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Abstract

We study the problem of PAC learning halfspaces on Rd with Massart noise under the
Gaussian distribution. In the Massart model, an adversary is allowed to flip the label of each
point x with unknown probability η(x) ≤ η, for some parameter η ∈ [0, 1/2]. The goal of the
learner is to output a hypothesis with misclassification error of OPT+ ϵ, where OPT is the error
of the target halfspace. This problem had been previously studied under two assumptions: (i)
the target halfspace is homogeneous (i.e., the separating hyperplane goes through the origin),
and (ii) the parameter η is strictly smaller than 1/2. Prior to this work, no nontrivial bounds
were known for the general case when either of these assumptions is removed. Here we study the
general problem and establish the following results:

• For η < 1/2, we give a learning algorithm for general halfspaces with sample and computational
complexity dOη(log(1/γ))poly(1/ϵ), where γ := max{ϵ,min{Pr[f(x) = 1],Pr[f(x) = −1]}} is
the “bias” of the target halfspace f . Prior efficient algorithms could only handle the special
case of γ = 1/2. Interestingly, we also establish a qualitatively matching lower bound of
dΩ(log(1/γ)) on the complexity of any Statistical Query (SQ) algorithm of the problem.

• For η = 1/2, we give a learning algorithm for general halfspaces with sample and computational
complexity Oϵ(1) d

O(log(1/ϵ)). This result is new even for the subclass of homogeneous halfspaces;
prior algorithms for homogeneous Massart halfspaces provide vacuous guarantees for η = 1/2.
We complement our upper bound with a nearly-matching SQ lower bound of dΩ(log(1/ϵ)), which
holds even for the special case of homogeneous halfspaces.

Taken together, our results qualitatively characterize the complexity of learning general halfspaces
with general Massart noise under Gaussian marginals. Our techniques rely on determining the
existence (or non-existence) of low-degree polynomials whose expectations distinguish Massart
halfspaces from random noise.
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1 Introduction

This work focuses on the distribution-specific PAC learning of halfspaces in the presence of label
noise. Before we describe our contributions, we provide the context for this work.

1.1 Background

A halfspace or Linear Threshold Function (LTF) is any Boolean-valued function f : Rd 7→ {±1} of
the form f(x) = sign(w∗ · x− t∗), for a vector w∗ ∈ Rd (known as the weight vector) and a scalar
t∗ ∈ R (known as the threshold). Halfspaces are a central class of Boolean functions in several areas
of computer science, including complexity theory, learning theory, and optimization [Ros58, Nov62,
MP68, Yao90, GHR92, FS97, Vap98, STC00, O’D14]. In this work, we focus on the algorithmic
problem of learning halfspaces from labeled examples, arguably one of the most extensively studied
and influential problems in machine learning.

The computational problem of PAC learning halfspaces is known to be efficiently solvable without
noise (see, e.g., [MT94]) in the distribution-independent setting. The complexity of the problem in
the presence of noisy data crucially depends on the noise model and the underlying distributional
assumptions. In this work, we study the problem of distribution-specific PAC learning of halfspaces
in the presence of Massart noise. Formally, we have the following definition.

Definition 1.1 (Distribution-specific PAC Learning with Massart Noise). Let C be a concept
class of Boolean functions over X = Rd, F be a known family of structured distributions on X,
0 ≤ η ≤ 1/2, and 0 < ϵ < 1. Let f be an unknown target function in C. A noisy example oracle,
EXMas(f,F , η), works as follows: Each time EXMas(f,F , η) is invoked, it returns a labeled example
(x, y), such that: (a) x ∼ Dx, where Dx is a fixed distribution in F , and (b) y = f(x) with probability
1 − η(x) and y = −f(x) with probability η(x), for an unknown function η(x) ≤ η. Let D denote
the joint distribution on (x, y) generated by the above oracle. A learning algorithm is given i.i.d.
samples from D and its goal is to output a hypothesis h such that with high probability it holds
Pr(x,y)∼D[h(x) ̸= y] ≤ OPT+ ϵ, where OPT = minc∈C Pr(x,y)∼D[c(x) ̸= y].

Remark 1.2. The noise rate parameter η in Definition 1.1 is allowed to be equal to 1/2. This
is consistent with the original definition of the Massart model in [MN06], and — as we argue in
the subsequent discussion — is well-motivated in a number of practical applications. On the other
hand, prior algorithmic work in the theoretical machine learning community imposed the crucial
requirement that η is strictly smaller than 1/2. This distinction turns out to be very significant and
serves as one of the main motivations for the current work.

The Massart noise model in the above form was defined in [MN06]. A very similar noise model
had been defined in the 80s by Sloan and Rivest [Slo88, Slo92, RS94, Slo96], and a related definition
had been considered even earlier by Vapnik [Vap82]. The Massart model is a generalization of the
Random Classification Noise (RCN) model [AL88] (where the flipping probability is uniform) and is
a special case of the agnostic model (where the label noise is fully adversarial) [Hau92, KSS94].

The Massart model is a natural semi-random noise model that is more realistic than RCN.
Specifically, label noise can reflect computational difficulty, ambiguity, or random factors. For
example, a cursive “e” might be substantially more likely to be misclassified as “a” than an upper case
Roman letter. Massart noise allows for such variations in misclassification rates without knowledge
of which instances are more likely to be misclassified. That is, Massart noise-tolerant learners
are less brittle than RCN tolerant learners. Agnostic learning is, of course, even more robust;
unfortunately, agnostic learning is known to be computationally intractable in many settings of
interest [GR06, FGKP06, Dan16, DKZ20, GGK20, DKPZ21].
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1.2 Motivation for this Work

The algorithmic task of PAC learning with Massart noise is a classical problem in computational learn-
ing theory. In the distribution-independent setting, known efficient algorithms [DGT19, CKMY20]
achieve error η + ϵ and we now know [DK20] that this error bound is close to best possible for
efficient Statistical Query (SQ) algorithms [Kea98], even if OPT = E[η(x)] is very small. This lower
bound further motivates the study of the distribution-specific setting (the focus of the current work).

The work of [ABHU15] initiated the algorithmic study of learning Massart halfspaces under
structured distributions. This work focused on the class of homogeneous halfspaces, i.e., functions
of the form f(x) = sign(w∗ · x), and gave a polynomial-time learning algorithm with OPT + ϵ
error under the uniform distribution on the unit sphere. The [ABHU15] algorithm succeeds when
the parameter η is smaller than a sufficiently small constant (≈ 10−6). A sequence of subsequent
works [ABHZ16, YZ17, ZLC17, BZ17, MV19, DKTZ20a, ZSA20, ZL21] have given efficient learning
algorithms for homogeneous Massart halfspaces that succeed for all η < 1/2 and under weaker
distributional assumptions. The current state-of-the-art algorithms [DKTZ20a, ZSA20, ZL21] have
sample and computational complexity poly(d, 1/ϵ, 1/(1− 2η)) and succeed for all η < 1/2 under a
class of distributions including isotropic log-concave distributions.

To summarize the preceding discussion, known efficient algorithms for Massart halfspaces in the
distribution-specific setting succeed under two crucial assumptions:

(i) The target halfspace is homogeneous (i.e., has zero threshold), and

(ii) The upper bound parameter of the Massart noise satisfies η < 1/2.

Perhaps surprisingly, prior to the current work, no non-trivial bounds were known for the general
case of this learning problem, where either of these two assumptions is removed. This represents a
fundamental gap in our algorithmic understanding of learning halfspaces in the Massart model and
serves as the main motivation of the current work.

In this work, we study the general version of this problem for the prototypical setting that
the examples are drawn from the Gaussian distribution. As our main contribution, we essentially
characterize the complexity of the problem by giving the first efficient learning algorithms coupled
with qualitatively matching SQ lower bounds.

In the following paragraphs, we provide a more detailed technical motivation of the regimes we
study followed by a detailed description of our results.

Massart Learning of General Halfspaces Suppose that the Massart noise rate η is a constant
strictly smaller than 1/2. Even for this “low-noise” regime, all previous efficient learning algorithms
that achieve error OPT+ ϵ require that the unknown halfspace is homogeneous. Superficially, this
might seem like an innocuous assumption. After all, it seems straightforward to reduce a general
halfspace to a homogeneous one by adding an extra constant coordinate to every sample. Given this,
one could use a learner for the homogeneous case on the modified instance. It turns out that this
intuition is fundamentally flawed. While such a reduction is valid in the distribution-independent
setting, it does not work in the distribution-specific setting because it alters the marginal distribution
on the examples. In light of this state of affairs, it is natural to ask whether an efficient Massart
learner exists for general halfspaces in the low-noise noise regime where previous algorithms succeeded.

Question 1.3. What is the complexity of learning general halfspaces in the constant-bounded
Massart noise setting, i.e., when η = 1/2− c for some universal constant c > 0?
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As we will show, the complexity of the problem in this regime is characterized by the “bias”
γ of the target halfspace (see Definition 1.5) and (inherently) scales quasi-polynomially with 1/γ
(Theorems 1.6 and 1.7). We note that previous algorithms only handle the special case of γ = 1/2.

Learning Halfspaces with General Massart Noise The original definition of the Massart
noise model [MN06] allows the upper bound on the noise rate to be equal to 1/2. On the other hand,
all known Massart learning algorithms crucially rely on the assumption that η < 1/2. The latter
assumption might have been motivated by the random classification noise model, where the η = 1/2
regime is not meaningful. In the Massart model, however, it may well be the case that η(x) = 1/2,
for a small probability subset of the domain and η(x) is small otherwise, in which case the optimal
misclassification error OPT will be similarly small.

Understanding the complexity of learning halfspaces with general Massart noise, i.e., in the regime
where η = 1/2, is both of theoretical and practical significance. From the theoretical standpoint, the
“high-noise” regime subsumes the well-studied Tsybakov model [MT99, Tsy04] and can be viewed as
the strongest known non-adversarial noise model in the literature. Interestingly, the general Massart
noise model has also been previously studied in the statistical learning theory literature under the
name benign noise, see, e.g., [Han09, HY15]. In the “benign noise” model, the only assumption
made about the label noise is that the Bayes optimal classifier lies in the target class. (It is an easy
exercise, see Appendix B, that the benign noise model is equivalent to the general Massart model.) In
addition to its theoretical interest, the general Massart model naturally arises in a number of practical
applications. A concrete example is that of human annotator noise [CM84, KB09, BK09, KB10],
where it has been shown [KB10] that human annotators (especially non-experts) often flip coins
(corresponding to η(x) = 1/2) when presented with a hard-to-classify example. The preceding
discussion motivates the following question:

Question 1.4. What is the complexity of learning halfspaces with general Massart noise?

Interestingly, prior to this work, this question remained wide-open even for the special case
of homogeneous halfspaces. Specifically, previous Massart learning algorithms (for homogeneous
halfspaces) provide vacuous guarantees for η = 1/2, because they require sample complexity scaling
polynomially with the parameter 1/β, where β := 1− 2η. It is worth noting that a dependence on
β is not information-theoretically required for the problem. Specifically, O(d/ϵ2) samples suffice to
achieve error OPT+ ϵ (see, e.g., [MN06]), alas with an exponential time algorithm.

At a high-level, the β-dependence in previous approaches is due to the fact that previous
algorithms solve the (harder) parameter recovery problem, i.e., they approximate the hidden weight
vector w∗ (e.g., within small angle). While the sample complexity of PAC learning (Definition 1.1)
is independent of β, parameter learning requires at least 1/β samples. Consequently, a genuinely
new approach is required to handle the β = 0 regime. That is, to answer Question 1.4, we need to
understand to what extent it is possible to PAC learn without relying on parameter recovery.

As we will show, handling the β = 0 case comes at a cost. Our results (Theorems 1.9 and 1.10)
establish an information-computation tradeoff for this problem (that persists even for homogeneous
halfspaces) scaling quasi-polynomially with the parameter 1/ϵ.

1.3 Our Results

In this work, we answer Questions 1.3 and 1.4 by providing both efficient learning algorithms and
nearly-matching lower bounds in the Statistical Query (SQ) model. Perhaps surprisingly, we show
that the complexity of our learning problem scales quasi-polynomially with 1/ϵ, where ϵ is the
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excess error. A conceptual implication of our findings is that Questions 1.3 and 1.4, while seemingly
orthogonal, are in fact intimately connected at a technical level.

Learning with Constant-Bounded Massart Noise Here we address the regime of learning
general halfspaces with η-Massart noise, where η ≤ 1/2− c for some constant c > 0. It turns out
that the complexity of the problem in this setting depends on the “bias” of the target halfspace.

Definition 1.5 ((1− γ)-biased Halfspace). For γ ∈ [0, 1/2], we say that the halfspace f is at most
(1− γ)-biased (with respect to D) if min(Pr(x,y)∼D[f(x) = +1],Pr(x,y)∼D[f(x) = −1]) ≥ γ.

Note that homogeneous halfspaces correspond to the special case of γ = 1/2. Recall that prior
literature gave poly(d/ϵ)-time learners for homogeneous Massart halfspaces with η < 1/2. Our first
main result is a learning algorithm for general halfspaces whose complexity scales quasi-polynomially
with 1/γ. More specifically, we establish the following theorem (see also Theorem 4.1):

Theorem 1.6 (Learning General Massart Halfspaces with Constant-Bounded Noise). Let D be
a distribution on Rd × {±1} with standard normal x-marginal that satisfies the constant-bounded
Massart noise condition with respect to an at most (1−γ)-biased halfspace. There exists an algorithm
that draws N = dO(log(min(1/γ,1/ϵ)))poly(1/ϵ) samples from D, runs in time poly(N, d), and computes
a halfspace h such that with high probability it holds Pr(x,y)∼D[h(x) ̸= y] ≤ OPT+ ϵ.

Qualitatively, Theorem 1.6 yields a poly(d/ϵ)-time algorithm for halfspaces with bias bounded
away from zero, specifically γ ≥ c where c > 0 is an absolute constant. Furthermore, for general
halfspaces it yields a PTAS with quasi-polynomial dependence on 1/ϵ, i.e., with runtime dO(log(1/ϵ)).

Perhaps surprisingly, we provide strong evidence that the upper bound of Theorem 1.6 is best
possible for any value of γ. Specifically, we prove a matching lower bound in the Statistical Query
(SQ) model of [Kea98]. We recall that SQ algorithms are a broad class of algorithms that are only
allowed to query expectations of bounded functions of the distribution rather than directly access
samples; see Section 6.1 for the definition and additional discussion. Formally, we prove (see also
Theorem 6.11):

Theorem 1.7 (SQ Lower Bound for Massart Halfspaces with Constant-Bounded Noise). Let D
be a distribution on Rd × {±1} with standard normal x-marginal that satisfies the Massart noise
condition with parameter η = 1/2− Ω(1)< 1/2 with respect to an at most (1− γ)-biased halfspace.
For any γ > ϵ, any SQ algorithm that for any such distribution D learns a hypothesis h : Rd 7→ {±1}
such that Pr(x,y)∼D[h(x) ̸= y] ≤ OPT+ ϵ, either requires queries with tolerance at most d−Ω(log(1/γ))

or makes at least 2dΩ(1) statistical queries.

Informally, Theorem 1.7 shows that no SQ algorithm can learn the subclass of (1− γ)-biased
halfspaces in the constant-bounded Massart noise model with sub-exponential in dΩ(1) many queries,
unless it uses queries of very small tolerance – that would require at least dΩ(log(1/γ)) samples to
simulate (as long as γ > ϵ1). This “fine-grained” lower bound that can be viewed as an information-
computation tradeoff for the problem (within the class of SQ algorithms) and matches the upper
bound of Theorem 1.6. As a corollary, we obtain that learning general halfspaces with constant-
bounded Massart noise has SQ complexity dΘ(log(1/ϵ)).

Theorems 1.6 and 1.7 together qualitatively characterize the complexity of learning general
halfspaces in the constant-bounded Massart setting. We view this inherent quasi-polynomial
dependence as rather surprising. Even though the class of general halfspaces has one additional
parameter compared to the homogeneous case (the unknown threshold), the learning problem
becomes harder and exhibits a quasi-polynomial dependence on the inverse of the bias parameter γ.

1Of course, if γ ≤ ϵ, one of the two constant functions suffices.
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Remark 1.8. While the algorithm of Theorem 1.6 is essentially optimal in the constant-bounded
Massart regime, its running time has quasi-polynomial dependence on 1/β, where β := 1− 2η. As a
result, the algorithm is not optimal (as far as we know) when the parameter η is very close to 1/2,
e.g., η = 1/2− 1/d. Characterizing the complexity of the learning problem when η is very close to
(but not equal to) 1/2 is left as an open problem for future work.

Learning with General Massart Noise Our second main result essentially characterizes the
complexity of learning halfspaces with general Massart noise, i.e., the η = 1/2 case. On the positive
end, we develop an algorithm for this general setting with the following guarantees.

Theorem 1.9 (Learning General Halfspaces with General Massart Noise). Let D be a distribution
on Rd × {±1} whose x-marginal is the standard normal and such that D satisfies the Massart noise
condition for η = 1/2 with respect to a general target halfspace. There is an algorithm that draws
N = dO(log(1/ϵ)) samples from D, runs in time 2poly(1/ϵ)poly(N, d), and computes a halfspace h such
that with high probability Pr(x,y)∼D[h(x) ̸= y] ≤ OPT+ ϵ.

We reiterate that no nontrivial algorithm was known in the general Massart model, even for
homogeneous halfspaces (our algorithm works for general halfspaces). Qualitatively, Theorem 1.9
gives a PTAS with runtime Oϵ(1)d

O(log(1/ϵ)) for the general problem. Note that if ϵ ≥ 1/ logΩ(1)(d),
the runtime of our algorithm is dO(log(1/ϵ)).

It is worth comparing Theorem 1.9 with the algorithm of Theorem 1.6, which handles the case
where η < c for some constant c < 1/2. The latter result yields a poly(d/ϵ) time algorithm when the
bias of the target halfspace is a positive constant. On the other hand, the algorithm of Theorem 1.9
has a quasi-polynomial dependence in 1/ϵ, even for the subclass of homogeneous halfspaces.

Perhaps surprisingly, we establish an SQ lower bound suggesting that this quasi-polynomial
dependence is necessary in the general Massart model, even for homogeneous halfspaces.

Theorem 1.10 (SQ Lower Bound for Homogeneous Halfspaces with General Massart Noise). Let D
be a distribution on Rd×{±1} whose x-marginal is the standard normal and such that D satisfies the
Massart noise condition for η = 1/2 with respect to a homogeneous halfspace. Then any SQ algorithm
that for any such distribution D outputs a hypothesis h with Pr(x,y)∼D[h(x) ̸= y] ≤ OPT+ ϵ, either
requires queries with tolerance at most d−Ω(log(1/ϵ)) or makes at least 2dΩ(1) statistical queries.

(For a more detailed statement, see Theorem 6.21.) Informally, Theorem 1.10 shows that no
SQ algorithm can learn homogeneous halfspaces in the general Massart model with sub-exponential
in dΩ(1) many queries, unless it uses queries of very small tolerance – that would require at least
dΩ(log(1/ϵ)) samples to simulate. Note that the sample complexity of the algorithm establishing
Theorem 1.9 (which can be implemented in the SQ model) matches our SQ lower bound. Furthermore,
this implies that the runtime of our algorithm is essentially optimal (within SQ algorithms) for all
ϵ ≥ 1/ logΩ(1)(d).

Remark 1.11. It is worth noting that Theorems 1.9 and 1.10 provably separate the SQ complexity of
learning halfspaces with general Massart noise from the SQ complexity of the corresponding agnostic
learning problem. For agnostically learning halfspaces under Gaussian marginals, the L1-regression
algorithm [KKMS08] has complexity dO(1/ϵ2) (and is known to be implementable in SQ). Moreover,
a matching SQ lower bound of dΩ(1/ϵ2) is known [DKPZ21]. That is, while agnostic learning requires
runtime dpoly(1/ϵ), Massart learning can be achieved in time Oϵ(1) d

O(log(1/ϵ)).

Remark 1.12. Interestingly, the Massart model remains meaningful even for the “very large” noise
setting, where η > 1/2. For this extreme regime, it is not hard to show (see Appendix A) that this
model becomes equivalent to the agnostic model.

5



Homogeneous
η = 1/2 − Ω(1)

poly(d/ϵ)

Homogeneous
η = 1/2

dΩ(log(1/ϵ))

Theorem 1.10

General
η = 1/2 − Ω(1)

dΘ(log(1/ϵ))

Theorem 1.6, Theorem 1.7

General, η = 1/2

dO(log(1/ϵ))2poly(1/ϵ)
Theorem 1.9

General, η > 1/2

dΘ(1/ϵ2)

Figure 1: Overview of the (SQ) complexity of learning halfspaces with Massart noise. (1) For
homogeneous halfspaces and η < 1/2, efficient algorithms were previously known under Gaussian or
isotropic log-concave marginals. (2) For η > 1/2, the problem is equivalent to agnostic learning, for
which tight upper and lower bounds were previously known. (3) The remaining regimes (general
halfspaces and/or η = 1/2) are characterized in the current paper.

1.4 Brief Overview of Techniques

Leveraging Low-Degree Moments The unifying theme of both our upper and lower bound
techniques is the use of low-degree moments. For our purposes, the low-degree moments of a
distribution correspond to the values of E(x,y)∼D[p(x)y] for low-degree polynomials p. It is clear
that one can compute approximations of the (up to) k-degree moments of such a distribution with
poly(dk/ϵ) samples and time. At a high-level, we are looking for a moment that will provide us
with information about the correlation between x and y. In more detail, we would like to find
polynomials p such that E(x,y)∼D[p(x)y] ̸= Ex∼Dx [p(x)]Ey∼Dy [y], or equivalently find polynomials p
with Ex∼Dx [p(x)] = 0 and E(x,y)∼D[p(x)y] ̸= 0. If no such polynomial exists, we can leverage this
fact to prove SQ lower bounds; if such polynomials exist, we can hope to use them as a starting
point for an algorithm.

Learning with Constant-Bounded Massart Noise: Theorem 1.6 At a high-level, our
algorithm fits in the certificate-based framework developed in [DKTZ20b, DKK+20, DKK+21b]. (A
similar framework was developed independently in [CKMY20] to properly learn Massart halfspaces
in the distribution-free setting, matching the error of the [DGT19] algorithm.) The framework relies
on the following fact: if the true halfspace is given by f(x) = sign(ℓ∗(x)), where ℓ∗(x) = w∗ · x− t∗,
then for any affine function ℓ(x) we have that E(x,y)∼D[ℓ(x)yT (x)] ≥ 0 for all non-negative functions
T (x) if and only if ℓ = ℓ∗. We can think of this as an (infinite) linear program that can be used
to solve for w∗ and t∗. In order to solve this program, we need a separation oracle. In particular,
for any hypothesis w and t that is too far from the truth, i.e., sign(ℓ(x)) has error greater than
OPT + ϵ, we need to be able to find an explicit non-negative function T (x) such that the above
constraint is violated. This essentially amounts to finding a function T (x) that concentrates on the
values of x for which our current hypothesis ℓ(x) is incorrect.
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Our main new idea here is that for any sub-optimal halfspace guess h, there exists a certificate
function of the form T (x) = 1S(x)e

v·x (exponential-shift certificate), where S is a thin strip around
the current (known) halfspace h and v is an appropriate weight vector. However, finding a good
weight vector v is a non-convex (hard) optimization problem in general. We simulate the behavior
of the exponential-shift certificate by taking T (x) to be the square of a low-degree polynomial q(x)
restricted to an appropriately chosen thin strip S. To construct our polynomial certificate, we
essentially need to prove that for any at most (1− γ)-biased one-dimensional threshold function f ,
there exists a polynomial q of degree O(log(1/γ)) such that q2(x) concentrates on the positive values
of f ; see Lemma 2.3. To prove the existence of such a polynomial, we establish that considering
the O(log(1/γ))-degree Taylor approximation of the exponential-shift ev·x suffices; see Lemma 4.5.
We can efficiently compute a polynomial certificate since, once we have a fixed strip S, we can
compute the low-degree moments of y restricted to S. From there, finding an appropriate polynomial
q amounts to finding a negative eigenvalue of a quadratic form. For more details, we refer the reader
to Subsection 2.1 and Section 4.

Learning with General Massart Noise: Theorem 1.9 In the case of learning with general
Massart noise (η = 1/2), the certificate approach fails, as it requires polynomials of large degree —
polynomial in 1/ϵ — to get concentration in the disagreement region. This is prohibitively large as
it would result in a runtime of dpoly(1/ϵ), which we can readily get by simply running the agnostic
learner of [KKMS08]. The main idea to obtain an improved bound is to bypass the limitations of
the certificate approach by relying on correlation properties rather than concentration. As we show,
there is always some polynomial p of low degree, logarithmic in 1/ϵ, that correlates with the label y,
i.e., E(x,y)∼D[p(x)y] > 0. Our algorithm exploits this weaker property and turns it into an iterative
process that constantly improves the current guess.

Since low-degree polynomials are able to get non-trivial correlation, if we compute the low-order
moment tensors of y, i.e., E(x,y)∼D[x

⊗ky], we can use them to compute a low-dimensional subspace V
onto which w∗ has non-trivial (poly(ϵ)) projection; see Proposition 5.9 and Lemma 5.10. This means
that picking a random element v ∈ V will, with reasonable probability (say 1/3), have non-trivial,
i.e., poly(ϵ), correlation with w∗. Our algorithm improves an initial guess w of the optimal weight
vector as follows: by applying the above technique to a thin strip perpendicular to our current guess
w, we can – with some non-trivial probability – find a vector that correlates non-trivially with the
projection of w∗ on the orthogonal complement of w. This, in turn, will allow us to compute a
new guess w′ with a slightly better correlation with w∗; see Lemma 5.13. Repeating this process
poly(1/ϵ) times will produce a vector with at most OPT+ ϵ error; see Section 2.2. Each iteration
of the above algorithm requires dO(log(1/ϵ)) samples and time to compute the moments of order
O(log(1/ϵ)). We then need to run the algorithm many times to find a trial in which we get lucky for
poly(1/ϵ) rounds in a row. This latter operation increases the complexity by a 2poly(1/ϵ) factor.

The crucial structural result that we exploit is that for any ϵ-biased halfspace f(x) we can
construct a mean-zero polynomial p, which is a function of w∗ · x, and matches the sign of f(x)
everywhere, see (Informal) Proposition 2.8 and Subsection 5.1. We then show that, even when
Massart noise with η = 1/2 is applied to f , this polynomial p will achieve non-trivial correlation
with f , i.e., E(x,y)∼D[p(x)y] > 0. This implies that some low-order moment of our distribution must
have a non-trivial component in the w∗-direction; see Subsection 5.3. Flattening the moment tensors
and performing SVD on the resulting matrices, we can efficiently construct a subspace (spanned by
the top eigenvectors) onto which w∗ has non-trivial projection.
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SQ Lower Bounds: Theorems 1.7 and 1.10 The connection between low-degree moments and
the correlation between x and y is even more evident when trying to establish SQ lower bounds.
Using the framework introduced in [DKS17], we can show the following: if there exists a Massart
halfspace whose degree-k moments have x independent of y, then distinguishing a random rotation
of this distribution from one in which x is truly independent of y is roughly dΩ(k)-hard in the SQ
model. Thus, proving SQ lower bounds amounts to finding Massart halfspace distributions that fool
low-order moments in this way.

We note that the moment-matching and noise conditions amount to a system of linear inequalities
in terms of the noise function η(x). To construct our hard examples, we use linear programming
(LP) duality to show the existence of solutions to this system. It should be noted that LP duality
has been previously used to provide SQ lower bounds for agnostic learning of halfspaces, see,
e.g., [DFT+15, DKPZ21]. In the current setting, however, we have to construct instances that satisfy
the much more restrictive (constant-bounded) Massart noise assumption.

To achieve this, we show that it is possible to add constant-bounded Massart noise to a classifier
f(x) in order to cause it to fool polynomials of degree at most k if and only if there is no polynomial
p of degree at most k with Ex∼Dx [p(x)] = 0, such that the sign of p(x) agrees everywhere with
the optimal halfspace f(x). In order to prove that there exists no such low-degree, zero-mean,
sign-matching polynomial, we establish a much more general result: the sign of any low-degree,
zero-mean polynomial p(x) cannot be too biased, and therefore p(x) cannot match the sign of any
heavily-biased function; see Lemma 6.18. In particular, if f is a halfspace with bias (1− γ), this
is true for all zero-mean polynomials of degree k up to (roughly) log(1/γ), implying the SQ lower
bound of Theorem 1.7. We remark that our main structural lemma (Lemma 6.18) can readily be
used to establish SQ lower bounds for Massart learning other geometric concept classes such as
intersections of two homogeneous halfspaces.

It remains to provide a proof overview of Theorem 1.10 for learning homogeneous halfspaces
with general Massart noise (η = 1/2). Interestingly, instead of adapting the methodology described
in the preceding paragraphs, we prove Theorem 1.10 via a “reduction” to our SQ lower bound
of Theorem 1.7, i.e., for learning (general) halfspaces with constant-bounded Massart noise. At a
high-level, this is achieved by using the noise to “wash out” any information except when x lies in a
thin strip not passing through the origin. Restricted to this strip, f(x) is now a non-homogeneous
halfspace, and our lower bound for general halfspaces applies.

1.5 Organization

The structure of this paper is as follows: In Section 2, we provide a detailed overview of our
techniques. In Section 3, we introduce the required notation and preliminaries. In Section 4, we
give our algorithm for learning general halfspaces with constant-bounded Massart noise, establishing
Theorem 1.6. In Section 5, we give our algorithm for learning halfspaces under general Massart noise,
establishing Theorem 1.9. Finally, in Section 6, we prove our SQ lower bounds, Theorem 1.7 and
Theorem 1.10.

2 Detailed Technical Overview

2.1 Learning General Halfspaces with Constant-Bounded Massart Noise: Theo-
rem 1.6

Our learning algorithm for this regime leverages the certificate framework developed in [DKTZ20b,
DKK+20, DKK+21b]. This framework makes essential use of the Massart noise condition, i.e., the
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fact that η(x) ≤ 1/2 for every x ∈ Rd. Using this fact, we have the following characterization of
the affine function ℓ∗(x) = w∗ · x− t∗ defining the target halfspace f(x) = sign(ℓ∗(x)). For every
non-negative function T (x) : Rd 7→ R+, it holds that

E
(x,y)∼D

[ℓ∗(x)y T (x)] = E
(x,y)∼D

[ℓ∗(x)sign(ℓ∗(x))(1− 2η(x)) T (x)] ≥ 0 .

On the other hand, when Pr(x,y)∼D[sign(ℓ(x)) ̸= y] ≥ OPT+ ϵ, there exists a non-negative function
T (x) such that E(x,y)∼D[ℓ(x)y T (x)] < 0. We say that such a T is a “certifying” function (or simply
a certificate) for the guess ℓ(x), because it proves that ℓ(x) is not optimal.

Definition 2.1 (Certificate Oracle). Let D be a distribution on Rd × {±1} with standard normal
x-marginal satisfying the Massart noise condition with respect to some halfspace. Fix ϵ, δ ∈ (0, 1].
Given any affine function ℓ(x) such that Pr(x,y)∼D[sign(ℓ(x)) ̸= y] ≥ OPT+ ϵ, a ρ-certificate oracle
returns a non-negative function T : Rd 7→ R+ such that E(x,y)∼D[ℓ(x)y T (x)] ≤ −ρ∥ℓ(x)∥2.

In [DKTZ20b, DKK+20, DKK+21b], it was shown that under Massart label noise, the problem
of efficiently learning an optimal halfspace can be reduced to the problem of efficiently computing
certifying functions. At a high-level, the certifying functions can be viewed either as separation
oracles for a convex program (that can be solved via the ellipsoid method) or as loss functions in an
online convex optimization problem (that can be solved via online gradient descent). In our setting,
we need to adapt the proofs of [DKTZ20b] slightly to work for general halfspaces. For completeness,
we provide the details of this reduction in Subsection 4.3.

Proposition 2.2. Let D be a distribution on Rd × {±1} whose x-marginal is the standard normal.
Assume that D satisfies the η-Massart noise condition with respect to some halfspace. Fix ϵ, δ ∈ (0, 1).
Given a ρ-certificate oracle O with runtime TO(ρ), there exists an algorithm that makes M = poly( d

ϵρ)

calls to O, draws N = poly( d
ϵρ) log(1/δ) samples from D, runs in poly(d,N,M)TO(ρ) time and

computes a hypothesis h, such that Pr(x,y)∼D[h(x) ̸= y] ≤ OPT+ ϵ, with probability 1− δ.

Given Proposition 2.2, it remains to construct an efficient certificate oracle. The first step is to
restrict our search over some parametric class of non-negative functions.

Non-Continuous Certificates When we do not restrict our search to continuous functions, we
can use certificates of the form T (x) = 1{sign(ℓ(x)) ̸= sign(v · x− b)}, for some v ∈ Rd, b ∈ R. It is
not hard to see (Appendix C) that, for any η ∈ [0, 1/2], taking T (x) = 1{sign(ℓ(x)) ̸= f(x)}, i.e., the
indicator of the disagreement region of sign(ℓ(x)) and f(x), we obtain that E(x,y)∼D[ℓ(x)y T (x)] ≤
−Ω(ϵ2)∥ℓ(x)∥2. Observe that, when we consider non-continuous certificates, there exist poly(ϵ)-
certificates independent of both the noise level η and the bias of the halfspace γ. However, finding
such certificates is computationally hard in general. In [DKK+20], the authors provided a polynomial-
time oracle for non-continuous certificates, i.e., subsets of the disagreement region, under two crucial
assumptions. Specifically, they assumed that (1) the target halfspace is homogeneous and (2)
the distribution D satisfies the Tsybakov noise condition, which is significantly weaker than the
1/2-Massart noise assumption. In particular, the technique of [DKK+20] to isolate a subset of
the disagreement region does not work when we relax either of the above assumptions. In what
follows, we describe an efficient certificate oracle for general halfspaces under the assumption that
η = 1/2− Ω(1), i.e., in the constant-bounded Massart noise regime.

9



x2

x1

w∗

t∗ c0

(a)

ecx1

0 t∗ c

x1

(b)

Figure 2: (a) An instance where f(x) = w∗ · x − t∗ is very biased and the constant hypothesis
ℓ(x) = −1 agrees with f(x) “almost everywhere”, i.e., in the red region. A non-negative certifying
function against the hypothesis −1 must put significantly more weight to the disagreement region
(colored in blue). Notice that by Gaussian concentration we have that t∗ = O(

√
log(1/γ)).

(b) The certifying function T (x) = ec (w∗·x) essentially moves the mean of the Gaussian from 0
to cw∗. Choosing c = Θ(

√
log(1/γ)) implies that the mass of the blue region with respect to the

shifted normal N (cw∗, I) will be much larger than the mass of the red region, making Equation (1)
true.

The Exponential Shift Certificate In order to get a handle on the optimization problem
of finding a certificate, the first step is to consider smooth function classes. We will show
how to construct a certificate function against the constant guess −1, when the true halfspace
f(x) = sign(w∗ · x − t∗) is (1 − γ)-biased: the probability of the negative region is very large
Prx∼N [f(x) = −1] = 1− γ; see Figure 2a. Finding certifying functions against the constant guess
−1 captures many of the challenges of the general case. The idea is to find a continuous function
T (x) that puts more weight on the disagreement region of f(x) (colored blue in Figure 2a) than the
agreement region (colored red in Figure 2a). In particular, in order to find a certificate against the
constant guess −1, we want to find some function T (x) so that the following ratio is a sufficiently
large constant (greater than 1/β):

Ex∼N [T (x)1{f(x) = +1}]
Ex∼N [T (x)1{f(x) = −1}]

(1)

Our key idea is to use an exponential-shift certificate of the form T (x) = ev·x. By multiplying the
Gaussian density with the exponential function T (x) we essentially shift the mean of the Gaussian
from 0 to v. Setting v to be a large multiple of w∗, we can re-center the Gaussian of the ratio of
Equation (1) to lie well within the disagreement (blue) region; see Figure 2b. In order to make the
ratio of Equation (1) sufficiently large, it suffices to set v = c w∗ for c = Θ(

√
log(1/γ)); see also the

proof of Lemma 4.5.

The Polynomial-Shift Certificate Even though we have shown that there exists an exponential-
shift certificate, it is still not easy to compute: minimizing E(x,y)∼D[ℓ(x)ye

v·x] over v ∈ Rd is a
non-convex objective that, in general, is hard to optimize. In order to circumvent this obstacle, we
consider polynomial certificates of the form q2(x) for some low-degree polynomial q. Such certificates
were also used in [DKTZ20b] in order to learn homogeneous halfspaces with Tsybakov noise. The
advantage of having T (x) = q2(x), for some low-degree polynomial q, is that we can efficiently
compute certificates via semi-definite programming (SDP); see Subsection 4.2.
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As with the exponential-shift certificate, we can provide a high-level overview of some of the
ideas involved by trying to construct a certificate against the constant hypothesis −1, when the
optimal halfspace is almost everywhere equal to −1, i.e., Prx∼N [f(x) = −1] = 1− γ. Our goal in
this case is to find a polynomial that assigns much more weight to the positive region (colored blue
in Figure 2a) than the negative region (colored red in Figure 2a). The main structural result that
enables our algorithm is the following lemma, where we show that we can achieve the same effect of
the exponential-shift certificate discussed above using a low-degree polynomial (see Lemma 4.5 for a
more detailed statement and proof).

Lemma 2.3 (Low-Degree Polynomial Shift). Let f(x) be an at most (1− γ)-biased halfspace. There
exists an absolute constant C ≥ 1 such that

ek/C−C log(1/γ) ≤ max
p:deg(p)≤k

Ex∼N [p2(x)1{f(x) = +1}]
Ex∼N [p2(x)1{f(x) = −1}]

≤ eC k log k−log(1/γ)/C .

The lower bound of Lemma 2.3 implies that there exists a polynomial certificate, namely a
polynomial that makes Equation (1) true, of degree O(log(1/γ)). The upper bound implies that
degree Ω(log(1/γ)) is essentially necessary.

It is not hard to prove the upper bound using the anti-concentration of Gaussian polynomials;
see Appendix F. To prove the lower bound of Lemma 2.3, we construct a low-degree polynomial
using the Taylor approximation to the exponential-shift certificate that we defined previously. For
c = Θ(

√
log(1/γ)), we consider the square of the Taylor expansion Sk(cx) of the function ecx. Using

the Gaussian concentration and the fast convergence rate of the Taylor polynomial of ex, in Claim 4.7,
we show that for degree k = Θ(c2) = Θ(log(1/γ)), S2

k(c w∗ · x) is very close to e2c (w∗·x) in the L1

sense. Therefore, we can use T (x) = S2
k(c w∗ · x) in the ratio of Equation (1) and obtain the same

guarantees (up to constant factors) with the exponential shift e2c (w∗·x) that we discussed previously.
Our certificate against general (non-constant) hypotheses is the product of (the square of) a

polynomial and a band around the current guess ℓ(x), i.e., T (x) = 1{r1 ≤ ℓ(x) ≤ r2}q2(x). Notice
that, since the current guess ℓ(x) is known to the certificate algorithm, in order to find a band
of the form 1{r1 ≤ ℓ(x) ≤ r2}, we simply need to perform a brute-force search over the two
thresholds r1, r2. Our technical contribution here is the following proposition, showing the existence
of low-degree polynomial certificates for general halfspaces with constant-bounded Massart noise
(see Subsection 4.1 for a more detailed statement and proof).

Proposition 2.4 (Polynomial Certificate for Halfspaces with Constant-Bounded Massart Noise).
Let D be a distribution on Rd × {±1} whose x-marginal is the standard normal. Assume that D
satisfies the constant-bounded Massart noise condition with respect to some at most (1− γ)-biased
target halfspace f(x). Let ℓ(x) be any linear function such that Pr(x,y)∼D[sign(ℓ(x)) ̸= y] ≥ OPT+ ϵ.
There exist r1, r2 ∈ R and polynomial q(x) of degree k = Θ(log(1/γ)) with ∥q(x)∥2 = 1 such that

E
(x,y)∼D

[
ℓ(x)y 1{r1 ≤ ℓ(x) ≤ r2}q2(x)

]
≤ −ϵ2poly(γ) ∥ℓ(x)∥2 .

2.2 Learning Halfspaces with General Massart Noise: Theorem 1.9

For the purpose of this description, we will assume that the target halfspace f(x) = sign(w∗ · x) is
homogeneous. This special case captures the key ideas of our algorithm; given such a result, the
generalization to general halfspaces (under general Massart noise) is fairly straightforward. (This
generalization is carried out in Appendix D.) To facilitate the intuition, we present the main ideas
behind the algorithm of Theorem 1.9 in the following paragraphs. Our main technical contribution
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in this context is the construction of a low-degree sign-matching polynomial. This is presented at
the end of this subsection and in full detail in Subsection 5.1.

At a high-level, our algorithm for learning halfspaces in the η = 1/2 regime consists of a random
walk on the unit d-dimensional sphere, where we iteratively perform a random step in order to
update our current guess w(t), i.e.,

w(t+1) ← w(t) + λv

∥w(t) + λv∥2
. (2)

Our goal is to find a way to sample the update vector v, so that at every step there is some
non-trivial probability that we make progress towards the optimal direction w∗. In order to make
progress towards w∗, it suffices to have an update vector v that correlates with w∗ and belongs in
the orthogonal complement, w⊥, of w. In what follows, we will denote by (w∗)⊥w the normalized
projection of w∗ onto the subspace w⊥; see Figure 3a. Given such a vector v, we can show that
there exists a step size λ such that the update rule of Equation (2) moves w(t) closer to w∗ by a
non-trivial amount with constant probability; see Lemma 5.13. Observe that a uniformly random
unit direction in Rd has roughly 1/

√
d correlation with (w∗)⊥w with constant probability. However,

in order to hit w∗, we need to perform roughly d consecutive successful updates (see Lemma 5.13),
resulting in an algorithm with 2d

Ω(1) runtime.
The main algorithmic result of this section is the following proposition, which shows that we can

efficiently sample an update vector v that improves the current guess with non-trivial probability.

Proposition 2.5 (Correlated Update Oracle). Let D be a distribution on Rd × {±1}, with standard
normal x-marginal, that satisfies the Massart noise condition for η = 1/2, with respect to a target
halfspace f(x) = sign(w∗ · x). Let w ∈ Rd be a unit vector such that Pr(x,y)∼D[sign(w · x) ̸= y] ≥
OPT+ ϵ, for some ϵ ∈ (0, 1]. There exists an algorithm that draws N = dO(log(1/ϵ)) log(1/δ) samples
from D, runs in time poly(N, d), and with probability at least 1− δ returns a distribution V on Rd

such that
Pr
v∼V

[
(w∗)⊥w · v ≥ poly(ϵ)

]
≥ 1

3
.

Moreover, V has description size poly(d/ϵ) and can be sampled in poly(d/ϵ) time.

(See Proposition 5.2 for a more detailed statement.) Our plan is to construct a subspace V
of Rd such that ∥projV ((w∗)⊥w)∥2 ≥ poly(ϵ). To sample good update vectors v, as claimed in
Proposition 2.5, we can generate a random vector v on the unit sphere of V . However, we need to
make sure that the dimension of V is sufficiently small, namely at most poly(1/ϵ).

Improving the Constant Guess Let us assume for now that our current guess is w = 0. Then,
in order to make progress towards w∗, one can simply use the degree-one Chow parameters of y,
i.e., E(x,y)∼D[yx]. Observe that the degree-one Chow parameters have positive correlation with the
optimal direction w∗, since (E(x,y)∼D[yx]) ·w∗ = E(x,y)∼D[(1 − 2η(x))sign(w∗ · x) (x ·w∗)] > 0 .
Therefore, the degree-one Chow parameters are a good first update to the guess w = 0.

Projecting onto w⊥: Subsection 5.2 In order to further improve a non-trivial guess w, we
need to find a good update direction v that correlates non-trivially with (w∗)⊥w . A natural attempt
to do so would be to project x onto the orthogonal complement of the current guess, i.e., w⊥, and
then compute the Chow parameters of the projected points. However, by doing so, the optimal
classifier of the projected examples will no longer be a halfspace; see Figure 3a. In particular, the
noise function η⊥(x⊥) after projection will be larger than 1/2 for a large fraction of the points. To
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make the dataset nearly separable by a halfspace with normal vector (w∗)⊥w , we condition on a thin
band and then project x onto w⊥. Doing so, apart from a small region close to the optimal classifier,
f⊥ (see Figure 3a), the noise function will be at most 1/2. By making the band sufficiently thin,
we can control the probability of this “high-noise” area. Notice that in the projected instance the
optimal halfspace is no longer homogeneous. When the band (that we condition on) is far from the
origin, the resulting optimal halfspace f⊥ of the projected instance will be potentially very biased;
see Figure 3a.

Assuming that our current halfspace sign(w · x) is at least ϵ suboptimal compared to w∗,
we show that there exists a thin band conditional on which the current hypothesis is roughly
ϵ/
√
log(1/ϵ)-suboptimal. Moreover, this band is not very far from the origin, which implies that

the optimal halfspace f⊥ conditional on the band will not be very biased: its threshold will be
at most O(

√
log(1/ϵ)). It is worth noting that a similar orthogonal projection step onto w⊥ was

used in [DKK+20] to learn homogeneous halfspaces with Tsybakov noise. The major difference
between the setting of the current paper and [DKK+20] is that in the general Massart regime it is
not possible to control the distance of the band from the origin. Specifically, it could be the case
that η(x) = 1/2 for all x close to w · x = 0, forcing us to pick a band whose optimal halfspace f⊥ in
the subspace w⊥ actually has threshold Ω(

√
log(1/ϵ)), see Figure 3a. In contrast, in [DKK+20], the

“soft” Tsybakov noise condition allows for the band to be picked arbitrarily close to origin resulting in
nearly homogeneous halfspaces f⊥. For the details of this projection step, see Lemma 5.6. In what
follows, we denote the distribution of the projected instance over w⊥ × {±1} by D⊥. We elaborate
further on this step in Subsection 5.2.

B w∗ w

(w∗)⊥w

f(x)

f⊥(x⊥)

η⊥(x⊥) ≥ 1/2

(a)

L2-Approximation

Sign-Matching

−2 −1 1 2 3

−2

−1

1

2

x

y

(b)

Figure 3: (a) After we condition on the band B, we project x to the subspace (w∗)⊥w and nearly
maintain the Massart noise property with respect to the biased halfspace f⊥(x⊥) = sign((w∗)⊥w ·
x⊥+ b). In particular, it holds that η⊥(x⊥) ≤ 1/2 everywhere apart from a small area (green). Since
the underlying distribution is the standard Gaussian, a band with large negative mass (blue) cannot
be very far from the origin, and therefore we have that |b| = O(

√
log(1/ϵ)).

(b) The sign-matching polynomial that corresponds to the red curve does not need to closely
approximate the threshold function. Its degree scales as Θ(b2), which is at most O(log(1/ϵ)) for an
ϵ-biased halfspace. On the other hand, to get an L2 or L1 approximation to error ϵ (orange curve),
it is known that poly(1/ϵ) degree is necessary.

Using the Low-Order Chow Tensors: Subsection 5.3 To obtain a good update vector v, a
natural approach is to use the degree-one Chow parameters. However, since the optimal halfspace
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f⊥ is biased, the degree-one Chow parameters are not guaranteed to correlate well with the direction
of f⊥. We thus need to look at higher-order Chow parameter tensors of D⊥. Recall that, to show
Proposition 2.5, we want to construct a subspace V of Rd such that ∥projV ((w∗)⊥w)∥2 ≥ poly(ϵ).
We now show how to find such a subspace using the low-order Chow tensors of D⊥.

Since we are working in Gaussian space, instead of considering the moment-tensor x⊗m, we use
the degree-m Hermite moment tensor Hm(x); this corresponds to replacing all the monomials of the
tensor x⊗m by their corresponding Hermite monomials. (For tensor notation, we refer to Section 3.)

Definition 2.6 (Hermite Moment-Tensor). Let H be the linear operator that maps any d-variate
monomial to the corresponding (normalized) d-variate polynomial in the Hermite basis, i.e., H(xα) =
hα(x). We define the degree-m Hermite moment tensor as (Hm)α = H((x⊗m)α) .

Using the Hermite moment-tensors, we also define the order-m Chow parameter tensors of a
distribution D on Rd × {±1}.

Definition 2.7 (Order-m Chow Tensor of D). Let D be a distribution on Rd×{±1} whose x-marginal
is the standard normal distribution. We define the order-m Chow tensor of D to be

Tm(D) = E
(x,y)∼D

[Hm(x)y] .

When it is clear from the context, we shall omit the distribution D and simply write Tm.

Our high-level plan is to treat the above tensors as d× dm−1 matrices and perform SVD to find
the top few left singular vectors, i.e., the singular vectors whose singular values are larger than some
threshold. To show that the subspace V spanned by such eigenvectors contains a non-trivial part of
(w∗)⊥w , we need to construct a mean-zero polynomial that only depends on the direction (w∗)⊥w

and correlates well with the label y (Lemma 5.10). This leads us to our main structural result.

The Sign-Matching Polynomial: Subsection 5.1 We show that there exists a mean-zero
polynomial p that achieves non-trivial correlation with (w∗)⊥w , i.e., E(x⊥,y)∼D⊥ [p(x)y] ≥ poly(ϵ).
Even though the noise of D⊥ is not exactly Massart – recall that there exists a small region where
η⊥(x⊥) > 1/2 – let us assume that η⊥(x⊥) ≤ 1/2 everywhere for simplicity. In this case, we have

E
(x⊥,y)∼D⊥

[p(x)y] = E
(x⊥,y)∼D⊥

x

[
p(x)sign((w∗)⊥w · x⊥ + b)(1− 2η⊥(x⊥))

]
.

Since 1− 2η⊥(x⊥) ≥ 0, in order to achieve non-trivial correlation it suffices to find p such that p(x)
matches the sign of f⊥(x⊥).

At this point, we made crucial use of the Massart noise condition; in particular, this is not
possible in the agnostic model. In the agnostic model, to achieve non-trivial correlation, one needs
to actually approximate the threshold function; see Figure 3b. More specifically, to guarantee
positive correlation in the agnostic model, we need a polynomial whose L1 error with f(x) is O(ϵ).
Unfortunately, this cannot be done for any polynomial with degree o(1/ϵ2); see, e.g., Proposition 2.1
of [DKPZ21]. In the Massart noise setting, we show that we can construct a zero-mean sign-matching
polynomial of degree only log(1/ϵ) that achieves poly(ϵ) correlation with y. We remark that the
mean-zero condition, Ex∼Dx [p(x)] = 0 is crucial here. Non-zero mean polynomials, like the linear
polynomial (w∗)⊥w ·x⊥+ b, might give constant correlation, but do not reveal any information about
the optimal direction. More concretely, we establish the following proposition; see Proposition 5.3
and Lemma 5.4 for the corresponding formal statements.
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(Informal) Proposition 2.8 (Sign-Matching Polynomial). Let b ∈ R. There exists a zero mean,
unit variance polynomial p : R 7→ R of degree k = Θ(b2 + 1) such that the sign of p matches the sign
of the threshold function sign(z − b), i.e., sign(p(z)) = sign(z − b), for all z ∈ R.

Notice that when we apply the above proposition, the threshold b of the corresponding halfspace
f⊥ will be at most O(

√
log(1/ϵ)) resulting in a polynomial of degree O(log(1/ϵ)); see also Figure 3a.

In the case of homogeneous halfspaces, this happens because we use the orthogonal projection step;
see Subsection 5.2. In the case of general halfspaces, we may have such thresholds to start with.

2.3 SQ Lower Bounds: Theorems 1.7 and 1.10

Learning General Halfspaces with Constant-Bounded Massart Noise: Theorem 1.7 Our
SQ lower bounds make essential use of the “hidden-direction” framework developed in [DKS17]. Using
this framework, we construct SQ lower bounds for learning halfspaces in high dimensions using a
carefully constructed one-dimensional Massart noise instance. In particular, if we can construct a one-
dimensional Massart noise distribution D on R×{±1} such that E(z,y)∼D[z

ky] = Ez∼Dz [z
i]Ey∼Dy [y],

for all i ∈ [k], then we can obtain a family of 2dΩ(1) distributions on Rd × {±1} whose pairwise
correlation is d−Ω(k). Using standard SQ lower bound arguments (see Lemma 6.6), having such a
family of pairwise correlated distributions implies a dΩ(k) SQ lower bound for learning the halfspace.
(For a brief review on SQ lower bound machinery, we refer the reader to Section 6.1.)

Our main technical result is the following proposition (also see Proposition 6.13).

Proposition 2.9. Fix η ∈ (0, 1/2) such that η = 1/2 − Ω(1) and γ ∈ (0, 1/2). There exists a
distribution D on (z, y) ∈ R× {±1} whose z-marginal is the standard normal distribution with the
following properties.

• D satisfies the η-Massart noise condition with respect to a halfspace f(z) with Prz∼Dz [f(z) =
+1] = γ.

• There exists an absolute constant C such that for any integer k ≤ C log(1/γ), it holds
E(z,y)∼D[yz

k] = Ey∼Dy [y]Ez∼Dz [z
k] .

To prove the existence of the (constant-bounded) Massart noise instance of Proposition 2.9, we
use (infinite-dimensional) LP duality, where our variable is the signal function β(z) = 1 − 2η(z).
We have the following pair of primal and dual linear programs. We denote P0

k the linear space of
zero-mean polynomials of degree at most k.

Primal Dual

Find β(z) ∈ L∞(R)
such that E

z∼N
[f(z)p(z)β(z)] = 0 ∀p ∈ P0

k

Pr
z∼N

[β ≤ β(z) ≤ 1] = 1

Find p(z) ∈ P0
k

such that β E
z∼N

[(f(z)p(z))+] > E
z∼N

[(f(z)p(z))−]

Using an infinite-dimensional variant of the theorem of the alternative for linear programming, to
show that the primal problem is feasible, it suffices to show that the dual is infeasible. To show that
the dual is infeasible, we prove a stronger statement: mean-zero polynomials of low-degree cannot
match the sign of very biased Boolean functions. We prove the following (see Lemma 6.18 for the
formal statement and proof).
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Lemma 2.10. Let f : R 7→ {±1} be any one-dimensional Boolean function, β ∈ (0, 1) and k ∈ Z+.
There exists a universal constant C > 0 such that if Prz∼N [f(z) = 1] ≤ 2−Ck(1− β), then for any
mean-zero polynomial of degree at most k it holds βEz∼N [(f(z)p(z))+] < Ez∼N [(f(z)p(z))−].

We remark that in the above lemma we do not require f to be a halfspace. Consequently, it is easy
to adapt our argument to work for other Boolean concept classes that depend on a low-dimensional
subspace V . For example, using the above lemma, we can obtain an SQ lower bound for learning
intersections of 2 homogeneous halfspaces with constant-bounded Massart noise.

z

w∗

u

t0 + ζ

t0

Figure 4: The “high-noise” (η = 1/2) Massart distribution D on ((x, z), y) ∈ Rd+1 ×
{±1} that we construct in our “reduction” from learning a biased halfspace with
Massart noise. The x-marginal of D is the standard normal distribution. Conditional
on z, (x, y) has constant-bounded Massart noise when z ∈ [t0, t0+ ζ]; this corresponds
to the blue/red area. When z /∈ [t0, t0 + ζ] we set y to be ±1 with probability 1/2
independently of x, i.e., η((x, z)) = 1/2 in the gray area.

Learning Homogeneous Halfspaces with General Massart Noise: Theorem 1.10 Our
main idea to show an SQ lower bound for learning homogeneous halfspaces with general Massart
noise is to use the fact that by setting η(x) = 1/2, we essentially remove all the useful signal from
some parts of the space. Our “reduction” to learning halfspaces with constant-bounded Massart
noise works as follows: We create a (d+ 1)-dimensional high-noise instance, i.e., with η = 1/2, over
((x, z), y) ∈ Rd+1 × {±1} from many d-dimensional constant-bounded Massart noise instances. For
every (x, z) outside of a thin slice (see Figure 4), we set η(x) = 1/2. For (x, z) in the slice, we set
the conditional distribution of (x, y) on z to satisfy the constant-bounded Massart noise condition
with respect to some non-homogeneous optimal halfspace (denoted by u in Figure 4). We show
that any hypothesis that achieves error OPT+ ϵ in the (d+ 1)-dimensional “high-noise” instance
will perform well (on average) on the d-dimensional constant-bounded Massart noise instances — a
problem that we have already showed to be hard in the SQ model. We refer to Subsection 6.3 for
the detailed proof.

3 Preliminaries

Basic Notation For n ∈ Z+, let [n] := {1, . . . , n}. We use small boldface characters for vectors
and capital bold characters for matrices. For x ∈ Rd and i ∈ [d], xi denotes the i-th coordinate
of x, and ∥x∥2 := (

∑d
i=1 x

2
i )

1/2 denotes the ℓ2-norm of x. We will use x · y for the inner product
of x,y ∈ Rd and θ(x,y) for the angle between x,y. We slightly abuse notation and denote ei the
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i-th standard basis vector in Rd. For x ∈ Rd and V ⊆ Rd, xV denotes the projection of x onto
the subspace V . Note that in the special case where V is spanned from one unit vector v, then
we simply write xv to denote x · v, i.e., the projection of x onto v. For a subspace U ⊂ Rd, let
U⊥ be the orthogonal complement of U . For a vector w ∈ Rd, we use w⊥ to denote the subspace
spanned by vectors orthogonal to w, i.e., w⊥ = {u ∈ Rd : w · u = 0}. For a matrix A ∈ Rd×d, tr(A)
denotes the trace of the matrix A. For a square symmetric matrix M, we say that M is positive
semi-definite if only if all the eigenvalues of M are non-negative. For m ∈ Z+, we denote Sm the
set of positive (symmetric) semi-definite matrices of dimension m. We will use 1A to denote the
characteristic function of the set A, i.e., 1A(x) = 1 if x ∈ A and 1A(x) = 0 if x /∈ A.

We write E ≳ F for two expressions E and F to denote that E ≥ c F , where c > 0 is a sufficiently
large universal constant (independent of the variables or parameters on which E and F depend).
Similarly, we write E ≲ F to denote that E ≤ c F , where c > 0 is a sufficiently small universal
constant.

Probability Notation We use Ex∼D[x] for the expectation of the random variable x according
to the distribution D and Pr[E ] for the probability of event E . For simplicity of notation, we may
omit the distribution when it is clear from the context. Let N (µ,Σ) denote the d-dimensional
Gaussian distribution with mean µ ∈ Rd and covariance Σ ∈ Rd×d, we denote ϕd(·) the pdf of the
d-dimensional Gaussian and we use the ϕ(·) for the pdf of the standard normal. In this work we
usually consider the standard normal, i.e., µ = 0 and Σ = I, and therefore we denote it simply N ; the
dimension will be always clear from the context. Moreover, we denote as N (µ1, µ2) the 2-dimensional
Gaussian distribution with mean (µ1, µ2) and N (µ) the 1-dimensional Gaussian distribution with
mean µ. For (x, y) distributed according to D, we denote Dx to be the distribution of x and Dy to
be the distribution of y. For unit vector v ∈ Rd, we denote Dv the distribution of x on the direction
v, i.e., the distribution of xv. For a set B and a distribution D, we denote DB to be the distribution
D conditional on B. We define the standard Lp norms with respect to the Gaussian measure, i.e.,
∥g(x)∥p = (Ex∼N [|g(x)|p)1/p. To distinguish them from vector norms we shall write ∥g(x)∥p instead
of ∥g∥p when it is not clear from the context. We also need the following fact providing upper and
lower bounds on Gaussian tails and the Gaussian anticoncentation property for intervals.

Fact 3.1 (Gaussian Density Properties). Let N be the standard one-dimensional normal distribution.
Then, the following properties hold:

1. For any t > 0, it holds e−t2/4 ≤ Prz∼N [z > t] ≤ e−t2/2/2.

2. For any a, b ∈ R with a ≤ b, it holds Prz∼N [a ≤ z ≤ b] ≤ (b− a)/
√
2π.

Function Families (LTFs and Polynomials) We use CV to denote the set of Linear Threshold
Functions (LTFs) with normal vector contained in V ⊆ Rd, i.e., CV = {sign(v ·x+ t) : v ∈ V, ∥v∥2 =
1, t ∈ R}; when V = Rd, we simply write C. Moreover, we define C0 to be the set of homogeneous
LTFs, i.e., C0 = {sign(v · x) : v ∈ Rd, ∥v∥2 = 1}. We denote by Pk,d the space of polynomials on
Rd of degree at most k. We will use the following fact shows that for the probability that two
halfspaces disagree can be upper bounded by the difference of their thresholds plus the angle of their
corresponding normal vectors.

Fact 3.2 (see, e.g., Fact 3.5 of [DKK+21a]). Let N be the standard normal distribution in Rd. Let
v,u be unit vectors in Rd and t1, t2 ∈ R. It holds Prx∼N [sign(u · x + t1) ̸= sign(v · x + t2)] ≤
O(θ(u,v)) +O(|t1 − t2|).
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Multilinear Algebra Let α = (α1, α2, . . . , αd) be a d-dimensional multi-index vector, where
for all i ∈ [d], αi is non-negative integer. We denote |α| =

∑d
i=1 αi and for a d-dimensional

vector w = (w1,w2, . . . ,wd), we denote wα =
∏d

i=1w
αi
i . An order-k tensor A is an element of

the k-fold tensor product of subspaces A ∈ V1 ⊗ . . . ⊗ Vk. We will be exclusively working with
subspaces of Rd so a tensor A can be represented by a sequence of coordinates, that is Ai1,...,ik . The
tensor product of order k tensor A and an order m tensor B is an order k +m tensor defined as
(A⊗B)i1,...,ik,j1,...,jm = Ai1,...,ikBj1,...,jm . Moreover, we denote by A⊗k the k-fold tensor product of
A with itself. We define the dot product of two tensors (of the same order) to be A ·B =

∑
αAαBα.

We also denote the Frobenius norm of a tensor by ∥A∥F =
√
A ·A. In this work, we will be using

the (appropriately) normalized Hermite tensors (Definition 2.6). For these tensors we have the
following fact.

Fact 3.3. Let x,v ∈ Rd and let hm : R 7→ R be the univariate normalized (with respect to the standard
normal) degree-m Hermite polynomial and Hm be the Hermite moment tensor of Definition 2.6. It
holds hm(x · v) = Hm · v⊗m.

4 A Certificate-Based Algorithm For Learning General Halfspaces
with Constant-Bounded Massart Noise

In this section we show that, when the noise upper bound η is bounded away from 1/2, we can learn
at most (1− γ)-biased halfspaces with sample complexity and runtime dO(log(1/γ))poly(1/ϵ). Our
algorithmic result matches our SQ lower bound, given in Theorem 1.7. We first state the formal
version of Theorem 1.6.

Theorem 4.1 (Learning (1− γ)-biased Halfspaces with Constant-Bounded Massart Noise). Let D
be a distribution on Rd × {±1} whose x-marginal is the standard Gaussian. Assume that D satisfies
the η-Massart noise condition with respect to some (1− γ)-biased optimal halfspace and β = 1− 2η.
Let ϵ, δ ∈ (0, 1]. There exists an algorithm that draws N = dO(log(1/(γβ)))poly(1/ϵ) log(1/δ) samples
from D, runs in time poly(N, d), and computes a halfspace h ∈ C such that with probability at least
1− δ we have that Pr(x,y)∼D[h(x) ̸= y] ≤ OPT+ ϵ .

The main technical ingredient in our proof is Proposition 4.2 where we show that, given a linear
function ℓ(x) = w · x− t whose classification error is greater than OPT+ ϵ, there exists a low-degree
polynomial certifying function. We prove the existence of such a certificate in Subsection 4.1. In
Subsection 4.2, we show that we can efficiently compute the low-degree polynomial certificate, and
we bound the sample complexity and runtime of the corresponding SDP of the optimization problem.
Finally, in Subsection 4.3, we show that given an efficient certificate oracle, we can use online gradient
descent in order to learn the optimal halfspace, i.e., we provide the formal version and proof of
Proposition 2.2.

4.1 The Low-Degree Polynomial Certificate

Here we show that given any ϵ suboptimal linear hypothesis ℓ(x) = w ·x− t there exists a low degree
polynomial certifying function. We establish the following.

Proposition 4.2 (Certificate for General Halfspaces with Massart Noise: η < 1/2.). Let D be a
distribution on Rd × {±1} with standard normal x-marginal. Assume that D satisfies the η-Massart
noise condition with respect to some at most (1−γ)-biased optimal halfspace f(x), where γ ∈ (0, 1/2].
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Let ℓ(x) be any linear function such that Pr(x,y)∼D[sign(ℓ(x)) ̸= y] ≥ OPT+ϵ. There exist r1, r2 ∈ R
and polynomial q(x) =

∑
|α|≤k cαx

α of degree k = Θ(log( 1
γβ )) and ∥q(x)∥2 = 1 such that

E
(x,y)∼D

[ℓ(x)y 1{r1 ≤ ℓ(x) ≤ r2}q2(x)] ≤ −ϵ4poly(βγ)∥ℓ(x)∥2 .

Moreover, the coefficients of q are bounded, specifically
∑

|α|≤k |cα| ≤ dO(k).

To prove the proposition, we distinguish different cases for the hypothesis h(x). First we assume
that w = 0, i.e., the guess is not formally a halfspace but a constant function. This case may
look easy to handle but captures many difficulties of designing certificates for biased halfspaces
under Massart noise: when the constant guess is −1, we have to construct a polynomial that puts
a large weight to the positive region of f(x), i.e., {x : f(x) = +1}. Since the probability of this
region can be as small as γ, it may be far from the origin (i.e., t∗ = Θ(

√
log(1/γ))); see Figure 2a.

It can be seen that it is challenging to isolate such regions far from the origin and the required
polynomial degree is roughly log( 1

βγ ). The argument and the details for this case are given in
Subsection 4.1.1. In Subsection 4.1.2, we show that, similarly to the case of constant hypotheses, we
can construct polynomial certificates against very biased hypotheses, i.e., when ℓ(x) = w · x− t and
it holds t/∥w∥2 ≥ C

√
log(1/(βγ)). Finally, in Subsection 4.1.3, we handle the remaining hypotheses,

namely we provide certificates when t/∥w∥2 ≤ C
√
log(1/(βγ)). Having Lemma 4.3, Lemma 4.9 and

Lemma 4.13, we immediately obtain Proposition 4.2.

4.1.1 Certificate Against Constant Hypotheses

Here we show that we can construct a polynomial certificate that certifies the non-optimality of any
constant hypothesis, i.e., h(x) corresponds to the constant function +1 (or −1) for every x ∈ Rd. In
this case, we do not require a “band” 1{r1 ≤ w · x ≤ r2} as part of the certificate, and therefore we
may set r1 = −∞, r2 = +∞ in Proposition 4.2. We prove the following lemma:

Lemma 4.3 (Certificate against Constant Hypotheses). Let D be a distribution on Rd × {±1} with
standard normal x-marginal. Assume that D satisfies the η-Massart noise condition with respect
to some (at least) (1 − γ)-biased optimal halfspace. For every constant hypothesis s ∈ {−1,+1},
there exists a polynomial q(x) =

∑
|α|≤k cαx

α of degree k = Θ(log( 1
βγ )) with ∥q∥2 = 1, and sum of

(absolute) coefficients
∑

|α|≤k |cα| ≤ dO(k) such that

E
(x,y)∼D

[sy q2(x)] ≤ −poly(βγ) .

Proof. Our plan is to pick the polynomial q(x) so that it takes larger values to the side of the optimal
halfspace f(x) = sign(w∗ · x− t∗) that has the opposite sign of s. In the example of Figure 2a, in
order to have a certificate for the constant hypothesis s = −1, we want to have a polynomial that
takes much larger values in the blue area than the red area. We shall set q(x) = p(w∗ · x) for some
one-dimensional polynomial p : R→ R. Since the certificate that we construct only depends on the
direction of the optimal halfspace, it follows that we can project the points on the subspace spanned
by w∗. The following claim shows that the projection of a distribution with η-Massart noise onto a
lower dimensional subspace that contains the direction of the optimal halfspace also satisfies the
η-Massart noise condition with respect to the same optimal halfspace.

Claim 4.4 (Projections preserve Massart Noise). Let D be a distribution on Rd × {±1} satisfying
the η-Massart noise condition with respect to some optimal halfspace f(x) : Rd 7→ {±1}. Let V be
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any subspace of Rd that contains the normal vector of the optimal halfspace f(x). Then, for every
function g : Rd 7→ R it holds

E
(x,y)∼D

[g(projV (x))y] = E
v∼(Dx)V

[g(v)βV (v)f(v)] ,

where βV (x) : Rd 7→ R satisfies βV (x) ∈ [1− 2η, 1].

Proof. Assume that the optimal halfspace is f(x) = sign(w∗ · x − t∗). From the fact that the
distribution D satisfies the η-Massart noise condition, it holds that E(x,y)∼D[y|x] = f(x)(1− η(x))−
f(x)η(x) = f(x)(1− 2η(x)) = f(x)β(x). Therefore, we have

E
(x,y)∼D

[g(projV (x))y] = E
x∼Dx

[g(projV (x))β(x)f(x)]

= E
v∼(Dx)V

[
E

u∼(Dx)V ⊥
[g(v)β(u+ v)sign(w∗ · (u+ v)− t∗)

]
= E

v∼(Dx)V

[
sign(w∗ · v − t∗) g(v) E

v∼(Dx)V ⊥
[β(u+ v)]

]
,

where we used the fact that the subspace V contains the normal vector of the optimal halfspace
w∗. Observe that the “projected” noise function βV (v) := Eu∼(Dx)V ⊥ [β(u+ v)] again satisfies the
η-Massart noise condition, i.e., βV (v) ∈ [1−2η, 1] = [β, 1]. This concludes the proof of Claim 4.4.

Since q(x) = p(w∗ · x), we can use Claim 4.4 to project onto the subspace spanned by w∗ and
obtain that

E
(x,y)∼D

[syq2(x)] = E
v∼(Dx)w∗

[
s sign(w∗ · v − t∗) p2(w∗ · v) βw∗(v)

]
, (3)

where the “projected” noise function βw∗(v) ∈ [β, 1]. For simplicity, in what follows, we will continue
denoting β the projected noise function βw∗ . Without loss of generality, we may assume that w∗ = e1
and in that case, using the fact that the projection of Dx onto w∗ is a one-dimensional standard
normal distribution, we have that the expression of Equation (3) can be simplified as

E
(x,y)∼D

[syq2(x)] = E
x1∼N

[sβ(x1)sign(x1 − t∗) p2(x1)] . (4)

Moreover, to simplify the notation, assume that the constant guess is s = −1 (the case of s = +1
is similar) and that the halfspace puts γ mass on the positive side, i.e., Prx∼Dx [f(x) = +1] = γ;
see also Figure 2a. In that case, we want to construct a univariate polynomial p(x1) so that
Ex1∼N [β(x1)sign(x1 − t∗) p2(x1)] is sufficiently positive. Observe that the worst case noise function
β(x1) is to set β(x1) = β for all points x1 ≥ t∗ and β(x1) = 1 for all x1 < t∗. In that case, we want
to find a univariate polynomial p such that

β E
x1∼N

[1{x1 ≥ t∗}p2(x1)] ≥ E
x1∼N

[1{x1 ≤ t∗}p2(x1)] . (5)

To do that, we show our main structural result, i.e., that as long as the degree k is larger than (t∗)2,
there exists a polynomial that can make the above inequality true. In fact, we can make the ratio
of Ex1∼N [1{x1 ≥ t∗}p2(x1)]/Ex1∼N [1{x1 ≤ t∗}p2(x1)] grow exponentially fast with respect to the
degree-k of the polynomial p. We prove the following lemma.
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Lemma 4.5 (Polynomial Shift). Let t ∈ R and b ≥ 1. There exists a univariate polynomial
p(x) =

∑k
i=0 aix

i of degree k = Θ(t2 + b2), L2 norm ∥p(x)∥2 = 1, and sum of (absolute) coefficients∑k
i=0 |ai| = O(1), such that

Ex∼N [p2(x)1{x ≥ t}]
Ex∼N [p2(x)1{x ≤ t}]

≥ eb
2

and E
x∼N

[p2(x)1{x ≥ t}] ≥ e−O(k) .

Proof. We first show that there exists a positive function that makes the ratio of Lemma 4.5 large.
We shall consider the exponential function x 7→ ecx for some constant c ≥ |t| to be determined later.
We have that

Ex∼N [ecx1{x ≥ t}]
Ex∼N [ecx1{x ≤ t}]

=
Prx∼N [x ≥ t− c]

Prx∼N [x ≤ t− c]
≥ e(c−t)2/2 , (6)

where the last inequality follows from the fact that c ≥ t and standard lower bounds on the tail
probability of the standard normal distribution. Therefore, for c = Θ(|t|+ b) we immediately obtain
the claimed bound. We now have to replace the function ecx by the square of a polynomial p.
To do so we use the Taylor expansion of the exponential function. Denote by Sk(x) the degree-k
Taylor expansion of ex, i.e., Sk(x) =

∑k
i=0 x

i/i!. Using Taylor’s remainder theorem and the fact that
ex =

∑∞
i=0 x

i/i! for all x ∈ R, we obtain the following fact.

Fact 4.6 (Taylor Expansion of ex). Fix R > 0 and let Sk(x) be the degree-k Taylor expansion of ex.

1. For all x ∈ [−R,R] we have that |Sk(x)− ex| ≤ eR Rk+1

(k+1)! .

2. For all x ∈ R it holds that |Sk(x)| ≤ e|x|.

Since we have to construct the square of a polynomial p we cannot simply use Sk(x). However,
we can consider the function e2cx and use S2

k(cx) as our approximation. We first show that as long
as k is at least Ω(c2), we have that S2

k(cx) is a good approximation of e2cx with respect to the L1

norm.

Claim 4.7 (L1 error of Sk(x)). Assume that k ≥ 32c2. It holds

∥S2
k(cx)− e2cx∥1 ≲ e−k/32 .

Proof. For every x ∈ [−R,R] it holds that

|S2
k(x)− (ex)2| = |Sk(x)− ex||Sk(x) + ex| ≤ eR

Rk+1

(k + 1)!
2eR = 2e2R

Rk+1

(k + 1)!
, (7)

where we used the second item of Fact 4.6, i.e, that |Sk(x)| ≤ eR. The above pointwise approximation
guarantee together with the strong concentration properties of the Gaussian distribution (see, e.g.,
Fact 3.1) allow us to get a bound for the L1-approximation error of S2

k(x). Using the error bound of
Equation (7), we bound the L1-approximation error as follows:

E
x∼N

[|S2
k(cx)− e2cx|] ≤ max

|x|≤R/c
|S2

k(cx)− e2cx|+ E
x∼N

[|S2
k(cx) + e2cx| 1{|x| ≥ R/c}]

≤ 2e2R
Rk+1

(k + 1)!
+ (∥S2

k(cx)∥2 + ∥e2cx∥2)
√

Pr
x∼N

[|x| ≥ R/c]

≤ 2e2R
Rk+1

(k + 1)!
+ 2
√
2e4c

2−(R/c)2/2 , (8)
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where for the last inequality we used the second item of Fact 4.6 to obtain that ∥S2
k(x)∥2 ≤ ∥e2c|x|∥2,

the fact that ∥e2c|x|∥2 ≤
√
2e4c

2 , and the tail probability upper bound for the normal distribution,
i.e., Prx∼N [|x| ≥ (R/c)] ≤ e−(R/c)2/2, see Fact 3.1. By choosing k = 32mc2, for any m ≥ 1, and
R = k/8 the estimate of Equation (8) becomes

∥S2
k(cx)− e2cx∥1 ≲ e−mc2 .

We are now ready to finish the proof of Lemma 4.5. Recall that to make Inequality (6) true, we
chose c = Θ(b + |t|). Let k = 32mc2, for some sufficiently large absolute constant m > 0. Given
Inequality (6), we show that by replacing e2cx with S2

k(cx), i.e., the Taylor expansion of ecx squared,
we get a similar formula for the lower-bound of the ratio. It suffices to show that

Ex∼N [e2cx1{x ≤ t}]
Ex∼N [S2

k(cx)1{x ≤ t}]
≥ 1

2
and

Ex∼N [S2
k(cx)1{x ≥ t}]

Ex∼N [e2cx1{x ≥ t}]
≥ 1

2
. (9)

We start from the first inequality of Equation (9). To prove it, it suffices to show that

E
x∼N

[|S2
k(x)− e2cx| 1{x ≤ t}] ≤ E

x∼N
[e2cx 1{x ≤ t}] . (10)

From the L1-bound of Claim 4.7, we have that

E
x∼N

[|S2
k(x)− e2cx| 1{x ≤ t}] ≤ E

x∼N
[|S2

k(x)− e2cx|] ≲ e−mc2 .

Moreover, to bound the Ex∼N [e2cx 1{x ≤ t}] from below, we use the lower bound for the tails of a
Gaussian distribution (Fact 3.1). First, note that Ex∼N [e2cx 1{x ≤ t}] = e2c

2
Prx∼N [x ≤ t− 2c].

Therefore, we have that

E
x∼N

[e2cx 1{x ≤ t}] ≥ 1

4
e2c

2
e−(t−2c)2 ≥ 1

4
e−7c2 ,

where we used that c ≥ |t|. Therefore, Inequality (10) is true for m being a large enough absolute
constant.

For the second inequality of Equation (9), using the L1-bound of Claim 4.7 we obtain that
Ex∼N [S2

k(cx)1{x ≥ t}] ≥ Ex∼N [e2cx1{x ≥ t}] − ∥S2
k(x) − e2cx∥1, and therefore, taking m to be

larger than an absolute constant we have that, there exists an absolute constant C > 0, such that

Ex∼N [S2
k(cx)1{x ≥ t}]

Ex∼N [e2cx1{x ≥ t}]
≥ 1− Ce−mc2

Ex∼N [e2cx1{x ≥ t}]
≥ 1

2
,

where we used that Ex∼N [e2cx1{x ≥ t}] = e2c
2
Prx∼N [x ≥ t− 2c] ≥ e2c

2
/2 since c ≥ t.

We next show that we can normalize the polynomial p(x) = Sk(cx) without making the expec-
tation of p2 over x ≥ t, i.e., Ex∼N [p2(x)1{x ≥ t}], too small. From the second item of Fact 4.6
we obtain that ∥S2

k(cx)∥2 ≤ ∥e2c|x|∥2 = eO(c2). The result follows from the second inequality of
Equation (9) and the fact that Ex∼N [e2cx1{x ≥ t}] ≥ e2c

2
/2.

Finally, we bound the coefficients of the polynomial S2
k(cx). We have S2

k(cx) =
(∑k

i=0
ci

i! x
i
)2

.

It holds that
(∑k

i=0
ci

i!

)2
= e2c. From the L1 approximation guarantee of Claim 4.7 we obtain

that ∥S2
k(cx)∥2 ≥ ∥S2

k(cx)∥1 ≥ ∥e2cx∥1 − 1 ≥ e2c
2
/2, since c ≥ 1. We conclude that the sum of the

absolute coefficients of S2
k(cx)/∥S2

k(cx∥2 is at most 2, which implies that the sum of the absolute
coefficients of Sk(cx) is at most

√
2.
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Figure 5: (a) The guess w = e1 − t1 and t1 is larger than C
√

log(1/(βγ)) for some sufficiently
large constant C. We can pick c such that 2c− t∗ and t1 − 2c are both large constants making the
exponential shift certificate e2cx1 work, similarly to the constant case of Figure 2a.
(b) The guess w = e2 − t2 and t1 is larger than C

√
log(1/(βγ)) for some sufficiently large constant

C. The region x2 ≥ t2 has probability at most e−O(t22) and for x2 ≤ t2 we can treat x2 − t2 as a
constant negative guess.

To conclude the proof of Lemma 4.3, notice that using Lemma 4.5, we obtain that there exists
a polynomial p of degree (t∗)2 + log(1/β) such that Equation (5) is true. Moreover, from the
same lemma, we obtain that Ex1∼N [p2(x1)] = e−O((t∗)2+log(1/β)). Since the halfspace is at least
(1− γ)-biased, from standard upper bounds on the Gaussian tails, we obtain that |t∗| ≲

√
log(1/γ)

obtaining the claimed bound for the degree of the certifying polynomial p. It remains to bound the
coefficients of the multivariate polynomial q(x) = p(w∗ · x). We are going to use the following fact.

Fact 4.8 (Lemma 3.6 of [DKTZ20b]). Let p(t) =
∑k

i=0 cit
i be a degree-k univariate polynomial.

Given w ∈ Rd with ∥w∥2 ≤ 1, define the multivariate polynomial q(x) = p(w · x) =
∑

S:|S|≤k CSx
S.

Then we have that
∑

S:|S|≤k C
2
S ≤ d2k

∑k
i=0 c

2
i .

From Lemma 4.5 we know that the sum of the absolute coefficients of p is O(1). Thus using
Fact 4.8 we obtain that the sum of absolute coefficients of p(w · x) is at most dO(k).

4.1.2 Certificate Against “Large Threshold” Halfspaces

We now deal with the case where the halfspace has a large threshold but is not the constant
hypothesis. In particular, we assume that h(x) = sign(w · x− t) with t/∥w∥ ≥ C

√
log(1/(βγ)) for

some sufficiently large absolute constant C. This case is, in fact, a generalization of the constant
hypothesis case that corresponds to w = 0. In this case we will show that roughly the same
polynomial that we used for constant guesses in Subsection 4.1.1 can also be made to work for very
biased guesses. We prove the next lemma.

Lemma 4.9 (Certificate against “Large Threshold” Hypotheses). Let D be a distribution on Rd×{±1}
with standard normal x-marginal. Assume that D satisfies the η-Massart noise condition with respect
to some (at most) (1− γ)-biased optimal halfspace. Define the linear function ℓ(x) = sign(w · x− t)
and assume that t/ ∥w∥2 ≥ C

√
log(1/(βγ)) for some sufficiently large absolute constant C. Then,

there exists polynomial q(x) =
∑

|α|≤k cαx
α of degree Θ(log( 1

βγ )), L2 norm ∥q(x)∥2 = 1, and sum of
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absolute coefficients
∑

|α|≤k |cα| = dO(k), such that

E
(x,y)∼D

[ℓ(x)yq2(x)] ≤ −∥ℓ(x)∥2 poly(βγ) .

Proof. Using Claim 4.4, we can project the distribution D on the 2-dimensional subspace V spanned
by w and w∗. We have

E
(x,y)∼D

[ℓ(x)yp2(w∗ · x)] = E
v∼DV

[ℓ(v)βV (v)sign(w
∗ · v − t∗)p2(w∗ · v)] . (11)

In what follows, we again abuse notation and denote βV (v) simply as β(v). By the spherical
symmetry of the Gaussian distribution, we can, without loss of generality, assume that w∗ = e1
and w = ∥w∥2(cos θe1 + sin θe2). Moreover, we may assume that t > 0 and θ ∈ [0, π/2] (see, e.g.,
Figure 5) since the other cases are similar. Our certificate will be the same polynomial as in the
previous case of Lemma 4.3. In particular, we will again use the square of the Taylor approximation
S2
k(cx1) of the exponential e2cx1 .

We decompose the problem of proving that this polynomial is a certificate for general halfspaces
to the problem of showing that it is a certificate for halfspaces with large thresholds simultaneously
in both orthogonal directions. In particular, using Equation (11), we have

E
(x,y)∼D

[ℓ(x)yp2(w∗ · x)]

= ∥w∥2 cos θ E
(x1,x2)∼N2

[(
x1 −

t

2∥w∥2 cos θ

)
β(x1,x2)p

2(x1)sign(x1 − t∗)

]
+ ∥w∥2 sin θ E

(x1,x2)∼N2

[(
x2 −

t

2∥w∥2 sin θ

)
β(x1,x2)p

2(x1)sign(x1 − t∗)

]
. (12)

To simplify the notation, set t1 = t/(2∥w∥2 cos θ) and t2 = t/(2∥w∥2 sin θ) and notice that by the
assumptions of Lemma 4.9, it holds that both t1 and t2 are larger than C/2

√
log(1/(βγ)), see

Figure 5. We will show that we can pick c = Θ(log(1/(βγ)) and k = Θ(c2) so that the polynomial
S2
k(cx1) simultaneously satisfies for i = 1, 2, the following inequality

E
(x1,x2)∼N2

[(xi − ti)β(x1,x2)sign(x1 − t∗)p2(x1)] ≤ −ti poly(βγ) .

Since ti ≥ 1, it follows that we can replace the ti poly(βγ) above by (2ti + 1)poly(βγ). Having these
bounds and using Equation (12), we obtain

E
(x,y)∼D

[ℓ(x)yp2(w∗ · x)] = −(∥w∥2(cos θ + sin θ) + t) poly(γβ)

= −(∥w∥2 + t) poly(γβ) = −∥ℓ(x)∥2 poly(βγ) ,

where for the last inequality we used the fact that cos θ + sin θ ≥ 1, for θ ∈ [0, π/2] and that√
Ex∼N [ℓ(x)2] =

√
∥w∥22 + t2. We bound the first term in claim Claim 4.12 and the second in

Claim 4.10.
We first bound the contribution of the direction that is orthogonal to the optimal, i.e., e2. At a

high-level, we have that, since t2 is a large multiple of
√
log(1/(βγ)), “for most" values of x2, the

quantity x2 − t2 will be negative. Therefore, x2 − t2 roughly corresponds to the constant guess −1,
that we covered in Lemma 4.3.

Claim 4.10. It holds

E
(x1,x2)∼N2

[(x2 − t2)β(x1,x2)sign(x1 − t∗)p2(x1)] ≤ −t2 poly(βγ) .
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Proof. When x2 − t2 < 0, we can treat x2 − t2 as a constant negative guess, and use directly the
bound obtained in the proof of Lemma 4.3, for s = −1, to make the term Ex1∼N [(−1)β(x1)sign(x1−
t∗)p2(x1)] ≤ −C ′(βγ)ρ1 , for some absolute constants ρ1, C

′ > 0. In particular, since in this case it
holds x2 − t2 ≤ 0, the “worst-case” noise function β(x1,x2) is β(x1,x2) = β for all (x1,x2) such that
x1 ≥ t∗ and β(x1,x2) = 1 for x1 ≤ t∗, see Figure 5b. Notice that this worst case β(x1,x2) does not
depend on x2. Therefore, we obtain

E
(x1,x2)∼N2

[1{x2 ≤ t2}(x2 − t2)β(x1,x2)sign(x1 − t∗)p2(x1)]

≤ E
x2∼N

[1{x2 ≤ t2}(x2 − t2)] E
x1∼N

[(−1)β(x1)sign(x1 − t∗)p2(x1)]

≤ − E
x2∼N

[1{x2 ≤ t2}|x2 − t2|] C ′(βγ)ρ1

≤ −C ′/2 t2 (βγ)ρ1 , (13)

where the last inequality follows by our assumption that t2 ≥ 1.
On the other hand, the probability of the region {x2 ∈ R : x2 − t2 ≥ 0} is exponentially small

which allows us to control the contribution of the region where x2 ≥ t2. To bound the expectation
of p4(x1), we use the following lemma known as Bonami-Beckner inequality or simply Gaussian
hypercontractivity.

Lemma 4.11 (Gaussian Hypercontractivity). Let p : R→ R be any polynomial of degree at most ℓ.

Then, for every q ≥ 2, it holds Ex∼N [|p(x)|q] ≤ (q − 1)qℓ/2
(
Ex∼N [p2(x)]

)q/2
.

Using Cauchy-Schwarz and the fact that β(x) ≤ 1, we have

E
(x1,x2)∼N2

[1{x2 ≥ t2}(x2 − t2)β(x1,x2)sign(x1 − t∗)p2(x1)]

≤
√

Pr
x2∼N

[x2 ≥ t2]

(
E

x1∼N
[(x2 − t2)

4]

)1/4(
E

x1∼N
[p8(x1)]

)1/4

. (14)

Using Gaussian hypercontractivity, Lemma 4.11, we obtain that (Ex1∼N [p8(x1)])
1/4 = eO(k). More-

over, from standard bounds of Gaussian tails, Fact 3.1, we have that Prx2∼N [x2 ≥ t2] ≤ e−t22/2.
Finally, we have that (Ex1∼N [(x2 − t2)

4])1/4 = (3 + 6t22 + t42)
1/4 ≤ 2t2, for all t2 ≥ 1. Combining the

above bounds, we obtain that

E
(x1,x2)∼N2

[1{x2 ≥ t2}(x2 − t2)β(x1,x2)sign(x1 − t∗)p2(x1)] ≤ t2e
−t22/4eO(k) . (15)

Recall that k = O(log(1/(βγ))), therefore there exists an absolute constant ρ2 > 0 such that
eO(k) ≤ (1/(βγ))ρ2 . Therefore, combining eq. (13) and eq. (15), we get that

E
(x1,x2)∼N2

[(x2 − t2)β(x1,x2)sign(x1 − t∗)p2(x1)] ≤ −Ct2(βγ)
ρ1 + t2e

−t22/4(βγ)ρ2 .

Hence, because t2 ≥ C
√
log(1/(βγ))/2, for C sufficiently large positive absolute constant, we have

that E(x1,x2)∼N2
[(x2 − t2)β(x1,x2)sign(x1 − t∗)p2(x1)] = −t2 poly(βγ).

We now bound the contribution of the direction parallel to the optimal vector, i.e., e1.

Claim 4.12. It holds

E
(x1,x2)∼N2

[(x1 − t1)β(x1,x2)sign(x1 − t∗)p2(x1)] ≤ −t1 poly(βγ) .
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Proof. Notice that we can marginalize out the direction e2 in this case. The analysis is similar to
that of Lemma 4.3. However, we now have to distinguish three different intervals for x1 inside which
(x1−t1)sign(x1−t∗) has the same sign. We will crucially use the fact that |t∗| = O(

√
log(1/γ)), since

the Gaussian puts at least γ mass on the positive side of the halfspace, and that the constant C is
sufficiently large so that t1 is at least a large constant multiple of t∗. We have the region A+ = A+

1 ∪A
+
2 ,

where A+
1 = {x1 : x1 ≤ t∗} and A+

2 = {x1 : x1 ≥ t1}. In A+ it holds (x1 − t1)sign(x1 − t∗) ≥ 0. We
also define the disagreement region A− = {x1 : t∗ ≤ x1 ≤ t1}, where (x1 − t1)sign(x1 − t∗) ≤ 0. The
worst case noise function puts β(x1,x2) = β when x1 ∈ A− and β(x1,x2) = 1 otherwise. Thus, in
order to show that p is a certifying polynomial, we have to show that

Ex1∼N [|x1 − t1|p2(x1)1{x1 ∈ A−}]
Ex1∼N [|x1 − t1|p2(x1)1{x1 ∈ A+}]

≥ 1

β
. (16)

Similarly to the proof of Lemma 4.5 we will first use an exponential function to shift the mean of
the Gaussian, i.e., use e2cx1 instead of p2(x1) in the ratio of Inequality (16). Our goal is to show
that there exists some c ≥ t∗ such that the probability of the region A− is much larger than the
probability of A+. Since |t1| is larger than some sufficiently large constant multiple of

√
log(1/(βγ))

the interval [t∗, t1] will contain most of the mass of the shifted normal N (c, 1) for c some constant
multiple of

√
log(1/(βγ)), see Figure 2b.

We start by bounding from above the denominator of Inequality (16).

E
x1∼N

[|x1 − t1|e2cx11{x1 ∈ A+}] ≤ ∥x1 − t1∥2
√

E
x1∼N

[e4cx11{x1 ∈ A+}]

≤ 2t1e
4c2

(√
Pr

x1∼N
[x1 ≤ t∗ − 4c] +

√
Pr

x1∼N
[x1 ≥ t1 − 4c]

)
≤ 2t1e

4c2(e−(t∗−4c)2/4 + e−(t1−4c)2)/4)

≤ t1e
4c2β/16 , (17)

where we used that ∥x1 − t1∥2 = (Ex1∼N [(x1 − t1)
2]1/2 = (1 + t21)

1/2 ≤ 2t1 for all t1 ≥ 1
and, for the last inequality we used the Gaussian tail upper bound, see Fact 3.1, and the fact
that c = Θ(

√
log(1/(βγ))), i.e., we get the constant 1/16 by appropriately choosing some c =

Θ(
√

log(1/(βγ))). We next bound the numerator from below. We have

E
x1∼N

[|x1 − t1|e2cx11{x1 ∈ A−}] ≥ t1
2

E
x1∼N

[e2cx11{t∗ ≤ x1 ≤ t1/2}]

=
t1
2
e4c

2
Pr

x1∼N
[t∗ ≤ x1 + 2c ≤ t1/2] ≥

t1e
4c2

4
, (18)

where for the last inequality we used the fact that Prx1∼N [t∗ ≤ x1 + 2c ≤ t1/2] is at least 1/2 since
t1/2− t∗ is at least a large absolute constant and c = Θ(

√
log(1/(βγ))). In particular, both c− t∗

and t1/2− c are at least large absolute constants. See Figure 5a. Thus, it holds that

Ex1∼N [|x1 − t1|1{x1 ∈ A−}e2cx1 ]

Ex1∼N [|x1 − t1|1{x1 ∈ A+}e2cx1 ]
≥ 4

β
.

Similarly to the proof of Lemma 4.5, we now replace the exponential function e2cx by the square of
the Taylor expansion of ecx, i.e., S2

k(cx). It suffices to bound the following ratios

Ex1∼N [e2cx1 |x1 − t1|1{x1 ∈ A+}]
Ex1∼N [(Sk(cx1))2|x1 − t1|1{x1 ∈ A+}]

≥ 1

2
and

Ex1∼N [(Sk(cx1))
2|x1 − t1|1{x1 ∈ A−}]

Ex1∼N [e2cx1 |x1 − t1|1{x1 ∈ A−}]
≥ 1

2
.

(19)
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We start by showing the first inequality of Equation (19). It suffices to show that

E
x1∼N

[|e2cx1 − S2
k(cx1)||x1 − t1|1{x1 ∈ A+}] ≤ E

x1∼N
[e2cx1 |x1 − t1|1{x1 ∈ A+}] .

Using the L1 approximation error bound for the Taylor polynomial of Claim 4.7 and Hölder’s
inequality we can get an L2 approximation guarantee. Assuming that k is some sufficiently large
absolute constant multiple of c2, i.e., k = C ′c2, it holds

∥e2cx1 − S2
k(cx1)∥2 ≤ ∥e2cx1 − S2

k(cx1)∥1/31 ∥e
2cx1 − S2

k(cx1)∥2/34

≤ e−C′keO(c2) ≤ e−Ω(k) , (20)

where the last inequality follows from the fact that S2
k(cx1) ≤ e2c|x1|, ∥e2c|x1|∥4 ≤ eO(c2) and C ′ is

sufficiently large absolute constant. We can now use Cauchy-Schwarz and the L2 approximation
guarantee of S2

k(cx1) to obtain

E
x1∼N

[|e2cx1 − S2
k(cx1)||x1 − t1|1{x1 ∈ A+}]

≤ ∥x1 − t1∥2∥e2cx1 − S2
k(cx1)∥2

≤ 2t1e
−Ω(k) , (21)

where we used that ∥x1 − t1∥2 ≤ 2t1 for t1 ≥ 1. We have that

E
x1∼N

[e2cx1 |x1 − t1|1{x1 ∈ A+}] ≥ E
x1∼N

[e2cx1 |x1 − t1|1{x1 ≤ t∗}]

≥ (t1 − t∗)e−(2c−t∗)2/4 ≥ t1e
−4c2/8 , ▷ t∗ ≤ c and t∗ ≤ t1/2 (22)

where for the second inequality we used the Gaussian tail lower bounds of Fact 3.1. Combining
Inequality (21) and Inequality (22), we obtain that for k larger than some constant multiple of c2

the first inequality of Equation (19) holds. The proof of the second inequality of Equation (19) is
similar. We obtain that Inequality (16) holds for the polynomial S2

k(cx1) for k = Θ(1/ log(1/(βγ)))
and c = Θ(1/

√
log(1/(βγ))).

Finally, using Fact 4.6 we have that ∥S2
k(cx1)∥2 ≤ ∥e2c|x1|∥2 = eO(c2). Using the estimate of

Equation (18) and the L2 approximation guarantee of Equation (20) we obtain that

Ex1∼N [S2
k(cx1)|x1 − t1|1{x1 ∈ A−}]
∥S2

k(cx1)∥2
=

e−Ω(c2) − e−Ω(k)

eO(c2)
= e−O(c2) = poly(γβ) ,

where we used the fact that k is a sufficiently large constant multiple of c2 and c2 = Θ(log(1/(βγ))).
We conclude that

E
(x1,x2)∼N2

[
(x1 − t1)β(x1,x2)sign(x1 − t∗)

S2
k(cx1)

∥S2
k(cx1)∥2

]
≤ β

Ex1∼N [S2
k(cx1)|x1 − t1|1{x1 ∈ A−}]
∥S2

k(cx1)∥2
−

Ex1∼N [S2
k(cx1)|x1 − t1|1{x1 ∈ A+}]
∥S2

k(cx1)∥2
≤ −t1poly(βγ) .

The proof of the upper bound on the coefficients of the polynomial S2
k(cx1)/∥S2

k(cx1)∥2 is similar to
that of the constant hypothesis case, see Lemma 4.3.

This completes the proof of Lemma 4.9.
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Figure 6: (a) Our certificate when the angle θ between the two halfspaces is large. Notice that we
have changed coordinates so that the point (0, 0) is their crossing point. The mean of the Gaussian
is now moved to the point (µ1, µ2) = (−t/ tan(θ) + t∗/ sin θ,−t). Notice that since in this case we
have assumed that |t| ≤ C

√
log(1/(βγ)), the e2-coordinate of the mean of the Gaussian cannot

be very far from the origin. In this case, we overestimate the agreement region between the two
halfspaces (red area) considering to be {x1 ≤ 1}. In order to put more weight to the disagreement
area, we again use the polynomial shift (see Lemma 4.5) in the direction e1 = (w∗)⊥w . Observe that
this differs from the cases of Subsection 4.1.1 and Subsection 4.1.2, where the polynomial shift was
along the direction of w∗.
(b) The case where the angle θ between the two halfspaces is small, θ = O(ϵ2γβ). In that case, the
crossing point W of the two halfspaces is very far from the origin, |W | ≥ Ω(1/(ϵγβ)). In this case,
simply taking a band around ℓ(x) works as a certificate.

4.1.3 Certificate Against “Small Threshold” Halfspaces

Lemma 4.13 (Certificate against “Small Threshold” Hypotheses). Let D be a distribution on
Rd × {±1} with standard normal x-marginal. Assume that D satisfies the η-Massart noise condition
with respect to some at most (1 − γ)-biased optimal halfspace. Define the linear function ℓ(x) =
sign(w · x − t) and assume that t/ ∥w∥2 ≤ C

√
log(1/(βγ)) for some absolute constant C > 0.

Moreover, assume that Pr(x,y)∼D[sign(ℓ(x)) ̸= y] ≥ OPT + ϵ. Then, there exists polynomial
q(x) =

∑
|α|≤k cαx

α of degree Θ(log( 1β )), norm ∥q(x)∥2 = 1, and sum of (absolute) coefficients∑
|α|≤k |cα| ≤ dO(k), and r1, r2 ∈ R with |r1 − r2| ≥ poly(ϵβγ) such that

E
(x,y)∼D

[ℓ(x)y1{r1 ≤ ℓ(x) ≤ r2}q2(x)] ≤ −ϵ4poly(βγ) ∥ℓ(x)∥2 .

Proof. Denote ℓ∗(x) = w∗ ·x− t∗ the optimal halfspace and denote ℓ(x) = w ·x− t for some vectors
w ∈ Rd and some threshold t ∈ R. Moreover, denote θ = θ(w∗,w) the angle between w∗ and w.
We first observe that since OPT = Pr(x,y)∼D[sign(ℓ

∗(x) ̸= y] it holds that

Pr
(x,y)∼D

[sign(ℓ(x)) ̸= y]−OPT = E
x∼Dx

[1{sign(ℓ(x)) ̸= sign(ℓ∗(x))}β(x)] .

Thus, the disagreement probability between ℓ(x) and ℓ(x∗) Ex∼Dx [1{sign(ℓ(x)) ̸= sign(ℓ∗(x))}] ≥ ϵ
from our assumption that Pr(x,y)∼D[sign(ℓ(x)) ̸= y] ≥ OPT+ ϵ. From Fact 3.2 we know that

Pr
x∼Dx

[sign(ℓ(x)) ̸= sign(ℓ∗(x))] ≤ O(θ) +O(|t∗ − t|) .

Thus, we either have that the angle of the two halfspaces is large θ = Ω(ϵ) or the difference of their
thresholds |t∗ − t| = Ω(ϵ).
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Since we can always write

E
(x,y)∼D

[(w · x− t)y 1{r1 ≤ ℓ(x) ≤ r2}q2(x)]

= ∥w∥2 E
(x,y)∼D

[( w

∥w∥2
· x− t

∥w∥2

)
y 1{r1 ≤ ℓ(x) ≤ r2}q2(x)

]
,

we will assume for simplicity that ∥w∥2 = 1 and |t| ≤ C
√

log(1/(βγ)). We are going to construct a
polynomial q(x) that only depends on the subspace V spanned by w,w∗. Therefore, as in the case
of Lemma 4.3, we can project x to the subspace V spanned by w,w∗ and preserve the η-Massart
noise assumption, see Claim 4.4. Let θ = θ(w,w∗) be the angle between w,w∗. Without loss of
generality, we may assume that w = e2 and w∗ = − sin θe1 + cos θe2, see Figure 6a. Therefore, in
this case we have that ℓ(x) = x2 − t and ℓ∗(x) = − sin θe1 + cos θe2 − t∗.

We first provide a certificate that works when the angle θ is non-trivial, that is when θ ≥ C ′ϵ2γβ,
for some small enough constant C ′ chosen appropriately. We change the coordinates so that the
crossing point of the two linear functions ℓ, ℓ∗ is the origin (0, 0). This will move the mean of the
Gaussian to the point (µ1, µ2) = (−t/ tan θ + t∗/ sin θ,−t), see Figure 6a.

Assume first that Cϵ2γβ = θ ≤ π/2 and µ1 ≥ 0, we show later that the other cases are symmetric.
Set r1 = 0, r2 = tan(θ) = Θ(θ), and let q(x) depend only on x1, we have that

E
(x,y)∼D

[ℓ(x)y 1{r1 ≤ ℓ(x) ≤ r2}q2(x)]

= E
(x1,x2)∼N (µ1,µ2)

[x2sign(− sin θx1 + cos θx2) β(x1,x2)1{0 ≤ x2 ≤ r2}q2(x1)]

≤ E
(x1,x2)∼N (µ1,µ2)

[x2sign(1− x1) β(x1,x2) 1{0 ≤ x2 ≤ r2}q2(x1)] , (23)

where for the inequality we used the fact that 0 ≤ x2 ≤ r2 = tan(θ), and therefore it holds that if
− sin θx1 + cos θx2 ≥ 0 then it holds that 1− x1 ≥ 0, for all (x1,x2) such that x2 ∈ [0, r2]. Observe
now that in order to maximize the quantity of Equation (23) the “worst-case” noise function β(x1,x2)
is equal to β for all points where the integral is negative, and +1 when the integral is positive, that
is β(x1,x2) = β1{x1 ≥ 1}+ 1{x1 < 1}. Since this “worst-case” noise β(x1,x2) is independent of x2,
it follows that we can decompose the expectation of Equation (23), i.e.,

E
x1∼N (µ1)

[q2(x1)sign(1− x1)β(x1)] E
x2∼N (µ2)

[x21{0 ≤ x2 ≤ r2}] .

Since |µ2| = |t| ≤ C
√
log(1/(βγ)) from standards bounds of the Gaussian tail probability (Fact 3.1),

we obtain
E

x2∼N (µ2)
[x21{0 ≤ x2 ≤ r2}] ≥ θ2poly(βγ) .

It remains to bound the term Ex1∼N (µ1)[q
2(x1)sign(1− x1)β(x1)]. We observe that the “worst-case”

value of µ1 ≥ 0 in order to maximize this expectation is µ1 = 0. Now, we can use the same argument
as in the proof of Lemma 4.3; notice that in this case the threshold is 1 instead of

√
log(1/γ)

and therefore, by picking k = Θ(log(1/(β))) we have that there exists polynomial q such that
Ex1∼N (µ1)[q

2(x1)sign(1− x1)β(x1)] ≤ −poly(βγ) and thus, we obtain the bound:

E
(x,y)∼D

[ℓ(x)y 1{r1 ≤ w · x ≤ r2}q2(x)] ≤ −θ2poly(βγ)∥ℓ(x)∥2 .

In the case where θ ∈ [0, π/2] and µ1 < 0, we may pick r1 = − tan(θ) and r2 = 0 resulting in a
completely symmetric case to the previous one. Finally, the case where θ ∈ [π/2, π] is easier than
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the previous two cases since the disagreement region between the two halfspaces is now a superset of
the corresponding region in the previous cases.

We now handle the case where the angle between the two halfspaces is small, i.e., θ ≤ C ′ϵ2βγ.
We know that the disagreement between two halfspaces is upper bounded by their angle, i.e.,
Ex∼Dx [h(x) ̸= f(x)] ≤ O(θ) +O(|t− t∗|). Since Ex∼Dx [h(x) ̸= f(x)] ≥ ϵ, we obtain that the two
thresholds t, t∗ cannot be very close, i.e., |t− t∗| = Ω(ϵ). As in the previous case, we may assume
that w = e2 and w∗ = − sin θe1 + cos θe2. Recall that the intersection point of the two halfspaces
has coordinates (t/ tan θ − t∗/ sin θ, t). This means that when θ = O(ϵ2γβ) the intersection point of
the two halfspaces is very far from the origin: its first coordinate is |t/ tan θ− t∗/ sin θ| = Ω(1/(ϵγβ)),
since by the triangle inequality, it follows

|t cos θ − t∗| ≥ |t− t∗| cos θ − |t∗|| cos θ − 1|

≥ |t− t∗|(1− ϵ4γ2β2)−O(
√

log(1/(βγ)))(ϵ4γ2β2 − 2ϵ8γ4β4) = Ω(ϵ) ,

where we used the inequality 1−x2 ≤ cosx ≤ 1−x2/2+x4, for all x ∈ [0, π/2] and the fact that ϵ ≤ 1/2.
Combining, the above with sin(θ) = O(ϵ2βγ), we get that |t/ tan θ−t∗/ sin θ| = Ω(1/(ϵγ2β2)). In this
case, we do not require a polynomial for the certificate, therefore the certificate is going to be simply
a band, see Figure 6b. Let W be the e1-coordinate of the crossing point of the optimal halfspace
with ℓ(x), see Figure 6b. We have that |W | = Ω(1/(ϵβγ)). Without loss of generality, we may
assume that W < 0 along with the band ϵ2/2 ≤ ℓ(x) ≤ ϵ2 since the proof of the other case is similar:
we just need to consider the band −ϵ2 ≤ ℓ(x) ≤ −ϵ2/2 instead, see Figure 6b. Moreover, denote W ′

the e1-coordinate of the point of ℓ∗(x) = ℓ(x) + ϵ2, see Figure 6b. It holds W ′ = W + ϵ2/ tan θ, and
note that |W ′| = Ω(1/(ϵβγ)) since |W + ϵ2/ tan θ| ≥ (|t cos θ − t∗| − |ϵ2|)/ sin θ ≥ Ω(1/(ϵβγ)). We
have

E
(x1,x2)∼N2

[ℓ(x)sign(−x1 sin θ + x2 cos θ − t∗)1{ϵ2/2 ≤ ℓ(x) ≤ ϵ2}β(x1,x2)]

≤ E
(x1,x2)∼N2

[ℓ(x)sign(−x1 +W + ϵ2/ tan θ)1{ϵ2/2 ≤ ℓ(x) ≤ ϵ2}β(x1,x2)] , (24)

where we overestimated the contribution of the agreement area (red region in Figure 6b) by the
region x1 ≤ W ′. Since W ′ is still very far from the origin the contribution of the region x1 ≤ W ′

is going to be very small. To bound the quantity of Equation (24), we first bound from above the
region where sign(−x1 +W ′) is positive:

E
(x1,x2)∼N2

[ℓ(x)1{ϵ2/2 ≤ ℓ(x) ≤ ϵ2}β(x)1{x1 ≤W ′}] ≤ Pr
x1∼N

[x1 ≤W ′] ≤ e−1/(ϵβγ)2 , (25)

where we used the fact that |W ′| = Ω(1/(ϵγβ)). Next, we bound from below the region where
sign(−x1 +W ′) is negative:

E
(x1,x2)∼N2

[ℓ(x)1{ϵ2/2 ≤ ℓ(x) ≤ ϵ2}β(x)1{x1 ≥W ′}]

≥ β E
x2∼N

[ℓ(x2)1{ϵ2/2 ≤ ℓ(x2) ≤ ϵ2}] Pr
x1∼N

[x1 ≥W ′]

≥ ϵ2

4
β Pr

x2∼N
[ϵ2/2 ≤ ℓ(x2) ≤ ϵ2] ≥ ϵ4βpoly(βγ) , (26)

where we used that Prx1∼N [x1 ≥ W ′] ≥ 1/2 and that β(x) ≥ β. Using Equation (25) and
Equation (26) to Equation (24), we get

E
(x1,x2)∼N2

[ℓ(x)sign(−x1 sin θ + x2 cos θ − t∗)1{ϵ2/2 ≤ ℓ(x) ≤ ϵ2}β(x1,x2)] ≤ −ϵ4poly(βγ) .

We combine the above cases to obtain the claimed bound.
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4.2 Efficiently Computing the Certificate via SDP

In this section, we show that we can efficiently compute our polynomial certificate given labeled
examples from the target distribution. The following is the main proposition of this subsection,
where we bound the number of samples and the runtime needed to compute the certificate given
samples from the distribution D. The proof is similar to that given in [DKTZ20b]; we adapt it to
work for our certifying function and for general (as opposed to homogeneous) halfspaces.

Proposition 4.14 (Certificate Oracle). Let D be a distribution on Rd × {±1} with standard normal
x-marginal. Assume that D satisfies the η-Massart noise condition with respect to some (at least)
(1− γ)-biased optimal halfspace f(x). Let ℓ(x) be any linear function such that Prx∼Dx [sign(ℓ(x)) ̸=
f(x)] ≥ ϵ, for ϵ ∈ (0, 1). There exists an algorithm that draws N = dO(log(1/(βγ))) log(1/δ)/ϵ2 samples
from D, runs in time poly(N, d), and with probability 1− δ returns a positive function T (x) with
∥T (x)∥4 ≤ 1 such that

E
(x,y)∼D

[T (x)ℓ(x)y] ≤ −ϵ4d−O(log(1/(βγ)))∥ℓ(x)∥2 .

Proof. From Proposition 4.2, we know that we are looking for a certificate function T (x) of the
form T (x) = 1B(x)q

2(x), where B is a band with respect ℓ(x), i.e., B = {r1 ≤ ℓ(x) ≤ r2} for
some r1, r2 ∈ R ∪ {∞} and q(x) is a k = Θ(log(1/γβ)) degree polynomial. We illustrate how
we can formulate the search of such function as an SDP. For the rest of this section, let 1B(x)
be the indicator function of the region B = {x : r1 ≤ ℓ(x) ≤ r2}, for some appropriate choices
r1, r2 ∈ R ∪ {∞} and λ = ϵ4d−O(k)∥ℓ(x)∥2. Denote by m(x) the vector containing all monomials
up to degree k, such that mS(x) := xS , indexed by the multi-index S satisfying |S| ≤ k. Recall
that if S = (s1, . . . , sd), then xS =

∏d
i=1 x

si
i . The dimension of m(x) ∈ Rm is m =

(
d+k
k

)
. Let

M = E(x,y)∼D
[
m(x)m(x)⊤1B(x)ℓ(x)y

]
, for any real matrix A ∈ Rm×m, we define the following

function

Lℓ(A) = E
(x,y)∼D

[
m(x)⊤A m(x)1B(x)ℓ(x)y

]
= tr (AM) . (27)

Notice that Lℓ is linear in its variable A. From Proposition 4.2, we know that if Prx∼Dx [sign(ℓ(x)) ̸=
f(x)] ≥ ϵ, then there exists a (normalized) polynomial q(x) = m(x) · a, with ∥a∥1 = 1 such that
E(x,y)[ℓ(x)y1B(x)q(x)] ≤ −λ. Therefore, for A = aa⊤, we have q2(x) = m(x)⊤A m(x) and
hence, Lℓ(A) ≤ −λ. It follows that there exists a positive semi-definite rank-1 matrix A such that
Lℓ(A) ≤ −λ. Moreover, ∥A∥2F =

∥∥aaT∥∥
F
= ∥a∥42 ≤ 1. Recall that, Sm is the set of (symmetric)

positive semi-definite matrices of m-dimension. We formulate the following semi-definite program

Find A ∈ Sm

s. t. tr(AM) ≤ −λ (28)

∥A∥2F ≤ 1

Moreover, from Proposition 4.2, the SDP (28) is feasible if Prx∼Dx [sign(ℓ(x)) ̸= f(x)] ≥ ϵ. We define
M̃ = 1

N

∑N
i=1m(x(i))m(x(i))⊤1B(x

(i))y(i)ℓ(x(i)), the empirical estimate of M using N samples from
D. Using the following fact, we bound the sample size required so that M̃ is sufficiently close to M
which is similar to Lemma 3.8 of [DKTZ20b]. (See Appendix F for the proof).

Fact 4.15 (Estimation of M). Let Ω = {A ∈ Sm : ∥A∥F ≤ 1} and ϵ, δ ∈ (0, 1). Let ℓ(x) = w ·x+ t

with |ℓ(x)|2 ≤ C and M̃ = 1
N

∑N
i=1m(x(i))m(x(i))⊤1B(x

(i))y(i)ℓ(x(i)). There exists an algorithm
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that draws N = d
O(log 1

γβ
)

Cϵ2
log(1/δ) samples from D, runs in poly(N, d) time and with probability at

least 1− δ outputs a matrix M̃ such that

Pr

[
sup
A∈Ω

∣∣∣tr(AM̃)− tr(AM)
∣∣∣ ≥ ϵ

]
≤ 1− δ .

Using Fact 4.15, we replace the matrix M in Equation (27) with the estimate M̃ and define the
following “empirical” SDP

Find A ∈ Sm

such that tr(AM̃) ≤ −λ/2 (29)

∥A∥2F ≤ 1

From Fact 4.15, we obtain that with N samples we can get a matrix M̃ such that |tr(AM̃−tr(AM)| ≤
−λ/2 with probability at least 1− δ′. From Proposition 4.2, we know that with the given bound for
k and ∥A∥F , there exists A∗ such that

tr(A∗M) ≤ −λ.

Therefore, the SDP (28) is feasible. Moreover, from Fact 4.15 we get that

tr(A∗M̃) ≤ −λ/2 .

Thus, the SDP (29) is feasible. Since the dimension of the matrix A is smaller than the number
of samples, we have that the runtime of the SDP is polynomial in the number of samples. Solving
the SDP with tolerance λ/4, we obtain an almost feasible Ã, in the sense that tr(ÃM̃) ≤ −λ/4.
Using again the guarantee of Fact 4.15, we get that solving the SDP (29), we obtain a positive-semi
definite matrix Ã such that tr(ÃM) ≤ −λ/4. Moreover, we have that for the matrix A returned by
our SDP it holds that

E
x∼N

[(m(x)TAm(x))4] ≤ ∥A∥4F E
x∼N

[(m(x)Tm(x))4] = dlog(1/(βγ)) (30)

To complete the proof, we need to show how to guess the band B. For some large enough constant
C > 0, let T = {±λ2,±2λ2, . . . , C

√
log(1/λ)}. Assume that for some B = {x : r1 ≤ ℓ(x) ≤ r2}, with

r1, r2 ∈ R and some polynomial q(x) with ∥q2(x)∥2 ≤ 1, such that E(x,y)∼D
[
1B(x)q

2(x)ℓ(x)y
]
≤

−λ/4. Then, there exists r̃1, r̃2 ∈ T , with |r1 − r̃1| ≤ λ2 and |r2 − r̃2| ≤ λ2, such that

E
(x,y)∼D

[
1{r̃1 ≤ ℓ(x) ≤ r̃2}q2(x)ℓ(x)y

]
≤ E

(x,y)∼D

[
1B(x)q

2(x)ℓ(x)y
]
+ 2λ2 ≤ −λ/4 ,

where we used Cauchy–Schwarz inequality and the Gaussian concentration. Thus, by setting
δ′ = Θ(δλ4/ log(1/λ)) solving the SDP (29) for all the different choices of r1, r2 ∈ T , with r1 ≤ r2,
we guarantee that the algorithm will return a polynomial q(x) and some thresholds r̃1, r̃2 ∈ T , such
that T (x) = 1{r̃1 ≤ ℓ(x) ≤ r̃2}q2(x) is a certifying function, i.e., it holds

E
(x,y)∼D

[
1{r̃1 ≤ ℓ(x) ≤ r̃2}q2(x)ℓ(x)y

]
≤ −λ/4 ,

with probability 1− δ. Finally, using Inequality (30) we obtain that the L4 norm of T (x) is bounded
from above as ∥T (x)∥4 ≤ dO(log(1/(βγ))). Thus, the function T (x)/∥T (x)∥4 is an ϵ4d−O(log(1/(βγ)))-
certificate.
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4.3 Learning a Near-Optimal Halfspace via Online Convex Optimization

In this subsection, we present a black-box approach to learn halfspaces with η-Massart Noise
given a ρ-certifying oracle. A similar reduction for homogeneous halfspaces based on online-convex
optimization was given in [DKK+20]. Here we adapt it so that it handles non-homogeneous halfspaces.
Another difference is that in [DKK+20] the certificate function was bounded in the L∞ sense. Here
we have certificates bounded in the L4 norm. The arguments however are similar, and we provide
them here for completeness. Formally, we prove:

Proposition 4.16. Let D be a distribution on Rd×{±1} with standard normal x-marginal. Assume
that D satisfies the η-Massart noise condition with respect to some halfspace. Fix ϵ, δ ∈ (0, 1). Given
a ρ-certificate oracle O that returns certifying functions with bounded ℓ4-norm. There exists an
algorithm that makes T = O(d log(1/ϵ)

ρ2ϵ4
) calls to O, draws N = Õ( d

ρ2ϵ4
log(1/δ)) samples from D, runs

in poly(d,N, T ) time and computes a hypothesis h, such that Pr(x,y)∼D[h(x) ̸= y] ≤ OPT+ ϵ, with
probability 1− δ.

We will require the following standard regret bound from online convex optimization.

Lemma 4.17 (see, e.g., Theorem 3.1 of [Haz16]). Let V ⊆ Rn be a non-empty closed convex set with
diameter K. Let r1, . . . , rT be a sequence of T convex functions ri : V 7→ R differentiable in open
sets containing V, and let G = maxi∈[T ] ∥∇wri∥2. Pick any w(1) ∈ V and set ηi = K

G
√
t

for i ∈ [T ].

Then, for all u ∈ V, we have that
∑T

i=1(ri(w
(t))− ri(u)) ≤ 3

2GK
√
T .

We show below that the optimal vector w∗ and threshold t∗ and our current candidate vector
w(i) and threshold t(i) have a separation in the value of ri.

Lemma 4.18 (Error of ri). Let D be a distribution on Rd × {±1} with standard normal x-marginal.
Assume that D satisfies the η-Massart noise condition with respect to the optimal halfspace sign(w∗ ·
x+ t∗). Let w(i) with ∥w(i)∥ ≤ 1 and t(i) ∈ R. Fix ρ ∈ (0, 1) and let ri(w, t) = −E(x,y)∼D[(T

(i)(x) +

ρ)y(x, 1)] · (w, t), where T (i)(x) is a non-negative function returned from a (2ρ)-certificate oracle, we
have that

ri(w
(i), t(i))− ri (w

∗, t∗) ≥ ρϵ2/2 .

Proof. Let ℓ(i)(x) = w(i) · x+ t(i). Using the fact that T (i)(x) ≥ 0, we have

E
(x,y)∼D

[T (i)(x)(w∗ · x+ t∗)y] = E
x∼Dx

[T (i)(x)|w∗ · x+ t∗|β(x)] > 0 .

Therefore, we have that for every i ∈ [T ], it holds ri(w
∗, t⋆) ≤ −ρEx∼Dx [|w∗ · x + t∗|β(x)]. Let

I = {x : w∗ · x ∈ (−t∗ − ϵ/2,−t∗ + ϵ/2)} and note that it should hold that Pr(x,y)∼D[f(x) ̸= y] =
OPT ≤ 1/2 − ϵ, otherwise the (2ρ)-certifying oracle would not be able to return a function, and
therefore Ex∼Dx [β(x)] ≥ 2ϵ. We have that

E
x∼Dx

[|w∗ · x+ t∗|β(x)] ≥ E
x∼Dx

[|w∗ · x+ t∗|{x ̸∈ I}β(x)] ≥ ϵ

2
E

x∼Dx

[{x ̸∈ I}β(x)]

=
ϵ

2
E

x∼Dx

[β(x)]− ϵ

2
E

x∼Dx

[{x ∈ I}β(x)] ≥ ϵ2/2 .

where in the last inequality we used that Ex∼Dx [β(x)] ≥ 2ϵ and Ex∼Dx [{x ∈ I}] ≤ ϵ from Fact 3.1.
It remains to bound from below ri(w

(i), t(i)). Using the fact that E(x,y)∼D[T
(i)(x)(w(i)·x+t(i))y] ≤

−2ρ∥ℓ(i)(x)∥2, we have

ri(w
(i), t(i)) = − E

(x,y)∼D

[
(T (i) (x) + ρ)(w(i) · x+ t(i))y

]
≥ 2ρ∥ℓ(i)(x)∥2 − ρ E

x∼Dx

[
(w(i) · x+ t(i))y

]
≥ ρ∥ℓ(i)(x)∥2 ≥ 0 ,
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Input:

1. ϵ, δ > 0.

2. A distribution D that satisfies the η-Massart Noise condition.

3. Access to a ρ-certificate oracle O

Output: A vector w and threshold t ∈ R such that Pr(x,y)∼D[sign(w ·x+ t) ̸= y] ≤ OPT+ ϵ

Define: T = C d log(1/ϵ)/(ρϵ)2, N = C d/ϵ2 log(1/ϵ) log(T/δ), for some large enough
constant C > 0, V = {(w, t) ∈ Rd+1 : ∥w∥2 ≤ 1}, |t| ≤ 4

√
log(1/ϵ)}

1. w(0) ← e1, t(0) ← 0

2. For i ∈ [T ] do

(a) ηi ← 1/(
√
i+ ρ)

(b) If (w(i), t(i)) = 0 then T (i)(x) = 0.

(c) Else let ANS← O((w(i), t(i))).

(d) If ANS = FAIL then return (w(i), t(i)) else T (i) ← ANS

(e) Let ∇r̂i(w, t) be an estimator of −E(x,y)∼D
[(
T (i)(x) + ρ

)
y(x, 1)

]
(Lemma 4.19)

(f) (w(i+1), t(i+1))← projV
(
(w(i), t(i))− ηi∇r̂i(w(i), t(i))

)
3. return (w(T+1), t(T+1))

Algorithm 1: Learning Halfspaces with η-Massart noise.

where we used the Cauchy-Schwarz inequality and the fact that x is standard normal.

Since we do not have access to ri precisely, we need a function r̂i, which is close to ri with high
probability. The following simple lemma gives us an efficient way to compute an approximation r̂i of
ri.

Lemma 4.19 (Estimating the function ri). Let D be a distribution on Rd × {±1} with standard
normal x-marginal and let T (i)(x) be a non-negative function returned by a (2ρ)-certificate oracle.
Moreover, assume that T (i)(x) has bounded ℓ4 norm, i.e., ∥T (i)(x)∥4 ≤ 1. Then after drawing
O(d log(1/ϵ)/ϵ2 log(d/δ)) samples from D, with probability at least 1−δ, we can compute an estimator
r̂i that satisfies the following conditions:

•
∥∥∇r̂i(w, t)−E(x,y)∼D[(T

(i)(x) + ρ)y(x, 1)]
∥∥
2
≤ ϵ/

√
log(1/ϵ)

• ∥∇r̂i(w, t)∥2 ≤ 2
√
d.

The proof of the lemma above can be found on Appendix F. We now proceed with the proof of
Proposition 4.16.

Proof of Proposition 4.16. Note for the proof for simplicity, we assume that we have access to (2ρ)-
certifying oracle, but the same argument works for ρ′ = ρ/2 and access to ρ′-certifying oracle. Let
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ℓ(i)(x) = w(i) · x+ t(i). We define V = {(w, t) ∈ Rd+1 : ∥w∥2 ≤ 1, |t| ≤ 4
√
log(1/ϵ)}. Let T be the

number of optimization steps that our algorithm runs. Assume, in order to reach a contradiction, that
for all steps i ∈ [T ] it holds that Pr(x,y)∼D[sign(ℓ

(i)(x)) ̸= y] ≥ OPT+ϵ. Let f(x) = sign(w∗ ·x+ t∗).
For each step i, let define T (i)(x) to be the non-negative function outputted by the (2ρ)-certifying
oracle O. Thus, we have

E
(x,y)∼D

[T (i)(x)y(w(i) · x+ t(i))] ≤ −ρ∥ℓ(i)(x)∥2 .

Let ∇r̂i(w, t) be an estimator of ∇ri (w, t) = −E(x,y)∼D[
(
T (i)(x) + ρ

)
y(x, 1)] such that with

probability at least 1 − δ
T it holds ∥∇r̂i(w, t)−∇ri(w, t)∥2 ≤

1
2ρϵ

2 for all (w, t) ∈ V. Moreover,
from Lemma 4.19, for N = Õ(d/ log(T/δ)/(ϵ4ρ2)) samples, we can achieve that.

Using the separation between the optimal hypothesis and the current one, i.e., Lemma 4.18, for
every step i ∈ [T ], we have that ri(w

(i), t(i))− ri(w
∗, t∗) ≥ 1

2ρϵ
2. Therefore, it holds

r̂i(w
(i), t(i))− r̂i(w

∗, t∗) ≥ 1

4
ρϵ2 , (31)

with probability at least 1 − δ
T . In order to apply the online gradient descent algorithm, i.e.,

Lemma 4.17, we need to define the parameters of the algorithm. First, the convex set we optimize
over is V, hence, the diameter of V is K = O(

√
log(1/ϵ)). Furthermore, from Lemma 4.19, we get

that ∥∇r̂i(w, t)∥2 = O(
√
d), and therefore, from Lemma 4.17, it holds

1

T

T∑
i=1

(
r̂i(w

(i), t(i))− r̂i (w
∗, t∗)

)
≲

√
d+

√
log(1/ϵ)√
T

.

By the union bound, it follows that with probability at least 1− δ, we have that

1

4
ρϵ2 ≤ 1

T

T∑
i=1

(
r̂i(w

(i), t(i))− r̂i(w
∗, t∗)

)
≲

√
d+

√
log(1/ϵ)√
T

,

which leads to a contradiction for T = Θ(d log(1/ϵ)
ρ2ϵ4

).
Thus, either there exists i ∈ [T ] such that Pr(x,y)∼D[sign(ℓ

(i)(x)) ̸= y] ≤ OPT + ϵ, which the
algorithm returns, or the (2ρ)-certifying oracle O did not provide a correct certificate, which happens
with probability at most δ. Moreover, the algorithm calls the certificate oracle T times and the
number of samples needed are N . The runtime is the number of steps and multiplies by the number
of samples T N . This completes the proof.

Given Proposition 4.16, the proof of Theorem 4.1 follows by showing that the function returned
by Proposition 4.14 is a ρ-certifying oracle, for an appropriate choice of ρ.

Proof of Theorem 4.1. In order to prove Theorem 4.1, we need to construct a ρ-certifying oracle.
Using N = O(dlog(1/(γβ))) log(1/δ)/ϵ2 samples, Proposition 4.14 provides with probability 1− δ a
ρ = ϵ2poly(βγ) certifying oracle in runtime poly(N, d). Therefore, from Proposition 4.16 the proof
follows. The overall samples complexity is O(N log(T )) and the runtime is poly(N, d).
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5 Learning Halfspaces with General Massart Noise

In this section, we present our algorithm for learning halfspaces with general Massart noise. The
main result of this section is the following theorem.

Theorem 5.1 (Learning Halfspaces with General Massart Noise). Let D be a distribution on
Rd × {±1}, with standard normal x-marginal, that satisfies the Massart noise condition for η = 1/2
with respect to a target (possibly biased) halfspace f ∈ C. Let ϵ, δ ∈ (0, 1]. There exists an algorithm
that draws N = dO(log(1/ϵ)) log(1/δ) samples from D, runs in time poly(N, d)2poly(1/ϵ), and computes
a halfspace h ∈ C such that with probability at least 1− δ it holds Pr(x,y)∼D[h(x) ̸= y] ≤ OPT+ ϵ .

We remark that the algorithm of Theorem 5.1 works for any halfspace, regardless of whether it
is biased or not. In the presentation that follows, we will focus on learning homogeneous halfspaces
for the sake of simplicity. It is not hard to generalize the algorithm to work for arbitrary halfspaces.
(We present the general algorithm for arbitrary halfspaces in Appendix D.) The proof of Theorem 5.1
consists of three main parts; see Section 2.2 for a roadmap of the proof. First, in Subsection 5.2
we show that by restricting on a thin slice and then projecting the distribution on the subspace
w⊥, we obtain an instance where the optimal halfspace has again 1/2-Massart noise everywhere
apart from a small region close to the halfspace, see Figure 3a. In Subsection 5.1, we present our
main technical contribution, i.e., that there exists a low-degree, mean-zero, polynomial that achieves
non-trivial correlation when η(x) ≤ 1/2 “almost everywhere”. Finally, in Subsection 5.3 we show
that the existence of such polynomials implies that by finding the left singular vectors of (a flattened
version) of the Chow tensors of the distribution, we can construct a poly(1/ϵ)-dimensional subspace
inside which the direction (w∗)⊥w has poly(ϵ) projection. Recall that (w∗)⊥w is the normalized
projection of w∗ onto the orthogonal complement of w⊥:

(w∗)⊥w =
projw⊥(w∗)

∥projw⊥(w∗)∥2
.

In Subsection 5.3, we combine everything together to prove Theorem 5.1.
We now state the main technical result of this section. (This is the formal version of Proposi-

tion 2.5.)

Proposition 5.2. Let D be a distribution on Rd × {±1}, with standard normal x-marginal, that
satisfies the Massart noise condition for η = 1/2, with respect to some target halfspace f(x) =
sign(w∗ · x). Let w ∈ Rd be a unit vector such that Pr(x,y)∼D[sign(w · x) ̸= y] ≥ OPT + ϵ and
θ(w,w∗) ≤ π− ϵ for some ϵ ∈ (0, 1/2]. There exists an algorithm that draws N = dO(log(1/ϵ)) log(1/δ)
samples from D, runs in time poly(N, d), and with probability at least 1 − δ returns a basis of a
subspace V ⊆ w⊥ such that ∥projV ((w∗)⊥w)∥2 ≥ poly(ϵ).

Observe that given a subspace V with the above guarantees, we can sample a uniformly random
direction on the unit sphere of V and obtain a unit update vector v such that v ∈ w⊥ and
v · (w∗)⊥w ≥ poly(ϵ), which given Lemma 5.13 improves the current guess w; see Subsection 5.3 for
the details.

5.1 The Sign-Matching Polynomial

Here we give an explicit construction of a mean-zero low-degree polynomial that achieves non-trivial
correlation with the labels y. The assumptions on the distribution D over (x, y) ∈ Rd × {±1} are
that it has Gaussian x-marginal and “almost-Massart” noise, i.e., that is η(x) is greater than 1/2
only on a very small region close to the optimal halfspace. We prove the following:
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Proposition 5.3 (Correlation via the Sign-Matching Polynomial). Let D be a distribution on
Rd × {±1} whose x-marginal is the standard normal distribution. Let f(x) = sign(v∗ · x − b) be
such that Ex∼Dx [β(x)1{sign(b)f(x) > 0}] ≥ ζ for some ζ ∈ (0, 1/2], and η(x) > 1/2 only when
0 ≤ sign(b)(v∗ · x− b) ≤ ξ, where ξ is a sufficiently small constant multiple of ζ3. There exists a
univariate polynomial p(z) of degree Θ(b2 +1) such that Ex∼Dx [p(v

∗ ·x)] = 0, Ex∼Dx [p
2(v∗ ·x)] = 1,

and E(x,y)∼D[yp(v
∗ · x)] = poly(ζ).

Proof. The main ingredient of the proof is the following lemma that shows the existence of a mean
zero polynomial that matches the sign of the linear function z − b; see Figure 3b.

Lemma 5.4 (Sign-Matching Polynomial). Let b ∈ R. There exists a zero mean and unit variance
polynomial p : R 7→ R of degree k = Θ(b2 + 1) such that

• The sign of p matches the sign of the threshold function sign(z−b), i.e., sign(p(z)) = sign(z−b)
all z ∈ R,

• for any ρ ∈ (0, 1), it holds |p(b+ sign(b)ρ)| ≥ ckpoly(ρ), where c > 0 is a universal constant,

• p(z) is increasing for all |z| ≥ |b|.

Proof. We first pick some odd integer k large enough such that 2|b| ≤
√
k ≤ 4max(|b|, 1). Let

q(z) = z3k, r(z) = z2k − (2k − 1)!!. We consider the polynomial

p(z) = q(z)− q(b)

r(b)
r(z) .

It holds p(b) = 0 and Ez∼N [p(z)] = 0, since Ez∼N [z3k] = 0, for odd k and Ez∼N [z2k] = (2k − 1)!!.
For the rest of the proof, we need the following simple estimate for double factorials. Sharper

bounds can be obtained via Stirling’s approximation; for our purposes the following rough bounds
suffice.

Fact 5.5. Let m be a positive integer. Then (m/2)m ≤ (2m− 1)!! ≤ (2m)m.

We next show that p(z) is increasing for all |z| ≥ |b|. We compute the derivative of p(z), i.e.,

p′(z) = 3kz3k−1 − 2k
q(b)

r(b)
z2k−1 = kz2k−1

(
3zk − 2

q(b)

r(b)

)
, (32)

we observe that if |zk| ≥ 2
3 |q(b)/r(b)|, then p(z) is increasing. We show that this is the case for

all |z| ≥ |b|. Since |z|k is increasing in |z| it suffices to verify the inequality for |z| = |b|. In that
case we obtain the inequality (2k − 1)!!/b2k ≥ 5/3, which can be verified by using Fact 5.5 and our
assumption that |b| ≤

√
k/2.

We now prove that sign(p(z)) = sign(z − b). Note that sign(r(z)) < 0 for any z ∈ [−|b|, |b|]
because |b| ≤

√
k/2 and thus, from Fact 5.5, it holds b2k − (2k − 1)!! ≤ (k/4)k − (k/2)k ≤ 0.

Without loss of generality, assume that b > 0. Assume that there exists s ∈ R with s ≠ b such that
p(s) = 0. First, assume that s ≥ 0, by eq. (32), since r(b) < 0 we get that p(z) is increasing for
z ≥ 0, therefore the polynomial p(z) has only one root at s = b, therefore we have a contradiction.
For the case that s < 0, first observe that for any s = 0, it holds that q(s)r(b) = q(b)r(s) and in
particular sign(q(s)r(b)) = sign(q(b)r(s)). Thus, if −b > s, then it holds sign(q(b)r(s)) = −sign(b)
and sign(q(s)r(b)) = −sign(s), therefore for any such solution it holds sign(s) = sign(b) but s < 0
and b > 0, so we have a contradiction. Finally, for the case that s ≤ −b, recall that for |z| ≥ |b|,
p(z) is increasing, so for z < −b, we have that p(z) is increasing. But p(−b) < 0 because there is no
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other root in the interval [−b, b), thus p(s) < 0 which leads to a contradiction. Therefore, the only
root of the polynomial is at s = b.

We next prove that Ez∼N [p2(z)] = (O(k))3k. By applying twice the inequality (a+b)2 ≤ 2a2+2b2,
we get

E
z∼N

[p2(z)] ≲ E
z∼N

[z6k] +
q2(b)

r2(b)

(
E

z∼N
[z4k] + ((2k − 1)!!)2

)
≲ (6k − 1)!! +

q2(b)

r2(b)
(4k − 1)!! .

Using that |b| ≤
√
k/2 and Fact 5.5, we have that |b2k − (2k − 1)!!| ≥ (k/2)k/2. Hence, we get that

(q(b)/r(b))2 ≲ (2|b|3/k)2k ≲ kk. Therefore, using Fact 5.5, we get that Ez∼N [p2(z)] = O((6k)3k).
Without loss of generality, assume that b > 0. Observe that, for ρ ∈ (0, 1), we have

p(b+ ρ) = (b+ ρ)3k − b3k((b+ ρ)2k − (2k − 1)!!)

b2k − (2k − 1)!!
= (b+ ρ)3k − b3k −

b3k
∑2k−1

m=0

(
2k
m

)
bmρ2k−m

b2k − (2k − 1)!!
.

Recall that using the fact that |b| ≤
√
k/2, it holds that b2k − (2k − 1)!! < 0, thus

p(b+ ρ) ≥ (b+ ρ)3k − b3k =
3k−1∑
m=0

(
3k

m

)
bmρ3k−m .

From the equation above, we get that p(b + ρ) ≳ b3k−1ρ + ρ3k. Let p̃(z) be the polynomial
p(z) normalized, i.e., p̃(z) = p(z)/(Ez∼N [p2(z)])1/2. Notice that normalizing p does not affect
its sign or monotonicity. It remains to prove that p̃(b + ρ) = ckpoly(ρ), where c > 0 is a small
enough constant. If b ≥ 1, recall that in that case it holds that

√
k ≤ 4b, therefore it holds

p̃(b+ ρ) ≳ b3k−1ρ/(6k)3k/2 ≳ ρ/(24)2k. For the case where 0 < b < 1, we have that k = O(1) and
similarly, we have p̃(b+ ρ) ≳ ρ2k/(6k)3k/2 = poly(ρ), hence p̃(b+ ρ) = ckpoly(ρ), for some universal
constant c > 0.

It remains to show that the polynomial p of the Lemma 5.4, achieves non-trivial correlation with
y, i.e., E(x,y)∼D[yp(v

∗ · x)] = poly(ζ). To do this we are going to use the monotonicity properties of
p, the fact that it matches the sign of f(x), and the fact that it is not very flat close to its unique
root at b, see Item 2 of Lemma 5.4. We assume that b ≥ 0 as the other case follows similarly. Recall
that, from the assumptions of Proposition 5.3, there is an explicitly defined region where the noise is
above 1/2, i.e., η(x) > 1/2. We denote this region Iξ, see also Figure 7, that is

Iξ = {x ∈ Rd : η(x) > 1/2} ⊆ {x ∈ Rd : b ≤ v∗ · x ≤ b+ ξ} .

Since p(v∗ · x) (p from Lemma 5.4) matches the sign of v∗ · x− b we have

E
(x,y)∼D

[p(v∗ · x)y] = E
x∼Dx

[p(v∗ · x)sign(v∗ · x− b)β(x)(1{x ̸∈ Iξ} − 1{x ∈ Iξ})]

≥ E
x∼Dx

[|p(v∗ · x)|β(x)1{x ̸∈ Iξ}]− E
x∼Dx

[|p(v∗ · x)|1{x ∈ Iξ}] . (33)

We first bound from below the correlation of the sign-matching polynomial outside the region Iξ,
i.e., the region where the Massart noise condition is true. From Lemma 5.4, we have that p(z) is
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b b+ ξ

v∗ · x

y

Figure 7: The sign-matching polynomial p corresponds to the red curve and the threshold function
f(x) to the blue. Observe that, in the region Iξ = {b ≤ v∗ · x ≤ b+ ξ}, the sign of the polynomial
p does not agree with f(x). This is the region where the Massart noise condition is (potentially)
violated, as a result of the orthogonal projection step, Figure 3a. Even though the sign of p does
not agree with f(x) everywhere, we can take ξ to be small, i.e., ξ is a sufficiently small constant
multiple of ζ3, making the negative contribution of the region Iξ small. We also use crucially the
fact that p is monotone for v∗ · x ≥ b and not very flat in that region, see Item 2 of Lemma 5.4.

increasing for z > b, and therefore it holds

E
x∼Dx

[|p(v∗ · x)|β(x)]1{x ̸∈ Iξ}]

≥ E
x∼Dx

[|p(v∗ · x)|β(x)1{v∗ · x > b+ ζ2}]

≥ |p(b+ ζ2)| E
x∼Dx

[β(x)1{v∗ · x > b+ ζ2}]

= |p(b+ ζ2)|
(

E
x∼Dx

[β(x)1{v∗ · x > b}]− E
x∼Dx

[1{b ≤ v∗ · x ≤ b+ ζ2}]
)

, (34)

where for the first inequality we used the fact that 1{v∗ · x > b+ ξ} ≥ 1{v∗ · x > b+ ζ2}, because
ξ = Θ(ζ3) ≤ ζ2 from the assumptions of Proposition 5.3, and for the second, we used the monotonicity
of p. We next bound from above the contribution of the sign-matching polynomial on the region
where the Massart noise condition is violated, i.e., x ∈ Iξ. Moreover, using again the fact that p(z)
is increasing for z > b, we get

E
x∼Dx

[|p(v∗ · x)|]1{x ∈ Iξ}] ≤ E
x∼Dx

[|p(v∗ · x)|1{b ≤ v∗ · x ≤ b+ ζ2}]

≤ |p(b+ ζ2)| E
x∼Dx

[1{b ≤ v∗ · x ≤ b+ ζ2}] . (35)

Substituting the bounds of eq. (34) and eq. (35) to eq. (33), we get that

E
(x,y)∼D

[p(v∗ · x)y] ≥ |p(b+ ζ2)|
(

E
x∼Dx

[β(x)1{v∗ · x ≥ b}]− 2 E
x∼Dx

[1{b ≤ v∗ · x ≤ b+ ζ2}]
)

≳ |p(b+ ζ2)|(ζ − ζ2) ≳ |p(b+ ζ2)|ζ ,

where we used that from the assumptions of Proposition 5.3 we have Ex∼Dx [β(x)1{sign(b)f(x) >
0}] ≳ ζ, and the anti-concentration property of the Gaussian distribution from Fact 3.1, i.e.,
Ex∼Dx [1{b < v∗ · x < b+ ζ2}] ≤ ζ2/(

√
2π).
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It remains to prove that |p(b + ζ2)| = poly(ζ). From Lemma 5.4, we have that |p(b + ζ2) =
ckpoly(ζ), for some universal constant c > 0. Note that from the assumption of Proposition 5.3 we
have that Ex∼Dx [β(x)1{sign(b)sign(v∗ ·x−b) > 0}] ≳ ζ, hence, from Fact 3.1 we get |b| ≲

√
log(1/ζ),

therefore ck = poly(ζ), since k = Θ(b2 + 1). Hence, we have |p(b+ ζ2)| = poly(ζ). This completes
the proof of Proposition 5.3.

5.2 Projecting onto w⊥

In this subsection, we show that we can project D onto the subspace (w∗)⊥w without violating the
1/2-Massart noise condition by a lot. At the same time we make sure that the “optimal halfspace” of
the projected instance is not very biased. We show the following lemma.

Lemma 5.6 (Orthogonal Projection Inside a Band). Let D be a distribution on Rd × {±1}, with
standard normal x-marginal, that satisfies the Massart noise condition for η = 1/2 with respect to
f(x) = sign(w∗ · x). Let w be a unit vector such that Pr(x,y)∼D[sign(w · x) ̸= y] ≥ OPT + ϵ, and
θ(w,w∗) ≤ π − ϵ, for some ϵ ∈ (0, 1]. Fix some ρ > 0. For t1, t2 ∈ R, consider the band B = {t1 ≤
w · x ≤ t2}. Denote D⊥ = D⊥w

B , i.e., D is the orthogonal projection onto w⊥ of the conditional
distribution on B, and consider the halfspace f⊥ : w⊥ 7→ {±1}, with f⊥(x) = sign(x · (w∗)⊥w − b),
for some threshold b ∈ R. Moreover, define the noise function η⊥(x) = Pr(z,y)∼D⊥ [y ̸= f⊥(z)|z = x].
There exist t1, t2 ∈ R multiples of ρ, with |t1 − t2| = ρ, such that:

1. Ex∼D⊥
x
[(1− 2η⊥(x))1{f⊥(x)sign(b) > 0}] ≳ ϵ/

√
log(1/ϵ)− ρ/ϵ,

2. if η⊥(x) > 1/2 then 0 < sign(b)(x · (w∗)⊥w − b) ≤ ρ/ϵ.

Remark 5.7. Observe that for Lemma 5.6 to give non-trivial guarantees we have to pick the size of
the band, ρ, to be smaller than a sufficiently small constant multiple of ϵ/

√
log(1/ϵ). In fact, in what

follows, we will be using bands of size ρ = poly(ϵ). Moreover, the condition that θ(w,w∗) ≥ π − ϵ is
mostly technical. Having a vector w with θ(w,w∗) ≥ π − ϵ we can always output −w and achieve
classification error O(ϵ). See the proof of Theorem 5.1.

Proof. First, let us denote β(x) = 1 − 2η(x). Note that the assumption Pr(x,y)∼D[sign(w · x) ̸=
y] ≥ OPT + ϵ is equivalent to Ex∼Dx [1{f(x) ̸= sign(w · x)}β(x)] ≥ ϵ. We consider the region
B = {t1 ≤ w · x ≤ t2}, for any t1, t2 ∈ R with |t1 − t2| = ρ. We denote by x⊥ the projection of x
onto the subspace w⊥. Define the distribution D⊥ = Dproj

w⊥
B , that is the distribution D conditioned

on the set B and projected onto w⊥, the hypothesis f⊥(x⊥) = sign(x⊥ · (w∗)⊥w + b) where b ∈ R is
chosen appropriately below, and the noise function η⊥(x⊥) = Pr(z,y)∼D⊥ [y ̸= f⊥(z)|z = x⊥], see
Figure 3a.

Note that the distribution D⊥ does not satisfy the 1/2-Massart noise condition anymore. We
first illustrate how the noise function changes. The orthogonal projection on w⊥ creates a region
where the 1/2-Massart noise condition is violated, i.e., a region where η⊥(x⊥) may be more than
1/2, but we can control the probability that we get points inside this region, i.e., the green area of
Figure 3a. More formally, we show that

E
(xw,x⊥)∼(DB)x

[
β(x)1{f(xw,x

⊥) ̸= f⊥(x⊥)}
]
≤ Pr

x⊥∼D⊥
x

[η⊥(x⊥) > 1/2] ≲ ρ/ϵ . (36)

To show Inequality (36) notice that θ(w,w∗) ≳ ϵ, otherwise we would have Prx∼Dx [f(x) ̸=
sign(w · x)] ≤ ϵ from Fact 3.2. We can assume that w∗ = λ1w + λ2(w

∗)⊥w , where λ1 = cos θ and
λ2 = sin θ. Note that λ2 ≳ ϵ, since θ ∈ [Ω(ϵ), π−ϵ]. Next we set x = (xw,x

⊥), where xw = w ·x. We
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show that the hypothesis f⊥(x) = sign((w∗)⊥w · x⊥ + t1λ1/λ2) is almost as good as the f(x) for the
distribution D⊥. Note that in the statement of Lemma 5.6, we write f⊥(x) = sign((w∗)⊥w · x⊥ − b),
where b = −t1λ1/λ2.

Conditioned on x ∈ B, i.e., xw = x ·w ∈ [t1, t1 + ρ], it holds that

w∗ · x = λ1xw + λ2(w
∗)⊥w · x⊥ = λ1t1 + λ2(w

∗)⊥w · x⊥ + sρ ,

for some s ∈ [−1, 1] (recall that |λ1| ≤ 1). Notice that when 0 < sign(−λ1t1)(λ1t1+λ2(w
∗)⊥w ·x⊥) <

ρ, f⊥(x⊥) is not necessary equal to the sign of (w∗ · x) (recall that λ2 > 0), and therefore we are
inside the region that the 1/2-Massart noise condition is violated, otherwise the f⊥(x⊥) always
matches the sign of w∗ · x. This proves the second statement of Lemma 5.6.

To prove Inequality (36), we need to bound the probability of the event that f⊥(x⊥) is not
necessary equal to the sign of (w∗ · x), or equivalently if sign(−λ1t1) > 0 then (w∗)⊥w · x⊥ ∈
[(−λ1t1 − ρ)/λ2,−λ1t1/λ2] =: Iρ, and otherwise (w∗)⊥w · x⊥ ∈ [−λ1t1/λ2,−(λ1t1 + ρ)/λ2] =: Iρ.
We have that

Pr
x⊥∼D⊥

x

[η⊥(x⊥) > 1/2] ≤ Pr
x⊥∼D⊥

x

[
(w∗)⊥w · x⊥ ∈ Iρ

]
=

Prx∼Dx

[
(w∗)⊥w · x ∈ Iρ

]
Prx∼Dx [x ∈ B]

≲ ρ/λ2 ≲ ρ/ϵ ,

where we used the anti-concentration property of the Gaussian distribution and the last inequality
holds because we have that λ2 ≳ ϵ. This proves Inequality (36).

It remains to prove that there exist thresholds t1, t2 and a band B = {t1 ≤ w · x ≤ t2} with
respect the t1, t2 such that Ex∼D⊥

x
[(1− 2η⊥(x))1{f⊥(x) ̸= sign(−b)}] ≳ ϵ√

log(1/ϵ)
, where D⊥ is the

distribution D conditioned on the set B and projected onto w⊥. We first show the following claim

Claim 5.8. Let v be a unit vector and let S be a subset of Rd such that Ex∼Dx [1{x ∈ S}β(x)] ≥ ϵ,
for some ϵ > 0. Fix ρ > 0. There exist t1, t2 ∈ R such that t1, t2 are multiples of ρ, |t1− t2| = ρ, and

E
x∼Dx

[1{x ∈ S}1{t1 ≤ v · x ≤ t2}β(x)] ≳
ϵρ√

log(1/ϵ)
.

Proof. Note that since β(x)1{x ∈ S} ∈ [0, 1], we have Ex∼Dx [1{x ∈ S}1{C
√

log(1/ϵ) ≤ |v ·
x|}β(x)] ≤ Ex∼Dx [1{C

√
log(1/ϵ) ≤ |v · x|}] ≤ ϵ2, where C is a large enough universal constant. To

get this we used the upper bound on the Gaussian tails, Fact 3.1. Therefore, we can ignore the
region far away from the origin and split the interval |v · x| ≤ C

√
log(1/ϵ), into slices of length ρ.

There must exist one slice inside which the expectation of β(x)1{x ∈ S} is roughly ϵρ/
√
log(1/ϵ).

Let ti = iρ and t−i = −iρ, for 0 ≤ i ≤ C
√
log(1/ϵ)/ρ, we define Bi = {ti ≤ v · x ≤ ti+1} and

B−i = {−ti+1 ≤ v · x ≤ −ti}. We have that∑
|i|≤C
√

log(1/ϵ)/ρ

E
x∼Dx

[1{x ∈ S}1{x ∈ Bi}β(x)] ≥ ϵ− ϵ2 ≥ ϵ/2 , (37)

where we used that Ex∼Dx [1{x ∈ S}1{C
√

log(1/ϵ) ≤ |v · x|}β(x)] ≤ ϵ2. Using the fact that all the
quantities we add in Equation (37) are positive, there exists B′

i, for some i′, such that

E
x∼Dx

[1{x ∈ S}1{x ∈ Bi′}β(x)] ≳
ϵρ√

log(1/ϵ)
,

which completes the proof.
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An application of Claim 5.8 to the set {x ∈ Rd : f(x) ̸= sign(w · x)}, gives us that there exists a
band B = {t1 ≤ w · x ≤ t2} with |t1 − t2| = ρ such that

E
x∼Dx

[1{f(x) ̸= sign(w · x)}1{x ∈ B}β(x)] ≳ ϵρ√
log(1/ϵ)

.

Moreover, note that for the distribution DB, that is the distribution D conditioned on B, it holds
Ex∼(DB)x [β(x)1{f(x) ̸= sign(w · x)}] ≳ ϵ√

log(1/ϵ)
, where we used the Gaussian anti-concentration

property, i.e., that Prx∼N [t1 ≤ x ≤ t2] ≲ |t2 − t1|.
We have that f⊥(x) agrees almost everywhere with f(x) with respect to the distribution DB,

i.e., we have that E(xw,x⊥)∼(DB)x [1{f((xw,x
⊥)) ̸= f⊥(x⊥)}] ≤ Prx⊥∼D⊥

x
[η⊥(x⊥) > 1/2] ≲ ρ/ϵ

(Inequality (36)). Thus, using the triangle inequality, we have

E
(xw,x⊥)∼(DB)x

[
(1− 2η⊥(x⊥))1{sign(xw) ̸= f⊥(x⊥)}

]
≳

ϵ√
log(1/ϵ)

− ρ

ϵ
.

The proof concludes by noting that it holds sign(xw) = sign(−b), by the definition of f⊥(x). This
completes the proof of Lemma 5.6.

5.3 Using the Low-Order Chow Tensors

In this subsection, we use our structural result of Subsection 5.1 to construct the sampling oracle of
Proposition 5.2 that provides us with good update vectors v. To do so, we shall find a subspace V
of Rd that contains non-trivial part of v∗. In order to get a good update with non-trivial probability,
we will sample a unit vector uniformly at random from V . The description of the corresponding
algorithm is given in Algorithm 2.

Proposition 5.9. Let D be a distribution on Rd × {±1} with standard normal x-marginal. Let
f(x) = sign(v∗ · x − b) be such that Pr(x,y)∼D[y ̸= f(x)|x] = η(x), Ex∼Dx [β(x)1{sign(b)f(x) >
0}] ≥ ζ and η(x) > 1/2 only when sign(b)(v∗ ·x−b) ≤ ξ, where ξ = Θ(ζ3). There exists an algorithm
with sample complexity and runtime dO(log(1/ζ)) log(1/δ) that with probability at least 1− δ returns a
basis of a subspace V of dimension poly(1/ζ) such that ∥projV (v∗)∥2 = poly(ζ).

Proof. The following lemma shows that the existence of a mean-zero polynomial p that achieves
non-trivial correlation with y implies that the subspace spanned by the top singular vectors of the
Chow tensors of D will contain non-trivial part of v∗. We remark that we do not rely on tensor SVD
to obtain the singular vectors: in what follows we flatten the order-m Chow tensors and treat them
as d× dm−1 matrices. We show the following lemma.

Lemma 5.10. Let D be a distribution over Rd × {±1} with standard normal x-marginal. Let
p : R 7→ R be a univariate, mean zero, unit variance polynomial of degree k such that for some unit
vector v∗ ∈ Rd it holds E(x,y)∼D[yp(v

∗ · x)] ≥ τ for some τ ∈ (0, 1]. Let T′m be an approximation of
the order-m Chow-parameter tensor Tm of D such that ∥T′m −Tm∥F ≤ τ/(4

√
k). Denote by Vm

the subspace spanned by the left singular vectors of (T′m)♭ whose singular values are greater than
τ/(4
√
k). Moreover, denote by V the union of V1, . . . , Vk. Then we have that

1. dim(V ) ≤ 4k/τ2, and

2. ∥projV (v∗)∥2 ≥ τ/(4
√
k).
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Input:

1. ϵ, δ > 0.

2. An empirical distribution D̂ of the distribution D that satisfies the general Massart
noise condition with respect to f(x) = sign(w∗ · x).

3. A unit vector v ∈ Rd such that Pr(x,y)∼D[sign(w · x) ̸= y] ≥ OPT+ ϵ.

Output: A subspace V with dim(V ) = poly(1/ϵ), and ∥projV ((w∗)⊥w)∥2 ≥ poly(ϵ).

Define: k = C log(1/ϵ), σ = poly(ϵ)/C, ρ = ϵ3/C, l = C log(1/ϵ)/ρ, for C > 0 be a
sufficiently large constant.

1. For i ∈ [l], set Bi = {iρ ≤ w · x ≤ (i+ 1)ρ} and B−i = {−(i+ 1)ρ ≤ w · x ≤ −iρ}.

2. For i ∈ {−l, . . . , l}, repeat

(a) Let D̂⊥
i be the distribution D̂ conditioned on Bi and projected onto w⊥.

(b) For any m ∈ [k], calculate the m-order Chow tensor Tm(D̂⊥
i ), see Definition 2.7.

(c) Flatten each Tm(D̂⊥
i ) for m ∈ [k], to a d× dm−1 matrix Mm = (Tm(D̂⊥

i ))
♭, see

Section 3.

(d) Let V m
i be the set of the left singular vectors of Mm, for all m ∈ [k], whose

singular values have absolute value at least σ.

3. Return: A basis of V =
⋃ℓ

i=1

⋃k
m=1 V

m
i .

Algorithm 2: Creating a Random Oracle with Good Correlation, see Proposition 5.2.

Proof. We note that ∥Tm∥F = supp∈Hk
E[yp(x)/

√
E[p2(x)]] ≤ supp∈Hk

E[p2(x)]1/2/E[p2(x)]1/2 =
1, where Hk is the set of polynomials formed from a linear combination of k-degree Hermite
polynomials. Therefore, by the assumptions of Lemma 5.10 and the triangle inequality we obtain
that ∥T′m∥F ≤ ∥Tm∥F + 1 ≤ 2.

Recall that by (T′m)♭ we denote the d × dm−1 flattening of T′m, see Section 3. To simplify
notation write Mm = (T′m)♭ ∈ Rd×dm−1 . We have that Vm is the span of the left singular vectors
of Mm with singular value at least τ and V be the union of all the Vm. We first show that the
dimension of V is not very large.

Claim 5.11. It holds that dim(V ) ≤ 4k/τ2.

Proof. We have that ∥Mm∥F = ∥T′m∥F ≤ 2. Therefore, since ∥Mm∥F is equal to the sum of the
squares of the singular values σ1, . . . , σd of Mm we obtain that the number of singular values σi with
|σi| ≥ τ is

1

τ2

d∑
i=1

1{σ2
i ≥ τ2}τ2 ≤ 1

τ2

d∑
i=1

σ2
i =
∥Mm∥2F

τ2
≤ 4

τ2
.

We can do the same calculation for all Tm to conclude that the dimension of the union of all
subspaces is at most 4k/τ2.
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Next, we show that V contains a non-trivial part of the optimal direction v∗, i.e., it holds that
∥projV (v∗)∥2 ≥ τ/(4

√
k). We first note that since the univariate polynomial p is mean-zero, it can

be written as a linear combination of the univariate Hermite polynomials hi(z) of degree greater
than or equal to 1. Write p(z) =

∑k
i=1 cihi(z). We note that since Ez∼N [p(z)2] = 1, we have that∑k

i=1 c
2
i = 1. Moreover, since the order-i Chow tensor is defined as Ti = E(x,y)∼D[H

i(x)y], it holds

E
(x,y)∼D

[yp(v∗ · x)] =
k∑

i=1

ciT
i · (v∗)⊗i ≥ τ .

Therefore, by Cauchy-Schwarz, there exists j ∈ {1, . . . , k} such that Tj · (v∗)⊗j ≥ τ/
√
k. Write v∗

as v + u where v ∈ V and u ∈ V ⊥. Moreover, denote r ∈ Rdj−1 to be the flattening of the tensor
v⊗(j−1). We note that

Tj · (v∗)⊗j ≤ ∥Tj −T′j∥F + |T′j · (v ⊗ (v∗)⊗j−1)|+ |T′j · (u⊗ (v∗)⊗j−1)|
≤ ∥Tj −T′j∥F + |v⊤Mjr|+ |u⊤Mjr|

≤ 2
τ

4
√
k
+ ∥v∥2∥Mj∥F ≤

τ

2
√
k
+ 2∥v∥2 ,

where we used that u belongs on the subspace spanned from the left singular vectors of Mj whose
singular values are less than τ/(4

√
k), and therefore it holds |u⊤Mjv| ≤ τ/(4

√
k). Thus, we have

∥v∥2 ≥
τ

4
√
k

and therefore, ∥projV (v∗)∥2 ≥ τ/(4
√
k).

The proof of Proposition 5.9 follows from an application of Proposition 5.3 and Lemma 5.10 with
the appropriate parameters, which we state below. To conclude the proof, we need the following
lemma which bounds the number of samples needed to estimate the order-m Chow parameters. Its
proof can be found in Appendix E.

Lemma 5.12. Fix m ∈ Z+ and ϵ, δ ∈ (0, 1). Let D be a distribution in Rd × {±1} with standard
normal x-marginals. There is an algorithm that with N = dO(m) log(1/δ)/ϵ2 samples and poly(d,N)
runtime, outputs an approximation T′m of the order-m Chow-parameter tensor Tm of D such that
with probability 1− δ, it holds ∥T′m −Tm∥F ≤ ϵ .

Recall that from our assumptions |b| ≤
√
log(1/ζ). Moreover, from Proposition 5.3, we have that

for k = O(log(1/ζ)), there exists a degree-k polynomial p, such that E(x,y)∼D[yp(v
∗ · x)] ≥ poly(ζ).

Thus, in order to apply Lemma 5.10, we need to estimate the first order-k Chow tensors. Hence,
the sample complexity is N = dO(log(1/ζ))poly(1/ζ) log(1/δ) and the runtime is poly(N, d). This
completes the proof of Proposition 5.9.

Combining Lemma 5.6 and Proposition 5.9, we can prove Proposition 5.2.

Proof of Proposition 5.2. From the assumption that Pr(x,y)∼D[sign(w · x) ̸= y] ≥ OPT+ ϵ, we have
Ex∼Dx [β(x)1{sign(w · x) ̸= f(x)}] ≥ ϵ. To prove this, note that Pr(x,y)∼D[sign(w · x) ̸= y] =
Ex∼Dx [β(x)1{sign(w · x) ̸= f(x)}] + Ex∼Dx [η(x)] and OPT = Ex∼Dx [η(x)], by combining with
Pr(x,y)∼D[sign(w · x) ̸= y] ≥ OPT+ ϵ, it follows that

E
x∼Dx

[β(x)1{sign(w · x) ̸= f(x)}] ≥ ϵ .
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Let D̂N be the empirical distribution of D using N = dΘ(log(1/ϵ)) log(1/δ) samples. Let ρ = Cϵ3,
for some small enough constant C > 0, and from Lemma 5.6, we get that there exists a set
B = {t1 ≤ v · x ≤ t2}, with |t1 − t2| = ρ, for which we can apply the algorithm of Proposition 5.9 to
the distribution D⊥w

B (D⊥w
B is the distribution D̂N conditioned on B and projected into w⊥), and

get a vector space V with the following properties: (i) V ⊆ w⊥, (ii) the dimension of V is poly(1/ϵ),
and (iii) ∥projV (w∗)∥2 = poly(ϵρ) = poly(ϵ) with probability 1 − δ, if N ≥ dO(log(1/ϵ)) log(1/δ).
Moreover, the algorithm runs in poly(N, d) runtime.

The problem, we need to overcome, is that we do not know the set B, so we are going to
apply the algorithm of Proposition 5.9 to any possible set and take the union of the outputs.
Let l = Θ(log(1/ϵ)/ρ) and let ti = iρ and t−i = −iρ, for 0 ≤ i ≤ l. Furthermore, we define
Bi = {ti ≤ v · x ≤ ti+1} and B−i = {−ti+1 ≤ v · x ≤ −ti} (similarly to Claim 5.8). We then apply
the algorithm of Proposition 5.9 to each of the distributions D⊥w

Bi
and get vector spaces Vi. Moreover,

the algorithm of Proposition 5.9 returns vector spaces Vi such that Vi ⊆ w⊥ and dim(Vi) = poly(1/ϵ).
Finally, from Lemma 5.6, we know that there exists an index j ∈ {−l, . . . , l} such that applying
the algorithm Proposition 5.9 on the distribution D⊥w

Bj
gives a vector space Vj , with the additional

property that ∥projVj
((w∗)⊥w)∥2 = poly(ϵ), with probability 1− δ. Thus, we let V to be the union

of all subspaces Vi, i.e., V =
⋃l

i=−l Vi. It holds that dim(V ) ≤
∑l

i=1 dim(Vi) = poly(1/ϵ). Moreover,
for any v ∈ V , it holds v ·w = 0, this is because Vi ⊆ w⊥ and hence V ⊆ w⊥. Finally, we have
that ∥projVj

(w∗)∥2 = poly(ϵ) and because Vj ⊆ V it holds that ∥projV ((w∗)⊥w)∥2 ≥ poly(ϵ) with
probability 1− δ.

We now show that by finding a vector u that correlates well with (v∗)⊥v, we can update our
current guess vector v and get one with increased correlation with v∗. Its proof can be found on
Appendix E.

Lemma 5.13 (Correlation Improvement). Fix unit vectors v∗,v ∈ Rd. Let u ∈ Rd such that
u · v∗ ≥ c, u · v = 0, and ∥u∥2 ≤ 1, with c > 0. Then, for v′ = v+λu

∥v+λu∥2
, with λ = c/2, we have that

v′ · v∗ ≥ v · v∗ + λ2/2.

We need the following standard fact that bounds from below the correlation of any vector with a
random one.

Fact 5.14 (see, e.g., Remark 3.2.5 of [Ver18]). Let v be a unit vector in Rd. For a random unit
vector u ∈ Rd, with at least 1/3 probability, it holds v · u ≳ 1/

√
d.

We are now ready to prove the Theorem 5.1.

Proof of Theorem 5.1. First, let D̂N be the empirical distribution of D using N ∈ Z+ samples. Let
w(i) be the current guess. If Pr(x,y)∼D[sign(w

(i) · x) ̸= y] ≥ OPT + ϵ and θ(w(i),w∗ ≤ π − ϵ),
then from Proposition 5.2 with N1 = dO(log(1/ϵ)) log(1/δ1) samples from D̂ and poly(N1, d) time, we
compute a subspace V such that ∥projV (w∗)∥2 ≥ poly(ϵ) and from Fact 5.14, we get a random a unit
vector v ∈ V such that v ·w∗ = poly(ϵ) and v ·w(i) = 0, with probability (1− δ1)/3. We call this
event Ei. By conditioning on the event Ei; from Lemma 5.13, after we update our current hypothesis
vector w(i) with v, we get a unit vector w(i+1) such that w(i+1) ·w∗ ≥ w(i+1) ·w∗ + poly(ϵ).

After running the update step k times and conditioning on the events E1, . . . , Ek, then w(k) ·w∗ ≥
w(1) ·w∗ + k poly(ϵ); therefore, for k = poly(1/ϵ), we get that the vector w(k) that is competitive
with the optimal hypothesis, i.e., Pr(x,y)∼D[sign(w

(k) · x) ̸= y] ≤ OPT+ ϵ or θ(w(i),w∗ ∈ (π − ϵ, π)

which means that −w(k) is competitive with the optimal hypothesis, see Fact 3.2. The probability
that all the events E1, . . . , Ek hold simultaneously is at least (1− kδ1) + (1/3)k, and thus by choosing
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Input:

1. ϵ, δ > 0.

2. Sample access to D with standard normal x-marginal which satisfies the general Massart
noise condition with respect to the hypothesis f(x).

Output: A hypothesis h(x) such that Pr(x,y)∼D[h(x) ̸= y] ≤ OPT+ϵ, with probability 1−δ.

Define: L = {}, N = dC log(1/ϵ) log(1/δ), λ = poly(ϵ)/C, T = 2Cpoly(1/ϵ), for C > 0 a
sufficiently large constant.

1. Initialize w = e1.

2. Draw N samples and compute to be the empirical distribution D̂.

3. Repeat T times

(a) Using w on Algorithm 2, generate vector space V .

(b) Pick a random unit vector v ∈ V .

(c) Update current hypothesis w by w← w+λv
∥w+λv∥2 .

(d) Update list of vectors L← L ∪ {w}.

4. Return: h(x) = sign(ŵ · x), where ŵ ∈ S and minimizes the error with respect y, i.e.,

ŵ← argmin
w∈L

Pr
(x,y)∼D̂

[sign(w · x) ̸= y] .

Algorithm 3: The Biased Random Walk for Learning Halfspaces with General Massart Noise,
see Theorem 5.1.

δ1 ≤ 1/(3k), the probability of success is at least δ2 = (1/3)k. By running the algorithm above
M = log(1/δ)/δ2 times, we get a list of 2M vectors, that list contains all the w(i) that generated in
every step of the algorithm and the −w(i). By applying Hoeffding’s inequality, we get that the list
L of 2M vectors contains a unit vector w such that Pr(x,y)∼D[sign(w

(k) · x) ̸= y] ≤ OPT+ ϵ, with
probability 1− δ/2. Finally, to evaluate all the vectors from the list, we need a few samples, from
the distribution D to obtain the best among them, i.e., the one that minimizes the zero-one loss.

The size of the list of candidates is at most M ≤ 2poly(1/ϵ) log(1/δ). Therefore, from Hoeffd-
ing’s inequality, it follows that O(poly(1/ϵ) log(1/δ)) samples are sufficient to guarantee that the
excess error of the chosen hypothesis is at most ϵ with probability at least 1 − δ/2. Thus, with
N = dlog(1/ϵ) log(1/δ) samples and poly(N, d, 2poly(1/ϵ)) runtime, we get a hypothesis ŵ such that
Pr(x,y)∼D[sign(ŵ · x) ̸= y] ≤ OPT+ ϵ with probability 1− δ. This completes the proof.
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6 Statistical Query Lower Bounds for Learning Massart Halfspaces

6.1 Background on SQ Lower Bounds

Our lower bound applies for the class of Statistical Query (SQ) algorithms. Statistical Query (SQ)
algorithms are a class of algorithms that are allowed to query expectations of bounded functions
of the underlying distribution rather than directly access samples. Formally, an SQ algorithm has
access to the following oracle.

Definition 6.1. Let D be a distribution on labeled examples supported on X × {−1, 1}, for some
domain X. A statistical query is a function q : X × {−1, 1} → [−1, 1]. We define STAT(τ) to be
the oracle that given any such query q(·, ·) outputs a value v such that |v −E(x,y)∼D [q(x, y)] | ≤ τ ,
where τ > 0 is the tolerance parameter of the query.

The SQ model was introduced by Kearns [Kea98] in the context of supervised learning as a natural
restriction of the PAC model [Val84]. Subsequently, the SQ model has been extensively studied in a
plethora of contexts (see, e.g., [Fel16] and references therein). The class of SQ algorithms is rather
broad and captures a range of known supervised learning algorithms. More broadly, several known
algorithmic techniques in machine learning are known to be implementable using SQs. These include
spectral techniques, moment and tensor methods, local search (e.g., Expectation Maximization), and
many others (see, e.g., [FGR+17, FGV17]). Recent work [BBH+21] has shown a near-equivalence
between the SQ model and low-degree polynomial tests

Statistical Query Dimension To bound the complexity of SQ learning a concept class C, we use
the SQ framework for problems over distributions [FGR+17].

Definition 6.2 (Decision Problem over Distributions). Let D be a fixed distribution and D be a
family of distributions. We denote by B(D,D) the decision (or hypothesis testing) problem in which
the input distribution D′ is promised to satisfy either (a) D′ = D or (b) D′ ∈ D, and the goal is to
distinguish between the two cases.

Definition 6.3 (Pairwise Correlation). The pairwise correlation of two distributions with prob-
ability density functions D1,D2 : Rn → R+ with respect to a distribution with density D : Rn →
R+, where the support of D contains the supports of D1 and D2, is defined as χD(D1,D2) :=∫
Rn D1(x)D2(x)/D(x) dx− 1.

Definition 6.4. We say that a set of s distributions D = {D1, . . . ,Ds} over Rn is (γ, β)-correlated
relative to a distribution D if |χD(Di,Dj)| ≤ γ for all i ̸= j, and |χD(Di,Di)| ≤ β for all i.

Definition 6.5 (Statistical Query Dimension). For β, γ > 0 and a decision problem B(D,D), where
D is a fixed distribution and D is a family of distributions, let s be the maximum integer such that
there exists a finite set of distributions DD ⊆ D such that DD is (γ, β)-correlated relative to D and
|DD| ≥ s. The Statistical Query dimension with pairwise correlations (γ, β) of B is defined to be s,
and denoted by SD(B, γ, β).

Lemma 6.6 (Corollary 3.12 of [FGR+17]). Let B(D,D) be a decision problem, where D is the
reference distribution and D is a class of distributions. For γ, β > 0, let s = SD(B, γ, β). For any
γ′ > 0, any SQ algorithm for B requires queries of tolerance at most

√
γ + γ′ or makes at least

sγ′/(β − γ) queries.

We next introduce some definitions related to the hidden-direction proof machinery that we use.
We start with the following definition:
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Definition 6.7 (High-Dimensional Hidden Direction Distribution). For a distribution A on the real
line with probability density function A(z) and a unit vector v ∈ Rd, consider the distribution over
Rd with probability density function

PA
v (x) = A(v · x) exp

(
−∥x− (v · x)v∥22/2

)
/(2π)(d−1)/2 .

That is, Pv is the product distribution whose orthogonal projection onto the direction of v is A, and
onto the subspace perpendicular to v is the standard (d− 1)-dimensional normal distribution.

Since we will be using mixtures of two hidden direction distributions we introduce the following
notation.

Definition 6.8 (Mixture of Hidden Direction Distributions). Let A and B be distributions on R.
For d ∈ Z+ and a unit vector v ∈ Rd, define the distribution PA,B,p

v on Rd × {±1} that returns a
sample from (PA

v , 1) with probability p and a sample from (PB
v ,−1) with probability 1− p.

We will also use the following fact showing that there exists an exponentially large set of d-
dimensional unit vectors all of which have small correlation. Moreover, one can show that a set of
random vectors on the unit sphere will satisfy this property with nontrivial probability.

Fact 6.9 (Lemma 3.7 of [DKS17]). For any constant 0 < c < 1/2 there exists a set S of 2Ω(dc) unit
vectors in Rd such that any pair u,v ∈ S, with u ̸= v, satisfies |u · v| ≲ dc−1/2.

The following fact shows that given a one-dimensional marginal A that matches m moments
with the standard normal, the correlation between two hidden direction distributions with directions
v and u is bounded above roughly by the (m+1)-th power of the correlation of their corresponding
directions. Therefore, using Fact 6.9, we obtain that there exists an exponentially large (in the
dimension d) set of distributions with pairwise correlation roughly d−m.

Fact 6.10 (Lemma 3.4 from [DKS17]). Let m ∈ Z+. If the univariate distribution A over R agrees
with the first m moments of N (0, 1), then for all v,u ∈ Rd, we have that

|χN (0,I)(P
A
v ,P

A
u )| ≤ |v · u|m+1χ2(A,N (0, 1)) .

6.2 SQ Lower Bound for Learning Halfspaces with Constant-Bounded Massart
Noise

The problem of learning homogeneous halfspaces with Massart Noise under the Gaussian distribution
is by now well understood. All previous algorithms fit in the SQ framework and show that the SQ
complexity of learning halfspaces with Massart noise is polynomial in the dimension d, the accuracy
ϵ, and the noise rate η. In this section, we show that if the optimal halfspace f is γ-biased, i.e.,
Pr[f(x) = +1] = γ, the SQ complexity of learning f is quasi-polynomial in the bias γ, that is
dΩ(log(1/γ)) SQ queries are required. We prove the following theorem.

Theorem 6.11. Let D be a distribution on Rd × {±1} with standard normal x-marginal that
satisfies the η-Massart noise condition with parameter η ∈ (0, 1/2) with respect to some unknown
(1− γ)-biased optimal halfspace f(x), for some γ > 0 less than a sufficiently small constant. Any
SQ algorithm that, for any such distribution D, learns a hypothesis h : Rd 7→ {±1} such that
Pr(x,y)∼D[h(x) ̸= y] ≤ OPT + ϵ for ϵ ≤ γ(1 − 2η), either requires queries with tolerance at most
d−Ω(log(η/γ)) or makes at least 2dΩ(1)

d− log(η/γ) queries.
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Remark 6.12. We remark that when the bias γ is less than ϵ one can output the constant guess −1
and obtain error at most ϵ. Therefore, reasonable values for γ are Ω(ϵ). In the extreme case where
γ = Θ(ϵ), Theorem 6.11 implies a quasi-polynomial SQ lower bound in the accuracy parameter ϵ.
However, our result is fine-grained with respect to γ: we show that this quasi-polynomial dependency
on the bias is required across the whole regime of γ.

The main structural result of the proof of Theorem 6.11 is the proposition that follows. We
prove that we can construct a distribution D over labeled pairs (z, y) ∈ R× {±1} that satisfies the
η-Massart noise assumption with respect to some (biased) halfspace f and whose low-order moments
match the moments of the product distribution of the marginals Dz and Dy. In other words, we show
that we can construct and instance D whose z-marginal is a one dimensional Gaussian distribution
and y is uncorrelated with zk for any k less than a sufficiently small multiple of log(η/γ).

Proposition 6.13. Fix η ∈ (0, 1/2) and γ > 0 less than a sufficiently small constant. There exists
a distribution D on (z, y) ∈ R× {±1} whose z-marginal is the standard normal distribution with the
following properties.

• D satisfies the Massart noise condition with parameter η with respect to a halfspace f(z) with
Prz∼Dz [f(z) = 1] = γ.

• For any integer k ≤ C log(η/γ) where C > 0 is a sufficiently small constant, it holds
E(z,y)∼D[yz

k] = Ey∼Dy [y]Ez∼Dz [z
k] .

Proof. Our goal is to construct a distribution D on R× {±1} with Gaussian z-marginal satisfying
the η-Massart noise condition. Recall that, for any such distribution, we denote β = 1 − 2η and
β(z) = 1− 2η(z). It holds

E
(x,y)∼D

[y|x = z] = −f(z)η(z) + f(z)(1− η(z)) = f(z)(1− 2η(z)) = f(z)β(z) .

Therefore, we need to prove that there exists a “noise” function β(z) : R 7→ [β, 1] such that for every
zero mean polynomial p(z) of degree at most k, it holds E(z,y)∼D[p(z)y] = Ez∼N [p(z)β(z)f(z)] = 0.
Recall that by Pk,d we denote the space of polynomials of degree at most k over Rd. In what follows,
we will be using polynomials on the subspace of univariate mean-zero polynomials (with respect to
the Gaussian measure) which we denote by

P0
k := {p ∈ Pk,1 : E

z∼N
[p(z)] = 0} .

Using duality, we first show that such a noise function β(z) exists when there exists no mean-zero
polynomial p such that the expectation of (f(z)p(z))+ is 1/β times larger than the expectation of
(f(z)p(z))−, where z+ := max(0, z) and z− := |min(0, z)|. We prove the following lemma.

Lemma 6.14 (Moment-Matching Duality). Let f : R 7→ {±1} be any one-dimensional Boolean
function. Assume that for any polynomial p ∈ P0

k , with p ̸= 0, it holds that

β E
z∼N

[(f(z)p(z))+] < E
z∼N

[(f(z)p(z))−] .

Then, there exists a function β(z) : R 7→ R such that Prz∼N [β ≤ β(z) ≤ 1] = 1 and for every
polynomial p ∈ P0

k it holds that Ez∼N [f(z)p(z)β(z)] = 0.
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Remark 6.15. Even though we used the assumption that f is a one-dimensional function, this
statement is true for any m-dimensional function as long as f is biased enough. Therefore, using
similar techniques as in [DKPZ21], we can embed this m-dimensional subspace to d dimensions and
get lower bounds for learning more general classes. In fact, for m = 2, one can show an SQ lower
bound for intersections of two homogeneous halfspaces under constant-bounded Massart noise.

Proof. Treating the function β(z) as an (infinite dimensional) variable we can formulate the following
feasibility linear program.

Find β(z) ∈ L∞(R)
such that E

z∼N
[f(z)p(z)β(z)] = 0 ∀p ∈ P0

k (38)

Pr
z∼N

[β ≤ β(z) ≤ 1] = 1

We claim that the LP (38) is equivalent to the following LP:

Find β(z) ∈ L∞(R)
such that E

z∼N
[f(z)p(z)β(z)] = 0 ∀p ∈ P0

k (39)

E
z∼N

[β(z)h(z)] ≤ E
z∼N

[h(z)] ∀h ∈ L1
+(R)

β E
z∼N

[T (z)] ≤ E
z∼N

[β(z)T (z)] ∀T ∈ L1
+(R)

Recall that L1(R) are all the functions that have bounded L1-norm, and we denote L1
+(R) to be the

positive functions in L1(R).

Claim 6.16. The LP (38) is equivalent to the LP (39).

Proof. We now show the equivalence between the two formulations. We claim that the second
constraint of LP (38) is equivalent with the second and the third constraints of LP (39). This follows
by introducing the “dual variables” h : R→ R and T : R→ R. First, we so that any valid solution
b(z) of LP (38) is also a valid solution for the LP (39). For any valid solution b(z) of LP (38), it
should hold that b(z) ≤ 1 and b(z) ≥ β with probability 1, thus for h(z) ∈ L1

+(R) it should hold that
b(z)h(z) ≤ h(z) and by taking expectation in both sides, we get the third inequality, similarly we get
the fourth inequality from b(z) ≥ β. To prove that any valid solution b(z) of LP (39) is also a valid
solution for the LP (38), first we assume, in order to reach a contradiction, that there is a set A with
non-zero probability that b(z) > 1. Then, by taking h(z) = 1{z ∈ A}, the third inequality becomes

E
z∼N

[h(z)] < E
z∼N

[β(z)h(z)] ≤ E
z∼N

[h(z)] ,

which is a contradiction. For the case, we assume, to reach a contradiction, that there is a set
B with non-zero probability that b(z) < β. Similarly, we have T (z) = 1{z ∈ B} and get that
βEz∼N [T (z)] ≤ Ez∼N [β(z)T (z)] < βEz∼N [T (z)], which is again a contradiction.

At this point, we would like to use “LP duality” to argue that LP (39) is feasible if and only if
its “dual LP” is infeasible. While such a statement turns out to be true, it requires some care to
prove since we are dealing with infinite LPs (both in number of variables and constraints). More
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formally, we have that LP (39) is feasible if and only if there is no conical combination that yields
the contradicting inequality 1 ≤ 0. We define the “dual LP” to be the following:

Find h ∈ L1
+(R), T ∈ L1

+(R), p ∈ P0
k

such that f(z)p(z) + h(z)− T (z) = 0 ∀z ∈ R (40)
β E

z∼N
[T (z)]− E

z∼N
[h(z)] > 0

The following lemma states that the sufficiently conditions so that LP (39) is feasible. Its proof can
be found on Appendix G.

Lemma 6.17. If there is no polynomial p ∈ P0
k such that βEz∼N [(f(z)p(z))+] > Ez∼N [(f(z)p(z))−]

then, the LP (39) is feasible if only if LP (40) is infeasible.

Note that if LP (40) is feasible for some functions (h, T, p), then it should hold that h(z) =
(f(z)p(z))− and T (z) = (f(z)p(z))+. Therefore, we claim that the LP (40) is equivalent to the
following LP.

Find p ∈ P0
k

such that β E
z∼N

[(f(z)p(z))+] > E
z∼N

[(f(z)p(z))−] (41)

Observe that if LP (41) is infeasible then from Lemma 6.17, we get that LP (39) is feasible, therefore
the proof of Lemma 6.14 follows.

Lemma 6.18. Let f : R 7→ {±1} be any one-dimensional Boolean function, β ∈ (0, 1) and k ∈ Z+.
If Prz∼N [f(z) = 1] ≤ 2−Ck(1−β) for some sufficiently large constant C > 0, then for any polynomial
p ∈ P0

k , it holds βEz∼N [(f(z)p(z))+] ≤ Ez∼N [(f(z)p(z))−].

Proof. First, notice that, since Ez∼N [p(z)] = 0, it holds that Ez∼N [p(z)+] = Ez∼N [p(z)−]. Moreover,
we have that for any z ∈ R we either have f(z) = +1 or f(z) = −1 and therefore, it holds that f(z)++
f(z)− = 1. Thus, Ez∼N [p(z)+f(z)+]+Ez∼N [p(z)+f(z)−] = Ez∼N [p(z)−f(z)+]+Ez∼N [p(z)−f(z)−].
We have that

E
z∼N

[(f(z)p(z))+] = E
z∼N

[f(z)+p(z)+] + E
z∼N

[f(z)−p(z)−] ,

E
z∼N

[(f(z)p(z))−] = E
z∼N

[f(z)+p(z)−] + E
z∼N

[f(z)−p(z)+] .

Therefore, LP (41) implies the following inequality

2β E
z∼N

[f(z)+p(z)+] > (1 + β) E
z∼N

[f(z)+p(z)−] + (1− β) E
z∼N

[f(z)−p(z)+]

≥ (1− β) E
z∼N

[f(z)−p(z)+] , (42)

where we used the fact that Ez∼N [f(z)+p(z)−] ≥ 0. Notice that Ez∼N [|p(z)|] = 2Ez∼N [p(z)+] =
2Ez∼N [p(z)−], because p(z) is a zero mean polynomial. Moreover, using f(z)− = 1 − f(z)+, it
holds Ez∼N [f(z)−p(z)+] = Ez∼N [|p(z)|]/2−Ez∼N [f(z)+p(z)+]. Thus, by substituting this in the
Equation (42), we get

2
1 + β

1− β
E

z∼N
[f(z)+p(z)+] > E

z∼N
[|p(z)|] ,
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or 4Ez∼N [f(z)+p(z)+]/(1− β) > Ez∼N [|p(z)|], where we used that β < 1. From Cauchy–Schwarz
inequality, we have

E
z∼N

[f(z)+p(z)+] ≤ E
z∼N

[f(z)+|p(z)|] ≤ ( E
z∼N

[f(z)+])1/2( E
z∼N

[|p(z)|])1/2 .

Using Cauchy–Schwarz, it holds that (Ez∼N [p(z)2])1/2 ≤ (Ez∼N [|p(z)|])1/3(Ez∼N [p(z)4])1/6 and
from Lemma 4.11, we have that (Ez∼N [p(z)4])1/4 ≤ 3k/2(Ez∼N [p(z)2])1/2. Putting everything
together, we have that (Ez∼N [p(z)2])1/2 ≤ 2Ck Ez∼N [|p(z)|], for C some large enough positive
constant, thus

E
z∼N

[|p(z)|] ≤ 4

1− β
E

z∼N
[f(z)+p(z)+] ≤ 4

1− β
(Pr[f(z) = 1])1/22Ck E

z∼N
[|p(z)|] ,

which is a contradiction if Pr[f(z) = 1] ≤ 2−Ck(1− β) for large enough positive constant C. Thus,
the LP (41) is infeasible and thus, the LP (38) is feasible.

Using Lemma 6.14 and Lemma 6.18, we get that if γ = Prz∼N [f(z) = 1] ≤ 2−Ck(1−β) for some
large enough constant C > 0, then there exists a function β : R 7→ R such that for every polynomial
p ∈ P0

k it holds Ez∼N [f(z)p(z)β(z)] = 0, thus, for any m ≤ k, we have

E
(z,y)∼D

[yzm] = E
(z,y)∼D

[y(zm − E
z∼Dz

[zm])] + E
(z,y)∼Dy

[y] E
z∼Dz

[zm] = E
(z,y)∼Dy

[y] E
z∼Dz

[zm] .

Moreover, using the fact that β = 1− 2η, we get that the degree k is less than a sufficiently small
multiply of log(η/γ), which completes the proof of Proposition 6.13.

Proposition 6.19 (SQ Complexity of Hypothesis Testing). Fix η ∈ (0, 1/2) and γ > 0 less than a
sufficiently small constant. There exist:

• a family of distributions D such that every D ∈ D is a distribution over (x, y) ∈ Rd×{±1}, its
x-marginal is the standard normal distribution, and D satisfies the η-Massart noise condition
with respect to some γ-biased halfspace, and

• a reference distribution R over (x, y) ∈ Rd × {±1}, whose x-marginal is the standard normal
and y is independent of x,

such that any SQ algorithm that decides whether the input distribution belongs to D or is equal to
the reference R either requires queries with tolerance at most d−Ω(log(η/γ))/

√
γ or makes at least

2d
Ω(1)

d− log(η/γ) queries.

Proposition 6.19 follows from the lemma below showing that we can construct a family of
distributions with small pairwise correlation

Lemma 6.20 (Correlated Family of Distributions). Fix t ∈ R such that |t| is larger than some
absolute constant. Define γ(t) := Prz∼N [z ≥ |t|]. There exist:

• a set Dt of 2dΩ(1) distributions on Rd × {±1}, such that every D ∈ Dt is a distribution over
(x, y) ∈ Rd × {±1}, its x-marginal is the standard normal distribution, and D satisfies the
η-Massart condition with η ∈ (0, 12) with respect to a halfspace f(x) = sign(v · x+ t) where v
is a unit vector in Rd. Moreover, all D ∈ Dt have the same y-marginal,
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• a reference distribution Rt in Rd × {±1}, where for (x, y) ∼ Rt we have that x is distributed
according to the standard normal N (0, I), y is independent of x, and the distribution of y is
equal with the y-marginal of any D ∈ Dt.

Moreover, the set Dt is (d−Ω(log(η/γ(t)))/γ(t), 4/γ(t))-correlated with respect to the reference distribu-
tion Rt.

Proof. From Proposition 6.13, we know that for every t, with |t| larger than a sufficiently large
constant, there exists a distribution Dt on R × {±1} whose z-marginal is a standard normal, D
satisfies the η-Massart noise distribution with respect to a γ-biased halfspace f : R 7→ {±1}, with
f(z) = sign(z+ t), and for every k = Θ(log(η/γ)) it holds that E(z,y)∼Dt

[yzk] = Ey∼Dty
[y]Ez∼N [zk].

Let βt(z) be the noise function corresponding to Dt and ϕ(z) be the density function of the single
dimensional standard normal distribution. We define the following densities on R: At(z) = (1 +
β(z)f(z))ϕ(z)/(1+c) and Bt(z) = (1−β(z)f(z))ϕ(z)/(1−c) where c = Ez∼N [β(z)f(z)] = Ey∼Dty

[y].
It holds that

E
z∼At

[zk] =

∫
zkϕ(z) + zkβ(z)f(z)dz

1 + c
=

Ez∼N [zk] +E(z,y)∼Dt
[zky]

1 + c

=
Ez∼N [zk] +Ez∼Dtz

[zk]Ey∼Dty
[y]

1 +Ey∼Dty
[y]

= E
z∼N

[zk] .

Similarly, we have that Ez∼Bt [z
k] = Ez∼N [zk]. Therefore, the distributions At and Bt match the

first Θ(log(η/γ)) moments with N .
Moreover, we have that

χ2(At,N ) = E
z∼N

[(1 + β(z)f(z)

1 + c

)2
− 1
]
≤ 4

(1 + c)2
,

and

χ2(Bt,N ) = E
z∼N

[(1− β(z)f(z)

1 + c

)2
− 1
]
≤ 4

(1− c)2
,

which means that max((1 + c)χ2(At,N ), (1− c)χ2(Bt,N )) ≲ 1/γ. Let S be as in Fact 6.9. Choose
p = (1 + c)/2 and consider the mixture distributions PAt,Bt,p

v , for v ∈ S. We set the hard family of
distributions Dt = {PAt,Bt,p

v : v ∈ S}. First, we show that PAt,Bt,p
v corresponds to a distribution

that satisfies the η-Massart noise condition. We have

E
(x,y)∼P

At,Bt,p
v

[y|x] = (1 + c)

2
(1 + f(x · v)β(x · v)) ϕ(x)

1 + c
− (1− c)

2
(1− f(x · v)β(x · v)) ϕ(x)

1− c

= f(x · v)β(x · v) ,

thus, indeed the distribution PAt,Bt,p
v satisfies the η-Massart noise condition, because from Proposi-

tion 6.13, we know that β = 1− 2η ≤ β(z) ≤ 1 almost surely for all z ∈ R.
Let Rt be a distribution on Rd × {±1} such that if (x, y) ∼ Rt then x ∼ Nd, y is independent

of x, and y = 1 with probability p and y = −1 otherwise. We need to show that for u,v ∈ S we
have that |χRt(P

At,Bt,p
v ,PAt,Bt,p

u )| is small. Since Rt,P
At,Bt,p
v , and PAt,Bt,p

u all assign y = 1 with
probability p, we have that

χRt(P
At,Bt,p
v ,PAt,Bt,p

u ) = p χRt|y=1

(
(PAt,Bt,p

v | y = 1), (PAt,Bt,p
u | y = 1)

)
+

(1− p) χRt|y=−1

(
(PAt,Bt,p

v | y = −1), (PAt,Bt,p
u | y = −1)

)
= p χNd

(PAt
v ,PAt

u ) + (1− p) χNd
(PBt

v ,PBt
u ).
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By Fact 6.10, it follows that

χRt(P
At,Bt,p
v ,PAt,Bt,p

u ) ≤ d−Ω(log(η/γ))(pχ2(At, N(0, 1)) + (1− p)χ2(Bt, N(0, 1)))

= d−Ω(log(η/γ))/γ .

A similar computation shows that

χRt(P
At,Bt,p
v ,PAt,Bt,p

v ) = χ2(PAt,Bt,p
v ,Rt) ≤ pχ2(At, N(0, 1)) + (1− p)χ2(Bt, N(0, 1) ≤ 4/γ .

Thus, the set Dt is (d−Ω(log(η/γ))/γ, 4/γ)-correlated with respect the reference distribution Rt.

Proof of Proposition 6.19. Fix a γ > 0 less than a sufficiently small constant, and let t ∈ R such that
Prz∼N [z ≥ |t|] = γ Moreover, because |Dt| = 2d

Ω(1) and the set Dt is (d−Ω(log(η/γ))/γ, 4/γ)-correlated
with respect Rt we have that SD(B, d−Ω(log(η/γ))/γ, 4/γ) = 2d

Ω(1) , thus an application of Lemma 6.6
completes the proof.

Proof of Theorem 6.11. Let D and R be as in Proposition 6.19. Note that from the construction,
for any D ∈ D, it holds that Pr(x,y)∼R[y = i] = Pr(x,y)∼D[y = i] = pi, for i ∈ {±1} Let A an
algorithm that outputs a hypothesis h with respect a distribution D that satisfies the η-Massart
Noise condition such that Pr(x,y)∼D[h(x) ̸= y] ≤ OPT + ϵ, where OPT is the error achieved by
the best classifier. Moreover, from for any classifier h′ it holds Pr(x,y)∼R[h

′(x) ̸= y] ≥ mini∈{±1} pi.
Thus, it holds that Pr(x,y)∼R[h

′(x) ̸= y]−OPT ≥ Ex∼Dx [β(x)f(x)] ≥ (1− 2η)γ. Thus, algorithm
A for ϵ ≤ γβ would solve the decision problem B(D,R) (with one additional query E(x,y)∼D[h(x)y]
up to accuracy γβ/2) and from Proposition 6.19 the result follows.

6.3 SQ Lower Bound for Learning Homogeneous Halfspaces with General Mas-
sart Noise

Learning homogeneous halfspaces under η-Massart noise for any constant η < 1/2 is known to be
solvable with polynomially many statistical queries [DKTZ20a]. When η = 1/2, we show that any
SQ algorithm for homogeneous Massart halfspaces requires dΩ(log(1/ϵ)) queries. For comparison, we
recall that the SQ complexity of learning halfspaces under adversarial noise is dΩ(1/ϵ2) [DKPZ21].

Our formal result is the following theorem.

Theorem 6.21 (1/2-Massart Noise SQ-Lower Bound). Let D be a distribution on Rd × {±1} that
satisfies the Massart noise condition for η = 1/2, for homogeneous halfspaces, where the x-marginal
is distributed according to the standard normal. Any SQ algorithm that, for any such distribution D,
finds a hypothesis h such that Pr(x,y)∼D[h(x) ̸= y] ≤ OPT+ ϵ either requires queries with tolerance
at most d−Ω(log(1/ϵ)) or makes at least 2dΩ(1) queries.

To prove the theorem above, we are going to use a “reduction” to the problem of learning general
halfspaces with constant-bounded Massart noise.

Proposition 6.22 (SQ Complexity of Hypothesis Testing). Let ϵ > 0 less than a sufficiently small
constant. There exist:

• a family of distributions DB such that every D ∈ D is a distribution over (x′, y) ∈ Rd+1×{±1},
its x′-marginal is the standard normal distribution, and D satisfies the Massart noise condition
for η = 1/2, with respect to some unbiased halfspace, and

• a reference distribution R over ((x, z), y) ∈ Rd+1×{±1}, whose (x, z)-marginal is the standard
normal and y depends only on z,
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such that any SQ algorithm that decides whether the input distribution belongs to D or is equal
to the reference R either requires queries with tolerance at most d−Ω(log(1/ϵ)) or makes at least
2d

Ω(1)
d− log(1/ϵ) queries.

Proof. Proposition 6.22 follows from the lemma below showing that we can construct a family of
distributions with small pairwise correlation

Lemma 6.23 (Correlated Family of Distributions). Let ϵ > 0 less than a sufficiently small constant.
There exist:

• a set DB of 2dΩ(1) distributions on Rd+1×{±1}, such that every D ∈ DB is a distribution over
(x′, y) ∈ Rd+1 × {±1}, its x′-marginal is the standard normal distribution, and D satisfies the
Massart noise condition for η = 1/2 with respect to a halfspace f(x′) = sign((v, 1) · x′) where
v is a unit vector in Rd. Moreover, all D ∈ DB have the same y-marginal.

• A reference distribution R in Rd+1 × {±1}, where for ((x, z), y) ∼ R we have that x′ is a
standard Gaussian N (0, I), y depends only on z, and for any function h : Rd+1 7→ {±1} and
any D ∈ DB, it holds that Pr(x′,y)∼R[h(x

′) ̸= y]−minf∈C Pr(x′,y)∼D[f(x
′) ̸= y] ≥ 2ϵ.

Moreover, the set DB is (d−Ω(log(1/ϵ)), 16ϵ)-correlated with respect to the reference distribution R.

Proof. Fix t0 > 0 and ζ > 0 such that Prz∼N [z ≥ t0] = γ for γ = 4
√
ϵ and Prz∼N [t0 + ζ > z ≥

t0] = γ/2. We are going to construct a new set of distributions DB as follows:

1. For η = 1/4 and some threshold t denote (Dt,Rt) be the family of distributions and their
corresponding reference distributions from Lemma 6.20. Recall that the distributions in the
family Dt are indexed by a set of unit vectors S, i.e., Dt = {Du,t : u ∈ S}. Every Du,t ∈ Dt is
a distribution in Rd that satisfies the η-Massart noise condition with η = 1/4 and with respect
to the halfspace f(x) = sign(u · x+ t).

2. Fix some direction u ∈ S. We define a new distribution D′
u on ((x, z), y) ∈ Rd+1×{±1} where

the “extra” coordinate z is drawn from the standard normal distribution N (0, 1). When z falls
inside some thin interval [t0, t0 + ζ] we sample (x, y) from the 1/4-Massart noise distribution
Du,z. This corresponds to the blue/red region in Figure 4. When z falls outside [t0, t0 + ζ],
we draw x ∼ N (0, I) and set y to be ±1 with probability 1/2, independently of x. This
“high-noise” area corresponds to the gray area of Figure 4. More formally, we define

D′
u((x, z), y) =

{
D′

u,z(x, y)ϕ(z) if z ∈ [t0, t0 + ζ]
1
2ϕd+1((x, z)) otherwise .

Let DB be the set of these distributions.

3. We define a reference distribution R on ((x, z), y) ∈ Rd+1 × {±1} similarly. The “extra”
coordinate z is again drawn from the standard normal distribution N (0, 1). When z falls inside
some thin interval [t0, t0 + ζ], i.e., the blue/red region of Figure 4 we sample (x, y) from the
reference distribution Rt. When z falls outside [t0, t0 + ζ], i.e., in the gray area of Figure 4, we
draw x ∼ N (0, I) and set y to be ±1 with probability 1/2, independently of x. We have

R((x, z), y) =

{
Rz(x, y)ϕ(z) if z ∈ [t0, t0 + ζ]
1
2ϕd+1((x, z)) otherwise .
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Our first step is to prove that any “hidden-direction” (d + 1)-dimensional distribution D′
u that

we create out of the Massart-noise instances Du,t satisfies the 1/2-Massart noise condition with a
homogeneous optimal halfspace. We show the following claim.

Claim 6.24. For the distribution D′
u, the optimal hypothesis is f ′(x′) = sign(x′ · (u, 1)), thus D′

u

satisfies the Massart noise condition for η = 1/2 with respect to a homogeneous (d+ 1)-dimensional
halfspace.

Proof. In what A be the event that z ∈ [t0, t0 + ζ]. Assume in order to reach to a contradiction that
f ′(x′) is not the optimal hypothesis. Let h(x′) to be the optimal hypothesis for the distribution Du′ .
First, observe that for any hypothesis h′(x′) it holds

Pr
(x′,y)∼D′

u

[h′(x′) ̸= y,Ac] = Pr
(x′,y)∼D′

u

[Ac]/2 .

Thus, we need only to consider the error inside the A. For the function f ′(x′), we have that

Pr
(x′,y)∼D′

u

[f ′(x′) ̸= y,A] =

∫
[t0,t0+ζ]

Pr
((x,t),y)∼D′

u

[f ′((x, t)) ̸= y|t = z]ϕ(z)dz

=

∫
[t0,t0+ζ]

Pr
(x,y)∼Du,z

[sign(u · x+ z) ̸= y]ϕ(z)dz . (43)

Similarly, for any other hypothesis h′(x′), we have that

Pr
(x′,y)∼D′

u

[h′(x′) ̸= y,A] =

∫
[t0,t0+ζ]

Pr
(x,y)∼Du,z

[h′((x, z)) ̸= y]ϕ(z)dz . (44)

Moreover, for the h′(x′) it should hold that Pr(x′,y)∼D′
u
[f ′(x′) ̸= y,A]−Pr(x′,y)∼D′

u
[h(x′) ̸= y,A] > 0,

thus combining with eq. (43) and eq. (44), we have that there exists z ∈ [t0, t0 + ζ] such that
Pr(x,y)∼Du,z

[sign(u · x+ z) ̸= y] > Pr(x,y)∼Du,z
[h′((x, z)) ̸= y], which is a contradiction, because for

each Du,t the optimal classifier is f(x) = sign(u · x+ t).

We next have to show that the family of “hidden-direction” distributions DB is pairwise correlated.
We have the following claim.

Claim 6.25. For every D ∈ DB it holds χR(D,D) ≤ 4 and for every distinct D1,D2 ∈ DB it holds
χR(D1,D2) ≤ d−Ω(log(1/γ)). In other words, the family DB is (d−Ω(log(1/γ)), 4)-correlated with respect
to the reference distribution R.

Proof. Note that by the construction of the distributions D1,D2, for a point x′ = (x, z) ∈ Rd+1, such
that z ̸∈ [t0, t0 + ζ] the conditional distributions D1 | z, D2 | z and R | z coincide. Therefore, since
D1,D2,R give the same distribution on z, for z ̸∈ [t0, t0 + ζ] it holds χR|z((D1 | z), (D2 | z)) = 0, for
z ̸∈ [t0, t0 + ζ]. Thus, to compute the correlation of D1,D2 it suffices to consider z ∈ [t0, t0 + ζ], i.e.,

χR(D1,D2) = E
z∼N

[χRz((D1 | z), (D2 | z))]

=

∫ t0+ζ

t0

χRz((D1 | z), (D2 | z))ϕ(z)dz ,

where (D1 | z) (resp. (D2 | z)) is the pdf D1 (resp. D2) conditioned on z. From Lemma 6.20, it
holds that

χR(D1,D2) ≤
d−Ω(log(1/γ))

γ

∫ t0+ζ

t0

ϕ(z)dz = d−Ω(log(1/γ)) ,

where we used that Prz∼N [t0 + ζ > z ≥ t0] = γ/2. The second part follows similarly.
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Moreover, if r is the best hypothesis for R and f for D′
u, then from Lemma 6.20, we have

Pr
(x′,y)∼R

[r(x′) ̸= y]− Pr
(x′,y)∼D′

u

[f(x′) ̸= y] ≥ 1

3
γ

∫ t0+ζ

t0

ϕ(z)dz ≥ γ2

6
,

where in the last inequality we used that t0, ζ are chosen such that Prz∼N [t0 + ζ > z ≥ t0] = γ/2,
by substituting γ = 4

√
ϵ the result follows.

To prove Proposition 6.22, from Lemma 6.23, we have that the set DB is (d−Ω(log(1/ϵ)), 16)-
correlated with respect R. Thus, we have that SD(B, d−Ω(log(1/ϵ)), 16) = 2d

Ω(1) and an application of
Lemma 6.6 completes the proof.

Proof of Theorem 6.21. Fix ϵ > 0 less than a sufficiently small constant. Let DB and R as in
Lemma 6.23. Let A be an algorithm that given ϵ′ > 0 and D that satisfies the 1/2-Massart Noise
Condition with respect the halfspace f ′(x′) computes a hypothesis h such that

Pr
(x′,y)∼D

[h(x′) ̸= y] ≤ Pr
(x′,y)∼D

[f(x′) ̸= y] + ϵ′ .

We show that A can solve the Decision Problem B(DB,R). Let D ∈ DB with optimal halfspace
f(x), then from Lemma 6.23, we have that for any hypothesis h it holds

Pr
(x′,y)∼R

[h(x′) ̸= y]− Pr
(x′,y)∼D

[f(x′) ̸= y] ≥ 2ϵ .

The algorithm A for ϵ′ ≤ 2ϵ would solve the decision problem B(DB,R) (with one additional
query E(x′,y)∼D[h(x

′)y] up to accuracy ϵ), thus from Proposition 6.22, we get our result.
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A “Massart” Noise with η > 1/2 is Equivalent to Agnostic Learning

Lemma A.1 (Learning with η > 1/2). Let C be a class of Boolean functions on Rd and let F be
a class of distributions over Rd. Fix η ∈ (1/2, 1] and let A be a learning algorithm that given m
samples from a distribution D′ with η-semi-random noise, learns a hypothesis h : Rd 7→ {±1} such
that

Pr
(x,y)∼D′

[h(x) ̸= y] ≤ min
c∈C

Pr
(x,y)∼D′

[c(x) ̸= y] + ϵ .

Then A can learn C in the agnostic PAC learning model.

Proof. Let D be any distribution on Rd×{±1}. Since η > 1/2, we can create a distribution D′ with
η-semi-random noise as follows:

1. Draw (x, y) ∼ D.

2. With probability 2η−1 return (x, y) and with probability 2(1−η) return (x, ŷ) where ŷ ∈ {±1}
is uniformly random and independent of x.

For any h ∈ C (in fact for any classifier in general), it holds that Pr(x,y)∼D′ [h(x) = y|x] ≥ 2(1−η)/2 ≥
1− η and thus we have that η(x) ≤ η. The classifier f of Definition 1.1 can therefore be any classifier
in C. For every classifier h it holds

Pr
(x,y)∼D′

[h(x) ̸= y] = (2η − 1) Pr
(x,y)∼D

[h(x) ̸= y] + 2(η − 1)(1/2) . (45)

We can therefore, use A on the samples from D′ and obtain a classifier h such that

Pr
(x,y)∼D′

[h(x) = y] ≤ min
c∈C

Pr
(x,y)∼D′

[c(x) = y] + ϵ .

Using Equation (45) we obtain that for the same classifier h it holds

Pr
(x,y)∼D

[h(x) = y] ≤ min
c∈C

Pr
(x,y)∼D

[c(x) = y] + ϵ ,

and therefore A can learn the class C with respect to any distribution D, i.e., in the agnostic PAC
learning setting.

B Benign Noise is Equivalent to 1/2-Massart Noise

Fact B.1. Let D be a distribution on Rd × {±1}. D satisfies the 1/2-Massart noise condition with
respect to a halfspace f(x) if only if the distribution D satisfies the Benign noise condition with
respect to a halfspace f(x).

Proof. We prove each direction separately.

Claim B.2. If D satisfies the Massart noise condition with η = 1/2 with respect to a halfspace f(x),
then D satisfies the Benign noise condition with respect to the halfspace f(x).

Proof. Assume in order to reach in contradiction that the optimal classifier is not f and is h the
optimal one. Therefore, it holds Pr(x,y)∼D[h(x) ̸= y] < Pr(x,y)∼D[h(x) ̸= y]. It holds that

Pr
(x,y)∼D

[h(x) ̸= y] = E
x∼Dx

[1{h(x) ̸= f(x)}(1− η(x))] + E
x∼Dx

[1{h(x) = f(x)}η(x)]

= E
x∼Dx

[1{h(x) ̸= f(x)}(1− 2η(x))] + E
x∼Dx

[η(x)] .
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Note that Pr(x,y)∼D[h(x) ̸= y] = Ex∼Dx [η(x)], therefore, we have

E
x∼Dx

[1{h(x) ̸= f(x)}(1− 2η(x))] < 0 ,

which means that there is a point (a mass with non-zero measure) with η(x) > 1/2, which leads to a
contradiction. Therefore, if η(x) ≤ 1/2 then the optimal classifier is f(x).

Next, we prove the other direction.

Claim B.3. If D satisfies the Benign noise condition with respect to a halfspace f(x), then D
satisfies the 1/2-Massart noise condition with respect to the halfspace f(x).

Proof. It suffices to prove that Ex∼Dx [1{η(x) > 1/2}] = 0. Because f(x) is the optimal classifier,
that means that other classifier h(x) gets more error, therefore it holds

Pr
(x,y)∼D

[h(x) ̸= y] = E
x∼Dx

[1{h(x) ̸= f(x)}(1− 2η(x))] + E
x∼Dx

[η(x)] .

Because f(x) is the optimal classifier, it holds that Pr(x,y)∼D[h(x) ̸= y] ≥ Pr(x,y)∼D[f(x) ̸= y],
therefore

E
x∼Dx

[1{h(x) ̸= f(x)}(1− 2η(x))] ≥ 0 .

Assume that Ex∼Dx [1{η(x) > 1/2}] = a > 0, therefore we can set h(x) = f(x) when η(x) ≤ 1/2
and h(x) ̸= f(x) otherwise. Hence, we have Ex∼Dx [1{h(x) ̸= f(x)}(1 − 2η(x))] = Ex∼Dx [(1 −
2η(x))1{η(x) > 1/2}] < 0, which is a contradiction. Therefore, Ex∼Dx [1{η(x) > 1/2}] = 0, that
means that the measure of points that η(x) > 1/2 is 0, hence, it satisfies the 1/2-Massart noise
condition.

C A Non-Continuous Certificate

Non-Continuous Certificates. When we do not restrict our search to continuous functions
in order to find a certificate we can search over functions of the form T (x) = 1{sign(ℓ(x)) ̸=
sign(v · x− b)} for some v ∈ Rd, b ∈ R.

Fact C.1. Let D be a distribution on Rd×{±1}, with standard normal x-marginal, that satisfies the
η-Massart noise condition with respect to the optimal halfspace f(x). Then, for any linear function
ℓ(x) such that Pr(x,y)∼D[sign(ℓ(x)) ̸= y] ≥ OPT+ ϵ, let T (x) = 1{sign(ℓ(x)) ̸= f(x)}, then we have
that

E
(x,y)∼D

[ℓ(x)y T (x)] ≤ −Ω(ϵ2)∥ℓ(x)∥2 .

Proof. Using the η-Massart noise condition, we have

E
(x,y)∼D

[ℓ(x)y T (x)] = E
x∼Dx

[ℓ(x)f(x)β(x)1{sign(ℓ(x)) ̸= f(x)}]

= − E
x∼Dx

[|ℓ(x)|β(x)1{sign(ℓ(x)) ̸= f(x)}] .
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From Lemma F.1, we have that Prx∼Dx [|ℓ(x)| ≥ ∥ℓ(x)∥2ϵ/C] ≥ 1− ϵ/2, for some absolute constant
C > 0. From the assumptions, we have that Ex∼Dx [|β(x)1{sign(ℓ(x)) ̸= f(x)}] ≥ ϵ, therefore it
holds

E
x∼Dx

[{|ℓ(x)| ≥ ∥ℓ(x)∥2ϵ/c}β(x)1{sign(ℓ(x)) ̸= f(x)}] ≥ ϵ/2 ,

and we have

E
x∼Dx

[|ℓ(x)|β(x)1{sign(ℓ(x)) ̸= f(x)}]

≥ (∥ℓ(x)∥2ϵ/C) E
x∼Dx

[{|ℓ(x)| ≥ ∥ℓ(x)∥2ϵ/c}β(x)1{sign(ℓ(x)) ̸= f(x)}]

≳ ∥ℓ(x)∥2ϵ2/C .

And this completes the proof.

D Learning General Halfspaces with General Massart Noise

In this section, we provide the algorithm of learning biased halfspaces with general Massart Noise.

Theorem D.1 (Learning General Halfspaces with General Massart Noise). Let D be a distribution
on Rd × {±1}, with standard normal x-marginal, that satisfies the Massart noise condition for
η = 1/2 with respect to some optimal (possibly biased) halfspace f ∈ C. Let ϵ, δ ∈ (0, 1]. There exists
an algorithm that draws N = dO(log(1/ϵ)) log(1/δ) samples from D, runs in time poly(N, d)2poly(1/ϵ),
and computes a halfspace h ∈ C such that with probability at least 1− δ,

Pr
(x,y)∼D

[h(x) ̸= y] ≤ OPT+ ϵ .

The proposition below is similar to Proposition 5.2.

Proposition D.2. Let D be a distribution on Rd × {±1}, with standard normal x-marginal,
that satisfies the Massart noise condition for η = 1/2, with respect to some optimal halfspace
f(x) = sign(w∗ ·x+ t∗). Let w ∈ Rd be a unit vector and t ∈ R such that Pr(x,y)∼D[sign(w ·x+ t) ̸=
y] ≥ OPT + ϵ and θ(w),w∗) ≤ π − ϵ, for some ϵ ∈ (0, 1]. There exists an algorithm that draws
N = dO(log(1/ϵ)) log(1/δ) samples from D, runs in time poly(N, d) and, with probability at least 1− δ
returns a basis of a subspace V ⊆ w⊥ such that ∥projV ((w∗)⊥w)∥2 = poly(ϵ).

The proof of Proposition D.2 is the same as Proposition 5.2 with the only difference be that,
instead of Lemma 5.6 we use the lemma below.

Lemma D.3. Let D be a distribution on Rd×{±1}, with standard normal x-marginal, that satisfies
the Massart noise condition with η = 1/2 with respect to f(x) = sign(w∗ · x + t) with t ∈ R.
Fix ϵ > 0 and ρ > 0 such that ρ ≲ ϵ. Let w be a unit vector such that for any t′ ∈ R, it holds
Ex∼Dx [β(x)1{f(x) ̸= sign(w · x+ t′)}] ≥ ϵ. For t1, t2 ∈ R consider the band B = {t1 ≤ w · x ≤ t2}.
Denote D⊥ = D⊥w

B , i.e., D is the orthogonal projection onto w⊥ of the conditional distribution on B,
and consider the halfspace f⊥ : w⊥ 7→ {±1}, with f⊥(x) = sign(x · (w∗)⊥w − b), for some threshold
b ∈ R. Moreover, define the noise function

η⊥(x) = Pr
(z,y)∼D⊥

[y ̸= f⊥(z)|z = x] .

There exist t1, t2 ∈ R multiples of ρ, with |t1 − t2| = ρ, such that:
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• Ex∼D⊥
x
[(1− 2η⊥(x))1{f⊥(x)sign(b) > 0}] ≳ ϵ/

√
log(1/ϵ)− ρ/ϵ,

• if η⊥(x) > 1/2, then 0 < sign(b)(x · (w∗)⊥w − b) ≤ ρ/ϵ.

Proof. First, we consider the region B = {t1 ≤ w · x ≤ t2}, for any t1, t2 ∈ R with |t1 − t2| = ρ.
We denote by x⊥ the projection of x onto the subspace w⊥. Define the distribution D⊥ =

Dproj
w⊥

B , that is the distribution D conditioned on the set B and projected onto w⊥, the hypothesis
f⊥(x⊥) = sign(x⊥ · (w∗)⊥w − b) where b ∈ R is chosen appropriately below, and the noise function
η⊥(x⊥) = Pr(z,y)∼D⊥ [y ̸= f⊥(z)|z = x⊥].

Note that the distribution D⊥ does not satisfy the 1/2-Massart noise condition anymore. We first
illustrate how the noise function changes. The orthogonal projection on w⊥ creates a region where the
Massart condition is violated, i.e., a region where η⊥(x⊥) ≥ 1/2, but we can control the probability
that we get points inside this region. More formally, we show thatPr(x⊥,y)∼D⊥ [η⊥(x⊥) ≥ 1/2] ≲ ρ/ϵ.

To show that first notice that θ(v,w∗) ≥ ϵ, otherwise we would have Prx∼Dx [f(x) ̸= sign(w·x)] ≤
ϵ. We can assume that w∗ = λ1w + λ2(w

∗)⊥w , where λ1 = cos θ and λ2 = sin θ. Next we set x =
(xw,x

⊥), where xw = w ·x. We show that the hypothesis f⊥(x) = sign((w∗)⊥w ·x⊥+(t+ t1λ1)/λ2)
is almost as good as the f(x) for the distribution D⊥.

Conditioned on x ∈ B, i.e., xw ∈ [t1, t1 + ρ], it holds that

w∗ · x = λ1xw + λ2(w
∗)⊥w · x⊥ = λ1t1 + λ2(w

∗)⊥w · x⊥ + sρ ,

for some s ∈ [−1, 1] (recall that |λ1| ≤ 1). Let b = −(t + λ1t1)/λ2. Notice that when 0 ≤
sign(b)((w∗)⊥w · x⊥ − b) < ρ/λ2, f⊥(x⊥) is not equal to the sign of (w∗ · x+ t) (recall that λ2 > 0),
and therefore we are inside the region that Massart noise is violated. Thus, we need to bound the
probability of this event Iξ. We have that

Pr
(x⊥,y)∼D⊥

[η⊥(x⊥) > 1/2] =
Prx∼Dx

[
(w∗)⊥w · x ∈ Iξ

]
Prx∼Dx [x ∈ B]

≲ ρ/λ2 ≲ ρ/ϵ ,

where we used the anti-concentration property of the Gaussian distribution and the last inequality
holds because we have that λ2 ≳ ϵ.

It remains to prove that there is a choice t1, t2 and a band B = {t1 ≤ w · x ≤ t2} with
respect the t1, t2 such that Ex∼(D⊥

B)x
[(1− 2η⊥(x))1{f(x)⊥ ̸= sign(−b)}] ≳ ϵ√

log(1/ϵ)
, where D⊥

B is

the distribution D conditioned on the set B and projected onto w⊥. We first show the following
claim Let ti = iρ and t−i = −iρ, for 0 ≤ i ≤ C log(1/ϵ)/ρ where C > 0 is a large enough
constant. We define Bi = {ti ≤ v · x ≤ ti+1} and B−i = {−ti+1 ≤ v · x ≤ −ti}. For each Bi,
we define the distributions D⊥

Bi
, the hypothesis f⊥

i (x⊥) = sign(x⊥ · (w∗)⊥w − bi) and the noise
functions η⊥i (x

⊥). We remind that from the assumptions, we have that for any t′ ∈ R, it holds
Ex∼Dx [β(x)1{f(x) ̸= sign(w · x + t′)}] ≥ ϵ. Choose t′ = t/ sin θ, where θ = θ(w,w∗) and an
application of Claim 5.8 to the set {x ∈ Rd : f(x) ̸= sign(w · x+ t′)}, gives us that there exists an
index i′ such that

E
x∼Dx

[1{f(x) ̸= sign(w · x+ t′)}1{x ∈ Bi′}β(x)] ≳
ϵρ√

log(1/ϵ)
.

Moreover, note that for the distribution DBi′ , that is the distribution D conditioned on B, it holds
Ex∼(DBi′ )x

[β(x)1{f(x) ̸= sign(w · x+ t′)}] ≳ ϵ√
log(1/ϵ)

, where we used the Gaussian concentration.

We have f⊥
i′ (x) agrees almost everywhere with f(x) with respect the distribution DBi′ , i.e., we have

that E(xw,x⊥)∼(DBi′
)i [1{f((xw,x

⊥)) ̸= f⊥(x⊥)}] ≲ ρ/ϵ. Thus using the triangle inequality, we have

E
(xw,x⊥)∼(DBi′

)x

[
(1− 2η⊥(x⊥))1{sign(xw + t′) ̸= f⊥(x⊥)}

]
≳

ϵ√
log(1/ϵ)

− ρ/ϵ .
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The proof concludes by noting that in each Bi′ , it holds sign(xw + t′) = sign(−bi) from construction
of f⊥(x). This completes the proof of Lemma D.3.

We are now ready to prove the Theorem D.1. Note that this is the same proof as Theorem 5.1
the only difference is that we need to test the different thresholds.

Proof of Theorem D.1. First, let D̂N be the empirical distribution of D using N ∈ Z+ samples. Let
w(i) be the current guess. If mint∈RPr(x,y)∼D[sign(w

(i) · x+ t) ̸= y] ≥ OPT+ ϵ and θ(w(i),wast) ≤
π − ϵ, then from Proposition D.2 with N1 = dO(log(1/ϵ)) log(1/δ1) samples from D̂ and poly(N1, d)
time, we compute a subspace V such that ∥projV (w∗)∥2 ≥ poly(ϵ) and from Fact 5.14, we get a
random a unit vector v ∈ V such that v ·w∗ = poly(ϵ) and v ·w(i) = 0, with probability (1− δ1)/3.
We call this event Ei. By conditioning on the event Ei; from Lemma 5.13, after we update our current
hypothesis vector w(i) with v, we get a unit vector w(i+1) such that w(i+1) ·w∗ ≥ w(i+1) ·w∗+poly(ϵ).

After running the update step k times and conditioning on the events E1, . . . , Ek, then w(k) ·w∗ ≥
w(1) ·w∗ + k poly(ϵ); therefore, for k = poly(1/ϵ), we get that the vector w(k) that is competitive
with the optimal hypothesis, i.e., mint∈RPr(x,y)∼D[sign(w

(k) ·x+t) ̸= y] ≤ OPT+ϵ. The probability
that all the events E1, . . . , Ek hold simultaneously is at least (1− kδ1) + (1/3)k, and thus by choosing
δ1 ≤ 1/(3k), the probability of success is at least δ2 = (1/3)k. By running the algorithm above
M = log(1/δ)/δ2 times and along with an application of Hoeffding’s inequality, we get a list L of M
vectors such that contains all the unit vectors w the algorithm calculated along with −w, therefore
L contains a vector such w that such that mint∈RPr(x,y)∼D[sign(w · x+ t) ̸= y] ≤ OPT+ ϵ, with
probability 1−δ/2. Moreover, from Fact 3.2 we get that if we set T = {±ϵ2,±2ϵ2, . . . ,±4

√
log(1/ϵ)}

we have that mint∈T Pr(x,y)∼D[sign(w · x + t) ̸= y] ≤ mint∈RPr(x,y)∼D[sign(w · x + t) ̸= y] + ϵ2.
Therefore, we construct the list H = {(w, t) : w ∈ L, t ∈ T }. Finally, to evaluate all the vectors
from the list, we need a few samples, from the distribution D to obtain the best among them, i.e.,
the one that minimizes the zero-one loss.

The size of the list of candidates is at most M ≤ 2poly(1/ϵ) log(1/δ). Therefore, from Hoeffding’s
inequality, it follows that O(poly(1/ϵ) log(1/δ)) samples are sufficient to guarantee that the excess
error of the chosen hypothesis is at most ϵ with probability at least 1 − δ/2. Thus, with N =
dlog(1/ϵ) log(1/δ) samples and poly(N, d, 2poly(1/ϵ)) runtime, we get a hypothesis (ŵ, t̂) such that
Pr(x,y)∼D[sign(ŵ · x+ t̂) ̸= y] ≤ OPT+ ϵ with probability 1− δ. This completes the proof.

E Omitted Proofs from Section 5

We restate and prove Lemma 5.12.

Lemma E.1. Fix m ∈ Z+ and ϵ, δ ∈ (0, 1). Let D be a distribution in Rd × {±1} with standard
normal x-marginals. There is an algorithm that with N = dO(m) log(1/δ)/ϵ2 samples and poly(d,N)
runtime, outputs an approximation T′m of the order-m Chow-parameter tensor Tm of D such that
with probability 1− δ, it holds

∥T′m −Tm∥F ≤ ϵ .

Proof.

Fact E.2. Fix m ∈ Z+ and ϵ, δ ∈ (0, 1). Let D be a distribution in Rd × {±1} and let N =
dO(m) log(1/δ)/ϵ2. Let α be a multi-index satisfying |α| ≤ m. Then there is an algorithm that with
N samples and runtime poly(d,N), computes with probability 1− δ estimates ĥα such that

| E
(x,y)∼D

[yhα(x)]− ĥα| ≤ ϵ ,
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for all |α| ≤ m.

Proof. Let D̂N be the empirical distribution of D with N samples. Using Markov’s inequality, we
have

Pr[| E
(x,y)∼D̂

[hα(x)y]− E
(x,y)∼D

[hα(x)y]| ≥ ϵ] ≤ 1

Nϵ2
Var[hα(x)y]

≤ 1

Nϵ2
E

(x,y)∼D
[h2α(x)]

≤ O

(
1

Nϵ2

)
,

where we used the fact that for the Hermite polynomials it holds Ex∼Nd
[h2α(x)] = 1. Moreover, all

possible choices of α are at most dm. Hence, using the fact that N = O(dm/ϵ2) and applying a
union bound for all different hα, we get that with constant probability it holds

| E
(x,y)∼D

[yhα(x)]− E
(x,y)∼D̂

[yhα(x)]| ≤ ϵ ,

for all |α| ≤ m. By applying a standard probability amplification technique (see, e.g., Ex. 1, Chapter
13 of [SSBD14]), we can boost the confidence to 1− δ with N ′ = O(N log(1/δ)) samples.

In order to estimate up to order-m Chow tensors, with accuracy ϵ, we need to learn each order-m
Chow parameters up to accuracy ϵ2d−m, therefore we need to dO(m)poly(1/ϵ) log(1/δ) samples.

We restate and prove Lemma 5.13.

Lemma E.3. For unit vectors v∗,v ∈ Rd, let u ∈ Rd such that u · v∗ ≥ c, u · v = 0, and ∥u∥2 ≤ 1,
with c > 0. Then, for v′ = v+λu

∥v+λu∥2
, with λ = c/2, we have that v′ · v∗ ≥ v · v∗ + λ2/2.

Proof. We will show that v′ · v∗ = cos θ′ ≥ cos θ + λ2/2, where cos θ = v · v∗. We have that

∥v + λu∥2 =
√
1 + λ2 ∥u∥22 + 2λu · v ≤ 1 + λ2 ∥u∥22 , (46)

where we used that
√
1 + a ≤ 1 + a/2. Using the update rule, we have

v′ · v∗ = v′ · (v∗)⊥v sin θ + v′ · v cos θ =
λu · (v∗)⊥v

∥v + λu∥2
sin θ +

v + λu · v
∥v + λu∥2

cos θ .

Now using Equation (46), we get

v′ · v∗ ≥ λu · (v∗)⊥v

1 + λ2 ∥u∥22
sin θ +

cos θ

1 + λ2 ∥u∥22
= cos θ +

λu · (v∗)⊥v

1 + λ2 ∥u∥22
sin θ +

−λ2 ∥u∥22 cos θ
1 + λ2 ∥u∥22

.

Then, using that u · v∗ = u · (v∗)⊥v sin θ, we have that u · (v∗)⊥v ≥ c
sin θ , thus

v′ · v∗ ≥ cos θ +
λc− λ2 ∥u∥22
1 + λ2 ∥u∥22

≥ cos θ +
λc− λ2

1 + λ2 ∥u∥22
= cos θ +

1

4

c2

1 + λ2 ∥u∥22
,

where in the first inequality we used that ∥u∥2 ≤ 1 and in the second that for λ = c/2 it holds
c− λ ≥ c/2. Finally, we have that

cos θ′ = v′ · v∗ ≥ cos θ +
1

4

c2

1 + λ2 ∥u∥22
≥ cos θ +

1

8
c2 = cos θ +

1

2
λ2 .

This completes the proof.
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F Omitted Proofs from Section 4

Lemma F.1 (Theorem 8 of [CW01]). Let p : Rd 7→ R be a polynomial of degree at most n.
Then there is an absolute constant C > 0 such that for any 0 < q < ∞ and t ≥ 0, it holds
Prx∼Nd

[|p(x)| ≤ γ] ≤ Cqγ1/n(Ex∼Nd
[|p(x)|q/n])−1/q .

Lemma F.2. Let t ≥ 0. There exists an absolute constant C ′ ≥ 1 such that for any univariate
polynomial of degree k it holds

Ex∼N [p2(x)1{x ≥ t}]
Ex∼N [p2(x)1{x ≤ t}]

≤ eC
′k log k−t2/C′

.

Proof. We start by bounding from above the Ex∼N [p2(x)1{x ≥ t}]. Using the Cauchy-Schwarz
inequality, we get

E
x∼N

[p2(x)1{x ≥ t}] ≤ ( E
x∼N

[p4(x)])1/2( Pr
x∼N

[x ≥ t])1/2 ≲ ( E
x∼N

[p4(x)])1/2e−t2/4 . (47)

In order to bound the Ex∼N [p2(x)1{x ≤ t}] from below, we are going to use Lemma F.1. By setting
q = 4k, n = k and γ = ( 1

12Ck )
k(Ex∼N [p4(x)])1/4, on Lemma F.1. We get that

Pr
x∼N

[
|p(x)| ≤

(
1

12Ck

)k (
E

x∼N
[p4(x)]

)1/4
]
≤ 1/3 .

Therefore, by squaring we get

Pr
x∼N

[
p2(x) ≥

(
1

12Ck

)2k (
E

x∼N
[p4(x)]

)1/2
]
≥ 2/3 . (48)

Furthermore, using the assumption that t ≥ 0, we have Ex∼N [p2(x)1{x ≤ t}] ≥ Ex∼N [p2(x)1{x ≤
0}], hence, combing the with Equation (48), we get

E
x∼N

[p2(x)1{x ≤ t}] ≳
(

1

12Ck

)2k (
E

x∼N
[p4(x)]

)1/2

. (49)

Combining eq. (47) and eq. (49), we get

Ex∼N [p2(x)1{x ≥ t}]
Ex∼N [p2(x)1{x ≤ t}]

≲ (12Ck)2ke−t2/4 ≤ eC
′k log k−t2/C′

,

for some C ′ ≥ 1 absolute constant.

We prove below Fact 4.15, we restate it for convenience.

Fact F.3 (Estimation of M). Let Ω = {A ∈ Sm : ∥A∥F ≤ 1} and ϵ, δ ∈ (0, 1). Let ℓ(x) = w · x+ t

with |ℓ(x)|2 ≤ C and M̃ = 1
N

∑N
i=1m(x(i))m(x(i))⊤1B(x

(i))y(i)ℓ(x(i)). There exists an algorithm

that draws N = d
O(log 1

γβ
)

Cϵ2
log(1/δ) samples from D, runs in poly(N, d) time and with probability at

least 1− δ outputs a matrix M̃ such that

Pr

[
sup
A∈Ω

∣∣∣tr(AM̃)− tr(AM)
∣∣∣ ≥ ϵ

]
≤ 1− δ .
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Proof. Using the Cauchy-Schwarz inequality, we get

tr
(
A(M− M̃)

)
≤ ∥A∥F

∥∥∥M− M̃
∥∥∥
F

.

Therefore, it suffices to bound the probability that
∥∥∥M− M̃

∥∥∥
F
≥ ϵ. From Markov’s inequality, we

have
Pr
[∥∥∥M− M̃

∥∥∥
F
≥ ϵ
]
≤ 1

ϵ2
E

[∥∥∥M− M̃
∥∥∥2
F

]
. (50)

Using multi-indices S1, S2 that correspond to the monomials xS1 ,xS2 (as indices of the matrix M),
we have

E

[∥∥∥M− M̃
∥∥∥2
F

]
=

∑
S1,S2:|S1|,|S2|≤k

(MS1,S2 − M̃S1,S2)
2 =

∑
S1,S2:|S1|,|S2|≤k

Var[M̃S1,S2 ] .

Using the fact that the samples (x(i), y(i)) are independent, we can bound from above the variance
of each entry (S1, S2) of M̃

Var[M̃S1,S2 ] ≤
1

N
E

(x,y)∼D

[
x2(S1+S2) (1B(x)ℓ(x)y)

2
]
≤ 2

N
E

x∼Dx

[
x2(S1+S2)(∥x∥22 + t2)

]
≤ 2C

N
E

x∼Dx

[
(∥x∥22)

|S1+S2|+1
]
.

For every n ≥ 1, we have Ex∼Dx

[
(∥x∥22)n

]
= dO(n). Using the above bound for the variance and

summing over all pairs S1, S2 with |S1|, |S2| ≤ k, we obtain

E

[∥∥∥M− M̃
∥∥∥2
F

]
=

2C

N
dO(k) (51)

Combining Equation (50) and Equation (51) we obtain that with N = dO(m)/(Cϵ2) samples we can
estimate M within the target accuracy with probability at least 3/4. To amplify the probability to
1− δ, we can simply use the above empirical estimate ℓ times to obtain estimates M̃(1), . . . , M̃(ℓ)

and keep the coordinate-wise median as our final estimate. It follows that O(log(m/δ)) repetitions
suffice to guarantee confidence probability at least 1− δ.

We restate and prove Lemma 4.19.

Lemma F.4 (Estimating the function ri). Let D be a distribution on Rd × {±1} with standard
normal x-marginal and let T (i)(x) be a non-negative function returned by a (2ρ)-certificate oracle.
Moreover, assume that T (i)(x) has bounded ℓ4 norm, i.e., ∥T (i)(x)∥4 ≤ 1. Then after drawing
O(d log(1/ϵ)/ϵ2 log(d/δ)) samples from D, with probability at least 1−δ, we can compute an estimator
r̂i that satisfies the following conditions:

•
∥∥∇r̂i(w, t)−E(x,y)∼D[(T

(i)(x) + ρ)y(x, 1)]
∥∥
2
≤ ϵ/

√
log(1/ϵ)

• ∥∇r̂i(w, t)∥2 ≤ 2
√
d.
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Proof. Let DN be the empirical distribution of D with N samples. It suffices to find N , such that
with probability 1− δ the∥∥∥∥ E

(x,y)∼DN

[(T (x) + ρ)yx]− E
(x,y)∼D

[(T (x) + ρ)yx]

∥∥∥∥
2

≤ ϵ .

Let R̂ = E(x,y)∼DN
[(T (x) + ρ)yx] and R = E(x,y)∼D[(T (x) + ρ)yx]. From Markov’s inequality, we

have that

Pr
[∥∥∥R̂−R

∥∥∥
2
≥ ϵ
]
≤ 1

ϵ2
E[∥R̂−R∥22] ≤

1

Nϵ2
E

(x,y)∼D
[∥(T (x) + ρ)yx∥22] .

From Cauchy-Schwarz, we have that Ex∼Dx [∥(T (x)+ρ)x∥22] ≤ (Ex∼Dx [(T (x)+ρ)4])1/2(Ex∼Dx [∥x∥42])1/2.
From the fact that ∥T∥4 ≤ 1, we have that Ex∼Dx [(T (x)+ρ)4] ≤ 4(1+ρ4). Moreover, (Ex∼Dx [∥x∥42])1/2 ≲
d, hence

Pr
[∥∥∥R̂−R

∥∥∥
2
≥ ϵ
]
≲

4d

Nϵ2
.

For N ′ = O( d
ϵ2
) samples, we get that the above holds with constant probability. Like in Fact 4.15,

we can amplify the probability to 1− δ, using N = N ′ log(d/δ) samples.
Therefore, let R̃ be the estimator of R, we have∥∥∥R̃∥∥∥

2
≤ ∥R∥2 + ϵ ≤ 4

√
(1 + ρ2)

√
d+ ϵ ≤ 8

√
d . (52)

Finally, it remains to show that we can compute an estimator M̃ = (R̃, m̃) such that for any unit
vector v ∈ Rd and any |t| ≤ 4

√
log(1/ϵ), we have with probability 1− δ that

|R̃ · v + m̃t− E
(x,y)∼D

[(T (x) + ρ)y(x · v + t)]| ≤ ϵ .

From the above, for any unit vector v ∈ Rd, we have with probability 1− δ that |R̃ · v −R · v| ≤
∥R̃ −R∥2 ≤ ϵ. Therefore, it remains to estimate m̃. Let DN ′ be the empirical distribution of D
with N ′ samples. From Markov’s inequality we have for any ϵ′ > 0 that

Pr[| E
(x,y)∼DN′

[(T (x) + ρ)yt]− E
(x,y)∼D

[(T (x) + ρ)yt]| ≥ ϵ′] ≤
E(x,y)∼D[(T (x) + ρ)2]t2

N ′ϵ2
≤ 4t2

N ′ϵ2
.

Therefore, using N ′ = O(log(1/ϵ)/ϵ2) we get an estimator with constant probability and hence by
using the boosting technique as before, we get that with overall N ′ log(1/δ) samples, we can boost
the probability to 1− δ.

G Omitted Proofs from Section 6

In this section, we prove Lemma 6.17. We restate the lemma for convenience.

Lemma G.1. If there is no polynomial p ∈ P0
k such that β∥(pf)+∥1 ≥ ∥(pf)−∥1 then, the LP (39)

is feasible if only if LP (40) is infeasible.

Proof. First we introduce some notation. We use (h̃, c) for the inequality Ez∼N [β(z)h̃(z)] + c ≤ 0,
where h̃ ∈ L1(R) and c ∈ R. Moreover, let S be the set that contains all such tuples that describe
the target system. For the set S, the closed convex cone over L1(R)×R is the smallest closed set
S+ satisfying, if A ∈ S+ and B ∈ S+ then A+B ∈ S+ and, if A ∈ S+ then λA ∈ S+ for all λ ≥ 0.
Note that the S+ contains the same feasible solutions as S. In order to prove this, we need the
following functional analysis result from [Fan68].
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Fact G.2 (Theorem 1 of [Fan68]). If X is a locally convex, real separated vector space then, a linear
system described by S is feasible (i.e., there exists a g ∈ X ∗) if and only if (0, 1) ̸∈ S+.

Our LP is defined by the following inequalities: (pf, 0) for p ∈ P0
k , (h,−∥h∥1) for all h ∈ L1

+(R),
(−T, β∥T∥1) for all T ∈ L1

+(R). By taking the convex cone defined from the above inequalities, we
get the following set

S ′+ = {(pf + h− T,−∥h∥1 + β∥T∥1) : p ∈ P0
k , h ∈ L1

+(R), T ∈ L1
+(R)} .

We have the following lemma.

Lemma G.3. If there is no polynomial p ∈ P0
k such that β∥(pf)+∥1 ≥ ∥(pf)−∥1 then, the LP

described by S is feasible if only if (0, 1) ̸∈ S ′+.

Proof. This proof follows from Fact G.2 by showing that S ′+ is closed, i.e., S ′+ = S+. Let F =
fp + h − T and λ ≥ ∥h∥1 − β∥T∥1, therefore the above LP is equivalent to Ez∼N [β(z)F (z)] ≤ λ.
Let (pn, hn, Tn, λn) be a sequence that satisfies our constraints, i.e., (fpn + hn − Tn, λn) ∈ S′

+, with
Fn = fpn + hn − Tn converging with respect the ℓ1-norm to F0 and λn converging to λ0.

Note that λn ≥ ∥(Fn − (fpn))
+∥1 − β∥(Fn − (fpn))

−∥1. This holds because hn and Tn are
positive functions and Fn − fpn = hn − Tn, therefore hn = (Fn − (fpn))

+ and Tn = (Fn − (fpn))
−.

We have that

∥(Fn − (fpn))
+∥1 − β∥(Fn − (fpn))

−∥1 ≥ −2∥Fn∥1 + ∥(fpn)−∥1 − β∥(fpn)+∥1 .

Note that from our assumption we have that for any polynomial p ∈ P0
k , it holds ∥(pf)−∥1 −

β∥(pf)+∥1 > 0. Because this is homogeneous with respect p, we can assume that ∥p∥1 = 1.
Therefore, using the fact that the set ∥p∥1 = 1 and P0

k is compact, we have that all the limits
are inside P0

k , thus there exists a c > 0, such that ∥(pf)−∥1 − β∥(pf)+∥1 > c. Therefore, it holds
∥(pf)−∥1 − β∥(pf)+∥1 > c∥p∥1.

From the above, we have that λn + 2∥Fn∥1 ≥ c∥pn∥1 , and because Fn → F0 and λn → λ0, that
means that ∥pn∥1 is bounded. Since, an L1 ball in P0

k is compact, there is a subsequence such that
pn → p0. By setting h0 = (F0 − (fp0))

+ and T0 = (F0 − (fp0))
−, we find appropriate p0, h0, T0

that give the appropriate limit points. Therefore, the set S ′+ is closed and the lemma follows from
Fact G.2.

The proof of Lemma 6.17, follows from Lemma G.3, by noting that (0, 1) ̸∈ S ′+ is equivalent to
the infeasibility of LP (40).
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