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Abstract

‘We consider the mixed p-spin mean-field spin glass model with Ising spins and
investigate its free energy in the spirit of the TAP approach, named after Thou-
less, Anderson, and Palmer [67]. More precisely, we define and compute the
generalized TAP correction, and establish the corresponding generalized TAP
representation for the free energy. In connection with physicists’ replica theory,
we introduce the notion of generalized TAP states, which are the maximizers
of the generalized TAP free energy, and show that their order parameters match
the order parameter of the ancestor states in the Parisi ansatz. We compute the
critical point equations of the TAP free energy that generalize the classical TAP
equations for pure states. Furthermore, we give an exact description of the re-
gion where the generalized TAP correction is replica symmetric, in which case it
coincides with the classical TAP correction, and show that Plefka’s condition is
necessary for this to happen. In particular, our result shows that the generalized
TAP correction is not always replica symmetric on the points corresponding to
the Edwards-Anderson parameter. © 2022 Wiley Periodicals, Inc.

1 Introduction

How does a function on a high-dimensional space RV (i.e., for large N) typ-
ically look? For probabilists, “typically” means endowing some natural space of
functions with a probability measure and understanding what occurs with high
probability. One natural family of functions consists of random homogeneous
polynomials of degree p > 1 in the coordinates of 0 = (0y,...,05) € RN,

N
1
(L.1) Hy p(o) = NG-D/2 Z 8itynipOiy =" iy,

i150nip=1

whose coefficients g;, .. ;, are independent standard Gaussian variables. In this
case, the domain is often restricted to the hypercube Xy := {—1, +1}* or sphere
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2 W.-K. CHEN, D. PANCHENKO, AND E. SUBAG

Sy = {llo|l2 = v/N}, depending on whether the motivation comes from a dis-
crete or continuous setting; the scaling N —(P=1)/2 in the definition of H N,p 18
chosen so that the maximum is typically of order N. More generally, assuming
that the processes Hy,, above are independent of each other for p > 1, we will
also consider their linear combinations

(1.2) Hy(e) =) BpHn,p(0),

p=1

for some sequence (B,)p>1 that decreases fast enough, for example, such that
Y p=127B < .

In statistical physics, the random processes H y (o) are called spin glass models,
or Hamiltonians. A classical example is the Sherrington-Kirkpatrick (SK) model
[56], defined by (1.1) with p = 2 and 0 € X . For general p > 1, Hy ,(0) is
called the pure p-spin model, and the linear combination H y (o) is called a mixed
p-spin model. In this paper we will work with general mixed models with Ising
spins, that is, when the domain of Hy (o) is X . The spherical case Sy will also
be discussed occasionally to put things into a more general context.

Going back to the question we started with, one may ask, for example, what is
the maximal value of Hpy (o) over X5 or Sy, or what is the structure of the set
of all near maxima (on the right scale)? More generally, one may wish to know
what is the typical cardinality or volume of the set of points where Hy (o) ap-
proximately takes a given value, or what is the structure of the same set. However,
instead of tackling these questions directly, one often first studies “smooth approx-
imations” of various quantities parametrized by the so-called inverse-temperature
parameter 8 > (0—an idea common in statistical physics. For example, if for cer-
tainty we consider the Ising case Xy, relying on (1.6) and (1.7) below, instead of
the cardinality of an approximate level set and its geometric structure, one can first
study the free energy

1
) — SBH ()
(1.3) Fy(B) = log Y ePive
oCEX N

and the Gibbs measure

Y sea eXp(BHN (0))
ZGEEN exp(BHy (0))

(1.4) Gnp(A) =

In the spherical case, the summation is replaced by integration with respect to the
Haar measure on Sy . It is well-known that the free energy concentrates around
its expectation and that the expectation has a limit F(f) := limy_ o EFx(8)
[29,45], which is differentiable in 8 > 0 [63,65,66]. Standard concentration of
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THE GENERALIZED TAP FREE ENERGY 3

measure inequalities then imply that, asymptotically, the maximum of the Hamil-
tonian (also called the ground state energy, ignoring the minus sign) can be com-
puted via the free energy as

(1.5) E,:= lim Hv©) _ o FO
’ * N—ooooeXly N B—oo ﬁ '

Moreover, it is known [6] that given an energy level £ € (0, E.), if we choose
so that £ = F'(p), the cardinality on the logarithmic scale of the corresponding
approximate level set can be expressed via the free energy,

%HN(O") —F

and the Gibbs measure concentrates on the same set,

(1.6) N]im %log#{a : < s{ = F(B) — BF'(B) + O(¢),

1
—H —F
N N (o)

(1.7) Nh—l;nooGN’ﬁ{a . <&{ = 1.

In this paper, we will focus on results in the language of the free energies and Gibbs
measures for all finite temperatures § < oo, and in the follow-up paper [20], we
translate these results to the 8 = oo limit, which concerns near maximizers and
their geometry.

To motivate our main results and informally illustrate some of the ideas behind
them, consider the following question. Can one identify (in some nontrivial way)
points m € (—1, I)N inside the cube such that, for small ¢ > 0, the narrow band
of configurations o € Xy close to the hyperplane perpendicular to 1,

(1.8) B(m,e)= {06 € Zy: |R(oc,m)— R(m,m)| = %|m-('a —m)| < &y,

contains a large number of points with some given energy %H N(o) = E? As
we mentioned above, studying this question means fixing 8 as in (1.7) above and
“large number” means that the Gibbs measure of the set of such points is not too
small. It turns out that, without additional structure, such points /1 are too common
to be interesting and, moreover, the “measure” of near maximizers in a band fluc-
tuates too wildly to hope for a meaningful criterion. However, as was pointed out
in [59], if we add an additional constraint that there are many rearly orthogonal
directions ¢ — m inside the band with % Hpy (o) =~ E, then the answer is yes. In
fact, for £ € (0, E.), such special points m can be characterized through their
energy H y (m) and location m by checking that

(19) B ) + TARs (i) ~ F(B),

where TAPg (14,), which we call the generalized TAP correction (after Thouless,
Anderson, and Palmer), is a deterministic function of the empirical measure

1
(1.10) fm = _Z Smy -
i<N
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4 W.-K. CHEN, D. PANCHENKO, AND E. SUBAG

Moreover, with high probability over the choice of random coefficients in Hy (o),
this criterion can be applied simultaneously to all m € (—1,1)V. As will be
explained in the next section, in addition to yielding such a surprisingly simple
description of the “special points,” the idea of looking at many nearly orthogonal
directions has a clear motivation coming from the theory of spin glasses in physics.

While (1.9) will be proved in the current work, in the follow-up work [20] we
will deal with the zero temperature f§ = oo analogue of these results, or, equiva-
lently, the maximal energy value £ = F.. In this case, with appropriate determin-
istic function TAP,, the special points m whose bands have properties analogous
to the above are characterized by

1
(1.11) ~ FN (1) + TAPoo () ~ E..

In a recent paper [59], a natural way to define the correction TAPg (t5,) in the
spherical-spin case Sy was suggested, from which the following generalized TAP
representation follows rather quickly: for any ¢ € [0, 1) that belongs to the support
of the so-called Parisi measure (see (2.8) below for definition), for large N,

(1.12) F(B) ~ max (E Hy(m) + TAPB{,um)).
m:|lm|2=Ng \ N
While the definition in [59] also makes sense for models with Ising spins, it is
not obvious at all that this correction can be computed explicitly for those models.
In this paper, we introduce some new ideas to solve this problem, and explicitly
express the correction via a Parisi-type [51, 52] variational formula. As a result,
this yields the generalized TAP representation (1.12) for the Ising case.
Representations of the type (1.9) started from the paper [67], where Thouless,
Anderson, and Palmer derived (nonrigorously, using an expansion of the partition
function around the local magnetizations) a representation for the free energy of
the SK model [56] called the TAP free energy,

2 252
Fn(P) %HN(m) + ﬁ_(l_ ||m||2)

2 N
1.13
( ) _li 1+m,-10 1+mi+1—n1,-lo 1—m;
NET2 T 2 25 )

where m € [—1, 1]" is some critical point of the right-hand side, VRHS = 0 or

2
(1.14) m; = tanh((ﬁVHN(m'))i —2ﬁ2m,-(1 — %)) Yi < N.

As the authors of [67] explained, the problem of computing the free energy is then
reduced to finding the random solutions m of (1.14), known as the TAP equations,
subject to a certain convergence condition proposed in [67], and applying (1.13) to
m—a problem “not much easier” than the original, in their own words. The repre-
sentation (1.12) we establish in this paper is a more general analogue of the TAP
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THE GENERALIZED TAP FREE ENERGY 5

free energy representation (1.13), which is well-motivated and fully rigorous. Sim-
ilarly, by computing the critical point equations for the right-hand side of (1.12),
we will derive the generalized TAP equations analogous to (1.14). As will be ex-
plained in the next section, the motivation comes from the picture that emerged in
the subsequent work of physicists in the eighties.

A few years after [67], a real breakthrough was made by Parisi in [51,52], who
discovered the correct formula for the free energy by proposing a very special
ansatz within the physicists’ replica method. The Parisi solution, which was rather
algebraic in nature, was reinterpreted in terms of the geometric structure of the
Gibbs measure in the papers by Mézard, Parisi, Sourlas, Toulouse, and Virasoro
[35,36], where it was understood, for example, that the ultrametricity of the replica
matrix corresponds to ultrametricity of the support of the Gibbs measure in the
infinite-volume limit and that the Gibbs measure asymptotically splits into pure
states, i.e., disjoint subsets whose structure is simple in an appropriate sense. The
so-called order parameter in Parisi’s solution, which also plays an important role in
the current paper, is a probability measure on [0, 1] called the Parisi measure; for
generic models (defined below) it coincides with the asymptotic law of the overlap
R(ol,06?) := % Z?;l crf1 ovf of i.i.d. samples from the Gibbs measure.

The connection between the Parisi ansatz and the classical TAP free energy rep-
resentation (1.13) was well-understood in the physics literature. In the setting of
the SK model, some form of TAP equations for the ancestor states (see below) were
derived by Mézard and Virasoro in [38]. However, rigorous mathematical results
beyond the high temperature region (see, e.g., [11, 12, 65]) started appearing only
more recently. For example, it was confirmed in [19] that the TAP representation
of the free energy holds at the level of pure states, that is, a formula of the form
of (1.12) holds for gga, the rightmost point in the support of the Parisi measure.
Also, the Mézard-Virasoro equations [38] for mixed p-spin models were derived
by Auffinger and Jagannath [7, 8] (see also Remark 2.6 below). Furthermore, re-
cently, Belius and Kistler [9] developed a new method in the setting of the spherical
2-spin model. Lastly, the TAP representation was established at the level of pure
states for the spherical pure p-spin models with p > 3 and § > 1 in [58] and
for some spherical mixed p-spin models in the 1-RSB regime with 8 > 1 by Ben
Arous, Zeitouni, and one of the authors in [10]. In the latter works [10, 58], the
calculations leading to the TAP representation also yielded certain explicit pure
state decompositions, in which each state is centered around a local maximum of
the Hamiltonian which also maximizes a certain free energy. More generally, the
barycenters, or the so-called local magnetizations, of the abstract pure states de-
compositions of Talagrand [64] and Jagannath [30] are approximate maximizers m
as in (1.12), which correspond to the rightmost point in the support of the Parisi
measure.

In this work, we mainly focused on positive temperature 8 < oo analysis, which
deals with energy levels %H n(o) =~ E strictly smaller than the ground state

energy E,.. However, the set of near maximizers % Hp (o) =~ E, also has arich
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6 W.-K. CHEN, D. PANCHENKO, AND E. SUBAG

and interesting geometry. For example, it was understood, both in the physics
literature [37] and rigorously [13, 18, 24], that Hx has exponentially many (in
N) near maximizers that are nearly orthogonal to each other. For the spherical
models, similar results about the highest critical points are known for the pure
models [2,21,23,57,61] and some mixed models, which are close to being pure
[2,10].

As mentioned above, in [20] we extend our analysis to the zero temperature
case B = oco. One of the consequences of [20] is that a large set of approximate
maximizers of % Hpy(m) 4+ TAPso(f4m), i.e., approximate generalized TAP solu-
tions, can be arranged in a certain tree structure, whose root is the origin and leaves
are points of X . Since TAP(to ) is constant on X, the leaves approximately
maximize % H y (o). This picture is particularly interesting when full replica sym-
metry breaking (FRSB) occurs on the interval [0, gga ], namely, the support of the
Parisi measure is equal to the interval [0, gga] as B tends to infinity, which is con-
jectured to be the case in the SK model; see [37]. In this case, the normalized radii
|m||/~/N of the inner vertices of the tree, which are points m € (—1,1)", are
asymptotically dense in [0, 1] and the tree is asymptotically continuous in an ap-
propriate sense. In the spherical case, when the model is FRSB on [0, gga], similar
insights from [59] inspired an optimization algorithm designed in [60], which out-
puts a configuration in Sy that roughly maximizes H (o) in polynomial time in
N . In the Ising case, Montanari [39] achieved the same optimization result for the
SK model by utilizing the approximate message passing (AMP) algorithm based
on the TAP equations. Both algorithms start from the origin and iteratively move
towards Sy or Xy using orthogonal updates, until reaching the approximate opti-
mizer. Montanari proved that his algorithm ends at an approximate TAP solution.
In fact, we believe that in each iteration the algorithm jumps from one approximate
TAP solution to another. An extension of the algorithm from [39], which optimizes
models with FRSB on [0, gga] was constructed by El Alaoui, Montanari, and Sellke
in [25]. In addition to be useful in the optimizations of the mixed p-spin Hamilo-
nians, the AMP algorithms driven by the TAP equations have also received great
popularity in a number of Baysian inference problems, see, e.g., [34, 40,41, 68].
Finally, we mention that in another direction, when a certain overlap gap prop-
erty holds, e.g., for the pure p-spin model with even p > 4, it was proved that a
broad class of algorithms, such as Lipschitzian iteration schemes and low-degree
methods fail to produce near ground states for H y (o) in polynomial time in N;
see [26,27]. This property is expected to hold generically if the model is not FRSB
on [0, gga], for instance, when 2 = 0 and 8, > 0 for some p > 3 (see [3,17,33]).

2 Main Results

2.1 The model

In this paper we will consider the mixed p-spin Hamiltonian H y (o) defined in
(1.2) with Ising spins, indexed by o € Xy = {—1,+1}". The covariance of the
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THE GENERALIZED TAP FREE ENERGY 7

Gaussian process H y (o) equals

@1 EHy(c")Hy(0?) = N§(R(@',0?)),
where R(a!,62) = 4 3N | 6102 is called the overlap of ¢! and 62, and where
@2) §(s) =) Bps”.

p=1

In the Introduction we allowed the (random) free energy and Gibbs measure to
depend on an inverse-temperature parameter 8 > 0. Of course,  can be absorbed
into the coefficients 8. Hence, to simplify the notation, we redefine the free energy

by

1
(2.3) Fy = Nlog Z exp Hy (o),
TEX

and the Gibbs measure by

exp Hy (o)
Yoex,y exp Hn (o)’
and henceforth use these definitions which do not include . One can also add an
external field term /) ; _y 0; to the Hamiltonian Hy (o), but, for simplicity of
notation, we will usually omit it (see also Remark 2.8 below).

A special role will be played by the so-called generic mixed p-spin models that
satisfy

25) Span{x” : B, # 0} = C([=1, 1], - loc),
which means that sufficiently many of the p-spin terms in the Hamiltonian (1.2)
are present in the model.

The limit of the free energy Fy is given by the celebrated Parisi formula [51,52]
mentioned above, which was first proved in a seminal work of Talagrand in [62]
(building upon a breakthrough by Guerra [28]), and later generalized to models
with odd spin interactions in [45]. (The formula for £, in (1.5) was derived in [5].)
If My,; is the space of probability measures on [0, 1], for { € Mo,1, let D,(, x)
be the solution of the Parisi PDE
£"(1) .. D2

) (()xxcb(j + C[I)(()xd)g) )
on [0, 1] x R with the boundary condition ®; (1, x) = log2cosh x. Here {(s) :=
([0, s]). Define the Parisi functional on My ; by

(2.4) Gy (o) =

(2.6) o

1 1
2.7 P(L) := D¢(0,0) — Ef sE"(s)¢(s)ds.
0
Then, the limit of the free energy is given by
(2.8) lim EFy = inf 7P(0).
N—oo EM(],]
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1 b ¢ configurations
G Al J L [ J [ l l J [ I [ [ [ I I pure states
) i ! Vo
AN / AN / AN / \ /
vy by vy Ly vy Py Uy
Nyl Ny Ly Ay by ALy
\\J; NI/ \\” sy
g fmmmmm——— ancestor states
m

FIGURE 2.1. Ancestor state m on the infinitary tree of states with self-
overlap -|m|? = ¢ < qEa.

The minimizer {4 is unique (see [4], also [32]) and is called the Parisi measure.
The solution of the above PDE is usually constructed explicitly for discrete { and
extended by continuity to all ¢, but one can also show its uniqueness (see [32]).

2.2 Motivation via infinitary nature of the Parisi tree

The Parisi ansatz, schematically depicted in Figure 2.1, states that the Gibbs
measure asymptotically decomposes into disjoint pure states, whose magnetiza-
tions (barycenters) are organized ultrametrically (see [37]). For simplicity, we
plotted only a finite-RSB scenario but, in principle, the overlap can take infinitely
many values.

The Parisi ansatz holds for any model that satisfies the Ghirlanda-Guerra identi-
ties (see [43]) and, in particular, it holds for generic mixed p-spin models (see sec-
tion 3.7 in [44]). Since any mixed p-spin model can be approximated by generic
models at the level of the free energy, all the results below will apply to nongeneric
models as well, and the Parisi ansatz for the generic models will be used as guiding
our motivation.

Vertices in the tree in Figure 2.1 below the level of pure states are called an-
cestor states, and they represent branching points when clusters break into smaller
subclusters as we zoom in on individual configurations. These ancestor states also
have the physical meaning of points m inside the cube

(2.9 me[-1,1V.

(In the spherical models the cube is replaced by the ball of radius +/N.) The key
feature of the Parisi ansatz is that this hierarchical tree of states is infinitary in the
thermodynamic limit, which means that at each branching point there are infinitely
many edges (corresponding to subclusters of a bigger cluster). This infinitary prop-
erty, in particular, means that all edges in this tree are orthogonal and, for example,
a point m corresponding to an ancestor state is perpendicular to o — m for any
configuration o (on the scale 1/N) coming from a pure state that is a descendant
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THE GENERALIZED TAP FREE ENERGY 9

of m. This infinitary property of the Parisi ansatz was used implicitly or explicitly
in many applications of ultrametricity (for example, in the proof of ultrametricity
itself as well as chaos in temperature in [43, 47], and in the proof of the synchro-
nization mechanism in [46,50]), and it is central to the main idea in [59] as well as
the current paper, which we will explain next.

For m as in (2.9) and £ > 0, we recall the definition of the band centered at m
from the introduction,

1
(2.10) B(m,e) =30 € Xy : |R(o,m) — R(m,m)| = K|m (o —m)| < eg.

Ife =2/ /N then all the bands are nonempty, which can be seen, for example,
from Bernstein’s inequality: if o comes from the product measure on Xy with
mean m, then
__ Ne2 4
P(lm- (o0 —m)| > Ne) <e 1+VNe/3 <" TH273 < 1.

Given § > 0 and n > 1, let us consider a set consisting of n configurations in
this narrow band ¢ !, ..., 6" € B(m, &) such that all

(2.11) & =ct—m
are almost orthogonal to each other,
‘BH {.n‘" il 8! 5)

(2.12) _ {(01‘“_‘0”) € B(m,e)" : Vi # J,

R(a*,a7) — R(m,m)| < 8}.

Here, when n = 1, this is understood as By(m,¢,8) = B(m,¢). Heuristically,
if m corresponds to an ancestor state, then all the descendant pure states are in
the band B(m, ), so the band carries some nonnegligible weight of the Gibbs
measure. Moreover, by the infinitary nature of the tree, we can choose many nearly
orthogonal configurations relative to m with nonnegligible Gibbs probability. This
means that, for such m, the inequalities

1 . 1 n (o
@13)  Fy>log Yo efN@ > —clog T izt V@D
B(m,e) " By, (m,e,5)

are approximate equalities. Let us introduce the quantity
1 n i
(2.14) TAPy ,(m, ¢, 8) == — log E eXi=1[HN(@)—Hy m)]
niN
B (m,e.8)
which, for simplicity of notation, will often be written with ¢ and § omitted,
(2.15) TAPy ,, (m) := TAPy ,(m, &) = TAPy ,(m, €, 6).

Then the above inequalities can be rewritten as

(2.16) Fy = + TAPy, 1 (m, ) =

H Hy(
> N (m) N}\Em) + TAPy n(m, &, 8).
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10 W.-K. CHEN, D. PANCHENKO, AND E. SUBAG

Again, for the ancestor states with the self-overlap % |m||> = g corresponding to
some ¢ in the support of the Parisi measure, we expect these to be approximate
equalities. Moreover, for g in the support of the Parisi measure, one can show that
such ancestor states exist, which will imply that

Hy (m)

2.17) Fy =~ max (

xllm|?=q

+ TAPy (m,s,S]).

What do we gain by appealing to the infinitary nature of the tree of states in this
way?

Given a,b € R, let M, ; denote the space of probability measures on [a, b],
equipped with the topology of weak convergence. We will always implicitly iden-
tify a probability measure p with its c.d.f., and, for simplicity of notation, write
u(x) := p((—o0, x]). For 1, u’ € M, 5, we will work with the metric

b
2.18) dup ) = [ - o,

a
which metrizes weak convergence. We will keep the dependence of ¢ on ¢ and b
implicit.
Recall the definition (1.10) of the empirical measure

1
Hm = W Z Sm;- € M—l,l
i=N

of m = (m;)i<y € [-1, 1]V, The key point will be that, for small ¢ and § and
large n, we can write, with high probability,
2.19) TAPy ,(m, €, 8) ~ TAP(jip)

uniformly over all m in (2.9), for some specific nonrandom functional TAP:
M_1,1 — R. This functional will be our generalized TAP correction term and

H
(2.20) Fy ~ max ( Aﬁm)

~Iml2=q

+ TAP(,um))

for ¢ in the support of the Parisi measure is the generalized TAP representation
of the free energy. Moreover, heuristically, the ancestor states m in the Parisi tree
are among the TAP states (near maximizers of the right-hand side), and we will
show that these states very much resemble the ancestor states. Let us describe the
generalized TAP correction and state our main results precisely.

2.3 Generalized TAP correction and representation
For { € My,, recall the Parisi PDE solution ®; (g, x) from (2.6). Denote the
concave conjugate of @, (g, -) by

2.21) Aelg,a) = ig&(cbg[q,x] —ax), a€|—-1,1].
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THE GENERALIZED TAP FREE ENERGY 11

It is well-known that ®¢ (g, x) is a strictly convex function in x and it goes to +1
as x — =oc; see [4]. Hence, for each a € (—1, 1), the variational problem defined
in A¢ (g, a) has a unique minimizer W(q, a, {), which satisfies

(2.22) 0xPe (g, V(g,a,0)) =a, ae(-1,1).
With this notation, we can also write
(2.23) A¢(g,a) = D¢(q,Y(q,a,0)) —a¥(q,a,{), ac(-1,1).

We will see that the infimum in (2.21) is finite for a € {—1, 1}, so the function
A¢(g,a) is continuous on [—1, 1]. Moreover, since x — ®¢(g, x) is even, so is
a— Aelg,a).

For u € M_y,; such that [a? dp(a) = g € [0, 1], we define

1 1
@2 TAPGLY) = [Aqadu@ 5 [ @56
q

Note that, when ;1 = §; (and ¢ = 1), the functional is identically equal to zero.
Let

(2.25) TAP(p) := inf TAP(u,?).

in
teMo,1
Notice that, for a fixed ¢, this definition depends only on the values of {(s) on the
interval [g, 1]. This means that we could, equivalently, write

(2.26) TAP(1) := inf TAP(u,?),
LEM

o,1

where M, 1 is the space of probability distributions on [¢, 1]. We will show in The-
orem 3.4 below that the infimum is achieved and the minimizer is unique in My 1.
Because of this, whenever we use the representation (2.25), it will be convenient to
use the convention that we minimize over { € My, such that

2.27) {(s) =0 fors € [0, q).
The following is our main result. Recall p,, in (1.10).

THEOREM 2.1 (Generalized TAP correction). For any c¢,t > 0, if &,8 > 0 are
small enough and n = 1 is large enough, then, for large N,

(228) P(Yme[-1,11V : | TAPN,.(m,&,8) — TAP(um)| < ) > 1 — eV,

In particular, we can let 1 = ¢y go to zero slowly with N if we let ¢ = ¢ and
6 = éy goto zero and n = ny go to infinity slowly enough. Once we computed
the TAP correction, we get the TAP representation for the free energy.

THEOREM 2.2 (Generalized TAP representation). For any ¢q in the support of the
Parisi measure of the original model (1.2), in probability,

(2.29)

oo
lim ‘FN— max ( N (m) +TAP(,LL,,,))‘ —0.
N—oo m 2_q N
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12 W.-K. CHEN, D. PANCHENKO, AND E. SUBAG

Recall that in [19], it was proved that if gg, is the largest point in the support of
the Parisi measure for the original Parisi formula of Fj, then

lim Fy
N—=oo
. ) H
(2.30) = lim lim sup ( N (m) —ff{a)d,u-m(a) + C(q)),
eJ0N—oo me[—1,11V: N )
m 2
” ,.\llz €[gea—s,1]
where
l1+a 14+a l1—a 1—a
I(a) := 5 log 5 + 5 log 5
(2.31)

1
Clq) = 5(2?(1) —£(g) - E'(@(1 —9g)).

Under an appropriate condition on the empirical measure jt,,, we shall see that the
variational formula defined in TAP( ;) is solved by the replica symmetric solution
in the sense that the minimizer is the Dirac measure at the origin and moreover, our
TAP correction term coincides with the sum of the entropy and correction terms in
(2.30), that is, TAP(it,s) = — [ I(a)pim(da) + C(q); see Proposition 3.5 below.
This allows us to conclude the following version of the classical TAP representation
for the free energy from the general representation in Theorem 2.2. We will explain
this in more detail and discuss the relation with Plefka’s condition [53] in section
3.5.

COROLLARY 2.3 (Classical TAP representation). The following equation holds
almost surely

lim Fy = lim lim max(HA;\fm) —fl(a)d,um[a) + C[q)),

N—oo el0 N—=oo
where the maximum is taken over all vectors m € [—1, 1]V that satisfy

Sup F.Ufm (S.) =&
O=s<1—¢

where g = |m||3/N and T, (s) is defined in (3.43).
In what follows, we call the near maximizers of the functional

Hy (m)

+ TAP(tm)

the generalized TAP states. Our definition of the TAP correction was motivated by
the fact that ancestor states in the Parisi tree of states should be among the TAP
states if %"m”2 is close to the support of the Parisi measure. Next, we will see
that the TAP states have the properties one expects from the ancestor states.
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THE GENERALIZED TAP FREE ENERGY 13

2.4 Properties of generalized TAP states

Let us denote by ¢, the minimizer in (2.25) or (2.26) (recall our convention
(2.27)) corresponding to m € [—1,1]Y with ¢ = %Hm"z. We will see below
that ¢, has the meaning of the distribution of the overlap for the model on the
narrow band B(m, &) with its own random external field removed and with a new
nonrandom external field added that forces 0 in the support of this distribution ¢,,
(see the next section for details). We will show that, if m is a generalized TAP state,
then £, (5) & (i (s) for 5 € [g, 1], so the order parameters on the band around a
TAP state agrees with the Parisi measure of the original model on the interval [¢, 1].
To show this, we will upper-bound the TAP correction by

(2.32) TAP(u) = inf TAP(u,{) < TAP(u, x)
teMp

and obtain the following.

THEOREM 2.4 (TAP states are ancestral). For any g in the support of the Parisi
measure of the original model (1.2), in probability,

(HN (m)
max
N

(2.33) Fy— me
H’:V - —

lim
N—oo

+ TAP(im, ;*))‘ = 0.

This together with the representation (2.29) implies that, if i is a TAP state with
q = 7 lm||* € supp({+) then

By continuity properties of the Hamiltonian and the functional TAP(u, {) proved
below, this also holds for states with ¢ = % lm||? close to the support of .. We
will see (in the proof of Theorem 3.4 below) that the functional { — TAP(u, {)
is dq-Lipschitz uniformly over p« and has a unique minimizer {,, € Mg,1 if ¢ =
/ a? dyu(a), which qualitatively means that

(2.34) Cm =~ Cx;

i.e., the order parameter {,, in the TAP states follows the Parisi measure. This
approximation can be quantified, but we do not pursue it here.
Next, in order to describe the critical point equations for the TAP states,

235) %VHN (m) = —V TAP(ttm),

we need to compute the gradient of TAP(f4,n). Recall the definition of the function
W(g,a, ) in (2.22) and let

1
(2.36) V(g,a,§) = W(g,a,{) + af E"(5)¢(s)ds.
q

The gradient is given by the following formula.
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14 W.-K. CHEN, D. PANCHENKO, AND E. SUBAG
THEOREM 2.5 (Gradient of TAP correction). For any
1
me (—1,1)N  with ﬁHmllz =gq,

if we denote

1 1
237) ROm) = £"(q) f Em(s)ds — f £ (5)em (5)dis,
q q
then
1
V TAP(itm) = —F(W(q,m;:,é‘m) + Rimym;); _y
1
2.38) _ —i(@(q,mf,am) - miE(q) f gmts)ds)
N q i=N

Remark 2.6 (Generalized TAP equations). Let us show how (2.35) and (2.38) lead
to the generalized TAP equations. If we combine (2.35) and (2.38), we can write

1 J—
(VHN ), =m0 @) [ m(5)ds = Blg.mis i)
q

If we plug both sides into d, ®;, (g, -) and recall the definition of W, we get

1
(2.39) Ix P, (q, (VHN (m)); —mié”(qu Cm(S)a’-f) = m;.
q

These are the TAP equations for generalized TAP states. To compare them with
classical equations, we can use that TAP states with %Hm I> = g € supp(Z«) (or
close to the support) must have the order parameter {,, & («, which yields the
approximate TAP equations,

1
(2.40) 0x P, (q, (VHpy (m)); —mfé”'(q)f €*(S)d5') ~om;.
q

We will discuss the replica symmetric case of TAP correction in the next section in
much more detail, but notice that, when {x = 1 for s € [g, 1], (2.40) reduces to

(2.41) tanh((VHpy (m)); —mi€"(q)(1 — q)) ~ m;.

For the SK model, these are the classical TAP equations, which also appeared
in the physics literature for the pure p-spin model in [54] (see also [22]). The
equations (2.39), (2.40) are, thus, an extension of the classical TAP equations to all
generalized TAP states, for all mixed p-spin models.

Let us remark that (2.39), (2.40) above are self-consistent TAP equations in
the sense that they relate state magnetization to itself. They are different from
the Mézard-Virasoro equations for the ancestor states derived rigorously in theo-
rem 1.4 in [7], which relate magnetization to the local field, although for the 2-
spin SK model considered in Mézard-Virasoro [38], they happen to coincide with
(2.40). The main reason is because, in those results, in place of the term V H y (m)
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THE GENERALIZED TAP FREE ENERGY 15

in (2.39), one has the cavity field process at an ancestor state m, which repre-
sents the average of V Hy (o) over many mutually orthogonal directions around
m. For example, if the entire system is in a pure state, the cavity field process cor-
responds to (V Hy (¢)), which coincides with VHy ({(o)) = V Hy (m) only for
the pure 2-spin model, when the gradient V Hy (o) does not include interaction
terms. This is why in those results one has the term m; [ ql £"(s5)«(s)ds instead

of m;&"(q) qu ¢« (s)ds in (2.40), and correspondingly m; (§/(1) —&’(g)) instead of
m;€£"”(q)(1 —g) in (2.41), which appears in self-consistent TAP equations, as, e.g.,
in [54].

Remark 2.7 (Spherical gradient). The formula (2.38) implies that in the spherical
directions,

(2.42) VTAP(um) - v = —%(lll(q, mi,{m)); o v forallv Lm.

There is a physical argument for the formula (2.42) to be satisfied by the ancestor
states m in the Parisi ansatz. We will see below that (W (g, m;, {,;)) has the meaning
of the unique external field that forces the model on the narrow band B(m, £) (with
its own random external field removed) to have many orthogonal pure states rela-
tive to m. On the other hand, V H y; (m) is the external field of the original model re-
stricted to the band and, when m is an ancestor state, we know that there exist many
orthogonal states on the band. This suggests that VHy (m)-v = (W(g,m;j, {m))-v
for such m and v | m, which agrees with (2.35) and (2.42). O

Remark 2.8 (Model with external field). One can include an external field to the
original model and consider the model with the Hamiltonian

N
(2.43) Hy(0) = Hy(@)+h ) o;.
i=1

It will be clear from the discussion below that the TAP correction TAP(,,) is the
same whether or not the external field is present. In fact, this will be, in some sense,
a big part of the motivation for our definition of the generalized TAP correction.
The only difference will be at the level of the TAP representation (2.29), which will
become

. N
H
(2.44) Fy ~ max ( N(m)+thi+TAP(gm)),
mz_ L
N —4q i=1

for ¢ in the support of the Parisi measure of the model with external field . For
simplicity of notation, we will work without the external field, because only trivial
modifications are necessary in the case with external field. O

In the next section, we will give an outline of the main ideas in the proof and state
further results. For example, we will show that the replica symmetric case of the
above generalized TAP correction (when the minimizer in (2.25) equals 8) reduces
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16 W.-K. CHEN, D. PANCHENKO, AND E. SUBAG

to the classical TAP correction and give a precise characterization for when that
happens. We will show how this implies the necessity of Plefka’s condition and, in
particular, that the generalized TAP correction is not always replica symmetric on
points corresponding to the Edwards-Anderson parameter (see Remark 3.7).

3 General Outline and Further Results

3.1 Utilizing many orthogonal directions

Let us explain the main ideas from [59] that allow us to make the uniform claim
(2.28) and at the same time compute things explicitly despite the dependence on
large n. This will also allow us to introduce some necessary definitions and no-
tation. We will see that for large n and small ¢ and §, the following properties
hold:

(a) with high probability, TAPx ,(m) in (2.14) is close to its expectation, uni-
formly over all m in (2.9);

(b) adding or removing an external field term in [E TAP y_, (m) has a negligible
effect.

Let us explain what these properties mean and sketch why they hold. First of all,
let us compute the covariance of the process Hy (6) — Hy (m) for o in the narrow
band B(m, ¢),

1 . .
N]E(HN(UI) — Hy(m))(Hn(07) — Hy(m))
=E(R(0%,07)) —E(R(0*,m)) — E(R(a/,m)) + E(R(m,m)).

(3.1)

For(c!,...,0") € B,(m,¢,§), the covariance fori # j is small, by the definition
of B(m,e) and B, (m, &, §). Therefore, the variance of Z;’=1[HN[0'5') — Hp(m)]
in (2.14) is roughly of the order n N and, by the Gaussian concentration, the fluctu-
ations of TAPy , (m) are of order (n N )~1/2 (Lemma 4.3 contains a precise state-
ment). The extra factor n~1/2 with large n will allow us to discretize and apply a
union bound uniformly over m, implying the first property (a).

To explain the second property (b), it is convenient to think of Hy () — H y (m)
as a new mixed p-spin model on the narrow band, as follows. If ¢ = R(m,m) =
|m||?/N, then, fora!,62 € B(m,¢),

(3.2) |R@,m)| = |R(c/,m) —q| <&
and
(3.3) |R(6',02) — (R(G,5%) + q)| = |[R@G', m) + R@E%, m)| < 2e.

Therefore, up to the error of order O(e), the covariance in (3.1) is approximated by

(3.4) E(RE',6%) + q) — £(q) = E,(RE,5?)),

wuad jou A|pLis si uonnquisIp pue asn-a4 "[2202/90/0€] U0 AYYHEIT NOSTIM 04L YIOSINNIN 40 ALISHIAINN Ag npa uwin-ql|'zdze wod-As|imkielqijauljuo//:sdiiy woly papeojumoq ‘0 ‘2202 'ZLE0LBOL



THE GENERALIZED TAP FREE ENERGY 17
where
3.5) E4() =65 +9)—§(q) = ) Prl@)*sk
k=1
and where :
(3.6) Br@)? =) (f) B2q" .
p=k

As aresult, if 7 w (0) is the mixed p-spin Hamiltonian indexed by @ = o —m for
o € B(m, &) with the covariance given by

3.7 EAR G HY () = N&(RE',5%),

one can show that (see Lemma 6.2 below)

1 n U1 £
(38) ETAPy,(m,e8) = ——Elog Y eXe=1HNE) ; 0(—)
nN B,y (me.8) Vi

uniformly over n, if ¢ = R(m,m) = |m|>/N > 0. The case when ¢ is small and
m 1is close to zero will be handled slightly differently, by working with the original
model with the external field removed, without any recentering.

The external field term that we mentioned in the property (b) is present in the
model ﬁ}{,‘ (7)), because B1(g) # 0 in (3.5). Define the function &, similarly to
(3.5), only with the summation starting from k = 2,

(3.9 Eg(5) = E(s +9) —E(q) —&'(q)s = Y Br(q)*s",

k=2
and let H () be the Hamiltonian with the covariance
(3.10) EHY G )HR(E?) = N&(R@E', 7)),
with ¢ = ||m||?/N. Then, in distribution,
HY (&) = HY (&) + p1(a)5 - g,

where g is a standard Gaussian vector. Hence, using the pairwise near-orthogonal-
ity of (51,...,5") for (0',...,6") € By(m,¢,8), namely,

n 1 1/2
n
we get that

1
> 5
nvN
]. n ifm ="t i myg=t
I se=1 HN (@) _ Yi—1 Hy @)
MN‘JEIOg Z e~t=11N [E log Z est=1"N
B, (m,e,8) By (m,e,5)

1 1f2
< ﬁl(q)(; +5) .

sup
By (m,e,8)
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18 W.-K. CHEN, D. PANCHENKO, AND E. SUBAG

Together with (3.8), this shows that

. 1/2
(B.11)  ETAPy,(m,e,8) = EFy,(m,&8) + o(i + (— + a‘) )
V9 n
where we introduce the notation
. 1 n my=£
(3.12) Fyn(m,e,8):= —log 3 ext=t V@D
B, (m,z,8)
for the free energy in the replicated band, with the external field removed.

By the same argument, we may also add a deterministic external field term & =
(hi)i<n, as long as we keep |||/ v/ N bounded. Namely, if we define

]_ 1 m =t N =i
(13 e s = —log Y eXimlHR@Ria],
" By (m,e,8)

then
(3.14) ‘F (m,e,8) — F! (m 38)‘<M 1—1—5 12
. N,H & N,H P = =~ ‘\/N n .

In other words,
ETAPy,, (m,e,8) ~ EF} ,(m,¢,5),

when &, § are small, n is large, and ||/2]|/+/N stays bounded. As with TAPy , (m),
for simplicity of notation, we will often omit ¢ and § and write

(3.15) Ffy ,(m) := Ffi (m,e) = F}i (m,&,9).

Let us sketch how the properties (a) and (b) lead to an explicit calculation of the
generalized correction term TAP( /4., ), and also contrast what happens in the spher-
ical models vs. models with Ising spins.

3.2 Spherical vs. Ising spin models

Let us start with an overview of the spherical model that was considered in [59],
where of course Xy should be replaced by Sy, and the sums over configurations
should be replaced by integrals. Using the above heuristics of introducing many
orthogonal constraints (or the infinitary nature of the tree of states), we get that,
uniformly over m,

(3.16) TAPN n(m) =~ ETAPN,,(m) =~ EFnn(m).

Since a narrow band on the sphere looks the same for all m with %Hm 1> = ¢,
the right-hand side depends on m only through ¢. We can see that the constraints
[arl,...,cr") € B(m,e,8) In

1 n =t
(3.17 EFynp(m) = —Elogf €Z£f=1 Hh’("f)dal---do”
’ nN By (m,e,8)
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THE GENERALIZED TAP FREE ENERGY 19

can be expressed by saying that

~i2 _ L 2.1,
y1e = gllo* —mlI" ~1—¢
and all ',...,5" are almost orthogonal to each other, R[&'i,&'j) ~ 0fori # j.
Moreover, the narrow band is, essentially, a sphere in one dimension less, so we
can think of Hy; (o) as a new spherical model. The fact that the external field has
been removed implies a well-known fact that zero is in the support of the Parisi
measure of this new spherical model and, in particular, the overlap constraints
R(&'f i ) a 0 cannot have a free energy cost. In other words, one can show
that

(3.18) EFnn(m) =~ EFy1(m),

which is the free energy of a spherical model that can be written as a spherical ana-
logue of the Parisi formula, the Crisanti-Sommers formula. Thus, the generalized
TAP correction has a particularly simple form in the spherical models, and this has
important consequences, as was demonstrated in [59].

In the Ising spin models, the situation is quite different. First of all, the narrow
band depends on m in a complicated way, and the constraint 6 € B(m, €) can be
viewed as a constraint on 6 = ¢ — m of the form

g€ E(m,s) = B(m,eg) —m

3.19

©-19) %[EN—’”)ml%H&Hz%l—G}-

So, the first question is: for n = 1, can we compute the analogue of the Parisi
formula for the free energy IE v ;(m) on the narrow band? The answer is yes,
but this will require some work. However, the bigger issue is that, even if we can
compute this free energy, removing the external field term will not result in zero
being in the support of the Parisi measure, because of the inherent asymmetry of
the band (3.19), and will not allow us to make the step (3.18). The solution to this
will be to add a new external field to balance out the asymmetry of the band. In
other words, using (3.14), we will introduce an external field 4 = (h;) at the step
(3.16),

(3.20) E TAPy,, (m) ~ EFy »(m) ~ EF}, ,(m),

and, with the right choice of /1, we will show that zero is in the support of the Parisi
measure of the model on the band and, therefore,

(3.21) EF}, ,(m) ~ EF}} | (m).

The analogue of the Parisi formula for the right-hand side will be our TAP cor-
rection T(u,,). The ideas behind finding the right choice of /i will be explained
below.
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20 W.-K. CHEN, D. PANCHENKO, AND E. SUBAG

Remark 3.1. Notice that the functional a — A¢(g, a) in (2.21) is even, and there-
fore the functional in (2.24) has the symmetry

TAP(pim, §) = TAP(i|m|, ),

where (), = % ZisN 8m;|- Under the transformation o; — sgn(m;)o;, the
overlap between two configurations does not change, while the covariance of all
the Hamiltonians as well as definition of the bands depend only on the overlaps.
Furthermore, throughout the paper, we will always work with external fields of the
form h; = sgn(m;)v(|m;|) that depend on the coordinates ; in an antisymmetric
fashion, which means that the external field h;o; will also be invariant under this
transformation. Because of this, from now on, we can and will assume that

(3.22) m e [0,1]7,
that is, all the coordinates m; > 0. In particular, we assume that
1
(3.23) o = 5 Y 8wy € Mo,
i=N

For the rest of the paper, we will work with this definition of Mg ;.

3.3 Parisi formula on the band

Let us now state the analogue of the Parisi formula on the band B(m, ¢) for
m € [0,1]V with the general external fields of the form h; = v(m;) for v €
C ([0, 1]), which will be sufficient for our purposes. Since the self-overlap of the
configurations @ = o —m on the narrow band is close to 1 — g, it will be natural to
work with the space My, 1—4 of all distributions on [0, 1 — ¢]. Recall the function
£; in (3.9) and, for each a € [0,1] and { € My,1—4, denote by &, ¢(¢, x) the
solution of the Parisi PDE on [0, 1 — ¢] x R,

"
(3.24) 0Py = —2 )

, . 2
(fixx (Da,f,‘ + t(t] (dx (Da,é') )
with the boundary condition

(3.25) @ye(1—¢g,x) =log2 —ax +logcoshx = log E elo—ax,
o==+1

Let us define the function W (a, ¢) by

(3.26) 0xPg,e(0,W(a,8)) =0, a€l0,1).

Note that W(a, {) is well-defined as 9, P, ¢ (0, ) is strictly increasing with
0xPg ¢ (0, £00) = £1 —a.

Also, note that @, , depends on ¢, but we will keep this dependence implicit for
simplicity of notation.

lwJad jou Ajplis s uolingLisip pue asn-a4 '[2202/90/0€] U0 AYVHEIT NOSTIM 04L VOSIANNIN 40 ALISHIAINN A npa uwin-qi|'zdze wod-Asjimkieigi|auljuo//:sd1y wouy papeojumod ‘0 ‘'220Z ‘ZLE0L60L



THE GENERALIZED TAP FREE ENERGY 21

For p € My,1,v € C([0,1]), and (1,8) € R x My, 14, let

1—g
(3.27) 'P;i(l, 0) = ]d)a,é-('(), Aa +v(a))dp(a) — %L .ef;‘g[s)as]ds.

Set

3.28 P o= inf Pr(A, Q).

( ) H A€R, LeMp1—g H( é-)

This will be the Parisi formula for the limit of E F ‘f,’l (m) when h; = v(m;) and
the empirical measure u,, in (3.23) converges weakly to .

THEOREM 3.2 (Parisi formula on the band). Assume that v € C([0,1]) and 11 €
Mo.1. Let m"N € 0,11V be any sequence so that ,,~ in (3.23) converges to i
weakly and let h; = v(m;) fori < N. Then

(3.29) lim EFf, (m", en) =P},
N—oo :

provided that €y goes to zero slowly enough.

Remark 3.3. In Proposition 8.3 below, we will establish a connection between
®,,¢ and ¢ (recall (2.6)), which states that these PDE solutions are essentially
the same up to a transformation. An important consequence of this connection is
that the function W(a, ¢) in (3.26) coincides with the one defined in (2.36) up to
a shift. With a properly chosen external field (see (3.31) below), this allows us to
simplify the above Parisi formula on the band and naturally gives rise to the desired
TAP correction (defined in (2.24)).

3.4 Finding the effective external field

Next, in order to obtain (3.21), we aim to find an external field such that the
model with the Hamiltonian ﬁ (o) + Z:‘;l h;o; on the band B(m, ) has zero
in the support of its Parisi measure. Given a function v € C(][0, 1]), suppose that
(A*, ¢*) is the minimizer in the Parisi formula (3.28). In the proof, we will deal
with cases when A* = +oo, but for the purpose of this discussion let us assume
that it is finite. For zero to be in the support of ¢*, it is necessary and sufficient that

(3.30) dxPg e+ (0,4%a + v(a)) =0

for all @ in the support of ;. We will not prove this (standard) statement, be-
cause we will only need an implication in one direction (that will appear in Theo-
rem 3.4(v) below), but, again, let us use it as a motivation for what we do next. If
we include the term A*« into the field v(a), then the field must satisfy

dx®@ge+(0,v(a)) =0 foralla

in the support of u. If we recall the definition (3.26) above, this means that our only
hope to force zero in the support of the Parisi measure is to restrict our attention to
external fields generated by functions of the form

(3.31) ve(a) == V¥(a,?)
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for { € My,1—4, and, moreover, with such choice of Ve, the Parisi measure ¢*
must coincide with ¢, so that (3.30) holds

(3.32) 0Py (0, ve(a)) = 0.

Actually, this will automatically force A* = 0, so this equation matches (3.30).
This raises two issues.

(1) First of all, we will see that W(a, ) goes to +00 as a approaches 1 uni-
formly over { (see Lemma 13.3), while v in the Parisi formula in Theorem
3.2 was continuous on [0, 1], so we cannot apply the Parisi formula with
v = vy when 1 € supp(u).

(2) The minimizer {* depends on the external field v;, and we want it to coin-
cide with ¢ in the definition of v,. How can we find such a ‘good’ choice
of ¢?

The second issue can be solved via an implicit fixed point problem, using the
Schauder fixed point theorem; however, we will give a more direct and explicit way
to find such good {. The first issue will be handled by an approximation argument,
which, at a crucial step, will allow us to work with measures p with the support
separated from 1. Because these two issues present very different obstacles, it will
be convenient to work with two intermediate definitions of the functional TAP(u)
in (2.25), which will be shown to coincide with it.

Let us consider the following growth condition on functions v: [0, 1] — R,

(3.33) v(a) < ¢q + catanh™!(a) fora € [0,1),

for some absolute constants ¢q, ¢; > 0 that depend only on the model £ and can be
found explicitly from the proof of Lemma 13.3 below. Set

V = {v e C([0,1]) : v = 0, v is nondecreasing, and (3.33) holds},

(3.34) _
V= {u e C([0,1)) : v = 0, v is nondecreasing, and (3.33) holds}.
Note that the only difference between V and V is on the right boundary of v. We
will prove that the functions v¢(a) = W(a,{) belong to V (see Lemma 13.2),
which is the real reason behind these definitions. Let us recall the functional
Pj(A,§) defined in (3.27) forv € V,

1 [l
PULO) ::f[ @003+ v@)du(@) - 5 | sgoeeas

and define a new functional '}_3;’1 (A, ¢)forveV,

_ 1 rl-4a
(335) PL(AQ) ::f @a,§(0,1a+v{a))dﬂ(a)—§£] SE/ () (5)ds.

[0,1)
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For u € Mo, such that [ a?du(a) = g, we define

T = i f v U, 1
3.36 ) vev, ZlenMu,l qPM( 2
(336) Twi= _inf P00

L‘El_"v, ;GM[),I—Q

In the case that supp(u) C [0, 1), it is evident that these coincide, and we will
in fact show that they always coincide. The first representation in (3.36) will be
convenient when working with the Parisi formula on the band, and the second
representation will be convenient for analytical reasons and because it allows us to
find a good choice of ¢ directly. We summarize all these properties in the following
theorem.

We define by

(3.37) O40(t) =C(t +¢q) fort € [0,1 —g¢]
the shift operator 6;: Mg,; — My, 1.

THEOREM 3.4. The following statements hold:
(@) If p € Mo,1 and q = [x? du(a), then

TAP(i, ') = P){(0,0)
forallt' € My andt = 6,', and
(3.38) TAP(1) = T(p) = T(u) = e inf P (0,0).

0, 1—g
(ii) The functional TAP() is continuous on (Mo 1, dy).
(iii) The right-hand side in (3.38) has a unique minimizer (p.
(iv) The minimizer g in (iii) satisfies
PLo0,to) = inf  P,O(R,8) (=:P0).

n ( EOJ AER,EEMo.1 g n ( C) ( n
(v) The minimizer {y in (iii) has zero in its support, 0 € supp({p).
(vi) If there exists some {1 € My 1—4 such that (0, {y) is a minimizer of

inf PR,
A€R,teMo1_g (4.9)

then Cn = Cl-

Notice that if 4 = §; then g = 1, so ?_?ﬂ(l,é') = 0, Mg,1—¢ = {80}, and the
claims (iii)—(vi) hold trivially. If supp(u) < {0, 1}, then P}, (4, ¢) does not depend
on A. In Remark 13.5 below, we will see that in all other cases the minimizer
[Aﬂ- C;i) exists and is unique. For convenience, we will use the convention that

(A}, €) = (0,80) when o = 61, and (A}, ;) = (0, ;) when supp(p) < {0, 1}.

A
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3.5 Classical TAP correction

Finally, let us explain how the generalized TAP correction defined above leads
to the classical TAP correction and the Plefka condition in [53,67]. In this section,
we will consider the nontrivial case i+ # §; and will describe when the minimizer
(o in Theorem 3.4 is replica symmetric, {y = 8p. Let us denote the corresponding
replica symmetric external field by
(3.39) vrs(a) 1= vg,(a) = W(a,dp) Va€[0,1).

Using the Cole-Hopf transformation yields

®, 5, (5, x) = log2 + log E cosh(a + t(s)g)e 4 T#(5)&)

(3.40) 1 2
= +2“ 12(s) —ax + log 2 cosh(x —at?(s)),
where ¢ is a standard Gaussian random variable and, for s € [0, 1 —g¢], we denoted

1/2

t(s) := (§,(1 —q) — &) "~
From this formula, we can express vgg explicitly as
(3.41) vs(a) := tanh™' (a) + a&, (1 —q) Ya €[0,1).

By Theorem 3.4 (iv), if §p is the minimizer of the functional in (2.25), we must
have

(3.42) Pis(0,80) = inf  PIM(A,0).

A ager],l—q

On the other hand, by Theorem 3.4 (vi), if this holds then &y is the minimizer.
Hence, in order to characterize the replica symmetric TAP correction, it is enough
to describe when (3.42) holds. Recall (3.40) and define

Yul(s) =
j; ) E[0x®g5,(s, ga(s))? exp(Py, s, (5, £a(5)) — Py 5, (0, £a(0)))] dpa(a),
0,1

where g, (s) = vrs(a) + £} (s) 1/2¢_For s € [0, 1], define an auxiliary function T';,
by

(3.43) Tu(s) = | €/)a(r) = ryar.

We derive this function through the directional derivative of the functional ?_fos (0,4)
(see the derivation in (12.1) below). Recall I(a) and C(g) in (2.31). The following
holds.

PROPOSITION 3.5. Assume that §; # u € Mo, and g = [a® du(a). Then 8y is
the minimizer of (2.25) (i.e., (3.42) holds) if and only if

(3.44) Fu(s) <0 Vs e[0,1—gq].
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Furthermore, in this case, TAP(1) is given by the classical TAP correction,

(3.45) TAP(11) = — f I(a)dp(a) + C(q).

The above proposition will be used to conclude Corollary 2.3 from the general
TAP representation of Theorem 2.2. The proposition also naturally leads to the
so-called Plefka condition in the SK model, that is, £ (s) = p%s2/2.

PROPOSITION 3.6. Let £(s) = B2s2/2. Assume that §1 # p € My, 1. If 8¢ is the
minimizer of (2.25), i.e., (3.44) holds, then the so-called Plefka’s condition holds,

(3.46) ﬁzf(l —a®)?du(a) < 1.

Remark 3.7. If we consider the pure SK model with £(s) = $2s2/2 with nonzero
external field s, one can see that the generalized TAP correction is not always
replica symmetric on the sphere %Hm |> = gga, where the Edwards-Anderson
parameter gga is the largest point in the support of the Parisi measure. Let us now
consider (3, h) below the AT line

2 2 <1
cosh4(ﬁz, Jq+h)

where g is the unique solution of ¢ = IE tanh?(fz V4 + h). Itis well-known based
on simulations, and in fact proved in some region of parameters in [33], that below
the AT line the original model is replica symmetric, and gga = ¢. Let us now take
m that has N ¢ coordinates equal to 1 and N(1 — g) coordinates equal to 0. For
such m, Plefka’s condition becomes

1 <1
cosh? (Bz/g+h)
Clearly, we can choose (f, /1) below the AT line such that Plefka’s condition is vi-

olated, which means that the generalized TAP correction does not always coincide
with the classical TAP correction on the sphere % [m||? = gga.

ﬁzfa—a%%mWM)=ﬁ%1—qw=&%

In Plefka [53], it was conjectured that in the SK model,

Hpy (m)
o

lim Fy =lim lim su
N—oo N )0 N—oo p(

f!meAM+Cw0,

where the supremum is taken over all m € [—1, 1]V satisfying that ¢ = ||m 13/N
and the Plefka condition, B2 [(1 — a?)? djum(a) < 1. While Plefka obtained this
condition through the consideration of the convergence criterion for the series ex-
pansion of the SK free energy, we discover the same condition from an analogous
study of the so-called Almeida-Thouless line for the Parisi formula on the band
with external field vgrs; namely, it is determined by the second derivative of I';, at
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s = (. We anticipate that it is not always true that when the Plefka condition is sat-
isfied, (3.44) is automatically valid. In addition, we mention that it looks possible
that one can find a y such that the Plefka condition is satisfied, but

PEs(0,80) = —fl(a)d;u-(a) + C(q)

is strictly larger than TAP(u). It is, however, not clear to us how to compare the
corresponding TAP free energy of such p with our expression (2.24), so the validity
of Plefka’s conjecture remains unclear.

Let us describe the structure of the rest of the paper. In the next section we derive
the uniform statement in Theorem 2.1, conditional on Theorem 3.4 and a represen-
tation of the limiting replicated free energy on a band at the level of expectation.
Using Theorem 2.1, in Section 5 we prove the generalized TAP representation in
Theorem 2.2. In Section 6, we reduce the TAP correction to the free energy of
the replicated model on the narrow band, and in Section 7 we prove the Parisi for-
mula for this model stated in Theorem 3.2. In Section 8 we prove the properties
of various TAP representations in Theorem 3.4. Section 9 contains the key step,
which combines the Parisi formula with the choice of the optimal external field
from Theorem 3.4 to derive the first representation T(u) in (3.36) at the level of
expectations. In Section 10, we prove Theorem 2.4, and we compute the gradi-
ent of TAP(u,,) in Theorem 2.5 in Section 11. In Section 12 we prove Corollary
2.3 and Propositions 3.5 and 3.6, about the classical TAP correction. Finally, in
Section 13, we prove various technical results used throughout the paper.

4 Uniform TAP Correction

In this section, we will prove our main result in Theorem 2.1. Our proof is con-
ditional on the continuity of the mapping ;+ — TAP(j4) that we stated in Theorem
3.4(ii) above, which we will prove in Section 8§, and the following two lemmas
relating the limit of the expectations IE TAPy , (m, €, §) to the functional TAP(u1),
which we will prove in Section 9.

LEMMA 4.1. For any sequence m = m”™ € [0, 1|V such that it — 1 € Mo 1,

“4.1) inf limsup E TAPy ,(m, e, §) < TAP(u).

g,d,n N—oo

LEMMA 4.2. Take any n € (0, 1). For any sequence m = m™ € [0,1 — gV such
that i, — € Mo,1 and supp(u) < [0,1— 7],
4.2) inf liminf[E TAPy ,,(m,€,8) = TAP(u).
g,d.n N—oo ’
To move from the statements about expectations above to the actual random TAP

free energies, we will need the following basic, but crucial, concentration result.
This is another key way in which we utilize many orthogonal directions.
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LEMMA 4.3. For some constant cg > 0 depending only on £,

Nt3¢
(4.3) P{|TAPy ,(m, &,8)—ETAPy »(m, £,8)| > 1} < Zexp(—UTSig).
PROOF. Note that, up to normalization by n, TAPy ,(m, ¢, ) is the free en-

ergy of the Gaussian process ﬁN{al, v, o) = ZL!{HN (af) — Hp(m)) on
By, (m, e, §), which, using (3.1) and (2.12), has variance bounded by

1

NTE(ﬁN(O'l,...,O'H))Z

[ A

4n€(1) + n(n — DE(1)(S + 2¢)

A

ce(n + n28 + n2e).
g

The lemma therefore follows from a canonical Gaussian concentration result; see,
e.g., [44, theorem 1.2]. O

We will also need the following consequence of the above concentration.

LEMMA 4.4. For any k € N there exists Ay C (0,1)N with at most ¢V 108k
elements such that letting n = 1/ k, for everym € Ay,

(4.4) max m; <1—2,
1<i<N 2

and, for every m € [0, 11V, there exists m' € Ay such that

ax [m; —mj| < .
=N

4.5) =3

i<
Furthermore, there exists a constant cg > 0 such that for any ¢, 8 >0andt,c >0
satisfying

—tzr:g.- 2
4.6 ——  +log— < —c,
(“46) I/n+d6+e & n

we have that

4.7 IP’( max |TAPy,»(m, €,8) — ETAP N, (m, &, 8)| > {) <2eNe,
MEAN

PROOF. Let P be aregular partition of [0, 1]V using cubes of edge length 7, and
define A4 5 as the collection of all center points of the cubes in P. Of course, (4.4)
and (4.5) hold, and Ay has (1/9)V = eV logk elements. Finally, (4.7) follows
from Lemma 4.3 by a union bound. O

4.1 Proof of the upper bound of (2.28)

Let t, ¢ > 0 and assume towards the contradiction that, for some ep, §y — 0
and n y — oo, on some subsequence in N,

4.8) P(Eme[-1,1]Y : TAPy, (m,en,8y) > TAP(up) +t) > e N,
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Let us choose nx | 0 in such a way that
—(t/4)%c 2
£ + log — < —2c.

1/ny +0n +en + 30y nN
Let us take the set A in Lemma 4.4 so that

(4.9)

P( max [{TAPy,, (m,en + 3nn,0N)
(4.10) (mGAN | = 2N
—ETAPy ., (m, en + 30N, 8N)| > 1/4) < 2e727€,

Suppose that m' satisfies the inequality of (4.8), and let m € Ay be such that (4.5)
holds. Since ||m —m’'||, < v/Nny, we have

B(m,en +3nn) 2 B(m',en)

and, moreover, di(ftm, [lm') < Nn. From the (uniform) continuity of u —
TAP(j4) in Theorem 3.4 (ii),

TAPwn , (m,en + 30N,8Nn) = TAP(p) +t = TAP(pp,) +1/2
for large N and, on the subsequence as above,
P(3m e Ay : TAPy ,,, (m,en + 30N, 8n) = TAP(im) +1/2) > e N
From (4.10), (deterministically)
4.11) dme Ay : ETAPy,, (m,eny +3nn,8n) = TAP(m) +t/4.

Since (M_1,1,d1) is a compact space, there exists a subsequence m = mMN e Ay
such that p,,v — p for some p € M_q ; and (along this subsequence)
4.12) limsup E TAPy , (m,en + 3nn,6n) = TAP(u) + ¢ /4.
N—oo
This contradicts Lemma 4.1, which finishes the proof of the upper bound. O

4.2 Proof of the lower bound of (2.28)

The proof is a variation of that of the upper bound. Let 7,¢ > 0 and assume
towards contradiction that for some ¢, § as small as we wish and n as large as we
wish, there exists a subsequence in N such that

(4.13) P(Em e [-1,1]Y : TAPy »(m,&,8) < TAP(um) —1t) > e V.

Let us make sure that &, §, n are such that we can choose n < ¢/6 satisfying
—(r/4)2(.-$

1/n+8+¢/2

and such that dy (i, 1) < n implies that |TAP(u) — TAP(u')| < t/2. By Lemma
4 4, there exists Ay such that (4.4) and (4.5) hold and

2
+log — < —2¢,
n

P TAP ,£/2,8) — E TAP ,e/2,8)| > 1/4
1 (mrg?ﬁv) Nn(m,e/2,8) Nn(m,e/2,8)| >t/ )

< 2¢ 2Nc,
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Suppose that m’ satisfies the inequality of (4.13), and let m € Ap be such that
(4.5) holds. Since ||m —m'||> < v/Nnand n < £/6, we have

B(m', &) D B(m’,&/2 + 31) 2 B(m, &/2),
and, moreover, dy(ftm, m') < 1. Therefore,
TAPy ,(m,e/2,8) < TAPN ,(m',&,8) < TAP(um) —t < TAP(um) —1/2.
This implies that, on the subsequence as in (4.13),
P(Im e Ay : TAPy ,(m,2/2,8) < TAP(jupy) —1/2) = e Ne,
and, therefore, from (4.14), (deterministically)
(4.15) dm e Ay : ETAPy ,(m,e/2,8) < TAP(uup) —t/4.

Since (M_q,1, d1) is a compact space, there exists a subsequence m = m™N

such that p,,n — p for some u € M_; 1 and (along this subsequence)

EAN

(4.16) lim inf E TAPy , (m, /2, 8) < TAP(1) — { /4.
N—oo

However, the condition (4.4) implies that supp(p) € [0, 1 — n/2], and the above
inequality contradicts Lemma 4.2. This finishes the proof. O

5 Generalized TAP representation

In this section, we prove the generalized TAP representation in Theorem 2.2
using the concentration of Theorem 2.1. The basic idea is similar to the proof of
[59, Lemma 17]. We note that our proof of Theorem 2.1 in Section 4 is conditional
on the results stated in the beginning of that section, and thus so is the current
proof.

PROOF. Lete,§ > Oand n > 1. By definition, for any m,

Hpy (m)
N

In particular, from the uniform convergence of Theorem 2.1,

Hp (m)
("%

- Hpy (m)

Fn -+ TAPN,l (m,e,8) > + TAPN,R (m, €, 9).

lim P(FN > max —i—TAP(,u.m))—t) = 1.
N—o0 llm)2 _
N =4
Fix some value ¢ that belongs to the support of the Parisi measure of the model
(1.2). It is well-known that the free energy Fy concentrates at exponential rate
around its mean for large N, see, e.g., [44, theorem 1.2]. By the Borell-TIS in-
equality so does the maximum in (2.29). Combining the above with Theorem 2.1,
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we conclude that to complete the proof of Theorem 2.2 it will be enough to show
that for any small ¢, £,§ > 0 and large n > 1,

1 1
lim Nlog[P’(Elm e [-1,1V, N"m”z -

N—oo
5.1 Huy(m)
FN <

+ TAPy ,(m, &,8) + t) = 0.
>From [48, lemma 4.8], for any 7,7 > 0 and n > 1 we have that
-"')—q} <t}> —t) = 0.
2

By conditioning on 6”71, ..., 62", we conclude that, with probability not ex-
ponentially small in N (w.r.t. the dlsorder only) there exist gt .., e

1 1
(5.2) Nli_tgo ~ log IP (F log G {vi

O EEN
such thatforany n + 1 <i # j < 2n, |R(@*,57) —¢| < 1, and such that

LI{Jg(r@z” Vi # j <2n, R(c¢*, 0/ —q| <t "t =gt = 1,.‘.,;1}
(5.3) "
:W]ogZexp;ZHNo) Fy = —t,
Au(z)
where we define A, (7) as the set of points (6!,...,6") € %7, such that

|R(c*,07)—q| <7 and |R(c’,5%)—¢|<T,

foranyi,j <mandn+1 <k < 2n.

Define & := n~! Z; nHai andsetm = 0ife = 0,and m = /Nga/||o||
otherwise. Given §, £ > 0, it is straightforward to check that 4, () C B, (m, ¢, §),
provided that ¢ > 0 is small enough and n > 1 is large enough. Assuming this
inclusion and assuming that (5.3) holds, m is a point as in (5.1), since

Hpy (m)

1 n ,
+ TAPy ,(m, €,08) = Wlog Z exp}ZHN(c‘){.
By (m,z,0) i=1

This completes the proof. O

6 Reduction to a Model on the Band

In this section, we will justify approximations of TAPy,(m,e,§) by
Fyn(m,e,8). We will need the following technical lemma, which follows from a
more general result in [10, cor. 59], but which we prove here for convenience.

LEMMA 6.1. For a mixed p-spin model in (1.2),

6.1) E max |VHy(o)| <c:VN,
loll<vN

where one can take cg = 2(}_ - ﬁ§p3)1’!2-
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PROOF. Let us represent the maximum above as

(6.2) max ||[VHy(o)|| = max max wu-VHy(o)
loll<vN lull<1 llo |<vN

and denote
G(u,0) :=u-VHy (o)

Bp
= Z m Z !511, ,Ip{ull UI;J + + UI] HI,:J)

p=1 I1;enlp
Using that (a1 + -+ 4 ap)® < p(aj + -+ + a2) and the fact that [u| < 1 and
o/ ||> < N, one can easily check that
E(Gut, oY) — G2, 0%)” < cZ(lu! —u?|> + N7Yo! - a?]),
where c'g = Y ,>1B;p> < oc.If we define, for i.i.d. standard Gaussian g; and
&>
N N
Gu,0) = c¢ (Z giui + N71/? Zg;fos),
i=1 i=1
then the right-hand side above equals E(é(u 1 gl )—é(uz, 02))2. By the Sudakov-
Fernique inequality,
E max G(u,0) < [E max 5{;{,0) < 21:'5«/N,
o u,o

and this finishes the proof. O
Let us start by proving the approximation in the equation (3.8).
LEMMA 6.2. Ifqg = R(m,m) = |m||?/N > 0, the equation (3.8) holds,

1 n ijm =i £
LRy Yo HY (@)
(63) ETAPy,(me8) = —Elog Y eXim @4 O(ﬁ),
By(m,e,8)

with an implicit constant in the error term that depends only on §.

PROOF. Given ¢ and & = ¢ — m, define
?;:&,_a m, bza_a-mng_a-m
nt -1 nt-m m-m
Notice that b is the projection of o onto the hyperplane perpendicular to m pass-
ing through m, and b = b — m. We view b as a function of ¢ but, to simplify
notation, we will keep the function implicit. The projections satisfy R(b1, %) =
~l . . e~
R(b ,bz] + g and the Hamiltonians Hy (b) — Hy (m) and H}j(b) are equal in
distribution. As a result,

_Elog > e [N 0t ] i\ﬂElog > Xl ARG
By, (m & 5} B, (m ,8,6)

m -+ m.
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Since, for ¢ € B(m, &),

- = lo-m—m-m| 3
lo —bl = o —b| = <—N,

[[m ]| Jaq
in order to prove (3.8), it is enough to use that, by the above lemma,
6.4 E max Hy(oY) — Hy(6?)] < ce(e N,
(6.4) 1o 12X [N (@) = Hy (@] < ce(e/ VD)
and that a similar statement holds for ~ » Which can be proved in exactly the same
way. O

As we explained in the introduction, this implies that

X 1 1/2
(65  ETAPN,(m,&8) = EFy,(m,e8) + 0 —+ (- +8) ).
’ ’ NGl n

When g = R(m,m) = ||m||?/N is small and the above approximation is not good
enough, let us say when ¢ < /2, we will use a more straightforward reduction.
We will not add and subtract the term H y (im), which in this case is small (on the
scale 1/N). Instead, the only modification we will make is to remove the external
field in the original model. We will consider the Hamiltonian

(6.6) Hy(0) =) BpHn,p(0),
p=2

which is the original Hamiltonian in (1.2) with external field removed, so that
6.7) EHY (6 HY (6%) = NEg(R(a!,0?)),

where £)(x) = £(x) — £'(0)x is defined exactly as £,(x) in (3.9) for ¢ = 0. If we
define

(6.8) Fis 1(m, &,8) :=niNlog Y eXimHy @Y
B, (m,e,8)

then the argument leading to (3.11) also gives in this case that

1/2
6.9) E TAPy ,(m,&,8) = EFy ,(m,&,8) + O((— + 5) )
g n

In this case of small ¢, the analogue of the Parisi formula in Theorem 3.2 is the
following.

THEOREM 6.3. Let m™ € [-1,1]V be any sequence such that ji,,n — 8y. Then

. * . ]- 1
(6.10) N]ﬁnmrEF,\,,,l(m“’,g;\;)=gé\.}lfm(cbo,g(o,O)—EfU sg{,’(ch(s)ds).

provided that ¢y goes to zero slowly enough.
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This is, essentially, a classical Parisi formula for the original model without
external field, only now we have the constraint ¢ € B(m,ey).If ¢ = |m|?/N <
£/2, then, denoting u = m/||m||,

B(m,e) 2 {o : |o -ul < Ve/2},

and the last set is a constraint on the magnetization in some direction u. Since
the Hamiltonian HR, does not contain an external field, one can show that this
constraint has no free energy cost, which explains why the above formula coincides
with the Parisi formula for the unconstrained model. We are not going to give a
proof of this for two reasons. First reason is that the proof is straightforward. The
second reason is that the proof of Theorem 3.2 in the next section does this in a
more complicated case, and following the same argument in this case would only
significantly simplify the details.

7 Proof of the Parisi Formula on the Band

We establish the proof of Theorem 3.2 in this section. The argument is essen-
tially the same as the treatment for the classical Sherrington-Kirkpatrick model,
by utilizing Guerra’s replica symmetry breaking scheme and the Aizenman-Sims-
Starr scheme as implemented, for example, in [44]. The added complication here
is that the spin configurations are re-centered and the external field varies for each
site, depending on the function v € C([0, 1]). These will require extra care of the
uniform convergence of the free energy in the variable m. To this end, in Section
7.1, we first give a version of Theorem 3.2 in Proposition 7.1 in terms of the Ruelle
probability cascades followed by a set of lemmas that are devoted to establishing
uniform controls of various functionals. Sections 7.2 and 7.3 establish the upper
and lower bounds in Proposition 7.1.

7.1 Ruelle probability cascades and continuity results

Let ¢ € [0,1). Denote by Mg 1—q the collection of all atomic { € Mo,1—4
satisfying that, for some integer r > 1 and some sequences

(7.1 O0<lo<- <l <& =1,
(7.2) O=go<qgr1<:-<qr=1—q,

we have

(7.3) {(s) =1¢p if gqp <5 <qpy1 forsome0 < p <r—1.

Let (vg)uenr be the weights of the Ruelle probability cascade [55] corresponding
to the sequence (7.1) (see, e.g., section 2.3 in [44] for the definition). For o!, a2 €
N7, denote

1 2 _ a1l 2 1 _ 2
o Ao —max{(}fpfr.al—(xl,...,(xp—ufp}.

Let f(x) be a function of the form Zpgz c'gxp such that f(xg) < oc for some
xp > 1. This ensures that all derivatives of f are well-defined on (—x, xg). The
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main choice of f we have in mind is £, but it is convenient to keep it as a parameter
in the following definitions. Let f7(x) = xf’(x) — f(x). Let gs/() be a centered
Gaussian process on N7 with the covariance given by

(7.4) Egr(ah)gr(@?) = f'(qaine2),
and define gy, () similarly. For m € [0, 11N and ¢ € Mg}l_q, we set
1 ~
(715) Wn(me f,0) = SElog D" ve Y. exp Y (g4s(@) + vimi)ar,
aEMNF o cB(m,s) i=N

where ¢ = ¢ —m and g/ ; are i.i.d. copies of gs/. For { € Mg 1—g> also set

, 1
Y(f,0) = Elog ) vaexpvNgg, (@)
aeNT
(7.6) | e
~Elog ). vaepgs, (@ =5 [ L)/ (5)ds.
aeNF 0

The second and third equalities in this equation are well-known; see, e.g., [44, eq.
(2.60)]. For ¢ € Mg,l_q and f = &;, we will denote

(77) qJN (.m’ £, Z:) = qJN (.m’ £, ES:q, é-)
and
(7.8) T(Z) := T(&q, 0).
Recall that
]. N N =4
(7.9 Fﬁ,’l(m,s) ol log Z eI (”HL?:lhigf.
o c€B(m,e)

Throughout the section we will assume that
(7.10) hi = v(m;)
for some v € C([0, 1]) fixed. Recall the notation i, = % Z;N:l Om; -
N

PROPOSITION 7.1. Given u € My, and an arbitrary sequence m = m" ¢
[0, 1]V such that p,,n — j weakly if g = [x? du(x), then

. . s —h N N . _
(7.11) lllllr’I(}Nll_I;llooleN,l(m ’&)_ge 1r%i (, (W, ) — Y(2)),

where the limit

(7.12) W(w,&) :=lim lim Wym?", e, )
g0 N—oo

exists and does not depend on the choice of the sequence (m™).
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More precisely, in (7.11) we mean that

limliminfTEFf, 1(mN,é:) = lim ]imsup]l‘l;'«"f\}_1 (mN, £),
el0 N—oo ’ el0 N—oo ’
and both are given by the right-hand side of (7.11). In particular, we can choose
ey — 0 slowly enough so that E F f\’,’l (m", &xn) converges to the same limit.
Also, it is important to note that in Wy (i, €, {) the variables m and ¢ are two
independent parameters, and we will show that the quantity W(u, ¢) in (7.12) is
well-defined for any 4 € My, not necessarily satisfying the constraint ¢ =
j'xz dp(x). On the other hand, this constraint is crucial in (7.11), and that is why
we minimize over { € Mg,l_ g
For the rest of this subsection, we establish the convergence in (7.12), while the
proof of (7.11) is deferred to the next two subsections. We begin with some basic
continuity properties of the functionals defined above.

LEMMA 7.2. For{ € M{ | and{' e M§ | _ .,

1 1
@13 1T =T < 57O [ 10 - s + 210 - 1)

and
|le (m,z—:, }2 q) - lPN(}n, &, f’ Cl’)l

(7.14) " ! ! !
<of (1)([0 1£() = £/ ()\ds +2lg — g |).

For any f1 and f> as above and [ € M&l_q,
(7.15) (Wn (m, e, f1.0) = Wn(m, e, £2, 0] < 1f{ = flloo.

The last sup-norm is defined on [0, 1].

PROOF. The first inequality is clear. The proof of the second inequality is almost
identical to the one in the classical SK model (due to Guerra [28]) and will be
omitted. We only mention that the factor 2 instead of the usual 1/2 is due to the
fact that |6 | < 2 instead of 1 and we have the additional term 2|q — ¢’|, because ¢
and (¢’ are defined on different intervals. If ¢’ < g, we first need to interpolate all
the parameters q“'v > 1 — g down to 1 — g before we start the usual argument, and
one can check that all error along this interpolation is controlled by 4 1 (1)|¢ —¢'|.

To prove (7.15), we replace the terms g 4 () and g 4 () by the usual Gauss-

ian interpolation between the two, /t i (@) + V1 —1t gf,i (). The deriva-
tive along the interpolation will be controlled by the maximum of ‘ fi (qa:l mz) -
13(da1 rq2) |, and this finishes the proof. O

One immediate consequence of the above continuity properties that will be use-
ful is the following.
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LEMMA73. If € MZ | and ' € ME |, are such that [y |{(s)—'(s)|ds <

\q — ¢'| then, for any f1, f2,

(1.16) |Wy(m, e, f1,.0) — Un(m,e, £,0) <6/ Dlg—q'| + | A — ] -
PrROOE. This follows from Lemma 7.2. O

Next, we will study continuity properties with respect to m. Recall the metric d4
defined in (2.18) and note that if the coordinates of m,m’ € [0,1]" are arranged
in the nondecreasing order, then

N
1 1
(7.17) d1(fm, hm?) = ~ > " m; —mj| = Nllm —m'||1.
i=1

The following observation will be convenient.

LEMMA 7.4. If u, 1’ € Mo, then, for k = 1,

(7.18) |/xk du(x) —ka di'(x)| < kdy(u, 1').

PROOF. If x~! denotes the quantile transform of 11, then

‘kadpt(x)—f.xkd,u’(x)

_ ‘fﬂ._l(x)kdx—-/,u.’_l(x)kdx

< kf dx = kf{,u(x) —,u’[x)‘a’x,

which finishes the proof. O

) — )

For example, this implies that, for m € [0, 1] and u € Mo 1,

‘%Ilmlli—fx2 dp(x) fx2 dum(x)—fx2 dp(x)

If ¢ € B(m,¢), then the self-overlap of the recentered configuration @ = o — m
can be rewritten as

< 2d1(jm, ).

iE-El": l—lm-m——[a—m)-m
N N N
and, therefore, if ¢ = [ x? du(x),
|
(7.19) 00— (0—q)| =2(e + di(pim, p))-

In particular, if p,,, — u, then the self-overlap on the narrow band is approximately
1 — ¢, and the choice of ¢, = 1 — ¢ in (7.2) is designed to match this.
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Let us introduce one more notation. For v € C([0, 1]), define

(7.20) Ay(x) = inf( max |v(a) —v(h)| + 2||v||90£)
=0\ |a—b|<t t

By the uniform continuity of v, limy o Ay(x) = 0. We will use this quantity to
control

1 N
5 2 [vmi) —vm))|

i=1

N
< max [v(@) = v ()] + 2llvlloo EI(|m,;—m,;|’ > 1)
{a— i=1

< max It(a)—l‘(h)l+2II1‘IIm——Z|m;—m )

la—bl i=1

1
= max |v(a) —v(b)| + 2||v|loo— d1(ptm, pm),
la—b|<t 4

which implies that

N
1
(7.21) ~ 2 [00m) = vm)| < Ay (dr (s ).

i=1
The next lemma contains a key result that will later allow us to approximate general
vectors m by nice ‘discrete’ ones.

LEMMA 7.5. Form,m’ € [0,1]N, if Ne > 1 and d1(jim, ptm’) < 26, then

(71.22) (W (m,e, [,0) =W (m'se, £,0)] < Ap(di(im, ), €)
and

(7.23) [EFf (m,e) —EFf,  (m',8)] < Ag(di(im, im). €),
where

_ _ 3 3d .
(7.24) As(d,e) :=20,(d) + (cp + v ||oo)2d(1 + ;) + - log%

Jfor some constant cy that depends only on f.

Note that v € C([0,1]), which implies that limg o Ay(d) = 0, and thus
limg g Af(d,e) = 0O for any & > 0. Let us also clarify that we will use ¢ to
denote various constants that depend on &, for ¢ € [0, 1]. The reason for this is
that £, = £(x + ¢) — £(g) — &'(¢)x, and the derivatives of £, can be controlled in
terms of derivatives of £ uniformly over .
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PROOE. Since the order of the coordinates of m does not affect ¥, we can as-
sume that they are arranged in the non-decreasing order. By (7.17) and the triangle
inequality, for 6 € B(m’, &) \ B(m,¢),

1 1 ! ! ! 3 !
< —lo-m—m-m| = —|c-m —m- -m|+ —|m-—-—m
| B [+ < lm =l

(7.25) ) N
<e+ 3d1(,um; Mm?).

Since
Zm;—l— E m; = |m|1, Zmi— Z mi=m-o,
o;=1 agi=—1 ogj=1 ogj=—1
we have that
S mi=(lmly+m-0)/2, Y mi = (lmlly—m-0)/2.
og;=1 oj=—1

By (7.25),if ¢ € B(m’, &) \ B(m, &), then there are two possibilities:
(7.26) Ne<o-m—m-m < N(e+3dy(pm, im’)),
(7.27) Ne<m-m—a-m< N(s—l—fidl(,um,;,amr')).

In the first case,

> mi=(lmly +m-0)/2> ([mlly + Im|3 + Ne)/2 = Ne/2,

agi=1

and, in the second case, since ||m||; > ||m||3,

Y. mi=(mlly—m-6)/2> (Imlly — [|m|3 + Ne)/2 > Ne/2.

gi=—1

In both cases, the number of summands on the left-hand side is at least N¢/2 and,
if we set

. 3d1(lm, tem?)

=—

then, by our assumption, d < &/2. This means that the number of summands is
greater than Nd. In the first case, the sum of the largest Nd values m; correspond-
ing to o; = 1 must be at least

Nde _ 3Ndy (m,s om')
2 2

and, therefore, if we flip the sign of 0; corresponding to these largest values from
+ to —, the value of m - ¢ = Za5=1’"f — Zw:_l m; will decrease by at
least 3Nd((m, ttm). By the upper bound in (7.26), if we flip them consecu-
tively, somewhere along the way we will have a configuration o’ such that —N& <
o'-m—m-m < Neg (since N& > 1, in one step we cannot jump from N& to —Ne¢).
In other words, 6’ € B(m, £) and, by construction, |6 —a”||; < 2dN. The second

d:
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case is similar (we flip the sign of o; corresponding to the largest values from — to
+), and we showed that

(7.28) VYo € B(m',¢), o’ € B(m,e): |6’ — a1 <2dN.
This implies that
Wy (m',e, £,8)
1 ~
(7.29) < ?E log Z Va Z Z exp Z (gfr,i (@) + v(m}))5;,
: acN?  geB(m;) o/ o|1<2dN i=N

where we denote ¢’ = ¢’ — m’. First of all, using (7.21) and the fact that |5/| < 2,
we can bound this by

28y (dy (Hms o))
1 . ~
+ EE log Z Vg Z Z exp Z (g7, (@) + v(m;))5].
acMN? ocB(m,e) |lo’'—a|[1<2dN i=N
The second term is equal to (1) if we define
pls) =
TElog Y Y Y ew Y (gl v )i + 5@ )

achT oeB(m,e) |lo'—o|1<2dN i=N
When |6’ — o[y < 2dN, we have
15" =&l < llo" —olly + [m' —mlly < (d1(pm, ptm) + 2d)N.
Therefore, differentiating ¢(s) and using Gaussian integration by parts, we get

1 -
lo'(s)] = NE(Z(gff,f (@) + v(m:))(3] — cm)
i<N s
1
< FIE(ngf,i{a)(a;—a)) + [[0lloo(d1 (tm, ) + 2)

i<N §
= (Cf + vlloo)(d1(ims me) + 2d),

where (- ); denotes the Gibbs average along this interpolation. Lastly, if Z(¢) is the
rate function of a Rademacher random variable and o is any fixed vector in X,
then

1 .
Wy (m,e,§) —p(0)] < Nlogcard{ﬂ o —oollt <2dN}
1
<log2—7Z(1 -2d) < dlogE.

Combining the above, we bounded Wy, (m’, &, f, ) by
Wy (m,e, £,0) + 284 (d1(m, tm?)) + (cf + ||V ]loo) (d1 (m, i) + 2d)

1 :
+ d log E = q"N (H’I, £, .fs C) + Af{dl (iums I'J-m")a S)'
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Since the same inequality holds with m and m’ interchanged, this proves (7.22).
The proof of (7.23) is similar. Using (7.28), we can write

K FJ,{’, 1 (m’, &)

N
1 !t Iy=1
< FIE log Z Z exp(H;\,” (@) + E v{mf)crl-).

oc€B(m,s) |lo’—o || <2dN i=1

(7.30)

We can handle the external field term as above and bound this by
28y (dy(pm, ) + [V lloo(d1 (m s pm) + 2d)
1 . _
' F]E logaeﬂi(;m) ||0’—cr%:52dN exp(Hﬁ @ ; ' [mi)m)'
Next, we will replace H ﬁ’(&' "Yby H  (0) by using the interpolation
Hy(3',5) = JsHI @) + V1 —sHI ().

By Gaussian integration by parts, the error of this interpolation will be controlled
by (twice) the maximum of the covariance

1 oHs,@6,6) ., . 1 _ ~
N]E_ cas —H_g{ﬂ", p) - E(EQ(R;.,2) _Eb(Rl,Z)),
where . |
a= WHIH’H%, b= W||m||§, o,p € B(m,¢),
lo’ —olly <2dN, |o'—pll1 <2dN,
and

E;,Z = %(U" _}n"] . (p-" _nlf)’ El,z = %(g’ —m)- (p —m).
Let us rewrite this as
1 ~ ~ 1 ~ ~ 1 ~ ~
E(Ea (R} 5) —Ep(R12)) = E(Ea[R;,z) —Ea(R12)) + E(Ea(RLz) —&p(R1,2)),

and recall that £;(x) = £(x +¢) —£(¢q) —£&'(q)x. The second term can be bounded
by

1, =~ ~ c
S|6a(Ri2) — E5(R12)| < Sla = bl < codi (m, ).
To bound the first term, by the triangle inequality,
~ ~ 2
[Rl2— Ripzl = W(IIU' —alli + 1" —pll1 + 2[lm" —m]1)
< 4(d1(tm, wm) + 2d).

Therefore, the first term can be bounded by cg(d1 (im, ptm’) + 2d). The rest of the
argument is identical, so the proof of (7.23) is complete. O

We prove the following lemma by adapting an idea from Lemma 4 of [50].
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LEMMA 7.6. Forany ju € My, and m = m" satisfying ji,,n — i, the limit
(731) W6, £,0) = lim Wy (e, £,0)
—00

exists and does not depend on the choice of the sequence (m™).
We will denote

(7.32) Wp, f,8) = m W, e, f,5).

Consistently with (7.7), for ¢ € Mg}l_q and f = §,, we will denote
(7.33) W(m,e, ) = Wim,eE,0), V() = W(u, &, ).

PrOOF. First, assume that y is an atomic measure with rational weights. Sup-

pose that for some K, mq,...,mg is a sequence such that u = % Y i<k Om;. For

i > K, define m; periodically m; = m;_g and, for any N, define m = mV =

(m1,...,mpy), so that, clearly, p, — u.
Let N1, N2 = 1 be multiples of K and set N = Ny + N,. Note that

(7.34) B(m™N1,e) x B(m™2,e) € B(m", ¢).

Combined with standard properties of Ruelle probability cascades (see pp. 51-52
of [44]), this implies that

(7.35) Ny (m e, £,0)

is a superadditive function of N on multiples of K. One can easily verify from this
that the limit limy _, oo Wy (m®, &, £, ¢) exists.

Since the set of atomic measures with rational weights is dense in M, 1, by
Lemma 7.5, the same limit exists for general pu, and it does not depend on the
choice of m. Since (7.35) is decreasing in &, the limit in (7.32) is well-defined. [

We will combine this result with Lemma 7.3 to obtain the following.
LEMMA7.7. If{ € M& | and ' € ME |, are such that [y |{(s)—{'(s)|ds <
|l:;' - q!L then,forany fls f2 an‘d#s ;'.L’ € Mﬂ,l:

W (e, f1,0) =W e, f2,0)]

< Ap(dip, 1), e) + 6/ Wla —q'| + 1A = flloo-

PRrROOF. Combining Lemma 7.3 with the equation (7.22), we get
\Wn(m, e, f1,8) —Wn (', e, f2, )]
< Ag (di(pm, ), ) + 6 /{'(Dlg — ¢’ + L f{ = f3lloo-

Letting jt,, — w and p,,» — w' and using the previous lemma finishes the proof.
O

(7.36)
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7.2 Proof of the upper bound of Proposition 7.1

Fix some y € Mg 1 and v € V throughout this subsection and let m = m" be
a sequence with ji,,n — . Take g = [ x2 du(x). In view of Lemma 7.6, it will
be enough to show that for arbitrary { Mg’l_q and ey — 0,

(7.37) lim supTEFK}_] m", en) <limsup Wy m", en,0)—T(0).
N —o0 ’ N —o0

Once we proved this, we can simply choose ey — 0 slowly enough so that

limsupIEFf, 1(mN, gn) = lim limsup IEFK', l{mN,s)
N—o0 ’ £l0 N—oo ’

and, simultaneously,

limsup Wy (m™,en,0) =lim lim Wym", e, 0),

N =00 el0 N—oo
which is equal to W(u, ¢), by Lemma 7.6. This will finish the proof of the upper
bound of Proposition 7.1.

Our proof of (7.37) uses Guerra’s interpolation method and is almost identical
to the proof of that for mixed p-spin models on ¥y as in sections 3.2-3.4 in [44]
except that we need to work with the shifted coordinates ¢ = & — m instead of
o and replace the cube X by the band B(m, ey ). Similar to [44, eq. (3.45)], we
define, for ¢ € [0, 1], the interpolating Hamiltonian

Hy (0,0) =

N N N
VIHR (@) + V1—=1) " ger 1(@)8 + V1 Y go,i(@) + D v(m;)3;,
i=1 i=1 i=1
indexed by (&,a) € (B(m,ey) — m) x N7, where the Gaussian processes g i
and gg, ; are i.i.d. copies of the processes defined in (7.4). Exactly as in [44, eq.
(3.18)], set

N
- . y ~ 1 -
(1.38) 8@) =Y 2 xpp@), 2@ =m0 G

921 il,...,i;,:]_

g;fl ; are i.i.d. standard Gaussian variables, and x = (xp)p>1 is a sequence of
aeeeykpy -

i.i.d. uniform random variables on [1, 2]. Let sy be a sequence such that sy — oc
and ""32\1 /N — 0. For t € [0, 1], define the interpolating free energy by

1 ~ ~
(139) gn(0) = ExElog Y va Y exp(Hny(@, @) +sng(@))-

aeNT o €B(m,ey)

Here and hereinafter, £, means the expectation with respect to the randomness x
only. Denote by Gy (G, ) the Gibbs measure and by (-); the Gibbs average
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associated to this free energy. Observe that since s;{, /N — 0, the term sy g(o)
plays the role as a vanishing perturbation such that

on (1) =EFf [(m) + Y () + o(D),
on (0) = Wy (m,en,0) + o(1).

In order to compare these two sides, an application of the Gaussian integration by
parts (see [44, theorem 3.5]) implies that, as N — oo,

1
o (1) = —EIE_,:[E<($4(R(&'1,&'2))

(7.40)

- R(EI’EZ)E;{QQM@) + 6&(@'&1»'\0'2))) + 0(1)‘
t

The term o(1) comes from the bound on the expression involving self-overlaps,
£(R@,5Y) — RE", 6%, (Gayner) + 0g(qay ney)-

Indeed, the fact that ey — 0 and p,,,» — p ensures, by (7.19), that R(&"l, El] e
1 —g, and by our choice of g, = 1 —¢q, we have g, rna; = 1 —g. Because the self-
overlap is nearly constant, the proof of the extended Ghirlanda-Guerra identities in
the average sense, as well as Talagrand’s positivity principle, in [44] requires no
modifications and theorem 3.4 in [44] implies that

lim E.E(1L(RG!,6%) < —¢)); =0 Ve > 0.
N-—-xo

This together with the fact that £, is a convex function on R  implies that

limsup gy (£) < 0.

N—o0

Consequently, the asserted inequality follows from (7.40). O

7.3 Proof of the lower bound of Proposition 7.1

Let us consider an atomic measure g with finitely many jumps and rational
weights, and let

g = fxzd,u(x),y - fx(l — X)du(x).
Denote
€ . . 1
(7.41) 8(e,y) = (ce + v ||oo)(1[y > 0)510};% + 1(y = 0)elog ;),

for some constant c¢ that will be determined in the proof below. Let £ > 0 be such

that ¢ < y2/2, when y > 0. We will show that if /t,, — u, then

(7.42) 1imianEFj31(m,s) > inf  (W(p,&0) —Y()—e—68(y).
N=oo LeMG, -,

Before we prove this, let us show why this implies the lower bound in Proposition
7.1.
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LEMMA 7.8. If (7.42) holds for atomic measures |1 with rational weights, then the
lower bound in Proposition 1.1 holds for all p € My ;.

PROOF. Take 1 € Mo,; with y = [x(1 — x)du(x) and ¢ = [ x* du(x). We
can find an atomic u’ € Mo.1 with rational weights and d (1, i') as small as we
wish, but we can also make sure that if y = 0, then y’ = [x(1 — x)du'(x) = 0,
andif y > 0, then y’ > y/2. Letq’ = [ x?du/(x). When dy(u, pn') < £2/6,
(7.23) implies that (assuming (7.42))

liminf £ F}; | (m, ¢)
N—no ?
> LiminfEFp  (m', &) — Ag(dy (i, 1), €)
N—oo :

= . J\l/{riff (\IJ('U_;, £, Z:f) - T(éﬂr]) - A&‘(dl (,LL, ,U,!), g) — &= 5(8! }")

0,1—g

For any ¢ € M{,_, we can find { € M | such that [y [¢(s) — £'(s)|ds <
lg — ¢’|. Then by Lemma 7.2,

(7.43) T —TE) =Yg, 8) — Y&, ) < celg — 4|

, and, using Lemma 7.7 with f; = &, and f> = &,/, we can bound the above lower
limit from below by

¢ ,\l/;n;f (W, 8,0) = T () — 2A¢, (d1 (1, 1), 8) — & — (e, y) — celg — 4’|

Here we also used that ||£,, — E;, loo < celg —q’|. Letting " — 1 (so thatg" — )

and then letting £ | 0 finishes the proof. O
We now proceed with the proof of (7.42). Suppose that for some K, my,...,mg
is a sequence such that u = K1 > i<k Om;- Fori > K, define m; periodically

m; = m;_g and define m = m"V

.'?TN 2
el [ an =,

= (my,...,mp), so that p,;, — p. Since

we have
1 ~ ~
Ef‘f,’l{m,s) = N[Elog Z | exp (HK?(U) + | Z v(mf)of)
oceB(mN g) i=sN+M
1 - ~
A~ NTF log Z | exp (Hﬁ, (@) + | Z v(m;-]a;-)
o €B(mN ,g) i<N+M

where HK, (o) is the Hamiltonian with the covariance NEQ(R[&“I,&’Z)] with the
function £, defined as in (3.5). Recall that H}j (o) was defined exactly as H g, ()
only with ¢ given by ||m” |2/ N, and the standard interpolation argument (as in the
proof of Lemma 7.5) shows that we can replace ||m® ||>/N by its limit ¢ to make
sure we are working with the ‘same’ Hamiltonian along the entire sequence.
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The proof of the lower bound will be based on a standard cavity computation.
Fix £ > 0 and some integer M > 1 and write

liminf & F m, e
N—ooo N’l( :‘]

L. 1 - -
EllmlnfE(IElog Z exp(HJi,+Mfa)+ Z U(m;‘)()';‘)

(7.44) Noeo o €BmN+M 1) iSN+M
I log Z exp (HK,[&") + Z li[mi)gi))-
ocB(mV ) i=N

Notice that, since the lower limit on the left-hand side does not change if we take it
over N proportional to K, we can take the lower limit on the right-hand side also
over such N. In particular, by periodicity,

(7.45) My = mj and KN = .

By an abuse of notation, let m™ = (m ;” )i<pr denote the vector with elements

m IM = mpy4; = m;. The latter are the so-called cavity coordinates. Note that

B(m™ &) x B(m™ &) € B(m™NtM ).

Assume henceforth that M is large enough so that all the bands above are nonempty
for large N. Denoting by Hy,_ ,,(&,7) the value of the Hamiltonian Hy, , ;. at

the vector obtained by concatenation of & = 6 —m”" and p = p — mM, (7.44) is
bounded from below by

N | — ~ ~
1flvnl}1cr>10fﬁ([Elog Z exp (H§+M(a,p) + Z v(m;)o; + Z U[m,-)p,-)

o€B(mN ) i=N i=M
peB(mM e
(7.46) —[Elog Z exp (Hﬁ, (o) + Z v(mf)’a'f))_sBy
oceB(mN g) i<N

By replacing B(m” , ) by B(m" , ¢ ) in the first sum, with some sequence &y —
0, we only reduce (7.46). To replace B(m™ , &) by B(m® , ex) in the second term,
we can argue as in Lemma 7.5, as follows. If & € B(m,¢) \ B(m, &y), then there
are two possibilities:

(7.47) Ney <g-m—m-m < Ng,

(7.48) Ney <m-m—o-m < Ne.

Since, by (7.45), 4 = p and, therefore,

1
= mlB) = [x(U = 0)dan) = v

We will argue differently in the case when y > O or y = 0.
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If y > 0 (arguing as below (7.26), (7.27) above) in the first case,

(749) Y mi=(Imli+m-0)/2> (|mlls + [m|3 + Nen)/2 > Ny/2

(T;'=1

and, in the second case,

(7.50) Y mi=(Imly—m-06)/2> (|lm|1 — Im|l5 + Nen)/2 = Ny/2.
gi=-—1

If Ney > 1, < y?/2and d := ¢/y, then we can argue exactly as in Lemma 7.5
that

(7.51) Yo € B(m,e), 36’ € B(m,en): |6’ — a1 <2dN
and, therefore,
E log Z exp (HK,[E) + Z r;('mi')ﬁz’)

o €B(mN ,g) i=N

<Elg Y exp(ﬂ" @) + Zv(m;)rn)ﬂcsﬂl o) 10g 7.

oceB(mN,en) i<N

Using this, we can bound (7.46) from below by

|
llmmty(ﬂllog Z exp( N+M(0 )+ Z v(m;)a; + Z b(m,)p;)

N—=o

ogeBm™ en) ) =N
peB(mM g)
7.52 ~ ~
( ) —Elog Z exp(Hﬁ,[o’)—i— Zi,:(m:-)rr;-))
aeB(mN &£y) i=N

£ |4
— (cg + [[v]lo0)  log =
v €

Now, let us consider the case y = (), when all m; are equal to 0 or 1. Since
o-m—m-m < N(|m|y —||m||3) = 0, the first case (7.47) is not possible. The
second case (7.48) can be rewritten as

(7.53) Ney <m-m—o-m=2 E mi =2 Z 1(m; = 1) < Ne.
oj=—1 o=—1

First of all, if we flip all 6; = —1 corresponding to m; = 1to +1, thenm-m—a-m
will become 0. If we flip them consecutively, then somewhere along the way we
will find 6’ € B(m, £). On the other hand, the second inequality in (7.53) implies
that the number of such m; = 1 is bounded by N&/2. Therefore, we need to flip at
most N e/2 coordinates, which proves that

(7.54) VYo € B(m,e), 36’ € B(m,en): |6’ —o|1 < eN/2.
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Therefore,

Elog Y. exp(H,‘{,(&')Jer(ms)&s)

oeB(mN ,g) i=N

~ ~ 1
< [E log E exp(HK, (o) + Z v(m;)a;) + (cg + ||v||m)slog;

oeB(mN en) i<N

and (7.46) is bounded from below by

1
llmmf—(IE log Z exp (Hy 2 (&,0) + E v(m;)o; + Z v(m;)p;)

N—)Do N A
ogeB(im™ exn) i=N i=M
(755) peB(m™M &)
1
— K1 9 (& m)ai) | — (¢ o) log —.
og Z exp (Hy (0) + Z 1 {m;)rr;)) (cg + |lv]loo)e log .
oeB(mV ) i=N

Recalling the notation (7.41)), both cases can be combined as

NP B
l}l\{ﬂ;l;lofﬁ(tblog S exp(HiL @B+ Y vm)Fi+ Y v(mi)fi)

oeB(m" en) i=N i=M
(7.56) peB(m )
—Elog Z exp (HK,(E) + Z L‘(mg)ﬁi)) — 8, ¥).
ogeR(mMN an) i=N

The advantage of working with (7.56) instead of (7.46) is that the self-overlap
R(o, o) converges uniformly over 0 € B(m, ey) to 1 — g, a fact that will later be
important when we invoke the Ghirlanda-Guerra identities.

Next we use the standard cavity computation, known as the Aizenman-Sims-
Starr scheme [1] (see, e.g., [44] or [14]). Consider the Hamiltonian

(7157 Hp @) :=) D i,y iy,
, (r—1/2 frre ’
=2 (N + M] 4 lsil,...,ipEN

with the covariance

EHY 0y @HY 3 @) = (N + M')ifq( -

N
R(’&'l,&'z))
+ M
and independent Hamiltonians "(&' ) and y(0°) with covariances
Ez(3)z(E%) = £ (RGE,5)),
Ey(@")y (@) = 6,(R@E",5%)),

where 6;(x) = xi;‘:f,(x) £;(x). Let z;(o) be independent copies of z (o) for
i > 1. We denote by G, n (0°) the Gibbs measure proportional to

(7.58) lg(m,‘\u”s:.\l.)(ﬂ) exp (HK’,M (o) + Z v(mf)ﬁf)

i=N
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and by (-) n,as its average. If we denote
1 - i~ ~
Tnm = ﬁlElog( Y. exp ) (Fizi@) + U(mt’]Pi))
(7.59) peB(mM ¢) i=M

— %]Elog(exp VM y(&))

N.M

N,M’
then a straightforward interpolation argument can be used to rewrite (7.56) as

(7.60) liminf TN,M — 5('8, )/].
N—o0

Recall the perturbation sy g(6) from (7.39). Everywhere above we could have
replaced H K, by the perturbed Hamiltonian

(7.61) Hy (@) = HY (@) + sn g(@),

with sy = N1/3 (here we can take any power strictly between 1/4 and 1/2).
Then 1 can still show (see section 3.5 in [44]) that (7.60) still holds uniformly over
the choice of (x,) in the perturbation term g(c'), with the Gibbs measure (7.58)
modified by

G5 @) ~ Ly ) @) 50 H8 1y @) + 3 v0m00s +5v5) )

i<=N

Moreover, we can choose the parameters in the perturbation term x ;,V ‘M insuch a
way that the above Gibbs measure satisfies the Ghirlanda-Guerra identities, asymp-
totically. This chain of arguments is standard, and we refer the reader to section
3.6 of [44] for more details.

Next, consider a subsequence along which the lower limit in (7.60) is obtained,
and take a further subsequence along which the array of overlaps (R(& tE El')) 0,0>1

of configurations sampled from vac,“M converges in the sense of finite-dimensional
distributions. By the main result of [43], the Ghirlanda-Guerra identities imply
that the limiting array of overlaps is ultrametric and it can be approximated (in the
sense of finite-dimensional distributions) by the overlaps generated by a sequence
of Ruelle probability cascades, say corresponding to a sequence of distribution
functions ¢, with finitely many atoms, as in (7.3).

Recall Wy (m, e, &) and Y () from (7.7) and (7.8). Denote

Te oy =V (m™,e,0) — Y (0).

Recall the notation Ty ps from (7.59). Note that the covariance function of the
Gaussian processes (g¢ ;, gg,) and (z;, y) used in the definition of Ty »s and
Tn,m has the same dependence on the overlap as the variables « and &, respec-
tively. Combining this with a straightforward generalization of [44, theorem 1.3],
we have that there exists { M Mg,l_ 7 such that

[Hminfy oo Th, M — T,:M,M| < g/2.
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Finally, take a subsequence of (¢) that converges to some limit distribution ¢’
By Lemma 7.2, if we choose ¢ € Mg,l_q such that dq (', ¢) is small enough, we
can ensure that |Tear pr — Te pr| < €/2 for large enough M. This together with
(7.60) gives that

liminf EFy \ (m, &) > War (m™,6,0) = Y (§) — e —8(e, y),
N—oo :

for M large enough. Taking the limit M — oo and using Lemma 7.6 proves
(7.42). O

7.4 Proof of Theorem 3.2
Let us recall the definition of Wy (m, &, {) in (7.7),

1 ~
(762) Wn(m,e,0) = —Elog 3 va Y, exp ) (8@ + v(m))3i,
aeMT oeB(m,ze) i=N

for ¢ € Mg,l_q. Fora € [0,1] and (7, x) € [0,1 — g] x R, let ®, ; (¢, x) be the
solution of

, () . ' >
dtq)a,i = - 5 (dxx{pa,f + (:{{){dx(pa,nj) )
with the boundary condition
(7.63) ®,6(1 —g,x) = log Z plo—a)x _ log2 —ax + logcosh x,
o=%1

By Proposition 7.1, in order to finish the proof of Theorem 3.2, we need to prove
the following.

PROPOSITION 7.9. Forany{ € Mg,l—q’ and . € Mo, with [ x*>du(x) = g,

(7.64) llil{']l Nh—l;noo WUy(m,e )= ;161{& f D400, Aa + v(a))du(a)

for any sequence m = m" such that |ty — JL.

The infimum in the Proposition 7.1 is taken over atomic { € Mg 1—g° but, since
the boundary condition satisfies

(7-65) |3x‘ba,§[1 _q’x.” <2, |3xxcba,§(1 —q,x)| <1,

one can show (using the standard argument of Guerra mentioned in Lemma 7.2
above) that the functional { — ®, (0, x) is uniformly d;-Lipschitz over all pa-
rameters, and the infimum can be taken over all {.

Since for the rest of the section ¢ € Mg’l_ g is fixed, we will omit it and write
(7.62) as

1 ~
(7.66) Wy (m,z) = Nlbllog Dve Y exp ) (gg (@) + v(m;)d.

aEMT ocB(m,zs) i=N
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For A € R and A C Xy, let us define

Wy (m; A, A) = %Elog > ve Y exp[ > (e (@) + v(my))5; + JLNR[E,m)}

(7 6?) ach? ocAd i=N
. 1 }
=y log D v Y exp Y (ge (@) + Amy + v(m;))5;.
' acN”  ged Q<N

For & > 0, recall that B(m, &) = {o : |R(d,m)| < &} and let

BT (m,e) ={o : R(G,m) >¢e}, B (m,e) ={o: R(G,m) < —¢}.
Note that for y > 0,
(7.68) Wy (m; A, BE(m,e)) < Un(m:A £y, Zx)— ye.

Our strategy to prove Proposition 7.9 will be to show that, with the choice of
A = A¢ corresponding to the minimizer in (7.64), for any £ > 0, the quantities
Wy (m; A, Bi(m, ¢)) will be strictly smaller than Wy (m; A, X ), which will im-
ply (via concentration) that Wy (m; Ao, B(m, e)) ~ Wy (m; Ao, Xn). To achieve
this goal, we need two auxiliary lemmas.

LEMMA 7.10. For any A > 0, we have

(7.69) Wi, Zy) = [ @020 + v(@)dpm(@)
and
(7.70) Wy (m, ) — Wy (m; A, B(m,€)| < |Ale.

PROOF. Recall the notation in (7.63). Then, by the standard properties of the
Ruelle probability cascades,

Wy (m;A, Zn)
1 ~
= FJElog Z Vg Z exp Z (g&-;f,i(a’) + Am; + v(m;))5;

wEMNT CEX N i=N

1
= NIElog Z Ve 1_[ Z exp(a — m;)(ge i (@) + Am; + v(m;))

wEMNT i=No==+1

1 \
= Z IE log Z Vg €Xp D, ¢ (1 — q, g i (@) + Amy + v(m;))

i<N aeN?
1
= Z Dy, £ (0, Ami + v(m;)) = ffba,;(U, Aa +v(a))dpum(a),
i=N

which finishes the proof of the first claim. The second claim is obvious because,
for o € B(m,¢), we have |R(0,m)| < e. O

Next, we will show that the minimizer in (7.64) is finite under some assumption
on u. The case where this assumption is violated will be handled differently.
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LEMMA 7.11. Ifs = [a(l —a)du(a) > O then
(1.71) Illliinoo,[ ®a.¢(0,Aa + v(a))dp(a) = +oo.
Ifs = [a(l —a)du(a) = O then
07 it [ @400.30 5 v@)dita) = G0 0,vOD(O).

PROOF. Note that the boundary condition in (7.63) satisfies
®4¢(1—g,x) =log2 —ax + logcosh(x) > —ax + |x|.

Moreover, @, (0, x) is nondecreasing in { and, therefore, setting { to be identi-
cally O on [0, 1 — g) for the lower bound and letting g ~ N(0, E; (1—¢g)), using the
Feynman-Kac formula we get

®y.6(0,Aa + v(a))
> E(—a(Aa + v(a) + g) + |Aa + v(a) + g|)
(7.73) > —|Ala® —av(a) + |Ala — |v(a)| — E|g| = |Ala(l —a) —c,
for some constant ¢ that depends on v and &. Integrating over 1 finishes the proof

in the case when 5 > 0.
Let us now consider the case when p is concentrated on {0, 1}. Then,

f P, (0, Aa + v(@)dpu(a) = Dot (0, v(0)({0}) + Dy£ (0,4 + v(O)({1}).

The first term does not depend on A and, when a = 1, the boundary condition

Py ¢(1—4¢,x) =log2 —x + logcosh(x) = log(1 + e %)

is decreasing. This means that the infimum will be achieved by letting A — +oc
and, since
lim ®;,(1-¢g,A+v(l)+x)=0
A—=+o0 ’

for all x, by the monotone convergence theorem, limj _, { o, ®1,¢(0,A+v(1)) = 0.
This proves the second claim. O

PROOF OF PROPOSITION 7.9. First of all, note that x > ®, (0, x) is a twice
differentiable convex function with uniformly bounded first and second derivatives,
see Subsection 13.1. As aresult, for any 1 € M1,

A ffba,_g’-((), Aa + v(a))du(a)
is twice differentiable with
d
1 f @y.c(0,Aa + v(a))dula) = fatixq)a:;{ll,la + v(a))du(a),
af2

T2 f ®,.¢(0,Aa + v(a))du(a) = fazﬁxxcba:;([],la + v(a))du(a).
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In addition, the second derivative is uniformly bounded over all choices of A, v,
and ;.

We will first consider the case s = [a(l — a)du(a) > 0. By the previous
lemma, the infimum in (7.64) is achieved at some finite A = A, which satisfies

(7.74) f 0x D,z (0, Aoa + v(a))du(a) = 0.
By (7.68) and Lemma 7.10, for y > 0,

(1.75) Wy (m; Ao, BE(m, 8)) < f 4,6 (0, (Ao £ p)a + v(@))dpm(a) — ye.

When y = 0, the right hand side equals Wy (m1; A¢). Since @, (0, (A+y)a+uv(a))
is bounded and continuous in ¢ from (13.4) and p,, — p, the right hand side
converges to

[ ®a0.0G0 £ pia + vi@)dia) - ye.

Since the derivatives of convex functions converge to the derivative of the limit, the
derivative of the right-hand side of (7.75) in y at y = 0 (denote it D y) converges
to

Dy — + f adx P, ¢ (0, Apa + v(a))du(a) — e = —e,

by (7.74). Finally, from the discussion at beginning of our proof, the second
derivative of the right-hand side of (7.75) in y is bounded uniformly over all
parameters by some constant .. Therefore, using Taylor’s formula and taking
y=-Dn/L >0,

L 2
Wy (m; ho, BE(m,e)) < Wy (m; Ao, Tw) + Dy + —2—
D%, g2
7.76 =V AL EN)— —— < W sA0, ZN) — —,
(7.76) N(m; Ao, XN) 51 N(m; Ao, ZN) 1L
for large N.
Let us define a random analogue of (7.67),
(7.77)

1 ~
Yy(my A, A) = Wlog Z Vg Z exp Z (g&’;,f (o) + Am; + v(mg))og.

aeENF oeA i=N

Let us recall (see e.g. Chapter 2 of [44]) that the weights v, of the Ruelle probabil-
ity cascades are defined as wy/ ), we, where wy are defined as a certain product
along the path of the tree of values of Poisson processes. In particular, we can
rewrite Yy (m; A, A) as

Rl — Rz =
1 - 1
N log Z We Z exp Z (g%,,- (o) + Am; + v(m,:))or,: — Nlog Z We-

wcMTr ogcA i=N wcM?
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By the Bolthausen-Sznitman invariance property [44, theorem 2.6] for the Poisson
processes I1; on (0, oc) with the mean measure tx~!~*dx for t € (0, 1), both
terms above are equal in distribution (see the proof of [44, theorem 2.9]) to

1
Rj =cj+ 4 log > X,
.‘cEH;U

for some constants ¢q, c; (note, however, that the two terms are not independent of
each other). This implies that

P(!WN(W; A, A) =Wy (m; A, A)| > %)

52TP’(|10g Z x — Elog Z x\zr).

XGHQ"U x€ell €

In other words, the fluctuations of iy (m; A, A) are of order 1/N. The bound in
(7.76) implies that, with high probability,
&2
U (m; Ao, BE(m, ) < ¥ (m; ko, En) — R
Since X is a union of B(m, ¢), B+(m, €) and B~ (m, €), this forces that
log?2 2

Y (m; Ao, BT (m,e) U B~ (m,¢)) < — T YN (me, BN) - g‘—f,

where the right-hand side used the bound log(a + ») < log2 + max(loga,logh)
for a, b > 0. Consequently,

1
YN (m;ho, BN) + log(1—2¢~5"N/GD) < 4y (m; Ao, B(m, £))
< yYn(m;Ao,XN),

where the left-hand side used the fact that if % log(a + b) < % log(la +b+c¢)—4
for some a, b,c,8 > 0, then (a + b)/(a + b + ¢) < e N 5o that
—8N) <

1 logc.

1 1
— 1 b+ ¢ — log(l —e
ogla+b+c)+ —log(l—e n

N
Since Ay was the minimizer, by Lemma 7.10 we get

(7.78) Nli_[}loo Y (m; Ao, B(m, g)) = ;gﬁ f ®4,:(0,Aa + v(a))du(a).

Finally, using the second claim in Lemma 7.10 and letting ¢ — 0 finishes the proof.

It remains to consider the case when u is concentrated on {0, 1}. By Lemma
7.6, to compute the limit of Wy (1, £), we can choose any sequence m = m N such
that p,,, — w. In particular, we can choose u,, also concentrated on {0, 1}. Let us
suppose that the first Ny coordinates are m; = 0 and the last N — N; coordinates
arem; = 1,and Ni/N — u({0}).
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In this case, the condition o € B(m,¢), or |R(a,m)| < &, means that

N
23 1(m; =l,0;=-1)=(m-m—m-0) < Ne.

i=1
This means that, when m; = 0, there are no constraints on o; and, when m; = 1,
we must have ; = 1 with at most Ne/2 exceptions. This means that in the defini-
tion of Wy (m, £), we can replace the sum in the exponent by Zfle (gg7,i(@) +
v(0))o; (for example, using interpolation) and we can replace the constraint ¢ €
B(m,e) by (01,...,0n,) € ZXp,. This will change Wy (m,&) by at most
O(eloge™1). This implies that

. 1 ~
Wy (m,e) ~ E]Elog Z Vg Z exp Z (8g,i (@) +v(0))o;

weMr ENI i=Np

N N
— Wlm’ga&, va2 cosh(g/ (@) + v(0)) = qu)n,g(o, v(0)).

Comparing this with the second claim in Lemma 7.11 finishes the proof in the case
when s = 0. ]

8 Properties of TAP representations

We present the proof of Theorem 3.4. To prepare for our proof, Subsection 8.1
first establishes connections among the Parisi PDEs introduced in the introduction,
while Subsection 8.2 derives some uniform upper bounds for @, ¢(0, v(a)). The
details of the proof of Theorem 3.4 are given in Subsection 8.3.

8.1 Relations among Parisi PDEs
Recall that the Parisi PDE ®; defined in (2.6) has the boundary condition

®¢ (1, x) = log 2 + log cosh x.

Fora € R and { € My,1, denote by O, ¢(t, x) the solution of the Parisi PDE on
[0,1] x R,

£"(1)

P (axx(:ja,i + C(f)(ax@)a,i)z)

(8.1) 0:04¢ = —

with the boundary condition

(8.2) Og,¢(1,x) =log2 —ax + logcoshx =log » " =0,
og==+1
In other words, the two solutions ®; and ©, ; satisfy the same PDE, but with

different boundary conditions. The following proposition shows that these two
solutions are indeed connected through an elementary formula.
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PROPOSITION 8.1. Forany x,a € R, t € [0,1], and { € My 1,

1 2 1
(83) Oglt,x) = D¢ (f,x —a f E”(s)c:{s)ds) —ax + “? f E"(s)L(s)ds.
t i

Remark 8.2. Recall @, ¢ from (3.24). As an immediate consequence of this propo-
sition, by shifting the measure ¢ from [0, 1 —g] to [g, 1], we can now unify all Parisi
PDEs together. To see this, let ¢ € [—1, 1] and ¢ € [0, 1]. For any { € My 1, if we
recall the shift operator 6, in (3.37) and let {;, = 6,{ € My, 14, defined by

CQ[I) = C[q + E)’ Vi € [0! 1 _Q]s

then, for any x € R,
(8.4)
cbast [O’ x] = (")a,§ (':L x)

1 aZ 1
= o (q . L s”(s')c(s)ds) —ax + L £ ()¢ (s)ds.

Note that since @ ¢, attains the global minimum at W(a, {g), taking infimum over
x leads to

2 pl
B5)  Gug, 0.9 8) = Aelg.0) ~ 5 [ €650, Ya e (L),
q

PROOF OF PROPOSITION 8.1. It suffices to prove (8.3) only for continuous .
Denote the right hand side of (8.3) by f(7, x) and set

1
b(t,x) =x — "($)e(s)ds.
(t,x) =x a]; EN(s)C(s)ds
Then

0 f(1,x) = 9P (1, b(1,x)) + a&" (1) (1)0x e (1,b(1, X)) — %s”mcm
and
De f(t,X) = 0, D¢ (1,b(1, %)) —a,
Dxx (1, %) = dxx Pe (2, (1, X)).
From this, a direct verification gives

0110,3) = =3 e £0,2) + 20 (3£ 0, 00)).

Note that f(1,x) = log2 —ax + logcoshx = ©, (1, x). Finally, we recall
that it was proved in Jagannath-Tobasco [32, Lemma 13] that the classical Parisi
PDE has a unique solution. The same proof therein applies to the current setting
with no essential changes and yields the uniqueness of the Parisi PDE solution with
boundary condition log 2 — ax + logcosh x. O

lwJad jou Ajpuis s uolingLisip pue asn-a4 '[220Z/90/0€] U0 AYVHEIT NOSTIM 041 VOSIANNIWN 40 ALISHIAINN A npa uwin-qi|'zdze wod-Asjimkleiqgi|auljuo//:sd1y wouy papeojumod ‘0 ‘2202 ‘ZLE0L60L



56 W.-K. CHEN, D. PANCHENKO, AND E. SUBAG

8.2 Uniform upper bounds for @, ; (0, v(a))

Note that
sup (1 —a)tanh™!(a) <1, and lim(1 — a)tanh™!(a) = 0.
aef0,1) atl

As a result, for any v € V U vV, (1-— a)v(a) is bounded from above by some
absolute constant. Since ®, ; is nondecreasing in { € My, 1—q, comparing with
¢ = 1, one can see that, with ¢? = £,(1—q) < E(D),

D,£(0,x) < log Z exp((o —1)x + 1(r,f —a)2c2)
L) 2
o==%1
1. . )
=(l—a)x + 5(1 —a)*c? + log(l + 62“(‘2_”).

In particular, for some constant cg, forallv € V' U v,

(8.6)
1

®Pa,t(0,0(a) < (1 —@)v(@) + 5(1 —a)%c? + log(1 + 24~V @)) < ¢

Moreover, if we take v(a) = vg(a) = W(a,(’) for some {' € M, and use
Lemma 13.3 below, which states that

¢y + ¢ tanh™!(a) < ver(a) <cp+ca tanh ™! (a)

for some absolute constants ¢, ¢y € R, ¢z, ¢5 > 0, we also have
1
0 < @, ¢(0,v¢r(a)) < (1 —a)(ey + ¢ tanh ™ (a)) + E” —a)?c?

8.7 + log(1 + exp(2ac? — 2¢ja — 2chatanh™ ! (a))) =: M(a),

We can see that lim, 4y M (a) = 0, which shows that ®, (0, v¢/(a)) is small in the
neighbourhood of 1 uniformly over the choice of ¢ and ¢’. Using (8.5), this implies
that

a2 !
®8 0= Arlg.a) =% [ §08)ds < M(a)),
q
so the expression in the middle goes to zero as ¢ — =£1, uniformly over ¢ and ¢.

8.3 Proof of Theorem 3.4

Our approach relies on the convexity of the Parisi functional ?_3; (-,-) on the
band (defined in (3.35)) as well as some computations on the directional derivative
of this functional. Let 1+ be a probability measure on [0, 1].

PROOF OF (1). First we establish the first equality in (7). To see this, observe
that (8.5) and (8.7) together imply that whenever { € My ; and {, = 6,( €
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My, 1—q satisfy ,(t) = {(g + 1) forallt € [0,1 — g], we have

Ae(g,1) = hm Ae(g,a) = f E"(s)C(s)ds.
Using (8.5) and this equation yield that
P (0,)

) a2 1 v . . 1 1 ‘ o |
:,[[O,U(AC{Q,G)_7./; E {S)C(S)d.s)dﬂ{a)—ifg (5 —C;')E {-ﬂc(S)d.S

2 1 1 1
= f (Ac{q,a)—”— f s”{s-)c(s)ds)dma)—— f (s — E" ()L (s)ds
[0,1] 2 Jq 2 Jq
= TAP(u, {),
which implies that
inf  PY(0,6) = inf P.U(0,
teMp1 ¢ LL( C) teMp,1 " Cq)
— inf TAP(u,¢) = inf TAP(u TAP(
geta[),l (,u’, g) §€lj\rllq 1 é-) }u

This establishes one of the equalities in (i). For the rest of the equalities, they
follow immediately if the following claim is valid: for any { € Mg, 14,

inf f[ |, GO, v@)dn(a) = f[ g 0, Wla, )dta)

8.9
= inf ] D, £ (0,v(a))dp(a).
veV J[0,1) '
To show this claim, observe that for any a € [0,1), ®, (0, ) is a strictly convex
function (see (13.6)) and has a unique global minimum at W(qa, ¢) since

0xPg e(a,¥W(a,{)) =0.
These imply that
(8.10) Dy ela,Wia,l)) < P,ela,x), Vx € R.

From this, Lemma 13.3, and noting that @, ; is always nonnegative, we have

velV

f ®4,t(0, ¥(a,))dpla) < inf] @, ¢(0,v(a))dula
(8.11) 0, [0,1]

f B (0, W(a, O))dpu(a) = inf f g £ (0, v(@))dp(a).
[0,1 0,1)

veV J[

3

The second line here gives the second equality of (8.9). To show the first equality
of (8.9), it remains to establish the reverse inequality for the first equation of (8.11).
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To this end, for L. > 0, setvy, € V by vp(a) = W(a,{) A L fora € [0,1) and
vp(1) = L. Write

f g6 (0, UL(a))a’,u(a)=f D4 (0, v (@))dp(a) + Py (0, L)({1}).
[0,1] [0,1)

Passing to the limit via the bound (8.6) and the dominated convergence theorem
gives that

L—oo

lim sup / D,.¢(0,vp(a))dula)
[0,1]

< f[ a0, (@ 0)du(@) +limsup @10, Lya({1).
0,1 oo

Note that ®; ¢(1, x) = log(1 + ¢~2*) is a strictly decreasing function with

@ ¢(1,00) = 0. These properties are also valid for Dy ¢ (0, -), which can be seen
from the representation (13.2). Hence, limsupy, _,,, ®;¢(0, L) = 0 and conse-
quently,

inf ] ®,.¢(0,v(a))dpu(a) < lim sup[ D,.¢(0,vp(a))du(a)
[0,1] [0,1]

velV L—no
< f Byt (0, W(a, £))dpula).
[0,1)

This completes the proof of our claim. O

PROOF OF (11). By part (i), we can work with any of the four representations.
We will use the first one, TAP(y). If we denote

2

1
Di(q.)i= Aelg.a) =5 [ €6 (5)ds
q

then, for ;2 with [ a?dj(a) = g, we can rewrite

1 1
TAP(,0) i= [ Delg.a)du(@) ~ 5 [ 6= 08 ©56)ds.
q

By (8.8), for any £ > 0, we can find € (0, 1) such that, 0 < D¢ (g,a) < ¢ for
|a| = n. Since, Ag (¢, a) and D;[q, a) are even (and concave), if we let

1 1
TAP" (11, ) = f De(@,lal A mdp@) — 3 fq (s — )" (5)¢ (s)ds

then
(8.12) ITAP” (11, §) — TAP(u, §)| < e.

Using the fact that dx ®¢ (g, -) is strictly increasing with d, ®¢ (g, £00) = =1, itis
easy to check that, for |a| < 5, the infimum in A¢ (g, a) = inf,er (¢ (g, x) —ax)
is achieved on x € [—L, L], where L depends on 7 only. This implies that A, (g, a)

lwJad jou Ajplis s uolingLisip pue asn-a4 '[220Z/90/0€] U0 AYVHEIT NOSTIM 041 VOSINNIN 40 ALISHIAINN A npa uwin-qi|'zdze wod-Asjimkieigi|auljuo//:sd1y wouy papeojumod ‘0 ‘'220Z ‘ZLE0L60L



THE GENERALIZED TAP FREE ENERGY 59

and D¢ (g, a) are Lipschitz on [—7, n] and D¢ (g, |a| A n) is Lipschitz on [-1, 1],
uniformly over ¢ and {. Therefore,

sup
q.¢

fD;(q, la| An)du(a)—f D¢ (q, |a| An)ydp'(a)| < Cdpr (i, 1),

where dpp(u, 1) is the bounded Lipschitz metric on Mo.1. Moreover, since
®¢ (g, x) is Lipschitz in ¢ and dy-Lipschitz in { (with Lipschitz constants that de-
pend only on &), these properties are inherited by A¢(g,a), D¢(q,a) and
D¢(q, |a| A ), and, therefore, TAP" (11, ). If & — 1o theng = [ a’du(a) —
go = [ a®djwo(a), and all the properties above imply that inf; TAP” (1, {) is con-
tinuous in p. By (8.12), this proves that TAP(y) is continuous in . O

From now on we can assume that & # §;, because all the remaining claims are
trivial in this case.

PROOF OF (111). Let {, € Myj,1—4 be a sequence that weakly converges to
some (o and satisfies

it B0 = lim P (0,6,
For any § € (0, 1), write

f Dy, (0, W(a, Lp))du(a) = f Dy, (0,W(a,,))dpu(a)
[0,1) [0,]

El

+ f | Pag, (0, V@, G)dp(@)

Here, the first term converges to
] @460, ¥(a, o))du(a)
[0,5]

as a consequence of Lemma 13.1 and the fact that @, ¢ (¢, x) converges to
Dy ¢, (2, x) uniformly over all @ € [0,1],7 € [0,1 —¢g],x € R. As for the sec-
ond term, note that the inequality (8.7) implies

0 < f g, (0, (a, &a))dpt(a) < sup M(a) — 0
(5,1) S=a=<1
as § 1 1. Hence, we arrive at
lim Dy, (0, W(a, ln))dula) =f Dy, (0, W(a, o))dpu(a)
n=o2 Jlo,1) [0,1)
and

Tim Py (0, 8n) = P, (0, bo),

which shows that {o is a minimizer of infeepy, PE0,0).
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Next, we establish the uniqueness of {y. Assume that {; is another minimizer
and {; # {o. Forb € (0,1), let

Cp = (1 —=D)o + bC1, vp = (1 —b)vg, + bug,.

Since p # §;, we can use the strict convexity in (13.7) below to get

f fDa,;,,(U,vb(a))dM(aH(l—b)f D42, (0, v, (@))dji(a)
[0,1) [0.1)

+ bf D@, (0,v¢, (a))dp(a).
[0,1)
On the other hand, note that, by (8.10),

An%@&ww%WMMiﬁ)%@@%MMMM

This and the above inequality together lead to a contradiction,
(8.13) B _ —
inf  P,5(0,¢) < (1—b) e j‘iAnf PE0,0) + b e Ai/[nf P,5(0,0)

feEMp1 ¢ 0,1-q 0,1-¢

= inf P,5(0,0).
teEMo1—g N-( é‘)

Hence, the minimizer must be unique when .t # 3. O
PROOF OF (iv). Note that the minimality of {p implies

inf  P(0,0) =P 00,Lp) = inf P,0(0,
t Moo ,u,( C] ,u,( 'CO)_Q'EMu,l_q 1L ( C)

> inf P00 =P
T AER,LEMp, 14 u(4:9) a

Also note that from (8.10), for any { € Mg 14 and A € R,
PiL(0,0) < PO, 0),

which leads to

Pro(0,gy) = inf  PU(0,¢) < inf PO, 0)=PO,
w Ol =, o Ful O‘AeR,cEMm w8 =Pu

This completes our proof. O

PROOF OF (v). Let 8§; # u € Mg 1. Let {p be the minimizer from part (iii).
By part (iv), the pair (0, {p) is a minimizer of '}_?:Jf“ (A, ). Also, by the definition
of vg, in (3.31) and (3.26), we have 0, ®,, ¢ (0, v¢,(a)) = Oforalla € [0,1).

We follow a similar argument as [15, theorem 1] (see also [48, Lemma 4.14]).
Let ¢ be the smallest point in the support of {y. Assume on the contrary that ¢ > 0.

Note that from the optimality of {p in '}_?ff“ (0,-), Remark 13.7 below states that

(8.14) ﬁ E(a g, e v, @ +2(@) du(@) = .
0,1
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(8.15) ;’(c-)f[ }IE(H_,C_,CCDR=;I,(C', ve, (@) + z(c)])za’,u(a) <1,
0,1

where z(c) is a centered normal random variable with variance ’g; (¢). Define an
auxiliary function 4 : [0, ¢] — [0, ¢] by

A= f[ (3005, 15, @) + 21(0)) (e Py €05, @) + 22(0) @),
0,1

where 71(¢) and z2(¢) are jointly Gaussian random variables with mean zero and
variance E(z1(1))* = E(z2(1))*> = &(c) and Ez1(1)z2(t) = £} (). From this
construction and (8.14), evidently A(¢) = c¢. Since 3x¢'a,§(] (0, vg,(a)) = 0, we
also have that

A(0) =f[ )(Eaxd)a,cn(c, v, (@) +z(c)))2d,u(a)
0,1

_ j; (e, 0.0 @))? du(a) = 0,

where the second equality holds because {y(s) = 0 for s € [0, ¢) and
q)a.f,'n([]' x) = Eq}a,m (¢, x + z(c)).

Next, a direct differentiation using Gaussian integration by parts, the bounds in
(13.1), and the dominated convergence theorem gives

Al(t) =
:;(r) [ 1) E(axx d)a,(:[, ({‘.! nt[) (a) + Zl (t)) (axx (Da,tju [C! UL:“ [a) + Zz(f))(i!i. (a)!
0,
from which we see that
0<A'(t) <Ac)<1
for all t € [0, ¢), where the first inequality is obtained by using conditional expec-
tation and integrating the independent components of z(¢) and z(¢) first, second
inequality is by the Cauchy-Schwarz inequality, and third inequality follows by

(8.15). This contradicts that both A(0) = 0 and A(c) = ¢. Hence, the smallest
point in the support of {y must be zero and this completes our proof. O

PROOF OF (vi). We show that if P, (0, ¢1) = infy ¢ P,* (A, ) then &1 = &.
It suffices to show that

(8.16) P06 =T(w= _ inf  P(0,0).
veylger],l—q

Indeed, if this holds then, from part (i),
PO, 8) = o inf P,

0,1 ¢
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Then, by part (iii) and the assumption that ;1 # §;, we get {4 = {y. To prove
(8.16), we can argue as follows. Notice that from (13.7),

(U! é') € 17 X MO,l—q = ﬁf{,[o! C)
is a convex function. From the minimality of (0, {1) in 7_?ffl (A,0),

P1(0,¢1) < Pt (0,0), V¢ e Moji—g
and, by (8.10),

P,(0,¢1) < PL(0,81), YveV.

In other words, (ve,,{1) is a local minimum of '}‘_7;1 (0, &) in the two coordinates
v and { separately. From Lemma 13.6 below, for any { € My,1—; and v € V
satisfying v = v, on [§,1) for some § € (0,1), the directional derivative of
(v,0) — Pﬂ{o, ¢) exists along the direction from (v¢,, {1) to (v, {) and is equal to
(13.18). From this, it can be checked that

d =(1-h)vs, +bhv

—Pu V0,1 =b)ey + D)

db b=0+
d —ve d —(1—b)ve +bv

= _P,u (0,(1=b)¢1 + bT) + _P,LL (0,¢81) =0,
db b=0"+ db b=0"+

where the last inequality is a consequence of the previous two displays. With this,
for any & > 0, there exists some small » > 0 such that

—v —(1—h)vy, +hv
PUL(0,80) —be < Py V0,1 - b)gy + bO).

On the other hand, using the convexity on the right-hand side yields

—(1=h)vs, +bv
P,

(0, (1 — by + bt) < (1 —bYP,(0,81) + bPY(0,0).
Putting these two inequalities together gives ?_3:1’:1 0,81) < &+ ?_D:i (0,2), and
letting ¢ | 0, we get

(8.17) P,1(0,¢1) < PO, D).

Note that we proved this for v € V satisfying v = v¢, on [8, 1) for any § € (0,1).
In what follows, we show that this implies the same inequality for all v € V and
(e Mp,1—4.

For any § € (1/3,1), let a(§) := (36 — 1)/2. Then a(§) € (0,8). For any
v € V, since v is bounded on [0, 1], we can construct vs € V so that vy = v on
[0, (36 —1)/2] and vs = v¢, on [4, 1) as long as § is sufficiently close to 1. From

lwJad jou Ajpuis s uolingLisip pue asn-a4 '[2202/90/0€] U0 AYVHEIT NOSTIM 04L VOSIANNIN 40 ALISHIAINN A npa uwin-qi|'zdze wod-Asjimkleiqgi|auljuo//:sd1y wouy papeojumod ‘0 ‘220z ‘ZLE0L60L



THE GENERALIZED TAP FREE ENERGY 63
this, write

f[ | @0, s@)u(da) - f (0, v(@)p(da)

[0,a(8)

= f ®g,¢ (0, vs(a))u(da)
[a(8),1)

= [ 0O us@nnda) + [ 0 0,v @h(da)
[a(8),8) 5,1)

3

and use the bounds (8.6) and (8.7) to get

U D,z (0, va(ﬂ))ﬂ{da)—f g,z (0, v(a))ulda)

[0,1 [0,a(8)

< cgpu([a(8),8)) + M(5),

Here the second term vanishes as 8§ — 1. The first term can be handled as follows.
Note that p([s, 1)) is a nonincreasing function, so lims_.1- ([s, 1)) exists. This
implies that

lim p(fa(8),8) = lim p(a(),1))— lim wu([8,1)) = 0.
§—1 §—1 §—>1
Hence,

lim
§—1

f g (0, vs (@) (da) — f £ (0, v(@)p(da)|= 0
[0,1) [0.a(8))

and, starting with (8.17) for vg,
Pt (0.0) < lim Py(0,8) = P (0,0) < P (0,0),

where v’ is the restriction of v on [0, 1). This establishes (8.17) for all v € V. Now
from (i), we see that {; minimizes

inf  P,5(0,)

teMop1 ¢

and from (iii), {p = {;. This finishes the proof. O

9 Optimizing over the External Field

In this section, we will prove the upper and lower bounds of Lemmas 4.1 and 4.2
on the limiting replicated free energy on the band. We will use the representation
T(u) of (3.36), which by Theorem 3.4 (i) is equivalent to TAP(yt). The upper
bound of Lemma 4.1 will be straightforward to prove, by introducing an arbitrary
continuous external field and then applying the Guerra upper bound. The lower
bound contains the key step, where will need to use the optimal external field found
in the last section (for which the Parisi measure has zero in the support).
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9.1 Proof of Lemma 4.1
Notice that, since

nlk TAPy ,(m, €,4) is increasing in £ and § and sub-additive in n,

the upper limit in (4.1) is increasing in & and § and decreasing in n, so the infimum
over &, 8, n can be replaced by the limit £,§ | 0 and n 1 co. Also, we can always
choose ¢ = ey and § = 4y going to zero and n = ny going to infinity slowly
enough so that
9.1) inf limsup E TAPy ,(m, e,d) = limsupE TAPy ,  (m, en, N ).

8,1 N—>oo N-ooo
Using this representation and the equivalence TAP(x) = T(xt) in Theorem 3.4, to
prove the lemma we need to show that

9.2) limsup E TAPy ,  (m, en,8n) < T(w).
N—oo
First, consider the case ¢ = | x2 u(dx) > 0. Using the approximation in

Lemma 6.2 and (6.5), it is enough to prove that
LimsupEFy p, (m,en,8n) < T(w).

N—oo
For any v € C(]0,1]), let h; = v(m;) be the corresponding external field. Since
2]/ /N < |[v]loo < 00, by (3.14), deterministically,

9.3) Jim [ Fn o (.8, 68) = FN (1,68, 88)] = 0.
Using that Fﬁ_nN (m,en,6n) < Ff\’; 1(m, en), by Theorem 3.2,

limsupEFy ,, (m, ey, 8n) < limsup EFL  (m,en) < P,
N—o0 N—oc ’

Taking infimum over v € V yields the assertion.

In the case when ¢ = [ x? u(dx) = 0, we can use the approximation in (6.9)
and, in this case, Theorem 6.3 implies the claim without the need to introduce any
external field, because the Parisi formula in Theorem 6.3 equals T(gp). O

9.2 Proof of Lemma 4.2
Similarly to (9.2), to prove the lemma we need to show that
liminf E TAPy , , (m,en,dn) = T(u),
N—oo
where £, 8 g0 to zero and n goes to infinity slowly enough.

Again, first, consider the case ¢ = [ x? ju(dx) > 0. Using the approximation
in Lemma 6.2 and (6.5), it is enough to prove that

liminfE Fy , , (m,en,6n) = T(w).
N—oo

Consider the external field /: defined through

9.4) hi = vg,(m;) = ll—’(m,', Zo)
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where £ is the minimizer found in Theorem 3.4. Since v is bounded on [0,1 — 7]
and all m; € [0,1— n], by (3.14),

liminfEFp , , (m,en,0n) = 1iminflElF£‘, an (M EN,ON).

N—o0 ’ N—o0 SN

The Parisi formula in Theorem 3.2 implies that
lim EF) (m,en,8y) = inf P, 0 (1, ¢) = inf P,0(A,0),
N oo N,l(m EN,ON) W: N ( C) w: n ( C)

where the second equality holds because supp(i) < [0, 1—n] (so the functionals P
and P coincide). By our choice of {y, Theorem 3.4 (iv) implies that the right-hand

side equals ?_fo”, which equals to T(xt) by Theorem 3.4(i). Furthermore, since
zero is in the support of (o (Theorem 3.4(v)), one can argue that, for any fixed
n=>1,

9.5) Jim E Fyp(m,en,8y) = Jim EF} (m,en,8n),

which, obviously, will finish the proof. This follows from a standard approximation
argument by generic models, exactly as in [59], but, before we sketch it, let us
notice that we are in the situation when

Ucc}‘:fxz,u(dx]«(l and fx(l—x),u(dx)>0,

which implies that:

1 A, 0 — 'P:i‘:“ (A, ¢) is strictly convex (see, e.g., (13.7) below);

(2) by equations (7.71) and (7.73) in Lemma 7.11, inf}, ¢ 'P:f“ (4, ¢) is achieved

on A that is uniformly bounded, |A| < L.

For the specific model §; we are considering above, v, was chosen in an optimal
way, so that the minimizer is (0, {p). However, we will now vary the model &,
while keeping v¢,, so the two items above refer to this case. In particular, by
continuity and compactness, these items imply that the minimizer (let us denote it
by (Ag,, Cg,)) is unique and depends continuously on the model &, (see e.g. [48,
Corollary 4.2]). The arguments in [44, Section 3.7] require no modifications to
show that, for generic models on the narrow band, the distribution of the overlap
converges to some {* € My, 1—4 and the limit of the free energy, via the Aizenman-
Sims-Starr cavity computation in Section 7 above, is given by inf}; 'P:iz“ (A,£*).On
the other hand, by the Parisi formula in Theorem 3.2, this limit equals

inf Py (2, 0) = P O, 8,

By uniqueness of the minimizer, {* = (¢ . Moreover, since this is the limiting
distribution of the overlap, there can be no free energy cost of constraining the
overlaps between n replicas to some fixed value in the support of (¢, . On the other
hand, in our model above, the external field v, was chosen in such a way that
zero is in the support of the minimizer {p, so, when we approximate this model
by generic models, by continuity of ¢, in the model £, these generic models will
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have points in the support very close to zero. As a result, for our model above,
there can be no free energy cost of constraining the overlaps to be near zero and
(9.5) must hold. For more details, see e.g. [48, Lemma 4.8].

In the case when ¢ = [ x? u(dx) = 0, again, we can use the approximation in
(6.9) and Theorem 6.3. The argument here is exactly the same, except we do not
need to introduce the external field, because zero is already in the support of the
Parisi measure of the original model without external field. O

10 TAP States Are Ancestral

In this section we will prove Theorem 2.4, which will follow from the following
zero-temperature formula from [19], which is a generalization to soft spins of the
zero-temperature result Jagannath-Sen [31, theorem 1.2] for discrete spins, which
itself was derived from the positive temperature formulas with general prior spin
distributions [42, 49, 50].

Define a functional P; on R x My , by

1 q
(10.1) Py 1) = 40,0~ 5 [ & )y )i

where, for a given A, de,L (s, x) is defined as the solution of

102 g0k =~ (5 @k 1 y() (9,01

(10.2) Py =775 Oxx y+}’(-5](fx y)

on [0, ¢) x R, with the boundary condition

(10.3) @} (q,x) = Taf‘u(“ +A(a® —q) + A¢,(q,0)),
ac[—1,

where A¢, (q,a) was defined in (2.21) (recall that it is bounded and continuous on
[—1, 1]). Then [19, theorem 5] implies the following.

THEOREM 10.1. For any g € [0, 1], we have that

(10.4)
1 N
lim E max —/( Hy(m)+ Ag,( ,m-): inf Py(A, ).
N —0c0 %||m||2=¢?N( w0 ; £ (0. mi) AP)ERxMo g 7)

PROOF OF THEOREM 2.4. Using this result, (2.32), Theorem 2.2, and Gaussian
concentration, in order to prove Theorem 2.4, it is enough to prove that

. 1 ! "
w05 P03 fq SE"()2u()ds < P(L).

We will take y = . (restricted to [0, ¢]) and take A = 0. Then the function in the
boundary condition (10.3) is ax + A¢, (¢, a) and, since ®¢, (g, x) is convex, the
definition (2.21) implies by conjugation that

1x + A, () = P, (q, %).
Jax (ax +Ag,(g,0)) = @, (g, )
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Since the PDE in (10.2) with y = ¢, is the Parisi PDE for the original model, we
get that

]_ q
Pa(0,8:) = g, (0,0)— f SE”(5)La (5)ds.
0

Finally,
1! 1!
Py0.5) =5 [ sE 66 0)ds = 00,0 = 5 [ 6756 = PG,
q 0
which finishes the proof. O

11 Generalized TAP Equations

In this section, we will prove the formula for the gradient of TAP((t,) in Theo-
rem 2.5 for all m € (-1, l)N. Forg € [0,1],and K € RN, define

N 1
. . 1 1 .
(11.1) TAP(m,q,{,h) = — Z(‘i’;[q,hf) —mih;) — —f s€" ()¢ (s)ds.
N3 2 Jq
If % |m||?> = g then the definition of TAP(y) in (2.25) implies that
(11.2) TAP(m) := TAP(um) = inf TAP(m,q, ¢, h).
teMp,1, heRV

If m € (—1, 1)V, itis clear that we minimize over / in some cube [—/., L]V, where
L depends only on the largest value of |m;| (we will need this for compactness
argument below). It is a standard fact that the functional TAP(m, g, ¢, h) is strictly
convex in /1 and convex in {. The reason it is not strictly convex in ¢ is because
the functional depends only on the restriction of ¢ to [g, 1]. For this reason, let us
make a convention that, for a given g, we minimize over ¢ fixed to be {(s) = 0 for
s € [0, g). Then the minimizer of the above functional for m € (—1, 1)V is unique
and will be denoted by (;,, hr, so that, for g = % m]|?,

(11.3) TAP(m) = TAP(m, g, L, ).
If m converges to mg € (—1,1)" then, by the continuity of TAP(x) proved in
Theorem 3 .4,

lim TAP(m,q, {m, hm) = TAP(mo, qo, $mgs Bmg)-
m—>m|_,
Since pm — Umg, § = %llmII2 — qo = %Ilmoﬂz, and any subsequential limit
of {,, is equal to zero on [0, o) (by our convention above), the uniqueness of the
minimizer implies that {,, — {m, and hyy — hyy,,. With this observation, in order
to compute the gradient of TAP(m), we will need two lemmas.

LEMMA 11.1. Consider a metric space D and a function f:(—e,&) x D — R.
Suppose that there exists a function d: (—e, €) — D such that

(11.4) f(t,d(®)) = inf f(z,d),
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and suppose that d(t) is continuous at t = 0. Also, suppose that the right deriva-
tive Ei;l'f(t, d ) exists and is continuous at (0, d(0)). Then

+
(11.5) a;,—rf(r, d(t)) = 0, £(0,d(0)).

1=0
The same statement holds for left derivatives.

PrOOF. Using (11.4), fore > 0,
fle,d(@)) — f0,d(e)) _ fla,d(@))— f(0,d(0))

S (e, d(0)) — f(0,d(0))

o

and, therefore,

min 3, f(s,d(«)) <
se€[0,a]
Letting « | O finishes the proof. O

{ !d —{U,dU ' .
fla (a))w f (0)) < ma’:é]d;*f(s,d{U)).

s€[0

As we discussed above, TAP(m) is obtained by taking infimum over all { €
Mo,1 with {(s) = 0on[0,¢9) and h € R . For any such ¢ and x € R, define a
stochastic process u¢ , on [¢, 1] by

Uex(5) = 0x P (s, Xe x(5)),
where (X¢ . (s))g<s<1 is the (strong) solution of the SDE
Xt (5) = L()E"(5)Dx D (5, Xe o ())ds + E"(5)/2d W
with the initial condition X¢ . (g) = x.
LEMMA 11.2. We have that

(116) ee®s (g, x) = 1 - f Eug (1) dE(0).

,1

PROOF. Recall from [4, Lemma 2] that there are two useful identities associated
with the process X , namely, forany g <s <5’ <1,

11.7) Eug  (s) — Eug  (s) = f £ (r)E (dxx g (r, Xg,x(r)))? dr,

and
a)cx{;pg (st X{,x{s'!)) — Oxx D (s, X{,x{s))

(11.8) = _l Eg‘”(r]é'(r')(axx‘:bg[r, Xz;,x(r)))zdf‘

Sf
+ f E"() 205z Dt (1, Xp.x (r))d W,
Ry
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Using these and the Fubini theorem,

Eaqu)f;(ls Xé;,x(l)) - axx(pé,‘ (g, x)

1
(by (11.8)) = —E f £ (ML (r) (9rx @t (1, Xex (1)) dr
q

1
=-E fq E"(r)(0xx Pe (r, Xc,x{r)))z( fq

1
= _E ") (0xx Pe (1, Xe o (r)) dr di(l
f[q,l]f; E1(r) (0xx e (1 Xpx (r))) dr d (1)

q(dz))dr

)r]

(by (11.7)) =—][ B0, Xe (1) (a0, Xe. ) 21
o

= —FE (0, P (1, Xg £ (1)) +f E (8P (1, Xg x (1)) dC(1).

)1

Noting that ., ®¢ (1, x) = 1 —tanh®(x) = 1 — (3, D¢ (1, x))?, we get

Edxx®¢(1, Xgx (1) = 1— E(x P (1, Xg,x (1)),

Combining these together completes our proof. O

PROOF OF THEOREM 2.5. Take mg € (—1,1)™ and consider the path m; =
mo + tv for some v € RY, which lies in (-1, I)N fort € (—e, €) for some small
& > 0, and denote ¢, = %”m;"z. Let D = My x RY and, with d = (¢, h),
let f(t,d) := TAP(m¢,q¢, ¢, h). Let d(t) := ($s, he) = ($my, him, ) be the mini-
mizers defined above, so that TAP(m;) = f(t,d(t)). Since V TAP(my) - v is the
derivative of f(r,d(t)) att = 0, we can apply the above lemma once its assump-
tions are verified. The continuity of d(¢) at 1 = 0 follows from the discussion
above. To compute Hj' TAP(my,q;, £, h), we need to compute the partial deriva-
tives of TAP(m, ¢, £, h) with respect to all 1; and ¢, which are the only parameters
that depend on ¢ for fixed (¢, h). We will take the derivatives of mi;, g; in f only at
the end, using that, for t = 0, we have (m, g, {,h) = (mo, 4o, (o, ho). First, right
and left derivatives in ¢ are equal to

N

‘ 1 ‘ 1

0y TAP(n,q, 8, h) = <= > 07 Pc(g,hi) + 548" (@)L (g £0),
i=1

where (g £ 0) are the one-sided limits of {(¢g). (Here, we consider both deriva-
tives, because ¢; = % |m¢]|*> may be increasing or decreasing with ¢.) Using the
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Parisi PDE (2.6) for the first term, we can rewrite

- 1 L&),
07 TAP(n, ¢, ¢, h) = —— le T 0ex e (g, hi)

N
1 1 .
+ 58" @8q £0) (q ~N Y (0 Pe (g, hi))z)-
i=1
The only possible discontinuity on the right hand side is in the c.d.f. {(g). How-
ever,atf = 0,
(11.9) 3x D¢ (q, hi)|,_y = 3xPg, (g0, ho,i) = mo i,

because /1¢,; is the minimizer and critical point of ®¢(qgo, 1) — mo,;h and, there-
fore,

N Z dx(pz;[)(q()’hol) - a7 Z}no; =

1—1
This means that the one-sides derivatives above are continuous at (mg, ¢o, {o, /o)
and

at
d; TAP(m,q,¢,h)|,_,
(11.10)

N
1 £"(qo) . —
Y > 5 0xx Pg, (0, W(go, mo,i, §o)),

i=1
since the minimizer hg; = @(qo, mo,i, o) was defined in (2.22). The derivative
TAP(m, q, ¢, h) in m; equals —h;, which is continuous and

1 1 —
(1L.11) dm; TAP(m,q,8,h)|,_, = —y i = = Y(go, mo,i. Go).
If we denote
g _
C(mg) := ’c'”(ﬂin)ﬁ Z; dxx Pe, (g0, Y(go, mo,i, o))
1=

N
1
= EH(QD)N Z dxx P, (g0, h0.1)
i=1

and use that d%c}‘ |t=0 = 2my - v, combining the above we have that

VTAP(mg) - v
d N oa
= -4 - 9 TAP(m, g, G|+ D —-mi - Im; TAP(m, ¢, ¢, mnl,_,
i=1

1 _
= —K(‘l’(ﬂm,mn,i, o) + C(mn)??’-'o,i)I-EN ‘v
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for all v € RY . To complete the proof, it remains to verify that

1
(11.12) C(mo) = §"(q0) | Co(s)ds.
q0
For a fixed mg € (—1,1)"V with g9 = %IImOIIZ, let us find the minimizers o

and h of the strictly convex variational problem (11.2), with the above convention
that we optimize over { fixed to be {(s) = 0 for s € [0, g). Then the directional
derivative with respect to ¢ at ¢y in the direction of any other distributions must be
non-negative. If, for a given { € My 1, we consider the path {, = {o + b({ — (o)
parametrized by b € [0, 1], one can compute the directional derivative in a standard
way (see [16, theorem 2] or [48, lemma 4.11]) to get

1
;—h TAP(mo, qo, {p, ho)

b=0t
1! 1 Y |
=3 f 5”[5)(N > Bty g, () - ) (£() = Go(s))ds = 0.
q i=1 :

Now, if we vary over all possible ¢, the minimality of ¢y implies that whenever
s € [g, 1] is in the support of £y, we must have that (see, e.g., [16,33])

1 N
N Z ]Eufmhu.i [S.)Z = 9.
i=1

Plugging this into (11.6) with { = {o and initial condition X; ,(q) = x = hg;
and averaging over i,

N
1 .
— E Jxx P, (q,hg,-]=1—f ldel).
N i=1 o 0 : [q,1]

Using that

I 1
f :’a’C(E)zf (f a’w)a’é'(:’)—l—qu f dt(dw + ¢
lg,1] [q,1]1 \Jq g J[w,1]

1 1
= f (1—¢(w )Ndw +¢g = 1—] C(w)dw
q q

finishes the proof of (11.12). O

12 Classical TAP Correction
We proceed to establish Propositions 3.5 and 3.6 and Corollary 2.3.

PROOF OF PROPOSITION 3.5. Assume that (0, §q) is the minimizer to ?_fos. Let
{ € Mp,1—4 be fixed. For b € [0, 1], define

Cp = (1 —b)dp + bL.
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Then from the minimality of §;, one gets that (see Remark 13.7)

1l | |
- _] 7 () (Y (s) —$)(&(s) — o(s))ds = 0.

d =
P 0,

Next, by Fubini’s theorem, write

1—q
osl; E7(5) (1u(5) — )(E (5) — So(5))ds
1—q Ky
- [ sgunyau)—s)([ @uh)—amdrn)ds
0 0

1—q 1—q
=f f Eq (8)(yu(s) —s)ds((dr) —8o(dr))
(12.1) 0 r

1—q 1-q
= ](; ]; Sg{s)(m{s) — $)dst(dr)
1-¢
B f{] Eg(ﬁ)(]fu{s) —_ -5')d.§‘
1—q
:‘L T,.(r)¢(dr).

Since this inequality holds for all { € Mg, 1—4, it follows that ', (r) < O for all
r € [0,1—gq]. Conversely, if I',,(r) < 0forall 0 < r <1 — g, one can reverse the
argument to get that

=0

d —
—— P, 8)

for all { € My,1—4. Since '}_?:"L“S (0,-) is a strictly convex functional (using the as-
sumption ¢ # §1), this implies that §q is the unique minimizer of ?_3:”;‘5 (0,-). In
order to show that (Aﬁ“s, ﬂ“s') = (0, 8p) we split our discussion into two cases:
the support of x contains a point in (0, 1) and g is supported only on {0, 1} with
w1 ({0}) > 0. In the latter case, recall that we defined A, = 0 and {,*° to be the
(unique) minimizer of ?_3}11‘5 (0,-). Hence, (1,85, £;%%) = (0, §p). In the former case,
Remark 13.5 shows that there exists a unique minimizer (1%, £,**) of P}Rs (-, -).
Since by definition vrs satisfies @, 5,(0, vrs(a)) = 0 for all a € [0, 1), this im-
plies that 9 ;L'P:i'*s (0,80) = 0. This together with the fact that §; is the minimizer
of PU#s(0, ) implies that (A%, {;%) = (0, 8o). This establishes the equivalence
conditions in the statement of Proposition 3.5.

Finally, we compute '}_?fl'*s (0, §p) assuming that either of the conditions in the
equivalence holds. Recall the explicit expression of ®, 5, from (3.40) and the
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particular choice of vgg from (3.41). From these, it can be checked that
1 —a?
2
1—
2

D, 5,(0, vrs(@)) = £ (1 —q) —atanh™'(a) + log 2 cosh(tanh ™' (a))

2
Le(1-q) - I@).

From this,

f e s, (0, vrs(@))dia(a)
[0,1)

= lfg‘{‘;,(l —q) (1—a®)ddu(a) — I(a)du(a)
2 [

0,1) [0,1)

1
—s60-9 [1-aua- [ 1@du@

1

where we have used that /(a) is continuous at 1 and /(1) = 0. In addition, using
integration by parts

1—¢
fn £ (s)sds = £,(1—q)(1 —q) — &(1—q).
Therefore,
PR (0, 80)
_ 1 (e
= D, .5,(0, vrs(a))dp(a) — = 7 (s)sds
[031] 2 0

1 1 1
= 36 0-90-9) - [ 1@du@ - 360 -0 - + 380~

1
- - [ 1@du@ + 50 - 5@ @1 - ).

where we used £, (1 —¢) = £(1)—£(¢) —£'(q) (1 —q). This establishes the desired
formula for '}_?:"L“S (0, 80). Finally, since #_51 and (9, 8p) is the minimizer to '}Bﬂ“,
it follows from Theorem 3.4 that T(i) = T(n) = P:’fs. O

PROOF OF COROLLARY 2.3. Form € [-1,1]¥ and u € My 1, denote g,, =
|m||3/N and ¢ = [ a® du(a). Recall from [19] that if gga is the largest point in
the support of the original Parisi measure of the Parisi formula for F, then almost
surely

lim FN
N—co
12.2 H
(12.2) =lim lim sup ( nim) f Ha)dpm(a) + C[Qm)).
FJ'ON_boome[_l:l]"v:|Q111_Q’EA|£S N
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Also recall from Theorem 2.2 that

(12.3) lim Fy =lim lim sup
N—oo

gV0 N =00 el 1 1]V | gyn—geal<e

(HN(mJ T ))_

Since

(124) Tum) < P 0.80) = = [ 1@dyim(@) + Clam), ¥m € 117,

we see that
(12.5) lim lim sup (_ f Ia)dpm(a) + C(gm) _T(Mm)) = 0.
":'Ln N—o0 mE[—'l,l]"\" I m—4gEA =E

We claim that for any ey | 0,

lim sup sup sup Iy, (s) <0.
N—o00 me[—1,1]V :|gm—geal<en 0=5<1—qm

If this is not true, then there exists some § > 0 and a sequence m” with |g,,n —
geal < en such that u,, v converges to certain p weakly and

sup T, v (s) = 6.

O=s=<1—q, ~
From these, passing to the limit gives
fazd,u(a) = ¢gga and sup  I'u(s) = 6.
0<=s<1l—qga

Note that gga < 1 implies 4 # §1. From this, the above display, and Proposi-
tion 3.5, we arrive at

T < P0.80) = - [ H@du(@ + C@).

Since these two sides are uniformly continuous functions of ¢, we see that

1iminf(—ff(a)d,um(a) + C(g,n) — T(,umN)) > 0,

N—o0

which contradicts (12.5). This establish our claim.
Now from the above claim, for any 1 > 0, there exists an & > 0 such that as
long as N is large enough, if m € [—1, 1]V satisfies |¢,, — gga| < &, then

sup Iy, (s) <n.

O=s=<1-gy

From this, (12.3), and Theorem 2.2,

lim Fy =lim lim sup
N —oo nJO0N—o0 me[—1,1]V:

SUPG <5 <1—gp Liem (8)=0

(HN[m)
N

+ T[,unm)).
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Recall (12.4). Our proof will be completed if it is established that
(12.6)

lim lim sup (—ff(a]d,um (@) + C(gm) — T(,um)) =0.
ni0 N—o0 me[—1,1]1V:

SUP<s<1 gm Pum (5} =7

The argument of proving this is essentially the same as the above claim. Assume
on the contrary that there exist ny | 0,5 > 0 and m™ e [-1,11V with

sup L, n () =nw
O=s<1—-q,n~

such that p,, v weakly converges to some ( and

—fI(a),u.mN(da] + C(gmn) —T(itpn) =8, YN > 1.
From these, we see that by passing to the limit,

sup Iu(s) <0

O<=s<1—g

and
—f I(a)u(da) + C(q) — T(u) > 6.

If ;v # 81, then these contradict Proposition 3.5. If & = §;, then ¢ = 1 and in this
case, it can be clearly checked that

T =0 = [ I@du@+ €@,
which again contradict to the above inequality. Hence (12.6) must be valid. O

PROOF OF PROPOSITION 3.6. Note that &, (s) = f%5?/2 and

TW(s) = p2 fo (Vus) — $)ds.

Assume that (1,5, £,*) = (0, §y). From Proposition 3.5, it can be seen that I',, (s)
attains the global maximum at (. On the other hand, it can also be checked that
%Fu (0) = B?y,.(0) = 0 by a direct computation. From these, it follows that the
second derivative of I';, at zero is not positive. Now, following the same computa-
tion as [3, Proposition 3], this second derivative can be computed as

2

d
CT0) = ﬁz(ﬁz f Ex B g, (0, vrs (@))2 di(a) — 1) <0,

Consequently,

B [ Bes 0,0, tas(@)? du(@ < 1.
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Finally, since
xx @y 5, (0, vrs(@)) = 1 — tanh?(vgs(a) — at?(0)) = 1 —a?, Ya € [0,1),

we arrive at the Plefka condition by plugging this equation into the above inequal-
ity. O

13 Analytical Results

This section is devoted to handling some basic properties of the effective field
W(a, ) and the Parisi functional P}, (4, {).

13.1 Basic facts about @,

Recall that the PDE solutions @, ; and ®; are connected by (8.4). In or-
der to state several useful properties of ®, ; in the present paper, we first recall
some well-known properties of the PDE solution ®;. First of all, ®; satisfies
SUP¢e Ay [0k @Prlloc < oo forall k > 1,2,3. Second, ®; can be written as
a stochastic optimization problem. Third, for any r € [0, 1], ({, x) € Mg, x R
3§®¢[t,x] for k = 0,1,2,3 is Lipschitz and ({,x) € Mop,; x R = @ (¢, x) is
strictly convex. Lastly, the directional derivative of ®¢(z, x) in (£, x) exists and ad-
mits an explicit formula in terms of the optimal process appearing in the stochastic
control representation of ;. See [3,4,16,32] for these results. Due to the equation
(8.4), it can be checked immediately that the following statements are valid for any
p e Mo, withg = [a?du(a) :

(I) Regularity: We have that

sup |0xPa,e (2, X)], |0xx Pg g (7, X)),
(13.1) (a,5.2.x)€[0,1]1x My, 14 X[1—g] xR

|axx¢'a,§[£’ x)|s |aax¢'a,§[rs x]| < 00,

(ID) Stochastic optimal control: The quantity ®, (0, x) can be expressed as a
stochastic optimal control problem, which states that

q)a’(: (U',JC]
1—gq " 1—g yo1)2
132 SgP(TEf(a,x +fu &g ($)C(s)u(s)ds +f0 £7(s) a’Ws)

1 [tme 2
_Efu g ($)C(s)Eu(s) d‘)’

where the supremum is over all progressively measurable processes

u = (”(t")]OSSSI—cI
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with respect to the standard Brownian motion W = (Ws)p<s<1—¢ and with

sup  Ju(s)| < 2.
s€[0,1—¢g]

Here the optimal process is attained by u, ¢,y (s) = 0xPy ¢ (s, Xg,¢,x(5)), where
Xg,¢,x 18 the solution to the following SDE with initial condition X, ¢ . (0) = x,

an,f,‘,x[-s') = g[s)C(s]ax(Da,éj(ss Xa,C,x('f)]d'f

13.3
(133 +f§;’;(.s)1f2dws, Vo<s<1—g.

(IID) Lipschitz property: For any (m,n) € {0,1} % {0, 1,2}, (a, ¢, x) € [0,1] x
Mo, 1—q X R > dgmxn®, (1, x) is Lipschitz in the sense that

|aa’"x” q’a,{ (0,x) — dgmxn (Da“,C’(Us xf)‘
5C(|a—a’|+|x—x’|+f IC—C’IdS)
0

for some universal constant C > 0 depending only on £.

(13.4) 1—q

(IV) Convexity: For any {p, {1 € Mo,1—¢ and xp, X1 € R, define

& = (1 —=b)%o + b1,
xp = (1 —b)xg + bxy,

(13.5)
for b € [—1,1]. For any a € [0, 1], we have that

(13.6) Doz, (0,xp) < (1 —=b)Pg,e,(0,x0) + bPg g, (0, x1).
Furthermore, whenever (o, xo) # ({1, x1) and b € (0, 1), this inequality is strict,
(13.7) @pe, (0,xp) < (1 =Db)Pg £, (0, x0) + 5Dy ¢, (0, x1).

(V) Directional derivative: Recall the convex combination in (13.5). The de-
rivative of @, .(0, -) exists and is equal to

d 1 e, ‘
(13.8) =5 Pa.ty (0, xp) = E](; 7($)(61(5) — So () Eug g, x, ()7 ds

+ (x1 — x0)dxPg ¢, (0, xp)

forany a € [0,1] and b € (0, 1), where u, ¢, , is the optimal process of (13.2)
with x = xp and { = {p. Furthermore, the right derivative of ®, ¢, (0, xp) also
exists at b = 0 and it is equal to the above formula with b = 0.
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13.2 Basic properties of ¥ (a, {)

Now we use the properties listed in the above subsection to study a number of
key features of W(a, ¢) defined in (3.26).

LEMMA 13.1. Forany q € [0, 1], W is continuous on [0, 1) x Mg 1_4.

PROOF. Letag € [0, 1), {o € Mp,1—4 be fixed. By definition of W(ao, {o), for
any € > 0,

d:= min |0,

0,x)[ > 0,
xel(&g)c

an,o
where I(¢)¢ is the complement of an open interval defined by
I(g) = (W(ao, {o) — &, W(ao, So) + €).
From the Lipschitz property (13.4) with (m,n) = (0, 1), we see that if
la—aol + fol 1206~ Lo(o)lds <
then for any x € I(¢)¢, we have
|0 Pg,¢ (0, x)|

Es

1= 8
> 14000 = (Ja—aol + [ 1660 ~20(0lds) = 5.
This implies that
§
min |[d, D, ¢(0, > —.
vty xPag 0012 5
Since 9P, ¢ (0, ¥(a, {)) = 0, it follows that W(a, ) € I(¢). Hence, W(a,{) is
continuous on [0, 1) x Mg 1. O
Recall the definition of the effective field v, = W(a, {) from (3.31).
LEMMA 13.2. Let g € [0,1]. For any { € Mo,1—g, v¢ is a well-defined strictly
increasing function with v¢ (0) = 0. In addition, for any [ € (0,1),
sup dqve(a) < oo.
(a,;}E[U,Z]XM(]’l_Q

PROOE. Let ¢ € [0, 1] be fixed. Recall from (8.4) that if { € Mg 1, and
{o € Mo,y satisfy (t) = {o(g +¢) fort € [0,1—g], then for any a € [—1, 1] and
xelR,

1
Dyt (0,x) = O (q, X —af E”(s)cjg{s)ds) —ax
q

(13.9) ;

1
+ j; £ (5)¢o(s)ds.

Since lim|y| o0 Pg, (g, x) = 00, we see that lim|y| o Py ¢ (0, x) = oo for all
a € [0,1) and { € Mg, 1—4. On the other hand, we also know that @, ;(0,-) is a
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strictly convex function, by (13.7). These imply that for any a € [0,1), @, ¢(0,-)
has only one critical point, so v; is well-defined. In particular, when a = 0,
®,,¢(0,-) is an even function so that vg(0) = 0.

Next, we show that v; is strictly increasing. First, note that 9, ®¢, (g, x) > 0
for all x € R since ®g (q,-) is strictly convex. From this and (13.9), for any
(a,,x) €[0,1] x My, 1—4 x R,

1
dax®ar (0, x) = —( f s”{s-)cn(s)ds)axx@go
0
1
(13.10) X (o, X —af s”(s)r:n{s)ds) < 0,
0

1
Oxx Pg,e (0, x) = 0xx Py, (U, X —af E”(s)tn(s)ds) > 0.
0

Consequently, a direct differentiation of dx®, ¢(0,v¢(a)) = Oina € [0,1) and
using (13.10) yield that
_ aax‘ba,; (0, x)

13.11 9v¢ (@) =
(13.11) V) = et (0 %)

> 0.

x=v¢(a)

Hence, vy is strictly increasing on [0, 1).
Finally, we prove the uniform upper bound for d,v¢(a). Fix I € (0,1). By
Lemma 13.1, vg(a) < L forall a <1 and all ¢, for some large enough L. There-
fore,
@nelo g, oo et v (@)
> inf
(a,,x)€[0,1]xMo,1-¢ x[0,L]

by (13.10), continuity (13.4) and compactness. On the other hand, from (13.1),

aqu)a,_c (0,x) > 0,

sup ‘Eiax @4, (0, x)} < 0.
(“:EJI)E[_I;I]XMU,I—Q xR

From these inequalities and (13.11), sup(, £)ef0,11x Mo dqvg(a) < oo. O

1—g

LEMMA 13.3. There exist positive constants ¢y, c| € R and ca, ¢}, > 0 such that
(13.12) c¢j + chtanh™(a) < W(a,!) < ¢y + cp tanh™ ! (a)
foralla €[0,1), g € [0,1] and { € My 1.

PROOF. Note that (¢, x) := dx P, ¢ (1, x) satisfies the equation

"t
0 f = _’qu (Oxx £+ 28(1)(0x f) (0x Payz))

with f(1 — g, x) = —a + tanh x. Using the Feyman-Kac formula,
(13.13) 0x®ge(0,x) = —a + Etanh X, ¢ (1 —¢q),
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where X, ¢ . is defined through (13.3). Note that since |u(s)| < 2 and [{] < 1, we
have that x + z— < X, ¢ (1 —¢q) < x + z4, where

1—q
==+ [ g,
0
—-q
2y =26 (1—q) +f £(5)/2d W,.
0
Using that £ (s) = &'(s + ¢) — §'(¢) and &/ (s) = £"(s + q), we get
1
=L 2E W) -F@) + f £"()2d W, £ —26%(q) + 0 (9)g,
q

4

1
z+ =2’ () —E'(q)) + f £"(5)/2d W, £ 20%(q) + 0 (q)g.
o

where 0 (¢) = (£/(1) —£(¢))/? and g ~ N(0, 1). Since 9xPq (0, ¥(a,l)) =0,
the equation (13.13) with x = W(a, {) implies that

(13.14) E tanh(¥(a,{) + z—) < a < Etanh(¥(a,{) + z4).
Note that tanh(x) is nondecreasing on R and is concave on [0, c0), so
a < Etanh(¥(a,{) + z4) < Etanh(V(a,{) + |z4]) < tanh(W(a, ) + Elz+]),

which clearly gives the desired lower bound in (13.12).
The upper bound of (13.12) requires a bit more work. From the left-hand side
of (13.14), for any M > 0,

tanh(W(a, ) — 202(0) — o (O)M)P(|g| < M) —P(|g| > M)
< Etanh(¥(a,¢) —207(0) — 0 (0)|gI(1g] < M)
+ & tanh(W(a, £) — 20%(0) — o (0)|gI(|g| > M)
= E tanh(¥(a, ¢) — 20%(0) — 0 (0)|g]) < a.

Hence,
a+P(g|>M)
P(lg| < M)

(13.15) tanh(¥(a, £) — 202(0) — 0 (0)M) <

From now on, we choose

M = max(8/v2m, /—2log(1 — a)).

First, note that from L’Hopital’s rule,

tanh~! L iy Y 2log(1—a) _

= lim

lim : T
1. /— — 1 1 a
atl \/—2log(l —a) at () /—2og(=a) at
This means that there exists a constant ¢ > 0 such that

(13.16) ctanh™Y(a) > /—2log(1 —a), Va € [0,1).
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Second, this choice of M also implies that
2 o M2 }(2 - 1 —d ,
M2 -4
where the first inequality is the usual tail bound for the Gaussian random variable.
From this,

P(lg| > M) =

a+P(g|l>M) _ 1+ 3a
P(lgl=M) — 3+a

so that from (13.15) and (13.16),
a+P(gl>M)

<1

W(a,?) Etanh_l( )+202(0)+G(U)M

P(lgl = M)
(13.17) < tanh™! (H—3“) +262(0) + o (0)M
3+a
—1f1+3a 2 tanh—1 8
< tanh (3+a ) + 20 (0)+U(0)(ctanh (a) + \/E)

To finish our proof, it remains to control the first term. Note that for any 0 < x <
y <1,

dw

y
tanh~!(y) — tanh~1(x) =f !

x 1—w?
¥y 1 1—v
5[ dw = —log Y
x 1l—w 1—x

In particular, if we take x = aand y = (1 +3a)/(3+a),then) <x <y <1
and

3 . —y
tanh_l(1 + a) —tanh_l(a] < —log 1y
3+a 1

2 <log?2
. = 08~
This and (13.17) together complete our proof. O

13.3 Convexity and directional derivative of ‘f’; (A,€)

Finally, we establish two key properties of the functional (v, A,¢) — P}, (4, ¢).
Let 4 € My, be fixed and let ¢ = [a?u(da). For any {o,l1 € Mo,1—g,
vo,v1 € V,and Ag, A1 € R, denote, for b € [0, 1],

tp = (1—h)lo +bly, vp=(1—bvg+bvy, Ap=(1—b)io+hAy.
First, we show that (v, A,) — ?_311 (4, ) is convex.
LEMMA 13.4. We have that
PU (Ap, 0p) < (1= BYP (Ao, Lo) + BPY (A1, L1).
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Moreover, if b € (0, 1), this inequality is strict if either £y # {1 or Loa + vo(a) #
Ara + vi(a) onsupp(p) N (0, 1).

PROOF. This follows immediately from (13.6) and (13.7). O

Remark 13.5. From this lemma and the Lipschitz property (13.4), if the support
of . contains a point in (0, 1) then, for any fixed v € V, the functional (1,¢) —
?_3:’; (A, ) is a strictly convex and continuous on R x My, 1—,. This guarantees the

existence of the unique minimizer (1}, {}}) in '}_?11 = inf; r)eRx Mo 1 ?_DEL(R, {).

Next, we show that the directional derivative of (v,{) — '}‘_7;1 (0, ¢) exists and
write down an explicit expression under a certain assumption. Recall the optimal
process u, ¢ . from (13.3).

LEMMA 13.6. Let {y,{1 € Myp,1—q and vg, vy € V. Assume that vo = vy on
[6,1) for some § € (0, 1). Then we have that

d

db?_’:’f’(o, £p)

bh=0+

1 [
asiy = [ é;’(s)(m.s)—cu[s))(f Eua,zo,w)(s)zu(da)—s)a's
0 [0,1)

+ f[n l)(ul(a] —v9(a))dxPg ¢, (0, vo(a))p(da).

PROOE. Recall from (13.8) that, for any @ € [0,1) and b € [0, 1),

1—q

d 1 ” .
5 Patn00p@) = 5 [ E6E0) = G005 Eta 0,00 )7 d

+ (Ul(a) - Uo(ﬂ'))ax ®g.6, (0, vp(a)),

where u, ¢, v, (a) 1S the process in (13.2) with x = vj(a) and { = {;,. Furthermore,
the right derivative of @, ¢, (0, vy(a)) also exists at b = 0 and is equal to the right
hand side of the above equation with » = 0. From the assumption vg = vy on
[5, 1), we have that from (13.1) and (13.12),
sup |(v1(a) — vo(@))dxPaz, (0, vp(a))| < oo
a€[0,1),he[0,1]

From this uniform upper bound and the bounded convergence theorem, it follows
that

d —
_PUD (0‘

-1 QH,C;, (0! Up (a)) - QH,C() (01 UO(“))
= lim 28
blO [0,1) b

1—q
5| e @ - s =

(da)
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1 1—q _ | |
= 5 £0 l} (/{; ;”(S)(é'l ("] - CU[-Q))]EMG,;U’UU(G}(S)2 dS),u(da]

+ ﬁo 1)(1;'1 [ﬂ) - UO(G))axCDa,g[)(U, L’D(a))ﬂ[da)

1 [l
5 | st~ tasnas

2
Finally, combining the first and third equations together by using Fubini’s theorem,
the above uniform upper bound, and (13.12) completes our proof. O

Remark 13.7. Suppose that (g is a minimizer of the variational formula

: HYco
inf  P,"(0,-).
feMo,1 ¢ w0)
In a standard manner as [16, Proposition 1], [33, Proposition 1.1], or [48, Lemma
4.13], by using Fubini’s theorem and the above uniform upper bounds of 9, ®,, ¢
and 9y P, ¢ in (13.1), the directional derivative (13.6) and the minimality of {p
together yield that we must have

f[o 1) E(0x Pz, (5, Xa,é'o,vru(a)(s)))z#(da) =g,

e 2
g(") 0.1) lEt(dxx ®a,§(] (s, Xa,fo,vi—n(a)(s))) pu(da) =1,
for any s in the support of {.
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