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Abstract

We study the phase transition of the free energy in the Sherrington-Kirkpatrick
mean-field spin glass model with centered Gaussian external field. We show that the
corresponding Almeida-Thouless line is the correct transition curve that distinguishes
between the replica symmetric and replica symmetry breaking solutions in the Parisi
formula.

Keywords: Almeida-Thouless line; Parisi formula; Sherrington-Kirkpatrick model.
MSC2020 subject classifications: 60K35; 82B44.
Submitted to ECP on March 11, 2021, final version accepted on November 3, 2021.

1 Introduction and main results

The famous Sherrington-Kirkpatrick (SK) mean-field spin glass model was introduced
in [12] aiming to explain some unusual magnetic behavior of certain alloys. By means
of the replica method, it was also proposed in [12] that the thermodynamic limit of the
free energy in the SK model can be solved by the replica symmetric ansatz at very high
temperature. A complete picture was later settled in the seminal works [10, 11] of Parisi,
in which he adapted an ultrametric ansatz and deduced a variational formula for the
limiting free energy at all temperature, known as the Parisi formula. This formula was
rigorously established by Talagrand [13] utilizing the replica symmetry breaking bound
discovered by Guerra [5]. See [8] for physicists’ studies of the SK model as well as
[9, 14, 15] for the recent mathematical progress.

For any N ≥ 1, the Hamiltonian of the SK model is defined as

−HN (σ) =
β√
N

∑
1≤i<j≤N

gijσiσj + h
N∑
i=1

σi, ∀σ ∈ {−1, 1}N , (1.1)

where gij ’s are i.i.d. standard Gaussian. The parameters β > 0 and h ∈ R are the
(inverse) temperature and external field, respectively. Define the free energy as

FN (β, h) =
1

N
log

∑
σ∈{−1,1}N

eHN (σ).
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The famous Parisi formula [9, 15] asserts that almost surely,

lim
N→∞

FN (β, h) = min
α∈Pr([0,1])

P (α). (1.2)

Here, Pr([0, 1]) is the collection of all probability distribution functions on [0, 1] equipped
with the L1(dx) distance and P is a functional on Pr([0, 1]) defined as

P (α) = log 2 + EΦα(0, h)− β2

2

∫ 1

0

sα(s)ds,

where Φα is the weak solution [6] to

∂sΦα(s, x) = −β
2

2

(
∂xxΦα(s, x) + α(s)(∂xΦα(s, x))2

)
, (s, x) ∈ [0, 1]×R (1.3)

with boundary condition Φ(1, x) = log coshx. It is known [2] that the Parisi formula has a
unique minimizer denoted by αP . We say that the Parisi formula is solved by the replica
symmetric solution if αP = 1[q,1] for some q ∈ [0, 1] and is solved by the replica symmetry
breaking solution if otherwise.

For any β, h > 0, let q = q(β, h) be the unique solution (see [4] and [14, Proposition
A.14.1]) to

q = E tanh2(h+ βz
√
q), (1.4)

where z is standard Gaussian. In [1], it was conjectured that for β, h > 0, the SK model
is solved by the replica symmetric solution if and only if (β, h) satisfies

β2E
1

cosh4(h+ βz
√
q)
≤ 1.

In other words, for β, h > 0, the following equation, known as the Almeida-Thouless line,

β2E
1

cosh4(h+ βz
√
q)

= 1, (1.5)

characterizes the transition between the replica symmetric and replica symmetry break-
ing solutions. Toninelli [16] proved that above the AT line, i.e, β2Ecosh−4(h+ βz

√
q) > 1,

the solution to the Parisi formula is replica symmetry breaking. Later Talagrand [15]
and Jagannath-Tobasco [7] showed that inside the AT line, β2Ecosh−4(h+ βz

√
q) ≤ 1,

there exist fairly large regimes in which the Parisi formula is solved by replica symmetric
solution. As parts of their regimes are not up to the AT line, verifying the exactness of
the AT line remains open.

In this short note, we investigate the SK model with centered Gaussian external field
and show that the corresponding AT line is indeed the transition line distinguishing
between the replica symmetric and replica symmetry breaking solutions in the Parisi
formula. For β, h > 0, the Hamiltonian of the SK model with centered Gaussian external
field is defined as

−HN (σ) =
β√
N

∑
1≤i<j≤N

gijσiσj + h
N∑
i=1

ξiσi, ∀σ ∈ {−1, 1}N ,

where (gij)1≤i<j≤N and (ξi)1≤i≤N are i.i.d. standard normal and are independent of each
other. The free energy associated to this Hamiltonian is given by

FN (β, h) =
1

N
E log

∑
σ∈{−1,1}N

exp
(
−HN (σ)

)
.
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On the AT line in the SK model with centered Gaussian external field

Figure 1: This figure describes the phase transition in the SK model with centered
Gaussian external field. The gray area is the regime of replica symmetric solutions,
while the white area is the regime of replica symmetry breaking solutions. The boundary
between these two regimes is the AT line (1.7) corresponding to our model. The black-
dash line is the AT line (1.5) corresponding to the original SK model with deterministic
external field.

In a similar manner, the limiting free energy can be expressed by the Parisi formula as
in (1.3) with a replacement of h by hξ for ξ a standard Gaussian random variable, more
precisely, we have that almost surely,

lim
N→∞

FN (β, h) = min
α∈Pr([0,1])

P(α),

where

P(α) = log 2 + EΦα(0, hξ)− β2

2

∫ 1

0

sα(s)ds,

and Φα is defined as (1.3). Note that the proof of this formula is identically the same as
those in [9, 15] with no essential modifications. Moreover, as in [2], the Parisi formula
here also has a unique minimizer denoted by αP . We again say that the Parisi formula is
solved by the replica symmetric solution if αP = 1[q,1] for some q ∈ [0, 1] and is solved by
the replica symmetry breaking solution if otherwise.

The AT line corresponds to our model is formulated analogously. Let z, ξ be i.i.d.
standard Gaussian random variables. For β, h > 0, let q = q(β, h) be the unique fixed
point of

q = E tanh2(hξ + βz
√
q), (1.6)

where the existence and uniqueness of q are guaranteed thanks to the Latala-Guerra
lemma.1 The AT line associated to the SK model with centered Gaussian external field is
the collection of all (β, h) ∈ (0,∞)× (0,∞) satisfying

β2E
1

cosh4(hξ + βz
√
q)

= 1. (1.7)

The following is our main result.

1 In [4] and [14, Proposition A.14.1], it is known that for any r ∈ R, x−1E tanh2(r + βz
√
x) is a strictly

decreasing function in x > 0, which implies that f(x) := x−1E tanh2(hξ + βz
√
x) is also strictly decreasing

on (0,∞). Since f(∞) = 0 and f(0) = ∞, there exists a unique x0 such that f(x0) = 1. This ensures that
(1.6) has a unique solution.
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Theorem 1.1. Consider the SK model with centered Gaussian external field. For any
β > 0 and h > 0, the Parisi formula exhibits the replica symmetric solution if and only if
(β, h) lies inside the AT line, i.e.,

β2E
1

cosh4(hξ + βz
√
q)
≤ 1. (1.8)

The rest of the paper is organized as follows. In Section 2, we gather some results
regarding the directional derivative of the functional P and some consequences following
the first order optimality of the Parisi variational formula. The proof of Theorem 1.1 is
presented in Section 3.

2 Preliminary results

Let ξ be standard Gaussian. Let α ∈ Pr[0, 1]. Conditionally on ξ, let (Xξ
α(s))0≤s≤1 be

the solution to the following stochastic differential equation with boundary condition
Xξ
α(0) = hξ,

dXξ
α(s) = β2α(s)∂xΦα(s,Xξ

α(s))ds+ βdW (s),

where (W (s))s∈[0,1] is a standard Brownian motion independent of ξ. Set

φα(s) = E
(
∂xΦα(s,Xξ

α(s))
)2
, 0 ≤ s ≤ 1.

The following proposition establishes the directional derivative of P in terms of φα.

Proposition 2.1. For α0, α1 ∈ Pr[0, 1] and θ ∈ [0, 1], set αθ = (1 − θ)α0 + θα1. The
right-derivative of θ 7→ P(αθ) at zero is given by

dP(αθ)

dθ+

∣∣∣
θ=0

=
β2

2

∫ 1

0

(
α1(s)− α0(s)

)(
s− φα0

(s)
)
ds.

Furthermore, α0 is the minimizer of minα∈Pr[0,1] P(α) if and only if dP(αθ)
dθ+

∣∣∣
θ=0
≥ 0 for all

α1 ∈ Pr[0, 1].

Proposition 2.2. If α0 is the minimizer of P, then every point in the support of α0 must
satisfy φα0

(s) = s.

In the case of the SK model with deterministic external field (1.1), the two propositions
above were established in Theorem 2 and Proposition 1 in [3], respectively, where the
statements are essentially the same as Propositions 2.1 and 2.2 with a replacement of
hξ by h. As the proofs in [3] can be directly applied to Propositions 2.1 and 2.2 with no
major changes, we do not reproduce the details here. The following lemma provides a
simpler expression for φα.

Lemma 2.3. Let α ∈ Pr[0, 1]. For any s ∈ [0, 1], we have that

φα(s) = E∂xΦα(s,M(s))2 exp
(∫ s

0

(Φα(s,M(s))− Φα(t,M(t)))α(dt)
)
,

where M(s) := hξ + βW (s).

Proof. Conditionally on ξ, let Eξ be the expectation associated to the probability measure

dPξ = exp
(
−
∫ 1

0

βα(r)∂xΦ(r,Xξ
α(r))dW (r)− 1

2

∫ 1

0

β2α(r)2∂xΦα(r,Xξ
α(r))2dr

)
dP.
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From the Girsanov theorem, under Eξ,(∫ s

0

βα(r)∂xΦα(r,Xξ
α(r))dr +W (s)

)
0≤s≤1

is a standard Brownian motion for which we denote by (W ξ(s))0≤s≤1. Set Mξ(s) =

hξ + βW ξ(s). Under Eξ, write∫ 1

0

βα(r)∂xΦ(r,Xξ
α(r))dW (r) +

1

2

∫ 1

0

β2α(r)2∂xΦα(r,Xξ
α(r))2dr

=

∫ 1

0

βα(r)∂xΦ(r,Xξ
α(r))

(
βα(r)∂xΦα(r,Xξ

α(r))dr + dW (r)
)

− 1

2

∫ 1

0

β2α(r)2∂xΦα(r,Xξ
α(r))2dr

=

∫ 1

0

βα(r)∂xΦ(r,Mξ(r))dW ξ(r)− 1

2

∫ 1

0

β2α(r)2∂xΦα(r,Mξ(r))2dr.

Consequently,

E
[(
∂xΦα(s,Xξ

α(s))
)2∣∣ξ] = Eξ

(
∂xΦα(s,Mξ(s))

)2
exp
(∫ 1

0

βα(r)∂xΦα(r,Mξ(r))dW ξ(r)

− 1

2

∫ 1

0

β2α(r)2∂xΦα(r,Mξ(r))2dr
)
. (2.1)

Next, note that from Itô’s formula and (1.3), for 0 ≤ t < s ≤ 1,

Φα(s,Mξ(s))− Φα(t,Mξ(t))

= −β
2

2

∫ s

t

α(r)(∂xΦα(r,Mξ(r)))2dr + β

∫ s

t

∂xΦα(r,Mξ(r))W ξ(dr).

and then from the Fubini theorem,∫ s

0

(
Φα(s,Mξ(s))− Φα(t,Mξ(t))

)
α(dt)

= −β
2

2

∫ s

0

α(r)2(∂xΦα(r,Mξ(r)))2dr + β

∫ s

0

α(r)∂xΦα(r,Mξ(r))W ξ(dr).

Plugging this into (2.1) yields that

E
[(
∂xΦα(s,Xξ

α(s))
)2∣∣ξ] = Eξ

[
∂xΦα(s,Mξ(s))2

exp
(∫ s

0

(
Φα(s,Mξ(s))− Φα(t,Mξ(t))

)
α(dt)

)]
= E

[
∂xΦα(s,M(s))2

exp
(∫ s

0

(
Φα(s,M(t))− Φα(t,M(t))

)
α(dt)

)∣∣∣ξ],
where we used that (M(s))0≤s≤1

d
= (M ξ(s))0≤s≤1 conditionally on ξ. Finally, taking

expectation in ξ completes our proof.

While Lemma 2.3 holds for any α, the important case that we shall use in our main
proof is when α = 1[q,1] for some q ∈ [0, 1]. In this case, one can compute φα more
explicitly. Let z, z′ be i.i.d. standard Gaussian independent of ξ. Denote by E′ the
expectation with respect to z′ only.
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Lemma 2.4. Let α = 1[q,1] for some q ∈ [0, 1]. We have that

φα(s) =


E
(
E′ tanh2(hξ+βz

√
q+βz′

√
s−q) cosh(hξ+βz√q+βz′

√
s−q)

E′ cosh(hξ+βz
√
q+βz′

√
s−q)

)
, if s ∈ [q, 1],

E
(
E′ tanh(hξ + βz

√
s+ βz′

√
q − s)

)2
, if s ∈ [0, q)

(2.2)

and

φ′α(s) =


β2E

(
E′ cosh−3(hξ+βz

√
q+βz′

√
s−q)

E′ cosh(hξ+βz
√
q+βz′

√
s−q)

)
, if s ∈ [q, 1],

β2E
(
E′ cosh−2(hξ + βz

√
s+ βz′

√
q − s)

)2
, if s ∈ [0, q).

(2.3)

Proof. A direct computation gives that

Φα(s, x) =


β2

2 (1− s) + log coshx, if s ∈ [q, 1],

β2

2 (1− q) + E log cosh(x+ βz
√
q − s), if s ∈ [0, q)

and that

∂xΦα(s, x) =


tanhx, if s ∈ [q, 1],

E tanh(x+ βz
√
q − s), if s ∈ [0, q).

Plugging these along with the assumption α = 1[q,1] into Lemma 2.3 establishes (2.2).
As for (2.3), note that for any twice differentiable function f with ‖f ′′‖∞ < ∞, we

can compute by using the Gaussian integration by parts2 to obtain

d

ds
E′f(z′

√
s− q) =

1

2
√
s− q

E′f ′(z′
√
s− q) =

1

2
E′f ′′(z′

√
s− q), ∀s ∈ (q, 1]. (2.4)

Applying this equation and(
tanh2(x) cosh(x)

)′′
=

2

cosh3(x)
+ tanh2(x) cosh(x),(

cosh(x)
)′′

= cosh(x)

to the E′-expectations in the first equation of (2.2), the first equation of (2.3) follows by
a straightforward computation. To obtain the second equation in (2.3), write

E
(
E′ tanh(hξ + βz

√
s+ βz′

√
q − s)

)2
= E

[
tanh(hξ + βz

√
s+ βz1

√
q − s)

tanh(hξ + βz
√
s+ βz2

√
q − s)

]
for z1, z2 i.i.d. standard Gaussian independent of z. From the last equation and
(tanh(x))′ = cosh−2(x), we have

d

ds
E
(
E′ tanh(hξ + βz

√
s+ βz′

√
q − s)

)2
=
β

2
E

tanh(hξ + βz
√
s+ βz1

√
q − s)

cosh2(hξ + βz
√
s+ βz2

√
q − s)

( z√
s
− z2√

q − s

)
+
β

2
E

tanh(hξ + βz
√
s+ βz2

√
q − s)

cosh2(hξ + βz
√
s+ βz1

√
q − s)

( z√
s
− z1√

q − s

)
.

2Let Z = (z1, . . . , zn) be a centered Gaussian random vector and let F be a differentiable function on Rn

with
∑n

i=1 ‖∂xiF‖∞ <∞. We have that Ez1f(Z) =
∑n

i=1 E[z1zi]E
[
∂xif(Z)

]
.
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Using Gaussian integration by parts yields that

d

ds
E
(
E′ tanh(hξ + βz

√
s+ βz′

√
q − s)

)2
= β2E

1

cosh2(hξ + βz
√
s+ βz1

√
q − s) cosh2(hξ + βz

√
s+ βz2

√
q − s)

= β2E
(
E′ cosh−2(hξ + βz

√
s+ βz′

√
q − s)

)2
.

3 Proof of Theorem 1.1

Throughout the entire proof, we let q be the unique solution to (1.6). First, we assume
that (β, h) lies above the AT line, i.e.,

β2E
1

cosh4(hξ + βz
√
q)
> 1.

We show that αP can not be replica symmetric. If not, then we must have that αP = 1[q′,1]
for some q′ ∈ [0, 1] and from Proposition 2.2 and Lemma 2.4, q′ must satisfy

E tanh2(hξ + βz
√
q′) = φαP (q′) = q′.

Since this equation has only one unique solution (see (1.6)), we must have that q = q′.
Consequently, φαP (q) = q and from (2.3),

φ′αP (q) = β2E
1

cosh4(hξ + βz
√
q)
> 1.

If we let ε > 0 be small enough and α1 = 1[q+ε,1], then φαP (s) > s for s ∈ [q, q + ε] so that
from Proposition 2.1,

d

dθ+
P(αθ)

∣∣∣
θ=0

= −β
2

2

∫ q+ε

q

(φαP (s)− s)ds < 0

and consequently, 1[q,1] can not be the optimizer. Hence, outside the AT line, the SK
model is not replica symmetric.

Next, we assume that (β, h) lies inside the AT line, i.e., (1.8) holds. We proceed to
show that αP = 1[q,1]. To this end, let α0 = 1[q,1] and we claim that (1.8) implies that
φα0(s) ≥ s if s < q and φα0(s) ≤ s if s > q. If this claim is valid, then for any α1 ∈ Pr[0, 1],

d

dθ
P(αθ)

∣∣∣
θ=0+

=
β2

2

(∫ q

0

α1(s)(φα0
(s)− s)ds+

∫ 1

q

(α1(s)− 1)(φα0
(s)− s)ds

)
≥ 0.

Hence, from Proposition 2.1, α0 = 1[q,1] is the minimizer of the Parisi formula and this
will complete our proof.

We now turn to the proof of our claim. First of all, from (2.3) and the Jensen inequality
with respect to E′, for s ∈ [0, q),

φ′α0
(s) ≤ β2EE′ cosh−4(hξ + βz

√
s+ βz′

√
q − s) = β2E cosh−4(hξ + βz

√
q) ≤ 1.

Since φα0
(q) = q by (2.2), we see that φα0

(s) ≥ s for s ∈ [0, q). Next, for s ∈ (q, 1), recall
from the first equation in (2.3) that by denoting Y = hξ + βz

√
q + βz′

√
s− q,

φ′α0
(s) = β2E

E′ cosh−3 Y

E′ coshY
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Figure 2: This is a simulation of s ∈ [q, 1] 7→ β2Ecosh−4(h+ βz
√
s) with β = 4.05, h = 5,

and q ≈ 0.909. The blue line is the level β2Ecosh−4(h+ βz
√
q)) and the red line is q. It

can be seen that β2Ecosh−4(h+ βz
√
s) lies above β2Ecosh−4(h+ βz

√
q) for s ∈ [q, 1] and

above 1 for s large enough.

Write cosh−3 x = (cosh−4 x)(coshx). Since cosh−4 x is decreasing and coshx is increasing
for x > 0, applying the FKG inequality3 implies

E′ cosh−3 Y = E′ cosh−3 |Y |
≤ E′ cosh−4 |Y | · E′ cosh |Y |
= E′ cosh−4 Y · E′ coshY.

Thus, for any q < s ≤ 1,

φ′α0
(s) ≤ β2EE′ cosh−4 Y

= β2E cosh−4(hξ + βz
√
s)

= β2E cosh−4(z
√
h2 + β2s)

≤ β2E cosh−4(z
√
h2 + β2q)

= β2E cosh−4(hξ + βz
√
q) ≤ 1,

where the second inequality is valid since cosh−4 x is even and decreasing in x > 0.
Consequently, φ′α0

(s) − 1 ≤ 0 for any q < s ≤ 1. Since φα0(q) = q, we deduce that
φα0(s) ≤ s for q < s ≤ 1. This finishes the proof of our claim.

Remark 3.1. In the case of the SK model with non-random external field (1.1), the
corresponding φα(s) for α = 1[q,1] and q satisfying (1.4) is the same as in Lemma 2.4
except that hξ is replaced by h. The same argument in Theorem 1.1 enables us to show
that the Parisi formula can not be solved by the replica symmetric solution if (β, h) lies
outside the AT line. However, if (β, h) lies inside the AT line, while it can still be shown
that φα(s) ≥ s for all s ∈ [0, q), it is unclear why φα(s) ≤ s for all s ∈ [q, 1]. In this case,
one can still use the FKG inequality to obtain that for q ≤ s ≤ 1,

φ′α(s) ≤ β2E cosh−4(h+ βz
√
s),

but a numerical simulation, see Figure 2, suggests that the following does not always
hold:

β2E cosh−4(h+ βz
√
s) ≤ β2E cosh−4(h+ βz

√
q)

for all q ≤ s ≤ 1.
3The FKG inequality states that if X is a random variable and f, g are both nondecreasing functions with

Var(f(X)) <∞ and Var(g(X)) <∞, then Ef(X)g(X) ≥ Ef(X)Eg(X).
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