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Abstract. If a knot K in S3 admits a pair of truly cosmetic surgeries, we show that the surgery

slopes are either ˙2 or ˙1=q for some value of q that is explicitly determined by the knot Floer

homology of K. Moreover, in the former case the genus of K must be 2, and in the latter case there

is a bound relating q to the genus and the Heegaard Floer thickness of K. As a consequence, we

show that the cosmetic crossing conjecture holds for alternating knots (or more generally, Heegaard

Floer thin knots) with genus not equal to 2. We also show that the conjecture holds for any knot K

for which each prime summand of K has at most 16 crossings; our techniques rule out cosmetic

surgeries in this setting except for slopes ˙1 and ˙2 on a small number of knots, and these remain-

ing examples can be checked by comparing hyperbolic invariants. These results make use of the

surgery formula for Heegaard Floer homology, which has already proved to be a powerful tool for

obstructing cosmetic surgeries; we get stronger obstructions than previously known by considering

the full graded theory. We make use of a new graphical interpretation of knot Floer homology and

the surgery formula in terms of immersed curves, which makes the grading information we need

easier to access.
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1. Introduction

Given a knot K in S3, two surgeries S3
r .K/ and S3

r 0.K/ with r ¤ r 0 are said to be cos-

metic if Sr .K/ and Sr 0.K/ are diffeomorphic as unoriented manifolds, and truly cosmetic

if Sr .K/ Š Sr 0.K/ (here, and throughout the paper, Š denotes orientation preserving

diffeomorphism). Surgeries that are cosmetic but not truly cosmetic are called chirally

cosmetic. Cosmetic surgeries are one way in which the surgery characterization of a 3-

manifold can fail to be unique. Examples of chirally cosmetic surgeries are not difficult to

find, but Gordon conjectured that there are no truly cosmetic surgeries on nontrivial knots

[4, Conjecture 6.1] (see also [14, Problem 1.81 A]). This conjecture is stated more gener-

ally for knots in arbitrary 3-manifolds, with the notion of truly cosmetic surgery suitably

extended, but we will only consider the case of knots in S3.
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Conjecture 1 (Cosmetic Surgery Conjecture in S3). Let K be a nontrivial knot in S3. If

r ¤ r 0, then S3
r .K/ 6Š S3

r 0.K/.

The conjecture can be viewed as a generalization of the knot complement problem,

solved by Gordon and Luecke [5], who proved that no pair of cosmetic surgeries contains

the trivial surgery S3
1.K/. In addition to this, several partial results related to Conjecture

1 are known. Boyer and Lines [1] used surgery formulae for Casson–Walker and Casson–

Gordon invariants to place a restriction on �K.t/ for knots K admitting truly cosmetic

surgeries. Much of the recent progress on Conjecture 1 has made use of Heegaard Floer

homology, which has led to several results on obstructing cosmetic or truly cosmetic surg-

eries. For any pair of truly cosmetic surgeries, the surgery slopes were shown first to have

opposite signs [19, 24], and then to be in fact opposite [15]. If K admits truly cosmetic

surgeries, then the genus of K is not 1 [23] and the knot Floer homology of K satisfies

certain additional constraints [3, 15].

Heegaard Floer homology has already proved to be a powerful tool at distinguishing

surgeries, but it has not been used to its full potential. Each application to the cosmetic

surgery conjecture mentioned above uses only partial information from Heegaard Floer

homology, either the total rank of cHF [19,24], the d -invariants [15,23], or the Euler char-

acteristic of HFC
red [3, 15]. We will harness (almost) all of the information in Heegaard

Floer homology to obtain much stronger obstructions to truly cosmetic surgeries. In par-

ticular, we consider the isomorphism type of cHF as an absolutely graded vector space,

which amounts to keeping track of the grading for each generator in addition to the rank.

This is facilitated by a recent reinterpretation of Heegaard Floer invariants for manifolds

with torus boundary in terms of collections of immersed curves due to the author, Ras-

mussen, and Watson [8, 9]. In particular, this provides a combinatorial framework that

makes comparing gradings for surgeries on knots easier. We give obstructions to truly

cosmetic surgeries in terms of numerical invariants ns extracted from knot Floer homol-

ogy, the Heegaard Floer thickness th.K/, and the Seifert genus g.K/. The Heegaard Floer

thickness is the difference between the maximal and minimal ı-gradings in bHFK. The

integers ns will be introduced in Section 2.3; briefly, they count the intersection number

of the immersed multicurve representing knot Floer homology with a horizontal line at

height i . Our main result is the following:

Theorem 2. If K � S3 is a nontrivial knot and S3
r .K/ Š S3

r 0.K/ for r ¤ r 0, then

(i) the pair of slopes ¹r; r 0º is either ¹˙2º or ¹˙1=qº where q D
n0 C 2

P1
sD1 ns

4
P1

sD1 s
2ns

;

(ii) if ¹r; r 0º is ¹˙2º then g.K/ D 2 and n0 D 2n1;

(iii) if ¹r; r 0º is ¹˙1=qº then q �
th.K/C 2g.K/

2g.K/.g.K/ � 1/
.

Note that for any given knot we rule out all but at most two pairs of truly cosmetic

surgeries; it was not previously known that a knot must have finitely many pairs of truly

cosmetic surgeries. Importantly, this is an effective finiteness statement, meaning that for

a given knot K the two (or fewer) potential truly cosmetic surgery pairs are explicitly
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determined. This makes it possible to check the conjecture for a given finite set of knots

by means of a finite computation (see Theorem 6 below). In fact, in the vast majority

of cases observed, the value of q predicted by conclusion (i) is not an integer and the

conditions in (ii) are not met, so that Theorem 2 rules out all truly cosmetic surgeries

on K.

Although the formula in conclusion (i) of Theorem 2 determines q, the bound on q in

conclusion (iii) is also useful as a convenient way to rule out truly cosmetic surgeries on

large classes of knots without computing the ns invariants. In particular:

Corollary 3. If K is a nontrivial knot in S3 with g.K/ ¤ 2 and th.K/ < 6, then K does

not admit any truly cosmetic surgeries.

Proof. The cosmetic surgery conjecture is known for genus 1 knots [23], so we may

assume that g.K/ > 2. Conclusion (ii) from Theorem 2 rules out slopes ˙2. The bound

from conclusion (iii) of Theorem 2 then implies that q < 1, which is impossible.

A great many knots have th.K/ < 6. A knot is Floer homologically thin if th.K/D 0,

that is, if only one ı-grading is occupied (we will simply refer to such knots as thin);

examples of thin knots include all alternating and quasialternating knots. Furthermore,

direct computation reveals that for any prime knotK with at most 16 crossings, th.K/� 2.

It follows that the cosmetic surgery conjecture holds for any of these knots with genus

other than 2.

An additional consequence of Theorem 2 is a restriction on the manifolds that could

arise from truly cosmetic surgeries on knots in S3:

Corollary 4. If Y is a closed oriented 3-manifold with jH1.Y I Z/j > 2, then Y cannot

be obtained by a truly cosmetic surgery on any knot in S3.

In addition to those in Theorem 2, some further conditions must also be satisfied by the

knot Floer homology of K for truly cosmetic surgeries to exist. These conditions require

some more definitions to state in general (see Section 5), but in the case of thin knots they

can be stated in terms of the Alexander polynomial and signature.

Theorem 5. If a nontrivial knot K � S3 is thin .in particular if K is alternating or

quasialternating/ and admits a pair of truly cosmetic surgeries, then �K.t/ D nt2 �

4nt C .6nC 1/� 4nt�1 C nt�2 for some positive integer n, �.K/ D 0, and the surgery

slopes are ˙1 or ˙2.

We remark that Theorem 5 is the best statement possible for thin knots using only

Heegaard Floer homology. That is, ifK is thin,�K.t/D nt2 � 4nt C .6nC 1/� 4nt�1

C nt�2, and �.K/ D 0, then the pairs ¹S3
1 .K/; S

3
�1.K/º and ¹S3

2 .K/; S
3
�2.K/º are not

distinguished by their Heegaard Floer homology. The first two examples in the knot tables

where this occurs are the knots 941 and 944. Similarly, Theorem 2 and the additional

constraints in Section 5 allow us to extract as much information as possible from Heegaard

Floer homology: if we cannot prove the cosmetic surgery conjecture for a given knot,
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then the pairs of surgeries that are not ruled out in fact have isomorphic Heegaard Floer

homology.

Knots having any surgeries at all that cannot be distinguished by Heegaard Floer

homology are exceedingly rare, but they do exist—to date we have found 337 such knots,

each with two pairs of slopes that are not distinguished. All of these 337 examples are

genus 2 and have Alexander polynomial of the form described in Theorem 5 (though not

all are thin). To prove the conjecture for these knots, we must use other invariants to dis-

tinguish the remaining pairs of surgeries; for the examples found so far the hyperbolic

volume and Chern–Simons invariant are sufficient. In this way we verify the conjecture

for all prime knots up to 16 crossings, and in fact for arbitrary connected sums of such

knots.

Theorem 6. Let K � S3 be a nontrivial knot whose prime summands each have at most

16 crossings. If r ¤ r 0 then S3
r .K/ 6Š S3

r 0.K/.

This paper grew out of an attempt to answer the question: how much can Heegaard

Floer homology tell us about the Cosmetic Surgery Conjecture? For knots in S3, we have

now given a comprehensive answer to that question. Indeed, we see that Heegaard Floer

homology can say a great deal, and examples for which it is not sufficient to prohibit truly

cosmetic surgeries appear to be very rare. Nevertheless, other tools will be required to

prove Conjecture 1 outright.

The results in this paper are, to the author’s knowledge, the strongest obstructions

available for knots in S3, but similar results can be obtained using other techniques. In

particular, very recently Futer, Purcell, and Schleimer [2] have used hyperbolic methods

to prove a result comparable to Theorem 2: for any given hyperbolic knot, they rule out

truly cosmetic surgeries on all but an explicitly determined finite set of slopes. For knots

in S3 this result seems to be weaker in practice than Theorem 2, in the sense that the

finite set of slopes remaining is larger and thus the exhaustive search required to check

the conjecture on a given set of knots is slower. However, the result in [2] applies not just

to hyperbolic knot complements in S3 but to arbitrary finite volume hyperbolic manifolds

with torus boundary. In contrast, the arguments in this paper are highly specialized to

knots in S3 (though S3 can be replaced with any integer homology sphere L-space).

It is interesting to ask how much Heegaard Floer homology can tell us about cosmetic

surgeries in more general manifolds. Although the proofs in this paper are not well suited

to that setting, the broader principle of using immersed curves to more easily compare

the ranks and relative gradings of the Heegaard Floer invariants of different Dehn fillings

may be fruitful. In particular, we could hope to obtain a finiteness result in the line of

Theorem 2 and [2, Theorem 7.29].

Question 7. Can Heegaard Floer homology be used to rule out all but finitely many pairs

of cosmetic surgery slopes for arbitrary manifolds with torus boundary?

A good starting point would be graph manifolds with torus boundary, since (i) hyper-

bolic techniques would not apply and (ii) there is well developed machinery for under-

standing the bordered Floer invariants in this case [6, 10].
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The rest of the paper is organized as follows. In Section 2 we describe knot Floer

homology and review its relevant properties. This section is recommended even for read-

ers already familiar with knot Floer homology, as our description of the invariant is not

the usual one. In particular, we describe knot Floer homology as a decorated collection of

immersed curves, a perspective that we will use throughout the paper. Section 3 addresses

the Cosmetic Surgery Conjecture and briefly reviews some existing results; this is not

meant to be a comprehensive survey of the subject, but rather focuses on results that use

Heegaard Floer homology and on which our arguments build. In Section 4 we introduce

our main obstructions and prove Theorem 2. Section 5 refines these results and provides

several explicit obstructions to a knot admitting truly cosmetic surgeries; in particular, we

prove Theorem 5. Finally, in Section 6 we verify the conjecture for arbitrary connected

sums of knots up to 16 crossings, proving Theorem 6.

2. Knot Floer homology

Knot Floer homology was defined by Oszváth and Szabó [17] and independently by

Rasmussen [21]. We will use a description of this invariant for knots in S3 in terms of

immersed curves; this is rather different from the original formulation, though it carries

equivalent information. We will be primarily interested in a weaker form of the invariant,

which we call b�.K/ and which is equivalent to the UV D 0 truncation of the knot Floer

complex. The UV D 0 truncation of knot Floer homology is also equivalent to bordered

Floer homology of the knot complement, and an immersed curve description of this invari-

ant is due to the author, Rasmussen, and Watson [8, 9] (the case of knot complements is

discussed specifically in [9, Section 4]). In particular, the invariant denoted b�.K/ in this

paper agrees with cHF.M/ with M D S3 n �.K/ in the notation of [8, 9]. For readers

unfamiliar with bordered Floer homology, a bordered free construction of the immersed

curves b�.K/ will appear in a forthcoming paper by the author [7]. This construction has

the advantage that it can be strengthened to a decorated curve �.K/ capturing the full

knot Floer complex CFK1.K/. We will not need this stronger invariant in the present

paper, though we will need to make use of the construction in [7] in one small way (see

Proposition 17).

We will now describe the invariant b�.K/. Throughout we work with coefficients in

F D Z=2Z. We begin by setting notation for the spaces in which the curves b�.K/ appear.

Let T denote the torus marked with a chosen pair of parametrizing curves � and � and a

single marked pointw, which we may take to be the intersection of � and �. Let T denote

the infinite cyclic covering space of T in which � lifts to a loop and � does not, and let

Np W T ! T denote the covering map. We will identify T with .R=Z/ � R, where the lifts

of � and � are horizontal and vertical, respectively, and the preimages of w are the points

.0; s � 1=2/ for integers s. Let zT denote the universal covering space R2 with covering

map zp W zT ! T . By slight abuse, we will often refer to the vertical line through the marked

points in T (or through a column of marked points in zT ) as �, though it is really a lift of

the curve � in T . Finally, we will use T�, T �, and zT� to denote corresponding punctured





Heegaard Floer homology and cosmetic surgeries in S3 7

immersed paths from the left to the right of the boxed region. By a local system we mean

a similarity class of such matrices, which is equivalent to the subset of intersection points

above since the matrix constructed in this way will be in rational canonical form. The

local system associated to each curve in 
 is also an invariant of K. Note that the pair

of train track edges added at an intersection point is equivalent to a single “crossover

arrow”, in the shorthand notation of [8], and using the arrow sliding moves the whole

configuration can be replaced with ki parallel copies of 
 0
i with some crossover arrows

between parallel strands. This also defines a matrix, which is similar to the one constructed

above.

Maslov gradings. The multicurve 
 can be enhanced with extra decorations in order to

encode some (relative) grading information. In fact, the desired information is already

contained in the immersed curve for any single component 
i of 
 , so extra decorations

are only required to capture relative gradings between different components. There are

multiple ways to encode this information the approach we describe here is to add labeled

arcs to 
 connecting different components. More precisely, we extend the multicurve 


to an immersed graph 
gr, which contains 
 as a subgraph and all of whose vertices are

contained in 
 , but which also contains some number of edges connecting vertices on

different curve components. We will refer to these new edges as grading edges, and they

should be ignored except for the purposes of computing gradings. We require that the

grading edges are tangent to 
 at their endpoints, so that 
gr is in fact an immersed train

track (recall that a train track is a graph for which all incident edges at any vertex are

mutually tangent). Moreover, we require the ends of the grading edges to be consistent

with the relative orientations on the curves, in the sense that a smooth path that runs over

an edge connecting 
i and 
j either follows the orientation on both curves or opposes the

orientation on both curves. Grading edges themselves are directed (this direction is not

required to agree with the orientation on the curves) and labeled with an integer weight.

We say that a set of grading edges on 
 is complete if 
gr is connected as a graph.

We say that a set of grading edges is consistent if, for any closed (not necessarily smooth)

path P in 
gr,

� rotation.P /C winding.P /C weights.P / D 0; (1)

where rotation.P / is 1
2�

times the total counterclockwise rotation along the smooth sec-

tions of P , winding.P / is the sum over marked points w in T of the winding number

of P around w, and weights.P / is the sum of the weights of all grading edges traversed

by P , with the weight counted negatively if P traverses the grading edge backwards.

More precisely, for the rotation and winding numbers to make sense, we only consider

paths P that do not wrap around the cylinder; these can be viewed as paths in the marked

strip obtained by cutting T open along the line ¹1=2º � R. We say that two complete

sets of grading edges are equivalent if their union is consistent. With these definitions

established, the grading decoration we will use on the multicurve 
 to define b�.K/ is

a complete consistent set of grading edges; this decoration is an invariant of K up to

equivalence of sets of grading edges.
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(II) The immersed curves in 
 are unobstructed, meaning that they do not bound any

“teardrops”, or one-cusped disks, that do not enclose a marked point. That is, there are no

immersed disks in the punctured cylinder T � with boundary on some 
i 2 
 such that the

boundary is a smooth path apart from one acute corner at a self-intersection point of 
i .

(III) The consistency condition for sets of grading arrows in (1) is stated as a condition

that must hold for all closed loops in the train track 
gr that do not wrap around the

puncture. We remark that this condition must in particular hold for each curve component


i with i ¤ 0, even before grading arrows are introduced, and this places restrictions on

the allowed curves: for any closed curve with net zero rotation, the total winding number

around punctures must also be zero. In particular, any figure eight shaped curve must

enclose the same number of marked points on each side.

Remark 9. In the examples above, all of the curves 
i with i ¤ 0 are figure eights wrap-

ping around two adjacent punctures; such a curve will be called a simple figure eight. This

is not a general property of b� , but it is incredibly common. In fact, this condition holds for

all but one prime knot up to 15 crossings. The unique exception is 15n166130, for which
b� contains (along with thirty simple figure eights) two components not of this form. These

components are still figure eight curves enclosing one marked point on each side, but they

enclose nonadjacent marked points. Larger examples can be constructed with figure eight

curves enclosing more than one marked point on each side, but the author has not yet

found an example with a homologically trivial curve that is not a figure eight in this more

general sense.

(IV) The decorated curve set b�.K/ is invariant under rotation by � about the origin,

up to homotopy of curves and equivalence of grading arrows, except that the rotation

flips the orientation of every curve. This is the geometric expression of a symmetry for

bordered Floer invariants established in [9, Theorem 7], which was proved earlier in the

case of knot complements by Xiu [25].

2.3. Invariants derived from knot Floer homology

Several interesting numerical invariants of K can be extracted from b� . For example, the

genus ofK is the maximum height of an intersection of b� with the vertical line � through

the marked points, assuming b� is in minimal position with �. Here we mean height in

the discrete sense: an intersection point is said to occur at height s if its y-coordinate falls

between the marked points at .0; s � 1=2/ and .0; s C 1=2/.

There is a distinguished curve component 
0 that wraps around the cylinder T and

a distinguished intersection of 
0 with �, the first time 
0 reaches � after wrapping

around the cylinder. The Ozsváth–Szabó � invariant is the height of this first intersec-

tion point on 
0 (see [9, Section 4.2]; this intersection corresponds to the generator of

vertical homology and the height gives its Alexander grading). Moreover, after 
0 reaches

this first intersection point, it can do one of three things: turn right (downward), turn left

(upward), or continue straight. Hom’s invariant �.K/ is 1, �1, or 0, respectively, in these

three cases (again see [9, Section 4.2]; this behavior corresponds to the generator of ver-
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Since we set UV D 0 in our coefficient ring, the differential only needs to count bigons

that cover eitherw marked points or z marked points, but not both. We note that to recover

the full knot Floer complex, we would need to count bigons covering both types of marked

points and we would not set UV D 0. However, if we attempt to construct such a complex

using only b� , @2 may not be zero. To correctly recover the knot Floer complex, we need

to take into account some extra decorations in the stronger invariant �.K/ (see [7]).

We set an Alexander grading on the generators of Cb� , which are intersection points

between 
 and �, by their height: for x 2 
 \ �, we define A.x/ 2 Z to be s if x lies

between the marked points at .0; s � 1=2/ and .0; s C 1=2/. It is clear that if a bigon

from x to y covers k marked points of type w, then A.y/ D A.x/C k, and if it covers k

marked points of type z then A.y/ D A.x/ � k; thus if @.x/ contains a term U aV by

where one of a or b vanishes, then A.y/ D A.x/ � b C a.

In addition to the Alexander grading, Cb� carries an integer Maslov grading M . This

satisfies

M.Ux/ D M.x/ � 2; M.Vx/ D M.x/; M.@x/ D M.x/ � 1: (2)

These relationships determine M as a relative grading on each connected component of

Cb� , since if U aV by appears in @x then M.x/ �M.y/ D 1 � 2a. The connected com-

ponents of Cb� correspond directly to the component immersed curves in b� . The grading

M can be extended to a relative grading on all of Cb� by considering bigons between �

and the train track 
gr obtained by including grading arrows with 
; we require that (2)

still holds for these bigons, where running over a grading edge of weight k forward (resp.

backward) counts as covering both U and V k times (resp. �k times). That is, if there is

a bigon from x to y whose left boundary lies in � and whose right boundary is a smooth

path in 
gr that covers w marked points nw times and z marked points nz times, and for

which k is the sum of the weights (counted with sign) of all grading edges traversed on

the boundary of the bigon traveling from x to y, then

M.y/ �M.x/ D �1C 2nw C 2k: (3)

We can always assume that all grading arrows in b� lie completely to the right of � or

completely to the left of �, so to determine the relative Maslov grading it is sufficient

to consider bigons that cover only w’s or only z’s and that include at most one grading

arrow. That said, (3) applies for bigons covering both types of marked points, and can in

fact be generalized to the following formula for the grading difference between any two

generators:

Definition 10. For x; y 2 
 \ �, let P1 be a path (not necessarily smooth) from x to y

in 
gr, let P2 be a path from y to x in �, and let P be the concatenated path P1P2. Then

P is a closed path that is smooth apart from right corners at x and y and possibly one

or more cusps. Let rotation.P / denote 1
2�

times the total counterclockwise rotation along

the smooth sections of P , let windingw.P / denote the net winding number of P around

w marked points, and let weights.P / be the sum of the weights (counted with sign) of all
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Remark 12. The discussion above shows that it is fairly straightforward to construct

a UV D 0 bifiltered complex from a decorated set of immersed curves. The converse,

that any UV D 0 bifiltered complex can be represented by a decorated set of immersed

curves and that this representation is unique in an appropriate sense, is more difficult. This

follows from the main Theorem in [8], which proves a related result for type D structures,

since the UV D 0 quotient of CFK1.K/ is equivalent to the bordered Floer invariant

of the knot complement bCFD.S3 n �.K//. See also [7] for a proof that does not pass

through bordered Floer homology. b�.K/ is defined to be the decorated immersed curve

that represents the UV D 0 quotient of CFK1.K/.

2.5. Surgery formula

A key strength of the knot Floer homology package is that there is a simple way to

recover the Heegaard Floer homology of any Dehn surgery on a knot K. In particu-

lar, cHF.S3
p=q
.K// can be realized as the intersection Floer homology of the decorated

immersed curve b�.K/ with lines of slope p=q in the punctured torus T� or the punctured

cylinder T �, as we will now further explain (a precise statement is given in Theorem 14).

More precisely, let Np.b�/ be the projection of b�.K/ to T�; we will see that
cHF.S3

p=q
.K// agrees with intersection Floer homology of Np.b�/with a straight line p̀;q of

slope p=q. By this we mean the homology of a chain complex CF. Np.b�/; p̀;q/ generated

by intersection points whose differential counts immersed bigons with right boundary on

Np.b�/ and left boundary on p̀;q . We do not allow bigons to cover the marked point (we

indicate this by taking Floer homology in the punctured torus T� rather than the marked

torus T ). We count bigons whose boundary includes crossover arrows associated with the

local system decoration on b� (see Figure 1 (b)), though it turns out that including these

bigons in the differential has no effect on the resulting homology, so in practice the local

systems on b� can be ignored. In contrast, we do not count bigons whose boundary runs

over a grading arrow so the Maslov decoration has no effect on the differential, but it will

be used to define gradings on the resulting complex.

There are two types of grading information on intersection Floer homology. First,

CF. Np.b�/; p̀;q/ decomposes into spinc summands, where generators x and y are in the

same summand if and only if the loop P formed by concatenating a path from y to x

in p̀;q followed with a (not necessarily smooth) path from x to y in Np.
gr/ (that is,

in Np.b�/ with grading arrows included) is nullhomologous. This decomposition is easier

to understand by lifting to the covering space T �, where we take Floer homology of b�
with lifts of p̀;q ; to recover the same complex we must use multiple different lifts of p̀;q ,

and the spinc summands are precisely the Floer homology of b� with any one lift of p̀;q .

On each spinc summand there is also a (relative) Maslov grading, where the grading

difference M.x/ �M.y/ is defined exactly as in Definition 10. The general form of the

grading difference can be cumbersome, but in practice it is sufficient to consider bigons

that involve at most one grading arrow, possibly with a cusp at one end of the grading

arrow.
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Proof. This is a special case of a much more general gluing formula for bordered

Floer invariants ([8, Theorem 2] without gradings and [9, Theorem 5] with gradings).

Indeed, b�.K/ is precisely the invariant cHF.M/ associated with the knot complement

M D S3 n �.K/, the invariant cHF.D2 � S1/ is simply the meridian @D2 � S1, and p=q-

Dehn surgery corresponds to gluingD2 � S1 toM by a map taking the meridian to a line

of slope p=q.

A direct consequence is that rk.cHF.S3
p=q
.K/// is given by the minimal intersection in

T� of Np.b�/ and p̀;q . This is because all bigons not covering a puncture can be removed by

pulling Np.b�/ tight (here we need that no component of Np.b�/ is parallel to p̀;q to ensure

admissibility, but this is clear if p ¤ 0). Similarly, rk.cHF.S3
p=q
.K/; i// is the minimal

intersection in T � of b� and `i
p;q . We remark that when b� is pulled tight as described in

Section 2.3, it automatically has minimal intersection with each `i
p;q .

Recall that if b� is pulled tight, then outside of a neighborhood of the punctures it

consists of a collection of some number n of length 1 vertical segments and a single non-

vertical segment of slopem. Then we have the following expression for rk.cHF.S3
p=q
.K///

(compare [19, Proposition 9.5]):

Proposition 15. With the integers m and n defined as above,

rk.cHF.S3
p=q.K/// D jp �mqj C njqj:

Proof. A line of slope p=q in T intersects the vertical line through the marked point jqj

times, so there are njqj intersection points coming from vertical segments in Np.b�/. The

remaining intersection points come from intersections with the segment of slope m, and

the number of such intersections is the distance between the slopes p=q andm=1, namelyˇ̌
det

�
p q
m 1

�ˇ̌
.

Remark 16. The key idea in the proof of [8, Theorem 2] (in the special case required

for Theorem 14) is to perturb both b�.K/ and `i
p;q into a special form so that the inter-

section Floer chain complex can be directly identified with (one spinc component of) the

box tensor product of two bordered Floer invariants, the homology of which is known to

agree with cHF.S3
p=q
; i/. It is also possible to prove Theorem 14 without passing through

bordered Floer homology. This is accomplished by perturbing `i
p;q so that the intersection

Floer chain complex CF.b�.K/; `i
p;q/ is identified with the complex bXi in the mapping

cone formula [19], whose homology is also known to give cHF.S3
p=q
; i/. This identification

was shown for large integer surgery in [9, Proposition 70], and the full proof will appear

in [7].

While the two proofs are similar in spirit, this second proof has a few advantages

since the mapping cone formula carries some information not available with bordered

Floer homology. For example, the mapping cone formula recovers the absolute grading

on cHF.S3
p=q
; i/ while bordered Floer homology can only give the relative grading. In

addition, the identification of the Floer chain complex with the mapping cone formula
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can be generalized to one involving XC
i instead of bXi , so a version of Theorem 14 holds

for C type invariants [7]. We will not need the absolute grading or C type invariants in

the present paper, but we will make use of the identification mentioned in Remark 16 in

one small way in Proposition 17 below; namely, we will use the fact that the subset of

generators of HF.b�.K/; `i
p;q/ arising from any one curve component 
i in b�.K/ can be

identified with the subset of generators of S3
p;q.K/ arising from the mapping cone formula

applied to direct summand of CFK1.K/ corresponding to 
i .

We will be interested in a special class of knots for which the bifiltered complex

CFK1.K/ has a direct summand that looks like CFK1.U /, where U is the unknot.

That is, we require that for some choice of basis CFK1.K/ has a generator with no

differentials in or out. In this case we will say that CFK1.K/ has an isolated generator.

Note that CFK1.K/ having an isolated generator implies that the curve 
0 in b�.K/
is homotopic to the horizontal curve wrapping around the cylinder once, but the latter

condition is slightly weaker since 
0 does not see diagonal arrows in CFK1.K/ (giving

an immersed curve condition equivalent to having an isolated generator would require the

stronger invariant �.K/ and amounts to further imposing that 
0 is not connected to any

other 
i by the additional decorations in �.K/).

Recall that for a 3-manifold Y with spinc structure s, the d -invariant, or correction

term, d.Y; s/ is defined as the minimum absolute grading of an element of the image

of HF1.Y; s/ in HFC.Y; s/. Understanding d -invariants usually requires working the

C flavor of invariants; there is always a generator in cHF.Y; s/ whose absolute grading

is the d -invariant, but without knowing the U -module structure on HFC we generally

have no way of knowing which generator gives the d -invariant (unless, of course, there

is only one generator in cHF.Y; s/). However, if Y is (nonzero) surgery on a knot K for

which CFK1.K/ has an isolated generator, there is an obvious choice for a distinguished

generator in each spinc structure and indeed this generator gives the d -invariant.

Proposition 17. SupposeK is a knot for which CFK1.K/ has an isolated generator, and

in particular the distinguished curve 
0 of b�.K/ is horizontal. Then for each i 2 Z=pZ,

the absolute grading of the generator of cHF.S3
p=q
.K/; i/ŠHF.b�.K/; `i

p;q/ correspond-

ing to the unique intersection point of 
0 with `i
p;q is d.S3

p=q
.K/; i/.

Proof. In the mapping cone formula, the direct summands of CFK1.K/ give rise to

direct summands for the mapping cone Xi , and it is clear that to compute the d -invariant

it is sufficient to consider only the unique nonacyclic summand of CFK1.K/ and the

corresponding summand of the mapping cone. When CFK1.K/ has an isolated genera-

tor, the homology of this summand has rank 1, so the d -invariant must be the grading of

its only generator. We now appeal not just to Theorem 14 but also to the identification of

CF.b�.K/; `i
p;q/ with bXi mentioned in Remark 16. The direct summands of CFK1.K/

correspond to the curve components of b�.K/, with the nonacyclic summand correspond-

ing to 
0, and so the relevant summand of bXi is identified with the intersection Floer

complex of 
0 with `i
p;q . Thus the grading of the unique generator of HF.
0; `

i
p;q/ is

d.S3
p=q
.K/; i/.
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This result is not at all surprising, but it does require the mapping cone formula proof

of Theorem 14 since the bordered Floer approach gives no way of confirming that the

obvious distinguished summandHF.
0; `
i
p;q/ should capture the d -invariant. We remark

that this use of Remark 16 in the proof of Proposition 17 is the only essential dependence

of the present paper on [7].

3. Obstructing truly cosmetic surgeries

We now turn to a brief survey of some past results on which the arguments in the next

section build. The first observation is that, since H1.S
3
p;q.K// Š Z=pZ, any pair of cos-

metic surgery slopes must have the same numerator. The next constraint is a condition on

the Alexander polynomial of K proved by Boyer and Lines:

Theorem 18 ([1, Proposition 5.1]). IfK admits a truly cosmetic surgery, then�00
K.1/D 0.

This result is a consequence of surgery formulas for the Casson–Walker invariant �

and the Casson–Gordon invariant �:

�.S3
p=q.K// D �.L.p; q//C

q

2p
�00

K.1/; (5)

�.S3
p=q.K// D �.L.p; q// � �.K; p/; (6)

where �.K; p/ D
Pp�1

rD0 �K.e
2i�r=p/ does not depend on q. If p=q and p=q0 are truly

cosmetic surgery slopes, (6) implies that �.L.p; q// D �.L.p; q0//. For a lens space,

�.L.p; q// is a constant multiple of p�.L.p; q//, so in fact �.L.p; q// D �.L.p; q0//.

Then (5) implies that either q D q0 or �00
K.1/ D 0.

Heegaard Floer homology entered the story when Ozsváth and Szabó constructed a

surgery formula in terms of knot Floer homology [19] and used it to prove the following

proposition. As a demonstration of the machinery that will be used in this paper, we

present a proof that is essentially equivalent to the one in [19] but is reframed in the

language of the immersed curve surgery formula.

Proposition 19 ([19, Theorem 1.5]). Suppose S3
p=q1

.K/ Š ˙S3
p=q2

.K/ with q1 ¤ q2.

Either q1 and q2 have opposite signs or S3
p=q1

.K/ is an L-space.

Proof. We must have rk.cHF.S3
p=q1

.K/// D rk.cHF.S3
p=q2

.K///. By Proposition 15,

jp �mq1j C njq1j D jp �mq2j C njq2j; (7)

where m is the slope of the nonvertical segment in b�.K/ and n is the number of vertical

segments. By taking the mirror of K if necessary, we may assume without loss of gen-

erality that m � 0. First suppose that q1 and q2 are both negative or that they are both

positive and greater than p=m. In either case, (7) simplifies to .mC n/q1 D .mC n/q2.

Since m C n > 0 for a nontrivial knot, this implies that q1 D q2. Next suppose that q1

and q2 are both positive and smaller than p=k; in this case (7) simplifies to .n �m/q1 D
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.n �m/q2. If q1 ¤ q2, we must have n D m, which implies that K is an L-space knot,

and since p=qi > m D 2g.K/ � 1, the result of either surgery is an L-space. Finally,

suppose that q1 and q2 are both positive, with mq1 < p and mq2 > p; then (7) becomes

p �mq1 C nq1 D mq2 � p C nq2. This implies

n.q2 � q1/ D 2p �m.q1 C q2/ < 2mq2 �m.q1 C q2/ D m.q2 � q1/:

This is a contradiction, since n � m.

In the case of truly cosmetic surgery on a knot K with Seifert genus 1, Ozsváth and

Szabó in fact showed that the surgery must be an L-space [19, Theorem 1.4]. Wang ruled

out this possibility, implying that the cosmetic surgery conjecture holds for all genus 1

knots [23]; we will give a new proof of this fact in Section 4 (see Corollary 26). Wu later

ruled out the possibility that truly cosmetic surgeries are L-spaces for arbitrary knots [24]

by observing that the restrictions on the Alexander polynomial of an L-space knot given

in [18] imply that �00
K.1/ ¤ 0 and applying Theorem 18. Thus truly cosmetic surgery

slopes have opposite sign.

A significant advancement came in the following result of Ni and Wu:

Theorem 20 ([15, Theorem 1.2]). Suppose S3
p=q

Š S3
p=q0 with q0 ¤ q. Then

(i) �.K/ D 0, where � is the Ozsváth–Szabó concordance invariant;

(ii) q0 D �q; and

(iii) q2 � �1 .mod p/.

The key ingredient here was a surgery formula for the d -invariants in Heegaard Floer

homology [15, Proposition 1.6]. A consequence of the surgery formula is that for p=q > 0,

the d -invariants of S3
p=q
.K/ are less than or equal to the corresponding d -invariants of

S3
p=q
.U / D L.p; q/, with equality holding for all spinc structures if and only if V0.K/ D

H0.K/D 0, where V0 andH0 are integer invariants related to certain maps in the rational

surgery formula. For p=q0 < 0, the same relationship holds with the inequality reversed.

Let d.Y / denote
P

s2Spinc.Y / d.Y; s/. For a lens space, d.L.p; q// is a constant multi-

ple of the Casson–Walker invariant �.L.p; q//, and it was already noted that for a truly

cosmetic surgery equations (5) and (6) imply that �.L.p; q// D �.L.p; q0//. Thus

d.S3
p=q/ � d.L.p; q// D d.L.p; q0// � d.S3

p=q0/:

For a truly cosmetic surgery equality must hold, so V0.K/ D H0.K/ D 0. This in partic-

ular implies (i), and then by Proposition 15, rk.cHF.S3
p=q
.K/// is a linear function of jqj,

which implies (ii). Finally, (iii) follows from the fact that d.L.p; q// D d.L.p;�q// D

�d.L.p; q//, and an explicit formula for �.L.p; q// showing that �.L.p; q// D 0 if and

only if q2 � �1 .mod p/.

In fact, the first conclusion is slightly understated, since the proof really shows that

V0.K/ D H0.K/ D 0 [15, Theorem 2.5], and this is strictly stronger than �.K/ being

zero. Hom showed that when this condition holds then CFK1.K/ has an isolated gen-

erator [12, Proposition 3.11]. Recall that by this we mean that for some choice of basis,
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CFK1.K/ has a single generator with no differentials in or out. Hom’s paper also shows

that the bifiltered chain complex CFK1.K/, taken up to filtered chain homotopy equiva-

lence and up to adding and removing acyclic summands, is a concordance invariant from

which all known Heegaard Floer concordance invariants can be derived; having an iso-

lated generator is equivalent to this concordance invariant being trivial. In the language

of immersed curves, CFK1.K/ having an isolated generator implies that 
0 is the hori-

zontal curve wrapping around the cylinder once; this in turn is equivalent to �.K/ being 0

and implies �.K/ D 0. To summarize, we have the following implications:

CFK1.K/ has isolated genarator H)
6(H


0 is horizontal ” �.K/D 0 H)
6(H

�.K/D 0:

Thus, Ni and Wu really proved the following:

Theorem 21 ([15, Theorem 1.2, enhanced]). Suppose S3
p=q

Š S3
p=q0 with q0 ¤ q. Then

(i) CFK1.K/ has an isolated generator, in particular, �.K/ D �.K/ D 0;

(ii) q0 D �q; and

(iii) q2 � �1 .mod p/.

It makes sense that the original theorem was stated in terms of � only, as � had not

been defined at that time and the condition that V0 D H0 D 0 or that CFK1 has an iso-

lated generator makes for a more cumbersome statement. However, this means that some

implications of Ni and Wu’s work, which has already found many wonderful applications,

have been overlooked. For example, the following result follows immediately from The-

orem 21 and a cabling formula of Hom [11, Theorem 2], which says that � of a cable is

never zero:

Corollary 22. The cosmetic surgery conjecture holds for any nontrivial cable of a knot

in S3.

This result was recently proved in [22] using Theorem 20 and Hom’s cabling formula

for � [11, Theorem 1] to rule out many cases, but other methods were needed to deal with

cables for which � D 0.

We end this section with a technical result that will be required later, related to one

used by Ni and Wu in the proof of Theorem 20. Recall that part (iii) of that theorem

follows from the fact that if p=q is a truly cosmetic surgery slope then the sum of all the

d -invariants of L.p; q/ must be 0. More precisely, there is an explicit formula for this

sum of d -invariants [20, Lemmas 2.2 and 4.3]:

d.L.p;q// WD

p�1X

iD0

d.L.p;q/; i/D p�.L.p;q//D �
1

12

�
qC q0 Cp

nX

iD1

.ai � 3/

�
; (8)

where q0 is the unique integer 0 < q0 < p with qq0 � 1 .mod p/ and Œa1; : : : ; an� is the

Hirzebruch–Jung continued fraction expansion for p=q. If this sum is 0, then considering
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the term in the brackets modulo p implies that q � �q0 .mod p/ and Theorem 20 (iii)

follows. We will at times be interested in only the first q d -invariants of L.p; q/; below

we show that when the sum of all p d -invariants ofL.p;q/ is 0, then the sum of the first q

of them is nonzero.

Lemma 23. For p > q > 0 relatively prime and q2 � �1 .mod p/,

q�1X

iD0

d.L.p; q/; i/ ¤ 0:

Proof. We will show that the sum is nonzero modulo 1=12. We use the recursive formula

for d -invariants of L.p; q/ given by Ozsváth and Szabó [16, Proposition 4.8]:

d.L.p; q/; i/ D �
1

4
C
.2i C 1 � p � q/2

4pq
� d.L.q; r/; j /;

where r and j are the mod q reductions of p and i , respectively. In particular,

q�1X

iD0

d.L.p; q/; i/ D �

q�1X

iD0

1

4
C

q�1X

iD0

.2i C 1 � p � q/2

4pq
�

q�1X

iD0

d.L.q; r/; i/:

The third sum on the right hand side is simply d.L.q; r//, and it it is easy to see from (8)

that this is an integer multiple of 1=12. The first sum on the right hand side, which evalu-

ates to q=4, is also a multiple of 1=12, so it is enough to check that the second sum is not.

We have

q�1X

iD0

.2i C 1 � p � q/2 D

q�1X

iD0

�
p2 C 2p.q � 1 � 2i/C .q � 1 � 2i/2

�

D qp2 C 2p

q�1X

iD0

.q � 1 � 2i/C

q�1X

iD0

.q � 1 � 2i/2:

The second term in the expression on the right is 0, since the summands run evenly from

q � 1 to �.q � 1/. The final term is twice the sum of the first q=2 odd squares if q is even,

or twice the sum of the first .q � 1/=2 even squares if q is odd; in either case, the sum

evaluates to q.q � 1/.q C 1/=3. Thus we need to show that

qp2 C q.q2 � 1/=3

4pq
D
p

4
C
q2 � 1

12p

is not a multiple of 1=12. The first term clearly is, but the second term is not as long as

q2 6� 1 .mod p/. This holds in particular when q2 � �1 .mod p/, unless p D 2. We

complete the proof by directly checking the case p D 2, q D 1: the claim holds since

d.L.2; 1/; 0/ D 1=4 ¤ 0.



J. Hanselman 22

4. New obstructions

Throughout this section we fix a knot K, and let b� D b�.K/ with underlying set 
 of

immersed curves. We will assume that CFK1.K/ has an isolated vertex, which by The-

orem 21 is necessary for K to admit a truly cosmetic surgery. In particular, this means

that the distinguished curve 
0 in 
 is horizontal. Theorem 21 also says that any pair

of cosmetic surgery slopes are opposite, so we fix p; q > 0 relatively prime, and set

YC D S3
p=q
.K/ and Y� D S3

�p=q
.K/. Our goal is to obstruct YC and Y� from being orien-

tation preserving diffeomorphic by finding conditions under which cHF.YC/ and cHF.Y�/

are not isomorphic as graded vector spaces.

The results in the previous section primarily make use of the Casson–Walker and

Casson–Gordon invariants, the total rank of cHF, and the d -invariants, which can be

viewed as the Maslov grading of one special generator of cHF for each spinc structure. To

extract more information and produce new obstructions, we will need to use the Maslov

grading of all generators. In particular, the set of gradings of all generators of cHF is an

invariant, as is the partitioning of this set into subsets according to spinc structures. To

avoid working with absolute gradings, we define

Mrel.x/ D M.x/ � d.Y; s/

for x in cHF.Y; s/. Since 
0 is horizontal, for each i 2 Z=pZ Š Spinc.Y˙/ there is a

distinguished generator in cHF.Y˙; i/ coming from the unique intersection point of 
0

with `i
p;˙q ; we will denote this generator xi

0. By Proposition 17 the absolute grading of

xi
0 is d.Y˙; i/. Thus for YC and Y�, Mrel.x/ is simply the Maslov grading relative to

the distinguished generator in the same spinc structure, i.e. Mrel.x/ D M.x/ � M.xi
0/.

We will consider the following multisets (that is, sets with repetition allowed) of relative

gradings:

Mrel.Y / D ¹Mrel.x/ j x a generator of cHF.Y /º;

Mrel.Y; s/ D ¹Mrel.x/ j x a generator of cHF.Y; s/º:

These are invariants of Y and the pair .Y; s/, respectively. In particular, if YC Š Y� then

the sets Mrel.YC/ and Mrel.Y�/ agree. Moreover, there is some permutation � on Z=pZ

such that Mrel.YC; i/ D Mrel.Y�; �.i//. We will at times refer to the sum of all elements

in these sets, which we denote †Mrel.Y / and †Mrel.Y; s/, respectively.

Remark 24. Both Spinc.YC/ and Spinc.Y�/ can be identified with Z=pZ in a way that

is canonical given the surgery description, but this identification is not an invariant of the

manifold. Thus even if YC Š Y�, the i th spinc structure of YC need not agree with the i th

spinc structure of Y�; this is why the permutation � is required above.

It is easy to see that the ranks of cHF.YC/ and cHF.Y�/ agree. Indeed, since 
0 is

horizontal, the slope m of the nonvertical segment in b� is 0, so by Proposition 15,

rk.cHF.YC// D p C njqj D p C nj�qj D rk.cHF.Y�//:







Heegaard Floer homology and cosmetic surgeries in S3 25

Proposition 25. For a generator x 2 cHF.YC; i/ corresponding to an intersection of `i
p=q

with a vertical segment in b� , let A.x/ and k.x/ be the quantities defined above. Then

�rel.x/ WD Mrel.�.x// �Mrel.x/ D 1 � 2jA.x/j � 4k.x/:

Proof. We will assume that A.x/ � 0; if A.x/ < 0, the proof is exactly the same with

all pictures rotated 180 degrees and A.x/ replaced with jA.x/j. We will only work with


0 and the vertical segment containing x, and will ignore the rest of b� . Up to perturbing
b� we may assume that the vertical segment in question lies exactly on �, so that the

points x 2 b� \ `i
p;q and �.x/ 2 b� \ `i

p;�q coincide; this means that `i
p;q , `i

p;�q , and 
0

form a triangle. In order to compute Mrel, we need the grading decoration on b� . We can

assume that the set of grading arrows contains an arrow that lies on the right side of � and

connects 
0 to the bottom end of the vertical segment; this grading arrow carries some

integer weight m. There are two cases to consider, depending on whether the vertical

segment containing x is oriented up or down (note that we always assume 
0 is oriented

rightward). The first case is pictured on the left of Figure 9; in this case the grading arrow

goes from 
0 to the right side of the vertical segment. There is a bigon from xi
0 to x,

shaded dark gray in the figure, which has no cusps, covers k.x/C A.x/ punctures, and

whose boundary runs over the grading arrow labeled by m. By Lemma 13 (b),

Mrel.x/ D M.x/ �M.xi
0/ D �1C 2k.x/C 2A.x/C 2m:

The complement of this region within the triangle formed by `i
p;q , `i

p;�q , and 
0, shaded

light gray in Figure 9, is a cusped bigon from �.x/ to �.xi
0/. This bigon covers k.x/, and

its boundary runs over the grading arrow backwards and has a single cusp, at the tail of

the grading arrow. It follows from Lemma 13 (c) that

Mrel.�.x// D M.�.x// �M.�.xi
0/ D �2k.x/C 2m:

Thus �rel.x/ D Mrel.�.x// � Mrel.x/ D 1 � 2A.x/ � 4k.x/, as desired. Note that the

label of the grading arrow cancels out and does not end up affecting �rel.x/.

If the vertical segment is oriented downward, the grading arrow must go to the left

side of the vertical segment to be consistent with the orientations. The right side of Figure

9 shows the modified grading arrow we will use. The only difference is that the boundary

of the dark gray bigon from xi
0 to x now has one cusp while the bigon from �.x/ to �.xi

0/

can be drawn with no cusps. This change adds 1 toMrel.x/ and also adds 1 toMrel.�.x//,

so it does not affect �rel.x/.

Note that the triangle formed by `i
p;q , `i

p;�q , and 
0 covers jA.x/j C 2k.x/ punctures,

so proposition says that �rel.x/ is 1 minus twice the number of punctures covered by this

triangle. This number of punctures is nonnegative. Moreover, k.x/ D 0 if A.x/ D 0; it

follows that�rel.x/D 1 if and only ifA.x/D 0, and�rel.x/ < 0 otherwise. An immediate

corollary of this is a reproof of a result of Wang:

Corollary 26 ([23, Theorem 1.3]). If g.K/ D 1, then K does not admit truly cosmetic

surgeries.
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Proof. Suppose YC Š Y�. In particular, there is some permutation � on Z=pZ such that
cHF.YC; i/ ' cHF.Y�; �.i// as graded vector spaces. Note that � can only permute spinc

structures with the same rank of cHF, since

cHF.YC; �.i// ' cHF.Y�; �.i// ' cHF.YC; i/

as ungraded vector spaces, where the first isomorphism is given by ��.i/. Because

p=q > 1, any line of slope p=q intersects any vertical segment of b� at most once. In

particular, for q � i < p, the line `i
p;q does not hit the vertical segments at height 0 at

all, while for 0 � j < q the line `
j
p;q does hit the vertical segments at height 0. Thus we

observe that for j < q and i � q,

rk cHF.Y˙; j / � 1C n0 and rk cHF.Y˙; i/ � 1C

1X

sD1

2ns :

From (9), we find that

rk cHF.Y˙; j / � rk cHF.Y˙; i/ � n0 �

1X

sD1

2ns �

1X

sD1

2ns.2s � 2/ D 4n2 C 8n3 C � � � :

This difference in dimensions is strictly positive unless ns D 0 for all s > 1.

First suppose that ns >0 for some s > 1, so that the above difference is positive for any

j < q and i � q. The spinc structures of YC and Y� can thus be divided by rank into two

subsets, with one set having the q largest dimensions of cHF and the other set having the

p� q smallest dimensions of cHF, and for both YC and Y�, these subsets are ¹0; : : : ; q � 1º

and ¹q; : : : ; p � 1º. The permutation � must fix these two sets; in other words, the first q

spinc structures of YC must correspond to the first q spinc structures of Y� under any

isomorphism of cHF.YC/ and cHF.Y�/. In particular, the sum of the d -invariants of these

first q spinc structures must agree. We have

q�1X

iD0

d.L.p; q/; i/ D

q�1X

iD0

d.YC; i/ D

q�1X

iD0

d.Y�; i/ D

q�1X

iD0

d.L.p;�q/; i/

D

q�1X

iD0

�d.L.p; q/; i/:

It follows that the sum must be zero, but this is impossible by Lemma 23.

Now suppose that ns D 0 for all s > 1. It follows that g.K/D 2, since the maximum s

for which ns ¤ 0 is g.K/ � 1, and g.K/ cannot be 1 by Corollary 22. Since p=q > 1,

we have k.x/ D 0 for any x 2 cHFred.YC/ (i.e. the relevant triangle does not cover any

marked points). By Proposition 4,

�rel.x/ D

´
1; A.x/ D 0;

�1; A.x/ D ˙1:
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similar reasons. But if p=q > 2 there is at least one spinc structure of type (d), namely the

one defined by i D q, and if 1 < p=q < 2 there is at least one spinc structure of type (b),

namely i D 0. Either case gives a contradiction, so p=q must be 2.

Small slopes can be dealt with in a similar way. Note that for p=q < 1, the constant

k.x/ in Proposition 4 is at least s.s � 1/=2, where s D jA.x/j. Moreover, k.x/ is strictly

larger than this for at least one intersection point x with jA.x/j D s, provided there are

any such points. Since we require that †Mrel.Y�/�†Mrel.YC/ D 0, it follows that there

exist constants as 2 Q with a�s D as and as > 2s
2 � 1 for s > 0 such that

n0 D
X

s¤0

nsas D

1X

sD1

2nsas > 2n1 C 14n2 C 34n3 C � � � : (10)

The constants as could be computed exactly for any fixed p=q, but we will not need this;

in fact, we will only need that as > 1 for all s > 0.

Theorem 28. Let K be a nontrivial knot in S3. If YC D S3
p=q
.K/ and Y� D S3

�p=q
.K/

are diffeomorphic and p=q < 1, then p D 1.

Proof. Suppose to the contrary that YC Š Y� and p¤ 1. Let q DmpC r with 0� r < p;

since p and q are relatively prime, r > 0. Any line of slope p=q hits any vertical segment

in b� either m or mC 1 times; let ci
s 2 ¹m;mC 1º denote the number of times the line

`i
p;˙q intersects a vertical segment at height s. We have

rk cHF.Y˙; i/ D 1C

1X

sD�1

ci
sns :

If 0 � i < r , it is easy to see that ci
0 D mC 1, while if r � j < p then c

j
0 D m. Since

ci
s � c

j
s � �1 for any s,

rk cHF.Y˙; i/ � rk cHF.Y˙; j / D

1X

sD�1

.ci
s � cj

s /ns � n0 �

1X

sD1

2ns > 0;

where the last inequality uses (10). In other words, the first r spinc structures have ranks

strictly bigger than each of the remaining p � r spinc structures. It follows that the per-

mutation � corresponding to the reindexing of spinc structures under any isomorphism

from cHF.YC/ to cHF.Y�/ must preserve the first r spinc structures as a set. In particular,

r�1X

iD0

d.YC; i/ D

r�1X

iD0

d.Y�; i/:

As in the proof of Theorem 27, this implies that

0 D

r�1X

iD0

d.L.p; q/; i/ D

r�1X

iD0

d.L.p; r/; i/:

But r � q � �1 .mod p/, so this is impossible by Lemma 23.
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When we restrict to p D 1 we can compute explicit formulas for the net change in

relative grading under �, and this determines q exactly (for a given knot) if ˙1=q is a pair

of truly cosmetic surgery slopes.

Proposition 29. Suppose S3
1=q
.K/ Š S3

�1=q
.K/. As above, let ns be the number of verti-

cal segments in b� at height s. Then

q D
n0 C 2

P1
sD1 ns

4
P1

sD1 s
2ns

:

Proof. This is a straightforward consequence of Proposition 4 and the fact thatP
x �rel.x/ D 0. Note that for slope 1=q there are q intersections of line `1;q with any

vertical segment at height s > 0, and if we label these intersections by i D 0; : : : ; q � 1,

the constant k.x/ for the i th intersection is

Œq.s � 1/C q.s � 2/C � � � C q�C is D
qs.s � 1/

2
C is;

and the sum over all q of these points of 4k.x/C 2A.x/ � 1 is

4

�
q2s.s � 1/

2
C
sq.q � 1/

2

�
C 2qs � q D 2q2s2 � q:

By symmetry the contribution to
P

x�rel.x/ of a vertical segment at height �s is the same

as that of a vertical segment at height s. Each vertical segment at height 0 contributes q

intersection points, each with �rel.x/ D 1. The condition that
P

x �rel.x/ D 0 can now

be stated as

qn0 � 2

1X

sD1

.2q2s2 � q/ns D 0I

solving this equation for q gives the desired result.

Note that since ns D 0 for jsj � g.K/, the infinite sums above can be truncated for

any particular example.

Another powerful consequence of Proposition 4 is a bound on q and the genus of K.

Theorems 27 and 28 and Proposition 29 rely on the fact that the sums of relative gradings

†Mrel.YC/ and †Mrel.Y�/ should agree, and thus for every generator x of cHFred.YC/

with�rel.x/ D �n < 0, there must be n generators y1; : : : ; yn with�rel.yi / D 1. But the

set of relative gradings is an invariant, not just its sum, so in factMrel.YC/ D Mrel.Y�/ as

multisets. This lets us say more:

Lemma 30. Suppose YC Š Y�. If cHFred.YC/ contains a generator x with �rel.x/ D

�n < 0 and Mrel.x/ D m, then it must contain generators y1; : : : ; yn with �rel.yi / D 1

and Mrel.yi / D m � i .

Proof. If  W cHF.YC/ ! cHF.Y�/ is a grading preserving isomorphism, then  �1 ı �

determines a permutation on the multiset of gradings Mrel.YC/. This permutation takes

an element m of Mrel.YC/ (corresponding to the grading of the generator x) to m � n.
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Let d denote ��rel.x/ D ��rel.x
0/. We have

d D 4k.x/C 2A.x/ � 1 D 4

�
qg.g � 1/

2
� .g � 1/

�
C 2.g � 1/ � 1

D 2qg.g � 1/ � 2g C 1:

Let m be Mrel.x/; the small bigon from x to x0 covering one puncture tells us that

Mrel.x
0/ D Mrel.x/ C 1 D m C 1. By Lemma 30, there are generators y0; : : : ; yd of

cHFred.YC/ with Mrel.yi / D m � i and �rel.yi / D C1. Applying Lemma 31 to y0

and yd , we find that bHFK.K/ contains generators z1 and z2 with ı.z1/ � �m and

ı.z2/ � �m � 1C d . Thus th.K/ � d � 1.

Theorems 27 and 28, Proposition 29, and Theorem 32 combine to give Theorem 2 in

the introduction.

5. Explicit obstructions in terms of b�

5.1. General constraints on b�

In addition to Theorem 2, it is helpful to have explicit conditions on a knot K, in terms

of its knot Floer invariant, that ensure that K admits no truly cosmetic surgeries at all.

Several such conditions are already implicit in what has been discussed so far. One con-

dition comes from Theorem 21, namely that the curve 
0 is horizontal. Another condition

follows from the bounds in Theorem 2: if g D g.K/ ¤ 2 and th.K/C 2g < 2g.g � 1/,

then K admits no truly cosmetic surgeries. We have also seen that Proposition 4 and the

fact that
P

x �rel.x/ D 0 places constraints on the numbers ns of vertical segments in
b�.K/ at height s, including the inequality (9). In particular, if fewer than half of all ver-

tical segments occur at height 0, then K cannot admit any truly cosmetic surgeries. For

the slopes 1=q the inequality (9) can be improved to an equation that can be solved for

q, giving rise to Proposition 29. This places a further constraint on the existence of truly

cosmetic surgeries which is implicit in Theorem 2: if the quantity

n0 C 2
P1

sD1 ns

4
P1

sD1 s
2ns

is not a positive integer for a given knotK, thenK does not admit truly cosmetic surgeries.

To arrive at Proposition 29 and the other constraints mentioned above, we only

assumed that S3
r .K/ and S3

�r .K/ have the same sum of all relative gradings. By con-

sidering the set of all relative gradings, we could impose further constraints on K. For

example, for r D 2, it is not enough to have two vertical segments at height 0 for each

vertical segment at height 1, we also require that vertical segments at height 0 give rise to

generators in S3
r .K/ that have grading 1 less than those coming from the vertical segment

at height 1. Unfortunately, it is difficult to state such conditions purely in terms of the knot

Floer homology ofK; this is partly because there is not a perfect correspondence between
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gradings of elements of the surgery coming from a vertical segment and gradings in knot

Floer homology.

We will see that this difficulty can be overcome in a particular special case. We remark

that while it might be possible to state some additional (likely messy) conditions on b�.K/
in the general case, it is not worth doing so. In practice, to achieve this fine an obstruction

on K it is easiest to simply compute absolutely graded HFC for each of the finitely many

surgery pairs allowed by Theorem 2 and check if they agree for any pair. In this way, we

can extract the maximum information from Heegaard Floer homology: for any knot we

can always either rule out cosmetic surgeries or conclude that Heegaard Floer homology

cannot rule out some potential pair. This can be thought of as a condition on the knot Floer

homology of K (by the surgery formula, HFC of the relevant surgeries is determined by

knot Floer homology), though it is a condition that requires some computation to check.

5.2. Further constraints for simple figure eight curves

There is one situation where it is convenient to state additional constraints purely in terms

of knot Floer homology, and that is when the underlying curve set for b� consists only of


0 and simple figure eight curves. As mentioned in Remark 9, this is common in practice.

A simple figure eight component 
i of 
 intersects � four times, corresponding to

four generators of the knot Floer homology of K. These generators all have the same

ı-grading, so it makes sense to talk about the ı-grading of the curve 
i . The height of a

simple figure eight component is the height at which it is centered, which is the Alexander

grading of two of the four generators. Let ed
s denote the number of simple figure eight

components in 
 at height s with ı-grading d , and let es D
P

d2Z
ed

s be the total number

of simple figure eights at height s. Each simple figure eight curve contributes two vertical

segments at height s, so if we assume 
0 is horizontal and all other 
i ’s are simple figure

eights then ns D 2es . We will assume the self-intersection in a simple figure eight curve 
i

occurs below the vertical segments, as in Figure 13, and with this understanding we will

refer to the left and right vertical segments coming from 
i . The relative grading of 
i

is determined by its ı-grading. In particular, if 
i is a simple figure eight at height s � 0

with ı-grading d , we can add a consistent grading arrow from 
0 to one of the vertical

segments in 
i as shown in Figure 13 (a, b); the arrow passes to the right of any marked

points up to height s and ends on the right vertical segment and carries the weight �d�s
2

if d C s is even, or it ends on the left vertical segment and carries the weight 1�d�s
2

if

d C s is odd. The case of height s < 0 is similar, except that the arrow stays to the left of

the marked points and s is replaced with jsj in the arrow weights.

Remark 33. This gives an alternative (and much simpler) way of encoding grading

information in b�.K/ when all curves other than 
0 are simple figure eights: instead of

decorating the set of curves with a collection of grading arrows, we can simply decorate

each curve other than 
0 with an integer, its ı-grading.

We now relate the ı-grading d of a simple figure eight component 
i at height s to the

relative grading of generators of cHF.YC/ coming from 
i . Note that for each generator x
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Restricting to knots with small thickness gives the following condition:

Proposition 35. Suppose, as in the previous proposition, that b�.K/ consists only of 
0

and simple figure eight components, and suppose th.K/ < 4. If K admits any truly

cosmetic surgery, then ed
s D 0 for all jsj > 1, and ed

0 D ed
1 C ed

�1 D 2ed
1 for every

ı-grading d .

Proof. By Theorem 2, we know that g.K/ D 2, which implies ed
s D 0 if jsj � 2. We

also know that the only possible truly cosmetic surgeries have slopes ˙1 or ˙2. In the

first case, we apply Proposition 34 to get the desired result. For the latter case, note that

intersections x between lines of slope 2 and vertical segments at height 1 or �1 still have

k.x/D 0, and soMrel.x/ and�rel.x/ are the same as in the slope 1 case, and the reasoning

in the proof of Proposition 34 applies.

There is a sort of Heegaard Floer converse to this statement: if g.K/ D 2, and ed
0 D

2ed
1 for all gradings d , then Heegaard Floer homology can not distinguish either pair—

that is, cHF.S3
r .K// and cHF.S3

�r .K// are isomorphic as absolutely graded vector spaces

for r 2 ¹1; 2º. We compute this explicitly for the example of 944 below, which serves as

a model computation for the general case. One might hope that upgrading to HFC would

help in this situation, but it does not. In fact, when 
0 is horizontal and all other curves

in b�.K/ are simple figure eight components, HFC is determined by cHF for any surgery

on K.

In the case of thin knots this condition can be given purely in terms of the Alexander

polynomial, as stated in the introduction.

Proof of Theorem 5. We use Proposition 35, though sinceK is thin there is only one occu-

pied ı-grading, which must be 0 if 
0 is horizontal. For K to admit truly cosmetic surg-

eries, we must have some number n of simple figure eights at height 1 (and at height �1,

by symmetry), and 2n simple figure eight components at height 0. It is easy to com-

pute �K.t/ from this information and see that it has the desired form. (Conversely, for

thin knots b�.K/ is determined by �K.t/ and �.K/; for �.K/ D 0 and �K.t/ as in the

conclusion of the theorem, it is easy to check the 
0 is horizontal, e0
1 D e0

�1 D n, and

e0
0 D 2n, and thus Heegaard Floer homology does not distinguish ˙1 surgeries or ˙2

surgeries.)

5.3. Unobstructed knots

We conclude this section by demonstrating that Theorem 2 cannot be substantially

improved using Heegaard Floer homology alone. We first note that there exist knots for

which Heegaard Floer homology does not distinguish ˙1 surgeries or ˙2 surgeries. For

example, consider the knot 944 shown in Figure 14 (a). This example appeared in [19],

where it was first observed that HFC.S3
1 .944// Š HFC.S3

�1.944//. It turns out that this

example is representative of all currently known examples for which Heegaard Floer

homology does not obstruct truly cosmetic surgeries, so we now examine this example
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If instead we consider Y˙ D S3
˙2.944/, the computation is almost identical except that

the generators now split into two spinc structures. We compute cHF.YC/ using part (d) of

Figure 14, which shows the intersection of b�.944/ with two lines of slope C2 (one for

each spinc structure). Ignoring the generators coming from 
0, we have cHFred.YC; 0/ gen-

erated by the four intersections with height 0 figure eights (labeled b2; b3; a3, and a2 in

Figure 14), which have relative gradings ¹0; 0;�1;�1º and �rel of 1, while cHFred.YC; 1/

is generated by the four intersections with the extremal figure eights (labeled b1, b4,

a1, and a4 in Figure 14), which have relative gradings ¹1; 1; 0; 0º and �rel of �1. Thus
cHF.YC; 0/ and cHF.Y�; 1/ agree as relatively graded vector spaces, as do cHF.YC; 1/ and
cHF.Y�; 0/; in other words, any graded isomorphism from cHF.YC/ to cHF.YC/ must per-

mute the two spinc structures. This could potentially conflict with the absolute grading,

but it does not, since

d.YC; 0/ D d.L.2; 1/; 0/ D 1
4

D d.L.2;�1/; 1/ D d.Y�; 1/;

d.YC; 1/ D d.L.2; 1/; 1/ D � 1
4

D d.L.2;�1/; 0/ D d.Y�; 0/:

Once again, the computation is essentially the same for any genus 2 knot for which b�
contains only a horizontal 
0 and simple figure eight curves and for which ed

0 D 2ed
1 D

2ed
�1 for each ı-grading d . There are other knots which satisfy this property; Table 1

gives 337 such knots. Surprisingly, these are the only knots the author is currently aware

of for which Heegaard Floer homology does not obstruct all truly cosmetic surgeries. In

particular, an example for which cHF.S3
1=q
.K// agrees with cHF.S3

�1=q
.K// for q > 1 or

for a knot with g.K/ > 2 has not yet been found. We note that it is possible to construct a

decorated immersed curve b� which would allow for truly cosmetic surgeries with g > 2

or q > 1, but it is not known whether such curves occur as the invariant for a knot in S3.

To construct such a curve for some g � 2 and q � 1, we can place q simple figure eights

at height g � 1 and, for symmetry, another q simple eights at height 1 � g. Each of these

figure eights produces q pairs of points in the intersection with `1;q . Indexing these pairs

of points by 1 � i � q, each pair has some relative gradings mi and mi C 1 and some

grading shift�rel D ��i <0. For each i , we then add 2�i simple figure eights at height 0,

with two in each ı-grading from �mi to �mi C �i � 1. Each of these figure eights at

a ı-grading d produces a pair of intersection points with relative gradings �d � 1 and

�d and with �rel D C1; it is straightforward to check that these grading increases coun-

teract the grading decreases from the extremal figure eights when � is applied. Thus for

the resulting graded multicurve b� , the Floer homologies HF.b�; `1;q/ and HF.b�; `1;�q/

agree as graded vector spaces.

6. Computational results

One important consequence of Theorem 2 is that for any given knotK, cosmetic surgeries

on K are ruled out for all but possibly a finite number of pairs of slopes. In practice, cos-

metic surgeries are obstructed outright for the vast majority of knots, and for the remaining
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knots the “finite number” of possible pairs that need to be checked is quite small, often

just 2. Thus checking the cosmetic surgery conjecture on any finite set of knots reduces

to distingushing a small number of pairs of manifolds. Computing, say, hyperbolic invari-

ants for these remaining pairs is very tractable, and often this is sufficient to rule out the

remaining surgeries. To demonstrate this, we check the following:

Theorem 36. The cosmetic surgery conjecture holds for all prime knots with at most 16

crossings.

Proof. We computed the UV D 0 knot Floer complex for all � 16 crossing prime knots,

using a program of Szabó, and then checked each against the obstructions described in this

paper.2 Recall that the UV D 0 knot Floer complex of K is equivalent to the immersed

curve invariant b�.K/. We make two observations from these computations:

� The maximum thickness of any prime knot up to 16 crossings is 2.

� For each genus 2 knot up to 16 crossings, b�.K/ contains only simple figure eight

components besides 
0.

The first observation tells us immediately that we only need to consider genus 2 knots and

we only need to consider the slopes ˙1 and ˙2. The second observation tells us that for

these knots we can use the obstruction in Proposition 35.

There are 1;701;935 knots up to 16 crossings. We note that the results of Ni and Wu

(specifically conclusion (i) in Theorem 20) already verify the conjecture for over two-

thirds of these knots: after restricting to knots with �.K/ D 0, we are left with 449;417

knots (requiring that � D 0 rather than � D 0 eliminates a further 38 knots, leaving

449;379). It turns out that the obstructions coming from Theorem 2 are much stronger.

Among knots with �.K/ D 0, requiring also that g.K/ D 2 reduces the list to 3;316.

Finally, the obstruction in Proposition 35 rules out truly cosmetic surgery on all but 337

of these knots. The remaining knots are listed in Table 1. Thus we have reduced to 674

possible pairs of cosmetic surgeries, ˙1 and ˙2 surgeries on each of these 337 knots.

This is the best that Heegaard Floer techniques alone can tell us; as noted in the pre-

vious section, for any knot K satisfying the constraint in Proposition 35, Heegaard Floer

homology cannot distinguish S3
C1.K/ from S3

�1.K/, nor can it distinguish S3
C2.K/ from

S3
�2.K/. So these last examples must be ruled out using other methods. Computing the

hyperbolic volume for the manifolds in question using SnapPy, we find that this distin-

guishes every pair except for the surgeries on four knots: 1033, 16n600112, 16n786382,

and 16n988939. These knots are amphichiral, so Cr surgery and �r surgery can never be

distinguished by hyperbolic volume. For these manifolds, the ˙1 and ˙2 surgery pairs on

each of these four knots are distinguished by the Chern–Simons invariant, also computed

by SnapPy.3

2All code used for these computations is available at https://github.com/hanselman/CFK-

immersed-curves.
3The author thanks Dave Futer for suggesting the use of the Chern–Simons invariant for

amphichiral examples.

https://github.com/hanselman/CFK-immersed-curves
https://github.com/hanselman/CFK-immersed-curves
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Remark 37. We caution that Theorem 36 depends on computer calculations, some of

which are nonverified. The computation of the knot Floer complex is combinatorial in

nature, but SnapPy uses numerical methods to compute hyperbolic invariants so these

computations should not be taken as rigorous proof. SnapPy does offer verified computa-

tion, via interval arithmetic, of hyperbolic volume but not of the Chern–Simons invariant.

Thus, to be fully rigorous, the knots 1033, 16n600112, 16n786382, and 16n988939

should be excluded from Theorem 36. We do note that SnapPy estimates the Chern–

Simons computations are accurate to 10 decimal places, and for each relevant pair of

manifolds the values differ by at least .001.

Remark 38. Some of the 337 knots listed in Table 1 can be ruled out using the Jones

polynomial as in [13], instead of using hyperbolic volumes. Unfortunately, this does not

help with any of the four knots for which the Chern–Simons invariant was needed.

The result above considers prime knots, but Theorem 2 is also very good at obstructing

truly cosmetic surgeries on connected sums. In fact, with only a little more work, we can

rule out cosmetic surgeries on all knots whose prime summands have at most 16 crossings.

The following is equivalent to Theorem 6 stated in the introduction.

Theorem 39. The cosmetic surgery conjecture holds for the connected sum of any num-

ber of prime knots each with � 16 crossings.

Proof. Suppose that K has n > 1 prime summands, each with at most 16 crossings. It

follows that g.K/ � n and th.K/ � 2n, since both genus and thickness are additive with

respect to connected sum and the maximum thickness for knots up to 16 crossings is 2.

Suppose ˙r is a pair of truly cosmetic surgery slopes for K. If g.K/ > 2, then by Theo-

rem 2 we must have r D 1=q with

q �
th.K/

2g.K/.g.K/ � 1/
C

1

g.K/ � 1
�

2n

2n.n � 1/
C

1

n � 1
D

2

n � 1
:

Since q must be � 1, it follows that n � 3.

Moreover, if n D 3 then g.K/ D 3 and q D 1. If n D 2 then g.K/ D 2 but q can be

1 or 2; we must also consider the case g.K/ D 2 and r D 2. By Proposition 29, if n D 3

we require that e0 D 2e1 C 7e2, while if n D 2 we require e0 D 2e1 if r 2 ¹1; 2º and

e0 D 6e1 if r D 1=2.

We will need one more observation from our computations of b�:

� For knots with � 16 crossings and g.K/D 1, all curves other than 
0 are simple figure

eights, and 
0 has one of the three forms: the horizontal curve, the curve which is the

invariant of the right-handed trefoil (see Figure 3), or the mirror of the right-handed

trefoil curve (which is the invariant of the left-handed trefoil).

We will denote the three possibilities for 
0 above as 
horiz
0 , 
RHT

0 , and 
LHT
0 . Note that

they are distinguished by the value of � , which is 0, 1, and �1, respectively.
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9: 41, 44 10: 33, 136, 146 11a: 333

12a: 1144 13a: - 14a: 17464

15a: 76589, 84220 16a: 345268, 345454, 374264 11n: 18, 42, 62, 83

12n: 34, 65, 278, 313, 360, 393, 430, 483, 550, 650, 846, 884

13n: 71, 198, 490, 1019, 1209, 1398, 1513, 1598, 1756, 1757, 2337, 2703, 2796, 3290, 3416,

3783, 4591

14n: 372, 971, 1193, 2087, 2489, 6421, 7228, 7412, 7469, 7534, 8091, 8196, 8554, 8716, 9290,

9684, 9829, 10155, 11129, 11429, 12224, 12609, 12977, 13570, 14799, 15285, 15380,

15581, 15965, 15976, 17163, 17183, 18494, 19673, 21231, 21269, 22150, 22196, 22614,

22634, 23325, 24593, 27072, 27091

15n: 1058, 3240, 4898, 9477, 11491, 19192, 21666, 21997, 27824, 30711, 34041, 34773, 36113,

38567, 38594, 41604, 43982, 46350, 46536, 49081, 51379, 51847, 54458, 58840, 62260,

63468, 63550, 64468, 67694, 67879, 71170, 73390, 73507, 76978, 77245, 77247, 77784,

83761, 84434, 84645, 88899, 91448, 93899, 94474, 96914, 97157, 102309, 104775, 105829,

106611, 118711, 120250, 124511, 129229, 129231, 132539, 135706, 137623, 140373,

140582, 142082, 142299, 142716, 142841, 142843, 143482, 143825, 143856, 144436,

144439, 144887, 147186, 156806, 160027

16n: 5596, 9193, 16004, 24365, 27992,49009, 60136, 67523, 94939, 102539, 102773, 191694,

196472, 197735, 203049, 215168, 218032, 219174, 220556, 227624, 230857, 233335,

239267, 239379, 242042, 242545, 249927, 265957, 271606, 271610, 273164, 277974,

280482, 285128, 306917, 307635, 315594, 324571, 329529, 332372, 349983, 353272,

360174, 366612, 376208, 385669, 386732, 387806, 401152, 401963, 402644, 405088,

412371, 423420, 424451, 429723, 438719, 440479, 441595, 459035, 460502, 461585,

463225, 463419, 465019, 466470, 467558, 469510, 470606, 470717, 473737, 475444,

481843, 489486, 493489, 494163, 498542, 498651, 508893, 513585, 515663, 534392,

540621, 544661, 550305, 551107, 577882, 585135, 587843, 588588, 596192, 596449,

597513, 598535, 599034, 600112, 606009, 608181, 609311, 609798, 614804, 614907,

617672, 628265, 629526, 631987, 632225, 635338, 666646, 687419, 691300, 696924,

696992, 725574, 761555, 762559, 767010, 768788, 770126, 774829, 784110, 786382,

788898, 789181, 798964, 809799, 810368, 812243, 824554, 828723, 847911, 855704,

855909, 862009, 863179, 864017, 864258, 864259, 869439, 869441, 874997, 879694,

880152, 888060, 888954, 902353, 906603, 907441, 907673, 916183, 916207, 916242,

918157, 919068, 925408, 932460, 941562, 941564, 968742, 972142, 988939, 989795,

990225, 990270, 991069, 991085, 998071, 1000650, 1000651, 1001406, 1001474,

1004278, 1004646

Tab. 1. Knots up to 16 crossing for which Heegaard Floer homology does not rule out all cosmetic

surgeries. The only pairs of slopes not ruled out for each of these knots are ˙1 and ˙2.
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If n D 2, we must have K D K1 # K2 with g.K1/ D g.K2/ D 1. By the Künneth

formula for knot Floer homology, b�.K/ D b�.K1/˝ b�.K2/
4. A straightforward compu-

tation reveals that the tensor product of two figure eight components (at height 0) yields

four figure eight components at heights 1; 0; 0, and �1. The tensor product of a figure

eight component and either 
RHT
0 or 
LHT

0 gives three figure eight components at heights

�1; 0; and 1, and the tensor product of 
RHT
0 with 
LHT

0 yields a horizontal curve 
0 along

with two figure eights at heights �1 and 1. Taking the tensor product of any curve with


horiz
0 gives a copy of that curve. Let a and b be the number of height 1 figure eight com-

ponents in b�.K1/ and b�.K2/. Since � is additive and �.K/ D 0, either the 
0 curves for

K1 and K2 are 
RHT
0 and 
LHT

0 (in that order, without loss of generality) or they are both

horizontal and a; b > 0. In the first case, we see that b�.K/ has e0 D 2ab C a C b and

e1 D ab C aC b C 1; this is impossible since then e0 < 2e1. In the second case we have

e0 D 2ab C a C b and e1 D ab; this is impossible because e0

e1
D 2C 1

a
C 1

b
is strictly

greater than 2 and strictly less than 6. Thus n ¤ 2.

If nD 3, we haveK DK1 #K2 #K3 with g.Ki /D 1. Let a, b, and c be the numbers

of figure eight components in b� for K1, K2, and K3. Since �.K/ D 0, either 
0 for

the three knots is given (up to reordering) by 
RHT
0 , 
LHT

0 , and 
horiz
0 , or 
0 is horizontal

for all three knots. In the first case, we compute that e0 D 6abc C 4ac C 4bc C 3c C

2ab C a C b, and e1 D 4abc C 3ac C 3bc C 2c C ab C a C b C 1. It follows that

2e1 � e0 D 2abc C 2ac C 2bc C c C a C b C 2 > 0, which is a contradiction because

we require e0 D 2e1 C 7e2 � 2e1. In the second case, we compute that e0 D 4abc C

2.ab C ac C bc/C aC b C c, e1 D 3abc C .ab C ac C bc/, and e2 D abc. It follows

that 7e2 C 2e1 > e0, since 7e2 C 2e1 � e0 D 9abc � .aC bC c/ is strictly positive. Thus

n ¤ 3.

Remark 40. Note that in the above proof, the thickness bound immediately ruled out

connected sums of more than three 16 crossing knots. Since th.K/ and g.K/ are both

additive and the upper bound on q goes like th=g2, this behavior is expected. In fact, for

any finite set of knots Theorem 2 prohibits truly cosmetic surgeries on connected sums of

sufficiently many knots in the initial set.
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