w). (40)
Using the estimates (37) and (39), we can write this as
0 = yn(s;w) —yr(zu(s; w); w)
=45+ O™ ) =y + O(e™"°)
= Do(Ag,72) + O(e™°),
where Dy is as in (33) which can be solved for
Ao = Ao (ro; @) = AP + O(e™ ) = pry + O(r2), (41)

by the implicit function theorem, where we recall that A = 9o, where ry = /2.
This gives the value of A\(w;€) = roAa(re;w) for which there exists a canard cycle,
which we call v(w; e), which reaches w = w. O

Remark 5. We note that the above procedure for constructing O(1) canard orbits
can be employed for more general situations, beyond the case in which the critical
manifold has the parabolic shape as depicted in Figure 4. For instance, in the case
of a cubic critical manifold, as in the FitzHugh-Nagumo system (3), Theorem 3.1
applies directly to the construction of the so-called canard orbits “without head”,
but does not include the canard orbits “with head”, which traverse the right saddle
branch and upper right fold point before returning to the canard point along the
left saddle branch. These can, however, be constructed similarly by choosing an
appropriate interval of initial conditions, and showing that any exponential expan-
sion along the right slow manifold is balanced by contraction along the left slow
manifold; see [5, §4] for a similar construction.
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w
C.
A 5 WE(0)
wo — Astart
Cﬁ ’Acnd
S C;
v
E —

FIGURE 9. Shown is the forward/backward evolution of the curve
A along the manifolds C4". The right panel shows the forward and
backwards intersections Agiart, Aena 0f A with the section X. The
rotation along the left branch is accumulated in the region w > wy
where the fast dynamics along C’ are oscillatory.

4. Wiggly canard explosion and asymptotic predictions. In this section, we
use the analysis in §3.2 to make predictions about the appearance of wiggles, or folds,
in the continuation of canard orbits from Theorem 3.1 in the bifurcation parameter
A. We begin with a discussion in §4.1 of the asymptotics of the parameter A itself
as well as a condition which predicts the appearance of folds. We then consider the
asymptotics of the distance between successive folds in §4.2-4.3.

4.1. A-aymptotics. In §3.2, for sufficiently small € > 0, we showed that for each
w > wg, there exists a locally unique A = \(w;¢) and corresponding periodic orbit
~(w; €) which reaches w = w. We now aim to determine the asymptotics of A(w;¢)
as € — 0, in particular with respect to wiggling.

To do this, we consider the intersection of v(w; £) with the set {v = 0} for a range
of w > wy; this forms a curve, which we call A; see Figure 9. We now consider the
backward evolution of A, which meets the section X in a curve Agiart, as well as its
forward evolution, which meets the section ¥ in a curve Agng. When A = A(w;¢),
we have a fixed point along the orbit ~(w;e) which lies on the intersection of Agtart
and Acpq within the section . We argue below that the curve Agnq oscillates about
C!, forming a spiral, and as A(w;¢) adjusts for increasing w, this fixed point travels
deeper into the spiral; see Figure 9.

We now recall the local coordinates (yo, z) used for matching in §3.2.2. In these
coordinates, we have that the curves Agtart, Aena can be parameterized by w:

Agtart (y27 Z) = (ystarta Zstart)(w)

Acnd : (y27 Z) = (ycndv chd)(w)7 (42)

and when A = A(w), we have that ystart (W) = Yena (@), which means

0= Ystart (ﬂ)) — Yend (’J))
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= yg + (ystart - yg) - y; + (yg - yend)
= DO(AQa TQ) + (ystart - yg) + (ZJ; - yend)-

We recall that that Do(A2,72) = 0 (i.e. the maximal canard occurs) when Ay = A3
We now set Ay = A3 + A, and expand

Do(AFC + A, 72) = mid + O(A\%, 72 0) (43)

From this, we deduce that the orbit v(w;e) occurs for the value of A = A(w)
satisfying

0= ml;‘ + 0(5‘27 TQS‘) + (ystart - yé) + (y§ - yend)v (44)

with A(w) = ro(APC + X(w)). In this sense A\(@) captures the deviation from the
maximal canard value which is required to attain the periodic orbit v(w;e). In
order to satisfy (44), we see we must have

;\(’LT]) ~ (yg - ystart) + (yend - y;)v (45)
Iy I,

and we would like to understand the dependence of this expression on .

We note that the first term I, captures the distance from C4b2%¢ while the second
term I, measures the distance from C’-P2*¢. Furthermore, the second term, which
represents the contraction along C] in backwards time, is monotone in w. The first
term, representing the contraction along Cf is similarly monotone for small values
of w, but then transitions to oscillatory behavior for values of @ > wg due to the
accumulated rotation along CY. Depending on which of these terms is dominant, we
either expect to see oscillatory (wiggly) or monotone bifurcation diagrams for the
associated canards.

To see this, we note that each branch of the critical manifolds Cé/ " has an asso-
ciated reduced flow, obtained by implicitly solving for (v, d) as functions of w and
plugging into the reduced equation (22), resulting in reduced equations which we
denote by

w' = he(w, \) (46)
along C§, and by
w' = h.(w, \) (47)

along Cj. We define for w > wy the quantities

" Rvf(s)
Ralw) = /w ()

)
Rr(w)f/ hr(s,)\)ds

we

(48)

where VZ'_, v, are as in Hypothesis 1. For the term I,., the contraction along C! in
backwards time occurs approximately at the exponential rate

(i = 15) ~ exp (-2 (49)

3
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) he(wp, 0
|~ WNp1— WN = *%64’0(62)

@) = A ~ 2 exp (_ Rz(w)>
13

FIGURE 10. Schematic wiggly canard bifurcation diagram of fast
jump height w versus A. The fold envelope and distance between
successive folds are given by (53) and (61), respectively.

while for I, ignoring any rotation, the contraction along C! in forwards time is
approximately

3

(Y5 — Ystart) ~ eXp (— Rz(w)) : (50)

We make the following assumption.

Hypothesis 5. There exists we > w; > wy such that R,.(w) > Ry(w) for w €
(w1, ws), where R,.(w), Re(w) are given by (48).

Remark 6. If the term I, dominates, that is Ry(w) > R, (@), so that
5‘(71)) ~ (ndd - y;)a (51)

then 5\(@) is to leading order monotone and exponentially decaying. In particular,
we do not expect to see sequences of folds in the associated bifurcation diagram.

Under Hypothesis 5, for values of @ € (wy,ws), the term I, dominates, so that

A(®) ~ (45 — Ystart)- (52)
This separation function oscillates for values of w > wp, and we anticipate the
appearance of folds as A(w) snakes back and forth, with an exponentially decay-
ing “fold envelope” (see Figure 10), which decays approximately according to the
exponential rate
~ Ry(w
IA(w; ) — A = | /2N (w)| ~ e/ % exp (—Z()> . (53)
€

To determine the amount of rotation which occurs, we consider in more detail
the passage near the slow manifold Cf, and in particular we assume that w > wy,
since any rotation that occurs must occur in the region w > wp; see Figure 9. We
recall from Hypothesis 1 that for w > wo, v, (w) = —a(w) +iw(w), and hence after

a linear change of coordinates, at the linear level the flow near C¢ takes the form

Tl = —ar] + wry
Tg = —WIT1 — QT2 (54)
W = ehg(w, \)
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or, in polar coordinates

r=—ar
0=w (55)
w = ehg(w, \).

The change in 6 over the interval w € (wg, w) is given by

v w(s)

————ds|. 56
/wo h[(S, /\mc) ‘ ( )
We expect a fold, or wiggle, to occur whenever 6 crosses kmw for k € N, and hence
the number of folds Nyiggle is asymptotically

[ | e

4.2. Fold asymptotics for N ~ O(1/e). Based on the analysis in the previous
section, we expect that the Nth fold occurs at the value w = wy defined implicitly
by the relation

1
A8 ~ —
€

1

Ny le ™~ —

1] Y w(s)
N=— ———d 58
e /wo h@(‘Sv}‘mC) ik ( )
with the A-value determined via the exponential scaling
R
|AOUN)AmCrvsu2€m)<é{?N)>. (59)

It’s important here that N ~ O(1/e), in order for the first relation (58) to hold. In
particular, this implies that wy > wg + Aw for some Aw > 0 fixed independent of
g, and that the distance between consecutive folds satisfies wni+1 — wy ~ O(g). In
fact we can compute this quantity to leading order by solving

1 [N+t w(s)

(N+1)—-N=-—

——d
el S Y% U (60)

from which we obtain
_ mhe(wy, 0)

() e+ 0O(?). (61)

WN+4+1 —WN =

To determine the scaling ratio of A between consecutive folds as ¢ — 0, we
compute the quantity

o (|/\(wzv+1) - Amc|) _ Re(wy) = Re(wy 1)

() — 3] :
1N afs)
_5/ Tog (s, Ame) 48

wWN

_ (Wnt1 — wN) < Oé(wN)) +0(€)>

€ hg(wN,O

~ ma(wy)

w(wn)

+0(e)

where we used (61) in the last equality.
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4.3. Fold asymptotics for N ~ O(1). If we instead let € — 0 for fixed N, all of
the oscillations around the slow manifold C¢ occur nearby the critical node-to-focus
transition at w = wg. Here the frequency of oscillation around C’ is small, i.e. not
O(1) in €, so the distance between wiggles cannot be computed to leading order
using the integral of the frequency w(w) as in the previous subsection, and we must
analyze the more delicate dynamics in a neighborhood of the so-called Airy point.

Near the critical node-to-focus transition in the fast dynamics along the slow
manifold C§ at (v,d,w) = (vo,do,wp), without loss of generality the system can be
transformed to the system [3, 5]

=d+ hot.
d =7 + hot. (63)
W = ekhg(wo,0) + h.o.t.
where
v\ v — g
“(3)- (an 1) (i) o o
= k(w — wp) + h.o.t.
and
o [ (trAd)®
= — — detA
B0 < 1 det (65)
w=wo
where the matrix A is the linearization of the fast subsystem
(a1 a2\
4= (a21 a22> = Dy F(0,d:w,0,0)] 0 (y,0) (66)

Ignoring higher order terms, and solving for @ in terms of t, we obtain the leading
order equation for ¥

v = ekhy(wg, 0)tv (67)

which admits two linearly independent solutions in terms of Airy functions Ai, Bi,
which can be re-expressed in terms of the variable @ (note hy < 0) as

v1(w) = Al —*
w ( (Eth(wo,O))2/3>

Ug(w) = Bi 7$ .
w < (%he(woﬁ))zw)

Based on the analysis in [5], generically one expects that turning points of A cor-
responding to wiggles are related to zeros of the Airy function Ai. In particular,
noting (62), the distance between successive wiggles is related to the difference
wy+1 —wpy between the w-coordinates of the corresponding fast jump traversed by
the canard orbit in question. For those orbits whose fast jump occurs near w = wy,
that is, near the Airy point, the difference w1 — wn should be given in terms of
the distance between successive zeros of Ai.

Letting J; < 0 denote the zeros of Ai with |Ji| < |J2] < .... Using the scaled
variable in (68), zeros occur whenever

W = — (erhe(wo, 0))%? Jy (69)

(68)
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for some k. Using the fact that @ = x(w—wp)+ h.o.t., we can express the difference

ehe(wg, 0))%/3
WN4+1 — WN = %(JN - JN+1) + h.o.t. (70)
We can see from this expression that the distance between the jump heights of suc-
cessive folds scales to leading order as £2/3, in contrast to the O(¢)-scaling from (61).
Proceeding similarly as in §4.2; we substitute (70) into (62) and find that

o |/\(wN+1>_)‘mc| NRZ(U}N)—R@(U}NH)
: ( Nwn) — 3] ) -

_ (wny1 —wn) [ afwo)
_ : (hg(wo,()) + 0(6)> (71)

a(wo)

5. Numerical examples. The first numerical example is a synthetic one that is
designed to mirror the analysis in the preceding two sections, where the Cg’r extend
to infinity. The second example is the FitzHugh-Nagumo travelling wave system
that was our original motivating example. All numerical computations are carried
out in Auto [11].

5.1. A synthetic example system. We consider the following two fast / one slow
system inspired by the previous analysis

0= A(vie, p,0) + 57 (v;0)d —w
d=—d+ 5. (v;p)vB(v;p, ) (72)
w=c(v+A)

where

A(vie,0,0) = v*[—s_ (v,0) —sF (v, 0)] =57 (v; ) [v+9—9°| +57 (v; @) [Jv+©* =],

2
Busg,4) = 5+ (L+ o+ 2(1+20)?

and s (v; ) are smoothed out versions of cut-off functions that switch for on for
|z| > ¢, for a positive parameter :

s (v ) = % {1 ~ tanh (“t@)] L so(vg) = % {1 + tanh (”?"ﬂ ,

for a small parameter 0 < € < 1. The other parameters v, €, 4, A and v are all
assumed to be positive. Here € and A play the same role as in the analysis. The
model is constructed in such a way that it is of the form (25) for small (d,v,w) =
(z,z,y) and that the critical manifold is analytic for all e > 0 and is continuous for
e = 0. Specifically, for € = 0, then for x > ¢, the left and right-hand portions of the
critical manifold are such that w is a linear function of v and of slopes —1 and 9,
respectively and the linearisation of the fast flow about them has eigenvalues that

are precisely
Ct:—1+vVvv/A+v)p+o C":—1,4.

Thus, for § > 1 we should expect folds on the branch of periodic orbits born at the
Hopf bifurcation point, as it approaches the canard cycle, and for § < 1 we should
not expect any. This is precisely what we see.
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FIGURE 11. (Left) Results of one-parameter continuation in A of
periodic orbits of the synthetic example (72) for 6 = 2 and € = 0.1.
(Right) orbits at each of the fold points in the left-hand panel.
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FIGURE 12. Similar to Fig. 12 but for § = 0.5 and € = 0.02. The
orbits in the right-hand plot are depicted for even increments in
period between 60 and 120.

The numerical experiments are carried out for
=02 €e=001, =01, vr=050, (73)

and § = 2 or § = 0.5 with X\ and ¢ as bifurcation parameters.
Note that in the notion of (55) we have for v < —(1 + v)¢ that

a=1, w=vy/—v— (1+1)p =+v—500—6, he = (v+ A),

and that Airy point occurs for v = —(1 + ¢)p = —0.12, for the parameter values
chosen.

Now, on C* we can express w = —v — ¢+ % +vB(v; ¢, 1), which can be inverted
to give

\/1+w2¢2v2+(2w—2¢(1+¢))v 1 /100w —1
”:_(T/J‘f'l)@— iy :—TO—T

for the parameter values (73).
Therefore we have

o) = 14 VI00w =T, and PN _SA-VIOwT-5 g
w(w) " 50y/=1+ /100w — T
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wn1 — wn | —emhg/w | abs. error || log <M) T/a/w

N |)\(wN)7)\mc‘

2 0.007800 0.009120 | 0.297041 -3.134495 -3.312145
3 0.007810 0.008331 | 0.143856 -2.766146 -2.914168
4 0.007659 0.007844 | 0.088228 -0.752243 -2.656183

TABLE 1. Computation versus asymptotic prediction for wy41 —
wy and for the accummulation rate of A-values for the explicitly
constructed model with 6 = 2 and € = 0.02. Here the second
column gives the computed values of the difference between suc-
cessive wy-values and the third column gives the value that this
ratio should have according to (61), where hy is estimated using
(74). The fourth column gives the absolute error between these
two quantities. The fifth column gives the computed value of the
left-hand-side of the expression (62) that determines the rate of ac-
cummulation of A-values for the case that N = O(1/¢). The final
column of the table gives the value of the right-hand-side of (62)
for the given value of wy.

N | wy41 —wy | —emhg/w | abs. error || log (%) w/ajw

2 0.010474 | 0.013585 | 0.229015 -2.670591 -3.312145
3 0.010851 0.012412 | 0.125764 -2.500844 -2.914168
4 0.010742 0.011690 | 0.081075 -1.963004 -2.656183
5 0.010570 0.011208 | 0.056862 -2.607696 -2.474712
6 0.010398 0.010861 | 0.042625 0.821494 -2.338275

TABLE 2. Similar to Table 1 but for e = 0.03, in which case addi-
tional fold curves could be computed.

Using these values we have used Auto to compute curves of folds along the path
of periodic orbits emanating from the Hopf bifurcation. The results are plotted in
Figs. 11-13. Specifically, Fig. 11 is consistent with the theory that there should
be a finite number of folds along the periodic orbit branch for § > 1, whose A-
values converge to that of the canard cycle as the amplitude of the cycle grows in
amplitude. In contrast, Fig. 12, which is for § < 1, suggests an eventually monotonic
convergence in parameter to the canard value.

Figure 13 shows the result of continuing the first seven folds depicted in Fig. 11
in € and A. The left-hand end of each branch for small ¢ is where that fold can no
longer be reliably computed owing to it being exponentially close to A™¢. Note that
the chosen values of € are not particularly small, O(1072), but there is a compromise
in the numerical computations between choosing an e-value that is small enough for
the theory to apply, but large enough that sufficiently many folds can be accurately
computed. Note from the three zooms of the curves in the (g, A)-plane just how
rapid this convergence is, even for these moderate e-values.

For each of ¢ = 0.02 and 0.03 we use the maximum value of w along the orbit
at the Nth fold as a proxy for wy and compute the theoretical limit in the case
N ~ O(1/e) (61) for wyt1 — wy for small € using the computed value of A and
(wy +wn41)/2 in (74). The results are shown in the first four columns of Tables 1
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FIGURE 13. (Top) 2-parameter continuation of folds of solutions
in Fig. 11. (Bottom) two successive zooms of the data in the top
right plot

and 2 for € = 0.02 and 0.03, respectively. In both cases we see that there is a good
agreement with the theoretical result, even for these moderate values of ¢ and N.
We note too that the agreement gets better, which can be seen in the reduction of
the absolute error as IV increases.

Next we consider numerical evidence for the exponential convergence of the \-
values of the folds according to (62) under the assumption that N = O(1/¢). Here
we compute an estimate for A™¢ by computing the vertical asymptote of the numeri-
cally computed branch of periodic orbits. Note from the final two columns of Tables
1 and 2 that the computed logarithm is close to that predicted in theory, except for
the largest N for which we have computed a fold. This final discrepancy appears to
be due to the difference between the fold and the maximal canard parameter values
being close to the order of the numerical precision.

Finally, we deal with the distinction between the two asymptotic estimates in
g, (61) and (70), for the values wy in the two cases N ~ O(1) and N ~ O(1/e),
respectively. Figure 14 shows the computed difference between successive w-values
of

AN =WNt1 — WN

as a function of € for the first few computed folds along the wiggly canard.

While the evidence is far from definitive, as one would expect for the moderate
values of £ we were reliably able to compute folds for, Figure 14 provides persuasive
numerical evidence that the asymptotic estimates (61) and (70) are obeyed for this
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F1GURE 14. Computed differences in w-values of successive folds
as a function of ¢, plot on a log-log scale. Also plotted for reference
are straight lines with slopes 1 (dashed line) and 2/3 (dotted lines).

example. In particular the theory would predict that the first ‘few’ values of An
— say, for N < Ny for some Ny > 0 — should scale like £2/3 as ¢ — 0, with the
remaining ones scaling like e. Moreover the number Ny increases approximately
linearly with e. Thus, each curve of Ay versus ¢ should have slope that approaches
1 on a log-log scale for large ¢ and approaches 2/3 on a log-log scale as ¢ — 0.
Moreover, the transition between the two scaling laws should occur for lower € with
each higher N. A comparison with lines of slopes 1 and 2/3 in the figure, strongly
suggest that such a transition between the two asymptotic estimates indeed occurs
in this example.

5.2. The FitzHugh—Nagumo equations. We now return to the FitzHugh—
Nagumo equations (3). Based on the discussion in §2, it is not difficult to see
that for A\=p=0,and 0 < s < Q—DB, the system (3) satisfies Hypotheses 1-4 un-
der the reversal £ — —¢; see, for instance [4] for details on the structure of the fast
layer problem (4) and the canard dynamics near the equilibrium (v, d, w) = (0,0, 0).
Here C} and C2 play the roles of the manifolds Cj and Cf, respectively (note that
the left /right orientation of C} and C2 in Figure 3 is flipped compared to that of C}
and C§ in Figure 4).

As described in §2, and by the theory in §3, the local canard explosion in (3)
originates at a singular Hopf bifurcation, after which the canard orbits grow to O(1)
size, and then continue to grow in an exponentially thin interval in the parameter \.
The upper part of the bifurcation branch (corresponding to the canard cycles “with
head”) exhibits several folds, and the six uppermost folds are labelled in the upper
left panel of Figure 15. There is in fact one additional fold “higher up” visible along
the canard explosion branch; however this fold appears in the regime of relaxation
oscillations and does not arise from the same mechanism which produces each of
the others, so we ignore it for the purposes of the current discussion.

The number of such folds associated with canards-with-head grows in €, but folds
cannot be reliably continued along the lower part of the branch, in the region of
canards-without-head. We offer an explanation for this discrepancy, based on the
theory in §4. In particular, we show that Hypothesis 5 is satisfied along the portion
of the branch corresponding to canards-with-head, but not for the canards-without-
head.
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FIGURE 15. Results of continuation of folds in the FitzHugh-
Nagumo system (3) for v = 0,s = 0.65. Top left: Plot of L?-
norm versus the parameter A for the canard explosion of traveling
wavetrains in (3) for € = 0.005. Shown in the inset is a zoom of
the location of the first (highest) six folds. Top right: Plotted is
the jump height w of the first six folds for decreasing e. Bottom
panels: Plotted are the differences between the jump heights of suc-
cessive folds for decreasing ¢ as a standard plot (left) and log-log
plot (right).

To see this, we briefly describe the difference in geometry of each of these orbits.
The canards without head, are formed by traversing the left branch C} of the critical
manifold, followed by the middle branch C2, then traversing a fast jump back to C}
to complete a closed orbit, much like the geometry of the general system in Sec. 3.2.
However, the canards-with-head have a different geometry, in that the orbit first
traverses the left branch C§, followed by the middle branch C3, then a fast jump to
the rightmost branch C3, and finally a second jump back to C} near the upper right
fold point.

In each case, one could anticipate the appearance of snaking canards with an
increasing number of folds as € — 0, as both the canards with head and those
without each traverse an orbit segment connecting C3 to the middle branch branch
C2, a portion of which satisfies Hypothesis 1. In particular, based on the discussion
in §2, we have that any canard orbit which passes near the portion of CZ lying
between v_ < v < v will experience rotation due to the focus structure of the layer
equation, and the corresponding canard explosion branch may exhibit snaking. It
is clear that this is the case for the canards with or without head, provided that
the jump height @ from the middle branch (to either C§ or C3), satisfies f(v_;0) <

W < f(vy;0).
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In this setting, we expect snaking behavior to occur provided Hypothesis 5 is
satisfied. However, this hypothesis has a different meaning for the canards with
versus without head. For those without head, this hypothesis can be checked directly
as in §4, i.e. we need to compare the relative contraction rates along the manifolds
Cs and C2 between w = 0 and the jump height w = .

To compute the relevant quantities R,(w) and Ry(w), we recall the reduced
equations for the FitzHugh—-Nagumo system (6), given by

w = %(v — yw) (75)

where f(v;A\) = w on the slow manifold. For values of w in between the two fold
points, there are three solutions of the equation f(v;\) = w, given by v;(w),i =
1,2, 3 corresponding to the three branches Cf,i = 1,2,3 of the critical manifold Cp.
In the limit € — 0, we can evaluate R, (w) and R;(w) more naturally parameterizing
the slow flow by the v coordinate, whence we obtain

v = w (76)

sf!(v;0)

We note that in the case of FitzHugh—Nagumo system, the middle branch is re-
pelling, so we must compare the expansion along C2, expressed by the real part of
the eigenvalue v (v) given in (8), with the contraction along C§, expressed by the
eigenvalue v~ (v) given in (8). We can then express the quantities R, (w) and Ry(w)
as

gy [ L WOR () o [ s @Or @)
mn) = [ gy R = [ e (7

Figure 16 depicts the difference Ry(w) — R,-(w) (blue curve) as a function of
w. It is apparent that this quantity is briefly positive, then becomes negative at
approximately w =~ 0.039, so that Hypothesis 5 is satisfied for values of w > 0.039.

However, in the case of canards with head, while the contraction along C3 is
computed similarly as in the previous case, the portion of the orbit spent near C}
is longer, and the relevant contraction rate must be computed between w = 0 and
w = w,, where w, is the height of the second jump, back to C} near the upper fold
point. This means that the contraction along C} is “amplified” compared with the
previous case, and we must replace R,(w) with R,(w.). In the limit ¢ — 0, the
height w, of this second jump can be found by searching for a heteroclinic orbit
¢31 the layer problem 4 for the parameter values D = 1,p = A =0, and s = 0.65
which connects the right branch C3 of the critical manifold to the left branch Cj. A
computation shows that this occurs when

wy = f (1 + ﬁs;O) ~ 0.147 (78)
3 3

Figure 16 depicts the difference Ry(w.) — R,.(@) (red curve) as a function of @,

which is clearly negative on the entire interval, so that Hypothesis 5 is satisfied

for all w < w,. Furthermore, using the condition (12), we compute that for D =

1,A = 0,s = 0.65, the Airy point at which the fast dynamics in the layer problem

switches from node to focus along the middle branch C2 occurs for w = 0.0031, so

that oscillations (and corresponding snaking) can occur for any orbits with jump
height w > 0.0031.
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FIGURE 16. (Top) Shown is the way-in-way-out function given by
the difference Ry(w,)— R, (@) (dashed red) plotted versus w for the
case of canards with head, as well as the difference R¢(w) — R, ()
(solid blue) in the case of canards without head. In the latter
case, the quantity Ry(w) — R,(w) is briefly positive between w = 0
and w =~ 0.039. The bottom left and right panels, respectively,
depict plots of the L2 norm versus A and the maximum height w
along the orbit versus A for the canard explosion of wave trains
in (3) for v = 0,s = 0.65,¢ = 0.005. The square denotes the loca-
tion along the bifurcation branch where the way-in-way-out quan-
tity Re(w) — R,-(w) switches from positive to negative; hence one
does not expect to observe folds below this location. The triangle
denotes the approximate transition point above which the orbits
correspond to canards with head and below which correspond to
canards without head.

The effect of this discrepancy in the way-in-way-out computation for the canards
with versus without head is that for the canards without head, the potential snaking
region only begins for orbits at a jump height @ > 0.039. These orbits experience
a much larger exponential contraction (in reverse time) along the branch C2 and
thus any oscillations (and the corresponding fold envelope (53)) which occur along
this branch will be exponentially “squeezed” compared to those in the case of the
canards with head, which occur for orbits with jump height of only @w > 0.0031.
Figure 17 depicts the convergence of the jump heights as ¢ — 0 for the canards with
head, which approach the Airy point at w = 0.0031.

In summary, based on the formal computations in §4, for the parameter values
s = 0.65,7 = 0,D = 1 and sufficiently small € > 0, we predict the appearance of
snaking along the canard explosion in (3), although any snaking along the portion of
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FIGURE 17. Shown are orbits in (v,w)-space along
the continuation of the fold LP1 for values of & =
{0.005, 0.004,0.003,0.002,0.001} (blue, red, yellow, purple,
green). The dashed black line denotes the location of the Airy
transition at w ~ 0.0031.

the branch corresponding to canards without head will be exponentially suppressed
(and thus much more difficult to detect numerically) than the snaking which occurs
along the portion containing canards with head.

This explains why the upper left panel of Figure 15 depicts visible snaking along
the upper portion of the branch, but not along the lower portion. Figure 15 also
shows the results of continuing the six highest folds in AUTO for decreasing €. Due
to the exponentially small variance in the location of the folds as ¢ — 0, AUTO
becomes unreliable for small e, particularly for folds of higher index (hence the
different ending points of each branch). Also depicted are the jump heights @
of the canard orbits associated with each fold, as well as the differences between
successive jump heights of neighboring folds, plotted in both a standard and log-
log plot. We can see convergence of the latter plot towards what appears to be
a common curve, though it was difficult to resolve the folds numerically for any
smaller values of €. Also plotted are lines of slope 1 (dashed) and 2/3 (dotted);
we observe that for smaller values of €, the slope of the A; curve dips noticeably
below 1, as the jump height approaches the critical height of the Airy point along
C2, where the results of §4.3 imply that the difference between the jump heights of
successive folds increases from O(e) to O(e2/3).

6. Conclusion. This paper has provided a generic analysis of canard growth in
singularly perturbed systems of ODEs with two fast variables and one slow when
the linearization around one portion of the slow manifold is of focus type. We show
that under a sign condition on the relative closeness to the imaginary axis of the
eigenvalues governing the flow close to the attracting and repelling parts of the slow
manifold, that the canard growth of a limit cycle is accompanied by a sequence of
fold bifurcations. The overall effect is to see a wiggly bifurcation curve of periodic
orbits, which is reminiscent of that close to a Shilnikov homoclinic orbit under an
analogous sign condition. Here though, it is the amplitude rather than the period
of the periodic orbit that grows as the bifurcation curve traverses a sequence of
folds. In the present context though, for each finite value of the singular parameter
g, there are at most finitely many folds. Nevertheless the asymptotic scaling of the
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folds as the number of folds become large is remarkably similar to that close to a
Shilnikov homoclinic orbit (cf. (1) and (62)).

Our numerical explorations in §5.2 confirmed this qualitative behavior in the
FitzHugh—Nagumo system (3), demonstrating the appearance of this family of folds,
and also providing an explanation for the observation that the folds are more pro-
nounced along the portion of the canard explosion corresponding to the canards
“with head”.

While sharing a resemblance to the wiggly bifurcation curve which occurs near a
Shilnikov homoclinic orbit, the geometry of the present situation is rather distinct.
In the Shilnikov case, the folds which occur along the bifurcation branch are as-
sociated with the local oscillatory behavior near a saddle-focus equilibrium as the
period grows and the periodic orbits approach the homoclinic limit. In the present
study, rather than the local saddle-focus structure of an equilibrium, it is the focus
structure in the layer problem along a slow manifold which forms the basis for the
sequence of folds in the bifurcation branch. That is, it is the Airy transition point
along the slow manifold which accounts for the oscillations and hence the folds in
the bifurcation branch.

While these two phenomena are not directly related in (2) (the Airy point is not
near the equilibrium of the full system (3)), there are nevertheless connections. We
recall from Remark 1 that the wiggly canard explosion phenomenon studied here is
reminiscent of that which is found along a pulse-replicating branch of traveling pulse
solutions in (2), in which a single pulse transforms into a double pulse along a canard
transition [5] in a nearby parameter regime ()\,s) ~ (0,1/v/2) and p = 0. This
pulse-replicating branch exhibits a similar (and closely related) sequence of folds,
growing in number as € — 0. The single pulse is itself a Shilnikov homoclinic orbit
to the equilibrium (v,d,w) = (0,0,0) which is of saddle-focus type in the relevant
parameter regime. There are therefore two mechanisms at play, the oscillatory
behavior in the pulse tails due to the saddle-focus equilibrium, and the oscillatory
behavior around the middle branch of the slow manifold due to the presence of the
Airy point, the latter of which is responsible for the folds in the bifurcation branch
as the pulse transitions into a double pulse. It is also this latter effect that manifests
in the wiggly bifurcation branch analyzed in the present study.

With these traveling pulses in mind, we briefly comment on the stability of the
traveling wave trains as solutions of the PDE (2). The sequence of folds which
occur along the pulse-replicating branch have implications for the stability of the
associated traveling pulse solutions; the folds are linked to the accumulation of
eigenvalues on the so-called “slow absolute spectrum” of the traveling pulses [3].
We expect that the folds (or lack of folds) depending on the relevant way-in-way-
out computation encountered here have similar implications for structure of the
spectra of the associated wave trains, but this is beyond the scope of the present
work. We expect that this problem is quite challenging, as even the spectral stability
of the large, relaxation oscillation wave trains (such as the green orbit in Figure 2),
which we expect are stable, is nontrivial. These and related stability questions for
traveling canard orbits in (2) are the subject of ongoing work.

We believe our results go a long way to explaining previous results that showed a
seemingly wiggly canard-like growth in a number of systems, starting with the sec-
ond author’s PhD thesis, which considered a fluid-forced double pendulum system,
see [7]. They also provide explanation for how a sequence of folds accompany the
canard-like growth exhibited along a branch of traveling pulses in (2), as studied
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FiGure 18. Canard explosion in the FitzHugh-Nagumo equa-
tion (3) for e = 0.001 in the case s = 0.72 (left) and s = 0.65
(right). In the latter case, the canard explosion does not result in
a family of relaxation oscillations, but rather a continuous spike-
adding sequence through which additional large amplitude oscilla-
tions are accumulated via repeated canard explosions. The inset
shows a zoom of this family of canard explosions along the upper
portion of the branch.
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FIGURE 19. Shown is a plot of period versus A for the canard
explosion in the case ¢ = 0.001,s = 0.65 as in Figure 18. The
v-profiles for periodic wave trains with 1,3,5,7, and 9 spikes, re-
spectively, are depicted in the insets at various points along the
spike adding branch. Each such profile is plotted over one period,
which increases when moving vertically along the branch as addi-
tional spikes are added.

in the PhD thesis of the first author, some 20 years later, see [5]. In both these
models, there is also numerical evidence that the same wiggly canard process ac-
counts for the mechanism by which mixed-mode periodic waves grow additional
large-amplitude pulses.

To point to possible future work that extends the results here to explaining such
spike-adding, we briefly present further numerical continuation results of the branch
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of wave-trains in the FitzHugh-Nagumo system, beyond the initial canard explosion.
By shrinking e slightly to e = 0.001, we find that the behavior of this branch
depends critically on the value of the wave speed s; see Figure 18 which depicts the
canard explosion branch for ¢ = 0.001 for values of s = 0.72 and s = 0.65. In the
former case, the canards grow into a family of relaxation oscillations which continues
indefinitely, while in the latter case, the branch folds back and undergoes successive
canard explosions, each of which adds an additional large-amplitude spike to the
wave train pattern. Figure 19 depicts the profiles of the resulting wave trains.

To understand this discrepancy, we return to the layer problem (4). It can be
shown [5, 6] that for A\ = 0 the front ¢3; only exists for values of s < 1/v/2 for a
critical height w, = w,(s) (and a similar statement holds for ¢13). On the other
hand, for values of s > 1/ V2, the fronts ¢9; and @3 exist for all values of w between
the two fold points, and critical fronts ¢r3 and ¢ exist which connect the lower
left fold (resp. upper right fold) to the branch C3 (resp. C}).

Provided € > 0 is taken sufficiently small, the result of this difference in the
geometry of the associated wave trains is that for values of s > 1/4/2, the canard
explosion grows into the family of relaxation oscillations formed by orbits which
traverse Ci and C3, jumping between these branches precisely at the fold points.
However for values of s slightly below 1/4/2, because the fast jumps ¢3; and ¢;3
do not exist precisely at the fold points, the resulting gap allows the branch to fold
back on itself and undergo an additional canard explosion, growing a secondary large
amplitude excursion. This process appears to repeat indefinitely; this in contrast
to the pulse replication behavior also observed in (3), in which a 1-pulse can grow
into an 2-pulse, a 2-pulse into a 3-pulse, and so on, but adjacent pulse replication
branches are disconnected [3]. This behavior is also distinct from typical spike-
adding behavior analyzed in bursting models [10, 29, 31, 37], in that in the present
case the entire initial large-amplitude oscillation is replicated during each spike-
adding event.

A precise explanation of this connection between wiggly canards, spike adding
and the morphology of mixed-mode travelling waves is left for future work, as is
the development of a rigorous justification of the formal asymptotic estimates that
form the core of this paper.
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