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For p ≥ 1 and (gij)1≤i,j≤n being a matrix of i.i.d. standard Gaussian entries, we study the

n-limit of the �p-Gaussian–Grothendieck problem defined as

max
{ n∑

i,j=1

gijxixj : x ∈ Rn,
n∑

i=1

|xi|p = 1
}
.

The case p = 2 corresponds to the top eigenvalue of the Gaussian orthogonal ensemble;

when p = ∞, the maximum value is essentially the ground state energy of the

Sherrington–Kirkpatrick mean-field spin glass model and its limit can be expressed by

the famous Parisi formula. In the present work, we focus on the cases 1 ≤ p < 2 and

2 < p < ∞. For the former, we compute the limit of the �p-Gaussian–Grothendieck

problem and investigate the structure of the set of all near optimizers along with

stability estimates. In the latter case, we show that this problem admits a Parisi-type

variational representation and the corresponding optimizer is weakly delocalized in the

sense that its entries vanish uniformly in a polynomial order of n−1.

1 Introduction and Main Results

For 1 ≤ p ≤ ∞, the �p-Grothendieck problem (see [37]) seeks to study the following

optimization problem

max
x∈Rn:‖x‖p≤1

〈Ax, x〉, (1.1)
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2 W.-K. Chen and A. Sen

where A is an n × n input matrix. Here, for 1 ≤ p < ∞, the standard �p-norm of

x ∈ Rn is defined as ‖x‖p := (
∑

i∈[n] |xi|p)1/p. Additionally, the �∞-norm of x is given by

‖x‖∞ = maxi∈[n] |xi|.
For p = 2, the spectral theory tells us that the optimal value of (1.1) is

just the maximum eigenvalue of the symmetric matrix (A + AT)/2. For p = ∞,

under a mild assumption that the diagonal entries of A vanish, the optimal value

of (1.1) remains unchanged if the quadratic form is maximized over the discrete

hypercube {−1, 1}n instead (see, e.g., [44, Lemma 3.5]). This optimization problem is

known to be NP-hard [45]. The optimal value can be approximated within a O(log n)

factor in polynomial time [13, 36, 42, 47]. On the other hand, it is computation-

ally hard to approximate the optimal value within a O((log n)γ ) factor for every

γ ∈ (0, 1/6) [38].

The special cases of the �p-Grothendieck problem appear in clustering algo-

rithms. The cases p = 2 and p = ∞ are related to the spectral partitioning [27]

and the correlation clustering [13], respectively. For 2 < p < ∞, the �p-Grothendieck

problem can be viewed as an interpolation between these two clustering criteria. In

this case, approximating (1.1) within a factor of ξ2
p − ε is NP-hard for any ε > 0,

while there exists a polynomial time algorithm that approximates (1.1) within a factor

of ξ2
p [31, 39], where ξp = (E|z|p)1/p is the p-th norm of a standard Gaussian random

variable z.

The case p = 1 is also believed to be computationally hard (see the discussion

in [37] and the references therein). Let us mention that if we optimize over a simplex

instead, then (1.1) includes, as a special case, finding the cardinality of the maximum

independent set of a graph [45], which is a well-known NP-hard problem. The case

1 < p < 2 seems to remain unexplored in the literature.

While finding an efficient algorithm to compute the optimal value in (1.1) is

generally difficult except when p = 2, it is natural to study the �p-Grothendieck problem

for random input matrices first. This leads to the following optimization problem that

takes a random Gaussian matrix as input, which we will refer to as the �p-Gaussian–

Grothendieck problem or simply the �p-Grothendieck problem,

max
x∈Rn:‖x‖p≤1

〈Gnx, x〉 = max
x∈Rn:‖x‖p=1

〈Gnx, x〉. (1.2)

Here, Gn is an n×n matrix with entries gij being i.i.d. standard Gaussians for all i, j ∈ [n].

Another motivation for investigating the optimization problem (1.2) arises from

the study of spin glass models, which, roughly speaking, are disordered spin systems
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On �p-Gaussian–Grothendieck Problem 3

invented in the ‘70s in order to understand some unusual behaviors of certain alloys,

such as CuMn. The quadratic form, 〈Gnx, x〉 in (1.2), reflecting the pairwise interactions

across sites, can be viewed as (the negative of) the Hamiltonian or energy of the

Sherrington–Kirkpatrick (SK) mean-field spin glass model on the unit �p-ball. In the

terminology of statistical physics, the maximum value of 〈Gnx, x〉 over all possible spin

configurations x ∈ Rn with ‖x‖p = 1 is called the ground state energy of the model. When

p = ∞, this quantity is essentially the ground state energy of the classical SK model [61]

with Ising spins. In the case p = 2, the spin configurations lie on the standard �2-sphere

and this model is called the spherical SK model. For physicists’ treatments of mean-field

spin glass models, we refer the readers to check [43]. See also the books [51, 64, 65] for

the mathematical progress in the past decade.

In the present work, we aim to study the �p-Gaussian–Grothendieck problems in

two major directions: (1) their limits as n tends to infinity and (2) the structure of the

set of (1−ε)-optimizers, Mε = Mε(p, n), defined as the collection of all x ∈ Rn satisfying

‖x‖p = 1 and

〈Gnx, x〉 ≥ (1 − ε) max
y∈Rn:‖y‖p=1

〈Gny, y〉.

We divide our main results into two parts, 1 ≤ p < 2 and p > 2, as they exhibit

significantly different behaviors. They are presented in the following two subsections.

Before we turn to their statements, we introduce some notations that will be used

throughout this paper.

General Notation. For 1 ≤ p ≤ ∞, let 1 ≤ p∗ ≤ ∞ be the Hölder conjugate of p, that is,

1/p + 1/p∗ = 1. For x ∈ Rn, we define the normalized �p-norm of x as

|||x|||p =
( 1

n

∑
i∈[n]

|xi|p
)1/p

for 1 ≤ p < ∞ and |||x|||∞ = max
i∈[n]

|xi|.

In addition, we use ‖x‖0 to denote the number of nonzero coordinates in x. Let

Ḡn = (Gn + GT
n)/

√
2 be the symmetrized Gaussian matrix, distributed as the Gaussian

orthogonal ensemble (GOE). The entries of Ḡn are denoted by ḡij. For 1 ≤ p < ∞, we

denote by ξp = (E|z|p)1/p, the p-th norm of a standard Gaussian random variable z.

Let Mn(R) be the space of real-valued matrices of size n × n. For any

A = (aij)i,j∈[n] ∈ Mn(R), denote its p-to-q operator norm of A by ‖A‖p→q = sup‖x‖p=1 ‖Ax‖q

for 1 ≤ p, q ≤ ∞. In the case p = q = 2, we simply denote ‖A‖2→2 by ‖A‖2. The Frobenius

norm of A is defined as ‖A‖F = ∑
i,j∈[n] |aij|2. We use e1, . . . , en to denote the standard

basis of Rn.
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4 W.-K. Chen and A. Sen

1.1 Main result: 1 ≤ p < 2

We split our results into two cases, p = 1 and 1 < p < 2, according to their different

types of scalings,
√

log n and n1/p∗
. We start with the easy case of p = 1.

Theorem 1.1. Let p = 1. The following statements hold:

(i) almost surely,

lim
n→∞

1√
log n

max‖x‖1=1
〈Gnx, x〉 = √

2; (1.3)

(ii) let I = argmaxi∈[n]gii. For any η > 0 and n ≥ 1,

P
(〈GneI , eI〉 ≥ √

2(1 − η) log n
) ≥ 1 − e−nη

; (1.4)

(iii) there exist constants c0, c, C > 0 such that for any 0 < δ ≤ c0 and for all

n ≥ 1,

P

(
max‖x‖1=1,‖x‖∞≤1−δ

〈Gnx, x〉 ≤
(
1 − cδ +

√
log 2

log n

)√
2 log n

)
≥ 1 − Cn−cδ. (1.5)

Items (i) and (ii) together imply that eI is a near optimizer of the

�1-Grothendieck problem. Furthermore, from (iii), if we take ε satisfying 0 < ε ≤ 1/4 and

limn→∞ ε
√

log n = ∞, then for all large n, with high probability, the set Mε is a subset

of the disjoint union of �1-balls of radius δ = O(ε) centered around the 2n coordinate

vectors ±e1, ±e2, . . . , ±en. Consequently, each near optimizer is localized with a single

entry carrying at least 1 − δ of the weight.

Next, we consider the case 1 < p < 2, which is more interesting. Define vi ∈ Rn

as

vi(j) = sgn(ḡij)
( |ḡij|p∗

‖Ḡnei‖p∗
p∗

)1/p
, ∀j ∈ [n], (1.6)

where sgn(a) if 1 if a ≥ 0 and −1 if a < 0. Note that ‖vi‖p = 1 = ‖ei‖p. Let

O =
{

± ei + vi

‖ei + vi‖p
: 1 ≤ i ≤ n

}
. (1.7)

Note that ignoring the signs of the vectors in O, it can be seen that they are

asymptotically orthogonal to each other. The following theorems establish the limit of

the �p-Grothendieck problem and show that any near optimizer lies close to the set O.
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On �p-Gaussian–Grothendieck Problem 5

Theorem 1.2. Let 1 < p < 2.

(i) Almost surely,

lim
n→∞

1

n1/p∗ max‖x‖p=1
〈Gnx, x〉 = 2

1
2 − 2

p ξp∗ . (1.8)

(ii) Each x ∈ O is a near optimizer in the sense that for any d > 0, there exists a

constant C > 0 such that with probability at least 1 − Cn−d,

min
x∈O

〈Gnx, x〉 ≥ 2
1
2 − 2

p ξp∗n
1

p∗ − C
(
n

− 1
p + 1

2 + 1
p∗ (log n)

p∗
4 +√

log n
)
. (1.9)

Remark 1.3. The order of the error term on the right-hand side of (1.9) depends on the

value of p. When 1 < p < 4/3, it is of order
√

log n and when 4/3 ≤ p < 2, it is of order

n−1/p+1/2+1/p∗
(log n)p∗/4.

Theorem 1.4 (Stability). O is essentially the set of all optimizers. More precisely, let

0 < κ < 1/3p and d > 0. There exist positive constants C1, C2, C3 such that for any n ≥ 1,

if n−κ ≤ δ ≤ 1, the event

max
dist(x,O)≥δ,‖x‖p=1

〈Gnx, x〉 ≤ 2
1
2 − 2

p
(
1 − C1δ6)ξp∗n1/p∗ + C2np/(2p∗)√log n (1.10)

occurs with probability at least 1 − C3n−d, where dist(x, O) = miny∈O ‖x − y‖p.

As a consequence of the above two theorems, it can be deduced from (1.10) that if

0 < ε ≤ 1
4 and lim

n→∞
ε

n
− 1

p∗ (1− p
2 )√

log n
= ∞,

then with high probability, Mε is a subset of the disjoint union of �p-balls of radius

δ = O(ε1/6) centered around the 2n vectors in O. The dependence of δ on ε here is

sub-optimal. Note that from the law of large numbers,

ei + vi

‖ei + vi‖p
≈ 2−1/p(ei + wi),

where

wi(j) = n−1/pξ
−p∗/p
p∗ sgn(ḡij)|ḡij|p

∗/p.

Therefore, each near optimizer has a single spike that has magnitude of order 1 while

the rest of entries are O(δ). Hence, in the regime 1 < p < 2, the near optimizers possess

both localized and delocalized components.
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6 W.-K. Chen and A. Sen

1.2 Main result: 2 ≤ p ≤ ∞

Consider the normalized Grothendieck problem

GPn,p := max
x∈Rn:‖x‖p=1

〈Gnx, x〉
n3/2−2/p . (1.11)

As we have mentioned before, p = 2 is the easy case, since GPn,2 = 2−1/2n−1/2

max‖x‖2=1〈Ḡnx, x〉 and the optimal value is the largest eigenvalue of the GOE, which

converges to 2 as n → ∞. The case p = ∞ corresponds to the ground state energy of the

SK on the product space [−1, 1]n and it is known that limn→∞ GPn,p exists and can be

expressed as the famous Parisi formula; see [19].

Our main result focuses on the interpolating case 2 < p < ∞. First, we study

the convergence of GPn,p. Note that the optimization problem can be rewritten using the

normalized norm as

GPn,p = max
x∈Rn:|||x|||p=1

〈Gnx, x〉
n3/2 .

In order to study the above optimization problem, it is natural to remove the

�p-constraint over the maximization set and compensate it by adding a �p-norm

potential, namely, for t > 0, we define

Ln,p(t) = max
x∈Rn

( 〈Gnx, x〉
n3/2 − t|||x|||pp

)
. (1.12)

We also introduce the following restricted version of the above Hamiltonian in (1.12)

where the self-overlap ‖x‖2 is constrained to be a fixed value,

Ln,p,u(t) = max
x∈Rn:|||x|||22=u

( 〈Gnx, x〉
n3/2 − t|||x|||pp

)
, u > 0. (1.13)

The following theorem establishes the existence of the deterministic limits of Ln,p,u(t)

and Ln,p(t).

Theorem 1.5. Let 2 < p < ∞. Almost surely, the following limits exist,

Lp,u(t) := lim
n→∞ Ln,p,u(t) = lim

n→∞ELn,p,u(t), for all u, t > 0, (1.14)

Lp(t) := lim
n→∞ Ln,p(t) = sup

u>0
Lp,u(t), for all t > 0. (1.15)

Our next result shows the existence of the limit of GPn,p and its connection to

Lp(t).
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On �p-Gaussian–Grothendieck Problem 7

Theorem 1.6. Let 2 < p < ∞. Almost surely,

GPp := lim
n→∞ GPn,p = p

2

(p

2
− 1

)2/p−1
t2/pLp(t)1−2/p, for all t > 0. (1.16)

In addition, for δ = p/2 − 1, there exist C, C′ > 0 such that with probability at least

1 − C′e−n/C′
, if x∗ ∈ Rn with ‖x∗‖p = 1 is an optimizer of (1.11),

‖x∗‖∞ ≤ Cn
1

p+δ
− 1

p . (1.17)

Let us point out that the right-hand side of (1.16) is independent of t > 0. The

inequality (1.17) implies that any optimizer of the �p-Grothendieck problem is weakly

delocalized for 2 < p < ∞ and its �p-mass is not concentrated on any set of coordinates

with vanishing proportion. This resembles, at least qualitatively, the delocalization

behavior in the �2-Grothendieck problem, where the supremum norm of the optimizer

(which is same as the largest eigenvector of the GOE) is O((log n)1/2n−1/2) with high

probability (see, e.g., [48, Section 2]).

Our next result establishes the continuity of the limiting value GPp in p ∈ [2, ∞].

Theorem 1.7. GPp is continuous in p ∈ [2, ∞].

Remark 1.8. From Theorems 1.2 and 1.6, the �p-Grothendieck problem scales as n1/p∗

for 1 < p < 2 and as n3/2−2/p for 2 ≤ p ≤ ∞. These scaling exponents match at p = 2.

However, while the limiting value of the �p-Grothendieck problem is continuous in p in

the intervals (1, 2) (as seen from (1.8)) and [2, ∞], it has a jump discontinuity at p = 2.

Indeed,

lim
p→2− lim

n→∞
1

n1/p∗ max‖x‖p=1
〈Gnx, x〉 = lim

p→2− 21/2−2/pξp∗ = 1√
2

�= √
2 = GP2.

Our final result provides a description of the limiting value GPp by showing

that Lp,u(t) and Lp(t) admit Parisi-type variational formulas. In physicists’ literature,

the original Parisi formula was proposed by Parisi [57–59], which gives a variational

representation for the limiting free energy of the classical SK model [61] at apositive

temperature. It minimizes a functional, which involves the solution to a 2nd-order

parabolic PDE (known as the Parisi PDE) and a linear term, with respect to the so-called

functional order parameters. This formula was first rigorously verified by Talagrand

[63] and later generalized to some variants of the SK model; see [2, 15, 32, 40, 41, 50,
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8 W.-K. Chen and A. Sen

52–55]. Furthermore, the Parisi-type formulas were also established for the ground state

energies, corresponding to zero temperature, in a number of related models; see [6, 19,

20, 32, 33].

To state our result, let u > 0 and N d
u be the collection of all positive measures γ

on [0, u] such that γ is atomic with finitely many atoms. For (λ, γ ) ∈ R × N d
u and t > 0,

set

f t
λ(x) = sup

r∈R
(
rx + λr2 − t|r|p), x ∈ R,

and denote, with a slight abuse of notation, γ (s) = γ ([0, s]). Let 

t,u
λ,γ be the solution to

the following Parisi PDE:

∂s

t,u
λ,γ (s, x) = −(∂xx


t,u
λ,γ (s, x) + γ (s)

(
∂x


t,u
λ,γ (s, x)

)2), (s, x) ∈ [0, u) × R (1.18)

with boundary condition 

t,u
λ,γ (u, x) = f t

λ(x).

The fact that γ is atomic with finitely many atoms enables us to solve this Parisi

PDE explicitly by using the Hopf–Cole transformation in an iterative fashion. Toward

this end, let us express any γ ∈ N d
u as

γ (s) =
k−1∑
l=0

ml1[ql,ql+1)(s) + mk1[qk,u](s) (1.19)

for some

q0 = 0 < q1 < · · · < qk < qk+1 = u, 0 ≤ m0 < m1 < · · · < mk−1 < mk < ∞.

Then the solution to (1.18) can be written iteratively as



t,u
λ,γ (s, x) = 1

ml
logE exp ml


t,u
λ,γ (ql+1, x +

√
2(ql+1 − s)z), ∀(s, x) ∈ [ql, ql+1) × R, (1.20)

for l = k, k − 1, . . . , 0, where z is standard Gaussian. Here, when m0 = 0, (1.20) should be

understood as



t,u
λ,γ (s, x) = E


t,u
λ,γ (q1, x +√

2(q1 − s)z), (s, x) ∈ [0, q1) × R.

Note that (1.20) is well defined since there exist some constants C > 0 and a ∈ (0, 1)

such that f t
λ(x) ≤ C(1 + |x|1+a) for all x ∈ R and this property is preserved for 


t,u
λ,γ by
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On �p-Gaussian–Grothendieck Problem 9

induction, see Lemma B.2, which also describes the regularity properties of 

t,u
λ,γ . For

any (λ, γ ) ∈ R × N d
u , set

Pt,u(λ, γ ) = 

t,u
λ,γ (0, 0) − λu −

∫ u

0
sγ (s) ds. (1.21)

For notational clarity, we ignore the dependence of Pt,u on p. Our result states the

following.

Theorem 1.9. Let 2 < p < ∞. For any u > 0 and t > 0, we have that

Lp,u(t) = inf
λ∈R,γ∈N d

u

Pt,u(λ, γ ), (1.22)

Lp(t) = sup
u>0

inf
λ∈R,γ∈N d

u

Pt,u(λ, γ ). (1.23)

Currently, we know very little about the set Mε for 2 < p < ∞. In contrast

to the 1 ≤ p < 2 case, we expect that the landscape of the �p-Grothendieck problem

has a more complex geometric structure, which does not admit a simple description. In

fact, as mentioned before, the �∞-Grothendieck problem is essentially the ground state

energy of the classical SK model and for a fixed but small ε > 0, [18] established, with

overwhelming probability, the existence of exponentially many vectors in Mε that are

nearly orthogonal to each other; see also [14, 23, 25]. This fact is also true for p = 2,

which is an easy consequence of the fact that the eigenmatrix for the GOE is Haar-

distributed. Therefore, it is natural to believe that in the interpolating case 2 < p < ∞,

the same phenomenon continues to hold. See Section 13 for further discussion.

2 Overview of the Paper

Our approach is based on two major ingredients: (1) the Chevet inequality for bounding

the supremum of a Gaussian bilinear form and (2) some tools arising from the study

of mean-field spin glasses. To facilitate our arguments, we provide some sketches of

the proofs to our main results in two cases, 1 < p < 2 and 2 < p < ∞, followed by a

description on the organization of the rest of the paper.

2.1 Proof sketch for 1 < p < 2

We begin by sketching the proof of the upper bound in Theorem 1.2. The key idea is to

decompose every �p-unit vector x ∈ Rn as x = xo + x†, where for a given truncation level
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10 W.-K. Chen and A. Sen

ε > 0, xo is the delocalized part, xo
i = xi1

(|xi| ≤ ε
)

for i ∈ [n], and x† is the localized part,

x†
i = xi1

(|xi| > ε
)

for i ∈ [n]. In the proof, we take ε = εn → 0 at an appropriate rate.

From this decomposition, an application of the bilinearity of the inner product and the

triangle inequality readily yields that

∣∣∣ max‖x‖p=1
〈Gnx, x〉 − √

2 max‖x‖p=1
〈Ḡnxo, x†〉

∣∣∣ ≤ max‖x‖p=1
|〈Gnxo, xo〉| + max‖x‖p=1

|〈Gnx†, x†〉|. (2.1)

To control the diagonal terms on the right-hand side, we apply the Chevet inequality,

which states that for arbitrary bounded sets S, T ⊂ Rn, E supx∈T,y∈S〈y, Gnx〉 can be

controlled by the Gaussian width (a measure of “complexity” of a set) and the �2-radii

of the index sets S and T. See Theorem 3.1 below for the precise statement. It turns out

that under the assumption p < 2, the set of delocalized vectors in the unit �p-ball has

a vanishing �2-radius, which makes the 1st term on the right side of (2.1) smaller order

than n1/p∗
. On the other hand, each localized vector in the unit �p-ball has only a few

(at most ε−p) nonzero entries, which guarantees that the set {x† : ‖x‖p = 1} has a low

Gaussian width. As a result, the 2nd term on the right side of (2.1) is of small order as

well. With these observations, we can approximate

n−1/p∗
max‖x‖p=1

〈Gnx, x〉 ≈ n−1/p∗√
2 max‖x‖p=1

〈Ḡnxo, x†〉.

We now normalize xo and x† by their respective �p-norms and use the duality relation

sup‖y‖p=1〈y, u〉 = ‖u‖p∗ to obtain the following upper bound:

E max‖x‖p=1
〈xo, Ḡnx†〉 ≤ E max‖x‖p=1

(
‖x†‖p‖xo‖p

∥∥∥Ḡn
x†

‖x†‖p

∥∥∥
p∗

)
≤ 2−2/pE max‖x‖p=1

∥∥∥Ḡn
x†

‖x†‖p

∥∥∥
p∗ ,

(2.2)

where in the last inequality, we used the fact that the product ‖x†‖p‖xo‖p is maximized

if ‖x†‖p = ‖xo‖p = 2−1/p as ‖xo‖p
p + ‖x†‖p

p = ‖x‖p
p = 1. Since each x† is supported on

at most ε−p many coordinates, the last expectation in (2.2) can be bounded above by

Emaxy∈F ‖Ḡny‖p∗ , where F is defined as F = {y ∈ Rn : ‖y‖p = 1, ‖y‖0 ≤ ε−p}. We can

exploit the low cardinality of the set F to argue by using concentration and union bound

that

Emax
y∈F

‖Ḡny‖p∗ ≤ (1 + o(1)) max
y∈F

E‖Ḡny‖p∗ .
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On �p-Gaussian–Grothendieck Problem 11

For any vector y, we have n−1/p∗
E‖Ḡny‖p∗ ≈ n−1/p∗‖y‖2E‖g‖p∗ ≈ ‖y‖2ξp∗ for g a standard

Gaussian vector, which implies that

n−1/p∗
Emax

y∈F
‖Ḡny‖p∗ ≤ (1 + o(1))ξp∗ max

y∈F
‖y‖2 = (1 + o(1))ξp∗ , (2.3)

yielding the upper bound (for the expectation) in Theorem 1.2. The above argument also

indicates how we can achieve a matching lower bound. A near maximizer x should

satisfy ‖x†‖p = ‖xo‖p = 2−1/p. Moreover, in (2.3), to attain the maximum �2-norm,

the optimal y = x†/‖x†‖p ∈ F should be one of the coordinate vectors ei (up to a

sign). Working backwards, the optimal choice of xo is now dictated by the relation

〈xo/‖xo‖p, Ḡnei〉 = ‖Ḡnei‖p∗ , which is achieved by taking xo/‖xo‖p = vi, as given in (1.6).

Finally, we note that these choices for x† and xo are valid since ei is localized and vi is

delocalized for any i. It leads to the set of near maximizers O, as defined in (1.7).

The stability bound in Theorem 1.4 follows a similar path. However, it is more

technically involved as we need to keep track of error incurred in every step of the

above argument. Also, we use an appropriate stability bound (in �p distance) for Hölder’s

inequality (stated in Lemma A.1).

2.2 Proof sketch for p > 2

We continue to sketch the proofs of Theorems 1.5, 1.6, and 1.9. First of all, consider

the problem of maximizing a collection of random variables, (Hn(x))x∈S, indexed by a

measurable subset S ⊂ Rn. In physics, Hn(x) is called the Hamiltonian or the energy

corresponding to the spin configuration x ∈ S and the quantity maxx∈S Hn(x) is called

the ground state energy. To compute this maximum, it is often more convenient to

consider the free energy associated with (Hn(x))x∈S,

Fn(β) = 1

βn
log

∫
S

eβHn(x)μn(dx)

for an appropriately chosen probability measure μn supported on S, where β > 0 is

usually called the (inverse) temperature. The key fact here is that in many important

models, for example, the classical SK model and its variants, the free energies and

the corresponding Gibbs measures exhibit several nice physical and mathematical

properties, which allow one to establish the existences of the limiting free energies

as n → ∞ and furthermore derive certain types of variational formulas for these limits;

see [51, 64, 65]. Once the limiting free energy is obtained, the limit of the maximum of
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12 W.-K. Chen and A. Sen

Hn can then be recovered by switching the β and n limits as

lim
β→∞ lim

n→∞ Fn(β) = lim
n→∞ lim

β→∞ Fn(β) = lim
n→∞ max

x∈S

Hn(x)

n
.

Following this idea, we establish Theorem 1.5 by introducing a free energy (see (7.3))

associated with Ln,p,u(t) and adapt the Guerra–Toninelli [30] interpolation to show that

this free energy is superadditive in n, which implies the existence of the limiting free

energy as n → ∞. After this, we send the temperature parameter to infinity to obtain the

existence of the limit of Ln,p,u(t) in (1.14). The convergence of Ln,p(t) = supu>0 Ln,p,u(t),

claimed in (1.15), now follows by switching the supremum and the n-limit, which can be

justified by a standard compactness argument.

The proof of Theorem 1.6 is based on the observation that the �p-Grothendieck

problem and Ln,p(t) are the Legendre duals of each other (see the proof of Lemma 8.1),

that is, at the point of differentiability of Ln,p(t),

max
|||x|||pp=−L′

n,p(t)

〈Gnx, x〉
n3/2 = Ln,p(t) − tL′

n,p(t).

From this, if additionally we have L′
n,p(t) < 0, the �p-Grothendieck problem can be

written, by a change of variable, as

GPn,p = 1(−L′
n,p(t)

)2/p

(
max

|||x|||pp=−L′
n,p(t)

〈Gnx, x〉
n3/2

)
= Ln,p(t) − tL′

n,p(t)(−L′
n,p(t)

)2/p . (2.4)

To further simplify this equation, another key observation is that at any point t of

differentiability of Ln,p,

Ln,p(t) = −(p/2 − 1
)
tL′

n,p(t). (2.5)

The above identity can be verified via a straightforward computation. Consequently, if

Ln,p is differentiable at t and L′
n,p(t) < 0, plugging (2.5) into (2.4) leads to

GPn,p = p

2

(p

2
− 1

)2/p−1
t2/pLn,p(t)1−2/p. (2.6)

To send n → ∞, it is crucial to realize that Ln,p and Lp are convex on (0, ∞), which

readily imply that, with probability one, for almost everywhere t ∈ (0, ∞), L′
p(t) =

limn→∞ L′
n,p(t). In addition, since Lp(t) is strictly positive in t, Equation (2.5) ensures
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On �p-Gaussian–Grothendieck Problem 13

that whenever Ln,p is differentiable at some t, we have L′
n,p(t) < 0 as long as n is large

enough. These allow us to send n → ∞ in (2.6) to obtain (1.16) almost everywhere for

t ∈ (0, ∞). Using the fact that Lp(t) is continuous in t validates (1.16) on the whole space

(0, ∞). The proof for the delocalization of the optimizer in the �p-Grothendieck problem

in (1.17) is established by using the idea of Lagrange multiplier corresponding to the

maximizer x∗, which upon combining with the Hölder inequality, leads to the bound

‖x∗‖p+δ

p+δ ≤ n1−(p+δ)/p
√

2GPn,p

‖Ḡn‖2

n1/2 for δ = p/2 − 1.

The assertion (1.17) then follows from the trivial bound ‖x∗‖∞ ≤ ‖x∗‖p+δ.

For Theorem 1.9, to approximate Ln,p,u,ε(t), we consider the Hamiltonian

Hn,p,t(x) = n−1/2〈Gnx, x〉 − t‖x‖p
p and introduce two related free energies, Fn,t,u,ε(β) and

Fn,t,u,M,ε(β). The former integrates Hn,p,t over a spherical constraint ‖x‖2 ∈ [u − ε, u + ε]

and the latter puts an additional constraint x ∈ [−M, M]n—see the beginning of

Section 10. The free energy Fn,t,u,ε(β) can be bounded from above by the so-called

Guerra’s replica symmetry breaking bound [29], which in turn implies that Lp,u(t) is

bounded above by the desired Parisi-type formula (the right-hand side of (1.22)) after

sending the temperature parameter to infinity; see Section 12.2.

Deriving a matching lower bound is more difficult. First of all, it is easy to

see that Ln,p,u,ε(t) ≥ Fn,t,u,M,ε(β), where the right-hand side, after a change of variable

x → x/M, is the free energy of the SK model on the product space [−1, 1]n and its limit

can be expressed as a Parisi-type formula [50], similar to (1.22), as stated in (11.6).

In order to obtain the matching lower bound, we need to study the β-limit and then

the M-limit in this formula. In view of the Parisi PDE term in (11.6), it is a Hamilton–

Jacobi–Bellman equation induced by a linear diffusion control problem and is known

to admit a stochastic optimal control representation [3, 11, 34], which is described in

Proposition 11.7 below. Using this expression, we can successfully handle the β-limit

by adapting and refining the approaches in [5, 33]. In contrast, the argument for the

M-limit is more intricate mainly due to the fact that the boundary condition of the

Parisi PDE is not Lipschitz and as a consequence, the control of the M-limit in the Parisi

PDE solution cannot be done directly from the stochastic optimal control representation

as the control processes therein lack uniform pointwise controls; see Remarks 11.2

and 12.2. Fortunately, this technical issue can resolved by showing that the control

processes are indeed uniformly square integrable relying on the assumption p > 2.
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14 W.-K. Chen and A. Sen

2.3 Organization

The rest of paper consists of two major parts. The 1st is devoted to proving the results

for 1 ≤ p < 2. In Section 3, we introduce the Chevet inequality and explain how one

can obtain the correct scalings for our �p-Grothendieck problem from this inequality.

Additionally, we list some standard results on the Gaussian concentration and maximal

inequalities. These contents will be repeatedly used in the proofs of Theorems 1.1

and 1.2 in Sections 4 and 5, respectively.

The 2nd part establishes our main results for 2 < p < ∞ based the methodolo-

gies generally used in statistical physics and in mean-field spin glasses. The proofs of

Theorems 1.5, 1.6, and 1.7 are presented in Sections 7, 8, and 9, respectively. The more

intricate part is the proof of Theorem 1.9 that will be handled in Section 12. To this

end, Sections 10 and 11 prepare some fundamental results. More precisely, Section 10

derives upper and lower inequalities for Lp,u(t) in terms of the free energies Fn,t,u,ε(β)

and Fn,t,u,M,ε(β). In Section 11, we show that the β-limit of the Parisi formula associated

to limε↓0 limn→∞ Fn,t,u,M,ε(β) can also be expressed as a Parisi-type formula followed by

some a priori bounds for the corresponding minimizers in terms of the parameter M.

Some open questions of interest are mentioned in Section 13. Finally, Appendix A

provides a new result on the stability of the Hölder inequality that is used in the proof of

Theorem 1.4. In addition, analytical properties of the Parisi PDE (1.18) and its stochastic

optimal control representation are studied in Appendix B.

3 Gaussian Bounds

3.1 Chevet’s inequality and operator norms

For a non-empty subset S of Rn, define its Gaussian width by w(S) = E supx∈S〈g, x〉 and

radius by r(S) = supx∈S ‖x‖2. The Chevet inequality states the following.

Theorem 3.1 (Chevet’s inequality). Let S and T be non-empty bounded subsets of Rn.

We have

max
(
w(S)r(T), w(T)r(S)

) ≤ E sup
x∈T,y∈S

〈y, Gnx〉 ≤ w(S)r(T) + w(T)r(S). (3.1)

Remark 3.2. The upper bound of (3.1) goes back to the work of Chevet [21] (see also

[28] for sharper constant). It can be derived using Sudakov–Fernique’s inequality (see

Theorem 8.7.1 and Exercise 8.7.4 in [69]). The lower bound is an easy exercise.
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On �p-Gaussian–Grothendieck Problem 15

Chevet’s inequality helps us find the correct scaling of the p-to-q operator norms

of Gaussian matrices and perhaps surprisingly, it can be used to even pin down the

limiting constants for some choices of p and q. In Section 3.2, we use this knowledge to

identify the correct scaling for our �p-Grothendieck problem, which may not be obvious

at the 1st glance. To elaborate how Chevet’s inequality provides bounds for the operator

norms, for p, q ∈ [1, ∞], write

‖Gn‖p→q = max
x∈Bn

p

‖Gnx‖q = sup
x∈Bn

p ,y∈Bn
q∗

〈Gnx, y〉,

where Bn
r := {x ∈ Rn : ‖x‖r ≤ 1} denotes the unit �r-ball in Rn. Note that

r(Bn
r ) =

⎧⎨⎩ 1, if 1 ≤ r < 2,

n
1
r∗ − 1

2 , if 2 ≤ r ≤ ∞,
= n( 1

r∗ − 1
2 )+ = n( 1

2 − 1
r )+ , (3.2)

and from [26, Example 3.5.4] and [8, Proposition 3],

w(Bn
r ) = E‖g‖r∗ =

⎧⎪⎪⎨⎪⎪⎩
√

2 log n(1 + o(1)), if r = 1,

ξr∗n1/r∗ + O(n1/r∗−1), if 1 < r < ∞,

ξ1n, if r = ∞,

(3.3)

where g is an n-dimensional standard Gaussian vector. For 1 ≤ a, b ≤ ∞, set p(a, b) =
(1/a − 1/2)+ + 1/b. By plugging S = Bn

q∗ and T = Bn
p into (3.1), a direct computation using

(3.2) and (3.3) readily yields the following proposition.

Proposition 3.3. The following two-sided bounds are valid.

(i) For p = 1 and q = ∞,

(1 + o(1))
√

2 log n ≤ E‖Gn‖p→q ≤ 2(1 + o(1))
√

2 log n.

(ii) For 1 < p ≤ ∞ and 1 ≤ q < ∞, if p(q, p∗) = p(p∗, q),

(1 + o(1)) max
(
ξp∗ , ξq

)
np(p∗,q) ≤ E‖Gn‖p→q ≤ (1 + o(1))

(
ξp∗ + ξq

)
np(p∗,q).

In the complement of the above cases of (p, q), one of the terms w(Bn
p)r(Bn

q∗) and

w(Bn
q∗)r(Bn

p) strictly dominates the other as n tends to infinity and as a result, we can

locate the limiting constants of the scaled E‖Gn‖p→q.
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16 W.-K. Chen and A. Sen

Proposition 3.4. The following limits are valid.

(i) For p = 1 and 1 ≤ q < ∞, limn→∞ n−1/qE‖Gn‖p→q = ξq.

(ii) For 1 < p ≤ ∞ and q = ∞, limn→∞ n−1/p∗
E‖Gn‖p→q = ξp∗ .

(iii) For 1 < p ≤ ∞ and 1 ≤ q < ∞, if p(q, p∗) �= p(p∗, q), then

lim
n→∞ n− max(p(q,p∗),p(p∗,q))E‖Gn‖p→q =

{
ξp∗ , if p(q, p∗) > p(p∗, q),

ξq, if p(q, p∗) < p(p∗, q).

Remark 3.5. Note that items (i) and (ii) in Proposition 3.4 are equivalent due to

the duality relation ‖Gn‖p,q = ‖GT
n‖q∗,p∗ . Moreover, if 1 < p < ∞ and q = p∗, then

p(p∗, q) = p(q, p∗), which is equal to 1/p∗ if 1 < p < 2 and 3/2 − 2/p if 2 ≤ p < ∞.

Therefore, by Proposition 3.3, we have that

c
√

log n ≤ E‖Gn‖p→p∗ ≤ C
√

log n, if p = 1,

cn
1

p∗ ≤ E‖Gn‖p→p∗ ≤ Cn
1

p∗ , if 1 < p < 2,

cn
3
2 − 2

p ≤ E‖Gn‖p→p∗ ≤ Cn
3
2 − 2

p , if 2 ≤ p < ∞,

(3.4)

where c, C > 0 are universal constants depending only on p.

3.2 Scalings of the Grothendieck problem

The scalings of the �p-Grothendieck problem for 1 ≤ p < ∞ are obtained in the following

proposition.

Proposition 3.6. We have that

c
√

log n ≤ Emax‖x‖p=1〈Gnx, x〉 ≤ C
√

log n, if p = 1,

cn
1

p∗ ≤ Emax‖x‖p=1〈Gnx, x〉 ≤ Cn
1

p∗ , if 1 < p < 2,

cn
3
2 − 2

p ≤ Emax‖x‖p=1〈Gnx, x〉 ≤ Cn
3
2 − 2

p , if 2 ≤ p < ∞,

where c, C > 0 are universal constants depending only on p.

Proof. First, by Hölder’s inequality,

sup
‖x‖p=1

〈Gnx, x〉 ≤ sup
‖x‖p=1

‖Gnx‖p∗‖x‖p = sup
‖x‖p=1

‖Gnx‖p∗ = ‖Gn‖p→p∗ .
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On �p-Gaussian–Grothendieck Problem 17

From Remark 3.5, the Grothendieck problem shares the same upper bounds as those in

(3.4). The lower bound requires a bit of work. We argue in three cases.

Case 2 ≤ p < ∞. Let w be the �2-normalized eigenvector of the GOE, Ḡn, associated

with the top eigenvalue λ1(Ḡn). It is well known that w equals g/‖g‖2 in distribution for

an n-dimensional standard Gaussian vector g, leading to n1/2−1/p‖w‖p → ξp/ξ2 almost

surely and in L2. Also, λ1(Ḡn)/
√

n → 2 almost surely and in L2. Therefore, we can take

x = w/‖w‖p to obtain that

E sup
‖x‖p=1

〈Gnx, x〉 = 1√
2
E sup

‖x‖p=1
〈Ḡnx, x〉 ≥ 1√

2
E‖w‖−2

p λ1(Ḡn) ≥ cn
3
2 − 2

p ,

for some constant c > 0.

Case 1 < p < 2. Without loss of generality, assume that n is even. We readily bound that

E sup
‖x‖p=1

〈Gnx, x〉 ≥ sup
‖v‖p=2−1/p

E sup
‖u‖p=2−1/p

〈
Gn

(
u

v

)
,

(
u

v

) 〉
,

where u, v ∈ Rn/2. Divide Gn into four smaller blocks of sizes (n/2) × (n/2),

Gn =
[

B11 B12

B21 B22

]
.

Take v = (2−1/p, 0, . . . , 0)T . Clearly, E〈B22v, v〉 = 0, and thus,

E sup
‖u‖p=2−1/p

〈
Gn

(
u

v

)
,

(
u

v

) 〉
= E

[
sup

‖u‖p=2−1/p

(〈B11u, u〉 + 〈(B12 + BT
21)v, u〉)]

= E

[
sup

‖u‖p=2−1/p

(〈B11u, u〉 + 21/2−1/p〈g̃, u〉)],
where g̃ is a standard Gaussian vector in Rn/2. Given g̃, we can choose u∗ = u∗(g̃) with

‖u∗‖p = 2−1/p such that 〈g̃, u∗〉 = 2−1/p‖g̃‖p∗ , which implies that there exists some c′ > 0

such that

E

[
sup

‖u‖p=2−1/p

(〈B11u, u〉 + 21/2−1/p〈g̃, u〉)] ≥ E
[〈B11u∗, u∗〉 + 21/2−1/p‖g̃‖p∗

]
= 21/2−1/pE‖g̃‖p∗ ≥ c′n1/p∗,
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18 W.-K. Chen and A. Sen

where the equality above follows from the fact that E[〈B11u∗, u∗〉|u∗] = 0 since u∗

is independent of B11, whereas the last inequality uses (3.3). Hence, we obtain that

E sup‖x‖p=1〈Gnx, x〉 ≥ c′n1/p∗.

Case p = 1. A matching lower bound can be easily obtained by optimizing only over the

coordinate vectors ei yielding Emax‖x‖1=1〈Gnx, x〉 ≥ Emaxi∈[n] gii = √
2 log n(1 + o(1)). �

3.3 Concentration and maximal inequalities

We collect some Gaussian bounds that will be of great use throughout the rest of this

paper. We start with the well-known concentration inequality for the Lipschitz function

of a standard Gaussian vector states (see, e.g., [9, Theorems 5.5 and 5.6]).

Lemma 3.7 (Gaussian concentration). Let g be a standard Gaussian vector in Rn. Let

F : Rn → R be a L-Lipschitz function, that is, |F(x) − F(y)| ≤ L‖x − y‖2 for all x, y ∈ Rn.

Then,

Ees(F(g)−EF(g)) ≤ e
s2L2

2 , ∀s ∈ R (3.5)

and

P(|F(g) − EF(g)| ≥ s) ≤ 2e− s2

2L2 , ∀s > 0. (3.6)

Remark 3.8. Let 1 ≤ p ≤ 2. From Lemma 3.7, for any non-empty S, T ⊆ Bn
p , and any

s > 0,

P

(∣∣∣sup
x∈S

〈x, Gnx〉 − E sup
x∈S

〈x, Gnx〉
∣∣∣ ≥ s

)
≤ 2e−s2/2, (3.7)

P

(∣∣∣ sup
x∈S,y∈T

〈x, Gny〉 − E sup
x∈S,y∈T

〈x, Gny〉
∣∣∣ ≥ s

)
≤ 2e−s2/2. (3.8)

To see this, note that the functions Gn �→ 〈x, Gnx〉 and Gn �→ supx∈S,y∈T〈x, Gny〉 are

Lipschitz continuous with respect to ‖ · ‖F , the Frobenius norm. The former case has

the Lipschitz constant, supx∈S ‖x‖2, whereas the latter case has the Lipschitz constant

supx∈S,y∈T ‖x‖2‖y‖2. Both of these Lipschitz constants are bounded above by 1 by the

assumption that p ≤ 2.
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On �p-Gaussian–Grothendieck Problem 19

Remark 3.9. Let 2 < p < ∞. It can be shown that GPn,p and Ln,p,u(t) are n−1/2 and

un−1/2-Lipschitz with respect to ‖ · ‖F , respectively. From Lemma 3.7,

P
(∣∣GPn,p − EGPn,p

∣∣ ≥ s
) ≤ 2e− ns2

2 , ∀s > 0, (3.9)

P
(∣∣Ln,p,u(t) − ELn,p,u(t)

∣∣ ≥ s
) ≤ 2e− ns2

2u2 , ∀s > 0. (3.10)

Remark 3.10. We also mention the following concentration bound for the �∞-norm

of a standard Gaussian vector g in Rn (see [56, Corollary 4.10] and [10, 60]), which is

an improvement upon the one obtained from the preceding Gaussian concentration

inequality. There exist absolute constants c, C > 0 such that for all n ≥ 1 and for all

ε ∈ (0, 1),

P(
∣∣‖g‖∞ − E‖g‖∞

∣∣ ≥ εE‖g‖∞) ≤ Cn−cε. (3.11)

Recall that a mean zero random variable X is called σ 2-subgaussian if EetX ≤
et2σ2/2 holds for all t ∈ R. The following result gives a crude bound of the maxima of a

collection of subgaussian random variables (see [68, Lemma 5.1]).

Lemma 3.11 (Maximal inequality). Let X1, X2, . . . , Xm be a collection (not necessarily

independent) of centered σ 2-subgaussian random variables. Then,

E max
1≤i≤m

Xi ≤
√

2σ 2 log m.

4 Proof of Theorem 1.1

In this section, we provide a proof of Theorem 1.1. We begin with part (i).

Proof of (i). In view of the identity 〈Gnx, x〉 = 2−1/2〈Ḡnx, x〉, it suffices to prove that

1√
log n

max‖x‖1=1
〈Ḡnx, x〉 → 2, almost surely.
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20 W.-K. Chen and A. Sen

Note that the diagonal entries of the symmetric matrix Ḡn are ḡii = √
2gii, whereas the

off-diagonal entries are equal to ḡij = (gij + gji)/
√

2. We bound

〈Ḡnx, x〉 = √
2
∑

i

giix
2
i + 2

∑
i<j

ḡijxixj ≤ max
(√

2 max
i

gii, max
i<j

|ḡij|
)(∑

i

x2
i + 2

∑
i<j

|xi||xj|
)

= max
(√

2 max
i

gii, max
i<j

|ḡij|
)‖x‖2

1,

which leads to that

1√
log n

max‖x‖1=1
〈Ḡnx, x〉 ≤ max

(√
2 maxi gii, maxi<j |ḡij|

)√
log n

. (4.1)

It is a well-known fact (see, e.g., [26, Example 3.5.4]) that if z1, z2, . . . is a sequence of

i.i.d. N(0, 1), then (2 log n)−1/2 maxi∈[n] zi → 1 almost surely. Consequently, the following

limits exist almost surely.

lim
n

√
2 maxi gii

2
√

log n
= 1 and lim

n→∞
maxi<j |ḡij|

2
√

log n
= lim

n→∞ max
(maxi<j ḡij√

2 log
(n

2

) ,
maxi<j(−ḡij)√

2 log
(n

2

) )
= 1.

Plugging the above limits in (4.1), we have the upper bound

lim sup
n→∞

1√
log n

max‖x‖1=1
〈Ḡnx, x〉 ≤ 2.

For the lower bound, we optimize over just the coordinate vectors ei, i ∈ [n] to obtain

lim inf
n→∞

1√
log n

max‖x‖1=1
〈Ḡnx, x〉 ≥ lim inf

n→∞
1√

log n
max

i

√
2gii = 2.

This completes the proof of (1.3). �

Proof of (ii). We realize that max‖x‖1=1〈Ḡnx, x〉 ≥ maxi∈[n]

√
2gii and then proceed to

prove (1.4) as

P
(

max
i∈[n]

gii ≤ √
2(1 − η) log n

) = P
(
g11 ≤ √

2(1 − η) log n
)n

≤ (
1 − e−(1−η) log n)n = (

1 − n−(1−η)
)n ≤ e−nη

,

where the 1st inequality above follows from the Gaussian tail bound P(z > t) ≤ e−t2/2

for all t > 0 and the last inequality uses the bound 1 − t ≤ e−t for all t ∈ R. �
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On �p-Gaussian–Grothendieck Problem 21

Proof of (iii). For x with ‖x‖1 = 1 and ‖x‖∞ ≤ 1 − δ, we have

|(Ḡnx)i| ≤
∑
j∈[n]

|ḡij||xj| ≤ (1 − δ)Xi,(1) + δXi,(2), i ∈ [n],

where Xi,(1) and Xi,(2) denote the largest and the 2nd largest values among the absolute

values of the entries of the i-th row of Ḡn. Then,

max‖x‖1=1,‖x‖∞≤1−δ
〈Ḡnx, x〉 ≤ max

i∈[n]

(
(1 − δ)Xi,(1) + δXi,(2)

) ≤ (1 − δ) max
i∈[n]

Xi,(1) + δ max
i∈[n]

Xi,(2).

(4.2)

Therefore, we need to bound the maxima, maxi∈[n] Xi,(1) and maxi∈[n] Xi,(2). Note that

max
i∈[n]

Xi,(1) = max
(√

2 max
i

|gii|, max
i<j

|ḡij|
)
.

Here, from Lemma 3.11,

Emax
i

|gii| = Emax
(
g11, −g11, . . . , gnn, −gnn

) ≤ √
2 log 2n.

Therefore, (3.11) implies that for δ ∈ (0, 1),

P(max
i

|gii| ≥ (1 + δ/22)
√

2 log(2n)) ≤ C′n−c′δ,

where c′, C′ are positive universal constants. We reapply the above tail bound to the

maximum of
(n

2

)
i.i.d. standard Gaussian random variables (ḡij)1≤i<j≤n and then use the

union bound to deduce that

P
(

max
i∈[n]

Xi,(1) ≥ 2(1 + δ/22)
√

log(2n)
) ≤ C′′n−c′′δ

for some positive constants c′′ and C′′. Let K = 10
√

2/11 ∈ (
√

3/2,
√

2). From the usual

Gaussian tail bound, denote

θn := P(
√

2|z| ≥ K
√

2 log n) = O(n−K2/2), φn := P(|z| ≥ K
√

2 log n) = O(n−K2
).
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22 W.-K. Chen and A. Sen

Note that Xi,(2) ≥ K
√

2 log n implies that at least two of (ḡij)1≤j≤n are not less than

K
√

2 log n. By using the union bound,

P(Xi,(2) ≥ K
√

2 log n) ≤ P(
√

2|gii| ≥ K
√

2 log n and |ḡij| ≥ K
√

2 log n for some j �= i)

+ P(|ḡij|, |ḡij′ | ≥ K
√

2 log n for some distinct j, j′ �= i)

≤ (n − 1)θnφn +
(

n − 1

2

)
φ2

n = O(n−(3K2/2−1)) + O(n−(2K2−2)),

which, by noting that our choice of K implies 3K2/2 − 2 > 2K2 − 3 and using the union

bound again, implies that

P(max
i∈[n]

Xi,(2) ≥ K
√

2 log n) = O(n−(3K2/2−2)) + O(n−(2K2−3)) = O(n−(2K2−3)).

Note that the exponent 2K2 − 3 is positive. Therefore, for all 0 < δ ≤ min((2K2 −
3)/c′′, 1), on the event where both the bounds maxi∈[n] Xi,(1) ≤ 2(1 + δ/22)

√
log(2n)

and maxi∈[n] Xi,(2) ≤ K
√

2 log n are satisfied, which occurs with probability at least

1 − O(n−(2K2−3)) − O(n−c′′δ) = 1 − O(n−c′′δ), we have, by a direction of computation,

(1 − δ) max
i∈[n]

Xi,(1) + δ max
i∈[n]

Xi,(2) ≤ 2(1 + δ/22)
√

log(2n)(1 − δ) + Kδ
√

2 log n

= √
2
(
1 − δ/22

)√
2 log(2n)

≤ √
2
(
1 − δ/22 +√

log 2/ log n
)√

2 log n,

where the last inequality used
√

a + b ≤ √
a + √

b for all a, b ≥ 0. Finally, this inequality

and (4.2), coupled with the fact that 〈Gnx, x〉 = 2−1/2〈Ḡnx, x〉, yield (1.5). �

5 Proof of Theorem 1.2

In order to prove Theorem 1.2, we first begin with some preparation in the following

subsection.

5.1 Preliminary bounds

For a given truncation level ε > 0, set

D = Bn
p ∩ {x ∈ Rn : ‖x‖∞ ≤ ε} and L = Bn

p ∩ {x ∈ Rn : |xi| �= 0 ⇒ |xi| > ε for each i}.
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On �p-Gaussian–Grothendieck Problem 23

For x ∈ Rn, we can uniquely decompose x = xo + x† with xo ∈ D and x† ∈ L by setting

xo
i = xi1(|xi| ≤ ε) and x†

i = xi1(|xi| > ε) for each i. (5.1)

Note that x† carries the localized part of x, whereas xo is the remaining delocalized part

of x. With these notations in hand, we are ready to state two crucial propositions.

Proposition 5.1. Let 1 < p < 2. There exists a constant C > 0 such that the following

statements are valid.

(i) For any ε > 0 and n ≥ 1,

E sup
S⊆Bn

p

∣∣∣max
x∈S

〈Gnx, x〉 − √
2 max

x∈S
〈Ḡnxo, x†〉

∣∣∣ ≤ C
(
ε1−p/2n1/p∗ + ε−p/p∗√

log n
)
.

(5.2)

(ii) For any ε > 0, c > 0, and n ≥ 1, with probability at least 1 − 2n−c,

sup
S⊆Bn

p

∣∣∣max
x∈S

〈Gnx, x〉 − √
2 max

x∈S
〈Ḡnxo, x†〉

∣∣∣
≤ C

(
ε1−p/2n1/p∗ + ε−p/p∗√

log n
)+ 2

√
2c log n. (5.3)

Since the �p-Grothedieck problem scales as n1/p∗
for 1 < p < 2, the above

proposition says that the main contribution of �p-Grothendieck problem on an arbitrary

subset S of Bn
p comes from the cross-term

√
2 maxx∈S〈Ḡnxo, x†〉 as long as ε = εn satisfies

that lim supn→∞ ε = 0 and lim infn→∞ εn1/p/(log n)p∗/(2p) = ∞. The next result then

provides an upper bound on this cross-term in terms of the maximum number of

localized coordinates of the vectors in S. For x ∈ Rn, recall that ‖x‖0 denotes the number

of nonzero entries of x.

Proposition 5.2. There exists a constant C such that for any 1 ≤ s ≤ n and any subset

L# ⊆ {x : ‖x‖p ≤ 1, ‖x‖0 ≤ s},

E sup
x∈L#,y∈Bn

p

〈y, Ḡnx〉 ≤ r(L#)E‖g‖p∗ + C
(
np/(2p∗)√log n + s1/p∗√

log n
)
,

where g is an n-dimensional standard Gaussian vector.
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24 W.-K. Chen and A. Sen

Remark 5.3. The bound in Proposition 5.2 will mainly be used in the proof of (1.8) in

Theorem 1.2. The key feature here is that the term r(L#)E‖g‖p∗ is asymptotically sharp up

to an additive error of smaller order for some properly chosen s = o(n) and L#, yielding

the correct limit of the �p-Grothendieck problem. If we replace Ḡn with Gn, then we

could also directly apply Chevet’s inequality to obtain

E sup
x∈L#,y∈Bn

p

〈y, Gnx〉 = E sup
x∈L#,y∈Bn

p

〈y, GT
nx〉 ≤ r(L#)E‖g‖p∗ + Cs1/p∗√

log n,

which implies that, by recalling Ḡn = (Gn + GT
n)/

√
2,

E sup
x∈L#,y∈Bn

p

〈y, Ḡnx〉 ≤ √
2r(L#)E‖g‖p∗ + Cs1/p∗√

log n.

However, this extra prefactor
√

2 in front of r(L#)E‖g‖p∗ makes the bound sub-optimal.

We establish the above two propositions in the rest of this subsection. The next

lemma bounds the Gaussian width of sparse sets.

Lemma 5.4. Fix p > 1 and s ≤ n. Let W = {x ∈ Rn : ‖x‖p ≤ 1, ‖x‖0 ≤ s}. Then,

w(W) ≤ √
2s1/p∗√

log n.

Proof. Observe that for any subset I of {1, 2, . . . , n},

max
‖x‖p≤1,supp(x)=I

〈g, x〉 =
(∑

i∈I

|gi|p
∗)1/p∗

.

Therefore, by Lemma 3.11, we have

w(W) = E sup
x∈W

〈g, x〉 ≤ Emax|I|≤s

(∑
i∈I

|gi|p
∗)1/p∗

≤ s1/p∗
Emax

i
|gi| ≤ s1/p∗√

2 log n.

�

Proof of Proposition 5.1. Let ε > 0 be fixed. Write, according to (5.1),

〈Gnx, x〉 = √
2〈Ḡnxo, x†〉 + 〈Gnxo, xo〉 + 〈Gnx†, x†〉,
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On �p-Gaussian–Grothendieck Problem 25

and then, use the triangle inequality to bound

sup
S⊆Bn

p

∣∣∣max
x∈S

〈Gnx, x〉 − √
2 max

x∈S
〈Ḡnxo, x†〉

∣∣∣ ≤ max‖x‖p=1
|〈Gnxo, xo〉| + max‖x‖p=1

|〈Gnx†, x†〉|

≤ max
x∈D

|〈Gnx, x〉| + max
x∈L

|〈Gnx, x〉|. (5.4)

Note that as D and L are symmetric, that is, D = −D and L = −L, we have

max
x∈D

|〈Gnx, x〉| ≤ max
x,y∈D

〈Gnx, y〉, max
x∈L

|〈Gnx, x〉| ≤ max
x,y∈L

〈Gnx, y〉.

Applying Chevet’s inequality with S = T = D, we have Emaxx,y∈D〈Gnx, y〉 ≤ 2w(D)r(D).

We can bound the Guassian width of D by that of Bn
p to obtain w(D) ≤ w(Bn

p) = E‖g‖p∗ ≤
Cn1/p∗

, using (3.3). On the other hand, for x ∈ D, we have
∑

i |xi|2 ≤ ε2−p∑
i |xi|p ≤ ε2−p.

Hence, r(D) ≤ ε1−p/2, and therefore,

Emax
x∈D

|〈Gnx, x〉| ≤ 2Cε1−p/2n1/p∗. (5.5)

Similarly, we have Emaxx,y∈L〈Gnx, y〉 ≤ 2w(L)r(L). Obviously, r(L) = 1. Note that if x ∈ L,

then ‖x‖0 ≤ ε−p. Hence, by Lemma 5.4, we have w(L) ≤ √
2ε−p/p∗√

log n and this yields

Emax
x∈L

|〈Gnx, x〉| ≤ 2
√

2ε−p/p∗√log n. (5.6)

Now, (5.2) follows from (5.4)–(5.6) after taking C sufficiently large. To prove (5.3), note

that Gn �→ maxx∈D |〈Gnx, x〉| and Gn �→ maxx∈L |〈Gnx, x〉| are 1-Lipschitz with respect to

the Frobenius norm. For any c > 0, using (3.6) with s = √
2c log n, (5.5), and (5.6) yields

that with probability at least 1 − 2n−c,

max
x∈D

|〈Gnx, x〉| + max
x∈L

|〈Gnx, x〉| ≤ 2Cε1−p/2n1/p∗√log n + 2
√

2ε−p/p∗√log n + 2
√

2c log n.

Consequently, it follows from (5.4) that (5.3) is valid with probability at least

1 − 2n−c. �

Proof of Proposition 5.2. For any x ∈ L#, write x = xo + x† as in (5.1) by setting

ε = n−1/p∗
. Then xo satisfies that ‖xo‖p ≤ 1, ‖xo‖∞ ≤ ε, and ‖xo‖0 ≤ s. On the other

hand, since any non-zero entry of x† satisfies |x†
i | ≥ ε, it follows that ‖x†‖0εp ≤ ‖x‖p

p ≤ 1,
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26 W.-K. Chen and A. Sen

which implies that ‖x†‖0 ≤ ε−p. So, we have

L# ⊆ U + V := {x + x′ : x ∈ U, x′ ∈ V},

where

U = {x : ‖x‖p ≤ 1, ‖x‖∞ ≤ ε, ‖x‖0 ≤ s}, V = L# ∩ {x : ‖x‖0 ≤ ε−p}.

Then, by triangle inequality,

E sup
x∈L#,y∈Bn

p

〈y, Ḡnx〉 ≤ E sup
x∈U,y∈Bn

p

〈y, Ḡnx〉 + E sup
x∈V,y∈Bn

p

〈y, Ḡnx〉 = (I) + (II).

Bounding (I): Since Gn
d= GT

n, we have (I) ≤ √
2E supx∈U,y∈Bn

p
〈y, Gnx〉. By Chevet’s

inequality,

E sup
x∈U,y∈Bn

p

〈y, Gnx〉 ≤ r(U)w(Bn
p) + r(Bn

p)w(U).

Arguing similarly as we did in the proof of Proposition 5.1, r(U) ≤ ε1−p/2 and r(Bn
p) = 1.

Moreover, we have w(Bn
p) = E‖g‖p∗ ≤ C1n1/p∗

and w(U) ≤ √
2s1/p∗√

log n (by Lemma 5.4).

Therefore, we obtain

(I) ≤ √
2C1ε1−p/2n1/p∗ + 2s1/p∗√

log n = √
2C1np/(2p∗) + 2s1/p∗√

log n.

Bounding (II): Note that (II) = E supx∈V ‖Ḡnx‖p∗ . Let δ = n−1. Since each x ∈ V is

supported by at most ε−p coordinates, we can choose a δ-net Nδ of V with respect to

‖ · ‖p-norm such that the cardinality of Nδ is at most O((nδ−1)ε
−p

). We now bound

E sup
x∈V

‖Ḡnx‖p∗ ≤ Emax
x∈Nδ

‖Ḡnx‖p∗ + E sup
x,x′∈Bn

p :‖x−x′‖p≤δ

‖Ḡn(x − x′)‖p∗

≤ Emax
x∈Nδ

‖Ḡnx‖p∗ + δE‖Ḡn‖p→p∗ ≤ Emax
x∈Nδ

‖Ḡnx‖p∗ + O(1),

where in the last step, we used the bound E‖Ḡn‖p→p∗ ≤ √
2E‖Gn‖p→p∗ ≤ C2n1/p∗

from

Remark 3.5.

Next, for each x ∈ Bn
p , the function Gn �→ ‖Ḡnx‖p∗ = supy∈Bn

p
〈y, Ḡnx〉 is

Lipschitz continuous with respect to the Frobenius norm with Lipschitz constant
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On �p-Gaussian–Grothendieck Problem 27

√
2 supy∈Bn

p
‖y‖2‖x‖2 ≤ √

2. Hence, (3.5) yields

Eet(‖Ḡnx‖p∗−E‖Ḡnx‖p∗ ) ≤ et2
, ∀x ∈ Bn

p , t ∈ R.

In other words, the random variable ‖Ḡnx‖p∗ − E‖Ḡnx‖p∗ is 2-subgaussian. Therefore,

by Lemma 3.11,

Emax
x∈Nδ

(‖Ḡnx‖p∗ − E‖Ḡnx‖p∗) ≤
√

4 log |Nδ| = O(ε−p/2
√

log n) = O(np/(2p∗)√log n).

From the above estimates, we deduce that

E sup
x∈V

‖Ḡnx‖p∗ ≤ sup
x∈V

E‖Ḡnx‖p∗ + O(np/(2p∗)√log n). (5.7)

It remains to estimate E‖Ḡnx‖p∗ . For any x ∈ Rn, we have Ḡnx
d= ‖x‖2g + zx, where g,

as always, is the standard normal vector on Rn and z is an independent N(0, 1) random

variable. Therefore, for any x ∈ Bn
p ,∣∣∣E‖Ḡnx‖p∗ − E‖g‖p∗‖x‖2

∣∣∣ ≤ ‖x‖p∗E|z| ≤ 1.

Consequently,

sup
x∈V

E‖Ḡnx‖p∗ ≤ r(V)E‖g‖p∗ + 1 ≤ r(L#)E‖g‖p∗ + 1. (5.8)

Combining (5.7) and (5.8), we obtain that

(II) ≤ r(L#)E‖g‖p∗ + O(np/(2p∗)√log n),

completing the proof of the proposition. �

5.2 Proof of (1.9): the lower bound

For convenience, throughout this proof, for three sequences of random variables

(Xn)n≥1, (Yn)n≥1, and (Zn)n≥1, we denote

Xn = Yn + O
P
(Zn) (5.9)

if for any d > 0, there exists some C > 0 such that P(Xn ≤ Yn + CZn) = 1 − O(n−d) for all

n ≥ 1.
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28 W.-K. Chen and A. Sen

The proof of (1.9) is argued as follows. Expanding

〈vi + ei, Gn(vi + ei)〉 = 〈vi, Gnvi〉 + 〈ei, Gnei〉 + √
2〈vi, Ḡnei〉,

we have

min
i

〈vi + ei, Gn(vi + ei)〉 ≥ min
i

√
2〈vi, Ḡnei〉 − max

i
|〈vi, Gnvi〉| − max

i
|〈ei, Gnei〉|. (5.10)

We will control each term on the right-hand side. First, we handle the middle one as

follows. Since ‖Ḡnei‖p∗ − E‖Ḡnei‖p∗ is 2-subgaussian,

P
(
max

i

∣∣‖Ḡnei‖p∗ − E‖Ḡnei‖p∗
∣∣ > s

) ≤ 2ne−s2/4. (5.11)

Write, by Jensen’s inequality and (3.3),

E‖Ḡnei‖p∗ = E‖Ḡne1‖p∗ ≥ E‖g‖p∗ = ξp∗n1/p∗(
1 − an), (5.12)

for some an satisfying 0 < an = O(n−1) and g a standard Gaussian vector. Plugging

(5.12) into (5.11) yields

P
(
min

i
‖Ḡnei‖p∗ ≥ ξp∗n1/p∗

(1 − an) + s
) ≤ 2ne−s2/4.

Using the well-known lower bound of Gaussian tail P(|z| ≥ t) ≥ 2t(t2 + 1)−1e−t2/2 for

t > 0, we have

P
(
max

i≤j
|Ḡn(i, j)| ≤ s

)=P(|z| ≤ s)n(n−1)/2P(
√

2|z| ≤ s)n ≥P(
√

2|z|≤s)n2 ≥
(
1 − 2

√
2s

s2 + 2
e−s2/4

)n2

.

Combining the above bounds and recalling (1.6), we have that for any s > 0 and

sufficiently large n,

P

(
max

i
‖vi‖∞ ≤ 2sp∗/p

ξ
p∗/p
p∗ n1/p

)
≥ P

(
max

i
‖vi‖∞ ≤ sp∗/p(

ξp∗n1/p∗(1 − an) + s
)p∗/p

)

≥
(
1 − 2

√
2s

s2 + 2
e−s2/4

)n2

− 2ne−s2/4

≥
(
1 − 2

√
2

s
e−s2/4

)n2

− 2ne−s2/4.
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On �p-Gaussian–Grothendieck Problem 29

As a result, for any d > 0, if we let s = ξp∗
√

8(1 + d) log n, then for

ε := 2(8(1 + d) log n)p∗/(2p)n−1/p,

P
(
max

i
‖vi‖∞ ≤ ε

) ≥
(
1 − 2

√
2

n2(1+d)ξ2
p∗ ξp∗

√
8(1 + d) log n

)n2

− 2

n(1+d)ξ2
p∗−1

≥ 1 − 2
√

2

n2(1+d)ξ2
p∗−2

ξp∗
√

8(1 + d) log n
− 2

n2(1+d)ξ2
p∗−1

≥ 1 − C

nd (5.13)

for some universal constant C > 0, where the 2nd inequality used the fact that for m ≥ 1,

(1 − x)m ≥ 1 − mx for any 0 ≤ x ≤ 1 and the 3rd inequality is valid because ξp∗ ≥ 1. Now,

on the event maxi ‖vi‖∞ ≤ ε, we can bound maxi |〈vi, Gnvi〉| ≤ sup‖x‖p≤1,‖x‖∞≤ε |〈x, Gnx〉|.
As argued in the proof of Proposition 5.1,

E sup
‖x‖p≤1,‖x‖∞≤ε

|〈x, Gnx〉| = O(ε1− p
2 n

1
p∗ )

= O((log n)
(1− p

2 )
p∗
2p n

−(1− p
2 ) 1

p + 1
p∗ ) = O(n

− 1
p + 1

2 + 1
p∗ (log n)p∗/4),

where, in handling the logarithmic term to validate the 3rd equality, we used

(1 − p/2)/p ≤ 1/2. Consequently, from (5.13) and the Gaussian concentration (3.7),

max
i

|〈vi, Gnvi〉| = O
P
(n

− 1
p + 1

2 + 1
p∗ (log n)p∗/4 +√

log n). (5.14)

To control the 3rd term of (5.10), note that maxi |〈ei, Gnei〉| ≤ maxi |gii| and

Emaxi |gii| ≤ √
2 log n. Since maxi |gii| is 1-Lipschitz with respect to the ‖ · ‖2-norm,

it follows that

max
i

|〈ei, Gnei〉| = O
P
(
√

log n). (5.15)

Finally, the 1st term of (5.10) can be handled as follows. Note that 〈vi, Ḡnei〉 = ‖Ḡnei‖p∗ .

Write

min
i

‖Ḡnei‖p∗ ≥ min
i

E‖Ḡnei‖p∗ − max
i

∣∣‖Ḡnei‖p∗ − E‖Ḡnei‖p∗
∣∣.

Here, from (5.11),

max
i

∣∣‖Ḡnei‖p∗ − E‖Ḡnei‖p∗
∣∣ = O

P
(
√

log n),
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30 W.-K. Chen and A. Sen

which together with (5.12) implies that

min
i

‖Ḡnei‖p∗ = ξp∗n1/p∗ − O
P
(
√

log n). (5.16)

Finally, combining (5.16), (5.10), (5.14), and (5.15), we have

min
i

〈vi + ei, Gn(vi + ei)〉 = √
2ξp∗n1/p∗ − O

P
(n

− 1
p + 1

2 + 1
p∗ (log n)p∗/4 +√

log n). (5.17)

From the definition of vi and the fact that ||1 + x|p − 1 − |x|p| ≤ 2pp|x|,

max
i

∣∣‖vi + ei‖p
p − 2

∣∣ = max
i

∣∣|1 + vi(i)|p − 1 − |vi(i)|p
∣∣ ≤ 2pp max

i
|vi(i)|. (5.18)

Hence, from (5.13),

max
i

∣∣‖vi + ei‖p
p − 2

∣∣ = O
P
((log n)p∗/(2p)n−1/p).

The desired lower bound (1.9) follows from (5.17) after dividing both sides by ‖vi + ei‖2
p.

This completes our proof.

5.3 Proof of (1.8): the upper bound

By the virtue of (1.9), it remains to establish the upper bound. Let S be a non-empty

subset of Bn
p and ε = n−2/(pp∗). For this ε and any x ∈ S, write according to (5.1),

x = xo + x†. Applying (5.2) yields

Emax
x∈S

〈Gnx, x〉 ≤ √
2Emax

x∈S
〈xo, Ḡnx†〉 + O(n2/p∗2√

log n).

Since xo and x† have disjoint supports, ‖xo‖p
p + ‖x†‖p

p = ‖x‖p
p ≤ 1. After normalizing xo

and x† by their �p-norms, we write

Emax
x∈S

〈xo, Ḡnx†〉 = Emax
x∈S

‖xo‖p‖x†‖p

〈
xo

‖xo‖p
, Ḡn

x†

‖x†‖p

〉

≤ 2−2/pEmax
x∈S

〈
xo

‖xo‖p
, Ḡn

x†

‖x†‖p

〉
≤ 2−2/pE max

x∈S,y∈Bn
p

〈
y, Ḡn

x†

‖x†‖p

〉
,
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On �p-Gaussian–Grothendieck Problem 31

where we used the fact that the product ‖xo‖p‖x†‖p is maximized if ‖xo‖p
p = ‖x†‖p

p = 1/2.

Denote L# = {x†/‖x†‖p : x ∈ S}. Since ‖x†‖0 ≤ ε−p for all x ∈ S, Proposition 5.2 yields

E max
x∈S,y∈Bn

p

〈
y, Ḡn

x†

‖x†‖p

〉
≤ r(L#)E‖g‖p∗ + O((np/(2p∗) + n2/p∗2

)
√

log n)

= r(L#)E‖g‖p∗ + O(np/(2p∗)√log n),

the last equality being a consequence of the fact pp∗ ≥ 4. Combining the above

estimates, we arrive at

Emax
x∈S

〈Gnx, x〉 ≤ 21/22−2/pr(L#)E‖g‖p∗ + O(np/(2p∗)√log n). (5.19)

Since ‖x†‖2 ≤ ‖x†‖p, we have r(L#) ≤ 1. Consequently, using (3.3) in (5.19), we obtain that

E max‖x‖p=1
〈Gnx, x〉 ≤ 21/2−2/pξp∗n1/p∗ + O(np/(2p∗)√log n).

Now, the Gaussian concentration (3.7) ensures that

max‖x‖p=1
〈Gnx, x〉 = 21/2−2/pξp∗n1/p∗ + O

P
(np/(2p∗)√log n), (5.20)

where the notion O
P

is defined in (5.9). Finally, the upper bound (5.20), combined with

the lower bound (1.9) and the fact that p < 2, implies (1.8).

6 Proof of Theorem 1.4: The Stability Bound

For each i ∈ [n], define three vectors,

oi = vi + ei

‖vi + ei‖p
, oo

i = vi − vi(i)ei

‖vi + ei‖p
, o†

i = (1 + vi(i))ei

‖vi + ei‖p
.

Obviously, o†
i /‖o†

i ‖p = ei. Note that a direct computation gives

‖o†
i ‖p = |1 + vi(i)|

‖vi + ei‖p
, ‖oo

i ‖p = (1 − |vi(i)|p)1/p

‖vi + ei‖p
and

∥∥ oo
i

‖oo
i ‖p

− vi

∥∥
p = ∥∥ vi − vi(i)ei

‖vi − vi(i)ei‖p
− vi

∥∥
p = (

(1 − (1 − |vi(i)|p)1/p)p + |vi(i)|p
)1/p

≤ 1 − (1 − |vi(i)|p)1/p + |vi(i)| ≤ 2|vi(i)|.
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32 W.-K. Chen and A. Sen

The above results and (5.18) imply that if 2pp maxi ‖vi‖∞ ≤ 1, then there exists a

constant K ≥ 1 such that

max
(
max

i
|‖oo

i ‖p − 2−1/p|, max
i

|‖o†
i ‖p − 2−1/p|, max

i

∥∥ oo
i

‖oo
i ‖p

− vi

∥∥
p

)
≤ K max

i
‖vi‖∞. (6.1)

Next, in view of the proof of (1.8), we continue to work with the same

ε = n−2/(pp∗). Fix 0 < κ < 1/(3p), and let n−κ ≤ δ ≤ 1. Let M ≥ 1 set

δ = 1

100M
min

(
δ, 2− 1

2p
)
. (6.2)

Define An = {
maxi ‖vi‖∞ ≤ min(ε, δ3/K)

}
. Since κ < 1/(3p) and p∗ > 2, using (5.13) yields

that for any d > 0, there exists a universal constant C > 0 such that

P(An) ≥ 1 − Cn−d. (6.3)

On the event An, we readily see that 2pp maxi ‖vi‖∞ ≤ 8 maxi ‖vi‖∞ ≤ 1, and from (6.1),

max
i

|‖oo
i ‖p − 2−1/p| ≤ δ3, (6.4)

max
i

|‖o†
i ‖p − 2−1/p| ≤ δ3, (6.5)

max
i

∥∥ oo
i

‖oo
i ‖p

− vi

∥∥
p ≤ δ3. (6.6)

Let S = {x : ‖x‖p = 1, dist(x, O) ≥ δ}. Define S1 = {
x : ‖x‖p = 1, |‖x†‖p − 2−1/p| ≥ δ3

}
and

S2 = {
x : ‖x‖p = 1, |‖x†‖p − 2−1/p| ≤ δ3, min

(∥∥ x†

‖x†‖p
− ei

∥∥
p,
∥∥ x†

‖x†‖p
+ ei

∥∥
p

) ≥ δ3 for all i
}
.

Also, let S3 be the collection of all x ∈ S satisfying that |‖x†‖p − 2−1/p| ≤ δ3 and there

exists some i such that either

(∥∥∥ x†

‖x†‖p
− ei

∥∥∥
p

≤ δ3,
∥∥∥ xo

‖xo‖p
− vi

∥∥∥
p

≥ δ

)
or

(∥∥∥ x†

‖x†‖p
+ ei

∥∥∥
p

≤ δ3,
∥∥∥ xo

‖xo‖p
+ vi

∥∥∥
p

≥ δ

)
.

(6.7)

Lemma 6.1. For any M ≥ 1, on the event An, we have that S ⊆ S1 ∪ S2 ∪ S3.
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On �p-Gaussian–Grothendieck Problem 33

Proof. Recall that, on An, Inequalities (6.4)–(6.6) are valid. Take x ∈ S \ (S1 ∪ S2). Then,

|‖x†‖p − 2−1/p| ≤ δ3 and (6.8)

either
∥∥∥ x†

‖x†‖p
− ei

∥∥∥
p

≤ δ3 or
∥∥∥ x†

‖x†‖p
+ ei

∥∥∥
p

≤ δ3 for some i. (6.9)

Assume, for definiteness, that the former condition of (6.9) is valid for some i. To show

that x ∈ S3, we verify that ‖xo/‖xo‖p − vi

∥∥
p ≥ δ as follows. First, note that from (6.5) and

(6.8),

∣∣‖x†‖p − ‖o†
i ‖p

∣∣ ≤ 2δ3.

We claim that ‖x† − o†
i ‖p ≤ 3δ3. If ‖x† − o†

i ‖p > 3δ3, we use the fact that ‖x†‖p ≤ 1 and

the triangle inequality to deduce

∥∥∥ x†

‖x†‖p
− ei

∥∥∥
p

=
∥∥∥ x†

‖x†‖p
− o†

i

‖oi‖p

∥∥∥
p

≥ ‖x† − o†
i ‖p

‖x†‖p
− ‖o†

i ‖p

∣∣∣ 1

‖x†‖p
− 1

‖o†
i ‖p

∣∣∣
= 1

‖x†‖p

(‖x† − o†
i ‖p − |‖x†‖p − ‖o†

i ‖p|) > 3δ3 − 2δ3 = δ3,

which contradicts our assumption that ‖x†/‖x†‖p − ei

∥∥
p ≤ δ3. This validates our claim.

Now, since x ∈ S, we have that ‖x−oi‖p ≥ δ, which, coupled with the fact ‖x†−o†
i ‖p ≤ 3δ3,

leads to

‖xo − oo
i ‖p ≥ ‖x − oi‖p − ‖x† − o†

i ‖p ≥ δ − 3δ3. (6.10)

On the other hand, it follows from (6.8) that

|‖xo‖p − 2−1/p| ≤ 16δ3. (6.11)

Indeed, a straightforward computation using (6.8), (6.2), and the fact 1 = ‖x‖p
p = ‖xo‖p

p +
‖x†‖p

p shows ‖xo‖p ≥ 4−1. Now, by applying the mean value theorem on the function

t �→ tp twice and using (6.8), the assertion (6.11) follows since

4−1
∣∣‖xo‖p − 2−1/p

∣∣ ≤ ∣∣‖xo‖p
p − 2−1

∣∣ = ∣∣‖x†‖p
p − 2−1

∣∣ ≤ 2
∣∣‖x†‖p − 2−1/p

∣∣ ≤ 2δ3.
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34 W.-K. Chen and A. Sen

Now, from (6.4), (6.10), (6.11), and the fact that ‖xo‖p ≤ 1, we obtain that

∥∥∥ xo

‖xo‖p
− oo

i

‖oo
i ‖p

∥∥∥
p

≥ 1

‖xo‖p

(‖xo − oo
i ‖p − |‖xo‖p − ‖oo

i ‖p|)
≥ 1

‖xo‖p

(‖xo − oo
i ‖p − |‖xo‖p − 2−1/p| − |2−1/p − ‖oo

i ‖p|) ≥ δ − 20δ3.

(6.12)

Moreover, another application of triangle inequality on (6.6) and (6.12) and the fact that

δ ≥ 100δ yield

∥∥∥ xo

‖xo‖p
− vi

∥∥∥
p

≥ δ − 21δ3 ≥ δ3.

In the case that the 2nd condition of (6.9) holds, we can similarly show, by using

(6.5) and (6.6), that ‖xo/‖xo‖p + vi

∥∥
p ≥ δ. Therefore, x ∈ S3 and the assertion is

established. �

Lemma 6.2. For any d > 0, there exist constants M ≥ 1 and C, C′ > 0 such for

all sufficiently large n, with probability at least 1 − 8n−d, we have that whenever

n−κ < δ ≤ 1,

max
x∈S1∪S2∪S3

〈Gnx, x〉 ≤ 21/2−2/p(1 − Cδ6)ξp∗n1/p∗ + C′np/(2p∗)√log n. (6.13)

Proof. Throughout this proof, the constants C1, C2, etc. are independent of δ and n. Let

d > 0. Below, we handle each of the cases x ∈ Si for i = 1, 2, 3 separately. Together, they

will complete the proof of the lemma.

Maximization over S1. Note that |1 − ap| ≥ |1 − a| for all a > 0. For x ∈ S1, since

|‖x†‖p − 2−1/p| ≥ δ3, we see that

|‖x†‖p
p − 2−1| ≥ 2−1+1/p|‖x‖p − 2−1/p| ≥ 2−1/2|‖x‖p − 2−1/p| ≥ δ3

2
.

Hence,

‖xo‖p‖x†‖p = (‖x†‖p
p(1 − ‖x†‖p

p)
)1/p ≤

(1

4
− δ6

4

)1/p ≤ 2−2/p(1 − δ6).
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On �p-Gaussian–Grothendieck Problem 35

By following the argument used in the derivation in (5.19) and noting that r
({

x†/‖x†‖p :

x ∈ S1

}) ≤ 1, we obtain

Emax
x∈S1

〈Gnx, x〉 ≤ 21/2−2/p(1 − δ6)ξp∗n1/p∗ + O(np/(2p∗)√log n).

Note that S1 is nonrandom. We can apply (3.7) with t = √
2d log n to get that there exists

some C1 > 0 such that the following event is valid with probability at least 1 − 2n−d,

max
x∈S1

〈Gnx, x〉 ≤ 21/2−2/p(1 − δ6)ξp∗n1/p∗ + C1np/(2p∗)√log n.

Maximization over S2. For x ∈ S2,
∥∥x†/‖x†‖p ∓ ei

∥∥
p ≥ δ3 for all i. By Lemma A.2, there

exists a constant C2 > 0 such that

r
({

x†/‖x†‖p : x ∈ S2

}) ≤ 1 − C2δ3p ≤ 1 − C2δ6.

On the other hand, the product ‖xo‖p‖x†‖p can be trivially bounded above by 1/4. Hence,

(5.19) yields

Emax
x∈S2

〈Gnx, x〉 ≤ 21/2−2/p(1 − C2δ6)ξp∗n1/p∗ + O(np/(2p∗)√log n).

Similar to the 1st case, as S2 is also nonrandom, we can apply (3.7) with t = √
2d log n to

get that there exists some C3 > 0 such that the following event is valid with probability

at least 1 − 2n−d :

max
x∈S2

〈Gnx, x〉 ≤ 21/2−2/p(1 − C2δ6)ξp∗n1/p∗ + C3np/(2p∗)√log n.

Maximization over S3. This case requires some extra treatments since S3 is a random

set. If (6.7) is satisfied, then

max
x∈S3

〈
xo

‖xo‖p
, Ḡn

x†

‖x†‖p

〉
≤ max

i
max

‖u‖p=1,‖u−ei‖p≤δ3,
‖v‖p=1,‖v−vi‖p≥δ

〈
v, Ḡnu

〉

≤ max
i

max‖v‖p=1,‖v−vi‖p≥δ

〈
v, Ḡnei

〉+ δ3‖Ḡn‖p→p∗

≤
(
1 − p2δ2

16p∗
)

max
i

‖Ḡnei‖p∗ + δ3‖Ḡn‖p→p∗ ,
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36 W.-K. Chen and A. Sen

where the 3rd inequality used Lemma A.1. Now, the fact that supx∈Bp
n

‖xo‖p‖x†‖p ≤ 2−2/p

implies that

max
x∈S3

〈
xo, Ḡnx†〉 = max

x∈S3
‖xo‖p‖x†‖p

〈 xo

‖xo‖p
, Ḡn

x†

‖x†‖p

〉
≤ 2−2/p

((
1 − p2δ2

16p∗
)

max
i

‖Ḡnei‖p∗ + δ3‖Ḡn‖p→p∗
)
.

To control the right-hand side, note that ‖Ḡnei‖p∗ −E‖Ḡnei‖p∗ is 2-subgaussian. Lemma

3.11 yields that

Emax
i

‖Ḡnei‖p∗ ≤ max
i

E‖Ḡnei‖p∗ + 2
√

log n ≤ ξp∗n1/p∗ + O(
√

log n).

Moreover, E‖Ḡn‖p→p∗ = O(n1/p∗
) by (3.4). Using (3.7) with t = √

2(d + 1) log n and (3.8)

with t = √
2d log n, we see that there exist universal positive constants C4 and C5 such

that with probability at least 1 − 4n−d,

max
i

‖Ḡnei‖p∗ ≤ ξp∗n1/p∗ + C4

√
log n and ‖Ḡn‖p→p∗ ≤ C5n1/p∗

.

From these estimates, we can choose M ≥ 1 large enough such that the following

statement holds: there exist constants C6, C7 > 0 such that with probability at least

1 − 4n−d, we have that whenever n−κ < δ ≤ 1,

max
x∈S3

〈 xo

‖xo‖p
, Ḡn

x†

‖x†‖p

〉
≤ 2−2/p(1 − C6δ2)ξp∗n1/p∗ + C7np/(2p∗)√log n.

Plugging this into (5.3), we arrive at that with probability at least 1 − 4n−d,

max
x∈S3

〈Gnx, x〉 ≤ 21/2−2/p(1 − C6δ2)ξp∗n1/p∗ + C7n2/p∗2√
log n

≤ 21/2−2/p(1 − C6δ6)ξp∗n1/p∗ + C7np/(2p∗)√log n,

where the 2nd inequality used δ ≤ 1 and pp∗ ≥ 4. �

We now proceed to complete the proof of Theorem 1.4. Let d > 0. Denote by A′
n

the event on which (6.13) is valid. By Lemmas 6.1 and 6.2, we have that on the event
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On �p-Gaussian–Grothendieck Problem 37

An ∩ A′
n, for all n−κ < δ ≤ 1,

max
x∈S

〈Gnx, x〉 ≤ max
x∈S1∪S2∪S3

〈Gnx, x〉 ≤ 21/2−2/p(1 − Cδ6)ξp∗n1/p∗ + C′np/(2p∗)√log n.

Here, from (6.3) and Lemma 6.2, P(An ∩ A′
n) ≥ 1 − P(Ac

n) − P(A′
n

c
) ≥ 1 − (8 + C)n−d. This

completes our proof.

7 Proof of Theorem 1.5

7.1 Proof of (1.14)

For t > 0 and x ∈ Rn, set

Hn,p,t(x) = 〈Gnx, x〉
n1/2 − t‖x‖p

p. (7.1)

Let u, t > 0 be fixed. Note that Ln,p,u(t) = n−1 max|||x|||22=u Hn,p,t(x). We claim that

nELn,p,u(t) is superadditive, that is,

nELn,p,u(t) ≥ n1ELn1,p,u(t) + n2ELn2,p,u(t), ∀n1, n2 ∈ N and n = n1 + n2. (7.2)

To prove this, we use Guerra–Toninelli’s interpolation [30]. Let n1, n2, n ∈ N satisfy

n = n1 + n2. For 0 ≤ s ≤ 1, consider the interpolating Hamiltonian,

Hn,s(z) =
√

s

n
〈Gnz, z〉 +

√
1 − s

n1
〈G1

n1
x, x〉 +

√
1 − s

n2
〈G2

n2
y, y〉 − t‖x‖p

p − t‖y‖p
p

for any z = (x, y) ∈ Rn1 × Rn2 , where G1
n1

= (g1
ij)i,j∈[n1] and G2

n2
= (g2

ij)i,j∈[n2] are i.i.d.

standard Gaussian. Let μn1
and μn2

be probability measures fully supported on the

sphere Sn1
= {x ∈ Rn1 : |||x|||22 = u} and Sn1

= {y ∈ Rn2 : |||y|||22 = u}, respectively. Here,

note that the |||x|||2 and |||y|||2 are normalized by n1 and n2, respectively. Define

Fn1,n2,β(s) = 1

βn
E log

∫
Sn1×Sn2

eβHn,s(z)μn1
(dx) ⊗ μn2

(dy). (7.3)
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38 W.-K. Chen and A. Sen

Note that

Fn1,n2,β(1) = 1

βn
E log

∫
Sn1×Sn2

e
β√
n

〈Gnz,z〉
μn1

(dx) ⊗ μn2
(dy),

Fn1,n2,β(0) = n1

βn
E log

∫
Sn1

e
β√
n1

〈G1
n1

x,x〉
μn1

(dx) + n2

βn
E log

∫
Sn2

e
β√
n2

〈G2
n2

y,y〉
μn2

(dy).

Denote by Rk(a, b) = k−1∑
i∈[k] aibi for any k ≥ 1 and a, b ∈ Rk. Note that Rn(z, z) =

Rn1
(x, x) = Rn2

(y, y) = u for z = (x, y) ∈ Sn1
× Sn2

. Computing the derivative of (7.3) in

s directly by using the Gaussian integration by parts and noting that ‖x‖2
2 = un1 and

‖y‖2
2 = un2, we obtain that

nF ′
n1,n2,β(s) = 1

2
E

〈 〈Gnz, z〉√
s

− 〈G1
nx, x〉√
1 − s

− 〈G2
ny, y〉√
1 − s

〉
= β2n

2
E
〈
Rn(z, z)2 − Rn(z1, z2)2〉− β2n1

2
E
〈
Rn1

(x, x)2 − Rn1
(x1, x2)2〉

− β2n2

2
E
〈
Rn2

(y, y)2 − Rn2
(y1, y2)2〉

= −β2

2
E
〈
nRn(z1, z2)2 − n1Rn1

(x1, x2)2 − n2Rn2
(y1, y2)2〉,

where the angle bracket outside is the expectation with respect to the Gibbs measure

Gn1,n2,β(dx, dy) = eβHn,s(z)μn1
(dx) ⊗ μn2

(dy)∫
eβHn,s(z)μn1

(dx) ⊗ μn2
(dy)

.

and z1 = (x1, y1) and z2 = (x2, y2) are two independent samples from this measure. Now,

note that from Jensen’s inequality,

Rn(z1, z2)2 =
(n1

n

1

n1
Rn1

(x1, x2) + n2

n
Rn2

(y1, y2)
)2

≤ n1

n
Rn1

(x1, x2)2 + n2

n
Rn2

(y1, y2)2,

leading to F ′
n1,n2,β(s) ≥ 0 for all s ∈ (0, 1). Hence, Fn1,n2,β(1) ≥ Fn1,n2,β(0) and sending β to

infinity imply that

nELn,p,u(t) ≥ E max
Sn1×Sn2

Hn,p,t(z) ≥ n1ELn1,p,u(t) + n2ELn2,p,u(t),
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On �p-Gaussian–Grothendieck Problem 39

establishing our claim (7.2). So, Lp,u(t) := limn→∞ E[Ln,p,u(t)] exists by superadditiv-

ity. Hence, from the concentration bound (3.10), it follows that limn→∞ Ln,p,u(t) =
limn→∞ E[Ln,p,u(t)] = Lp,u(t) exists almost surely for each u > 0 and t > 0. It remains to

show that the statement that almost surely this limit exists simultaneously for all u > 0

and t > 0. We need the following lemma.

Lemma 7.1. For any 0 < K1 < K2, there exist positive constants C and D such that

with probability at least 1 − Ce−n/C,

∣∣Ln,p,u(t) − Ln,p,u′(t′)
∣∣ ≤ D(|u − u′| + |t − t′|), ∀u, u′, t, t′ ∈ [K1, K2]. (7.4)

From the above inequality and the Borel–Cantelli lemma, it follows that for any

0 < K1 < K2, there exists some D = D(K1, K2) > 0 such that almost surely

lim sup
n

|Ln,p,u(t) − Ln,p,u′(t′)| ≤ D(|u − u′| + |t − t′|), ∀u, u′, t, t′ ∈ [K1, K2]. (7.5)

The above inequality also implies that

|Lp,u(t) − Lp,u′(t′)| ≤ D(|u − u′| + |t − t′|), ∀u, u′, t, t′ ∈ [K1, K2]. (7.6)

For any u, t ∈ Q∩ (0, ∞), let �(u, t) be the event on which limn→∞ Ln,p,u(t) exists.

Also, for any K1, K2 ∈ Q ∩ (0, ∞) with K1 < K2, let �(K1, K2) be the event on which

Inequality (7.5) holds. Let � be the intersection of all �(u, t) and �(K1, K2). Obviously,

� is of probability one. Moreover, on �, for any t > 0 and u > 0 with u, t ∈ [K−1, K] for

some rational K > 0, we have, using (7.5) and (7.6), that

lim sup
n→∞

∣∣Ln,p,u(t) − Lp,u(t)
∣∣

≤ lim sup
n→∞

∣∣Ln,p,u(t) − Ln,p,u′(t′)
∣∣+ lim sup

n→∞
∣∣Ln,p,u′(t′) − Lp,u′(t′)

∣∣+ ∣∣Lp,u′(t′) − Lp,u(t)
∣∣

≤ 2D′(|u − u′| + |t − t′|)

for any u′, t′ ∈ Q ∩ [K−1, K], where D′ is a constant depending only on K. Sending u′ → u

and t′ → t implies that limn→∞ Ln,p,u(t) = Lp,u(t) on �. This completes the proof of (1.14).
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40 W.-K. Chen and A. Sen

Proof of Lemma 7.1. Let 0 < K1 < K2 be fixed. Note that a change of variable,

x → x/
√

u, yields that

Ln,p,u(t) = max|||x|||2=1

( u

n3/2 〈Gnx, x〉 − tup/2|||x|||pp
)
. (7.7)

Let 1 = (1, . . . , 1) ∈ Rn. Since

Ln,p,u(t) ≥ u

n3/2 〈Gn1,1〉 − tup/2|||1|||pp ≥ −u‖Gn‖2

n1/2 − tup/2,

it follows that if x is an optimizer of (7.7), then

|||x|||pp ≤ u1−p/2

tn3/2 〈Gnx, x〉 + u1−p/2‖Gn‖2

tn1/2 + 1 ≤ 2u1−p/2‖Gn‖2

tn1/2 + 1 ≤ Mn (7.8)

for Mn := 2K−p/2
1 n−1/2‖Gn‖2 + 1. Consequently, Ln,p,u(t) can be written as the same

supremum as (7.7), but with the extra constraint (7.8). This implies that for any

u, u′, t, t′ ∈ [K1, K2],

|Ln,p,u(t) − Ln,p,u′(t′)| ≤ ‖Gn‖2√
n

|u − u′| + Mn|tup/2 − t′u′p/2|

≤ ‖Gn‖2√
n

|u − u′| + Mn

∣∣(t − t′)up/2 + t′(up/2 − u′p/2
)
∣∣

≤ ‖Gn‖2√
n

|u − u′| + Mn

(
Kp/2

2 |t − t′| + pKp/2
2

2
|u − u′|

)
. (7.9)

Since Gn �→ ‖Gn‖2 is 1-Lipschitz with respect to ‖ · ‖F , It follows from the concentration

Inequality (3.6) for ‖Gn‖2 and (3.4) that there exist some C, C∗ > 0 such that

P
(
n−1/2‖Gn‖2 ≥ C∗

) ≤ Ce−n/C. (7.10)

The bound (7.4) is now a consequence of (7.9) and (11.21). �

7.2 Proof of (1.15)

Lemma 7.2. There exist absolute constants c0, C > 0 such that with probability at

least 1 − Ce−n/C, for any 0 < K < t < ∞,

Ln,p(t) = sup
u∈[0,c0/K]

Ln,p,u(t).
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On �p-Gaussian–Grothendieck Problem 41

Proof. Note that Ln,p(t) ≥ 0. Recall the definition of Hn,p,t(x) from (7.1). Whenever

Hn,p,t(x) ≥ 0 for some x ∈ Rn, we have, by Jensen’s inequality, that

t|||x|||pp ≤ 〈Gnx, x〉
n3/2 ≤ ‖Gn‖2√

n
|||x|||22 ≤ ‖Gn‖2√

n
|||x|||2p.

The above inequality, together with another application of Jensen’s inequality, yields

that

|||x|||2 ≤ |||x|||p ≤
(‖Gn‖2

t
√

n

)1/(p−2) ≤
(‖Gn‖2

K
√

n

)1/(p−2)

. (7.11)

Consequently, we can write Ln,p(t) as the supremum of Ln,p,u(t) for all u between zero

and the above upper bound. Using (11.21) completes our proof. �

The proof of (1.15) is now argued as follows. From Lemma 7.2, there exist

c0, C > 0 such that with probability at least 1 − Ce−n/C, Ln,p(t) = sup0≤u≤c0/K Ln,p,u(t) for

any 0 < K ≤ t < ∞. Now, consider an arbitrary 0 < K < min(
√

c0, 1). From Lemma 7.1,

there exist C′, D > 0 such that with probability at least 1 − C′e−n/C′
,

|Ln,p,u(t) − Ln,p,u′(t)| ≤ D|u − u′|, ∀u, u′, t ∈ [K, c0/K]. (7.12)

Consequently, for any k ≥ 1, if u0 < · · · < uk form an equidistant partition of [K, c0/K],

then with probability at least 1 − C′e−n/C′
,

∣∣∣ sup
u∈[K,c0/K]

Ln,p,u(t) − sup
0≤j≤k

Ln,p,uj
(t)
∣∣∣ ≤ D

k
(c0/K − K), ∀t ∈ [K, c0/K].

This implies that with probability at least 1 − Ce−n/C − C′e−n/C′
,

∣∣∣Ln,p(t) − sup
0≤j≤k

Ln,p,uj
(t)
∣∣∣ ≤ sup

u∈[0,K]
Ln,p,u(t) + D

k
(c0/K − K)

≤ ‖Gn‖2K√
n

+ D

k
(c0/K − K), ∀t ∈ [K, c0/K], (7.13)

where the last inequality used the fact that Ln,p,u(t) ≤ ‖Gn‖2u/
√

n. Combining the fact

that |Lp,u(t) − Lp,u′(t)| ≤ D|u − u′| for all u, u′ ∈ [K, c0/K], which follows from (7.12), and

the bound (11.21) on ‖G‖2, we can now pass to the limit in (7.13) by first letting n → ∞
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42 W.-K. Chen and A. Sen

and then letting k → ∞ to obtain that almost surely, for all t ∈ [K, c0/K],

− C∗K + sup
u∈[K,c0/K]

Lp,u(t) ≤ lim inf
n→∞ Ln,p(t) ≤ lim sup

n→∞
Ln,p(t) ≤ sup

u∈[K,c0/K]
Lp,u(t) + C∗K.

Since this is valid for all 0 < K <
√

c0, we can further send K ↓ 0 to get that almost

surely,

lim
K↓0

sup
u∈[K,c0/K]

Lp,u(t) ≤ lim inf
n→∞ Ln,p(t) ≤ lim sup

n→∞
Ln,p(t) ≤ sup

u∈[0,∞)

Lp,u(t), ∀t > 0. (7.14)

Finally, note that for any u ≥ 0 and t > 0, Ln,p(t) ≥ Ln,p,u(t). Also, almost surely,

limn→∞ Ln,p,u(t) = Lp,u(t) for all t > 0 and u > 0. From (7.13),

Lp,u(t) ≤ sup
0≤j≤k

Lp,uj
(t) + C∗K + D

k
(c0/K − K) ≤ sup

[K,c0/K]
Lp,u(t) + C∗K + D

k
(c0/K − K)

for all t ∈ [K, c0/K], u ≥ 0, and k ≥ 1. Hence,

sup
u∈[0,∞)

Lp,u(t) ≤ sup
[K,c0/K]

Lp,u(t) + C∗K,

which, together with (7.14), completes our proof after sending K ↓ 0.

8 Proof of Theorem 1.6

We establish the proof of Theorem 1.6 in this section. First, we need the following

important lemma that connects Ln,p and GPn,p.

Lemma 8.1. Let 2 < p < ∞ and n ≥ 1. Then the following statements hold for any

realization of Gn: if Ln,p is differentiable at some t ∈ (0, ∞) with L′
n,p(t) < 0, then

Ln,p(t) = −
(p

2
− 1

)
tL′

n,p(t) (8.1)

and

GPn,p = p

2

(p

2
− 1

)2/p−1
t2/pLn,p(t)1−2/p. (8.2)

Remark 8.2. Though the differential Equation (8.1) has a simple explicit solution, it

does not yield an expression for Ln,p(t) in absence of a boundary condition.
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Proof. Let t be a point of differentiability of Ln,p with L′
n,p(t) < 0. Let ε > 0 be fixed.

Then,

max
|||x|||pp≥−L′

n,p(t)+ε

Hn,p,t(x)

n
≤ max

|||x|||pp≥−L′
n,p(t)+ε

(Hn,p,t(x)

n
+ λ

(|||x|||pp + L′
n,p(t) − ε

))
≤ Ln,p(t − λ) + λL′

n,p(t) − λε

= λ
(
L′

n,p(t) − Ln,p(t) − Ln,p(t − λ)

λ

)
− λε + Ln,p(t)

and

max
|||x|||pp≤−L′

n,p(t)−ε

Hn,p,t(x)

n
≤ max

|||x|||pp≤−L′
n,p(t)−ε

(Hn,p,t(x)

n
+ λ

(−|||x|||pp − L′
n,p(t) − ε

))
≤ Ln,p(t + λ) − λL′

n,p(t) − λε

= λ
(Ln,p(t + λ) − Ln,p(t)

λ
− L′

n,p(t)
)

− λε + Ln,p(t).

From the above two inequalities, since Ln,p is differentiable at t, we can choose λ small

enough such that for some c > 0 (depending on ε)

max
||||x|||pp+L′

n,p(t)|≥ε

Hn,p,t(x)

n
≤ Ln,p(t) − cε. (8.3)

In other words, if x satisfies ||||x|||pp+L′
n,p(t)| ≥ ε, then it cannot be an optimizer of Ln,p(t).

Now, to show (8.1), note that |||x|||pp is differentiable on Rn since p > 2. If x is a

critical point of Hn,p,t, then

∇Hn,p,t(x) = ∇
( 1√

2n3/2
〈Ḡnx, x〉 − t|||x|||pp

)
= 2√

2n3/2
Ḡnx −

(pt

n
|xi|p−1sgn(xi)

)
i
= 0.

So, we have 〈x, ∇Hn,p,t(x)〉 = 0, which yields

2

n3/2 〈Gnx, x〉 =
√

2

n3/2 〈Ḡnx, x〉 = pt|||x|||pp.

It follows that if x(t) is an optimizer of Hn,p,t, then

Ln,p(t) =
(p

2
− 1

)
t|||x(t)|||pp.
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44 W.-K. Chen and A. Sen

On the other hand, from (8.3), we also see that ||||x(t)|||pp + L′
n,p(t)| < ε for all ε > 0, which

implies that |||x(t)|||pp = −L′
n,p(t). Plugging this into the above display results in (8.1).

Next, we establish (8.2). First of all, from (8.3),

max
||||x|||pp+L′

n,p(t)|≤ε

Hn,p,t(x)

n
= Ln,p(t).

Since this is valid for all ε > 0, sending it to zero yields that

Ln,p(t) = max
|||x|||pp=−L′

n,p(t)

Hn,p,t(x)

n
= max

|||x|||pp=−L′
n,p(t)

〈Gnx, x〉
n3/2 + tL′

n,p(t).

Now, performing a change of variable x → x/(−L′
n,p(t))1/p yields

GPn,p = Ln,p(t) − tL′
n,p(t)(−L′

n,p(t)
)2/p .

Finally, by substituting L′
n,p(t) using (8.1) implies (8.2). �

Lemma 8.3. Let 2 < p < ∞. We have that Lp(t) is differentiable in t ∈ (0, ∞). In

addition, for all t ∈ (0, ∞),

Lp(t) = −
(p

2
− 1

)
tL′

p(t) (8.4)

and

L′
p(t) < 0. (8.5)

Proof. To show differentiability of Lp(t) and (8.4), we first fix a realization of (Gn)n≥1

for which Ln,p(t) converges to L(t) for all t ∈ (0, ∞). Note that Ln,p and Lp are convex.

Hence, both of them are differentiable almost everywhere on (0, ∞). For any 0<s′ <s<s′′,
define

D−
n,p(s; s′) = Ln,p(s) − Ln,p(s′)

s − s′ , D+
n,p(s; s′′) = Ln,p(s′′) − Ln,p(s)

s′′ − s
.

Note that for any 0 < t1 < s < t2, if Ln,p is differentiable at s, then

D−
n,p(s; t1) ≤ L′

n,p(s) ≤ D+
n,p(s; t2),
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which combining with (8.1) implies that

−
(p

2
− 1

)
sD+

n,p(s; t2) ≤ Ln,p(s) ≤ −
(p

2
− 1

)
sD−

n,p(s; t1).

Since the set of points of differentiability of Ln,p is dense in (0, ∞), this inequality is

indeed valid for all 0 < t1 < t < t2 < ∞,

−
(p

2
− 1

)
tD+

n,p(t; t2) ≤ Ln,p(t) ≤ −
(p

2
− 1

)
tD−

n,p(t; t1).

By sending n → ∞ and then letting t1 ↑ t and t2 ↓ t, it follows from the above inequality

that if Lp is differentiable at t, then (8.4) is valid at this point as well. To show that (8.4)

holds for all t > 0, fix an arbitrary t > 0, and pick two monotonic sequences tk and sk

belonging to the set of differentiable points of Lp such that tk ↑ t and sk ↓ t. From the

continuity and convexity of Lp and the validity of (8.4) on (tk) and (sk),

−(p/2 − 1)t lim
k→∞

L′
p(tk) = Lp(t) = −(p/2 − 1)t lim

k→∞
L′

p(sk),

which implies that limk→∞ L′
p(tk) = limk→∞ L′

p(sk). From the convexity of Lp again, for

any a, b satisfying tk < a < t < b < sk,

L′
p(tk) ≤ Lp(t) − Lp(a)

t − a
≤ Lp(b) − Lp(t)

b − t
≤ L′

p(sk).

Consequently, we obtain the differentiability of Lp at t and this completes the proof of

(8.4).

To show (8.5), note that L′
p(t) ≤ 0 since Lp is nonincreasing. If L′

p(t) = 0, (8.4)

implies that Lp(t) = 0. Let λ1 be the top eigenvalue of Ḡn associated with the eigenvector

x with ‖x‖2 = √
nδ for some 0 < δ < 1. We can express x as x/‖x‖2 = g/‖g‖2 for a

n-dimensional standard Gaussian vector g. Thus, using the law of large number and the

fact that λ1/
√

n → 2 almost surely that we have almost sure lower bound,

Ln,p(t) ≥ 1

n3/2 〈Gnx, x〉 − t|||x|||pp = 1√
2n3/2

〈Ḡnx, x〉 − t|||x|||pp → √
2δ − tδp/2E|z|p,

where z ∼ N(0, 1). The lower bound is strictly positive if δ is taken to be small enough,

contradicting Lp(t) = 0. Hence, L′
p(t) < 0. �

Now, we turn to the proof of Theorem 1.6. For a given realization of (Gn)n≥1 for

which limn→∞ Ln,p(t) converges to Lp(t) for all t ∈ (0, ∞), let � ⊂ (0, ∞) be the collection
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46 W.-K. Chen and A. Sen

of all points t, on which Ln,p(t) is differentiable for all n ≥ 1. Since Lp is differentiable

everywhere, by Griffiths’ lemma, we have that limn→∞ L′
n,p(t) = L′

p(t) at an arbitrary

t ∈ �, which, together with (8.5), implies that L′
n,p(t) < 0 as long as n is large enough.

Thus, we can pass to the limit in (8.2) to get that

lim
n→∞ GPn,p = p

2

(p

2
− 1

)2/p−1
t2/pLp(t)1−2/p.

Since this is valid for all t ∈ � and this set is dense in (0, ∞) since Ln,p is convex for all

n ≥ 1, this equation must also be valid on (0, ∞) by using the continuity of Lp and this

completes the proof of (1.16).

Next, we are going to prove (1.17). Assume that x∗ is an optimization of

sup‖x‖p=1〈Gnx, x〉. If we let x0 = n1/px∗, then x0 is an optimizer of sup|||x|||p=1〈Gnx, x〉.
Note that as will be argued later in the proof of Lemma 9.2, x0 must satisfy Inequality

(9.3) with δ = p/2 − 1. As a result,

1

n
‖x0‖p+δ

∞ ≤ 1

n

∑
i∈[n]

|x0,i|p+δ = |||x0|||p+δ

p+δ ≤ 1√
2GPn,p

‖Ḡn‖2

n1/2 .

From (3.9) and (11.21), we see that there exist constants C, C′ > 0 depending only on

p such that with probability at least 1 − C′e−n/C′
, ‖x0‖∞ ≤ Cn1/(p+δ). This implies that

‖x∗‖∞ ≤ Cn1/(p+δ)−1/p.

9 Proof of Theorem 1.7

In this section, we establish the continuity of GPp in p ∈ [2, ∞]. First, we do a change of

variable to obtain

GPn,p = max|||x|||p=1

1

n3/2 〈Gnx, x〉 = max|||x|||p≤1

1

n3/2 〈Gnx, x〉. (9.1)

The following lemma establishes the monotonicity of GPp.

Lemma 9.1. For any 2 ≤ p ≤ p′ ≤ ∞, we have that GPp ≥ GPp′ .

Proof. In view of (1.16) and (9.1), the assertion follows immediately from the mono-

tonicity of the averaged norm |||x|||p in p due to Jensen’s inequality. �

We divide our discussion into three cases: p = 2, 2 < p < ∞, and p = ∞.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article/doi/10.1093/im
rn/rnab311/6425573 by U

niversity of M
innesota, Tw

in C
ities user on 01 July 2022



On �p-Gaussian–Grothendieck Problem 47

9.1 Case p = 2

Note that GP2 ≥ GPp for all p ≥ 2. It suffices to show that GP2 ≤ limp↓2 GPp. Write

GPn,2 = max|||x|||2=1

1

n3/2 〈Gnx, x〉 = 1√
2

max|||x|||2=1

1

n3/2 〈Ḡnx, x〉.

Here, the maximum on the right-hand side is the largest eigenvalue of the GOE, Ḡn/
√

n,

and the corresponding eigenvector y with |||y|||2 = 1 has the distribution g/|||g|||2 for g

an n-dimensional standard Gaussian vector. For all p ≥ 2, since limn→∞|||y|||pp = E|z|p
almost surely for z ∼ N(0, 1) by the strong law of large number. Therefore, for any ε > 0,

GP2 = lim
n→∞

1√
2

1

n3/2 〈Ḡny, y〉

≤ 1√
2

lim sup
n→∞

max
||||x|||pp−E|z|p|<ε

1

n3/2

〈
Ḡn

( x

|||x|||p
)
,
( x

|||x|||p
)〉

|||x|||2p

≤ 1√
2

(
E|z|p + ε

)2/p lim sup
n→∞

max
||||x|||pp−E|z|p|<ε

1

n3/2

〈
Ḡn

( x

|||x|||p
)
,
( x

|||x|||p
)〉

≤ (
E|z|p + ε

)2/pGPp.

Hence, GP2 ≤ limp↓2 GPp and this completes our proof.

9.2 Case 2 < p < ∞

To discuss this case, we need a key lemma, which states that for all δ > 0 with

2(1 + δ) < p, we can essentially rewrite GPn,p as a maximization problem restricted

to x ∈ Rn satisfying |||x|||p = 1 and |||x|||p+δ

p+δ ≤ GP2/GP∞. In other words, this means that

the optimizer of GPn,p has a bounded norm of slightly higher order than p.

Lemma 9.2. Let p ∈ (2, ∞). For any δ > 0 satisfying 2(1 + δ) ≤ p, we have that

GPp = lim
n→∞ max

x∈An,p,δ

1

n3/2 〈Gnx, x〉,

where An,p,δ is the collection of all x ∈ Rn satisfying that |||x|||p = 1 and |||x|||p+δ

p+δ ≤
GP2/GP∞.

Proof. Assume that x0 = (x0,1, . . . , x0,n) ∈ Rn with |||x0|||p = 1 is an optimizer of the 1st

maximization problem in (9.1). Notice that
∑

i∈[n] |xi|p is twice differentiable since p > 2.
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48 W.-K. Chen and A. Sen

Using the Lagrange multiplier, there exists some c ∈ R such that for all i ∈ [n],

cp

n
|x0,i|p−1sgn(x0,i) = 1

n3/2

(
Gnx0

)
i + 1

n3/2

(
GT

nx0

)
i =

√
2

n3/2

(
Ḡnx0

)
i. (9.2)

Multiplying x0,i to both sides and adding them together give

cp = cp|||x0|||pp =
√

2

n3/2 〈Ḡnx0, x0〉 = 2 max|||x|||p=1

1

n3/2 〈Gnx, x〉 = 2GPn,p.

Hence, c = 2p−1GPn,p. On the other hand, for any δ > 0, we can multiply (9.2) by

|x0,i|1+δsgn(x0,i) and use the Cauchy–Schwarz inequality to get

cp|||x0|||p+δ

p+δ =
√

2

n1/2

1

n

∑
i∈[n]

(
Ḡnx0

)
i|x0,i|1+δsgn(x0,i)

≤
√

2

n1/2 |||Ḡnx0|||2|||x0|||1+δ
2(1+δ) ≤ √

2
‖Ḡn‖2

n1/2 |||x0|||2|||x0|||1+δ
2(1+δ).

If now δ satisfies 2(1 + δ) ≤ p, then Jensen’s inequality implies

cp|||x0|||p+δ

p+δ ≤ √
2

‖Ḡn‖2

n1/2 |||x0|||p|||x0|||1+δ
p = √

2
‖Ḡn‖2

n1/2 .

Hence,

|||x0|||p+δ

p+δ ≤ 1√
2GPn,p

‖Ḡn‖2

n1/2 . (9.3)

Since GPn,p converges to GPp almost surely and ‖Ḡn‖2/
√

n converges to 2 almost surely,

it follows that

GPp = lim
n→∞ GPn,p = lim

n→∞ max
1

n3/2 〈Gnx, x〉,

where the maximum is taken over all x ∈ Rn satisfying that |||x|||p = 1 and |||x|||p+δ

p+δ ≤√
2/GPp. Our proof is then completed by noting that GP2 = √

2 and GPp ≥ GP∞. �

We now proceed to verify the continuity of GPp on (2, ∞). For any 2 < p1 <

p2 < p3 < ∞, set θ = (p2 − p1)/(p3 − p1) ∈ (0, 1), which yields p2 = (1 − θ)p1 + θp3.

From the Hölder inequality, |||x|||p2
p2 ≤ |||x|||(1−θ)p1

p1 |||x|||θp3
p3 . Note that if x ∈ Rn satisfies that
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On �p-Gaussian–Grothendieck Problem 49

|||x|||p1
= 1 and |||x|||p3

p3 ≤ GP2/GP∞, then |||x|||p2
p2 ≤ (GP2/GP∞)θ . Consequently, if p1, p2, p3

also satisfy 2(1+p3 −p1) < p1, then by applying Lemma 9.2 with p = p1 and δ = p3 −p1,

GPp1
≤ lim sup

n→∞
max

|||x|||p2
p2≤

(
GP2
GP∞

)θ 1

n3/2 〈Gnx, x〉

= lim sup
n→∞

max
|||x|||p2

p2≤
(

GP2
GP∞

)θ 1

n3/2

〈
Gn

x

|||x|||p2

,
x

|||x|||p2

〉
|||x|||2p2

≤
( GP2

GP∞

)2θ/p2
GPp2

=
( GP2

GP∞

) 2(p2−p1)

p2(p3−p1)
GPp2

.

This and Lemma 9.1 imply

0 ≤ GPp1
− GPp2

≤
(( GP2

GP∞

) 2(p2−p1)

p2(p3−p1) − 1
)
GPp2

.

This clearly validates the continuity of GPp on (2, ∞).

9.3 Case p = ∞.

Note that GP∞ ≤ GPp for all p ≥ 2. From Lemma 9.1, it suffices to show that

limp→∞ GPp ≤ GP∞. For any ε > 0 and x ∈ Rn satisfying |||x|||p = 1, denote xε
i = xi1(|xi| ≥

1 + ε) and x̃ε
i = xi1(|xi| < 1 + ε). An application of the Hölder inequality followed by the

Markov inequality yields

|||xε|||22 ≤ |||x|||2p
( 1

n

∑
i∈[n]

1(|xi| ≥ 1 + ε)
)1−2/p =

( 1

n

∑
i∈[n]

1(|xi| ≥ 1 + ε)
)1−2/p

≤
( 1

(1 + ε)p |||x|||pp
)1−2/p = 1

(1 + ε)p−2 .

Therefore,

∣∣∣ 1

n3/2 〈Gnxε, xε〉
∣∣∣ ≤ ‖Gn‖2√

n
|||xε|||22 ≤ ‖Gn‖2√

n(1 + ε)p−2

and

∣∣∣ 1

n3/2 〈Gnxε, x̃ε〉
∣∣∣ ≤ ‖Gn‖2√

n
|||xε|||2|||̃xε|||2 ≤ ‖Gn‖2√

n(1 + ε)p/2−1
.
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50 W.-K. Chen and A. Sen

From (11.21), it follows that

lim
p→∞ GPp = lim

p→∞ lim
n→∞ max|||x|||p=1

1

n3/2

(〈Gnxε, xε〉 + 2〈Gnxε, x̃ε〉 + 〈Gnx̃ε, x̃ε〉)
= lim

p→∞ lim
n→∞ max|||x|||p=1

1

n3/2 〈Gnx̃ε, x̃ε〉

≤ lim
n→∞ max‖x‖∞≤1+ε

(1 + ε)2

n3/2 〈Gnx(1 + ε)−1, x(1 + ε)−1〉 ≤ (1 + ε)2GP∞.

Letting ε → 0+, we obtain that limp→∞ GPp ≤ GP∞. This completes our proof.

10 Bounding Lp,u(t) via Free Energies

For 2 < p < ∞ and u > 0, recall Ln,p,u(t) from (1.13) and that from Theorem 1.5, its

n-limit exists and is denoted by Lp,u(t). This section is a preparation for the proof

of Theorem 1.9. We establish upper and lower bounds for Lp,u(t) in terms of two free

energies that we define now. Let ε > 0. For β > 0, define the free energy associated with

Hn,p,t with �2-band constraint by

Fn,t,u,ε(β) = 1

βn
log

∫
x∈Rn:|||x|||22∈[u−ε,u+ε]

exp βHn,p,t(x) dx,

where dx is the Lebesgue measure on Rn. Similarly, we shall also consider an analogous

version of Fn,t,u,ε(β) with an additional box confinement, namely, for u1/2 < M < ∞ and

β > 0, define

Fn,t,u,M,ε(β) = 1

βn
log

∫
x∈[−M,M]n:|||x|||22∈[u−ε,u+ε]

exp βHn,p,t(x) dx. (10.1)

The parameter β in the above two free energies is usually called the (inverse) tempera-

ture in statistical physics. The following proposition gives upper and lower bounds for

Lp,u(t).

Proposition 10.1. Let 2 < p < ∞. For any u > 0 and t > 0,

lim
M→∞ lim inf

β→∞ lim
ε↓0

lim inf
n→∞ EFn,t,u,M,ε(β) ≤ Lp,u(t) ≤ lim

β→∞ lim sup
n→∞

EFn,t,u,β−2(β).

Remark 10.2. We emphasize that the outer limit in the upper bound is along ε = β−2.

To use these inequalities, the highly nontrivial part is to find the tight limits on both
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On �p-Gaussian–Grothendieck Problem 51

sides. In Section 11, we will show that the lower bound can be handled by a Parisi-

type variational formula similar to the one in Theorem 1.9. The upper bound will be

controlled by the so-called Guerra’s replica symmetry breaking bound in Section 12.2.

Ultimately, we show that these match each other, leading to the desired formula in (1.22);

see Section 12.

For the rest of this section, we establish the proof of Proposition 10.1. Consider

a modified version of Ln,p,u(t) on a �2-band, namely, for ε > 0 and t > 0, define

Ln,p,u,ε(t) := max
x∈Rn:|||x|||22∈[u−ε,u+ε]

Hn,p,t(x)

n
= max

x∈Rn:|||x|||22∈[u−ε,u+ε]

( 〈Gnx, x〉
n3/2 − t|||x|||pp

)
.

When ε is small, this quantity is essentially the same as Ln,p,u(t). The following

lemma establishes upper and lower bounds for Ln,p,u,ε(t) in terms of the free energies

introduced above.

Lemma 10.3. Let 2 < p < ∞. For any 0 < u <
√

M and t > 0,

lim inf
β→∞ lim

ε↓0
lim

n→∞EFn,t,u,M,ε(β) ≤ lim
ε↓0

lim inf
n→∞ ELn,p,u,ε(t). (10.2)

In addition, there exist some constants C, κ > 0 (depending on t, u) such that for any

β > 0, 0 < ε < 1, and n ≥ 1,

EFn,t,u,ε(β) ≥ ELn,p,u,ε/κ (t) − εC + 1

β
log

2ε

κ
− Ce−n/C. (10.3)

Proof. It is easy to see that Fn,t,u,M,ε(β) ≤ Ln,p,u,ε(t) + β−1 log 2M, which immediately

implies the upper bound (10.2). So, let us focus on the lower bound. Let 0 < ε < 1. Note

that we can choose κ > max(1/u, 1) sufficiently large such that for any x∗ satisfying

||||x∗|||22 − u| < ε/κ, we have

B(x∗) := x∗ + [−ε/κ, ε/κ]n ⊂ {x ∈ Rn : ||||x|||22 − u| < ε}.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article/doi/10.1093/im
rn/rnab311/6425573 by U

niversity of M
innesota, Tw

in C
ities user on 01 July 2022



52 W.-K. Chen and A. Sen

Note that ε/κ < 1. For any x ∈ B(x∗), a direct computation using triangle inequalities

shows that

Hn,p,t(x) − Hn,p,t(x
∗) ≥ −n−1/2‖Gn‖2‖x − x∗‖2(‖x∗‖2 + ‖x‖2) − t

(
(‖x − x∗‖p + ‖x∗‖p)p − ‖x∗‖p

p
)

≥ −n1/2‖Gn‖2|||x − x∗|||2(|||x∗|||2 + |||x|||2)

− tpn|||x − x∗|||p
(|||x − x∗|||p + |||x∗|||p

)p−1

≥ −nε

κ

(
2n−1/2‖Gn‖2

√
u + 1 + tp(1 + |||x∗|||p)p−1

)
, (10.4)

where we have used the inequality (a + b)p − ap = ∫ a+b
a pxp−1 ≤ pb(a + b)p−1 for any

a, b ≥ 0 in the 2nd step above. From now on, we take x∗ as a maximizer of Hn,p,t on

{x ∈ Rn : ||||x|||22 − u| < ε/κ}. By imitating the proof as that of (7.8), it can be verified that

there exist constants C, D > 0 such that

P
(|||x∗|||p ≤ D

) ≥ 1 − Ce−n/C. (10.5)

From (11.21), (10.4), and (10.5), there exists a constant C(t, u) such that with probability

at least 1 − C′e−n/C′
, we have for any x ∈ B(x∗),

Hn,p,t(x) − Hn,p,t(x
∗) ≥ −nε

κ
C(t, u).

Let A be the event such that this inequality is valid. From the above inequality and

noting that Vol(B(x∗)) = (2ε/κ)n, we have that

EFn,t,u,ε(β) ≥ 1

nβ
E

[
log

∫
B(x∗)

enβHn,p,t(x) dx; A
]

≥ E
[
Ln,p,u,ε/κ (t); A

]− ε

κ
C(t, u) + 1

β
log

2ε

κ

= ELn,u,p,ε/κ (t) − E
[
Ln,p,u,ε/κ (t); Ac]− ε

κ
C(t, u) + 1

β
log

2ε

κ
. (10.6)

To control E
[
Ln,p,u,ε/κ (t); Ac

]
, we argue as follows. Recall that if x is an optimizer of

Ln,p(t), then it must satisfy the 2nd inequality of (7.11). Using this and dropping the

negative term in Ln,p(t) yield that

Ln,p(t) ≤ 1√
n

‖Gn‖2|||x|||22 ≤ t−2/(p−2)
(‖Gn‖2√

n

)1+2/(p−2)

.
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Here, applying the concentration Inequality (3.6) to ‖Gn‖2 and using (3.4) lead to

E(n−1/2‖Gn‖2)k ≤ Ck for all k ≥ 1. Thus, there exists C(t) independent of n such that

ELn,p(t)2 ≤ C(t), (10.7)

which implies that

∣∣E[Ln,p,u,ε/κ (t); Ac]∣∣ ≤ (
ELn,p,u,ε/κ (t)2)1/2

P(Ac)1/2

≤ (
ELn,p(t)2)1/2(C′e−n/C′)1/2 ≤ √

C(t)
(
C′e−n/C′)1/2.

The above inequality and (10.6) yield the 2nd assertion. �

Next, we show that Ln,p,u(t) and Ln,p,u,ε(t) are asymptotically the same.

Lemma 10.4. Let 2 < p < ∞. For any t, u > 0, we have that almost surely,

lim
ε→0

lim
n→∞ Ln,p,u,ε(t) = lim

ε→0
lim

n→∞ELn,p,u,ε(t) = Lp,u(t).

Proof. The 1st limit follows directly from the Gaussian concentration inequality (3.6)

as Ln,p,u,ε(t) is (u + ε)n−1/2-Lipschitz in Gn with respect to the ‖ · ‖F-norm. Thus, it

remains to prove the second equality. Write

Ln,p,u,ε(t) = max
v:|v−u|≤ε

max
|||x|||22=1

( v

n3/2 〈Gnx, x〉 − tvp/2|||x|||pp
)
,

Ln,p,u(t) = max
|||x|||22=1

( u

n3/2 〈Gnx, x〉 − tup/2|||x|||pp
)
.

If xv is an optimizer to the inner optimization problem of Ln,p,u,ε(t) associated with v,

then

t|||xv|||pp ≤ v1−p/2n−1/2‖Gn‖2|||xv|||22 = v1−p/2n−1/2‖Gn‖2

since Ln,p,u,ε(t) ≥ 0. Consequently, for any 0 < ε < min(1, u),

Ln,p,u,ε(t) ≤ Ln,p,u(t) + ε
(
n−1/2‖Gn‖2 + 2−1tp(u + ε)p/2−1 max

v:|v−u|≤ε
|||xv|||pp

)
≤ Ln,p,u(t) + ε

(
n−1/2‖Gn‖2 + 2−1pn−1/2‖Gn‖2(u + ε)p/2−1(u − ε)1−p/2).
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By passing to limit, we obtain that limε→0 lim supn→∞ Ln,p,u,ε(t) ≤ Lp,u(t). Since

obviously we also have Ln,p,u(t) ≤ Ln,p,u,ε(t), it follows that limε→0 limn→∞ Ln,p,u,ε(t) =
limn→∞ Ln,p,u(t) = Lp,u(t) and this completes our proof. �

To complete the proof of Proposition 10.1, the lower bound follows directly from

(10.2) and Lemma 11.10. As for the upper bound, it can be obtained by sending n → ∞
and then ε = β−2 → 0 in (10.3) and using again Lemma 11.10.

11 Low-Temperature Limit of the Parisi Formula

By Proposition 10.1, the validity of Theorem 1.9 relies on showing that limβ→∞
lim supn→∞ EFn,t,u,β−2(β) and limM→∞ limβ→∞ limε↓0 lim infn→∞ EFn,t,u,M,ε(β) are equal,

together with establishing the desired formula in (1.22). In this section, we shall focus

on handling the limit

lim
β→∞ lim

ε↓0
lim inf

n→∞ Fn,t,u,M,ε(β). (11.1)

To this end, we shall need several Parisi-type variational formulas associated with a

variety of the free energies and the ground state energies. For the convenience of the

reader, we collect all of them together in Section 11.1, including those that will be used

later on. Our main result, Proposition 11.3, establishing a Parisi-type formula for (11.1),

is stated in Section 11.2 followed by its proof in the rest of this section.

11.1 Parisi PDEs and functionals

Fix u>0. Let Nu be the collection of all positive measures γ on [0, u] with
∫ u

0 γ (s) ds<∞.

Recall that N d
u ⊂ Nu is the collection of all positive measures on [0, u] with finitely

many atoms. Moreover, let Mu denote the collection of probability measures on [0, u],

and let M d
u ⊂ Mu be the collection of probability measures on [0, u] with finitely many

atoms. For each λ ∈ R, let hλ : R → R+ be a continuous function.

For β < ∞, we take (λ, α) ∈ R × M d
u or R × Mu and consider the solution �

β
λ,α to

the following PDE:

∂s�
β
λ,α(s, x) = −(∂xx�

β
λ,α(s, x) + βα(s)

(
∂x�

β
λ,α(s, x)

)2), (s, x) ∈ [0, u) × R, (11.2)

�
β
λ,α(u, x) = hλ(x).
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On �p-Gaussian–Grothendieck Problem 55

Here, �
β
λ,α may exist in the classical or weak sense (see Remarks 11.1 and 11.2 below)

depending on whether the measure α is atomic and on the regularity of the boundary

condition hλ. The associated Parisi functional Pβ on R × M d
u or R × Mu is defined as

Pβ(λ, α) = �
β
λ,α(0, 0) − λu −

∫ u

0
sβα(s) ds, (11.3)

where α(s) := α([0, s]) is the cumulative distribution function of the measure α.

In a similar manner, the functional (11.3) has a natural analogy in the case of

β = ∞. For (λ, γ ) ∈ R × N d
u or R × Nu, consider the (classical or weak) solution �λ,γ to

the following PDE:

∂s�λ,γ (s, x) = −(∂xx�λ,γ (s, x) + γ (s)
(
∂x�λ,γ (s, x)

)2), (s, x) ∈ [0, u) × R, (11.4)

�λ,γ (u, x) = hλ(x),

where γ (s) := γ ([0, s]). Define the associated Parisi functional P on R × Nu or R × N d
u

as

P(λ, γ ) = �λ,γ (0, 0) − λu −
∫ u

0
sγ (s) ds. (11.5)

The different boundary conditions hλ that we will use throughout this paper are

all dependent on a collection of functions (ωt
λ)(λ,t)∈R×(0,∞) defined as ωt

λ(x, r) = rx+λr2 −
t|r|p for (x, r) ∈ R × R. The following table collects the relevant cases of the Parisi PDEs

and functionals that will be needed for the rest of the paper.

Remark 11.1. Lemma B.1 implies that f β,t
λ (x) and f t

λ(x) are bounded by C(1 + |x|a+1)

for some 0 < a < 1 and C > 0. From these, when α ∈ M d
u and γ ∈ N d

u , we can apply the

Hopf-Cole transformation (see Lemma B.2) to solve the above four PDEs in the classical

sense.

Remark 11.2. The functional Pt,u here is of course the same as (1.21), defined in

the introduction. In Table 1, we define the functionals Pt,u,M and Pt,u on different

measure spaces Nu and N d
u , respectively, mainly due to technical purposes. Indeed,

the fact that f t,M
λ is M-Lipschitz allows us to show that for any 0 < s0 < u and

k ≥ 1, ∂k
x


t,u,M
λ,γ (s, ·) is also Lipschitz uniformly over all s ∈ [0, s0], λ ∈ R, and γ ∈ N d

u .

Together with a compactness argument, this enables us to show the existence and

uniqueness of the weak solution 

t,u,M
λ,γ for any γ ∈ Nu. We refer the reader to check

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article/doi/10.1093/im
rn/rnab311/6425573 by U

niversity of M
innesota, Tw

in C
ities user on 01 July 2022



56 W.-K. Chen and A. Sen

TABLE 1 Various Parisi functionals

β Measure space Boundary condition hλ PDE solution Type Parisi functional

< ∞ α ∈ M d
u f β,t

λ (x) = 1
β log

∫∞
−∞ eβωt

λ(x,r)dr �
β,t,u
λ,α (s, x) Classical Pβ,t,u(λ, α)

< ∞ α ∈ Mu f β,t,M
λ (x) = 1

β log
∫M
−M eβωt

λ(x,r)dr �
β,t,u,M
λ,α (s, x) Weak Pβ,t,u,M (λ, α)

= ∞ γ ∈ N d
u f t

λ(x) = supr∈R ωt
λ(r, x) 


t,u
λ,γ (s, x) Classical Pt,u(λ, γ )

= ∞ γ ∈ Nu f t,M
λ (x) = supr∈[−M,M] ω

t
λ(r, x) 


t,u,M
λ,γ (s, x) Weak Pt,u,M(λ, γ )

[18, 33] for details. It might seem plausible that one can also construct unique weak

solutions to 

t,u
λ,γ for arbitrary γ ∈ Nu by similar lines of arguments in [18, 33]. However,

as the boundary condition f t
λ is no longer Lipschitz (see Lemma B.1), this makes the

compactness argument in [18, 33] technically more tedious. As this part of the analysis

is not quite relevant to this work, we do not pursue this extension in this paper. For

the same reason, Pβ,t,u,M and Pβ,t,u in Table 1 are also defined over different measure

spaces Mu and M d
u .

11.2 Parisi-type formula

Recall from [50] that limε↓0 limn→∞ Fn,t,u,M,ε(β) exists and it can be expressed as the

following Paris-type formula associated with the Parisi functional given in the 2nd row

of Table 1:

lim
ε↓0

lim
n→∞ Fn,t,u,M,ε(β) = inf

(λ,α)∈R×Mu

Pβ,t,u,M(λ, α). (11.6)

The following proposition shows that the variational problem in (11.6) converges to the

Parisi-type formula associated with the functional Pt,u,M (refer to the 4th row of Table 1)

and gives the existence of a minimizer along with quantitative controls uniformly in M.

Proposition 11.3. Let 2 < p < ∞ and t, u > 0. We have that

lim
β→∞ lim

ε↓0
lim

n→∞ Fn,t,u,M,ε(β) = lim
β→∞ inf

(λ,α)∈R×Mu

Pβ,t,u,M(λ, α) = inf
(λ,γ )∈R×Nu

Pt,u,M(λ, γ ). (11.7)
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On �p-Gaussian–Grothendieck Problem 57

In addition, there exists a constant C > 0 depending only on t, u such that for any

M > 2u1/2, there exists some (λM , γM) ∈ R × Nu satisfying

inf
(λ,γ )∈R×Nu

Pt,u,M(λ, γ ) = Pt,u,M(λM , γM) (11.8)

such that

|λM | ≤ C and
∫ u

0
γM(s) ds ≤ C. (11.9)

Remark 11.4. Though we do not need this here, it can be checked by the same

argument in Lemma 10.3 that limn→∞ maxx∈[−M,M]n:|||x|||22=u Hn,p,t(x)/n is equal to the left-

hand side of (11.7) and the right-hand side of (11.7) established a Parisi-type formula for

this ground state energy.

Remark 11.5. The assertion (11.7) is indeed a special case of [19, Theorem 5], but it

does not include the existence of a minimizer and the bound (11.9), which are the most

crucial results we need in the proof of Theorem 1.9.

The rest of this section is devoted to establishing Proposition 11.3.

11.3 Properties of the Parisi PDEs

We state a number of fundamental properties for �
β,t,u,M
λ,α and 


t,u,M
λ,γ that will be of great

use throughout this section. Their proofs will be omitted as they follow directly from

the same arguments from [3, 34] with no essential changes. First of all, their regularities

are summarized in the following proposition.

Proposition 11.6 (Regularity). Let α ∈ Mu and γ ∈ Nu. For any s ∈ [0, u), �
β,t,u,M
λ,α (s, ·)

and 

t,u,M
λ,γ (s, ·) are twice partially differentiable in x. Their 1st partial derivatives in

x are uniformly bounded over [0, u) × R by M. In addition, ∂x�
β,t,u,M
λ,α (s, ·) is uniformly

Lipschitz over all s ∈ [0, u], while for any 0 < u0 < u, ∂x

t,u,M
λ,γ (s, ·) is also uniformly

Lipschitz over all s ∈ [0, u0].

Note that �
β,t,u,M
λ,α and 


t,u,M
λ,γ are special cases of the Hamilton–Jacobi–Bellman

equation, induced by a linear problem of diffusion control. In this case, they can

be expressed in terms of stochastic optimal control problems. More precisely, let

0 < u <
√

M and DM
u be the collection of all progressively measurable processes
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58 W.-K. Chen and A. Sen

v = (v(s))0≤s≤u with respect to a standard Brownian motion W = (W(s))0≤s≤u and

satisfying sup0≤s≤u |v(s)| ≤ M.

Proposition 11.7 (Stochastic optimal control representation). We have

�
β,t,u,M
λ,α (0, 0) = sup

v∈DM
u

E

[
f β,t,M
λ

(
2
∫ u

0
βα(s)v(s) ds + √

2W(u)
)

−
∫ u

0
βα(s)v(s)2 ds

]
, (11.10)



t,u,M
λ,γ (0, 0) = sup

v∈DM
u

E

[
f t,M
λ

(
2
∫ u

0
γ (s)v(s) ds + √

2W(u)
)

−
∫ u

0
γ (s)v(s)2 ds

]
. (11.11)

Here, the 1st supremum is achievable by v(s) = ∂x�
β,t,u,M
λ,α (s, X(s)) and the 2nd supremum

is attained by v(s) = ∂x

t,u,M
λ,γ (s, X ′(s)), where X = (X(s))0≤s≤u and X ′ = (X ′(s))0≤s≤u are

the strong solutions to the following SDEs:

dX(s) = 2βα(s)∂x�
β,t,u,M
λ,α (s, X(s))ds + √

2dW(s),

dX ′(s) = 2γ (s)∂x

t,u,M
λ,γ (s, X ′(s))ds + √

2dW(s)

for 0 ≤ s ≤ u with X(0) = X ′(0) = 0.

Next, note that the boundary condition f β,t,M
λ and f t,M

λ are Lipschitz and convex

in (λ, x) ∈ R2. Using this together with Proposition 11.7, it can be shown that these

properties propagate throughout the entire solutions.

Proposition 11.8 (Lipschitiz property and convexity). (λ, α) �→ �
β,t,u,M
λ,α (0, 0) and

(λ, γ ) �→ 

t,u,M
λ,γ (0, 0) are Lipschitz and convex respectively with respect to the norms

|λ − λ′| +
∫ u

0
|α(s) − α′(s)| ds and |λ − λ′| +

∫ u

0
|γ (s) − γ ′(s)| ds. (11.12)

11.4 Optimality of the Parisi functional

We investigate some properties of the variational formula of Pβ,t,u,M .

Lemma 11.9. Let t, u > 0. For any M > u1/2 and β > 0, the functional Pβ,t,u,M has a

unique minimizer in R × Mu.
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On �p-Gaussian–Grothendieck Problem 59

Proof. Let νt,β,M(dr) = e−t|r|pdr and � = ∫
[−M,−√

u]∪[
√

u,M] dνt,β,M(r). Note that

f β,t,M
λ (x) ≥ λu + 1

β
log

1

�

∫
[−M,−√

u]∪[
√

u,M]
exp β

(
rx + λ(r2 − u)

)
dνt,β,M(r) + 1

β
log �

≥ λu + 1

�

∫
[−M,−√

u]∪[
√

u,M]

(
rx + λ(r2 − u)

)
dνt,β,M(r) + 1

β
log �

= λu + λ

�

∫
[−M,−√

u]∪[
√

u,M]
(r2 − u) dνt,β,M(r) + 1

β
log �,

where the 2nd inequality used Jensen’s inequality. Since the right-hand side of this

inequality is independent of x, it follows from (11.10) that �
β,t,u,M
λ,α (0, 0) is bounded by

this lower bound, and hence,

inf
α∈Mu

Pβ,t,u,M(λ, α) ≥ λ

�

∫
[−M,−√

u]∪[
√

u,M]
(r2 − u) dνt,β,M(r) + 1

β
log � −

∫ u

0
sβ ds

λ→∞→ ∞.

Similarly, let �′ = ∫
[−√

u,
√

u] dνt,β,M(r). We also have

f β,t,M
λ (x) = λu + 1

β
log

1

�′

∫
[−√

u,
√

u]
exp β

(
rx + λ(r2 − u)

)
dνt,β,M(r) + 1

β
log �′

≥ λu + 1

�′

∫
[−√

u,
√

u]

(
rx + λ(r2 − u)

)
dνt,β,M(r) + 1

β
log �′

= λu + λ

�′

∫
[−√

u,
√

u]
(r2 − u) dνt,β,M(r) + 1

β
log �′.

Again, since this lower bound is independent of x, it follows that by using (11.10),

inf
α∈M

Pβ,t,u,M(λ, α) ≥ λ

�′

∫
[−√

u,
√

u]
(r2 − u) dνt,β,M(r) + 1

β
log �′ −

∫ u

0
sβ ds

λ→−∞→ ∞.

In addition, note that from Proposition 11.8, λ �→ infα∈Mu
Pβ,t,u,M(λ, α) is continuous.

From these, we see that there exists some λ0 ∈ R such that

inf
(λ,α)∈R×Mu

Pβ,t,u,M(λ, α) = inf
λ∈R inf

α∈Mu

Pβ,t,u,M(λ, α) = inf
α∈Mu

Pβ,t,u,M(λ0, α).

Finally, by using Proposition 11.8 and noting that Mu is a compact space with respect

to the metric
∫ u

0 |α(s)−α′(s)| ds, we see that Pβ,t,u,M(λ0, ·) is minimized by some α0 ∈ Mu.

Hence, (λ0, α0) is a minimizer of Pβ,t,u,M . This completes our proof. �
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For the rest of this section, we denote the minimizer of Pβ,t,u,M by (λM,β , αM,β).

In next two lemmas, we show that βαM,β is uniformly integrable and λM,β is uniformly

bounded in (M, β).

Lemma 11.10. Let t, u > 0. For any M > u1/2 and β > 0, we have

∫ u

0
sβαM,β(s) ds ≤ u√

2
. (11.13)

Proof. Our proof consists of three major steps. First of all, we introduce an auxiliary

free energy. For b > 0, define

Fn(b) = 1

n
log

∫
x∈[−M,M]n:|||x|||22∈[u−ε,u+ε]

exp
( b

n1/2 〈Gnx, x〉 − βt‖x‖p
p

)
dx.

Here, to keep the notation light, we ignore the dependence on β, t, u, M, and ε. In a

similar manner as (11.6), the general result in [50] ensures that this free energy can

also be expressed as a similar Parisi-type formula,

lim
ε↓0

lim
n→∞ Fn(b) = inf

(λ,α)∈R×Mu

Pb(λ, α) (11.14)

for

Pb(λ, α) := �b
λ,α(0, 0) − λu − b2

∫ u

0
sα(s) ds,

where �b
λ,α(0, 0) is defined through the weak solution (see [34]) to the following PDE:

∂s�
b
λ,α(s, x) = −b2(∂xx�b

λ,α(s, x) + α(s)
(
∂x�b

λ,α(s, x)
)2) (11.15)

for (s, x) ∈ [0, u] × R with boundary condition

�b
λ,α(u, x) = fλ(x) := log

∫ M

−M
exp

(
sx + λs2 − βt|s|p)ds.

Note that Fn,t,u,M,ε(b) = b−1Fn(b), and consequently, (11.26) is equal to (11.6) modulo a

multiplicative factor b−1. Here, it can be checked that the two solutions, �b
λ,α and �

β,t,u,M
λ,α

for b = β, are essentially the same up to a transformation,

�
b,t,u,M
b−1λ,α

(s, β−1x) = b−1�b
λ,α(s, x), (s, x) ∈ [0, u] × R,
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On �p-Gaussian–Grothendieck Problem 61

and therefore,

Pb,t,u,M(λ, α) = b−1Pb(bλ, α), ∀(λ, α) ∈ R × Mu. (11.16)

From these, Proposition 11.8 and Lemma 11.9, we see that for ever b > 0, Pb is convex

with respect to the metric (11.12) and it has a minimizer, (λb, αb), satisfying (λb, αb) =
(b−1λM,b, αM,b).

Next, we continue to bound b
∫ u

0 sαb(s) ds through the b-derivative of the Parisi

formula in (11.26). First, it can be shown that �b
λ,α(0, 0) also admits an analogous

stochastic optimal control representation as that for �
β,t,u,M
λ,α in Proposition 11.7. More

precisely, let W and DM
u be defined as in Proposition 11.7. We can write

�b
λ,α(0, 0) = sup

v∈DM
u

E

[
fλ

(
2
∫ u

0
b2α(s)v(s) ds + √

2bW(u)
)

−
∫ u

0
b2α(s)v(s)2 ds

]
.

Here, the optimal process attaining the maximum is given by vλ,α(s) = ∂x�b
λ,α(s, Xλ,α(s)),

where Xλ,α is the strong solution to the following SDE:

dXλ,α(s) = 2b2α(s)∂x�b
λ,α(s, Xλ,α(s))ds + b

√
2dW(s), 0 ≤ s ≤ u, and Xλ,α(0) = 0.

Using this representation, the same computation as [4, Proposition 4] yields that for any

(λ, α),

d

db
�b

λ,α(0, 0) = 2b
(
uEvλ,α(u)2 + uE∂xx�b

λ,α(u, Xλ,α(u)) −
∫ u

0
sEvλ,α(s)2α(ds)

)
. (11.17)

To handle this derivative, note that Pb is also a convex functional. It can be argued (see,

e.g., [16]) that the directional derivative of Pb at (λb, αb) can be explicitly computed. In

particular, the optimality of (λb, αb) ensures that

E
(
∂x�b

λb,αb
(s, Xλb,αb

(s))
)2 = Evλb,αb

(s)2 = s (11.18)

for any point s in the support of αb and

E∂λ�
b
λb,αb

(u, Xλb,αb
(u)) = u. (11.19)
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From (11.19) and noting that

∂xx�b
λ,α(u, x) = ∂xxfλ(x) = ∂λfλ(x) − (

∂xfλ(x)
)2 = ∂λ�

b
λ,α(u, x) − (

∂x�b
λ,α(u, x)

)2,

it follows that

E∂xx�b
λb,αb

(u, Xλb,αb
(u)) = E∂λ�

b
λb,αb

(u, Xλb,αb
(u)) − Evλb,αb

(u)2

= u − Evλb,αb
(u)2.

Plugging this equation and (11.18) into (12.9) leads to

d

db
�b

λ,α(0, 0)

∣∣∣
(λ,α)=(λb,αb)

= 2b
(
u2 −

∫ u

0
s2αb(ds)

)
= 4b

∫ u

0
sαb(s) ds,

where the last equality used the integration by parts. As a result, we arrive at

d

db
Pb(λ, α)

∣∣∣
(λ,α)=(λb,αb)

= 4b
∫ u

0
sαb(s) ds − 2b

∫ u

0
sαb(s) ds = 2b

∫ u

0
sαb(s) ds, (11.20)

Now, from (11.26), we have that for any 0 < b′ < b < ∞,

lim
ε↓0

lim
n→∞

Fn(b) − Fn(b′)
b − b′ = 1

b − b′
(

inf
(λ,α)∈R×Mu

Pb(λ, α) − inf
(λ,α)∈R×Mu

Pb′(λ, α)
)

≥ 1

b − b′
(
Pb(λb, αb) − Pb′(λb, αb)

)
,

which combining with the convexity of Fn(b) and (11.20), after sending b′ ↑ b,

lim
ε↓0

lim inf
n→∞ F ′

n(b) ≥ 2b
∫ u

0
sαb(s) ds. (11.21)

In the last step, note that a direct computation gives

F ′
n(b) = E

〈 〈Gnx, x〉
n3/2

〉
b

≤ E sup
x∈[−M,M]n:|||x|||22∈[u−ε,u+ε]

〈Gnx, x〉
n3/2 ≤ (u + ε)√

2

E‖Ḡn‖2

n1/2 , (11.22)

where 〈·〉b is the Gibbs expectation associated with the partition function,

∫
x∈[−M,M]:|||x|||22∈[u−ε,u+ε]

exp
( b

n1/2 〈Gnx, x〉 − βt‖x‖p
p

)
dx.
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On �p-Gaussian–Grothendieck Problem 63

It follows from (11.21), (12.5), and the convexity of Fn that

2b
∫ u

0
sαb(s) ds ≤ lim

ε↓0
lim inf

n→∞ F ′
n(b) ≤ √

2u.

To translate this inequality back to that for αM,β , we recall that αb = αM,β for b = β. This

completes our proof of (11.13). �

Lemma 11.11. Let t, u > 0. There exists a constant K > 0 depending only on t, u such

that

|λM,β | ≤ K for any β > M > 2u1/2.

Proof. Since f β,t,M
λ is convex, we can take v ≡ 0 in (11.10) and then apply Jensen’s

inequality to get

�
β,t,u,M
λ,α (0, 0) ≥ Ef β,t,M

λ (
√

2W(u)) ≥ f β,t,M
λ (0). (11.23)

Fix any M > 2u1/2. For 0 < D ≤ M, we have

f β,t,M
λ (0) ≥ 1

β
log

∫ D

−D
eβ(λr2−t|r|p) dr ≥ 1

β
log

1

2D

∫ D

−D
eβ(λr2−t|r|p) dr + 1

β
log 2D

≥ 1

2D

∫ D

−D
(λr2 − t|r|p) dr + 1

β
log 2D,

where the last inequality used Jensen’s inequality. Now, from (B5),

Pβ,t,u,M(λ, α) ≥ λ
( 1

2D

∫ D

−D
r2 dr − u

)
− t

2D

∫ D

−D
|r|p dr + log 2D

β
−
∫ u

0
sβα(s) ds,

and therefore, from Lemma 11.10,

λ
( 1

2D

∫ D

−D
r2 dr − u

)
≤ inf

λ,α
Pβ,t,u,M(λ, α) + t

2D

∫ D

−D
|r|p dr − log 2D

β
+ u√

2
.

Now, take λ = λM,β . If λM,β > 0, we set D = √
u and if λM,β < 0, set D = 2

√
u so that

(2D)−1
∫ D
−D r2 dr − u shares the same sign with λM,β . Therefore,

|λM,β | ≤ 1∣∣ 1
2D

∫ D
−D r2 dr − u

∣∣(inf
λ,α

Pβ,t,u,M(λ, α) + t

2D

∫ D

−D
|r|p dr − log 2D

β
+ u√

2

)
.
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64 W.-K. Chen and A. Sen

Finally, from (10.7),

inf
λ,α

Pβ,t,u,M(λ, α) = lim
ε↓0

lim
n→∞EFn,t,u,M,ε(β) ≤ lim sup

n→∞
ELn,p(t) + log 2M

β
≤ C(t)1/2 + log 2M

β
.

These yield the desired bound as long as β > M > 2u1/2. �

11.5 Proof of Proposition 11.3

Recall that (λM,β , αM,β) is the unique minimizer of Pβ,t,u,M . From Lemma 11.10 and the

monotinicity of βαM,β(s) in s,

∫ u

0
βαM,β(s) ds =

∫ u/2

0
βαM,β(s) ds +

∫ u

u/2
βαM,β(s) ds

≤ 2
∫ u

u/2
βαM,β(s)d ≤ 2 · 2

u

∫ u

u/2
sβαM,β(s) ds ≤ 2

√
2. (11.24)

Define a positive measure νM,β on [0, u] by νM,β(A) = ∫
A βαM,β(s) ds. From the inequality

(B12) and noting that αM,β(s) is nondecreasing in s, we see that for any 0 < r < u,

supβ>0,s∈[0,r] βαM,β(s) < ∞ and hence, we can pass to a subsequence (βn)n≥1 such that

(βnαM,βn
)n≥1 converges to some γM,∞ ∈ Nu almost everywhere on [0, u). In addition,

we can assume that along the same subsequence, LM := limn→∞
∫ u

0 βαM,βn
(s) ds exists.

Consequently, we conclude that νM,βn
converges vaguely on [0, u] to some νM,∞, defined

as νM,∞(A) = ∫
A γM,∞(s) ds + �M,∞δu, where 0 ≤ �M,∞ := LM − ∫ u

0 γM,∞(s) ds < ∞. On the

other hand, Lemma 11.11 also allows us to pass to a subsequence of λM,β , along which

it is convergent. From now on, without loss of generality, we assume that these are

convergent without passing to a subsequence. To proceed, from the above discussion,

combined with Lemma 11.11 and Inequality (B12), we note that there exists a constant

K depending only on t, u such that for any M > 2u1/2,

max
(
|λM,∞|, �M,∞,

∫ u

0
γM,∞(s) ds, sup

s∈[0,u)

(u − s)γM,∞(s)
)

≤ K. (11.25)

Lemma 11.12. For any 0 < u < M2, we have that

lim inf
β→∞ �

β,t,u,M
λM,β ,αM,β

(0, 0) ≥ 

t,u,M
λM ,γM,∞(0, 0),

where λM := λM,∞ + �M,∞.
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On �p-Gaussian–Grothendieck Problem 65

Proof. Recall the representations in Proposition 11.7. Consider any progressively mea-

surable process v ∈ DM
u on [0, u], which is left-continuous at u, that is, lims→u− v(s) =

v(u). Note that maxs∈[0,u] |v(s)| ≤ M. From the vague convergence of νM,β to νM,∞ on [0, u],

we have that

lim inf
β→∞ �

β,t,u,M
λM,β ,αM,β

(0, 0)

≥ lim inf
β→∞ E

[
f β,t,M
λM,β

(
2
∫ u

0
v(s)βαM,β(s) ds + √

2W(u)
)

−
∫ u

0
v(s)2βαM,β(s) ds

]
= E

[
f t,M
λM,β

(
2
∫ u

0
v(s)νM,∞(ds) + √

2W(u)
)]

−
∫ u

0
v(s)2νM,∞(ds)

]
. (11.26)

From the definition of νM,∞, the above lower bound can be written as

E

[
f t,M
λM,∞

(
2
∫ u

0
v(s)νM,∞(ds) + √

2W(u)
)

−
∫ u

0
v(s)2νM,∞(ds)

]
= E

[
f t,M
λM,∞

(
2
∫ u

0
v(s)γM,∞(s) ds + 2v(u)�M,∞ + √

2W(u)
)

−
∫ u

0
v(s)2γM,∞(s) ds − �M,∞v(u)2

]
.

(11.27)

On the other hand, recall from (11.11),



t,u,M
λM ,γM,∞(0, 0) = sup

v∈DM
u

E

[
f t,M
λM

(
2
∫ u

0
v(s)γM,∞(s) ds + √

2W(u)
)

−
∫ u

0
v(s)2γM,∞(s) ds

]
.

(11.28)

For 0 ≤ s < u, denote by r∗(s) ∈ [−M, M] the largest (random) maximizer in the definition

of

f t,M
λM

(
2
∫ s

0
v(l)γM,∞(l) dl + √

2W(s)
)
.

Using the compactness of [−M, M], we can pick a sequence (sk) ⊂ (0, u) with

limk→∞ sk = u such that r∗(u) := limk→∞ r∗(sk) is a maximizer to

f t,M
λM

(
2
∫ u

0
v(l)γM,∞(l) dl + √

2W(u)
)
.
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66 W.-K. Chen and A. Sen

Next, fix an arbitrary v ∈ DM
u . Define a progressively measurable process

vk ∈ DM
u by

vk(s) = v(s)1[0,sk)(s) + r∗(sk)1[sk,u](s).

Note that vk is left-continuous at u. Consequently, we can plug this vk into (11.26) and

(11.27) to obtain that

lim inf
β→∞ �

β,t,u,M
λM,β ,αM,β

(0, 0)

≥ E

[
f t,M
λM,∞

(
2
∫ sk

0
v(s)γM,∞(s) ds + 2r∗(sk)

∫ u

sk

γM,∞(s) ds + 2r∗(sk)�M,∞ + √
2W(u)

)
−
∫ sk

0
v(s)2γM,∞(s) ds − r∗(sk)2

∫ u

sk

γM,∞(s) ds − r∗(sk)2�M,∞
]
.

Sending k → ∞ and noting that
∫ u

0 γM,∞(s) ds < ∞ imply that

lim inf
β→∞ �

β,t,u,M
λM,β ,αM,β

(0, 0) ≥ E

[
f t,M
λM,∞

(
2
∫ u

0
v(s)γM,∞(s) ds + 2r∗(u)�M,∞ + √

2W(u)
)

−
∫ u

0
v(s)2γM,∞(s) ds − r∗(u)2�M,∞

]
. (11.29)

Here, from the definition of f t,M
λM,∞ ,

f t,M
λM,∞

(
2
∫ u

0
v(s)γM,∞(s) ds + 2r∗(u)�M,∞ + √

2W(u)
)

≥
(
2
∫ u

0
v(s)γM,∞(s) ds + 2r∗(u)�M,∞ + √

2W(u)
)
r∗(u) + λM,∞r∗(u)2 − t|r∗(u)|p

=
(
2
∫ u

0
v(s)γM,∞(s) ds + √

2W(u)
)
r∗(u) + (

λM,∞ + 2�M,∞
)
r∗(u)2 − t|r∗(u)|p.

Plugging this lower bound into the right-hand side of (12.6) yields that

lim inf
β→∞ �

β,t,u,M
λM,β ,αM,β

(0, 0)

≥ E

[(
2
∫ u

0
v(s)γM,∞(ds) + √

2W(u)
)
r∗(u) + (

λM,∞ + �M,∞
)
r∗(u)2

− t|r∗(u)|p −
∫ u

0
v2γM,∞(s) ds

]
= E

[
f t,M
λM

(
2
∫ u

0
v(s)γM,∞(s) ds + √

2W(u)
)

−
∫ u

0
v(s)2γM,∞(s) ds

]
.
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On �p-Gaussian–Grothendieck Problem 67

Since this is valid for all v ∈ DM
u , taking supremum over this set completes our proof by

using (11.28). �

We now proceed to establish the proof of Proposition 11.3. Assume that γ ∈ Nu

satisfies γ (u−) < ∞ and λ ∈ R. Define αβ(s) = β−1γ (s)1[0,u)(s)+ 1{u}(s). Here, αβ ∈ Mu as

long as β is large enough. Since

f β,u,M
λ (x) ≤ f t,M

λ (x) + β−1 log 2M,

we have

lim
β→∞ �

β,t,u,M
λ,αβ

(0, 0) = lim
β→∞ sup

v∈DM
u

E

[
f β,t,M
λ

(
2
∫ u

0
v(s)γ (s) ds + √

2W(u)
)

−
∫ u

0
v(s)2γ (s) ds

]
≤ sup

v∈DM
u

E

[
f t,M
λ

(
2
∫ u

0
v(s)γ (s) ds + √

2W(u)
)

−
∫ u

0
v(s)2γ (s) ds

]
.

Also note
∫ u

0 sβαβ(s) ds = ∫ u
0 sγ (s) ds. From these,

lim sup
β→∞

inf
(λ,α)∈R×Mu

Pβ,t,u,M(λ, α) ≤ Pt,u,M(λ, γ ).

The continuity of Pt,u,M in Proposition 11.8 then implies that

lim sup
β→∞

inf
(λ,α)∈R×Mu

Pβ,t,u,M(λ, α) ≤ inf
(λ,γ )∈R×Nu

Pt,u,M(λ, γ ).

To prove the reverse inequality, we use Lemma 11.12 to obtain

lim inf
β→∞ inf

(λ,α)∈R×Mu

Pβ,t,u,M(λ, α) = lim inf
β→∞ Pβ,t,u,M(λM,β , αM,β)

≥ 

t,u,M
λM ,γM,∞(0, 0) − λM,∞u −

∫ u

0
sνM,∞(ds)

= 

t,u,M
λM ,γM,∞(0, 0) − λMu −

∫ u

0
sγM,∞(s) ds = Pt,u,M(λM , γM,∞).

Let γM := γM,∞. Combining this lower bound with the upper bound obtained above, we

deduce

lim inf
β→∞ inf

(λ,α)∈R×Mu

Pβ,t,u,M(λ, α) = inf
(λ,γ )∈R×Nu

Pt,u,M(λ, γ ) = Pt,u,M(λM , γM),
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68 W.-K. Chen and A. Sen

which gives (11.8). Consequently, we have (11.7) by using (11.6). Finally, (B11) and the

fact λM = λM,∞ + �M,∞ validate (11.9). This completes our proof.

12 Proof of Theorem 1.9

We present the proof of Theorem 1.9 in this section. With the help of (1.15), the assertion

(1.23) follows immediately from (1.22), so we only need to establish (1.22). Our argument

consists of matching the upper and lower bounds.

12.1 Lower bound

We verify that

Lp,u(t) ≥ inf
(λ,γ )∈R×N d

u

Pt,u(λ, γ ).

From Propositions 10.1 and 11.3, it remains to show that

lim sup
M→∞

inf
(λ,γ )∈R×Nu

Pt,u,M(λ, γ ) ≥ inf
(λ,γ )∈R×N d

u

Pt,u(λ, γ ). (12.1)

Our argument relies on a stochastic optimal control representation for 

t,u
λ,γ (0, 0) in the

same spirit as that of Proposition 11.7, whose proof is deferred to the appendix.

Proposition 12.1. Let (λ, γ ) ∈ R × N d
u . There exist a probability space (�,P, F ), a

filtration (Fs)0≤s≤u, a continuous adapted process X = (X(s))0≤s≤u, and a standard

Brownian motion W = (W(s))0≤s≤u such that together they form a weak solution to

the following SDE:

dX(s) = 2γ (s)∂x

t,u
λ,γ (s, X(s))ds + √

2dW(s), 0 ≤ s ≤ u, X(0) = 0. (12.2)

Furthermore, we have



t,u
λ,γ (0, 0) = sup

v∈Du

E

[
f t,u
λ

(
2
∫ u

0
v(s)γ (s) ds + √

2W(u)
)

−
∫ u

0
v(s)2γ (s) ds

]
, (12.3)

where Du is the collection of all progressively measurable processes v = (v(s))0≤s≤u

with respect to the filtration (Fs)0≤s≤u with E
∫ u

0 |v(s)|2 ds < ∞. Here, the supremum is

attained by the process v ∈ Du defined by v(s) = ∂x

t,u
λ,γ (s, X(s)) for 0 ≤ s ≤ u.
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On �p-Gaussian–Grothendieck Problem 69

Remark 12.2. Recall from Proposition 11.6 that ∂x

t,u,M
λ,γ (s, ·) and ∂x�

β,t,u,M
λ,α (s, ·) are

uniformly Lipschitz over all x ∈ [0, u). This ensures the existence of the strong solutions

of X and X ′ in Proposition 11.7. In (12.2), ∂x

t,u
λ,γ (s, ·) is not Lipschitz, but it can be shown

from the Hopf–Cole transformation (1.20) that it is of moderate growth, namely there

exists some 0 < a < 1 such that |∂x

t,u
λ,γ (s, x)| ≤ C(1 + |x|a) for any (s, x) ∈ (

[0, u] × R
) \

{(u, 0)} (see Lemma B.3), where C > 0 depends on γ . Hence,

|∂x

t,u
λ,γ (s, x)| ≤ 2C(1 + |x|), ∀(s, x) ∈ ([0, u] × R

) \ {(u, 0)}.

This ensures the existence of the weak solution of (12.2); see [35, Proposition 5.3.6].

Additionally, from this upper bound, it is a standard application of the Gronwall

inequality (see, e.g., [35, Problem 5.3.15]) that

E max
0≤s≤u

|X(s)|2 ≤ 4u(C2
0 + 1)e4u2C2

0 , C0 := 2γ (u)C.

However, this upper bound is not good enough for us since in the Parisi formula we take

infimum over all γ and this bound might diverge.

The following technical lemma controls E|X(u)|2 uniformly over bounded λ and∫ u
0 γ (s)ds.

Lemma 12.3. Assume that t, u > 0. There exists a nonnegative continuous function K

on (2, ∞) × (0, ∞)2 × R × [0, ∞) → [0, ∞) such that for any (λ, γ ) ∈ R × N d
u , we have that

E
∣∣X(u)

∣∣2 ≤ K
(
p, t, u, λ,

∫ u

0
γ (s) ds

)
.

Proof. From (B2),



t,u
λ,γ (u, X(u)) ≤

(2

t

)1/(p−1)|X(u)|1+1/(p−1) +
(2|λ|

t

)1/(p−2)|X(u)|

+
(2

t

)2/(p−1)|λ||X(u)|2/(p−1) +
(2|λ|

t

)2/(p−2)|λ|.
(12.4)

Note that the assumption p > 2 ensures that

max
(
1 + 1

p − 1
,

2

p − 1

)
< 2. (12.5)
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70 W.-K. Chen and A. Sen

Using Jensen’s inequality yields

E

t,u
λ,γ (u, X(u)) ≤ K1

((
E|X(u)|2)1/2+1/2(p−1) + (

E|X(u)|2)1/2 + (
E|X(u)|2)1/(p−1) + 1

)
(12.6)

for

K1 :=
(2

t

)1/(p−1) +
(2|λ|

t

)1/(p−2) +
(2

t

)2/(p−1)|λ| +
(2|λ|

t

)2/(p−2)|λ|.

Let v(s) := ∂x

t,u
λ,γ (s, X(s)) and L := ∫ u

0 γ (s)v(s)ds. Since

E|X(u)|2 ≤ 16
(
EL2 + E|W(u)|2) = 16

(
EL2 + u

)
,

it follows that by using the trivial bound (x + y)a ≤ 2a(xa + ya) for all a, x, y ≥ 0,(
E|X(u)|2)a ≤ 32a(EL2)a + 32aua. From this and (12.6),

E

t,u
λ,γ (u, X(u)) ≤ K2

((
EL2)1/2+1/2(p−1) + (

EL2)1/2 + (
EL2)1/(p−1) + 1

)
, (12.7)

where K2 depends on t, u, p, λ. By comparing the representation (12.3) of 

t,u
λ,γ (0, 0) with

the optimal control process v(s) = ∂x

t,u
λ,γ (s, X(s)) against the zero control process, we

obtain that

E

t,u
λ,γ (u, X(u)) −

∫ u

0
γ (s)Ev(s)2 ds = 


t,u
λ,γ (0, 0) ≥ Ef t,u

λ (
√

2W(u)) ≥ 0,

which implies that, by the Cauchy–Schwarz inequality,

E

t,u
λ,γ (u, X(u)) ≥

∫ u

0
γ (s)Ev(s)2 ds ≥ EL2∫ u

0 γ (s) ds
.

From this and (12.7), we arrive at

EL2 ≤ K2

(∫ u

0
γ (s) ds

)((
EL2)1/2+1/2(p−1) + (

EL2)1/2 + (
EL2)1/(p−1) + 1

)
.

From (12.5), 1/2+1/2(p−1) and 1/(p−1) are strictly less than 1. Now, if EL2 ≥ 1, dividing

(EL2)δ on the both sides of the above inequality deduces that

(
EL2)1−δ ≤ 4K2

∫ u

0
γ (s) ds
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On �p-Gaussian–Grothendieck Problem 71

for δ := max
(
1/2 + 1/2(p − 1), 1/(p − 1)

)
. Hence, we arrive at the bound,

EL2 ≤ K3 := max
(
1,
(
4K2

∫ u

0
γ (s) ds

)1/(1−δ))
.

Our proof then follows by using E|X(u)|2 ≤ 16(EL2 + u). �

We now establish (12.7). Recall the optimizer (λM , γM) of Pt,u,M from

Proposition 11.3. Note that from the continuity of Pt,u,M in Proposition 11.8, we can

approximate Pt,u,M(λM , γM) by considering Pt,u,M(λM , γ ) for γ ∈ N d
u and by letting γ to

be as close as we want to γM under the norm
∫ u

0 |γ (s) − γM(s)| ds. Hence, without loss of

generality, we may assume that γM ∈ N d
u . Recall from (11.9) that λM and

∫ u
0 γM ds are

bounded by a constant C independent of M.

As p > 2, in the definition of f t
λ, the term t|r|p dominates the linear term xr and

the quadratic term λr2. So, for any L > 0, there exists some ML > 0 such that

f t
λ(x) = f t,M

λ (x), for all |x| ≤ L, |λ| ≤ C, M ≥ ML.

Hence, as long as M ≥ ML, we can write that for any x ∈ R,

f t
λ(x) = f t,M

λ (x)1{|x|≤L} + f t
λ(x)1{|x|>L} ≤ f t,M

λ (x) + f t
λ(x)1{|x|>L}.

Let XM be the stochastic process X defined in Proposition 12.1 associated with γ = γM .

From this inequality, letting vM(s) := ∂x

t,u
λM ,γM

(s, XM(s)), and using Propositions 11.7

and 12.1, we have



t,u
λM ,γM

(0, 0) = E

t,u
λM ,γM

(u, XM(u)) −
∫ u

0
γM(s)EvM(s)2 ds

≤ 

t,u,M
λM ,γM

(0, 0) + E

t,u
λM ,γM

(u, XM(u))1{|XM (u)|>L}.
(12.8)

To handle the 2nd term, we need some moment controls. Note that p > 2 implies

ζ := 2

max
(
1 + 1

p−1 , 2
p−1

) ∈ (1, 2).

From (12.4) and Lemma 12.3, we can apply Jensen’s inequality along with the bounds

|λM | ≤ C and
∫ u

0 γM ds ≤ C to get

E
∣∣
t,u

λM ,γM
(u, XM(u))

∣∣ζ ≤ K
((
E|XM(u)|2) ζ

2

(
1+ 1

p−1

)
+ (

E|XM(u)|2) ζ
2 + (

E|XM(u)|2) ζ
p−1 + 1

) ≤ K′,
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where K and K′ are constants depending only on p, t, u. On the other hand, from the

Markov inequality and Lemma 12.3,

P
(|XM(u)| > L

) ≤ E|XM(u)|2
L2 ≤ K′′

L2 ,

where again K′′ depends only on p, t, u. Applying the Hölder inequality to (12.8) and

using the above two inequalities yield that



t,u
λM ,γM

(0, 0) ≤ 

t,u,M
λM ,γM

(0, 0) + (
E
∣∣
t,u

λM ,γM
(u, XM(u))

∣∣ζ )1/ζ
P
(|XM(u)| > L

)1/ζ ′

≤ 

t,u,M
λM ,γM

(0, 0) + K′1/ζ K′′1/ζ ′

L2/ζ ′ ,

where ζ ′ is the Hölder conjugate exponent of ζ . As a result, for any M ≥ ML,

inf
(λ,γ )∈R×N d

u

Pt,u(λ, γ ) ≤ Pt,u(λM , γM)

≤ Pt,u,M(λM , γM)+ K′1/ζ K′′1/ζ ′

L2/ζ ′ = inf
(λ,γ )∈R×Nu

Pt,u,M(λ, γ ) + K′1/ζ K′′1/ζ ′

L2/ζ ′ .

Since this is valid for any L > 0 and K′, K′′ are independent of L, sending M → ∞ and

then L → ∞ completes the proof of (12.7).

12.2 Upper bound

Next, we verify that

Lp,u(t) ≤ inf
λ∈R,γ∈N d

u

Pt,u(λ, γ ). (12.9)

From Proposition 10.1, we have seen that

Lp,u(t) ≤ lim
β→∞ lim sup

n→∞
EFn,t,u,β−2(β). (12.10)

To control the right-hand side, recall Pβ,t,u(λ, α) for (λ, α) ∈ R × M d
u from Table 1. The

replica symmetry breaking bound, due to Guerra (see [29] and [50]), states that for any

β > 0, ε > 0, and (λ, α) ∈ R × M d
u , we have that

EFn,t,u,ε(β) ≤ Pβ,t,u(λ, α) + C0βε, (12.11)
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On �p-Gaussian–Grothendieck Problem 73

where C0 > 0 is a universal constant independent of n, β, and ε. Recall f β,t
λ (x) and

f t
λ(x) from Table 1. To relate Pβ,t,u(λ, α) to Pt,u(λ, γ ), fix (λ, γ ) ∈ R × N d

u , and let

α(s) = β−1γ (s)1[0,u)(s) + 1{u}(s). Note that α ∈ M d
u as long as β is large enough. For

any 0 < δ < t, since

f β,t
λ (x) = 1

β
log

∫∞
−∞ eβ(rx+λr2−(t−δ)|r|p)e−βδ|r|p dr∫∞

−∞ e−βδ|r|p dr
+ 1

β
log

∫ ∞

−∞
e−βδ|r|p dr

≤ f t−δ
λ (x) + 1

β
log

∫ ∞

−∞
e−βδ|r|p dr

and
∫∞
−∞ e−βδ|r|p dr = (βδ)−1/p

∫∞
−∞ e−|s|p ds, it can be argued by using the Hopf–Cole

transformation in Lemma B.2 iteratively that

�
β,t,u
λ,α (0, 0) ≤ 


t−δ,u
λ,γ (0, 0) − 1

pβ
log βδ + 1

β
log

∫ ∞

−∞
e−|s|p ds.

Note
∫ u

0 sβα(s) ds = ∫ u
0 sγ (s) ds. From (12.10) and (12.11), after sending β to infinity,

Lp,u(t) ≤ Pt−δ,u(λ, γ ). Finally, using (B12), (B14), and the dominated convergence theorem

yields limδ↓0 Pt−δ,u(λ, γ ) = Pt,u(λ, γ ) and, consequently, Lp,u(t) ≤ Pt,u(λ, γ ). Taking

infimum in this inequality validates (12.9).

13 Open Questions

In this section, we mention a few open problems and further directions.

1. Compute the order and the limiting distribution of the fluctuation of the

�p-Grothendieck problem. The asymptotic fluctuation for p = 2 (the largest

eigenvalue of the GOE) is known to follow the Tracy–Widom distribution with

the usual n−1/6 scaling [66, 67]. The proof of Theorem 1.1 suggests that the

limiting fluctuation in the case p = 1 could possibly be Gumbel. For the

case 2 < p < ∞, since Ln,p(t) is essentially a SK model with �p external

field, it seems reasonable to believe that the limiting fluctuation of Ln,p is

Gaussian (see [17]) and in view of (8.2), Gn,p should also be Gaussian up

to a transformation. When p = ∞, the �p-Grothendieck problem becomes

the ground state energy of the SK model and the numerical studies, see,

for example, [49], indicate that the limiting fluctuation should follow the

Gumbel distribution, even though a rigorous proof remains elusive. We do

not have a prediction in the case 1 < p < 2. To analyze this case, one
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74 W.-K. Chen and A. Sen

would naturally use the fact that the global optimizer lies close to one of

the approximate optimizers in O, described in (1.7). However, it may be

possible that determining the limiting distribution of fluctuation requires

finer approximation for the global optimizer (with better error bound).

2. For the �p-Grothendieck problem for 2 < p < ∞, show that with high

probability, there exist exponentially many near optimizers that are nearly

mutually orthogonal to each other.

3. For the �p-Grothendieck problem for 2 < p < ∞, devise a polynomial-time

algorithm that outputs an approximate optimizer with high probability. For

p = ∞ (SK model), [24, 44] used the approximate message passing algorithm

to find a near ground state in polynomial time with high probability (see also

[62]).

4. Improve the delocalization bound (1.17) for 2 < p < ∞. In this case, we

expect that an optimizer x∗ in the unit �p-ball should satisfy ‖x∗‖∞ =
O((log n)Cn−1/p) for some constant C > 0 with high probability.

5. Study the �p-Grothendieck problem for random i.i.d. matrices with more

general entry distribution (e.g., with subgaussian distribution). Do we have

universality if 2 < p < ∞?

6. Find the limit of the operator norm ‖Gn‖p→q for all 1 ≤ p, q ≤ ∞. In view of

Proposition 3.4, this problem is yet to be resolved for pairs (p, q) satisfying

(p, q) ∈ (1, ∞] × [1, ∞) and p(q, p∗) = p(p∗, q), which is the set of pairs

satisfying that

(i) (p, q) ∈ (1, 2] × [2, ∞) with q = p∗ or (ii) (p, q) ∈ [2, ∞] × [1, 2].

A special case of (i) and (ii) is when 1 < p ≤ ∞ and q = p∗, which corresponds

to the p-to-p∗ norm and it can be expressed as a bipartite �p-Grothendieck

problem via

‖Gn‖p→p∗ = max
x,y∈Rn:‖x‖p≤1,‖y‖p≤1

〈Gnx, y〉.

For 1 < p < 2, an argument similar to the one presented in Theorem 1.2 might

be useful to find the limit of ‖Gn‖p→p∗ . For p = ∞, the limit of ‖Gn‖p→p∗ =
‖Gn‖∞→1 is known as the ground state energy of the bipartite SK model

and is conjectured to admit a minmax-type Parisi formula (see [7, 46]). For

2 < p < ∞, we expect that the same formulation should still be valid.
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On �p-Gaussian–Grothendieck Problem 75

Remark 13.1. In a recent work, Dhara–Mukherjee–Ramanan [22] studied

the p-to-q-norm for n×n symmetric random matrix An with i.i.d. nonnegative

entries, including the adjacency matrices of Erdoős–Rényi random graphs.

The p-to-q-norm is related to the �p-Grothendieck problem in the following

way (see [22, Proposition 2.14]): for p ≥ 2 and for any n × n matrix An such

that AT
nAn is an irreducible matrix with nonnegative entries, it holds that

‖An‖p→p∗ = max
x∈Rn:‖x‖p≤1

〈Anx, x〉.

In [22], Gaussian fluctuation for ‖An‖p→q if 1 ≤ q ≤ p < ∞ was established,

which includes, as a special case, the �p-Grothendieck problem for An for

p ≥ 2. However, the proof uses a nonlinear power iteration method, originally

introduced by Boyd [12], to approximate the p-to-q-norm. It relies heavily on

the nonnegativity of the entries of An and cannot be directly applied to the

Gaussian case. Also, for 1 ≤ q ≤ p < ∞, the optimizer for ‖An‖p→q is close

to the scaled constant vector. Obviously, this does not hold in the Gaussian

case.

A Stability of Hölder’s Inequality

In this appendix, we gather some quantitative results on the inequalities used in the

proof of Theorem 1.4. The 1st lemma provides a stability bound for Hölder’s inequality.

Lemma A.1. Let 1 < p ≤ 2, and let w be a nonzero vector in Rn. Let v be the vector

with unit �p-norm such that 〈v, w〉 = ‖w‖p∗ , that is, v satisfies

sgn(vi)|vi|p = sgn(wi)|wi|p∗

‖w‖p∗
p∗

, ∀i.

Then, for any u ∈ Rn with ‖u‖p = 1,

〈u, w〉 ≤ ‖w‖p∗
(
1 − p2

16p∗ ‖u − v‖2
p

)
.

Proof. First of all, we claim that for 1 < p ≤ 2 and a, b ∈ R, we have the following

stability bound for Young’s inequality:

|a|p
p

+ |b|p∗

p∗ ≥ ab + 1

2p∗
(|a|p/2sgn(a) − |b|p∗/2sgn(b)

)2.
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The case when both a and b have the same sign follows from [1, Lemma 2.1]. If a and b

have opposite signs, then we need to show, after ignoring the negative term ab, that

|a|p
p

+ |b|p∗

p∗ ≥ 1

2p∗
(|a|p/2 + |b|p∗/2)2,

which follows from the inequality (x + y)2 ≤ 2(x2 + y2) and the fact that p ≤ p∗. This

completes the proof of our claim.

To prove our main result, without loss of generality, assume that ‖w‖p∗ = 1.

Applying our claim to ui and wi and then summing over i, we obtain

〈u, w〉 ≤ 1 − 1

2p∗
∑

i

(|ui|p/2sgn(ui) − |wi|p
∗/2sgn(wi)

)2
= 1 − 1

2p∗
∑

i

(|ui|p/2sgn(ui) − |vi|p/2sgn(vi)
)2.

For 0 ≤ θ ≤ 1, we have

1 − θp/2 =
∫ 1

θ

p
2 xp/2−1 dx ≥ p

2 (1 − θ) and 1 + θp/2 ≥ 1 + θ ≥ p
2 (1 + θ). (A.1)

Set ai = min(|ui|, |vi|) and bi = max(|ui|, |vi|). Also, let K = ∑
i bp

i ∈ [1, 2]. We now write∑
i

(|ui|p/2sgn(ui) − |vi|p/2sgn(vi)
)2

= K
∑

i:bi �=0

bp
i

K

(
1 − sgn(uivi)

(ai

bi

)p/2)2 ≥ Kp2

4

∑
i:bi �=0

bp
i

K

(
1 − sgn(uivi)

ai

bi

)2

≥ Kp2

4

( ∑
i:bi �=0

bp
i

K

∣∣∣1 − sgn(uivi)
ai

bi

∣∣∣p)2/p = p2

4K2/p−1

( ∑
i:bi �=0

∣∣∣bi − sgn(uivi)ai

∣∣∣p)2/p

= p2

4K2/p−1

( ∑
i:bi �=0

∣∣∣ui − vi

∣∣∣p)2/p ≥ p2

8
‖u − v‖2

p,

where the 1st inequality follows from (A.1) and the 2nd one uses Jensen’s inequality.

This finishes our proof. �

Next, we show that if a �p-unit vector (1 < p < 2) stays away from the coordinate

vectors, then its �2-norm must be strictly less than one.

Lemma A.2. Fix 1 < p < 2. There exists constant c > 0 such that if x ∈ Rn satisfies

‖x‖p = 1 and ‖x ± ei‖p ≥ δ for all i and for some δ > 0, then ‖x‖2 ≤ 1 − cδp.
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On �p-Gaussian–Grothendieck Problem 77

Proof. It is enough to prove the bound for 0 < δ ≤ δ0 for sufficiently small constant δ0.

We first claim that ‖x‖∞ ≤ 1 − δp/3. Suppose, if possible, that |xi| ≥ 1 − δp/3 for some

i. For definiteness, assume that xi ≥ 1 − δp/3 as the case xi ≤ −(1 − δp/3) can be dealt

similarly. Using the identity
∑

j �=i |xj|p = 1 − |xi|p, we obtain that

‖x − ei‖p
p = |1 − xi|p + 1 − |xi|p < |1 − xi| + 1 − |xi|2 = (1 − xi)(2 + xi) ≤ δp

3
· 3 = δp,

contradicting the assumption that ‖x − ei‖p ≥ δ. Under the constraints ‖x‖∞ ≤ 1 − δp/3

and ‖x‖p = 1, the �2-norm of x is maximized if x is supported only on two coordinates,

one of them being equal to 1 − δp/3 in magnitude and the other nonzero component of x

must have absolute value (1 − (1 − δp/3)p)1/p. Hence,

‖x‖2
2 ≤ (1 − δp/3)2 + (1 − (1 − δp/3)p)2/p ≤ (1 − δp/3)2 + (1 − (1 − δp/3)2)2/p

≤ 1 − 2δp/3 + (δp/3)2 + (2δp/3)2/p ≤ 1 − δp/3,

by choosing δ0 sufficiently small. This implies that ‖x‖2 ≤ (1 − δp/3)1/2 ≤ 1 − δp/6. �

B Analytic Results of the Parisi PDE

For (λ, γ ) ∈ R × N d
u , recall the PDE solution 


t,u
λ,γ defined in (1.20). In this appendix,

we will gather some regularity properties of this PDE solution and provide the proof of

Proposition 12.1. First of all, the boundary condition f t
λ has the following regularity.

Lemma B.1. If λ = 0, then for all x �= 0,

f t
λ(x) = (p − 1)

p

1

p
1

p−1 t
1

p−1

|x|1+ 1
p−1 ,

∣∣∣ d

dx
f t
λ(x)

∣∣∣ = 1

p
1

p−1 t
1

p−1

|x| 1
p−1 .

(B.1)

If λ �= 0, then f t
λ is twice differentiable on R \ {0} and for x �= 0,

0 < f t
λ(x) ≤

(2

t

)1/(p−1)|x|1+1/(p−1) +
(2|λ|

t

)1/(p−2)|x|

+
(2

t

)2/(p−1)|λ||x|2/(p−1) +
(2|λ|

t

)2/(p−2)|λ|
(B.2)

and ∣∣∣ d

dx
f t
λ(x)

∣∣∣ ≤ max
((2|x|

t

)1/(p−1)

,
(2|λ|

t

)1/(p−2))
. (B.3)

Proof. When λ = 0, the assertion (B.1) can be checked by a straightforward computa-

tion. For the remainder of the proof, we will only focus on the case λ �= 0. Note that f t
λ
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is an even function. To prove our assertion, it suffices to assume that x > 0. Evidently,

f t
λ(x) > 0. Note that for any r > 0,

rx + λr2 − t|r|p > (−r)x + λ(−r)2 − t| − r|p,

which implies that f t
λ(x) = supr>0

(
xr + λr2 − trp

)
. Here, for r > 0,

d

dr
(xr + λr2 − trp) = x + 2λr − ptrp−1. (B.4)

Since x > 0, 0 < r �→ x + 2λr is a linear function, and 0 < r �→ ptrp−1 is strictly convex,

we see that (B.4) has a unique zero, r(x) > 0. In addition, since (B.4) equals x > 0 at

r → 0+ and it is negative when r is sufficient large, these imply that r(x) is an unique

optimizer of f t
λ(x). This also implies that 0 < x �→ r(x) must be continuous. Now, if

r(x) ≥ max
((2x

t

)1/(p−1)

,
(2|λ|

t

)1/(p−2))
,

then

xr(x) − t
r(x)p

2
< 0 and λr(x)2 − t

r(x)p

2
< 0.

Together, they imply that f t
λ(x) = xr(x) + λr(x)2 − tr(x)p < 0, a contradiction. Hence, we

must have that

r(x) < max
((2x

t

)1/(p−1)

,
(2|λ|

t

)1/(p−2))
. (B.5)

Consequently, dropping t|r|p and using this inequality, we arrive at (B.2) since

f t
λ(x) ≤ x max

((2x

t

)1/(p−1)

,
(2|λ|

t

)1/(p−2))+ |λ| max
((2x

t

)2/(p−1)

,
(2|λ|

t

)2/(p−2))
≤
(2

t

)1/(p−1)

x1+1/(p−1) +
(2|λ|

t

)1/(p−2)

x +
(2

t

)2/(p−1)|λ|x2/(p−1) +
(2|λ|

t

)2/(p−2)|λ|.
To show (B.3), note that

d

dr
(x + 2λr − ptrp−1)

∣∣∣
r=r(x)

= 2λ − pt(p − 1)r(x)p−2.

If λ < 0, then this derivative is strictly less than 2λ < 0; if λ > 0, plugging

x + 2λr(x) = ptr(x)p−1

into the above equation gives that

d

dr
(x + 2λr − ptrp−1)

∣∣∣
r=r(x)

= −2(p − 2)λ − x

r(x)
(p − 1) < 0.

From these and the implicit function theorem, r(x) is differentiable on (0, ∞), and

consequently,

d

dx
f t
λ(x) = d

dx

(
xr(x) + λr(x)2 − tr(x)p) = r(x) + r′(x)

(
x + 2λr(x) − ptr(x)p−1) = r(x).
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On �p-Gaussian–Grothendieck Problem 79

The inequality (B.3) then follows from (B.5). �

Lemma B.2. Let a ∈ (0, 1) and b ∈ (0, ∞). Let f be a nonnegative, even, and convex

function on R. Assume that there exists a constant C > 0 such that

f (x) ≤ C(1 + |x|a+1), x ∈ R. (B.6)

Let m > 0. For any (s, x) ∈ [0, b] × R, set

F(s, x) = 1

m
logE exp mf (x + √

sz), (B.7)

where z is standard normal. The following statements hold.

(i) For any s ∈ [0, b], F(s, ·) is nonnegative, even, and convex on R.

(ii) F ∈ C1,2((0, b] × R).

(iii) F satisfies

∂sF(s, x) = 1

2

(
∂xxF(s, x) + m

(
∂xF(s, x)

)2), (s, x) ∈ (0, b] × R,

lim
s↓0,x→x0

F(s, x) = f (x), ∀x0 ∈ R.

(iv) There exists a constant C′ > 0 depending on a, b, m, C such that for any

(s, x) ∈ (0, b] × R,

|F(s, x)| ≤ C′(1 + |x|a+1). (B.8)

(v) If additionally, f is differentiable on R \ {0} and there exists a constant C

such that

|f ′(x)| ≤ C(1 + |x|a), x ∈ R \ {0}, (B.9)

then there exists a constant C′ depending on a, b, m, C such that for any

(s, x) ∈ (0, b] × R,

|∂xF(s, x)| ≤ C′(1 + |x|a). (B.10)

Proof. First of all, note that F is well defined due to (B.6) and a < 1. To prove (i), the

nonnegativity and the evenness of F follow directly from those of f ; using the Hölder

inequality and the convexity of f yield that for all 0 ≤ s ≤ b, 0 ≤ � ≤ 1, and x, y ∈ R,

F(s, �x + (1 − �)y) = 1

m
logE exp mf (�x + (1 − �)y + √

sz)

≤ 1

m
logE exp m

(
�f (x+√

sz)+(1 − �)f (y+√
sz)
)≤�F(s, x)+(1 − �)F(s, y),
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establishing the convexity of F(s, ·). To show (ii) and (iv), write

F(s, x) = 1

m
log

1√
2πs

∫
emf (y)− (y−x)2

2s dy.

From this expression, (B.6), and the dominated convergence theorem, we see that F lies

in the class C1,2((0, b] × R). Furthermore, for any (s, x) ∈ (0, b] × R,

∂xF(s, x) = 1

sm

∫
R
(y − x)ϕ(y) dy∫

R
ϕ(y) dy

,

∂xxF(s, x) = − 1

sm
+ 1

s2m

∫
R
(y − x)2ϕ(y) dy∫

R
ϕ(y) dy

− 1

s2m

(∫
R
(y − x)ϕ(y) dy∫

R
ϕ(y) dy

)2
,

∂sF(s, x) = − 1

2sm
+ 1

2s2m

∫
R
(y − x)2ϕ(y) dy∫

R
ϕ(y) dy

for ϕ(y) := emf (y)−(y−x)2/(2s). This validates (ii) as well as the PDE in (iii). The continuity

of F at the boundary in (iii) is also guaranteed by using (B.6), (B.7), and the dominated

convergence theorem. The assertion (iv) can follows directly from (B.6) and noting a < 1.

Finally, we prove (v). Without loss of generality, we assume that x ≥ 0. Note that

we can also use (B.6), (B.9), and the dominated convergence theorem to get that

∂xF(s, x) = Ef ′(x + √
sz)emf (x+√

sz)

Eemf (x+√
sz)

.

From this, write

∣∣∂xF(s, x)
∣∣ ≤

∣∣∣E[f ′(x + √
sz)emf (x+√

sz); |z| ≥ x
]

Eemf (x+√
sz)

∣∣∣+ ∣∣∣E[f ′(x + √
sz)emf (x+√

sz); |z| < x
]

Eemf (x+√
sz)

∣∣∣.
(B.11)

To bound the 1st term, note that since emf (·) is convex, Jensen’s inequality and the

assumption f ≥ 0 imply that

1 ≤ emf (x) = emf (x+√
sEz) ≤ Eemf (x+√

sz).

On the other hand, from (B.6) and (B.9),

E
[∣∣f ′(x + √

sz)
∣∣emf (x+√

sz); |z| ≥ x
] ≤ CE

[(
1 + (1 + √

b)a|z|a)emC
(
1+(1+√

b)a+1|z|a+1
)] =: C′,

where C′ is finite due to the assumption that a < 1. Putting these two inequalities

together implies that the 1st term of (B.11) is bounded above by C′. For the 2nd term in

(B.11), note that

E
[∣∣f ′(x + √

sz)
∣∣emf (x+√

sz); |z| < x
] ≤ C(1 + (1 + √

s)a|x|a)E
[
emf (x+√

sz); |z| < x
]

≤ C(1 + (1 + √
b)a|x|a)E

[
emf (x+√

sz)
]
.
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From this, the 2nd term in (B.11) is bounded above by C′′|x|a for some constant C′′ > 0.

These validate (B.10). �

Lemma B.3. Let p > 2, t > 0, u > 0. Assume that λ ∈ R and γ ∈ N d
u satisfies

(1.19). Define 

t,u
λ,γ from [0, u] × R to R by letting 


t,u
λ,γ (u, x) = f t

λ(x) and iteratively for

l = k, k − 1, . . . , 0



t,u
λ,γ (s, x) = 1

ml
logE exp ml


t,u
λ,γ (ql+1, x +

√
2(ql+1 − s)z), s ∈ [ql, ql+1) × R, (B.12)

where z ∼ N(0, 1). Then, for any 0 ≤ l ≤ k, 

t,u
λ,γ ∈ C1,2([ql, ql+1) × R) and it satisfies the

following PDE:

∂s

t,u
λ,γ (s, x) = −(∂xx


t,u
λ,γ (s, x) + γ (s)

(
∂x


t,u
λ,γ (s, x)

)2), (s, x) ∈ (ql, ql+1) × R (B.13)

and

lim
s↑ql+1,x→x0



t,u
λ,γ (s, x) = 


t,u
λ,γ (ql+1, x0), ∀x0 ∈ R.

Furthermore, there exists a constant C > 0 such that∣∣
t,u
λ,γ (s, x)

∣∣ ≤ C(1 + |x|1+1/(p−1)), ∀(s, x) ∈ [0, u] × R, (B.14)

∣∣∂x

t,u
λ,γ (s, x)

∣∣ ≤ C(1 + |x|1/(p−1)), ∀(s, x) ∈ [0, u) × R. (B.15)

Proof. Note that 

t,u
λ,γ (u, x) = f t

λ(x) satisfies (B.6) and (B.9) with a = (p − 1)−1 < 1. Our

proof follows by applying Lemma B.2 iteratively. �

Proof of Proposition 12.1. Fix (λ, γ ) ∈ R × N d
u . Since γ (u) < ∞, from (B.15), there

exists some constant C > 0 such that∣∣γ (s)∂x

t,u
λ,γ (s, x)

∣∣ ≤ C(1 + |x|1/(p−1)), ∀(s, x) ∈ ([0, u] × R
) \ {(u, 0)}.

Consequently, there exists a probability space (�,P, F ), a filtration (Fs)0≤s≤u, a

continuous process X, and a standard Brownian motion W such that they together form

a weak solution of (12.2); see, for example, Proposition 5.3.6 in [35]. Next, for any v ∈ Du,

set Y(s) = 2
∫ s

0 γ (r)v(r) dr + √
2W(r). Using Itô’s formula and the PDE (B.13) leads to

d

t,u
λ,γ (s, Y(s)) = −γ (s)

[(
∂x


t,u
λ,γ (s, Y(s))

)2 − 2v(s)∂x

t,u
λ,γ (s, Y(s))

]
ds + √

2∂x

t,u
λ,γ (s, Y(s))dW(s).

Here, we can further rewrite this equation as

d

t,u
λ,γ (s, Y(s)) = −γ (s)

(
∂x


t,u
λ,γ (s, Y(s)) − v(s)

)2ds + √
2∂x


t,u
λ,γ (s, Y(s))dW(s) + γ (s)v(s)2ds.
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Consequently,

E

t,u
λ,γ (u, Y(u)) = 


t,u
λ,γ (0, 0) −

∫ u

0
γ (s)E

(
∂x


t,u
λ,γ (s, Y(s)) − v(s)

)2 ds +
∫ u

0
γ (s)Ev(s)2 ds,

which implies that



t,u
λ,γ (0, 0) = E


t,u
λ,γ (u, Y(u)) −

∫ u

0
γ (s)Ev(s)2 ds +

∫ u

0
γ (s)E

(
∂x


t,u
λ,γ (s, Y(s)) − v(s)

)2 ds.

Clearly, this implies that



t,u
λ,γ (0, 0) ≥ max

v∈Du

[
f t
λ

(
2
∫ u

0
γ (s)v(s) ds + √

2W(u)
)

−
∫ u

0
γ (s)v(s)2 ds

]
and the equality is achieved if v(s) ≡ ∂x


t,u
λ,γ (s, X(s)), where X is defined through (12.2).

This completes our proof. �
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