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Forp > 1 and Gi1<ij<n being a matrix of i.i.d. standard Gaussian entries, we study the

n-limit of the Zp-Gaussian—Grothendieck problem defined as

n

n
max{ Z 9ijXiXj 1 X € R”,Z |x;1P = 1}.

ij=1 i=1

The case p = 2 corresponds to the top eigenvalue of the Gaussian orthogonal ensemble;
when p = oo, the maximum value is essentially the ground state energy of the
Sherrington-Kirkpatrick mean-field spin glass model and its limit can be expressed by
the famous Parisi formula. In the present work, we focus on the cases 1 < p < 2 and
2 < p < oo. For the former, we compute the limit of the ¢,-Gaussian-Grothendieck
problem and investigate the structure of the set of all near optimizers along with
stability estimates. In the latter case, we show that this problem admits a Parisi-type
variational representation and the corresponding optimizer is weakly delocalized in the

sense that its entries vanish uniformly in a polynomial order of n~!.

1 Introduction and Main Results

For 1 < p =< oo, the {,-Grothendieck problem (see [37]) seeks to study the following

optimization problem

max (Ax,Xx), (1.1)
xeR™:||x[[p<1
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where A is an n x n input matrix. Here, for 1 < p < oo, the standard Kp—norm of
x € R" is defined as Ixll, = icmi |Xi|p)1/p. Additionally, the £, -norm of x is given by
%]l oo = MaX;cp, 1%;]-

For p = 2, the spectral theory tells us that the optimal value of (1.1) is
just the maximum eigenvalue of the symmetric matrix (A + AT)/2. For p = oo,
under a mild assumption that the diagonal entries of A vanish, the optimal value
of (1.1) remains unchanged if the quadratic form is maximized over the discrete
hypercube {—1,1}" instead (see, e.g., [44, Lemma 3.5]). This optimization problem is
known to be NP-hard [45]. The optimal value can be approximated within a O(logn)
factor in polynomial time [13, 36, 42, 47]. On the other hand, it is computation-
ally hard to approximate the optimal value within a O((logn)?) factor for every
y € (0,1/6) [38].

The special cases of the ¢,-Grothendieck problem appear in clustering algo-
rithms. The cases p = 2 and p = oo are related to the spectral partitioning [27]
and the correlation clustering [13], respectively. For 2 < p < oo, the ﬂp-Grothendieck
problem can be viewed as an interpolation between these two clustering criteria. In
this case, approximating (1.1) within a factor of Sg — ¢ is NP-hard for any ¢ > O,
while there exists a polynomial time algorithm that approximates (1.1) within a factor
of Eg [31, 39], where & = (E|z[P)1/P is the p-th norm of a standard Gaussian random
variable z.

The case p = 1 is also believed to be computationally hard (see the discussion
in [37] and the references therein). Let us mention that if we optimize over a simplex
instead, then (1.1) includes, as a special case, finding the cardinality of the maximum
independent set of a graph [45], which is a well-known NP-hard problem. The case
1 < p < 2 seems to remain unexplored in the literature.

While finding an efficient algorithm to compute the optimal value in (1.1) is
generally difficult except when p = 2, it is natural to study the ¢,-Grothendieck problem
for random input matrices first. This leads to the following optimization problem that
takes a random Gaussian matrix as input, which we will refer to as the Ep—Gaussian—

Grothendieck problem or simply the ¢,-Grothendieck problem,

max G,x,Xx)= max G, X, X). (1.2)

XeRﬂ:nxnpgl( nX: X) XER":HXHP:l( nX: X)
Here, G, is an nxn matrix with entries g;; being i.i.d. standard Gaussians for all 7,j € [n].
Another motivation for investigating the optimization problem (1.2) arises from

the study of spin glass models, which, roughly speaking, are disordered spin systems
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invented in the ‘70s in order to understand some unusual behaviors of certain alloys,
such as CuMn. The quadratic form, (G,,x, x) in (1.2), reflecting the pairwise interactions
across sites, can be viewed as (the negative of) the Hamiltonian or energy of the
Sherrington-Kirkpatrick (SK) mean-field spin glass model on the unit ¢,-ball. In the
terminology of statistical physics, the maximum value of (G, x, x) over all possible spin
configurations x € R” with Ix|l, = 1is called the ground state energy of the model. When
p = oo, this quantity is essentially the ground state energy of the classical SK model [61]
with Ising spins. In the case p = 2, the spin configurations lie on the standard ¢,-sphere
and this model is called the spherical SK model. For physicists’ treatments of mean-field
spin glass models, we refer the readers to check [43]. See also the books [51, 64, 65] for
the mathematical progress in the past decade.

In the present work, we aim to study the ¢,-Gaussian-Grothendieck problems in
two major directions: (1) their limits as n tends to infinity and (2) the structure of the
set of (1 —e¢)-optimizers, #, = .#.(p,n), defined as the collection of all x € R" satisfying
Ixll, =1 and

(G,x,x)>(1—¢) max (G,V,y).
yeR™|ylp=1
We divide our main results into two parts, 1 < p < 2 and p > 2, as they exhibit
significantly different behaviors. They are presented in the following two subsections.
Before we turn to their statements, we introduce some notations that will be used
throughout this paper.
General Notation. For 1 < p < oo, let 1 < p* < oo be the Holder conjugate of p, that is,

1/p+ 1/p* = 1. For x € R", we define the normalized ¢,-norm of x as

1 1/p
lixlly = (- > 1xP)  for1<p <oco and il = maxx

ieln]

In addition, we use |x||, to denote the number of nonzero coordinates in x. Let
G,, = (G, + GI)/~/2 be the symmetrized Gaussian matrix, distributed as the Gaussian
orthogonal ensemble (GOE). The entries of G,, are denoted by g;j- For 1 < p < oo, we
denote by &, = (E|z|P)/P, the p-th norm of a standard Gaussian random variable z.

Let M,(R) be the space of real-valued matrices of size n x n. For any
A = (a;)jjem) € M, (R), denote its p-to-q operator norm of A by Al q = SUP| x| ,=1 Ax]l,
for1 < p,q < co. In the case p = g = 2, we simply denote ||A||,_,, by [|A|,. The Frobenius
norm of A is defined as ||Ally = 3 ey a1

ijl°- We use ey, ..., e, to denote the standard
basis of R™.
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4 W.-K. Chen and A. Sen
1.1 Mainresult:1 <p <2

We split our results into two cases, p = 1 and 1 < p < 2, according to their different

types of scalings, \/logn and n!'/P". We start with the easy case of p = 1.

Theorem 1.1. Let p = 1. The following statements hold:

(i) almost surely,

lim max (G, X, x) = V2; (1.3)
n—>o  /logn llxlh=1

(it) let I = argmax;.(,g;;- Foranyn >0andn > 1,

P((Gner er) > V2(1 —mlogn) > 1 —e™™; (1.4)
(1ii) there exist constants ¢y, c¢,C > 0 such that for any 0 < § < ¢, and for all
n>1,

]P’( max (G, xx) < (1 s+ loiz)\/M) >1-Ccn~%. (1.5)

Il =11}l o <1-5 logn

Items (i) and (ii) together imply that e; is a near optimizer of the
¢,-Grothendieck problem. Furthermore, from (iii), if we take ¢ satisfying 0 < ¢ < 1/4 and
e/logn = oo, then for all large n, with high probability, the set .#, is a subset

of the disjoint union of ¢,-balls of radius § = O(¢) centered around the 2n coordinate

vectors +e;, te,,...,+e,. Consequently, each near optimizer is localized with a single
entry carrying at least 1 — § of the weight.

Next, we consider the case 1 < p < 2, which is more interesting. Define v; € R"
as

) _ 19:1P" \1/p
Vi(])zsgn(gij)(_Lp*) ,

where sgn(a) if 1 if a > 0 and —1 if a < 0. Note that Ivill, =1 = llgll,. Let

e‘ .
ﬁ:{ﬂ:i:lgisn}. (1.7)
le; + v;ll,

Note that ignoring the signs of the vectors in &, it can be seen that they are
asymptotically orthogonal to each other. The following theorems establish the limit of

the Zp—Grothendieck problem and show that any near optimizer lies close to the set &.
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On {p-Gaussian-Grothendieck Problem 5

Theorem 1.2. Letl <p < 2.

(i) Almost surely,

N[ =~

2
max (G, x,x) =22 P§

lim —— e 1.8
n=oo pl/p* Ixllp=1 P ( )

(ii) Each x € 0 is a near optimizer in the sense that for any d > 0, there exists a

constant C > 0 such that with probability at least 1 — Cn~¢,

D=
TN

1 1 1 1 *
min(G,x,x) > 22 PE,np" — C(n_f’+§+?(log n'7 +/log n). (1.9)

xe0

Remark 1.3. The order of the error term on the right-hand side of (1.9) depends on the

value of p. When 1 < p < 4/3, it is of order ,/logn and when 4/3 < p < 2, it is of order
n-UP+1/241/p" (1og n)P*/4,

Theorem 1.4 (Stability). ¢ is essentially the set of all optimizers. More precisely, let
0 <k < 1/3p and d > 0. There exist positive constants C;, C,, C5 such that for any n > 1,

if n ™ <§ < 1, the event

N[~

g % %
max (Gpx,x) <22 P(1— 0186)§p*n1/p + C,nP/?P) flogn (1.10)

dist(x,0)>4,|x|lp=1

occurs with probability at least 1 — C3n‘d, where dist(x, 0) = minyeﬁ Ix = yll,-

As a consequence of the above two theorems, it can be deduced from (1.10) that if

. &
O<s§£and lim = 00,

_1ln_p -
n—>oon p*(l 2)\/@

then with high probability, .Z, is a subset of the disjoint union of ¢,-balls of radius

8§ = 0(¢'/%) centered around the 2n vectors in ¢. The dependence of § on ¢ here is
sub-optimal. Note that from the law of large numbers,
e; +v;
_etvi ~ 271/p(ei +w,),
le; + v;ll,
where
w;(j) = n—l/pg};ﬂp /pSgn@ij)@ijlp*/p'
Therefore, each near optimizer has a single spike that has magnitude of order 1 while
the rest of entries are O(§). Hence, in the regime 1 < p < 2, the near optimizers possess

both localized and delocalized components.
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6 W.-K. Chen and A. Sen
1.2 Mainresult: 2 <p < o0

Consider the normalized Grothendieck problem

GP, ), = xeRg:l\&)\Tp:l %. (1.11)

As we have mentioned before, p = 2 is the easy case, since GP,, = 27'/2n~1/2

max; 2:1<(_;nXl x) and the optimal value is the largest eigenvalue of the GOE, which

converges to 2 as n — oo. The case p = co corresponds to the ground state energy of the

SK on the product space [-1,1]" and it is known that lim,_,  GP, , exists and can be
expressed as the famous Parisi formula; see [19].

Our main result focuses on the interpolating case 2 < p < oco. First, we study

the convergence of GP, - Note that the optimization problem can be rewritten using the

normalized norm as

(Gpx, X)
GPnp = max 37 *
P xeRm|ixllp=1 N3/

In order to study the above optimization problem, it is natural to remove the
¢,-constraint over the maximization set and compensate it by adding a {,-norm

potential, namely, for ¢t > 0, we define

(G, x,x)
L p() = max( =2 — tllxlB). (1.12)

We also introduce the following restricted version of the above Hamiltonian in (1.12)

where the self-overlap | x||? is constrained to be a fixed value,

Lypu(®= max (@ - t|||x|||§), u> 0. (1.13)
P xeRm:|xli3=u 1%/

The following theorem establishes the existence of the deterministic limits of L, , ,,(¢)
and L, @®.

Theorem 1.5. Let 2 < p < oo. Almost surely, the following limits exist,

Ly, = T}LngoLn,p,u(t) = nlgxgo ELy, p . (0), forall u,t > 0, (1.14)
L, = lim L, ,(t) = ililg L,,(), forallt> 0. (1.15)

Our next result shows the existence of the limit of GP,, , and its connection to
L, ().
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On {p-Gaussian-Grothendieck Problem 7

Theorem 1.6. Let 2 < p < oo. Almost surely,

R _b(p 2/p=1 o 1-2/p
GP, == lim GP,,, = E(E — 1) t/PL(8)'~2/P, forallt > 0. (1.16)
In addition, for § = p/2 — 1, there exist C,C’ > 0 such that with probability at least

1—Ce™C, if x, € R™ with Ix,ll, =1 is an optimizer of (1.11),

1

1%, oo =< Cn#s s, (1.17)

Let us point out that the right-hand side of (1.16) is independent of ¢t > 0. The
inequality (1.17) implies that any optimizer of the Zp—Grothendieck problem is weakly
delocalized for 2 < p < co and its £,-mass is not concentrated on any set of coordinates
with vanishing proportion. This resembles, at least qualitatively, the delocalization
behavior in the ¢,-Grothendieck problem, where the supremum norm of the optimizer
(which is same as the largest eigenvector of the GOE) is O((logn)/?n=1/2) with high
probability (see, e.g., [48, Section 2]).

Our next result establishes the continuity of the limiting value GP,inpe€ [2, o<l
Theorem 1.7. GP, is continuous in p € [2, x].

Remark 1.8. From Theorems 1.2 and 1.6, the Zp—Grothendieck problem scales as nl/p*
for 1 < p < 2 and as n%/272/P for 2 < p < cc. These scaling exponents match at p = 2.
However, while the limiting value of the ¢,-Grothendieck problem is continuous in p in
the intervals (1,2) (as seen from (1.8)) and [2, oc], it has a jump discontinuity at p = 2.
Indeed,

i i, S e (G = Jig 2488y = 7 /2= Gy

Our final result provides a description of the limiting value GP, by showing
that Ly (@) and L,(®) admit Parisi-type variational formulas. In physicists’ literature,
the original Parisi formula was proposed by Parisi [67-59], which gives a variational
representation for the limiting free energy of the classical SK model [61] at apositive
temperature. It minimizes a functional, which involves the solution to a 2nd-order
parabolic PDE (known as the Parisi PDE) and a linear term, with respect to the so-called
functional order parameters. This formula was first rigorously verified by Talagrand
[63] and later generalized to some variants of the SK model; see [2, 15, 32, 40, 41, 50,
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8 W.-K. Chen and A. Sen

52-55]. Furthermore, the Parisi-type formulas were also established for the ground state
energies, corresponding to zero temperature, in a number of related models; see [6, 19,
20, 32, 33].

To state our result, let u > 0 and %d be the collection of all positive measures y
on [0, u] such that y is atomic with finitely many atoms. For (A, y) € R x JVud and t > 0,

set

fl(x) = sup(rx + Ar? — tir?), x € R,
reR

and denote, with a slight abuse of notation, y(s) = y ([0, s]). Let \Ili"}’f be the solution to
the following Parisi PDE:

DU (s, %) = — (8 U1 (5, 3) + 7 (5) (3, 01(5,))%), (5,%) € 10,w) x R (1.18)

with boundary condition \I-'i'l;f(u,x) = flx).
The fact that y is atomic with finitely many atoms enables us to solve this Parisi
PDE explicitly by using the Hopf-Cole transformation in an iterative fashion. Toward
this end, let us express any y € %d as
k—1
y(s) =D mylyg o \(8) + Mgl () (1.19)

=0

for some
Gp=0<q < <@ <G =u, 0=myg<m; <---<my_; <my <oo.
Then the solution to (1.18) can be written iteratively as

1
Wi (s,x) = — log Eexp mpW ™ (i, X + /2(q1 — 9)2), Y(s,%) € g q 1) xR, (1.20)
4 ml 4

forl=k,k—1,...,0, where z is standard Gaussian. Here, when m, = 0, (1.20) should be

understood as

xpf}; (s, %) = E\I!;'ll)f(ql,x +V2(q, —5)z), (s,x) €10,q;) x R.

Note that (1.20) is well defined since there exist some constants C > 0 and a € (0,1)

such that ff(x) < C(1 + |x|**®) for all x € R and this property is preserved for ‘llﬂf by
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On {p-Gaussian-Grothendieck Problem 9

induction, see Lemma B.2, which also describes the regularity properties of \IJK';. For
any (,y) € R x %d, set

u
Pyl y) = \D;;’;(0,0) —Au —/ sy(s) ds. (1.21)
0

For notational clarity, we ignore the dependence of &, , on p. Our result states the

following.

Theorem 1.9. Let2 < p < oco. Forany u > 0 and ¢t > 0, we have that

Lp,u(t) = inf e@t,u()w Y (1.22)
reR,ye @
L,(t) = sup inf 2, (). (1.23)

u>0 AeR,ye N2

Currently, we know very little about the set .Z, for 2 < p < oco. In contrast
to the 1 < p < 2 case, we expect that the landscape of the Ep-Grothendieck problem
has a more complex geometric structure, which does not admit a simple description. In
fact, as mentioned before, the ¢, -Grothendieck problem is essentially the ground state
energy of the classical SK model and for a fixed but small ¢ > 0, [18] established, with
overwhelming probability, the existence of exponentially many vectors in .#, that are
nearly orthogonal to each other; see also [14, 23, 25]. This fact is also true for p = 2,
which is an easy consequence of the fact that the eigenmatrix for the GOE is Haar-
distributed. Therefore, it is natural to believe that in the interpolating case 2 < p < oo,

the same phenomenon continues to hold. See Section 13 for further discussion.

2 Overview of the Paper

Our approach is based on two major ingredients: (1) the Chevet inequality for bounding
the supremum of a Gaussian bilinear form and (2) some tools arising from the study
of mean-field spin glasses. To facilitate our arguments, we provide some sketches of
the proofs to our main results in two cases, 1 < p < 2 and 2 < p < oo, followed by a

description on the organization of the rest of the paper.

2.1 Proofsketchforl <p <2

We begin by sketching the proof of the upper bound in Theorem 1.2. The key idea is to

decompose every Ep—unit vector x € R™ as x = x° 4+ x', where for a given truncation level
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10 W.-K. Chen and A. Sen

¢ > 0, x° is the delocalized part, Xf = Xi1(|Xi| < 8) fori € [n], and x' is the localized part,

XZ = x;1(|x;| > ¢) for i € [n]. In the proof, we take ¢ = ¢, — 0 at an appropriate rate.
From this decomposition, an application of the bilinearity of the inner product and the

triangle inequality readily yields that

max (G, X, X) V2 max x%,x")| < max {G,x°, x°)| + max (G, xT, xMy). (2.1)
Ixllp=1 =1 Ixllp= Ixllp=

To control the diagonal terms on the right-hand side, we apply the Chevet inequality,
which states that for arbitrary bounded sets S,T C R", Esupycr es(y, GoXx) can be
controlled by the Gaussian width (a measure of “complexity” of a set) and the ¢,-radii
of the index sets S and T. See Theorem 3.1 below for the precise statement. It turns out
that under the assumption p < 2, the set of delocalized vectors in the unit ¢,-ball has
a vanishing ¢,-radius, which makes the 1st term on the right side of (2.1) smaller order
than n!'/P". On the other hand, each localized vector in the unit ¢,-ball has only a few
(at most ¢7P) nonzero entries, which guarantees that the set {x' : Ix|l, = 1} has a low
Gaussian width. As a result, the 2nd term on the right side of (2.1) is of small order as

well. With these observations, we can approximate

n~YP" max (G,x,x) ~ n~P"\/2 max ( (G,x°,x").
Ixllp=1 Ixllp=1

We now normalize x° and x' by their respective ¢,-norms and use the duality relation

SUD| p(,=1 (v, u) = llull - to obtain the following upper bound:

- X'
) < 27%/PE max HG"T’
Ilp=11 " [x" ]|, lp

_ _ x!
E max (x°, G, x') < E max (||XT|| 1] HG —‘
lxlp=1 " lxllp=1 PR TP x|

(2.2)

where in the last inequality, we used the fact that the product ||x" ||p||X°||p is maximized
if ||XT||p = ||X°||p = 271P a5 ||X0||§ + ||XT||§ = ||X||§ = 1. Since each x' is supported on
at most ¢ P many coordinates, the last expectation in (2.2) can be bounded above by
Emax, g IIGnpr*, where F is defined as F = {y € R" : lyll, = 1, 1yllp < & P}. We can
exploit the low cardinality of the set F to argue by using concentration and union bound
that

E Gyl < (1+00 ElG ¥l ps-
I;lg}g(ll nYllp = (1 4o( ))I;lgg( 1GnYllp
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On {p-Gaussian-Grothendieck Problem 11

For any vector y, we have n_l/p*]EH(_;nyllp* ~n /P I7I2Elgll, ~ [lyll2&, for g a standard

Gaussian vector, which implies that
-1/p* C _
n ]EI%"I?( 1GpYlp = (1 +0(1))E, I?ggi Iyl = (A +0(1)&y,:, (2.3)

yielding the upper bound (for the expectation) in Theorem 1.2. The above argument also
indicates how we can achieve a matching lower bound. A near maximizer x should

satisfy x|, = |x°|, = 27'/P. Moreover, in (2.3), to attain the maximum ¢,-norm,

l
the optimalpy = x/ ||X"'||p € F should be one of the coordinate vectors e; (up to a
sign). Working backwards, the optimal choice of x° is now dictated by the relation
(X°/||X°||p, C_;nei) = ||C_;nei||p*, which is achieved by taking XO/||XO||p = v;, as given in (1.6).
Finally, we note that these choices for x" and x° are valid since ¢; is localized and v; is
delocalized for any i. It leads to the set of near maximizers ¢, as defined in (1.7).

The stability bound in Theorem 1.4 follows a similar path. However, it is more
technically involved as we need to keep track of error incurred in every step of the
above argument. Also, we use an appropriate stability bound (in ¢, distance) for Holder's

inequality (stated in Lemma A.1).

2.2 Proof sketch for p > 2

We continue to sketch the proofs of Theorems 1.5, 1.6, and 1.9. First of all, consider
the problem of maximizing a collection of random variables, (H,,(x)),.s, indexed by a
measurable subset S C R™. In physics, H, (x) is called the Hamiltonian or the energy
corresponding to the spin configuration x € S and the quantity max, ¢ H, (x) is called
the ground state energy. To compute this maximum, it is often more convenient to

consider the free energy associated with (H,,(X)),cs,

F,(B) = ﬂin log /S Py (dx)

for an appropriately chosen probability measure u, supported on S, where g > 0 is
usually called the (inverse) temperature. The key fact here is that in many important
models, for example, the classical SK model and its variants, the free energies and
the corresponding Gibbs measures exhibit several nice physical and mathematical
properties, which allow one to establish the existences of the limiting free energies
as n — oo and furthermore derive certain types of variational formulas for these limits;

see [51, 64, 65]. Once the limiting free energy is obtained, the limit of the maximum of
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12 W.-K. Chen and A. Sen

H,, can then be recovered by switching the g and n limits as

Jim i 2> = Jim, Bon 1oF) = i g =2
Following this idea, we establish Theorem 1.5 by introducing a free energy (see (7.3))
associated with L, , ,(¢) and adapt the Guerra-Toninelli [30] interpolation to show that
this free energy is superadditive in n, which implies the existence of the limiting free
energy as n — oo. After this, we send the temperature parameter to infinity to obtain the
existence of the limit of L, , ,,(¢) in (1.14). The convergence of L, ,,(t) = sup,.oLy, ,(®),
claimed in (1.15), now follows by switching the supremum and the n-limit, which can be
justified by a standard compactness argument.

The proof of Theorem 1.6 is based on the observation that the ¢,-Grothendieck
problem and L, ,(¢) are the Legendre duals of each other (see the proof of Lemma 8.1),
that is, at the point of differentiability of Ln,p(t),

(G,Xx,Xx)

max  —%—— =1L, (t)—tL, ().
IxIB=—Ly 1) T3/ P P

From this, if additionally we have L’n,p(t) < 0, the Zp—Grothendieck problem can be

written, by a change of variable, as

S max (GnX,X))ZLn,p(t)—tL’n,p(t). 2.4)
" (L) =10 7% (~Lp p(®) "

To further simplify this equation, another key observation is that at any point ¢ of
differentiability of L, ,,

L,,(t) = —(p/2 — 1)tL}, ,(t). (2.5)

The above identity can be verified via a straightforward computation. Consequently, if
L, is differentiable at ¢ and L p® <0, plugging (2.5) into (2.4) leads to

n

GPn,p _ %9(2 B 1)2/1)71

5 t?/PL, (1) P (2.6)

To send n — oo, it is crucial to realize that Ln,p and Lp are convex on (0,c0), which
readily imply that, with probability one, for almost everywhere t € (0, 00), L;D(t) =
lim

n—oo Lnp(t). In addition, since L,(?) is strictly positive in ¢, Equation (2.5) ensures
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On {p-Gaussian-Grothendieck Problem 13

that whenever L, , is differentiable at some ¢, we have L;,L,p(t) < 0 as long as n is large

enough. These allow us to send n — oo in (2.6) to obtain (1.16) almost everywhere for
t € (0,00). Using the fact that L,(®) is continuous in t validates (1.16) on the whole space
(0, 00). The proof for the delocalization of the optimizer in the Zp—Grothendieck problem
in (1.17) is established by using the idea of Lagrange multiplier corresponding to the

maximizer x,, which upon combining with the H6lder inequality, leads to the bound

pis nl-@+d)/p ||C;n||2 for 5 —

2—-1.
wllpts = \/EGPn,p ni/z p/

The assertion (1.17) then follows from the trivial bound |x, ||, < 1%, Ml s

For Theorem 1.9, to approximate L we consider the Hamiltonian

n,p,u,s(t)’
H, , (%) = n"Y%(G,x,x) — t||lx|} and introduce two related free energies, F, ,, .() and

F,

nt,uM,e(B). The former integrates H, , , over a spherical constraint 1% € lu—¢,u+el

and the latter puts an additional constraint x € [-M,M]"—see the beginning of
Section 10. The free energy F,,,.(f) can be bounded from above by the so-called
Guerra's replica symmetry breaking bound [29], which in turn implies that L@ is
bounded above by the desired Parisi-type formula (the right-hand side of (1.22)) after
sending the temperature parameter to infinity; see Section 12.2.

Deriving a matching lower bound is more difficult. First of all, it is easy to
see that L, ,, .(8) > Fy, ;1 m,.(B), where the right-hand side, after a change of variable
x — x/M, is the free energy of the SK model on the product space [—1, 1]" and its limit
can be expressed as a Parisi-type formula [50], similar to (1.22), as stated in (11.6).
In order to obtain the matching lower bound, we need to study the g-limit and then
the M-limit in this formula. In view of the Parisi PDE term in (11.6), it is a Hamilton-
Jacobi-Bellman equation induced by a linear diffusion control problem and is known
to admit a stochastic optimal control representation [3, 11, 34], which is described in
Proposition 11.7 below. Using this expression, we can successfully handle the g-limit
by adapting and refining the approaches in [5, 33]. In contrast, the argument for the
M-limit is more intricate mainly due to the fact that the boundary condition of the
Parisi PDE is not Lipschitz and as a consequence, the control of the M-limit in the Parisi
PDE solution cannot be done directly from the stochastic optimal control representation
as the control processes therein lack uniform pointwise controls; see Remarks 11.2
and 12.2. Fortunately, this technical issue can resolved by showing that the control

processes are indeed uniformly square integrable relying on the assumption p > 2.
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14 W.-K. Chen and A. Sen
2.3 Organization

The rest of paper consists of two major parts. The 1st is devoted to proving the results
for 1 < p < 2. In Section 3, we introduce the Chevet inequality and explain how one
can obtain the correct scalings for our Kp-Grothendieck problem from this inequality.
Additionally, we list some standard results on the Gaussian concentration and maximal
inequalities. These contents will be repeatedly used in the proofs of Theorems 1.1
and 1.2 in Sections 4 and 5, respectively.

The 2nd part establishes our main results for 2 < p < oo based the methodolo-
gies generally used in statistical physics and in mean-field spin glasses. The proofs of
Theorems 1.5, 1.6, and 1.7 are presented in Sections 7, 8, and 9, respectively. The more
intricate part is the proof of Theorem 1.9 that will be handled in Section 12. To this
end, Sections 10 and 11 prepare some fundamental results. More precisely, Section 10
derives upper and lower inequalities for L, ,, () in terms of the free energies F, ;, .(8)
and F, ;, 17 .(B). In Section 11, we show that the g-limit of the Parisi formula associated
to lim, o lim,_, . Fy, ;11 (B) can also be expressed as a Parisi-type formula followed by
some a priori bounds for the corresponding minimizers in terms of the parameter M.

Some open questions of interest are mentioned in Section 13. Finally, Appendix A
provides a new result on the stability of the Hélder inequality that is used in the proof of
Theorem 1.4. In addition, analytical properties of the Parisi PDE (1.18) and its stochastic

optimal control representation are studied in Appendix B.
3 Gaussian Bounds

3.1 Chevet's inequality and operator norms

For a non-empty subset S of R”, define its Gaussian width by w(S) = E sup,.5(g, x) and
radius by r(S) = sup,.s lx|l,. The Chevet inequality states the following.

Theorem 3.1 (Chevet's inequality). Let S and T be non-empty bounded subsets of R”.
We have

max(w(S)r(T),w(T)r(S)) <E sup (y,G,x) <w(Sr(T)+w(T)r(S). (3.1)
xeT,yeS

Remark 3.2. The upper bound of (3.1) goes back to the work of Chevet [21] (see also
[28] for sharper constant). It can be derived using Sudakov-Fernique's inequality (see

Theorem 8.7.1 and Exercise 8.7.4 in [69]). The lower bound is an easy exercise.
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On {p-Gaussian-Grothendieck Problem 15

Chevet's inequality helps us find the correct scaling of the p-to-q operator norms
of Gaussian matrices and perhaps surprisingly, it can be used to even pin down the
limiting constants for some choices of p and g. In Section 3.2, we use this knowledge to
identify the correct scaling for our Ep—Grothendieck problem, which may not be obvious
at the 1st glance. To elaborate how Chevet's inequality provides bounds for the operator

norms, for p, g € [1, col, write

1Gullpsq =max|Gyxl; = sup (Gpx,y),
XeBp xeBy,yeBy,

where B} := {x € R" : ||x||,, < 1} denotes the unit ¢,-ball in R". Note that

1, ifl<r<2,
r(BY) = 1 =nF—2+ = n(r%ﬂ, (3.2)
nr"2, if2<r<oo,

and from [26, Example 3.5.4] and [8, Proposition 3],

V2logn(1 +o0(1)), ifr=1,
wB}) =E|gl =1 &0/ 00", ifl <r< oo, (3.3)

%‘1"’! ifr: oo,

where g is an n-dimensional standard Gaussian vector. For 1 < a,b < oo, set p(a,b) =
(1/a—1/2), +1/b. By plugging S = BZ* and T = By into (3.1), a direct computation using
(3.2) and (3.3) readily yields the following proposition.

Proposition 3.3. The following two-sided bounds are valid.

(i) Forp=1andq= o0,
1+ o0(1)v2logn <E|G,l,_4 < 2(1 + 0o(1))y/2logn.
(ii) Forl <p <ooandl <q < oo, if p(q, p*) = p(p*, 9),
(1 + o(1) max (5, 5)nP Y < E[Gpllpq < (1 +0(1) (5 + £)n" P2,
In the complement of the above cases of (p, q), one of the terms W(Bg)r(BZ*) and

W(BZ*)T‘(B;L) strictly dominates the other as n tends to infinity and as a result, we can

locate the limiting constants of the scaled ElIGy,lp-q-
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16 W.-K. Chen and A. Sen

Proposition 3.4. The following limits are valid.
(i) Forp=1landl <gq < oo, lim, n YIE|G,ll, ., =&,
(ii) Forl <p <ooandq=o0,lim,_, n_l/p*]E||Gn||pﬁq =&y

(iii) Forl <p <ooandl < g < o0, if p(q, p*) # p(p*, qg), then

Sp*! ifp(qrp*) >p(p*IQ),

lim n—maX(P(qrp*)rP(p*VQ))E”G I —
TP g, ifpgpY) <% Q).

n—oo

Remark 3.5. Note that items (i) and (ii) in Proposition 3.4 are equivalent due to

T
nllge pr-

p(p*,q@) = p(q,p*), which is equal to 1/p* if 1 < p < 2and 3/2-2/pif2 < p < oo.

the duality relation [|G,ll,, = IG Moreover, if 1 < p < oo and g = p*, then

Therefore, by Proposition 3.3, we have that

c/logn < ElGllpsp < C\/logn, ifp=1,

1 1
cnp* < EllGyllypr < Cnr*, ifl <p<2, (3.4)

w

3_2 3_2 .
cn? p §E||Gn||p_)p*50n2 p, if2<p<oo,
where ¢, C > 0 are universal constants depending only on p.

3.2 Scalings of the Grothendieck problem

The scalings of the ¢,-Grothendieck problem for 1 < p < oo are obtained in the following

proposition.

Proposition 3.6. We have that

c/logn < ]EmaxHX“p:1<GnX,X) <Cylogn, ifp=1,
1 1

cnr* < Emax”X”p:l(GnX,X) < Cnp*, ifl<p<2,

3_2 3_2 .
cn? r < EmaX”X”pzl(GnX,X) <Cn? p, if2<p<oo,
where ¢, C > 0 are universal constants depending only on p.

Proof. First, by Holder’s inequality,

Sup (GnX!X) S SuP ”GnX”p*”X”p = Sup ”GnX”p* = ||Gn||p~>p*'
Ixllp=1 Ixllp=1 Ixllp=1
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On {p-Gaussian-Grothendieck Problem 17

From Remark 3.5, the Grothendieck problem shares the same upper bounds as those in
(3.4). The lower bound requires a bit of work. We argue in three cases.
Case 2 < p < oo. Let w be the ¢,-normalized eigenvector of the GOE, én, associated
with the top eigenvalue A,(G,,). It is well known that w equals g/||g|, in distribution for
an n-dimensional standard Gaussian vector g, leading to n'/>~'/P||w]|,, — &,/&, almost
surely and in L?. Also, A,(G,,)/~/n — 2 almost surely and in L?. Therefore, we can take
x =w/|w], to obtain that
1 ~ 1 _2. =
E sup (G,x,x) = —=E sup (G,x,x) > —2E||w||p A (Gy) = cn

lxllp=1 V2 xlp=1 V2

Nlw

_2
pl

for some constant ¢ > 0.

Case 1 < p < 2. Without loss of generality, assume that n is even. We readily bound that

u u
E sup (G,x,x)> sup E sup <Gn( )( )>
llxllp=1 Ivilp=2-17 Jullp=2-1/P v v

where u, v € R"2. Divide G,, into four smaller blocks of sizes (n/2) x (n/2),

G, = |:Bll Blz:| _
By1 By
Take v = (271/P,0,...,0)T. Clearly, E(B,,v,v) = 0, and thus,

E sup <Gn (Z),(z)> = E[ sup  ((Byju, u) + ((By, +B)v, u))]

lullp=2-1/P lulp=2-1/P
=E| sup ((Bju u +2Y271P(g, u))],

lullp=2-1/»

where g is a standard Gaussian vector in R”/2. Given g, we can choose u* = u*(g) with
lu*|l,, = 271/P such that (§, u*) = 27'/P||g|| -, which implies that there exists some ¢’ > 0
such that

E[ sup  ((Bywuw) +2"27 PG, u)| = BBy ut, u) + 2127 gl ]
llulp=2-1/P

= 2!27VPE||gl, = cn!/Pr,
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18 W.-K. Chen and A. Sen

where the equality above follows from the fact that E[(B;;u*, u*)|u*] = O since u*
is independent of B;;, whereas the last inequality uses (3.3). Hence, we obtain that
E Supy,=1(GpX, X) = c'nl/P*,

Case p = 1. A matching lower bound can be easily obtained by optimizing only over the
coordinate vectors e; yielding Emax, _;(G,x,x) > Emax;., g;; = /2logn(l + o(1)). W

3.3 Concentration and maximal inequalities

We collect some Gaussian bounds that will be of great use throughout the rest of this
paper. We start with the well-known concentration inequality for the Lipschitz function

of a standard Gaussian vector states (see, e.g., [9, Theorems 5.5 and 5.6]).

Lemma 3.7 (Gaussian concentration). Let g be a standard Gaussian vector in R”. Let
F :R"™ — R be a L-Lipschitz function, that is, |F(x) — F(y)| < L||x — y|l, for all x,y € R™.
Then,

EesF@-EF(@) < e#, VseR (3.5)
and
S2
P(|F(g) —EF(g)| > s) < 2e 22, Vs > 0. (3.6)

Remark 3.8. Let1 < p < 2. From Lemma 3.7, for any non-empty S, T C B?, and any

s> 0,

]P’( sup(x, G,x) — Esup(x, an)‘ > s) < 2e*52/2, (3.7)
xeS xeS

}P’( sup (x,G,y)—E sup (x, Gny)‘ > s) <2¢ /2, (3.8)
xeS,yeT xeS,yeT

To see this, note that the functions G, — (x,G,x) and G, — SupP,.g r(X, G,y) are
Lipschitz continuous with respect to | - ||z, the Frobenius norm. The former case has
the Lipschitz constant, sup,.¢ lIx|l;, whereas the latter case has the Lipschitz constant
SUPyes, yer IXl21Y 2 Both of these Lipschitz constants are bounded above by 1 by the

assumption that p < 2.
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On {p-Gaussian-Grothendieck Problem 19

Remark 3.9. Let2 < p < oo. It can be shown that GP,,,, and L, ,, ,(t) are n~/ and

un~'/2-Lipschitz with respect to || - ||z, respectively. From Lemma 3.7,

P(|GP,, —EGP, ,| > s) < 2e™", Vs > 0, (3.9)

77.52
P(|Ly, p () —EL, , (1) = 5) < 2¢ 22, ¥s > 0. (3.10)

Remark 3.10. We also mention the following concentration bound for the £, -norm
of a standard Gaussian vector g in R" (see [56, Corollary 4.10] and [10, 60]), which is
an improvement upon the one obtained from the preceding Gaussian concentration
inequality. There exist absolute constants ¢,C > 0 such that for all n > 1 and for all
ee€(0,1),

P(|llgllos — Ellgllso| = Ellgllo) < Cn™ . (3.11)

Recall that a mean zero random variable X is called Uz—subgaussian if EetX <

et”o%/2 holds for all t € R. The following result gives a crude bound of the maxima of a

collection of subgaussian random variables (see [68, Lemma 5.1]).

Lemma 3.11 (Maximal inequality). Let X;,X,,...,X,, be a collection (not necessarily

independent) of centered o2-subgaussian random variables. Then,

E max X; < ./20%logm.

1<i<m

4 Proof of Theorem 1.1

In this section, we provide a proof of Theorem 1.1. We begin with part (7).

Proof of (i). Inview of the identity (G, .x,x) = 27/2(G,x, x), it suffices to prove that

——— max (G,x,x) — 2, almost surely.
logn lIxli=1
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20 W.-K. Chen and A. Sen

Note that the diagonal entries of the symmetric matrix G,, are g;; = +/29;;, whereas the

off-diagonal entries are equal to g;; = (g;; + g;;)/~/2. We bound

(Gpx,x) = «/_Zguxl +2> g;x;x; < max (x/_maxgu, max 19;;1) (Zx +2> Ixillx; |)

i<j i<j

- 2
= max (\/5 méﬁXQii, Hilg?( Igijl) 117,

which leads to that

@3 < max (v2max; g;;, max;_; |gij|).
J1ogn

It is a well-known fact (see, e.g., [26, Example 3.5.4]) that if z,,z,,... is a sequence of

ii.d. N(0,1), then (2logn)~'/? max

limits exist almost surely.

——— max (4.1)
logn Ixl1=1

ieln] Zi — 1 almost surely. Consequently, the following

lim —\/fmaxig” =1 and lim R AL 9] = lim max(maxi<jgij maxkj(_gij)) =1
n 2./logn n—oo 2 ./logn n—oo

\/Zlog \/2 log (5

Plugging the above limits in (4.1), we have the upper bound

G, x,x) < 2.

lim sup max (
n— o0 logn lxllh=1

For the lower bound, we optimize over just the coordinate vectors e;, i € [r1] to obtain

lim inf G, x,x) > liminf max+/2g;; = 2
n—>00 ,/lognHX\ll 1( n¥oX) n—->o  /logn i Jii

This completes the proof of (1.3). |

Proof of (ii). We realize that maxuxulzl(@nx,x) > max; [, v/2g;; and then proceed to

prove (1.4) as
P(Ilnielxg” <v2(1 —nlogn) =P(g;, < v2(1 - n)logn)n
S (1 — e—(l—ﬂ)logn)n — (1 — n_(l_n))n S e_nn

where the 1st inequality above follows from the Gaussian tail bound P(z > t) < e~t/2

for all ¢t > 0 and the last inequality uses the bound 1 — ¢t < e~! for all t € R. |
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On {p-Gaussian-Grothendieck Problem 21

Proof of (iii). For x with ||x|; =1 and || x|, <1 — 8, we have

G2l < D 1gyilIxj1 < (1 = )X 1) + 68X, 5, 1€ lnl,
Jeln]

where X; ;) and X; ) denote the largest and the 2nd largest values among the absolute

values of the entries of the i-th row of Gn. Then,

max (G,x,x) <max ((1 —§)X; )+ X <(1-9) maXX + d max X;
Ixlh=1,xlee<1-8" " icln] ( v T %) iet) VDT ey TV@r

(4.2)

Therefore, we need to bound the maxima, max;.(, X; ;) and max;.(,; X; - Note that

ieln] ieln]

rlxéﬁl)](X (1) = max (\/—max 93:1, max 19551)-

Here, from Lemma 3.11,
Emax|g;| = Emax(giy, ~g11,- -+ Gnns ~Inn) = v210g2n.
Therefore, (3.11) implies that for § € (0,1),
P(max gyl > (1+8/22)y/21og(2n)) < =",

where ¢/, C’ are positive universal constants. We reapply the above tail bound to the
maximum of (3) i.i.d. standard Gaussian random variables (g;j);<; <, and then use the

union bound to deduce that
P(maxX; ;) = 2(1 +8/22)/log(2n)) = C'n e

for some positive constants ¢’ and C”. Let K = 10+/2/11 € (/3/2,+/2). From the usual

Gaussian tail bound, denote

6, := P(v/2/z| = Ky/2logn) = 0n~¥°/2), ¢ :=P(1z| = Ky/2logn) = O(n~X").
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22 W.-K. Chen and A. Sen

Note that X; , > K,/2logn implies that at least two of (g;);;, are not less than
K,/2logn. By using the union bound,

P(X; 2y = Ky2logn) < P(ﬁ|gii| > K./2logn and 19;;1 = Kv/2 logn for some j # i)
+P(19;,19;| = K+/21logn for some distinct j,j’ # 1)

n-1 _(3R2/9_ _(2K2—
s(n—1)9n¢n+( ) )qs,%:om G270y 4 o(n~ K72,

which, by noting that our choice of K implies 3K?/2 — 2 > 2K? — 3 and using the union

bound again, implies that
P(maxX; , > Ky/2logn) = 0(n~GK*/2-2)) | o(n=K*=3)) = o(n~2K*-9)),
lein,

Note that the exponent 2K? — 3 is positive. Therefore, for all 0 < § < min((2K? —
3)/c”,1), on the event where both the bounds max;c, X;q) =< 2(1 + 8/22)\/10g(—2n)
and max;
1 — 0(n~K*=3)) — 0(n="%) = 1 — 0(n~°"%), we have, by a direction of computation,

Xi @2 =< K,/2logn are satisfied, which occurs with probability at least

1-9) mf”]‘Xi,(l) + Sma)](Xi'(z) < 2(1+6/22)\/log(2n)(1 —8) + Ké/2logn
len I4S]

[n
=+/2(1 - 5/22)/21og(2n)

< \/5(1 —58/22+ /log2/ logn)\/Z logn,

where the last inequality used va + b < /a + +/b for all @, b > 0. Finally, this inequality
and (4.2), coupled with the fact that (G, x,x) = 271/2(G, x, x), yield (1.5). [ ]

5 Proof of Theorem 1.2

In order to prove Theorem 1.2, we first begin with some preparation in the following

subsection.

5.1 Preliminary bounds

For a given truncation level ¢ > 0, set

D=B,N{xeR": x|, <e} and L=ByNn{xeR":|x|#0= |x] > ¢ foreachi}.
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On {p-Gaussian-Grothendieck Problem 23

For x € R", we can uniquely decompose x = x° + x' with x° € D and x' € L by setting
x? = x;1(|x;| <¢) and x| = x;1(|x;| > &) for eachi. (5.1)

Note that x' carries the localized part of x, whereas x° is the remaining delocalized part

of x. With these notations in hand, we are ready to state two crucial propositions.

Proposition 5.1. Let 1 < p < 2. There exists a constant C > 0 such that the following

statements are valid.

(i) Foranye>Oandn >1,

E sup | max(G,x,x) — ﬁmax(@nxo,xw < C(slfp/znl/p* + & P/P" /log n).

Sng xeS xeS
(5.2)
(ii) Foranye > 0, c > 0, and n > 1, with probability at least 1 — 2n°,
sup | max(G,x, x) — «/Emax(@nxo,xT)‘
Sng xeS xeS
< C(e'7P/?nl/P* 1 ¢7PIP" /logn) + 2,/2clogn. (5.3)

Since the Ep—Grothedieck problem scales as nl/P* for 1 < p < 2, the above
proposition says that the main contribution of ¢,-Grothendieck problem on an arbitrary
subset S of By comes from the cross-term V2 max, _4(G,x° x') as long as ¢ = ¢, satisfies
that limsup,, . ¢ = 0 and liminf,_, . en'/P/(logn)P"/?P) = oo. The next result then
provides an upper bound on this cross-term in terms of the maximum number of
localized coordinates of the vectors in S. For x € R", recall that ||x||, denotes the number

of nonzero entries of x.

Proposition 5.2. There exists a constant C such that for any 1 < s < n and any subset

# .
L7 c{x:xll, = 1, lIxllp < s}

E sup (y,G,x) <r@*E|gl, +C(nP/ @) flogn + V7" /log n),

# n
xeL”,yeBy

where g is an n-dimensional standard Gaussian vector.
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24 W.-K. Chen and A. Sen

Remark 5.3. The bound in Proposition 5.2 will mainly be used in the proof of (1.8) in
Theorem 1.2. The key feature here is that the term r(L*)E| g|| p+ is asymptotically sharp up
to an additive error of smaller order for some properly chosen s = o(n) and L¥, yielding
the correct limit of the £,-Grothendieck problem. If we replace G, with G,, then we

could also directly apply Chevet's inequality to obtain

E sup (y,G,x)=E sup (y,Ghx)<r@HE|gl, + Cs'?"/logn,

xel* yeBy xeL¥ yeBy
which implies that, by recalling G,, = (G,, + G1)/v/2,

E sup (y,G,x) < v2r*E|g|,. + Cs'/?"/logn.

xeL*,yeBy
However, this extra prefactor V2 in front of r(L#)Ellgllp* makes the bound sub-optimal.

We establish the above two propositions in the rest of this subsection. The next

lemma bounds the Gaussian width of sparse sets.
Lemma5.4. Fixp>lands<n.LetW={xecR": Ixll, <1, lIxllp < s}. Then,
w(W) < V2s'P"/logn.

Proof. Observe that for any subset I of {1,2,...,n},

g0 = (X)) "

max
X|lp<1,su x)=I )
Ixllp=1,supp(x) il

Therefore, by Lemma 3.11, we have

«\ 1/p*
w(W) = Esup(g, x) < Emax (> |g,”")
xeWw l<s =

< sl/p*]Emax l9;| < sl/p*,/Zlogn.
1

Proof of Proposition 5.1. Let ¢ > 0 be fixed. Write, according to (5.1),

(Gpx,X) = V2(G,x°, x7) 4+ (G,x°, x°) + (G, x',x7),
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On {p-Gaussian-Grothendieck Problem 25

and then, use the triangle inequality to bound

sup | max(G,x,x) — ﬁmax(@’nx",xf) < max |[(G,x° x°)|+ |maxl (G,x", x")|

ScBR xeS xeS T xlp=1 [xlp=
<max |(G,x,x)| + max [{G,x, x)|. (5.4)
xeD xeL

Note that as D and L are symmetric, that is, D = —D and L = —L, we have

max [(G,x,x)| < max(G,x,y), max|(G,Xx,x)| <max(G,X,y).
xeD x,yeD xeL x,yeL

Applying Chevet’s inequality with S = T = D, we have Emax, ,.5(G,x,y) < 2w(D)r(D).

We can bound the Guassian width of D by that of BI’; to obtain w(D) < W(B;,‘) =E|gl, <

Cnl/P", using (3.3). On the other hand, for x € D, we have 3, [x;|?> < 2P 3, [x;|P < £27P.

Hence, r(D) < ¢17P/2, and therefore,
Emax [(G,x, x)| < 2Ce'7P/2nl/P*, (5.5)
xeD

Similarly, we have EmaxX'yeL(GnX,y) < 2w(L)r(L). Obviously, r(L) = 1. Note that if x € L,
then | x|, < e7P. Hence, by Lemma 5.4, we have w(L) < V2¢7P/P" /logn and this yields

Emax |(G,x, )| < 2+/2¢7P/P* flogn. (5.6)
Xe

Now, (5.2) follows from (5.4)-(5.6) after taking C sufficiently large. To prove (5.3), note
that G,, — max,p|(G,x,x)| and G,, — max,; [(G,x, x)| are 1-Lipschitz with respect to
the Frobenius norm. For any ¢ > 0, using (3.6) with s = \/m, (5.5), and (5.6) yields
that with probability at least 1 — 2n~¢,

max [(G,x, x)| + max |(G,x, x)| < 2Ce' P2nl/P* flogn + 24/267P/P* /log n + 2y/2clogn.
Xe Xe

Consequently, it follows from (5.4) that (5.3) is valid with probability at least
1-2n"°. |

Proof of Proposition 5.2. For any x € L*, write x = x° + x' as in (5.1) by setting
¢ = n~YP". Then x° satisfies that ||X°||p < 1,[x%lo < & and [x°||, < s. On the other

hand, since any non-zero entry of x' satisfies |XLT| > g, it follows that ||XT||08p < ||X||§ <1,
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26 W.-K. Chen and A. Sen

which implies that ||XT||0 < ¢7P. So, we have
FcU4+Vvi={x+x:xeUx €V},
where
U={x:|xl, <1lxlly <& lxlo<s}, V=L n{x:|x],<eP}.

Then, by triangle inequality,

E sup (y,G,x)<E sup (y,G,x)+E sup (y,G,x)= )+ ).
xeL*,yeBy xeU,yeBy xeV,yeBy

Bounding (I): Since G, 4 GI, we have (I) < +2E SUPxey yery (V) GnX). BY Chevet's

inequality,

E sup (y, G,x) < r(U)w(By) + r(By)w(U).
xeU,yeB}

Arguing similarly as we did in the proof of Proposition 5.1, r(U) < ¢!7P/? and r(Bz) =1.
Moreover, we have w(Bp) = El|g|,» < ¢,n'/P* and w(U) < v/2s'/P",/logn (by Lemma 5.4).

Therefore, we obtain
(D < V2C,8 7 PPPnlP" 4+ 25VP" flogn = V20, nP/ PP 4 25V/P" log n.

Bounding (II): Note that (II) = Esup,.y ||é—nX||p*. Let § = n~!. Since each x € V is
supported by at most ¢ P coordinates, we can choose a §-net Ny of ¥V with respect to
I - l,-norm such that the cardinality of N is at most 0((ns~1)¢"). We now bound

_ _ ~ /
E sup G Xl = ]Egé?vx I1Grxllps +E sup ||Gn(X—X)||p*
xeV s x,x'€Bp:||x—x'|p<8

< Emax |Gyl + 3B Gyl pr < BEmaX | Gyixlys +0(1),

where in the last step, we used the bound E||@n||p_)p* < «/E]EllGan_)p* < Cznl/p* from
Remark 3.5.
Next, for each x € B}, the function G, ~ |[G,x|, = SUP,cpn (¥, G,x) is

Lipschitz continuous with respect to the Frobenius norm with Lipschitz constant
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On {p-Gaussian-Grothendieck Problem 27
\/EsupyeBg I¥ll,lxll, < +/2. Hence, (3.5) yields

e _ _ 2
Ee1Gnxl—EIGnxlyr) < o vix ¢ BT, ¢ € R,

In other words, the random variable ||énX||p* - IE||C_;nX||p* is 2-subgaussian. Therefore,

by Lemma 3.11,

. _TRIC — —p/2 — p/(2p™)
El)g?v)(;{(llGnXHp* EHGnXHp*) <,/4log|N;| = O(e Vlegn) = 0n V1ogn).

From the above estimates, we deduce that

Esup ||G,x]l, < sup E||G,x]|, + omP/?P") [flogn). (5.7)
xeV

xeV

It remains to estimate E||(_?nx||p*. For any x € R", we have G,x 4 lxll,g + zx, where g,
as always, is the standard normal vector on R” and z is an independent N(0, 1) random

variable. Therefore, for any x € B?,

ElGpxlly — Elgllp Ixly| < x],-Elz] < 1.

Consequently,

sup E[|G, x|, < r(VElglly + 1 < r@HE|g]l, + 1. (5.8)

xeV

Combining (5.7) and (5.8), we obtain that

) < r@E|gll,- + 0P ) /logn),
completing the proof of the proposition. |

5.2 Proof of (1.9): the lower bound

For convenience, throughout this proof, for three sequences of random variables

Xn=1 Yyp)p=1, and (Z,),~;, we denote

X, =Y, +0p(Z,) (5.9)

if for any d > 0, there exists some C > O such that P(X,, <Y, +CZ,) =1 — O(n~%) for all

n=>1.
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28 W.-K. Chen and A. Sen

The proof of (1.9) is argued as follows. Expanding
(v; + €, Go(v; + ) = (v;, G,v;) + (e, G ;) + V2(v;, Gey),
we have
miin(vi +e,G,(v;+e)) > miin \/E(Vi, énei) — m?x [v;, G,vi)| — m?x l(e;, G e;)l. (5.10)

We will control each term on the right-hand side. First, we handle the middle one as

follows. Since [|Ge;l,+ — Ell G« is 2-subgaussian,
P(m?x|||énei||p* — E||Gpeill | > 5) < 2ne /4, (5.11)
Write, by Jensen's inequality and (3.3),
ElG,&;l,- = EllG el = Ellglly = &,.n'P (1 - ay), (5.12)

for some a,, satisfying 0 < a,, = O(n™!) and g a standard Gaussian vector. Plugging
(5.12) into (5.11) yields

P(min |Gl > &pen'/P (1 —a,) +5) < 2ne S /4,
13

Using the well-known lower bound of Gaussian tail P(|z| > ) > 2t(¢2 + 1)~le~t"/2 for

t > 0, we have

2«/_3 2/4)

P(max |G, (i,)| < 5)=P(lz| < """ VP22 < 5" 2P(V2lz <" = (1 - =
i<j + 2

Combining the above bounds and recalling (1.6), we have that for any s > 0 and

sufficiently large n,

2gP*/pP sP*/p
P(max Vil < ) ]P’(max Vil 1 p*/p)
g0 /Pnl/p (Sp*n /P(1—a,)+s)
- (1 2\/_3 2/4) _ 2nefsz/4
- s2 + 2
2

> (1 — ﬂe_sz/‘*)n — 2nes/4,
- S

220z AINP 1.0 uo Jasn sanin uim] ‘ejossuuly Jo AjsioAun Aq €26S219/1 L EGBUI/UIWI/EE0 L 0 | /I0P/3]01MB-80UBAPE/UIWI/WOD dNO"dIWapeI.//:sd)y Wol) PaPEOjUMO(]



On {p-Gaussian-Grothendieck Problem 29

As a result, for any d > 0, if we let s = Ep*1/8(1 +d)logn, then for
g :=2(8(1 +d)logn)P' /P n-1/p,

(1 22 )nz 2
- 2 - 2 _
242 2 c
1-—3 (5.13)

— — >
2 _ 2 1 — d
n2(1+d)z§p* zsp* 81 +d) logn n2(1+d)Sp* 1 n

for some universal constant C > 0, where the 2nd inequality used the fact that form > 1,

P(max |v;llo < &) =
1

(1—x)™ > 1—mx forany 0 < x < 1 and the 3rd inequality is valid because &, > 1. Now,
on the event max; [|v;|l,, < ¢, we can bound max; [(v;, G,V;)| < SUP |y, <1, x| <e | (X) GpX)|.

As argued in the proof of Proposition 5.1,

1
E sup l(x, G,x)| = O onr)
Ixlp=<1,lxllec=<e

D) ptox 1yl+ ke

= 0(logm) =P B0 "5 = 0P (log P4,

where, in handling the logarithmic term to validate the 3rd equality, we used
(1 — p/2)/p < 1/2. Consequently, from (5.13) and the Gaussian concentration (3.7),
1,1, 1 «
max |(v;, G,v;)| = Op(n 2 272" (logn)?"/* 4+ \/logn). (5.14)
1

To control the 3rd term of (5.10), note that max;|(e;, G,e;)| < max;|g;| and
Emax; |g;| < /2logn. Since max; |g;| is 1-Lipschitz with respect to the | - ||,-norm,
it follows that

max|(e;, G,e;)| = Op(y/logn). (5.15)

Finally, the 1st term of (5.10) can be handled as follows. Note that (v;, G,&;) = [|Ge;l -
Write

min |Gye;llp- = minE|Gpell, — max [1G el — ElGe;ll |-
1 1
Here, from (5.11),

= 05(//Iogn),

max] |G el — ElIGnelp:
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30 W.-K. Chen and A. Sen

which together with (5.12) implies that
min 1G&;ll,- = £,-m'/P — Op(/logn). (5.16)
Finally, combining (5.16), (5.10), (5.14), and (5.15), we have
min(v; + e;, Gy (v; + €)) = V2E, /P — Op(n P logn)? /4 + /logn).  (5.17)
From the definition of v; and the fact that ||1 + x|P — 1 — |x|P| < 2Pp|x]|,
m?x| lv; + ;5 — 2| = mlax||1 +v;)P —1—|v;)P| < 2Pp max |v; (D). (5.18)
Hence, from (5.13),
m?x| Iv; + ellp — 2| = Op((logn)P /P p=1/P),

The desired lower bound (1.9) follows from (5.17) after dividing both sides by |v; + ei||§.
This completes our proof.
5.3 Proof of (1.8): the upper bound

By the virtue of (1.9), it remains to establish the upper bound. Let S be a non-empty
subset of B} and ¢ = n=2/®P") For this ¢ and any x € S, write according to (5.1),

x = x° + x'. Applying (5.2) yields
EmaSX(GnX, x) < V2E maSX(XO, G,x") + O(nz/p*zw/log n).
Xe Xe

Since x° and x' have disjoint supports, |x°|; + x5 = |Ix||5 < 1. After normalizing x°

and x' by their ¢,-norms, we write

- x° - x'
Emax(x°, G, x') = Emax || x°|,,||x" | N e
" xes PP qIxefl, " XTI,

xeS

< 272/PEm X a X -2/p =~ _xt
= ax e Gn ¥ <2 E max v, GnW ,
xes \ [IX°ll, X"l xeS,yeBp P
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On {p-Gaussian-Grothendieck Problem 31

where we used the fact that the product ||x°|,[|x |, is maximized if %05 = x5 = 1/2.

Denote L* = {x"/|x"|, : x € S}. Since ||x"||y < ¢ P for all x € S, Proposition 5.2 yields

o
E max . <y, G, —2— TP > < r(L#)IE||g|| . + O((nP/@rP") 4 n2/p* )v/logn)
XxeS,yeBy

= r(*Elgl, + 0mP/®") /logn),

the last equality being a consequence of the fact pp* > 4. Combining the above

estimates, we arrive at

Emax(G,x,x) < 21/2272IPr(L*)El|g| - + O(nP/?P7)/logn). (5.19)
xe

Since ||x"|l, < x|, we have r(L*) < 1. Consequently, using (3.3) in (5.19), we obtain that

E max (G,x,x) < 21/~ 2/p$ n'/P* 4 omP/ %" flogn).

HXHp—
Now, the Gaussian concentration (3.7) ensures that

max (G, x,x) = 2'/272/Pg nYP" 4 0p(nP/?P") Jlogn), (5.20)

Ixllp=1

where the notion Op is defined in (5.9). Finally, the upper bound (5.20), combined with
the lower bound (1.9) and the fact that p < 2, implies (1.8).

6 Proof of Theorem 1.4: The Stability Bound

For each i € [n], define three vectors,

Vi+ei

o _ Vi—viDe; i+ _ A+ vi)e
v + el

' ' v +ell, " v +eill,

Obviously, o}/”o} I, = e;. Note that a direct computation gives

lofllp = T, jogy _ A vOP
P ” l 1,||p t''p ”Vi‘l‘ei”p
|-Z v = |G (- (= @R+ ) P
lo?ll, P v —v;(Dell, P i i

<1—(1—|v;®P)'P + [v;(D)| < 2|v; ().
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The above results and (5.18) imply that if 2Ppmax;|v;|,, < 1, then there exists a

constant K > 1 such that

max(max|[of |, — 2~ /7|, max|[10] I, - 2 */7|, max | - vil,) = Kmax|[vil.. (6.1

0
llo °||

Next, in view of the proof of (1.8), we continue to work with the same
e=n"2/®PP) Fix0 <k < 1/(3p),andletn® <8 <1.Let M > 1 set

1

Define 4,, = {max; |v;||,, < min(e, 83/K)}. Since k < 1/(3p) and p* > 2, using (5.13) yields

that for any d > 0, there exists a universal constant C > 0 such that
P4,) >1-cn 9 (6.3)
On the event A4,,, we readily see that 2Ppmax; ||v;|l,, < 8 max; ||v;|l < 1, and from (6.1),

max [[|0f [, — 27/P| < 8, (6.4)

max|flofll, - 27'/7| < 8%, (6.5)

i 3
gy, ~vilp =2 60

Let S = {x : [|Ix]|, = 1,dist(x, &) > §}. Define S; = {x : | x|, = 1, [[x7|, —27'/P| > §°} and

Sy ={x:lxlp, =1, |lIx", — 271/P| < 6%, min(|

/|

xT e| x" ‘e
I, e

Also, let S3 be the collection of all x € S satisfying that |[[|x"|, — 27'/P| < §* and there

exists some i such that either
> >4
) (H ||XT|| p )

(I =
(6.7)

Lemma 6.1. Forany M > 1, on the event A, we have that S € S; US, U S;.

0] XO

3 + v
P

\/

p

H )28 for all i}.
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Proof. Recall that, on A,, Inequalities (6.4)-(6.6) are valid. Take x € S\ (S; US,). Then,

x|, —27'/P| <§° and (6.8)
1]
X .
either HT —eg| < 8% or H ——te| < 5% for some i. (6.9)
%", p %" p

Assume, for definiteness, that the former condition of (6.9) is valid for some i. To show
that x € Sy, we verify that [|x°/|1x°|, — v; ||p > § as follows. First, note that from (6.5) and
(6.8),

xTl, = llof 11, | < 28°.

We claim that [|x" — o;fllp < 383, If ||x" — olT||p > 38%, we use the fact that |x7|, < 1 and

the triangle inequality to deduce

‘ 1
15T, o]l

Ixt = o,
’ >

_ T
o] I,

|l Ix ||p ” ||x*||p lo; np‘ Ix7 1,

= ——(lIx" = o ll, = l1x"ll, — llo] I ,]) > 38° — 28° = 8°,
=71,

which contradicts our assumption that ||x"/|x"|, — e, ||p < §3. This validates our claim.
Now, since x € S, we have that | x—o;],, > §, which, coupled with the fact ||X"'—OLT||p < 383,
leads to
0 0 T T 3
lx" —ofll, = lIx —o;ll, = lIx" —0;ll, = 6 — 38". (6.10)
On the other hand, it follows from (6.8) that
1x°ll, — 277 < 165°. (6.11)
Indeed, a straightforward computation using (6.8), (6.2), and the fact 1 = ||X||§ = ||X°||§ +
||XT||5 shows ||X°||p > 47!, Now, by applying the mean value theorem on the function

t — tP twice and using (6.8), the assertion (6.11) follows since

a7 Ix0ll, — 27 VP < [I1x01h — 27 = IxTIp — 271 < 2[lIxT), — 2717 < 28°.
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34 W.-K. Chen and A. Sen

Now, from (6.4), (6.10), (6.11), and the fact that ||X°||p < 1, we obtain that

o
0;

” XO
0 o H

o ) o 0
(I1x° = 0?1, = 11X°ll, = 107 1l,51)

0
%1,

= %0 (Ix° = 0fll, = [1x°l, — 27 P| = 12712 — |10?||,,]) = & — 208°.
p

(6.12)

Moreover, another application of triangle inequality on (6.6) and (6.12) and the fact that
§ > 1004 yield

>§—218° > 8%
p

e, v

0]
0
%],

In the case that the 2nd condition of (6.9) holds, we can similarly show, by using
(6.5) and (6.6), that [x°/[x°ll, + Vin > §. Therefore, x € S; and the assertion is
established. [ |

Lemma 6.2. For any d > 0, there exist constants M > 1 and C,C’ > 0 such for

all sufficiently large n, with probability at least 1 — 8n~%, we have that whenever

n“<§<l,

max (G, x,x) < 2Y/272/P(1 — ¢s%¢& .n/P" + ¢'nP/?P) Jlogn. 6.13
XGSlLJS)z(USS( nX X = ( - )gp + & ( )

Proof. Throughout this proof, the constants C;, C,, etc. are independent of § and n. Let
d > 0. Below, we handle each of the cases x € S; for i = 1, 2, 3 separately. Together, they
will complete the proof of the lemma.

Maximization over S;. Note that [1 — a?| > |1 — a| for all @ > 0. For x € S;, since

x|, — 271/P| > 83, we see that

N 1%,

'l — 271 = 27 Pl — 271 = 2712 x), — 27 P >
Hence,

. v ponl 1 8\up
1%, %1, = (115 — 1T 1) P < (Z - Z) <27%P(1-4).
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On {p-Gaussian-Grothendieck Problem 35

By following the argument used in the derivation in (5.19) and noting that T({XT/HXT Il

x €S,}) <1, we obtain

Emax(G,x, x) < 21/2_2/p(1 —§6)§p*n1/p* + O(nP/?P) flogn).

Xx€eS)

Note that S; is nonrandom. We can apply (3.7) with t = ,/2d logn to get that there exists

some C; > 0 such that the following event is valid with probability at least 1 — 2n~¢,

max(G,x,x) < 21/27%/P(1 — QG)Sp*nl/p* + ¢, nP/@P") flogn.

X€S)

Maximization over S,. For x € S,,

x' /x|, F ein > §% for all i. By Lemma A.2, there

exists a constant C, > 0 such that
r({x"/1x"1l, - x € Sp}) <1 —Cp8% <1 —Cy8°.

On the other hand, the product ||x° I l|x" I, can be trivially bounded above by 1/4. Hence,
(5.19) yields

Emax(G,x,x) < 21/272/P (1 — €,85)£,.n'/P" + 0P/ PP flog ).
X€e€D2
Similar to the 1st case, as S, is also nonrandom, we can apply (3.7) with t = ,/2d logn to

get that there exists some C; > 0 such that the following event is valid with probability
atleast 1 —2n~¢:

max(G,x,x) < 21/27%/P(1 — CZQS)Sp*nl/p* + C3nP/@PY) [flogn.

XESZ

Maximization over S;. This case requires some extra treatments since S; is a random
set. If (6.7) is satisfied, then

x° xT _
max{ ——,G,——— ) <max max v,G,u

0 5T ; n
xeSs \ [1x°ll,, %"l U ulp=Lllu—e;lp<8,

Ivllp=1lv=villp=8

< max max v,G. e)+8%|G .
= ||vnp=1,nv7vinpz§( n€i) +8°1Gnllp—p
_(1_P¥ max |G, el + 831G, |

= 16p* ; n=ilip* T = nlip—p*’

220z AINP 1.0 uo Jasn sanin uim] ‘ejossuuly Jo AjsioAun Aq €26S219/1 L EGBUI/UIWI/EE0 L 0 | /I0P/3]01MB-80UBAPE/UIWI/WOD dNO"dIWapeI.//:sd)y Wol) PaPEOjUMO(]



36 W.-K. Chen and A. Sen

where the 3rd inequality used Lemma A.1. Now, the fact that SUP P ||X0||p||XT||p <272%/p
implies that

0

max(x°, G

X€eS3

Ty — on skt <
X )=max|Xx X
nX') mas XN lx "l |

X0l "]

I,

242
<2_2/p((1_p 8 )max”@’ e;ll e + 831G, |l *)
= 16p*/ ¢ VP T TmIPTP

To control the right-hand side, note that ||C_;nei||p* - IE||C_;nei||p* is 2-subgaussian. Lemma
3.11 yields that

Emax ||Gnei||p* < maxEH(_}nein* +2y/logn < ép*nl/p* + O(y/logn).
1 1

Moreover, ]Ellf;nllp%p* = O(nl/r") by (3.4). Using (3.7) with ¢t = ,/2(d 4+ 1) logn and (3.8)
with t = /2d logn, we see that there exist universal positive constants C, and C5 such
that with probability at least 1 — 4n~¢,

max IGpeillye < Epen'P” 4 C4/logn and |Gyl - < Csn'/P".

From these estimates, we can choose M > 1 large enough such that the following
statement holds: there exist constants Cg,C; > 0 such that with probability at least

1 — 4n~%, we have that whenever n™* < § < 1,

XO

max<—, > <272/P(1 — C.8%)¢ nr e np/(ZP*)\/log n.
xess \|x0l," lIxT o= p 7

Plugging this into (5.3), we arrive at that with probability at least 1 — 4n~¢,

max(G,x,x) < 2V/27%/P(1 - Ce8%)&,.n'/?" + C;n??" flogn

XES3

< 22 2P(1 - Gyt P + G/ logm,

where the 2nd inequality used § < 1 and pp* > 4. |

We now proceed to complete the proof of Theorem 1.4. Let d > 0. Denote by 4},

the event on which (6.13) is valid. By Lemmas 6.1 and 6.2, we have that on the event
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On {p-Gaussian-Grothendieck Problem 37
A,NAj, foralln™ <§ <1,

max(G,x,x) < ma G, x,x) < 2Y/272/P(1 — ¢s%)e_,n'/P" 4+ C'nP/@P) [flogn.
s (G, X) _xeslus§u53< nXiX) = ( )ép + g

Here, from (6.3) and Lemma 6.2, P(4,, N A},) > 1 — P(A%) — P(A;qc) >1— (84 C)n~%. This
completes our proof.

7 Proof of Theorem 1.5

7.1 Proof of (1.14)

Fort > 0 and x € R", set

(G, x,x)
Hy () = 05— = tlxp. (7.1)

Let u,t > 0 be fixed. Note that L t) = n*1maxmxm%:an’plt(X). We claim that

n,p,u
nELn'p'u(t) is superadditive, that is,

nEL ) = EL, (1) + nyELy,, o, (0), YRy, n, € Nand n=n, +n,. (7.2)

n,p,u(t

To prove this, we use Guerra-Toninelli's interpolation [30]. Let n,,n,,n € N satisfy

n =n; +n,. For 0 < s < 1, consider the interpolating Hamiltonian,

H, (2) = G z,2) / 2 (G x, %) / Ga,v.y) — tlixIp — tlylh

for any z = (x,y) € R™ x R™, where G, = (9});jeln,) a0d Gh, = (97)ijern, are iid.
standard Gaussian. Let u, and u,, be probability measures fully supported on the
sphere S, = {x € R™ : ||x[|3 = u} and S, = {y € R™ : ||y[l} = u}, respectively. Here,

note that the |||x]||, and |||y]l|, are normalized by n; and n,, respectively. Define

1
Foy . p(5) = 5 Elog L T, (@) @ iy, (dp). (7.3)
ny ny
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38 W.-K. Chen and A. Sen

Note that

F <1>—iElog/ e G (dx) ® iy (dp)
ni.nz,p Bn Sy XSny ni nz '

n B 1 L
Fnlynzyﬂ(o) = ﬂ_:lE IOg/S emwnl M,y (dx) + —ZElog/ F nZYIY)NnZ (dy).

Denote by Ry(a,b) = k™', yya;b; for any k > 1 and a,b € R¥. Note that R,(z,2) =
R, (x,x) =R, (y,y) =uforz = (x,y) € S, xS,,. Computing the derivative of (7.3) in
s directly by using the Gaussian integration by parts and noting that |x]|2 = un, and

||y||% = un,, we obtain that

/ _1.1(Gz.2)  (Ghx,x)  (Giy.y)

/32 B*n
E(R,(z,2)* — R,(z",2%)?) - l]E(R (X,X)Z—Rnl(xl,xz)z)
,3272
— 5 2ER,, 7, 1) — Ry, (71 ¥D)?)
ﬁz

= —7E(nR (z',2%)? —n R, (x',x** —n,R,, (v' vH?),

where the angle bracket outside is the expectation with respect to the Gibbs measure

0, (d3) © s ()
f eﬁHn,s(z)Mnl (dX) ® Hpy (dY)

Gnl,nz,ﬂ(dx, dy) =

and z! = (x!,y!) and z% = (x?, y?) are two independent samples from this measure. Now,

note that from Jensen's inequality,

n, 1 n 2
R, (z',2%)? = (Xln_anl(Xl’Xz) - fan(yl,yz))

IA
|

n
“Ry, (1 xH? + 2Ry, (7 )2,

leading to F g, p(S) =0 forall s € (0,1). Hence, F,, .. p(1) = Fp . 5(0) and sending S to
infinity imply that

NELyp,(t) = B max Hy,,(2) = mELy, by (8) + 1ELy, (1),

n,p,u
p nlx ny
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On {p-Gaussian-Grothendieck Problem 39

establishing our claim (7.2). So, Ly (@) = lim E[Ln,p,u(t)] exists by superadditiv-

n—oo
ity. Hence, from the concentration bound (3.10), it follows that lim, , L, (&) =

lim,_, EIL, ,,(@®] =L, ,(t) exists almost surely for each u > 0 and ¢ > 0. It remains to
show that the statement that almost surely this limit exists simultaneously for all u > 0

and t > 0. We need the following lemma.

Lemma 7.1. For any 0 < K; < K,, there exist positive constants C and D such that

with probability at least 1 — Ce /¢,

Ly pu®) — Ly ()] < D(u— W'+ [t = t']), Vu, U, t,t € [K}, K,). (7.4)

From the above inequality and the Borel-Cantelli lemma, it follows that for any

0 < K, < K,, there exists some D = D(K;,K,) > 0 such that almost surely

Hmsup Ly, () = Ly p o (8)] < D(u— /| + [t — ), Yu, U/, 8t € [K;, K. (7.5)
n

n,p,u
The above inequality also implies that

|Lp,u (t) - Lp

'u,(t’)| <D(u-u|+|t—"t]), Yu,u, ¢t €Ky, Kl (7.6)

Forany u,t € QN (0, 00), let 2(u, t) be the event on which lim,,_, Ly pu(® exists.
Also, for any K;,K, € QN (0,00) with K; < K,, let Q(K;,K,) be the event on which
Inequality (7.5) holds. Let © be the intersection of all Q(u, t) and Q(X;,K,). Obviously,
Q is of probability one. Moreover, on €, for any ¢t > 0 and u > 0 with u,t € [K~!, K] for

some rational K > 0, we have, using (7.5) and (7.6), that
lim sup|Ln!plu(t) - Lplu(t)i
n—oo
<limsup|Ly, ,,(t) = Ly, p, ()| + lim sup|L,, , () = Ly, ,y ()| + |Lp 1 () = Ly, (D)
n—oo n—oo
<2D'(lu—-u'|+ [t -t

for any u/,t' € QN [K~!, K], where D’ is a constant depending only on K. Sending v’ — u

and t' — timplies that lim Ln’p,u(t) =L, ,(¢) on Q. This completes the proof of (1.14).

n—oo
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40 W.-K. Chen and A. Sen

Proof of Lemma 7.1. Let 0 < K; < K, be fixed. Note that a change of variable,
x — x/+/u, yields that

-~

u
= — — tub/? p
Lnpu® = max (7 (Gox,3) — o 2xih). 7.7)

xlll2
Letl=(,...,1) € R" Since

u

Ln,p,u(t) > n3/2 < — tup/zl

|Gy
Gal, 1) — tuP I > - S

it follows that if x is an optimizer of (7.7), then

u' P2 u' PGyl

2u' P2 G|
p nll2
|||X|||p S tn3/2 <GnXlX> + tnl/z + 1<

<ttt l=M,  (78)

for M, := 2K;p/2n*1/2||Gn||2 + 1. Consequently, L
supremum as (7.7), but with the extra constraint (7.8). This implies that for any
u,u,t,t €K, Kl

npu(t) can be written as the same

Gy ll2 / /2 D)2
Lo pu () = L o ()] = =22 1 — 0| + My P’ — tuP'"|
< Gz "M N D/2 1 4 (7,D]2 'p/2
= lu— W)+ M, |t — tHuP? + ¢ (WP/? — uP'’")|
c KP/?
n 2

Since G,, — |G, I, is 1-Lipschitz with respect to || - ||z, It follows from the concentration
Inequality (3.6) for |G, ||, and (3.4) that there exist some C, C, > 0 such that

P(n~'2||G,l, = C,) < Ce /¢, (7.10)
The bound (7.4) is now a consequence of (7.9) and (11.21). |

7.2 Proof of (1.15)
Lemma 7.2. There exist absolute constants c,;,C > 0 such that with probability at

least 1 — Ce ™¢, forany 0 < K < t < oo,

Ln,p(t) = sup Ln,p,u(t)-
uel0,co/K]
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On {p-Gaussian-Grothendieck Problem 41

Proof. Note that L,,® = 0. Recall the definition of H. n,pt(X) from (7.1). Whenever

Hn,p,t(x) > 0 for some x € R", we have, by Jensen's inequality, that

(Gpx, %) _ 1IGy | IGy |
tixlllp < == 35— < fz||| I3 = Jrzﬁz

2
Il

The above inequality, together with another application of Jensen’s inequality, yields
that

(7.11)

Wl < lixlll, < (”Gn“z)l/(p—Z) (”G ||2)1/(p 2)
2= P tﬁ KJ_

Consequently, we can write Ly, () as the supremum of Lypu® for all u between zero

and the above upper bound. Using (11.21) completes our proof. |

The proof of (1.15) is now argued as follows. From Lemma 7.2, there exist
Co, C > 0 such that with probability at least 1 — Ce ™€, L, () = SUPgy<cy/x Ln,p,u(®) for
any 0 < K <t < co. Now, consider an arbitrary 0 < K < min(\/c_, 1). From Lemma 7.1,
there exist C’, D > 0 such that with probability at least 1 — C'e"/C,

Ly pu® = Ly pw®] < Dlu—u'|, Vu,u',telK, cy/K] (7.12)

Consequently, for any k > 1, if uy < --- < u; form an equidistant partition of [K, ¢,/K],
then with probability at least 1 — C'e™ /¢,

sup L, ,,(¢) — sup anu | < (CO/K —K), Vt e [K, cy/K].
uelK,co/K] 0<j<k

This implies that with probability at least 1 — Ce™™/¢ — Ce T,

L,,() — sup an ” (@) = sup L,,, (@) + — (CO/K - K)
0<j<k uel0,K]

_ IGalK

= k co/K — K), Vt € [K, cy/K], (7.13)

where the last inequality used the fact that Lypu® = |G, ll;u/+/n. Combining the fact
that |Lp,u () — Ly (O] < Dlu — u/| for all u, v’ € [K, ¢y/K], which follows from (7.12), and

the bound (11.21) on ||G|l,, we can now pass to the limit in (7.13) by first letting n — oo
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and then letting kK — oo to obtain that almost surely, for all ¢ € [K, ¢,/K],

-CK+ sup L,,(@) < hmmenp(t) < hmsuanp(t) < sup L,,(®+CK.
uelK,co /K] uelK,co/K]

Since this is valid for all 0 < K < ,/c¢,, we can further send K | 0 to get that almost

surely,

lim sup Ly, = hmlnanp(t) < hm suanp(t) < sup Lp,(t), Vt>0. (7.14)
K10 ¢k, co/K] uel0,00)

Finally, note that for any u > O and ¢t > O, L np® = Ly p (0. Also, almost surely,

lim Ly pu® =Ly, @) forall ¢ > 0 and u > 0. From (7. 13)

n—oo

D
u(® =< sup L, ,(t) +C K+ — (CO/K K) < sup L, +C.K+ —(cy/K —K)
0<j<k [K,co/K] k

forallt € [K,cy/K]l, u >0, and k > 1. Hence,

sup L, w(@) < sup L, L+ CK,
uel0,00) [K,co/K]

which, together with (7.14), completes our proof after sending K | 0.

8 Proof of Theorem 1.6

We establish the proof of Theorem 1.6 in this section. First, we need the following

important lemma that connects L, ,, and GP,, ,,

Lemma 8.1. Let2 < p < oo and n > 1. Then the following statements hold for any

realization of G, if Ly, is differentiable at some t € (0, o0) with L;l,p(t) < 0, then

Ly () = —(g — 1)L, (0 (8.1)
and
p(p 2/p=1 o 1-2/p
GP,, = E(E _ 1) t*/PL,, (1) . (8.2)

Remark 8.2. Though the differential Equation (8.1) has a simple explicit solution, it

does not yield an expression for L,p(®) in absence of a boundary condition.
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On {p-Gaussian-Grothendieck Problem 43

Proof. Let ¢ be a point of differentiability of L, , with L}, ,(¢) < 0. Let ¢ > 0 be fixed.
Then,

H, , (%) H, ,(x)
max et max (—n’p’t + A(
n

| ma < ma X115 + Ly (&) — ¢) )
1xlllp=—Lnp )+ 1xlllp=—Lnp )+

< Ly p(t—2) + ALy (1) — Ae

L () —L, (t—»1)
_ / n.p n.p
- A(Ln'p(t) - - ) — e+ Ly (1)
and
H, _.(x) H, (%)
max L T max (& + A (=lxl5 - Ly, (1) — s))
lxlb<—Lpp)—e T IxIIh <—Lp p(H)— n

< Ly p(t+24) — ALy (1) — e

. (Ln,p(t +2) = Ly (1)
A

— L/n,p(t)) — e+ Ly (D).

From the above two inequalities, since Ln,p is differentiable at t, we can choose A small
enough such that for some ¢ > 0 (depending on ¢)
H,, (%)

max ————— =L, () —ce. (8.3)
N5 +L, p (8| =& n

In other words, if x satisfies ||||X|||§ +L’n,p(t)| > ¢, then it cannot be an optimizer of L, p®.

Now, to show (8.1), note that |||X|||£ is differentiable on R” since p > 2. If x is a

critical point of H,, ,, ;, then
VH,  .(x) = v(;@ X, %) — t|||X|||p) ——% & x— (p—t 1x.[P1s n(X~)) =0
n,p,t - ﬁn3/2 n<r p) — ﬁns/z n n 1 g 1 l_ N

So, we have (x, VH

n

ptX) =0, which yields

V2

—372 (G X) = —375 (G, %) = pillx|lp.

It follows that if x() is an optimizer of H,, then

Dt

Lop@® = (£ = 1)tix1.
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On the other hand, from (8.3), we also see that ||||X(t)|||§ +L’n,p(t)| < ¢ for all ¢ > 0, which
implies that |||X(t)|||§ = —L’n'p(t). Plugging this into the above display results in (8.1).
Next, we establish (8.2). First of all, from (8.3),
H, , (x)

JEX o = Ly y(0)
Hixlllp+Lyp (D |<e

Since this is valid for all ¢ > 0, sending it to zero yields that

H, (%) G, x,x
L,,(®) = max P max % + tL;l,p(t).
lxlb=—Lpp@® T lixllb=—Lpp) T

Now, performing a change of variable x — X/(—L’nlp(t))l/p yields

Ly, ,(8) — tL, (1)

GP =
(=L}, p () *P

n,p

Finally, by substituting L}, ,(¢) using (8.1) implies (8.2). |

Lemma 8.3. Let 2 < p < oco. We have that L,(®) is differentiable in t € (0,00). In
addition, for all ¢t € (0, 00),

1,0 = (5 - 1), (8.4)
and
L,(t) < 0. (8.5)

Proof. To show differentiability of Ly(t) and (8.4), we first fix a realization of (G,),-,
for which L, ,(t) converges to L(t) for all t € (0,00). Note that L,p and L, are convex.
Hence, both of them are differentiable almost everywhere on (0, 00). Forany 0 <s' <s<s”,

define

Ln’p(s) — Ln'p(s’)
s—¢s

Ln'p(S”) — Ln'p(s)
s’ —s '

Dy, p(s; ") = , D o(s;8") =

Note that for any 0 < ¢; <s < t,,if L, , is differentiable at s, then

D;,p(sl' tl) S L;q,yp(s) S D:yp(s; tz)!
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On {p-Gaussian-Grothendieck Problem 45
which combining with (8.1) implies that

P o
- 1)sDn,p(s, t)).

~(Z - 1)sDi i) < L) =
Since the set of points of differentiability of L, , is dense in (0, 00), this inequality is

indeed valid forall 0 < t; <t < t, < oo,

P o
- - 1)tDnlp(t, t)).

—(%’ _ 1)tD;p(t,- ty) < Ly (1) < —(
By sending n — oo and then letting ¢; 1 ¢t and ¢, | ¢, it follows from the above inequality
that if L, is differentiable at ¢, then (8.4) is valid at this point as well. To show that (8.4)
holds for all ¢ > O, fix an arbitrary ¢ > 0, and pick two monotonic sequences t; and s;
belonging to the set of differentiable points of L, such that ¢, 1 t and s; | t. From the
continuity and convexity of L, and the validity of (8.4) on (t) and (sy),

~(p/2 = Dt lim Ly (6) = L(t) = ~(p/2 — 1)t lim Ly (sy),

which implies that limy_, . Ly, (t;) = limy_, ., Ly, (sg). From the convexity of L, again, for

any a, b satisfying t;, <a <t <b < s,

Ly® —Ly@) _ L,(b) — Ly(t)
t—-a ~  b-t

Ly (ty) < < Ly (sg)-

Consequently, we obtain the differentiability of L,att and this completes the proof of
(8.4).

To show (8.5), note that L;D(t) < 0 since L, is nonincreasing. If Ll’a(t) = 0, (8.4)
implies that L,(¢) = 0. Let 4, be the top eigenvalue of G, associated with the eigenvector
x with |x]|, = +~/né for some 0 < § < 1. We can express x as x/|x[l, = g/|lgl, for a
n-dimensional standard Gaussian vector g. Thus, using the law of large number and the

fact that A, /v/n — 2 almost surely that we have almost sure lower bound,

(Gpx, %) — x5 — v/28 — tsP/2E|z PP,

1
Lyp®) = —375 (GpX, X) = tllix|l5 =

1
V2n3/2

where z ~ N(0, 1). The lower bound is strictly positive if § is taken to be small enough,
contradicting L,(¢) = 0. Hence, L;,(t) < 0. ]

Now, we turn to the proof of Theorem 1.6. For a given realization of (G,,),-, for

which lim,,_ Ln,p(t) converges to Lp(t) for all ¢t € (0, 00), let 2 C (0, o) be the collection
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of all points t, on which Ln,p(t) is differentiable for all n > 1. Since Lp is differentiable

everywhere, by Griffiths’ lemma, we have that lim, , L, p@ = L’ (t) at an arbitrary

t € Q, which, together with (8.5), implies that L}, ,(¢) < 0 as long as n is large enough.
Thus, we can pass to the limit in (8.2) to get that

2/p—1
lim GP, = 3(3 —1)7 L, m .
P 2\2 14

Since this is valid for all ¢t € @ and this set is dense in (0, co) since L,p is convex for all
n > 1, this equation must also be valid on (0, 00) by using the continuity of L, and this
completes the proof of (1.16).

Next, we are going to prove (1.17). Assume that x, is an optimization of
SUP |y ,—1{GpX, X). If we let x5 = n!/Px_, then x, is an optimizer of SUP) =1 (G X, X).
Note that as will be argued later in the proof of Lemma 9.2, x, must satisfy Inequality
(9.3) with § = p/2 — 1. As a result,

p+s p+8 p+8 1 || Gn || 2
—|| Xolloo <— E |x0,;1°° = lllxolll .
p+s = 1/2
V2GP, , n

ieln]

From (3.9) and (11.21), we see that there exist constants C,C’ > 0 depending only on

p such that with probability at least 1 — C'e ¢, ||x,llo, < Cn'/®*+9 . This implies that

1%, /o < cnl/@+9-1/p

9 Proof of Theorem 1.7

In this section, we establish the continuity of GPp in p € [2, 00]. First, we do a change of

variable to obtain

GP, = max —- (G x,Xx G,X, X 9.1
np = ek, e (O ) = TR, e ) (9.1)

The following lemma establishes the monotonicity of GP,,.
Lemma 9.1. Forany 2 < p < p’ < oo, we have that GPp > GPp,

Proof. In view of (1.16) and (9.1), the assertion follows immediately from the mono-

tonicity of the averaged norm |||x]|| P in p due to Jensen's inequality. |

We divide our discussion into three cases: p =2,2 < p < 00, and p = cc.
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9.1 Casep=2

Note that GP, > GPp for all p > 2. It suffices to show that GP, < limp¢2 GPp. Write

1 _
P, = max —= (G, X, X) = — max —5(G,X,
2T =1 n3/2 " V2 lixllz=1 n8/2 """

X).

Here, the maximum on the right-hand side is the largest eigenvalue of the GOE, G, /7,
and the corresponding eigenvector y with ||y|l, = 1 has the distribution g/|l|gll|, for g
an n-dimensional standard Gaussian vector. For all p > 2, since limn_>oo|||y|||§ = E|z/P
almost surely for z ~ N(0, 1) by the strong law of large number. Therefore, for any ¢ > 0,

. 1 1 -
GP, = lim ﬁm(GnY’ y)

IA

o) (e
E—— lmSup max , X
V2 oo |xlB—Eizp|<e 321 Nl /7 I, P

(IE|z|P+8)2/Plimsup max n;/2<é"( x )( = )>

<
n—oo |[||x|I5—ElzlP|<s i, 7 Ml

N

< (ElzlP +¢)*PGP,.
Hence, GP, < limp 12 GPp and this completes our proof.

9.2 CaseZ2<p<o0

To discuss this case, we need a key lemma, which states that for all § > 0 with
2(1 +6) < p, we can essentially rewrite GP, , as a maximization problem restricted
§ig < GP,/GP,,. In other words, this means that
the optimizer of GP,, , has a bounded norm of slightly higher order than p.

to x € R" satisfying lixlll, =1 and |||x|||

Lemma 9.2. Letp € (2,00). For any § > 0 satisfying 2(1 + §) < p, we have that

. 1
O = 2l D o7 (O

where Anps is the collection of all x € R™ satisfying that lixlll, = 1 and |||X|||§i§ <
GP,/GP,..
Proof. Assume that xy = (xp,...,Xg,) € R" with lIxolll, =1 is an optimizer of the 1st

maximization problem in (9.1). Notice that > ;,,; |x;P is twice differentiable since p > 2.
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Using the Lagrange multiplier, there exists some c € R such that for all i € [n],

N

1
GnXo); + 373 ——(Glxp), = 372 (Gn¥o);- (9.2)

cp -1 1
7|X011| Sgn(XO'l) — 3/2 (

Multiplying x; ; to both sides and adding them together give

V2

cp = cpllixolltp = 375 (GnXo, Xo) = (Gnx,X) = 2GP, ,

2 max —=
lixll,=1 n3/2

Hence, ¢ = 2p*1GPn,p. On the other hand, for any § > 0, we can multiply (9.2) by

X0,/ T0sgn(xy ;) and use the Cauchy-Schwarz inequality to get

w5 V21 - 145
cplixolllp s =~z > (Guo);l%o, I sgnixo,)
i€ln]
v2 - ) G,
+8 nll2 145
=< nl/2 |||GnX0|“2|||X0|||2(1+5) < \/_ —rp |||XO|||2|||XO|H2(1+5)'

If now § satisfies 2(1 + §) < p, then Jensen’s inequality implies

+3 || ||2 146 ”G “2
cplixolilyss < V2= T2 Il lIxolly™ = v2=72.

Hence,

g3} < ———— LGl
0lllp+5 = \/EGPn,p nl/2

(9.3)

Since GP,, , converges to GP,, almost surely and |G, |l,/+/T converges to 2 almost surely,
it follows that

. 1
p = nll)rgo GP,, = nll)nolo max — (G, x,x),

p+b
p+s =

«/E/GPp. Our proof is then completed by noting that GP, = +/2 and GP, > GP. |

where the maximum is taken over all x € R™ satisfying that lixll, =1 and ||| x]||

We now proceed to verify the continuity of GP, on (2,00). For any 2 < p; <

Py < p3 < 00, set @ = (p, — p;)/(p3 —p;) € (0,1), which yields p, = (1 — 6)p; + 0p5.

From the Hélder inequality, |||x||[52 < |||X|||(1 O |||X|||19,€3. Note that if x € R" satisfies that
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On {p-Gaussian-Grothendieck Problem 49

lIxlll,, =1 and |||X|||§§ < GP,/GP,, then |||X|||§§ < (GP,/GP,,)". Consequently, if p,, p,, ps
also satisfy 2(1+p5 —p;) < p;, then by applying Lemma 9.2 withp = p, and § = p; —p;,

<li .
GPp, <limsup  max 7 (Gyx,X)
b2 < (a2 )
. 1 X )
= lim sup max 3/2< n ' >|||X|||p2
no 2= ( Sz ) 1, " 11,

GPoo

GP, \20/p2
(&) e

( GPZ 2(p2-p1)
GP,, P2

p2(P3—P1)
GP,, .
GPoo ) b2

This and Lemma 9.1 imply

2(po—
GP2 P2-p1)

p2(P3-P1)
0<GP, —GP,, < (<GPOO) ~1)GP

p2°
This clearly validates the continuity of GP, on (2, c0).

9.3 Case p = oo.

Note that GP,, < GPp for all p > 2. From Lemma 9.1, it suffices to show that
lirnp_)oo GP, < GP,.Foranye >0 and x € R" satisfying lixlll, =1, denote x7 = x;1(|x;| >
1 +¢) and X; = x;1(|x;| < 1 +¢). An application of the Holder inequality followed by the

Markov inequality yields

1 1-2/p 1 1-2/p
I3 < 3 (5 D 10xl = 1+0) = (2 D 1%l = 1+%)
ie[n] ie[n]
1 o\ 1-2/P 1
< (Goplxl) = s
(1+e)P (1+¢)P
Therefore,
1 1Gully o2 1G, Il
- G XS,X8 < 1 ntz XS < __"T"nlz
| =57 (Gux )| = I < ——
and
1 £ =€ ”Gn”2 £ =€ ”Gn”2
‘W<an X)) < me 2 llIx" MMl < Tt Pl T
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From (11.21), it follows that

: : : 1 & & £ € € €
plggo GP =plggo nlggomgﬁlggl W«G"X X°) + 2(G,x°, X°) + (G,X°, X°))
1

= lim lim max —7b>
p—00n—oo ||x||,=1 nd/

1+ ¢)2
< lim max u

< Jim max —m—(Gpx(1+6)7"x(1+e)7) < (146)°GPy.

Letting ¢ — 0+, we obtain that lim,, ,  GP, < GP,,. This completes our proof.

10 Bounding Ly (® via Free Energies

For 2 < p < ooand u > 0, recall L, , ,(¢) from (1.13) and that from Theorem 1.5, its
n-limit exists and is denoted by L, ,(¢). This section is a preparation for the proof
of Theorem 1.9. We establish upper and lower bounds for L, () in terms of two free
energies that we define now. Let ¢ > 0. For 8 > 0, define the free energy associated with

H,, , ; with ¢,-band constraint by

1
Fn,t,u,e B)=—— log

exp SH, , ,(x) dx,
Bn /XeR":llxl%e[us,u+s] e

where dx is the Lebesgue measure on R". Similarly, we shall also consider an analogous

version of F (8) with an additional box confinement, namely, for u'/? < M < oo and

n,tu,e

B > 0, define

1
Fn,t,u,M,s B)=— log

exp BH,, , ,(x) dx. (10.1)
Bn /XE[—M,M]":l|X|II§€[u—£,u+s] npit

The parameter 8 in the above two free energies is usually called the (inverse) tempera-

ture in statistical physics. The following proposition gives upper and lower bounds for
L, (D).

Proposition 10.1. Let2 <p < oco.Foranyu > 0andt > 0,

lim liminflim lim infEF, <L, (t) < lim li EF, - .
(Jim L inflm B, 1, (8) < Ly () < Jim HmSupBE, ¢ -2 (6)

Remark 10.2. We emphasize that the outer limit in the upper bound is along ¢ = 2.

To use these inequalities, the highly nontrivial part is to find the tight limits on both
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sides. In Section 11, we will show that the lower bound can be handled by a Parisi-
type variational formula similar to the one in Theorem 1.9. The upper bound will be
controlled by the so-called Guerra's replica symmetry breaking bound in Section 12.2.
Ultimately, we show that these match each other, leading to the desired formula in (1.22);

see Section 12.

For the rest of this section, we establish the proof of Proposition 10.1. Consider

a modified version of Ln'p,u(t) on a ¢,-band, namely, for ¢ > 0 and ¢t > O, define
H, , (%) G, x,X
Lypue®) = max LT LA max (% . tIIIXlllg)-
xeR™:|||x||I2elu—e,u-+tel n xeR™||x||3elu—sutel ¥ T

When ¢ is small, this quantity is essentially the same as L (). The following

(t) in terms of the free energies

n,p,u

lemma establishes upper and lower bounds for L, , ,, .

introduced above.

Lemma 10.3. Let2 <p <oo.Forany0 <u <+Mandt >0,

liminflim lim EF, ;4 .(8) < 181%1 linrgglf]EL (10.2)

B—oo &0 n—>00 n,p,u,e ().

In addition, there exist some constants C,x > 0 (depending on ¢, u) such that for any

B>0,0<e<l,andn>1,
1 2¢ —njc
EFy, ¢u,e(B) = ELy 51y e/ (D) — 6C+ 3 log - Ce . (10.3)

Proof. It is easy to see that F, ;,, /. (8) < L (t) + ' log 2M, which immediately

n,p,u,e
implies the upper bound (10.2). So, let us focus on the lower bound. Let 0 < ¢ < 1. Note
that we can choose ¥ > max(1/u, 1) sufficiently large such that for any x* satisfying

lIx*[IIZ — ul < &/x, we have

B(x*) :=x* + [—¢/k,e/x]" C (x e R": |||x]|3 — u| < &).
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Note that ¢/k < 1. For any x € B(x*), a direct computation using triangle inequalities
shows that

Hy, () — Hy ) (x%) = =17 V2Gllgllx — x* [l (1x* 15 + [1x 1) — t((llx — x* [, + I1x*1,)P — [1x*[15)
> —n' 2|1yl lllx — x* o (x5 + lixll)
—1
— tpnlllx — x*[ll, (lllx — x*|ll, + llx*[ll,)"
ne
= = (207216, Va1 + tp(1 + )P ), (104

where we have used the inequality (a + b)? — aP = f‘”b pxP~! < pb(a + b)P~! for any

a
a,b > 0 in the 2nd step above. From now on, we take x* as a maximizer of Hn,p,t on
{x e R": ||||X|||§ — u| < ¢/k}. By imitating the proof as that of (7.8), it can be verified that

there exist constants C,D > 0 such that
P(lllx*|ll, < D) = 1 — Ce™™C, (10.5)

From (11.21), (10.4), and (10.5), there exists a constant C(t, u) such that with probability

at least 1 — C'e=™/C’, we have for any x € B(x"),
ne
Hn,p,t(X) - Hn,p,t(X*) = —TC(t, u).

Let A be the event such that this inequality is valid. From the above inequality and
noting that Vol(B(x*)) = (2¢/«x)™, we have that

1
EFn,t,u,g (;3) = %E[log enﬂHn,p,t(X) d.X,' A:I

B(x*)
& 1 2¢
> E[Ln'p'u,g/,( (t),A] — ;C(t, u) + E log 7
& 1 2¢
=ELy ype/c® = E[Ly oy e (0); A°] = —Cltw) + i log —. (10.6)

To control E[Ln,p,uls/K(t);AC], we argue as follows. Recall that if x is an optimizer of
L,p@), then it must satisfy the 2nd inequality of (7.11). Using this and dropping the

negative term in Ly, (®) yield that

1

Jn

||Gn||2)1+2/(p—2)

IGallallxllf < ¢/ P2 (=2

Ly, <
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Here, applying the concentration Inequality (3.6) to ||G, [, and using (3.4) lead to
E(n~'/2|G,ll,)* < C for all k > 1. Thus, there exists C(t) independent of n such that

EL, ,(t)* < C(2), (10.7)
which implies that

[E[L ©; A°)| = (BLpp e (07) P22

n,p,u,e/k

< (L, ,(»?)?(C'e )% < /ey (ce )2,

The above inequality and (10.6) yield the 2nd assertion. |

Next, we show that Lypu(® and L (t) are asymptotically the same.

n,p,u,e

Lemma 10.4. Let2 < p < oo. For any ¢, u > 0, we have that almost surely,

lim 1im L, 0 (6) = 1im 1im B, () = Ly (0.

Proof. The 1st limit follows directly from the Gaussian concentration inequality (3.6)

as Ly p, 1,0 (0) is (u + &)n~1/2-Lipschitz in G, with respect to the || - [|z-norm. Thus, it

remains to prove the second equality. Write

L

v
npae® = max  max (=i (Gyx,x) - tvPIxIf),

vilv-ulze jx|j3=1\ 1/

u
Lypu(t) = max (W(an,x) —tup/2|||x|||§).

If x, is an optimizer to the inner optimization problem of L (t) associated with v,

then

n,p,u,e

p 1-p/2_.,-1/2 2 1-p/2_.,-1/2
tlix B < v P2a V26, Ll I3 = v P 2n Y216, 1,

since Ln,p,u,a(t) > 0. Consequently, for any 0 < ¢ < min(1, u),

Ly pue® <Ly (0 +e(m™ 3G, I, + 27 tp(u + )P/2 7! . ax llx, 1I15)

ul<e

<Ly +e(mV21Gylly + 27 pn VGl (u + )PP (u — ) TP/),
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By passing to limit, we obtain that lim,  ,limsup, L, ,,.(t) < L,,(®). Since
L
Ly pu(®) = Ly, (¢) and this completes our proof. |

obviously we also have Lypu® <L (t), it follows that lim,_, ;lim

n,p,u,e n—ootn,p,u,e ) =

To complete the proof of Proposition 10.1, the lower bound follows directly from
(10.2) and Lemma 11.10. As for the upper bound, it can be obtained by sending n — oo

and then ¢ = 72 — 0in (10.3) and using again Lemma 11.10.

11 Low-Temperature Limit of the Parisi Formula

By Proposition 10.1, the validity of Theorem 1.9 relies on showing that limﬂ_)oo

lim sup,,_,  EF,

ntup-2(B) and limy, | limg | lim, o liminf, | EF, . ./ .(B) are equal,

together with establishing the desired formula in (1.22). In this section, we shall focus

on handling the limit

Jim Tim Hm inf £, o (6). (11.1)

To this end, we shall need several Parisi-type variational formulas associated with a
variety of the free energies and the ground state energies. For the convenience of the
reader, we collect all of them together in Section 11.1, including those that will be used
later on. Our main result, Proposition 11.3, establishing a Parisi-type formula for (11.1),

is stated in Section 11.2 followed by its proof in the rest of this section.

11.1 Parisi PDEs and functionals

Fix u>0. Let .4}, be the collection of all positive measures y on [0, u] with fou y(s) ds < oo.
Recall that 4% C .4} is the collection of all positive measures on [0, u] with finitely
many atoms. Moreover, let .#,, denote the collection of probability measures on [0, ul,
and let ///l‘f C .#,, be the collection of probability measures on [0, u] with finitely many
atoms. For each A € R, let h, : R — R, be a continuous function.

For B8 < oo, we take (A, o) € R x j/[f or R x .#,, and consider the solution ®f,a to
the following PDE:

8,07 (5,%) = —(0,40 (5,2 + Ba(9)(3,0] ,(5,%)?), (s,%) €0, w) xR, (11.2)

0 (%) = h,(x).
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Here, @f/a may exist in the classical or weak sense (see Remarks 11.1 and 11.2 below)
depending on whether the measure « is atomic and on the regularity of the boundary

condition h, . The associated Parisi functional &5 on R x M2 or R x .4, is defined as
u
Py(h,a) = O} (0,0) — ru —/0 spa(s) ds, (11.3)

where «a(s) := «([0, s]) is the cumulative distribution function of the measure «.

In a similar manner, the functional (11.3) has a natural analogy in the case of
B = co. For (x,y) € R x 42 or R x .4, consider the (classical or weak) solution 0,,, to
the following PDE:

950; ., (5, X) = —(8,,0; (s, %) + y(s)(ax(H)A,V(s,X))z), (s,x) € 0,u) xR, (11.4)

@)“,V (u, X) = h)‘(X)l

where y(s) := y ([0, s]). Define the associated Parisi functional & on R x .4, or R x ,/Vud

as
P y) =0,,(0,0)—u —/ sy (s) ds. (11.5)
0

The different boundary conditions h, that we will use throughout this paper are
all dependent on a collection of functions (v}) ;. ycrx(0,00) defined as ! (x,7) = rx+ir? —
t|r|P for (x,7) € R x R. The following table collects the relevant cases of the Parisi PDEs

and functionals that will be needed for the rest of the paper.

Remark 11.1. Lemma B.1 implies that ff't(x) and ff(x) are bounded by C(1 + |x|¢t1)
for some 0 < a < 1 and C > 0. From these, when « € ///L‘j’ and y € </Vud, we can apply the
Hopf-Cole transformation (see Lemma B.2) to solve the above four PDEs in the classical

sense.

Remark 11.2. The functional &, here is of course the same as (1.21), defined in
the introduction. In Table 1, we define the functionals &, , ), and &, , on different
measure spaces .4, and </Vud, respectively, mainly due to technical purposes. Indeed,
the fact that ff’M is M-Lipschitz allows us to show that for any 0 < s; < u and
k>1, 8)’{‘kIJ§'yl)f'M(s, -) is also Lipschitz uniformly over all s € [0,5,], 2 € R, and y € %d.

Together with a compactness argument, this enables us to show the existence and
t,u,M

uniqueness of the weak solution W, y

for any y € .4,,. We refer the reader to check
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56 W.-K. Chen and A. Sen

TaBLE 1 Various Parisi functionals

B Measure space Boundary condition h;, PDE solution  Type  Parisi functional
< 00 o€ //1{} f (X) 1 logf POl X gy dDﬁ L u(s x) Classical P8.t.ul, o)

< 00 o€ My fﬂ tM(X) 1 logf Pl () g <I>ﬁ 0 UM(S,X) Weak P tum, )
=00 y € %d fx (x) = sup,er wk(r, X) \l’t u(s x)  Classical Prur,y)
=00 yeN f)f'M(X) = SUP,c[_pru @ (1, %) \J/t uM(s %)  Weak Prum O, y)

[18, 33] for details. It might seem plausible that one can also construct unique weak
solutions to lIJfI)‘f for arbitrary y € .#;, by similar lines of arguments in [18, 33]. However,
as the boundary condition f! is no longer Lipschitz (see Lemma B.1), this makes the
compactness argument in [18, 33] technically more tedious. As this part of the analysis
is not quite relevant to this work, we do not pursue this extension in this paper. For
the same reason, %, and &4, in Table 1 are also defined over different measure
spaces .#, and .#Z.

11.2 Parisi-type formula

Recall from [50] that lim, o lim Fy, ¢ wu.(B) exists and it can be expressed as the

n—oo
following Paris-type formula associated with the Parisi functional given in the 2nd row

of Table 1:

£1£)1r}1m FyrumeB) = (m)ielﬂlg< Py tum o). (11.6)

The following proposition shows that the variational problem in (11.6) converges to the
Parisi-type formula associated with the functional &, , ;, (refer to the 4th row of Table 1)

and gives the existence of a minimizer along with quantitative controls uniformly in M.

Proposition 11.3. Let2 < p < oo and t, u > 0. We have that

lim lim lim F, = lim inf P AQ) = inf P A v). (11.7
ﬂLOO Sll,o nl tuMg('B) ﬂLOO()L ) eRx. M, ﬁ,t,u,M( a) ()L,)/)leRXL/%L t,u,M( V) ( )
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On {p-Gaussian-Grothendieck Problem 57

In addition, there exists a constant C > 0 depending only on t,u such that for any

M > 2ul/?, there exists some (1y;, v3y) € R x 4, satisfying

(X,V)IGRXJVLL t,u,M( V) t,u,M( M )/M) ( )
such that
u
0

Remark 11.4. Though we do not need this here, it can be checked by the same
argument in Lemma 10.3 that lim,,_, MAXy 1y pgyesx ) =u Hn p,e(X)/ 1 is equal to the left-
hand side of (11.7) and the right-hand side of (11.7) established a Parisi-type formula for

this ground state energy.

Remark 11.5. The assertion (11.7) is indeed a special case of [19, Theorem 5], but it
does not include the existence of a minimizer and the bound (11.9), which are the most

crucial results we need in the proof of Theorem 1.9.
The rest of this section is devoted to establishing Proposition 11.3.

11.3 Properties of the Parisi PDEs

We state a number of fundamental properties for <I>f:;’u’M and \Ili',)Lf'M that will be of great
use throughout this section. Their proofs will be omitted as they follow directly from
the same arguments from [3, 34] with no essential changes. First of all, their regularities

are summarized in the following proposition.

Proposition 11.6 (Regularity). Let o € .#, and y € .#,,. For any s € [0, u), QDf"‘i’”’M(s, J)
and \lfi'll}f'M (s,-) are twice partially differentiable in x. Their 1st partial derivatives in

x are uniformly bounded over [0, u) x R by M. In addition, BXQf,ﬁ'u'M(s, -) is uniformly

t,u,M

Lipschitz over all s € [0, ul, while for any 0 < uy < u, 8x‘yx,y

(s,-) is also uniformly
Lipschitz over all s € [0, ug].

B.tuM
Ao

equation, induced by a linear problem of diffusion control. In this case, they can

Note that ® and \IJ;']If'M are special cases of the Hamilton—Jacobi-Bellman

be expressed in terms of stochastic optimal control problems. More precisely, let

0 < u < +/M and 2™ be the collection of all progressively measurable processes
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58 W.-K. Chen and A. Sen

vV = (v(S))g<s<y With respect to a standard Brownian motion W = (W(s))p<s<, and

satisfying supg.s,, [V(s)| < M.

Proposition 11.7 (Stochastic optimal control representation). We have

M (0,0) = sup E[fM(2 /O Ba(9)v(s) ds + V2ZW (W) - /0 Ba(9)v(s)?ds|, (11.10

vegM

wiM0,0) = sup E[£M(2 /0 y(©V(s) ds + V2W (W) - /0 yvsds| a1

vegM

Here, the 1st supremum is achievable by v(s) = 8X<I>fl';'u'M(s,X(s)) and the 2nd supremum
is attained by v(s) = BX\IIZ';'M(S,X/(S)), where X = (X(5))g<s<y, and X' = (X'(5))g<s<, are
the strong solutions to the following SDEs:

dX(s) = 2Ba(s)8, @L'v M (s, X (s))ds + vV2dW(s),

dX'(s) = 2y (5)0, W% (s, X'(5))ds + v/ 2dW(s)

for 0 < s < u with X(0) = X’(0) = 0.

Next, note that the boundary condition ff M and ff’M are Lipschitz and convex
in (1, x) € R?. Using this together with Proposition 11.7, it can be shown that these

properties propagate throughout the entire solutions.

Proposition 11.8 (Lipschitiz property and convexity). (A, «a) +— foi’u’M(O,O) and

A, y) — \Di'z'M(O,O) are Lipschitz and convex respectively with respect to the norms

u u
A — 2| +/ le(s) —a’(s)]ds and |r — L] +/ ly(s) — y'(s)| ds. (11.12)
0 0
11.4 Optimality of the Parisi functional
We investigate some properties of the variational formula of %, .

Lemma 11.9. Let t,u > 0. For any M > u'/? and g > 0, the functional #, , s has a

unique minimizer in R x .Z,,.
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On {p-Gaussian-Grothendieck Problem 59

triP

Proof. Let vt'ﬁ,M(dr) =e "drand A = f[_M — JAlULEM] dvt,ﬂ,M(r). Note that

1
A tM(X) > AU+ — log / exp B(rx + A(r* — w)) dv, g 3 (1) + 5 log A

M,—Jululyu,M]

> Au+ ! / (rx +1(r* —w) dv (r) + ! log A
- A Ji—m,— yaolya,m LpM B
A 1
:Au+—/ (r? —wdv, 4, () + = log A,
A Ji-M,~yaulyu,m) LeM p o8
where the 2nd inequality used Jensen's inequality. Since the right-hand side of this

inequality is independent of x, it follows from (11.10) that <I>‘3 tuM(O,O) is bounded by

this lower bound, and hence,

A
1nf BzﬂtuM(k a) > —

u
/ (rz—u)dvtﬂM(r)—i—llogA—/ S/Sdsk_—>)oo 0.
wetl, A Ji-m,~ Jauly/u,m) i B 0

Similarly, let A’ = f[_ﬁ,ﬁ] dvt'ﬁ'M(r). We also have

A tM(X) =AU+ = log i/ exp B(rx + G w)) dv; g (1) + 1 log A’
B [—VuJ/ul " B
1 1
> AU —|— — (rx + Ar? — u)) dv; g () + — log A’
(v, /ul - P
)\u+ * r*—uwd r) + 1 log A’
= - - v — -
I Vaval t.p.M B g

Again, since this lower bound is independent of x, it follows that by using (11.10),

A 1

inf & (ka)z—/ (r* —uw) dv (r)—i——logA’—/ s,Bds 5% .
aed B.tuM A/ (Vi t.8.M B 0

In addition, note that from Proposition 11.8, A + inf,. , %4, »(}, @) is continuous.

From these, we see that there exists some A, € R such that

inf 2 A, inf 1nf P A ) = 1nf P An,
(A @)eERx.Ay ﬂ,t,u,M( o) = reR we s, 5tUM( o) = ﬂtuM( 0 o).

Finally, by using Proposition 11.8 and noting that .#,, is a compact space with respect
to the metric fou la(s) —a’(s)| ds, we see that P tumror ) 18 minimized by some oy € .#,,.

Hence, (A, o) is a minimizer of &y, , 1. This completes our proof. |
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60 W.-K. Chen and A. Sen

For the rest of this section, we denote the minimizer of %, 1 by (Ayr 5,051 5)-
In next two lemmas, we show that Bay, 4 is uniformly integrable and 1, 4 is uniformly
bounded in (M, B).

Lemma 11.10. Lett, u > 0. For any M > u!'/? and 8 > 0, we have

/ sBoy p(s)ds < f (11.13)

Proof. Our proof consists of three major steps. First of all, we introduce an auxiliary

free energy. For b > 0, define

1 b
Fob) = —log exp (777 (Gyx, %) — tlxI}) dx

xe[—M,MI™:||Ix||Z€lu—s,u+el

Here, to keep the notation light, we ignore the dependence on 8,t,u, M, and ¢. In a
similar manner as (11.6), the general result in [50] ensures that this free energy can

also be expressed as a similar Parisi-type formula,
lim lim F, (b) = inf P, (X, 11.14
£}0 n—>o0 n( ) (A a)eRx.#y b( ) ( )
for

u
Py, a) 1= Y (0,0) — Au — bz/ sa(s) ds,
0

where @ljla (0,0) is defined through the weak solution (see [34]) to the following PDE:
BSdD?\'a(s,X) —b2(8 <I>M(s x) 4 a(s) (9 <I>M(s X)) ) (11.15)

for (s, x) € [0, u]l x R with boundary condition

M
@b (u,x) =f,(x) = log/ exp(sx + as? — Bt|s|P) ds
—-M

Note that F, ; , 1, (b) = b™'F, (b), and consequently, (11.26) is equal to (11.6) modulo a
q)ﬂ Jtu,M
A

multiplicative factor b~!. Here, it can be checked that the two solutions, @fla and
for b = B, are essentially the same up to a transformation,

P M (s, px) = b1 (5, %), (5,%) € 10,u] xR,
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On {p-Gaussian-Grothendieck Problem 61

and therefore,
Py tum ) =b1 Py (br, @), Y1, @) € R x A, (11.16)

From these, Proposition 11.8 and Lemma 11.9, we see that for ever b > 0, &, is convex
with respect to the metric (11.12) and it has a minimizer, (A, o), satisfying (A;, ) =
O™ Ay g )-

Next, we continue to bound b fou say(s) ds through the b-derivative of the Parisi
formula in (11.26). First, it can be shown that dbgla(0,0) also admits an analogous
stochastic optimal control representation as that for <bfiuM in Proposition 11.7. More

precisely, let W and M be defined as in Proposition 11.7. We can write

@ (0,0) = sup E[fA (2 /Ou b2a(s)v(s) ds + ﬁbW(u)) - /Ou b2a(s)v(s)>2 ds].

vegM

Here, the optimal process attaining the maximum is given by v, ,(s) = 8X®IA’ o (8: X, 45 (8)),

where X; , is the strong solution to the following SDE:
dX; ,(s) = 2b%a(s)8, DY (5, X; o, (5))ds + bv/2dW(s), 0 <s <u, and X, ,(0) =0.

Using this representation, the same computation as [4, Proposition 4] yields that for any
),

u
id)lk"a(0,0) = 2b(u]EVA,a(u)2 + UEd, %, (u, X, o, (u) — / sEvm(s)Za(ds)). (11.17)
0

dab

To handle this derivative, note that &, is also a convex functional. It can be argued (see,
e.g., [16]) that the directional derivative of &, at (1, ;) can be explicitly computed. In

particular, the optimality of (A, «;) ensures that
2
E(3, 9%, o (5 Xy 0, ()" =Ev,, 4, (9% =s (11.18)
for any point s in the support of «; and

Ed, @, WX, (W) = u. (11.19)
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From (11.19) and noting that
b 2 b b 2
0 PR o (W, X) = 0 f5 (X) = 3,5, (%) — (91, (0))" = 8, @7, (u, %) — (0,P7 , (u, )",
it follows that
Ed @2 (WX, . W) =E3,0 (uX, ,w)—Ev, , (u)?
=u—Ev,, (w)?.

Plugging this equation and (11.18) into (12.9) leads to

icpb (0 0)( =2b( 2—/us2a (ds)) =4b/usa (s)ds
db Ak (X, a)=(Ap,otp) 0 b 0 b !

where the last equality used the integration by parts. As a result, we arrive at

d %(A,a)‘

u u u
— = 4b/ say(s) ds — 2b/ soy(s)ds = Zb/ say(s)ds, (11.20)
db 0 0 0

(A0)=(Ap,p)

Now, from (11.26), we have that forany 0 < b’ < b < oo,

: : Fn(b)_Fn(b/) _ 1 . ‘
AT oy bob ((A,a)le?&i/[u Iy ) (A,a)lelﬁfxﬁu Py, Ot))
1
ER N (P (hp, ) — Py (M, 1)),

which combining with the convexity of F, (b) and (11.20), after sending b’ 1 b,

u

lim lim inf Fj,(b) > 2b |  sa(s) ds. (11.21)
0

el0 n—>oo
In the last step, note that a direct computation gives

(Gpx, x) (G,x,x) _ (u+e)E|G,l,
W%SE SUb nZ =3 iz’

xe[—M,MI":||Ix||Z€lu—s,u+el

(11.22)

Fl.(b) = E<

where (-); is the Gibbs expectation associated with the partition function,

b
exp (17 Gy, ) — pilxI}) dx.
/)fe[MrM]:IIXII§€[ue,u+s] nt/2°" p
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On {p-Gaussian-Grothendieck Problem 63

It follows from (11.21), (12.5), and the convexity of F,, that
u
2b/ say(s) ds < lim lim inf F), (b) < v/2u.
0 gi/O n—oo

To translate this inequality back to that for «,, 4, we recall that o}, = oy 4 for b = B. This
completes our proof of (11.13). |

Lemma 11.11. Let t,u > 0. There exists a constant K > 0 depending only on ¢, u such
that
1/2

|Ampl <K forany B>M>2u

Proof. Since ff't’M is convex, we can take v = 0 in (11.10) and then apply Jensen's

inequality to get
@) M0,0) = B M (V2w w) = £ 0). (11.23)

Fix any M > 2u!/?. For 0 < D < M, we have

(V)

v

1 D Ar2 P 1 1 D Ar2 14 1
—log/ PO =) qp > —log—/ POt qr + — log 2D
B D B 2D J-p B

v

1 /D(xr2 t|r|p)dr+110 2D
2D | p p o8

where the last inequality used Jensen's inequality. Now, from (B5),

1 (P, t [P log2D v
—u) — p _
P tum (@) ZA(ZD /_Dr dr u) /_Dlrl dr+ 5 /0 sBa(s) ds,

and therefore, from Lemma 11.10,

L7 t [P log2D u
— ] v p _ log2D
25 /,Dr dr—u) < inf g ¢ (i) + 55 [D P dr = 255

Now, take A = A 5. If A7 5 > 0, we set D = J/u and if Ayp <0, setD = 2./u so that

2D)! f?p r? dr — u shares the same sign with Ay g- Therefore,

1 t [P log2D u
A | < (inf@ (L) + —/ PP dr — ¥ —)
A= D 2y | Ve P 20 ) _p 52
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Finally, from (10.7),

. S . log2M log 2M
f A ) =lim lim EF, <1 EL,, ,(t <CcHVF4+ ——.

inf P gupa () = U o BFy p a6 (B) = Hmsup BLy () + —5— = €O + —

These yvield the desired bound as long as g > M > 2ul/?. [ |

11.5 Proof of Proposition 11.3

Recall that (Ay g, @ 5) is the unique minimizer of &4, ,, 3. From Lemma 11.10 and the

monotinicity of Boy, 5(8) in s,

u u/2 u
/0 ﬂC(M,lB(S) ds = /0 ﬂaM,ﬂ(s) ds + //2 ,BQM,/g(s) ds

u u
< 2/ Bogy p(s)d < 2- E/ sPagy p(s) ds < 24/2. (11.24)
u/2 ' U Jus2 '

Define a positive measure vy, 4z on [0, ul by vy 4(A) = Ja Boy 5 (s) ds. From the inequality
(B12) and noting that apy,p(S) is nondecreasing in s, we see that for any 0 < r < u,
SUPg. o sefo,r] Bur,p(s) < oo and hence, we can pass to a subsequence (B,,),-; such that
(Broagp,)n=1 converges to some yy ., € -4, almost everywhere on [0, u). In addition,
we can assume that along the same subsequence, Ly, = lim,,_,  [o' Boy g, (S) ds exists.
Consequently, we conclude that V5, CONVErges vaguely on [0, u] to some Vit 007 defined
as vy oo (A) = [4 Varoo(8) ds + T'yy o8, where 0 < Ty =Ly — [0 var.00(5) ds < 0o. On the
other hand, Lemma 11.11 also allows us to pass to a subsequence of Ay 4, along which
it is convergent. From now on, without loss of generality, we assume that these are
convergent without passing to a subsequence. To proceed, from the above discussion,
combined with Lemma 11.11 and Inequality (B12), we note that there exists a constant

K depending only on t, u such that for any M > 2u!/?,

u
max(|)LM,OQ|,I‘ZVLOO,/0 YM,00(8) ds, sup (u— s)yM,OO(s)) <K. (11.25)

sel0,u)

Lemma 11.12. For any 0 < u < M?, we have that

AM,B /M, B AM VM, 00

liﬂminfq)ﬂ't'u'M 0,0) > WM (@ @),
—00

where Ay = Ay oo + Tp oo
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Proof. Recall the representations in Proposition 11.7. Consider any progressively mea-

surable process v € @ﬂ” on [0, u], which is left-continuous at u, that is, lim,_,,,_ v(s) =
v(u). Note that max g, [v(s)| < M. From the vague convergence of vy, 5 to vy, ., on [0, u],

we have that

B.tuM
AM,B /M, B

liminf ® 0,0)
B—o00

= liﬂning[ffﬁt,}fw (2 /0 v(s)Bay,p(5) d5+~/§W(u)) - /0 v(s)?Bagy 4(5) ds]
= E[ &M (2/ V(S)UM'OO(dS) + \/EW(U,))] —/ V(S)va'oo(ds)]. (11.26)
0 0

AM,B

From the definition of vy, ., the above lower bound can be written as

E[ffl’fw (2/0 V(S)Vpr oo (dS) + ﬁW(u)) - /0 V(S)ZvMyoo(ds)iI
- E[ff}"flwm (2 / V()Y 00 (5) dS + 2v(W) Ty o + ﬁw(u)) (11.27)
' 0

u
_ /0 V($)% a1 00 (5) ds — FMVOOV(u)Z].
On the other hand, recall from (11.11),

v (0,0) = sup E[ff}'é” (2 /0 V()1 00(5) ds+x/§W(u)) - /0 V()% Va1 00 (5) ds].

vePM

(11.28)

For 0 < s < u, denote by r*(s) € [-M, M] the largest (random) maximizer in the definition
of

M (2 / OYN() dl—i—x/EW(s)).
0

AM

Using the compactness of [-M,M], we can pick a sequence (s;) < (0,u) with

lim;_, s, = u such that r*(u) :=lim;_,  r*(s;) is a maximizer to

.M (2 / v Ya oo D) dl+«/§W(u)).
0

AM
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Next, fix an arbitrary v € 2M. Define a progressively measurable process
Vi € @54 bY

Vi(s) = V()1 g, (S) + r*(sk)l[Sk'u] (s).

Note that v is left-continuous at u. Consequently, we can plug this v, into (11.26) and
(11.27) to obtain that

liminf ®%“M (0,0)

Boo  MMBOMB

> IE[ LM (2/ ‘ V(S)¥ar,00(5) ds + ZF*(Sk)/ VM,00(8) dS + 27" (sp) Ty o0 + ﬁW(u))
0 Sk

)LM,oc

u

- / N V()2 Va1 00 (8) ds — T (s3)? /
0

Vato0(5) 45 = T (5 Ty |
Sk

Sending k — oo and noting that fou YM 00 (S) ds < oo imply that

u
lim inf Pt (g 0y > E[ff}ﬁf’m (2 /0 V() Va1 00 (8) dS + 27 (W) Ty o + «/EW(u))

AM,B/OM,B

—/ v(s)zme(s)ds—r*(u)erloo]. (11.29)
0

Here, from the definition of f/\t;j/[oo,

u
fxt},f‘,loo (2/ V(S)Var,00(8) ds + 27 W)y o, + «/EW(u))
' 0
u
= (2 / V() Vp,00(8) AS + 27" (W) gy o + ﬁW(u))r*w) + hag oo (W =t (W) P
0
u
= (2 / V() Vat,00(5) 4 + V2ZW(W) ) () + (A0 + 2Tag.00) 7 @2 = EF* WP,
0
Plugging this lower bound into the right-hand side of (12.6) yields that

. . Jtu,M
lim inf o), (0,0

> E[(z / V($)Va1.00 (dS) + ﬁW(u))r*(u) + (Ao + Ta o) T ()2
0
P - / V2 3100(5) ]
0

- E[ff}'ﬁ/l (2 /0 V() Va1 o0 (8) ds + «/EW(u)) - /0 V()2 Va1. 00 (5) ds].

220z AINP 1.0 uo Jasn sanin uim] ‘ejossuuly Jo AjsioAun Aq €26S219/1 L EGBUI/UIWI/EE0 L 0 | /I0P/3]01MB-80UBAPE/UIWI/WOD dNO"dIWapeI.//:sd)y Wol) PaPEOjUMO(]



On {p-Gaussian-Grothendieck Problem 67

Since this is valid for all v € 2, taking supremum over this set completes our proof by
using (11.28). |

We now proceed to establish the proof of Proposition 11.3. Assume that y € .4,
satisfies y(u—) < oo and XA € R. Define ag(s) = ,B*Iy(s)l[olu) () + 1y, (s). Here, ag € M, as

long as B is large enough. Since

LM < fiM 0 + 7 log 2M,

we have

Jim oM (0,0) = lim sup E[ f't'M(z / v($)y (s) ds+ﬁW(u)) _ / v($)2y(s) ds]
— 00 ! 0

N
X yegM 0

< sup IE[ LM (2 /0 v(s)y (s) ds+«/§W(u)) - /0 v(s)2y(s) ds].

vegM

Also note [y sBag(s) ds = [o' sy (s) ds. From these,

RSP i, Bt G = P ).

The continuity of &, ,, 5, in Proposition 11.8 then implies that

lim su inf P ro) < inf P ).
ﬂeoop(K,a)eRx.///u o )_(x,y)eRx% tunm . Y)

To prove the reverse inequality, we use Lemma 11.12 to obtain

liﬁniggf N a)ielﬂlafx P Pp tumi ) = 1iﬁlggolf P tum g A, p)

u
> Wi (0,0) — Ay oot — / SV 00 (AS)
0

AM VM, 00

u
= ‘I’iﬁly‘f[m 0,0) = Apyu _/0 SYM,00(8) AS = P4 i (Aags Vi, 00)-

Let ¥ := ¥um oo- Combining this lower bound with the upper bound obtained above, we

deduce

lim inf inf P Ao) = inf P rY)=H A, ,
B—00 (A a)eRx.4y ot (e @) (Ay)ERx.A, (oY) g V)
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which gives (11.8). Consequently, we have (11.7) by using (11.6). Finally, (B11) and the

fact Ayr = App o0 + I'yr oo validate (11.9). This completes our proof.

12 Proof of Theorem 1.9

We present the proof of Theorem 1.9 in this section. With the help of (1.15), the assertion
(1.23) follows immediately from (1.22), so we only need to establish (1.22). Our argument
consists of matching the upper and lower bounds.

12.1 Lower bound

We verify that

Lp'u(t) > inf :@t'u()», y).
(hy)eRx A

From Propositions 10.1 and 11.3, it remains to show that

limsup inf 2, . u(,y)=> inf 2, (L p). (12.1)
M—oo (Wy)eRxAy y)eRx A2

Our argument relies on a stochastic optimal control representation for \Ilil}f (0,0) in the

same spirit as that of Proposition 11.7, whose proof is deferred to the appendix.

Proposition 12.1. Let (A,y) € R x JVud. There exist a probability space (2,P, %), a
filtration (#)g<s<y, @ continuous adapted process X = (X(s))g<5<,, and a standard
Brownian motion W = (W(s))g<s<, such that together they form a weak solution to
the following SDE:

dX(s) = 2y ()3, W} (s, X(s))ds + V2dW(s), 0 <5 < u, X(0) = 0. (12.2)

Furthermore, we have

Wit (0,0) = sup E[ o (2/u v($)y(s)ds + «/EW(u)) — /u v($)2y (s) ds], (12.3)
0 0

vegy,

where &, is the collection of all progressively measurable processes v = (v(5))g<s<y
with respect to the filtration (F)y_s.,, with E [ [v(s)|* ds < co. Here, the supremum is
attained by the process v € 9, defined by v(s) = 3X‘I'§',;L (5,X(s)) forO<s<u.
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On {p-Gaussian-Grothendieck Problem 69

Remark 12.2. Recall from Proposition 11.6 that E)X\Ifi"l}f'M(s,o) and axcbf’ﬁ'u'M(s, ) are
uniformly Lipschitz over all x € [0, u). This ensures the existence of the strong solutions
of X and X’ in Proposition 11.7. In (12.2), 8X\11i',;‘ (s,-) is not Lipschitz, but it can be shown
from the Hopf-Cole transformation (1.20) that it is of moderate growth, namely there
exists some 0 < a < 1 such that |8X\IJ§',’;(S,X)| < C(1 + |x|%) for any (s,x) € ([0, ul x R) \
{(u,0)} (see Lemma B.3), where C > 0 depends on y. Hence,

|0, W% (s, )| < 2C(1 + [x]), ¥(s,%) € (0, u] x R) \ {(w, 0)}.
This ensures the existence of the weak solution of (12.2); see [35, Proposition 5.3.6].

Additionally, from this upper bound, it is a standard application of the Gronwall
inequality (see, e.g., [35, Problem 5.3.15]) that

E max 1X(s)[% < 4u(C2 + 1)e*°C, ¢, = 2y (u)C.

However, this upper bound is not good enough for us since in the Parisi formula we take

infimum over all y and this bound might diverge.

The following technical lemma controls E|X(u)|? uniformly over bounded A and
Jo v (s)ds.

Lemma 12.3. Assume that ¢, u > 0. There exists a nonnegative continuous function K
on (2,00) x (0,00)% x R x [0,00) — [0, c0) such that for any (1, y) € R x %d, we have that

I[£|X(u)|2 §K(p,t,u,k,/ y(S) ds).
0

Proof. From (B2),

2\1/(p—1) - 2(A[\ 1/ (0-2)
vrtexw) = (7)) x@Ye 4 (S5 xw)
’ t t

(12.4)

2\2/(p-1) 1), (2A\2 @D

+(3) @+ (S25)T T,
Note that the assumption p > 2 ensures that
1 2
max(1+ ——, ——) <2. (12.5)
p—1p-1
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Using Jensen's inequality yields
EWI%(u, X (w) < K (EX@?) 2772070 4 mxw?) ! + Exw?) /P +1) (12.6)

for

2\ 1/(@-1) 2|1\ 1/(®@—2) 2\ 2/(p-1) 2|\ 2/(@—-2)
K1:=(z) +(T) +(z) '“*(T) Il

Let v(s) := BX\Ili’jf (5,X(s)) and L := fou y(s)v(s)ds. Since
EIX(w)[* < 16(EL® + E[W(w)|?) = 16(EL* + u),

it follows that by using the trivial bound (x + y)¢ < 29(x% + y%) for all a,x,y > 0,
(EIX(w)[?)* < 32%(EL?)* + 32%u®. From this and (12.6),

EWS™(u, X (w) < K, (BL2) V#2070 4 (822) 12 4 (mLD)VP7D 1), (12.7)
where K, depends on t, u, p, A. By comparing the representation (12.3) of \IJi";f (0,0) with
the optimal control process v(s) = 8X\IJ£'; (s, X(s)) against the zero control process, we
obtain that

BUL X W)~ [y @BV ds = w00 = B (VW) 2

which implies that, by the Cauchy-Schwarz inequality,

EL?

t,u “ 2
EW/Y (u, X (u)) > /0 y(9)Ev(s)? ds > —fo NEPP

From this and (12.7), we arrive at
u
EL? <K, (/ y(s) ds)((ELZ)l/z“/Z(P*l) + (E22)"2 + (EL) VPV 4 1),
0

From (12.5), 1/241/2(p—1) and 1/(p—1) are strictly less than 1. Now, if EL? > 1, dividing
(EL?)% on the both sides of the above inequality deduces that

u
(E2?)' < 4K, /O v (s)ds
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for § :==max(1/2+1/2(p — 1), 1/(p — 1)). Hence, we arrive at the bound,
u 1/(1-9)
EL? <K, := max(1, (4K2/ y(s) ds) )
0

Our proof then follows by using E|X(u)|? < 16(EL? + u). [ |

We now establish (12.7). Recall the optimizer (iy;, 1) of &, from
Proposition 11.3. Note that from the continuity of &, , ,;, in Proposition 11.8, we can
approximate %, , 1(Ayr, vyy) by considering &, |, (A, v) fory € ;3 and by letting y to
be as close as we want to y;; under the norm fou ly (s) — ypr(s)| ds. Hence, without loss of
generality, we may assume that y;; € ,/Vud. Recall from (11.9) that A;; and fou vy ds are
bounded by a constant C independent of M.

As p > 2, in the definition of f}, the term t|r|P dominates the linear term xr and

the quadratic term Ar2. So, for any L > 0, there exists some M; > 0 such that
flx) =fiMx), forall x| <L,|A <C,M>M,.
Hence, as long as M > M;, we can write that for any x € R,

FLe0 = FM 01 yary + FL O yany < 700 + L0y

Let X, be the stochastic process X defined in Proposition 12.1 associated with y = y,.
From this inequality, letting v, (s) := 9 lI/LZ VM(s,XM(s)), and using Propositions 11.7
and 12.1, we have

(0,0) =B (u, Xpp(w)) — /0 Yu(HEvy,(s)? ds

)»M yM

(12.8)
\IltuM OO—}—IE\D u, X, (u)l
0,0 sy W XU 1 wy> 1y -

To handle the 2nd term, we need some moment controls. Note that p > 2 implies

From (12.4) and Lemma 12.3, we can apply Jensen’s inequality along with the bounds
Ayl < Cand [y, ds < C to get

[ &
2 —1

E[wi  (w, Xy w)|* < K((ElXy w)] )%( 1) + (BIXy(w)?)? + (EIXy (w)|?)PT +1) <K,

KM YM
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where K and K’ are constants depending only on p,t,u. On the other hand, from the

Markov inequality and Lemma 12.3,

ElXyWwl* K’
P(1Xy (W > L) < =5 < 77

where again K” depends only on p,t, u. Applying the Hélder inequality to (12.8) and

using the above two inequalities yield that

(0,0) < WM (©,0) + (E|Wh*  (u, X3 w)|*)/ P(1Xy,(w)] > )¢

)LM YM AM VM AM oYM
K/l/é“K//l/C
t,u,M
\IJ)LM yM(OI O) + Lz/;/ ’

where ¢’ is the Holder conjugate exponent of ¢. As a result, for any M > M;,

inf 2, ,(,y) < PO var)
(hy)eRx A2

K/l/ZK//l/é'/ K/l/gK//l/g/

— t,u,M( M VM)+ LZ/; ()L V)ERx A t,u,M( y)—‘f_ Lz/g

Since this is valid for any L > 0 and K’,K” are independent of L, sending M — oo and

then L — oo completes the proof of (12.7).

12.2 Upper bound

Next, we verify that

L,, ()< inf 2,,0,7). (12.9)
1eR,ye N3

From Proposition 10.1, we have seen that

L,,@) < 11m lim sup EF,, ntu,p2(B)- (12.10)

B> n-oco

To control the right-hand side, recall Py eu ) for (A, a) € R x ///l‘f from Table 1. The
replica symmetry breaking bound, due to Guerra (see [29] and [50]), states that for any
B>0,¢6>0,and (A, a) € R x ,///,jl, we have that

EF, 0 0,:(B) < Pp 1 u(h ) + Cope, (12.11)
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where C, > 0 is a universal constant independent of n, 8, and . Recall ff't(x) and
f)f(X) from Table 1. To relate ﬁﬂ,t,u(k,a) to &, (A, y), fix (A7) € R x %d, and let
a(s) = ﬂ‘ly(s)l[oyu)(s) + 1, (s). Note that o € ///l‘} as long as B is large enough. For

any 0 < § < t, since

L[ ePrxHA = DIrP) =BSIP gy .
Flx) = = log J-oo + —log e PP qr
* B [So e PP dr B —o0

5 1 > P
<f (X)+Elog/ e PIP qr
—00
and [ e PP dr = (B5)~1/P [ e~s” ds, it can be argued by using the Hopf-Cole

transformation in Lemma B.2 iteratively that

1 1 o
of"(0,0) < W) **(0,0) — — log B8 + — log / e s ds.
' ' pp B —0

Note fou spa(s)ds = fou sy(s)ds. From (12.10) and (12.11), after sending B to infinity,
Lp'u(t) <P suay). Finally, using (B12), (B14), and the dominated convergence theorem
yields limg o 2,5, (A, v) = &, y) and, consequently, L, ,(t) < &, y). Taking

infimum in this inequality validates (12.9).

13 Open Questions

In this section, we mention a few open problems and further directions.

1. Compute the order and the limiting distribution of the fluctuation of the
¢,-Grothendieck problem. The asymptotic fluctuation for p = 2 (the largest
eigenvalue of the GOE) is known to follow the Tracy-Widom distribution with
the usual n~1/8 scaling [66, 67]. The proof of Theorem 1.1 suggests that the
limiting fluctuation in the case p = 1 could possibly be Gumbel. For the
case 2 < p < oo, since L, ,(?) is essentially a SK model with ¢, external
field, it seems reasonable to believe that the limiting fluctuation of L, ,, is
Gaussian (see [17]) and in view of (8.2), Gn'p should also be Gaussian up
to a transformation. When p = oo, the ¢,-Grothendieck problem becomes
the ground state energy of the SK model and the numerical studies, see,
for example, [49], indicate that the limiting fluctuation should follow the
Gumbel distribution, even though a rigorous proof remains elusive. We do

not have a prediction in the case 1 < p < 2. To analyze this case, one
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would naturally use the fact that the global optimizer lies close to one of
the approximate optimizers in &, described in (1.7). However, it may be
possible that determining the limiting distribution of fluctuation requires
finer approximation for the global optimizer (with better error bound).

. For the ¢,-Grothendieck problem for 2 < p < oo, show that with high
probability, there exist exponentially many near optimizers that are nearly
mutually orthogonal to each other.

. For the ¢,-Grothendieck problem for 2 < p < oo, devise a polynomial-time
algorithm that outputs an approximate optimizer with high probability. For
p = oo (SK model), [24, 44] used the approximate message passing algorithm
to find a near ground state in polynomial time with high probability (see also
[62]).

. Improve the delocalization bound (1.17) for 2 < p < oo. In this case, we
expect that an optimizer x, in the unit Ep—ball should satisfy |x,ll, =
O((logn)’n~1/P) for some constant C > 0 with high probability.

Study the Zp—Grothendieck problem for random i.i.d. matrices with more
general entry distribution (e.g., with subgaussian distribution). Do we have
universality if 2 < p < 00?

. Find the limit of the operator norm 1Grllp—q forall 1 < p,q < oco. In view of
Proposition 3.4, this problem is yet to be resolved for pairs (p, q) satisfying
(p,q) € (1,00] x [1,00) and p(q,p*) = p(p*, q), which is the set of pairs
satisfying that

@) (p,q) € (1,2] x [2,00) with g = p* or (ii) (p,q) € [2,00] x [1,2].

A special case of (i) and (ii) is when 1 < p < oo and q = p*, which corresponds
to the p-to-p* norm and it can be expressed as a bipartite ¢,-Grothendieck

problem via

G . = max G, x,V).

1Gnllp—p x,yeR”:nxnpsl,nyupsl< nX:¥)
For1l < p < 2, an argument similar to the one presented in Theorem 1.2 might
be useful to find the limit of Gy llp—s p+- FoOr p = 00, the limit of 1Gpllps e =
G, lloo1 is known as the ground state energy of the bipartite SK model
and is conjectured to admit a minmax-type Parisi formula (see [7, 46]). For

2 < p < oo, we expect that the same formulation should still be valid.
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Remark 13.1. In a recent work, Dhara—Mukherjee-Ramanan [22] studied
the p-to-g-norm for nxn symmetric random matrix A,, with i.i.d. nonnegative
entries, including the adjacency matrices of Erdo6s—-Rényi random graphs.
The p-to-g-norm is related to the Zp—Grothendieck problem in the following
way (see [22, Proposition 2.14]): for p > 2 and for any n x n matrix A4, such

that A};An is an irreducible matrix with nonnegative entries, it holds that

Apllpsps = .. (X, X).
In [22], Gaussian fluctuation for ||An||p_)q if 1 < q < p < oo was established,
which includes, as a special case, the ¢,-Grothendieck problem for A, for
p > 2. However, the proof uses a nonlinear power iteration method, originally
introduced by Boyd [12], to approximate the p-to-g-norm. It relies heavily on
the nonnegativity of the entries of A, and cannot be directly applied to the
Gaussian case. Also, for 1 < g < p < oo, the optimizer for ||An||p_)q is close
to the scaled constant vector. Obviously, this does not hold in the Gaussian

case.

A Stability of Holder's Inequality

In this appendix, we gather some quantitative results on the inequalities used in the

proof of Theorem 1.4. The 1st lemma provides a stability bound for Holder’s inequality.

Lemma A.1. Let1l < p < 2, and let w be a nonzero vector in R". Let v be the vector

with unit ¢,-norm such that (v, w) = Wil that is, v satisfies

sgn(w;)|w;|P"

Sgn(vi)|vi|p = - , Vi.
||W||£*
Then, for any u € R” with lul, =1,
2
p 2
(0, w) < Wl (1= gl = vig).

Proof.

First of all, we claim that for 1 < p < 2 and q,b € R, we have the following

stability bound for Young’s inequality:

lalP  |bP"
_—t — >
p p*

1 2 /2 2
ab + g(lalp/ sgn(a) — |b|P"/ sgn(b))”.
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The case when both a and b have the same sign follows from [1, Lemma 2.1]. If a and b
have opposite signs, then we need to show, after ignoring the negative term ab, that

alP  |b|P’ 1 *

a2 P s L (iapr2 1 ppr2)?,

p p 2p*
which follows from the inequality (x 4+ y)? < 2(x? + y?) and the fact that p < p*. This
completes the proof of our claim.

To prove our main result, without loss of generality, assume that [w]|,. = 1.

Applying our claim to u; and w; and then summing over i, we obtain

* 2
(W) 1= 52 3 (P sgn(up — wi” *sgn(w))
i
2
=1-5n Z (lu;P%sgn(u;) — |v;[P*sgn(v;))".
i
For 0 <6 <1, we have
1
1 — gP/2 =/ PxP/2"ldx>P(1-0) and 1+6P%>1+6 > E(1+0). (A.1)
%]

Set a; = min(|y;|, |v;]) and b; = max(|u;|, |v;]). Also, let K = > ; bf € [1, 2]. We now write

Z (luP?sgn(y;) — IV,-Ip/ngn(vi))2

i

~x 3 (s ()Y = 3 (1 semn )
¢ L

i:bﬁéo i:bi;ﬁo
sz bf a;|p 2/p p2 D\ 2/p
> 2 ( Z X 1-— sgn(uiVi)E ) = Ikop—1 ( Z b; — sgn(u;v;)a; )
1:b;#0 : i:b;0
2 2
p r\2/p p )
:4K2/p—1(z Ui — v ) z g llu=vly,

1:b;#0

where the 1st inequality follows from (A.1) and the 2nd one uses Jensen's inequality.

This finishes our proof. |

Next, we show that if a £,-unit vector (1 < p < 2) stays away from the coordinate

vectors, then its ¢2-norm must be strictly less than one.

Lemma A.2. Fix 1 < p < 2. There exists constant ¢ > 0 such that if x € R"” satisfies

Ixll, =1 and ||x + ell, =9 for all i and for some § > 0, then x|, <1 — céP.
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Proof. It is enough to prove the bound for 0 < § < §, for sufficiently small constant 4.
We first claim that ||x||,, < 1 — 8P/3. Suppose, if possible, that |x;| > 1 — §P/3 for some
i. For definiteness, assume that x; > 1 — §P/3 as the case x; < —(1 — 6P/3) can be dealt
similarly. Using the identity Z#i |Xj|p =1 — |x;|P, we obtain that
sP
I = el = 11 =3P + 1= IxlP < |1 =]+ 1= x> = (1= %)@ +x) < - 3= 97,

contradicting the assumption that || x — ell, = 3. Under the constraints ||x|, <1 —8§P/3
and Ixll, =1, the ¢,-norm of x is maximized if x is supported only on two coordinates,
one of them being equal to 1 — §P/3 in magnitude and the other nonzero component of x

must have absolute value (1 — (1 — §7/3)P)!/P. Hence,
Ix[13 < (1 —8P/3)% + (1 — (1 — 8P/3)P)?/P < (1 — 8P/3)% + (1 — (1 — 6P/3)H)*/P
<1—28P/3+(8P/3)% + (28P/3)%/P <1 — 8P/3,

by choosing §, sufficiently small. This implies that ||x|, < (1 —§P/3)}/2 <1—-6P/6. W

B Analytic Results of the Parisi PDE

For (A,y) € R x %d, recall the PDE solution \I/igf defined in (1.20). In this appendix,
we will gather some regularity properties of this PDE solution and provide the proof of

Proposition 12.1. First of all, the boundary condition f! has the following regularity.

Lemma B.1. If A =0, then for all x # 0,
Pp-1 1 1454

fix = — X1,
P prigp1
(B.1)
1
— p— 1
|2 fro| = %tp x
If ) # 0, then f is twice differentiable on R \ {0} and for x # 0,
2\ 1/(p—-1) 2|A1\ 1/ (p—2)
0 <fioo = (2) ey g ()P
t t (5.2)
2\2/(p— 2/p-1)  (21A\2/P=D '
+ () e 4 ()T
and
2|x|\1/®-1 2|A|\1/@~2)
‘ fA(X)‘ =< max((T) , (T) ) (B.3)

Proof. When A = 0, the assertion (B.1) can be checked by a straightforward computa-

tion. For the remainder of the proof, we will only focus on the case A # 0. Note that ff
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is an even function. To prove our assertion, it suffices to assume that x > 0. Evidently,
fi(x) > 0. Note that for any r > 0,

rx 4+ Ar? —t|rlP > (=P)x 4+ A(=1)? — t| — r|P,
which implies that f}(x) = sup,. o (xr + Ar? — trP). Here, for r > 0,
d 2 -1
d—(Xr +Ar® —trP) = x + 2Ar — ptrP ™", (B.4)
r

Since x > 0, 0 < r — x + 2Ar is a linear function, and 0 < r > ptr?~! is strictly convex,
we see that (B.4) has a unique zero, r(x) > 0. In addition, since (B.4) equals x > 0 at
r — 0" and it is negative when r is sufficient large, these imply that r(x) is an unique
optimizer of ff(x). This also implies that 0 < x > r(x) must be continuous. Now, if
o= man((2), (227,
t t
then
xr(x) — t# <0 and Ar(x)? — t@ < 0.
Together, they imply that ff(x) = xr(x) + Ar(x)? — tr(x)? < 0, a contradiction. Hence, we

must have that

2x\ /(-1 /2|A]\1/(®P~2)
r(x) < max((—) , (—) ) (B.5)
t t
Consequently, dropping t|r|P and using this inequality, we arrive at (B.2) since
. 2x\1/®@-1) /2|A|\1/(0~2) 2x\2/(0-1) /2|A|\2/(P—2)
fioo <semax((Z) 7 (57) ) wmax((3) 7L (50) )
t t t t
- (%)1/@—1)X1+1/(p_1) n (@) 1/(p—2)X+ (%)2/@—1)|A|X2/(p_1) n (@)2/@—2)”\'-

To show (B.3), note that
d -1 -2
L (x4 25— ptrP )‘ — 2. — pt(p — Dr(x)P~2.
dr r=r(x)
If A < 0O, then this derivative is strictly less than 21 < 0; if A > 0, plugging
X + 2Ar(x) = ptr(x)P!
into the above equation gives that

%(X + 2ar — ptrP71)

X
=—2(p—2)k—@(p—l)<0.

r=r(x)
From these and the implicit function theorem, r(x) is differentiable on (0,0c0), and

consequently,

dixf’\t(x) = d%((xr(x) +ar()? — tr(x)P) = r(x) + ' (x)(x + 2ar(x) — ptr)P ) = r(x).
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The inequality (B.3) then follows from (B.5). |

Lemma B.2. Leta € (0,1) and b € (0,00). Let f be a nonnegative, even, and convex

function on R. Assume that there exists a constant C > 0 such that
fx) <ca+|x|*™h, xeR. (B.6)
Let m > 0. For any (s, x) € [0,b] x R, set
F(s,x) = %logEexp mf(x + «/sz), (B.7)

where z is standard normal. The following statements hold.

(i) For any s € [0, b], F(s,-) is nonnegative, even, and convex on R.
(ii) F e CY?((0,b] x R).

(ii1) F satisfies
aF(s,x) = %(BXXF(S,X) +m(3,F(s,x))%), (s,%) € (0,b] x R,

lim F(s,x) = f(x), Vx5 € R.

s10,x—xqo
(iv) There exists a constant C' > 0 depending on a,b, m,C such that for any
(s,x) € (0,b] x R,
[F(s,x)| < C'(1+|x|°th. (B.8)
(v) If additionally, f is differentiable on R \ {0} and there exists a constant C
such that

If x)| < CA+ |x|%, xeR\{0}, (B.9)

then there exists a constant C' depending on a,b, m,C such that for any
(s,x) € (0,b] x R,

10,F(s,3)| < C'(1+ |x]). (B.10)

Proof. First of all, note that F is well defined due to (B.6) and a < 1. To prove (i), the
nonnegativity and the evenness of F follow directly from those of f; using the Hoélder

inequality and the convexity of f yield that forall0 <s<b,0<¢<1,andx,y € R,
1
F(s,tx+(1-0y) = — log Eexp mf(¢x + (1 — £)y + /s2)

<

1
- log E exp m(¢f (x++/52)+ (1 — O)f (y++/52)) <LF(s,x)+(1 — OF(s,y),

220z AINP 1.0 uo Jasn sanin uim] ‘ejossuuly Jo AjsioAun Aq €26S219/1 L EGBUI/UIWI/EE0 L 0 | /I0P/3]01MB-80UBAPE/UIWI/WOD dNO"dIWapeI.//:sd)y Wol) PaPEOjUMO(]



80 W.-K. Chen and A. Sen

establishing the convexity of F(s, ). To show (ii) and (iv), write

r—x?
/emf(Y)— yzs dy

1
F(s,x)=—1o
m 8 2ms

From this expression, (B.6), and the dominated convergence theorem, we see that F lies
in the class C1'2((0, bl x R). Furthermore, for any (s, x) € (0,b] x R,
1 gy —xe(y)dy
sm [pe(y)dy
1 Ry -0%@dy 1 (fR(y —x)¢(y) d}/)2
s?m Jpe(y)dy sPfm\  fre(ndy
1 1 gy —x%p(y)dy
2sm  2s2m [ e(y)dy

3 F(s,x) =

1
BXXF(S,X) = —E +

0.F(s,x) =

for o(y) := e W—r—x?/(29 This validates (ii) as well as the PDE in (iii). The continuity
of F at the boundary in (iii) is also guaranteed by using (B.6), (B.7), and the dominated
convergence theorem. The assertion (iv) can follows directly from (B.6) and noting a < 1.

Finally, we prove (v). Without loss of generality, we assume that x > 0. Note that

we can also use (B.6), (B.9), and the dominated convergence theorem to get that

Ef mf (x++/sz)
9 F(s,x) = f'(x + /sz)e ‘
Eemfx++/52)

From this, write

E[f (x 4 v/s2)e™ V52, |7] > x| ‘ N )]E[f’(x + /52)e™ V52, 7] < x| ‘

|0, F(s,x)| < ‘ T T

(B.11)

To bound the 1st term, note that since "0 is convex, Jensen's inequality and the

assumption f > 0 imply that
1 < e _ gmf(ctV5E2)  pomf(cty52),
On the other hand, from (B.6) and (B.9),
E[|f’(X+ ﬁz)|emf(x+ﬁz); |z| > X] < CE[(I T+ ﬁ)“lz|“)emc(l+(l+ﬁ)a+lIz“m)] —.C,

where C’ is finite due to the assumption that a < 1. Putting these two inequalities
together implies that the 1st term of (B.11) is bounded above by C'. For the 2nd term in
(B.11), note that

E[|f'x + vs2)[e™ TV 2] < x] < CA+ (1 + V) IxXIDE[e™ FHVE); 7] < x]

< C( + (1 + V) x|YE[em V5],
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From this, the 2nd term in (B.11) is bounded above by C”|x|% for some constant C” > 0.
These validate (B.10). |

Lemma B.3. Letp > 2,t > O,u > 0. Assume that A € R and y € %d satisfies

(1.19). Define \IJ{',I; from [0,ul x R to R by letting \Di’jﬁ(u,x) = fi(x) and iteratively for

l=kk-1,...,0
1
t, t, /
\y)\"; (s,x) = —ml logEexp ml‘l’mlf Q1. X+ ,/2(q41 —9)2), s€lq,q ) xR, (B.12)

where z ~ N(0,1). Then, forany 0 <1 <k, \Ilﬁl; € Cl'z([ql, q;.1) x R) and it satisfies the
following PDE:

DU (s, %) = — (0 Ui (5, 3) + 7 (5) (3,915, ))), (5,3 € (g1, q41) X R (B.13)

and

lim  WiY(s,x) = Wi¥(q. 1. x0), Vx, € R.
Aqasxg MY ay di+1: X0 0

Furthermore, there exists a constant C > 0 such that

(Wi (s, 0] < €1+ |x"FHP7Y), W(s, x) € [0,u] x R, (B.14)

|8Xw§;';(s,x)| <C(1+ |x|V/PD),  V(s,x)el0,u) xR. (B.15)

Proof. Note that “I’i;lf (u,x) = fl(x) satisfies (B.6) and (B.9) witha = (p — 1)~! < 1. Our
proof follows by applying Lemma B.2 iteratively. |

Proof of Proposition 12.1. Fix (A,y) € R x %d. Since y(u) < oo, from (B.15), there

exists some constant C > 0 such that

|y ()0, W, (s, x)| < CA+ [x]"P™), ¥(s,x) € ([0, ul x R) \ {(x,0)}.

Consequently, there exists a probability space (2,P,.%), a filtration (ﬁs)oisiu, a
continuous process X, and a standard Brownian motion W such that they together form
a weak solution of (12.2); see, for example, Proposition 5.3.6 in [35]. Next, forany v € &,
set Y(s) =2 fos y(rv(r) dr + ~/2W(r). Using Itd’s formula and the PDE (B.13) leads to

d\yf"; (s,Y(s)) = —y(s)[(axxp;;‘; (s, Y(s)))2 — 2v(s)axqf§;’; (s, Y(s)]ds + «/Eaxwﬁ;'; (s, Y(s))dW(s).

Here, we can further rewrite this equation as

AW (s, Y(8) = —y (8) (8, U (s, ¥ (5) — v(s))*ds + V20, W (s, V() dW(S) + y (5)v(s)%ds.
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Consequently,

]E\ll;'ljlf(u, Y(w)) =\y§'f;(0,0) — /0 y(s)E(aX\y,{';(s, Y(s))—v(s))zds+ /0 y(s)Ev(s)? ds,

which implies that

Wi(0,0) = BV (u, V() — /0 ‘ y($)Ev(s)?ds + /O ’ Y (E(3, W1 (s, Y (5) — v(s))” ds.

Clearly, this implies that
u u
/% (0,0) = max|f} (2 / Y V() ds + V2W(W)) - / y(©)v(9)? ds|
¢ vedy 0 0

and the equality is achieved if v(s) = axxp;; (s,X(s)), where X is defined through (12.2).

This completes our proof. |
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