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On the Almeida-Thouless transition line in
the Sherrington-Kirkpatrick model
with centered Gaussian external field*
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Abstract

We study the phase transition of the free energy in the Sherrington-Kirkpatrick
mean-field spin glass model with centered Gaussian external field. We show that the
corresponding Almeida-Thouless line is the correct transition curve that distinguishes
between the replica symmetric and replica symmetry breaking solutions in the Parisi
formula.
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1 Introduction and main results

The famous Sherrington-Kirkpatrick (SK) mean-field spin glass model was introduced
in [12] aiming to explain some unusual magnetic behavior of certain alloys. By means
of the replica method, it was also proposed in [12] that the thermodynamic limit of the
free energy in the SK model can be solved by the replica symmetric ansatz at very high
temperature. A complete picture was later settled in the seminal works [10, 11] of Parisi,
in which he adapted an ultrametric ansatz and deduced a variational formula for the
limiting free energy at all temperature, known as the Parisi formula. This formula was
rigorously established by Talagrand [13] utilizing the replica symmetry breaking bound
discovered by Guerra [5]. See [8] for physicists’ studies of the SK model as well as
[9, 14, 15] for the recent mathematical progress.

For any N > 1, the Hamiltonian of the SK model is defined as

N
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where g;;’s are i.i.d. standard Gaussian. The parameters f > 0 and h € R are the
(inverse) temperature and external field, respectively. Define the free energy as
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On the AT line in the SK model with centered Gaussian external field

The famous Parisi formula [9, 15] asserts that almost surely,

lim F h) = i P(a). 1.2
i ~N(B,h) aetiin (@) (1.2)
Here, Pr(]0, 1]) is the collection of all probability distribution functions on [0, 1] equipped
with the L!(dz) distance and P is a functional on Pr([0, 1]) defined as

1
P(a) =log2 +E®,(0,h) — 622/ sa(s)ds,
0

where ®,, is the weak solution [6] to

2
05Dy (s,2) = —%(&m@a(s,x) + a(5)(0;Pa(s,2))?), (s,2) €[0,1] x R (1.3)
with boundary condition ®(1,z) = log cosh . It is known [2] that the Parisi formula has a
unique minimizer denoted by ap. We say that the Parisi formula is solved by the replica
symmetric solution if ap = 1j, 4] for some ¢ € [0, 1] and is solved by the replica symmetry
breaking solution if otherwise.

For any §8,h > 0, let ¢ = ¢(§8, h) be the unique solution (see [4] and [14, Proposition

A.14.1]) to
q = Etanh?(h + B2:/q), (1.4)

where z is standard Gaussian. In [1], it was conjectured that for 5, h > 0, the SK model
is solved by the replica symmetric solution if and only if (5, h) satisfies

2 - ! <1
cosh™(h + Bz,/q)
In other words, for 5,h > 0, the following equation, known as the Almeida-Thouless line,
9 1
cosh* (h + B2,/q)

characterizes the transition between the replica symmetric and replica symmetry break-
ing solutions. Toninelli [16] proved that above the AT line, i.e, 32Ecosh™*(h + Bzy/q) > 1,
the solution to the Parisi formula is replica symmetry breaking. Later Talagrand [15]
and Jagannath-Tobasco [7] showed that inside the AT line, 62]Ecosh_4(h + ﬂz\/a) <1,
there exist fairly large regimes in which the Parisi formula is solved by replica symmetric
solution. As parts of their regimes are not up to the AT line, verifying the exactness of
the AT line remains open.

In this short note, we investigate the SK model with centered Gaussian external field
and show that the corresponding AT line is indeed the transition line distinguishing
between the replica symmetric and replica symmetry breaking solutions in the Parisi
formula. For g, h > 0, the Hamiltonian of the SK model with centered Gaussian external
field is defined as

-1, (1.5)

N
—Hn(o) = \/BN Z Gij0i0; —|—h2§iai, Vo € {-1, 1}N,

1<i<j<N i=1

where (gi;)1<i<j<n and (&)i<i<n are ii.d. standard normal and are independent of each
other. The free energy associated to this Hamiltonian is given by

]'—N(ﬁ,h):%Elog Z exp(—Hn(0)).

oce{—1,1}N
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Figure 1: This figure describes the phase transition in the SK model with centered
Gaussian external field. The gray area is the regime of replica symmetric solutions,
while the white area is the regime of replica symmetry breaking solutions. The boundary
between these two regimes is the AT line (1.7) corresponding to our model. The black-
dash line is the AT line (1.5) corresponding to the original SK model with deterministic
external field.

In a similar manner, the limiting free energy can be expressed by the Parisi formula as
in (1.3) with a replacement of h by k¢ for ¢ a standard Gaussian random variable, more
precisely, we have that almost surely,

I h)=
NgnooFN(/B’ ) aelg?(l[%’l])P(a)’

where

1
P(a) =log2 + E®, (0, hE) — %2/ sa(s)ds,
0

and ®, is defined as (1.3). Note that the proof of this formula is identically the same as
those in [9, 15] with no essential modifications. Moreover, as in [2], the Parisi formula
here also has a unique minimizer denoted by ap. We again say that the Parisi formula is
solved by the replica symmetric solution if ap = 1(,,1) for some ¢ € [0,1] and is solved by
the replica symmetry breaking solution if otherwise.

The AT line corresponds to our model is formulated analogously. Let z,£ be i.i.d.
standard Gaussian random variables. For 8, h > 0, let ¢ = ¢(8, h) be the unique fixed
point of

q = Etanh®(hé + B2,/q), (1.6)

where the existence and uniqueness of ¢ are guaranteed thanks to the Latala-Guerra
lemma.' The AT line associated to the SK model with centered Gaussian external field is
the collection of all (8, k) € (0,00) x (0, 00) satisfying

9 1
E 1
cosh”(h§ + B2,/q)

The following is our main result.

=1 (1.7)

! In [4] and [14, Proposition A.14.1], it is known that for any r € R, z~'Etanh?(r + 82z/z) is a strictly
decreasing function in = > 0, which implies that f(z) := z~'E tanh?(h& 4+ Bz/z) is also strictly decreasing
on (0, 00). Since f(co) = 0 and f(0) = oo, there exists a unique zo such that f(zp) = 1. This ensures that
(1.6) has a unique solution.
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Theorem 1.1. Consider the SK model with centered Gaussian external field. For any
B >0 and h > 0, the Parisi formula exhibits the replica symmetric solution if and only if
(8, h) lies inside the AT line, i.e.,

E—p ! <1
cosh™(h& + B2,/q)

The rest of the paper is organized as follows. In Section 2, we gather some results
regarding the directional derivative of the functional P and some consequences following
the first order optimality of the Parisi variational formula. The proof of Theorem 1.1 is
presented in Section 3.

(1.8)

2 Preliminary results

Let ¢ be standard Gaussian. Let a € Pr[0, 1]. Conditionally on &, let (X5§(s))o<s<1 be
the solution to the following stochastic differential equation with boundary condition
X§(0) = he,

dX5(s) = Ba(5)0:Pa (s, X (5))ds + BdW (s),
where (W (s))se[o,1] is a standard Brownian motion independent of &. Set
Ba(s) = E(0,B0(s, X5(s)))%, 0< s < 1.

The following proposition establishes the directional derivative of P in terms of ¢,,.

Proposition 2.1. For ag,a; € Pr{0,1] and 6 € [0,1], set ag = (1 — 6)ag + 6ay. The
right-derivative of § — P(«y) at zero is given by

a 2 1
= 5 [ a0 o) (= o)

Furthermore, oy is the minimizer of min,cpro,1] P(c) if and only if % > 0 for all

a1 € PF[O, 1].
Proposition 2.2. If o is the minimizer of P, then every point in the support of oy must
satisfy ¢o,(s) = s.

In the case of the SK model with deterministic external field (1.1), the two propositions
above were established in Theorem 2 and Proposition 1 in [3], respectively, where the
statements are essentially the same as Propositions 2.1 and 2.2 with a replacement of
h&é by h. As the proofs in [3] can be directly applied to Propositions 2.1 and 2.2 with no
major changes, we do not reproduce the details here. The following lemma provides a
simpler expression for ¢,,.

Lemma 2.3. Let « € Pr{0,1]. For any s € [0, 1], we have that

bo(5) = B, Py (s, M(s))? exp(/OS(CIJQ(s, M (s)) — ®,(t, M(t)))a(dt)),
where M (s) := h& + W (s).

Proof. Conditionally on &, let IE¢ be the expectation associated to the probability measure

d]Pf—exp //m (1), ®(r, X (1)) dW (r /ﬁ2 (r,Xg(r))2dr)dIP.

ECP 26 (2021), paper 65. https://www.imstat.org/ecp
Page 4/9


https://doi.org/10.1214/21-ECP439
https://imstat.org/journals-and-publications/electronic-communications-in-probability/

On the AT line in the SK model with centered Gaussian external field

From the Girsanov theorem, under IE¢,

(/0 Ba(r) D, @ (r, X§(r))dr + W (s))

0<s<1
is a standard Brownian motion for which we denote by (W4(s))o<s<1. Set MS(s) =
hé 4+ BWE(s). Under Ef, write

1 1
/o Ba(r)0,®(r, Xg (r)dW (r) + B2a(r)?0, D4 (r, Xg (r))%dr

2 0

- /0 B (r)0, 2, X5 (r)) (Bex(r) s B (r, XS (r))dr + dW (1))
- 1/1 B2a(r)20,®4(r, X5(r))2dr

/ Ba(r)Dud(r, ME(r))dWE (r / B20(r)20, Do (1, ME(r))2dr.

Consequently,
1
B[(0, (5, X§(5))" €] = B (0005, M) exp( | )00, ()W (1)

- ;/01 Falr)?0,80(r ME)dr). @D
Next, note that from It6’s formula and (1.3), for 0 < ¢ < s <1,
Da(s, ME(s)) — Dalt, ME(2))
- —%2 / o (r)(Da@a(r, ME(r)))2dr + ﬁ/fs Dy (r, ME(r))WE (dr).

t

and then from the Fubini theorem,

/O (@5, ME(s)) — B (t, ME(H)))a(dt)

2 s
:_i/o (1) (0, @ (r, MS (1 d?“+ﬂ/ (r, M (r))W* (dr).

Plugging this into (2.1) yields that
B[ (0.®4(s, X5(5)))°]€] = ES [8x<13a(s, ME(s))?
exp(/os (Bo(s, ME(s)) — @a(t,M%)))a(dt)ﬂ

- E[@wéa(s,M(s)f
exp( [ (Ba(s.21(0) = @a(t.M(0))a(an)) ]

where we used that (M(s))o<s<1 = (Mf( ))o<s<1 conditionally on £. Finally, taking
expectation in £ completes our proof. O

While Lemma 2.3 holds for any «, the important case that we shall use in our main
proof is when a = 1, for some ¢ € [0,1]. In this case, one can compute ¢, more
explicitly. Let z,z’ be i.i.d. standard Gaussian independent of £. Denote by EE’ the
expectation with respect to 2’ only.
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Lemma 2.4. Let a = 11, 1) for some q € [0, 1]. We have that

E' tanh?(hé+B2,/q+B2'/5—q) cosh(hé+Bz/q+B2'/5—q) .

E( E cosh(h&é+Bz,/q+B2'\/s—q) )a ifs € [Qa 1]a
Pa(s) = (2.2)

E(E' tanh(hé 4 Bzy/s + ﬂz’\/qfs)f7 ifs €10,q)

and
2 E’ cosh™ > (hé+B2/q+B82'/5—q) .
B ]E( I’ cosh(hé+B8z./q+B2'\/s—q) )’ ifs € [q7 1}7

P(s) = (2.3)

B*E(E’ cosh™>(hé + Bzy/s + Bz'\/q — s))27 ifs € [0,q).

Proof. A direct computation gives that

%2(1—3)+logcoshx, if s € [¢g,1],
(I)a(sax) =
%2(1 —q) + Elogcosh(x + Bz/q—s), ifse€]0,q)
and that
tanh x, if s € [g,1],
0:Pu(s,2) =

Etanh(z + B2/ —s), ifs€|0,q).

Plugging these along with the assumption o = 1, ;; into Lemma 2.3 establishes (2.2).
As for (2.3), note that for any twice differentiable function f with || f”||. < oo, we
can compute by using the Gaussian integration by parts? to obtain

N p—

1
. E'f'(z'Vs—q) = iE’f”(z'\/s —q), Vs € (q,1]. (2.4)

2\/s—q
Applying this equation and
2
(tanh2(x) cosh(x))” =———+ tanh?(z) cosh(z),
cosh”(x)
(cosh(z))” = cosh(x)

to the I&’-expectations in the first equation of (2.2), the first equation of (2.3) follows by
a straightforward computation. To obtain the second equation in (2.3), write

E(E tanh(h{ + B2+/s + B2/ v/q — s))2 = E[tanh(h¢ + Bzv/s + B211/q — 5)
tanh(hé + Bzv/s + Bza/q — 5)]

for z;,2, i.i.d. standard Gaussian independent of z. From the last equation and
(tanh(z))’ = cosh™?(z), we have

%E(E’ tanh(hé + Bzv/s + B2’/ q — s))2
BE tanh(hé + Bz/s + Bz14/q — )

_ = i _ 29
2 cosh®(hé + Bzy/5 + Baay/q — 5) (\/E Va—s )
ﬂIE tanh(h€ + Bzv/s + Bzar/q — 5) ( z 21 )

2 cosh?(hé + Bz\/5 + Bz1\/q — 5) Vs Vi

2Let Z = (z1,...,2n) be a centered Gaussian random vector and let F' be a differentiable function on R®
with -7 [|0z,; F|lcc < 00. We have that Ez1 f(2) = >0 ; Elz12]E [0, £(2)].
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Using Gaussian integration by parts yields that

%E(E' tanh(h& + Bzv/s + B2'v/q — s))2

1
52
Ecosh2(h§ + Bz\/5 + Bz11/q — 5) cosh? (hE + Bzy/5 + Bza/q — 5)
= B’E(E’ cosh™2(hé + Bz/s + B2/ — s))2 O

3 Proof of Theorem 1.1

Throughout the entire proof, we let ¢ be the unique solution to (1.6). First, we assume
that (8, h) lies above the AT line, i.e.,

’E !
1
cosh™(h& + Bz,/q

We show that ap can not be replica symmetric. If not, then we must have that ap = 1, 1
for some ¢’ € [0,1] and from Proposition 2.2 and Lemma 2.4, ¢’ must satisfy

)>1

Etanh2(h§ + ﬁZ\/?) =¢ar(d) =14

Since this equation has only one unique solution (see (1.6)), we must have that g = ¢'.
Consequently, ¢, (¢) = ¢ and from (2.3),

1
cosh® (hé + B2,/q) > 1

Gnplq) = B°E

If we let ¢ > 0 be small enough and a; = 1g4. 1}, then ¢, (s) > s for s € [g, ¢ + €] so that
from Proposition 2.1,
d 52 qte
Pl = _2/q (Gar(s) — s)ds < 0

and consequently, 1j, 1} can not be the optimizer. Hence, outside the AT line, the SK
model is not replica symmetric.

Next, we assume that (8, h) lies inside the AT line, i.e., (1.8) holds. We proceed to
show that ap = 1}, ). To this end, let ag = 1,1} and we claim that (1.8) implies that
Do (8) > sif s < g and ¢, (s) < s if s > ¢. If this claim is valid, then for any «; € Pr[0, 1],

LGOI %2( /O " 01(5) (G (5) — 5)ds + /q (0 (5) = D)6 (5) — s)ds) = 0.

Hence, from Proposition 2.1, ag = 1[q71] is the minimizer of the Parisi formula and this
will complete our proof.

We now turn to the proof of our claim. First of all, from (2.3) and the Jensen inequality
with respect to I/, for s € [0, q),

¢, (s) < B’EE cosh™(h& + Bzv/s + B2'\/q — 5) = B*Ecosh™*(hé + Bz/q) < 1.

Since ¢4, (q) = ¢ by (2.2), we see that ¢,,(s) > s for s € [0, ¢). Next, for s € (¢,1), recall
from the first equation in (2.3) that by denoting Y = h§ + fz,/q + 82'\/s — ¢,

E cosh™?Y

/ 2E
=
Dao(5) = B E/ coshY
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Figure 2: This is a simulation of s € [¢, 1] — #?Ecosh™*(h + zy/s) with 8 = 4.05, h = 5,
and ¢ ~ 0.909. The blue line is the level 32Ecosh™*(h + Bzy/q)) and the red line is ¢. It
can be seen that 32IEcosh™*(h + 3z/s) lies above 3?Ecosh™*(h + Bz,/q) for s € [¢,1] and
above 1 for s large enough.

Write cosh™ 2 = (cosh™* z)(cosh ). Since cosh™* z is decreasing and cosh z is increasing
for z > 0, applying the FKG inequality® implies
E' cosh™®Y = E cosh™® |Y|
< T cosh™*|Y|-E cosh Y]
=TF cosh™Y - E coshY.
Thus, forany ¢ < s <1,
¢l (s) < B*EE cosh™Y
= B%E cosh™(hé + B2v/5)
= B?Ecosh™*(2y/h? + 25)
< B?Ecosh™(2\/h? + 32q)
= B*Ecosh™*(h& + B2,/q) < 1,
where the second inequality is valid since cosh™ z is even and decreasing in > 0.

Consequently, ¢, (s) —1 < 0 for any ¢ < s < 1. Since ¢,,(q) = ¢, we deduce that
Gao(8) < s for ¢ < s < 1. This finishes the proof of our claim.

Remark 3.1. In the case of the SK model with non-random external field (1.1), the
corresponding ¢,(s) for a = 1;, 1) and ¢ satisfying (1.4) is the same as in Lemma 2.4
except that h¢ is replaced by h. The same argument in Theorem 1.1 enables us to show
that the Parisi formula can not be solved by the replica symmetric solution if (3, h) lies
outside the AT line. However, if (3, h) lies inside the AT line, while it can still be shown
that ¢, (s) > s for all s € [0, ¢), it is unclear why ¢, (s) < s for all s € [g,1]. In this case,
one can still use the FKG inequality to obtain that for ¢ < s <1,

¢ (s) < BPEcosh™(h + BzV/s),

but a numerical simulation, see Figure 2, suggests that the following does not always
hold:

B*E cosh™*(h + Bzv/5) < B*Ecosh™*(h + B2,/q)
forall ¢ < s < 1.

3The FKG inequality states that if X is a random variable and f, g are both nondecreasing functions with
Var(f(X)) < oo and Var(g(X)) < oo, then Ef(X)g(X) > Ef(X)Eg(X).
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