A Study of Failure Recovery and Logging of
High-Performance Parallel File Systems

RUNZHOU HAN, OM RAMESHWAR GATLA, and MAI ZHENG, Towa State University
JINRUI CAO, State University of New York at Plattsburgh

DI ZHANG and DONG DALI, North Carolina University at Charlotte

YONG CHEN, Texas Tech University

JONATHAN COOK, New Mexico State University

Large-scale parallel file systems (PFSs) play an essential role in high-performance computing (HPC). However,
despite their importance, their reliability is much less studied or understood compared with that of local
storage systems or cloud storage systems. Recent failure incidents at real HPC centers have exposed the
latent defects in PFS clusters as well as the urgent need for a systematic analysis.

To address the challenge, we perform a study of the failure recovery and logging mechanisms of PFSs in
this article. First, to trigger the failure recovery and logging operations of the target PFS, we introduce a black-
box fault injection tool called PFAuLT, which is transparent to PFSs and easy to deploy in practice. PFAuLT
emulates the failure state of individual storage nodes in the PFS based on a set of pre-defined fault models
and enables examining the PFS behavior under fault systematically.

Next, we apply PFAULT to study two widely used PFSs: Lustre and BeeGFS. Our analysis reveals the unique
failure recovery and logging patterns of the target PFSs and identifies multiple cases where the PFSs are
imperfect in terms of failure handling. For example, Lustre includes a recovery component called LESCK to
detect and fix PFS-level inconsistencies, but we find that LFSCK itself may hang or trigger kernel panics when
scanning a corrupted Lustre. Even after the recovery attempt of LESCK, the subsequent workloads applied to
Lustre may still behave abnormally (e.g., hang or report I/O errors). Similar issues have also been observed in
BeeGFS and its recovery component BeeGFS-FSCK. We analyze the root causes of the abnormal symptoms
observed in depth, which has led to a new patch set to be merged into the coming Lustre release. In addition,
we characterize the extensive logs generated in the experiments in detail and identify the unique patterns
and limitations of PFSs in terms of failure logging. We hope this study and the resulting tool and dataset
can facilitate follow-up research in the communities and help improve PFSs for reliable high-performance
computing.

CCS Concepts: « Computer systems organization — Reliability; Secondary storage organization;

This work was supported in part by NSF under grants CCF-1717630/1853714, CCF-1910747, and CNS-1943204. Any opin-
ions, findings, and conclusions expressed in this material are those of the authors and do not necessarily reflect the views
of the sponsor.

Authors’ addresses: R. Han, O. R. Gatla, and M. Zheng, Iowa State University, 613 Morrill Rd, Ames, Iowa, 50011; emails:
{hanrz, ogatla, mai}@iastate.edu; J. Cao, State University of New York at Plattsburgh, 101 Broad St, Plattsburgh, New York,
12901; email: will_cao@nmsu.edu; D. Zhang and D. Dai, North Carolina University at Charlotte, 9201 University City Blvd,
Charlotte, North Carolina, 28223; emails: {dzhang16, dong.dai}@uncc.edu; Y. Chen, Texas Tech University, 2500 Broadway,
Lubbock, Texas, 79409; email: yong.chen@ttu.edu; J. Cook, New Mexico State University, 1780 E University Ave, Las Cruces,
New Mexico, 88003; email: jcook@cs.nmsu.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2022 Association for Computing Machinery.

1553-3077/2022/04-ART14 $15.00

https://doi.org/10.1145/3483447

ACM Transactions on Storage, Vol. 18, No. 2, Article 14. Publication date: April 2022.

https://orcid.org/0000-0002-0741-3436
https://orcid.org/0000-0003-4078-8149
mailto:permissions@acm.org
https://doi.org/10.1145/3483447

14:2 R. Han et al.

Additional Key Words and Phrases: Parallel file systems, file system checkers, reliability, failure handling,
logging, high performance computing, storage systems

ACM Reference format:

Runzhou Han, Om Rameshwar Gatla, Mai Zheng, Jinrui Cao, Di Zhang, Dong Dai, Yong Chen, and Jonathan
Cook. 2022. A Study of Failure Recovery and Logging of High-Performance Parallel File Systems. ACM Trans.
Storage 18, 2, Article 14 (April 2022), 44 pages.

https://doi.org/10.1145/3483447

1 INTRODUCTION

Large-scale parallel file systems (PFSs) play an essential role today. A variety of PFSs (e.g.,
Lustre [1], BeeGFS [2], OrangeFS [3]) have been deployed in high-performance computing
(HPC) centers around the world to empower large-scale I/O intensive computations. Therefore,
the reliability of PFSs is critically important.

However, despite the prime importance, the reliability of PFSs is much less studied or under-
stood compared with that of other storage systems. For example, researchers [4-12] have studied
and uncovered reliability issues in different layers of local storage systems (e.g., RAID [5], local
file systems [6, 7]) as well as in many distributed cloud systems (e.g., HDFS [13], Cassandra [14],
ZooKeeper [15]). However, to the best of our knowledge, there is little equivalent study on PFSs.
This raises the concern for PFSs tha are built atop of local storage systems and are responsible for
managing large datasets at a scale comparable to cloud systems.

In fact, in a recent failure incident at an HPC center in Texas [16], multiple storage clusters
managed by the Lustre parallel file system [1] suffered severe data loss after power outages [17].
Although many files have been recovered after months of manual efforts, there are still critical
data lost permanently, and the potential damage to the scientific discovery is unmeasurable. Sim-
ilar events have been reported at other HPC centers [18-20]. Such failure incidents suggest the
potential defects in the failure handling of production PFSs as well as the urgent need for a sys-
tematic study.

Motivated by the real problem, we perform a study of the failure handling mechanisms of PFSs
in this article. We focus on two perspectives: (1) the recovery of PFSs, which is important for
ensuring data integrity in PFSs under failure events, and (2) the logging of PFSs, which is important
for diagnosing the root causes of PFS anomalies after recovery (e.g., I/O errors or data loss).

The first challenge is how to trigger the failure recovery and logging operations of PFSs in
a systematic way. While many methods and tools have been proposed for studying distributed
cloud systems [8-12, 21-23], we find that none of them is directly applicable to PFSs, largely due
to the unique architecture and complexity of PFSs. Major PFSs are designed to be POSIX compliant
to support abundant HPC workloads and middleware (e.g., MPI-IO [24]) transparently with high
performance. To this end, they typically include operating system (OS) kernel modules and hook
with the virtual file system (VFES) layer of the OS. For example, Lustre [1] requires installing
customized Linux kernel modules on all storage nodes to function properly, and the local file
system Ext4 must be patched for Lustre’s 1diskf's backend [25]. Such close interleaving and strong
dependency on the OS kernel make existing methodologies designed for user-level distributed
systems (e.g., HDFS) difficult to use for studying PFSs in practice. For instance, CORDS [21] injects
faults to cloud systems via a customized FUSE file system, which is incompatible to major PFSs.

Also, different from many cloud systems [14, 26, 27], PFSs do not maintain redundant copies of
data at the PFS level, nor do they use well-understood, consensus-based protocols [23] for recovery.
As a result, existing methodologies that rely on the specifications of well-known fault-tolerance

ACM Transactions on Storage, Vol. 18, No. 2, Article 14. Publication date: April 2022.

https://doi.org/10.1145/3483447

A Study of Failure Recovery and Logging of High-Performance Parallel File Systems 14:3

protocols (e.g., the gossip protocol [14]) are not applicable to PFSs. See Sections 2, 6, and 7 for
further discussion.

To address the challenge, we introduce a fault injection tool called PFauLT, which follows a
black-box principle [28] to achieve high usability for studying PFSs in practice. PFAULT is based on
two key observations: (1) External failure events may vary, but only the on-drive persistent states
may affect the PFS recovery after rebooting; therefore, we may boil down the generation of various
external failure events to the emulation of the device state on each storage node. (2) Despite the
complexity of PFSs, we can always separate the whole system into a global layer across multiple
nodes and a local system layer on each individual node; moreover, the target PFS (including its
kernel components) can be transparently decoupled from the underlying hardware through remote
storage protocols (e.g., iSCSI [29], NVMe/Fabric [30]), which have been used in large-scale storage
clusters for easy management of storage devices. In other words, by emulating the failure states of
individual storage nodes via remote storage protocols, we can minimize the intrusion or porting
effort for studying PFSs.

Based on the idea above, we build a prototype of PFAULT based on iSCSI, which covers three
representative fault models (i.e., whole device failure, global inconsistency, and network partitioning,
as will be introduced in Section 3.2.2) to support studying the failure recovery and logging of PFSs
systematically. Moreover, to address the potential concern of adding iSCSI to the PFS software
stack, we develop a non-iSCSI version of PFAULT, which can be used to verify the potential impact
of iSCSI on the behavior of the target PFS under study.

Next, we apply PFAULT to study two major production PFSs: Lustre [1] and BeeGFS [2]. We
apply the three fault models to different types and subsets of nodes in the PFS cluster to create
diverse failure scenarios and then examine the corresponding recovery and logging operations
of the target PFS meticulously. Our study reveals multiple cases where the PFSs are imperfect.
For example, Lustre includes a recovery component called LFSCK [31] to detect and fix PFS-level
inconsistencies, but we find that LFSCK itself may hang or trigger kernel panics when scanning
a post-fault Lustre. Moreover, after running LFSCK, the subsequent workloads applied to Lustre
may still behave abnormally (e.g., hang or report I/O errors). Similarly, the recovery component of
BeeGFS (i.e., BeeGFS-FSCK) may also fail abruptly when trying to recover the post-fault BeeGFS.

In terms of logging, we find that both Lustre and BeeGFS may generate extensive logs during
failure handling. However, different from modern cloud systems, which often use common libraries
(e.g., Log4] [32]) to generate well-formatted logs, the logging methods and patterns of PFSs are
diverse and irregular. For example, Lustre may report seven types of standard Linux error messages
(e.g., EIO, EBUSY, EROEFS) across different types of storage nodes in the cluster, while BeeGFS may
only log two types of standard messages on limited nodes under the same faults. On the other
hand, BeeGFS may generate more customized error messages, some of which are equivalent to the
standard Linux errors. By characterizing the PFS logs in detail based on the log sources, content,
fault types, and locations, we identify multiple cases where the log messages are inaccurate or
misleading, which suggests new opportunities for log enhancement and log-based analysis.

More importantly, based on the substantial PES logs, PFS source code, and feedback from PFS
developers, we are able to identify the root causes of a subset of the abnormal symptoms observed
in the experiments (e.g., I/O error, reboot). The in-depth root cause analysis has clarified the re-
source leak problem observed in our preliminary experiments [33] and has led to a new patch set
to be merged into the mainline Lustre release [34].

To the best of our knowledge, this work is the first comprehensive study on the failure recovery
and logging mechanisms of production PFSs widely used in HPC centers. By developing a practical
tool and applying it to systematically analyze multiple versions of representative PFSs in depth,
we identify the common limitations as well as the opportunities for further improvements. We

ACM Transactions on Storage, Vol. 18, No. 2, Article 14. Publication date: April 2022.

14:4 R. Han et al.

hope that this study, including the open-source PFAULT tool and the extensive collection of PFS
failure logs,! can raise awareness of potential defects in PFSs, facilitate follow-up research in the
communities, and help improve Lustre, BeeGFS, and HPC storage systems in general for reliable
high-performance computing.

The rest of the article is organized as follows. In Section 2, we discuss the background and moti-
vation. In Section 3, we introduce the PFAULT tool. In Section 4, we describe the study methodology
based on PFAULT. In Section 5, we present the study results of Lustre and BeeGFS. In Section 6, we
elaborate on the lessons learned and the opportunities for further improvements. Section 7 dis-
cusses related work, and Section 8 concludes the article. In addition, for interested readers, we
characterize the extensive failure logs collected in our experiments in Appendix Section A.

2 BACKGROUND AND MOTIVATION
2.1 Parallel File Systems

PFSs is a critical building block for high-performance computing. They are designed and optimized
for the HPC environment, which leads to an architecture different from other distributed storage
systems (e.g., GoogleFS [26], HDFS [13]). For example, PFSs are optimized for highly concurrent
accesses to the same file, and they heavily rely on hardware-level redundancy (e.g., RAID [35])
instead of distributed file system-level replication [26] or erasure coding [27]. We use Lustre [25]
and BeeGFS [2], two representative PFSs with different design tradeoffs, as examples to introduce
the typical architecture of PFSs in this section.

2.1.1 Lustre and LFSCK. Lustre dominates the market share of HPC centers [36], and more
than half of the top 100 supercomputers use Lustre [37]. A Lustre file system usually includes the
following components:

e Management Server (MGS) and Management Target (MGT) manage and store the con-
figuration information of Lustre. Multiple Lustre file systems in one cluster can share the
MGS and MGT.

e Metadata Server (MDS) and Metadata Target (MDT) manage and store the metadata of
Lustre. MDS provides request handling for local MDTs. There can be multiple MDSs/MDTs
since Lustre v2.4. Also, MGS/MGT can be co-located with MDS/MDT.

e Object Storage Server (OSS) and Object Storage Target (OST) manage and store the
actual user data. OSS provides the file I/O service and the network request handling for one
or more local OSTs. User data are stored as one or more objects, and each object is stored on
a separate OST.

e Clients mount Lustre to their local directory and launch applications to access the data in
Lustre; the applications are typically executed on login nodes or compute nodes, which are
separated from the storage nodes of Lustre.

Different from most cloud storage systems (e.g., HDES [13], HBase [38], Cassandra [14]), the
major functionalities of Lustre server components are closely integrated with the Linux kernel to
achieve high performance. Moreover, Lustre’s 1diskfs backend modifies Ext4 and heavily relies
on the extended attributes of Ext4 for metadata. Such close interleaving with the OS kernel makes
analyzing Lustre challenging.

Traditionally, high performance is the most desired metric of PFSs. However, as more and more
critical data are generated by HPC applications, the system scale and complexity keep increasing.

I The latest prototype of PFAULT and the experimental logs are publicly available at https:/git.ece.iastate.edu/data-storage-
lab/prototypes/pfault.

ACM Transactions on Storage, Vol. 18, No. 2, Article 14. Publication date: April 2022.

https://git.ece.iastate.edu/data-storage-lab/prototypes/pfault

A Study of Failure Recovery and Logging of High-Performance Parallel File Systems 14:5

Consequently, ensuring PFS consistency and maintaining data integrity under faults becomes
more and more important and challenging. To address the challenge, Lustre introduces a special
recovery component called LFSCK [31] for checking and repairing Lustre after faults, which has
been significantly improved since v2.6. Similar to the regular operations of Lustre, LFSCK also
involves substantial functionalities implemented at the OS kernel level.

Typically, a Lustre cluster may include one MGS node, one or two dedicated MDS node(s), and
two or more OSS nodes, as shown in the target PFS example in Figure 1(a) (Section 3.1). And LFSCK
may be invoked on demand to check and repair Lustre after faults. We follow such setting in this
study. Note that LFSCK may also be invoked automatically by Lustre under certain conditions. For
example, the oi_scrub procedure of LFSCK may be triggered to scan all objects on the device
when an error is found during object index (OI) lookup operations; also, in case there is an error
when accessing the LAST_ID file on OST, LFSCK will attempt to repair it based on the existing
objects on the OST [25]. We explicitly invoke LFSCK with a tunable delay in this study to ensure
that all the LFSCK procedures are executed.

2.1.2 BeeGFS and BeeGFS-FSCK. BeeGFS is one of the leading PFSs that continues to grow and
gain significant popularity in the HPC community [39]. Conceptually, a BeeGFS cluster is similar
to Lustre in the sense that it mainly consists of a management server (MGS), at least one metadata
server (MDS), a number of storage servers (OSS), and several client nodes. BeeGFS also includes
kernel modules to achieve high performance and POSIX compliance for clients. In addition, a
BeeGFS cluster may optionally include other utility nodes (e.g., an Admon server for monitoring
with a graphic interface). For simplicity, we use the same acronym names (i.e., MGS, MDS, OSS)
to describe equivalent storage nodes in Lustre and BeeGFS in this study.

Facing the same challenge as Lustre to guarantee PFS-level consistency and data integrity,
BeeGFS also has a recovery component called BeeGFS-FSCK. Different from Lustre’s LFSCK,
BeeGFS-FSCK collects the PFS states from available servers in parallel, stores them into a user-
level database (i.e., SQLite [40]), and issues SQL queries to check for potential errors in BeeGFS,
which is similar to the principle of SQCK [41]. Similar to invoking LFSCK, we explicitly invoke
BeeGFS-FSCK in this study to ensure that it is fully executed. For simplicity, we use FSCK to refer
to both LFSCK and BeeGFS-FSCK in the rest of the article.

2.2 Limitations of Existing Efforts

PFS Test Suites. Similar to other practical software systems, PFSs typically have built-in test suites.
For example, Lustre has a testing framework called “auster” to drive more than 2,000 active test
cases [1]. Similarly, BeeGFS includes a rich set of default tests as well as third-party tests [39].
However, most of the test suites are unit tests or micro-benchmarks for verifying the functionality
or performance of the PFS during normal execution. There are limited cases designed for exercising
error handling code paths, but they typically require modifying the PES source code (e.g., enabling
debugging macros, inserting function hooks), which is intrusive. Moreover, they aim to generate
one specific function return error to emulate a single buggy function implementation within the
source code, instead of emulating external failure events that the entire PFS cluster may have to
handle (e.g., power outages or hardware failures). Therefore, existing PFS test suites are not enough
for studying the failure recovery and logging mechanisms of PFSs.

Studies of Other Distributed Systems. Great efforts have been made to understand other dis-
tributed systems (e.g., [9, 10, 21-23, 42-48]), especially modern cloud systems (e.g., HDFS [13],
Cassandra [14], Yarn [49], ZooKeeper [15]). Different from PFSs, most of the heavily studied dis-
tributed systems [13-15, 49] are designed from scratch to handle failure events gracefully in the
cloud environment where component failures are the norm rather than exception [26]. To this end,

ACM Transactions on Storage, Vol. 18, No. 2, Article 14. Publication date: April 2022.

14:6 R. Han et al.

the cloud systems typically do not embed customized modules or patches in the OS kernel. Instead,
they consist of loosely coupled user-level modules with well-specified protocols for fault tolerance
(e.g., the leader election in ZooKeeper [15], the gossip protocol in Cassandra [14]). Such clean de-
sign features have enabled many gray-box/white-box tools [28] that leverage well-understood
internal protocols or specifications to analyze the target systems effectively [9, 10, 22, 23, 48].

Unfortunately, while existing methods are excellent for their original goals, we find that none of
them can be directly applied to PFSs in practice. We believe one important reason is that PFSs are
traditionally designed and optimized for the HPC environment, where performance is critically
important and component failures were expected to be minimal. Such fundamental assumption
has led to completely different design tradeoffs throughout the decades, which makes existing
cloud-oriented efforts sub-optimal or inapplicable for PFSs. More specifically, there are multiple
reasons as follows.

First, as mentioned in Section 1, major PFSs are typically integrated with the OS kernel to achieve
high performance and POSIX compliance. The strong interleaving and dependency on the local
storage stack cannot be handled by existing methods designed for user-level distributed systems
without substantial engineering efforts (if possible at all).

Second, PFSs tend to integrate reliability features incrementally with regular functionalities
without using well-known fault-tolerance protocols. For example, there is no pluggable erasure
coding modules (as in HDFS 3.X [50]) or explicit consensus-based protocols [23] involved at the
PFS layer. Instead, PFSs heavily rely on local storage systems (e.g., patched local file systems and
checkers [51]) to protect PFS metadata against corruption on individual nodes and leverage the
FSCK component to check and repair corruptions at the PFS level. Moreover, most of the function-
alities of FSCK may be implemented in customized kernel modules together with regular function-
alities [52]. Such a monolithic and opaque nature makes existing tools that rely on well-understood
distributed protocols or require detailed knowledge of internal specifications of the target system
difficult to use for studying PFSs in practice [9, 10, 22].

Third, many cloud systems are Java based and they leverage common libraries for logging (e.g.,
Log4] [32]). The strongly typed nature of Java and the unified logging format have enabled sophis-
ticated static analysis on the source code and/or system logs for studying cloud systems [10]. How-
ever, PFSs are typically implemented in C/C++ with substantial low-level code in the OS kernel,
which is challenging for static analysis. Moreover, as we will detail in later sections (Sections 5
and A), PFSs tend to use diverse logging methods with irregular logging formats, which makes
techniques depending on clean logs [10] largely inapplicable.

In summary, we find that existing methods are sub-optimal for studying the failure handling
of PFSs due to one or more constraints: they may (1) only handle user-level programs (e.g., Java
programs) instead of PFSs containing OS kernel modules and patches; (2) require modifications to
the local storage stack (e.g., using FUSE [53]), which are incompatible to major PFSs; (3) rely on
language-specific features/tools that are not applicable to major PFSs; (4) rely on common logging
libraries (e.g., Log4] [32]) and well-formatted log messages that are not available on major PFSs; and
(5) rely on detailed specifications of internal protocols of target systems, which are not available
for PFSs to the best of our knowledge. See Sections 6 and 7 for further discussion.

2.3 Remote Storage Protocols

Remote storage protocols (e.g., NFS [54], iSCSI [29], Fibre Channel [55], NVMe/Fabric [30]) enable
accessing remote storage devices as local devices, either at the file level or at the block level. In
particular, iSCSI [29] is an IP-based protocol allowing one machine (i.e., the iSCSI initiator) to
access the remote block storage on another machine (i.e., the iSCSI target) through the internet.
To everything above the block device driver layer (which is not patched by the PFS) on the initiator

ACM Transactions on Storage, Vol. 18, No. 2, Article 14. Publication date: April 2022.

A Study of Failure Recovery and Logging of High-Performance Parallel File Systems 14:7

Target Parallel File System (PFS) on Storage Nodes PFault PFault

(4’) Non-iSCSI
Orchestrator

(3) PFS Checker
(2) PFS Worker

Management|| Metadata |[Object Storage b +’|(3) S Cliseler I_ (4) Target PFS

Server Server Server acclacr Orchestrator on Storage
& Target & Target & Target OS/OT I () (S Wt I Nodes

(MGS/MGT) || (MDS/MDT) (0SS/0ST)
X x L3

(1) Failure State Emulator [>

——
physical]
Fault device

1= Girtuar 1 t~Jirtuar § Ginwar Virtual Device (') Non-isCsl
I_ device i 1. device | i_device 1 1 dev:ce i iSCSIr Manager Models Failure State Emulator
(a) iSCSI-based PFault (b) Non-iSCSI PFault

Fig. 1. Overview of PFAuLT. The shaded boxes are the major components of PFAuULT. (a) The iSCSI version
enables manipulating PFS images efficiently; (b) the non-iSCSI version enables verifying the potential impact
of iISCSI on the target PFS.

machine, iSCSI is completely transparent. In other words, file systems including PFSs can be built
on iSCSI devices without any modification. We leverage this property to make PFAULT practical
and efficient for studying real-world PFSs.

3 HOW TO TRIGGER PFS FAILURE HANDLING AND LOGGING OPERATIONS

In this section, we describe the design and implementation of the PFAuLT tool that enables us to
perform a systematic study. As mentioned in Section 1 and 2, the first challenge we encountered
when we initiated the study is that none of the existing tools, including the official PFS test suites
and the extensive research prototypes (Section 2.2), can be applied to analyze the failure behaviors
of production PFSs like Lustre without substantial modifications (if not impossible). To address the
challenge, we design and implement PFAULT with the following three key goals, which we believe
are critically important for studying the failure behaviors of PFSs in practice:

e Usability. Applying a tool to study PFSs can take a substantial amount of effort due to the
complexity of the PFS cluster; PFAULT aims to reduce the burden as much as possible. To
this end, PFAULT makes a key tradeoff to view the target PFS as a black box [28]. It does
not require any modification or instrumentation of the PFS code, nor does it require any
specification of the recovery protocols of PFS (which is often not documented well).

o Generality. By leveraging the iSCSI driver, which is transparent to most OS kernel modules,
PFAULT can be applied to study different PFSs with little porting effort, no matter how strong
the interleaving is between the distributed layer and the local kernel components of the PFS.

o Fidelity. PFAULT can emulate diverse external failure events (e.g., metadata corruptions, net-
work partitioning) with high fidelity without changing the PFS itself (i.e., non-intrusive).

3.1 Overview

Figure 1 shows the overview of PFAULT and its connection with a target PFS under study. To make
the discussion concrete, we use Lustre as an example of the target PFS, which includes three types
of storage nodes (i.e., MGS/MGT, MDS/MDT, OSS/OST) as described in Section 2.1.

There are two versions of PFAULT: an iSCSI-based version (Figure 1(a)) and a non-iSCSI version
(Figure 1(b)). The iSCSI version controls the persistent states of the PFS nodes via iSCSI and enables
studying the failure recovery and logging mechanisms of the PFS efficiently, while the non-iSCSI
version can be used to verify the potential impact of iSCSI on the target PFS.

As shown in Figure 1(a), the iSCSI-based PFauLT includes four major components. (1) The Failure
State Emulator is responsible for injecting faults to the target PFS. It mounts a set of virtual devices
to the storage nodes via iSCSI and forwards all disk I/O commands to the backing files through
the iSCSI protocol. Each backing file is one regular image file maintained on the PFAULT server

ACM Transactions on Storage, Vol. 18, No. 2, Article 14. Publication date: April 2022.

14:8 R. Han et al.

and configured as the backend device for the iSCSI target (Section 2.3), which represents the
persistent state of a corresponding virtual device. Moreover, the Failure State Emulator manipulates
the backing files and emulates the failure state of each virtual device based on the workloads
and a set of predefined fault models. (2) The PFS Worker launches workloads to exercise the PFS
and generate I/O operations. (3) The PFS Checker invokes the recovery component (i.e., FSCK) of
the PFS as well as a set of verifiable workloads to examine the recoverability of the PFS. (4) The
Orchestrator coordinates the overall workflow and collects the corresponding logs automatically.
We discuss the details of the four components in Sections 3.2, 3.3, 3.4, and 3.5, respectively.

Figure 1(b) shows the non-iSCSI version of PFauLrt, which differs from the iSCSI version in
the Failure State Emulator and the Orchestrator components. We discuss the key differences in
Section 3.6 and summarize the overall workflow in Section 3.7.

3.2 Failure State Emulator

To study the failure recovery and logging of the PFS, it is necessary to generate faults in a
systematic way. Thanks to the great efforts in understanding real-world storage system fail-
ures [4, 5, 56—-62], we can model a set of representative scenarios at different granularities rel-
atively easily. However, the real challenge is how to build a practical tool to inject the desired
faults to the PFS cluster with high usability, generality, and fidelity (i.e., the three important goals
described earlier in Section 3). While various fault injectors have been proposed in the commu-
nity [4, 10, 21, 23, 42-46], we find that they are not directly applicable to PFSs due to a number
of practical constraints (e.g., cannot handle PFS’s kernel modules, require detailed specifications,
as explained in Section 2.2). Based on our key observations on the unique architecture of PFSs,
we identify a low-level software layer (i.e., iSCSI) that enables us to implement automatic fault
injection on different PFSs with diverse granularity (e.g., file-level metadata corruptions, device-
and node-level crashes, and cluster-level network partitioning). More specifically, PFAuLT reduces
various failure events to the states of storage devices via Failure State Emulator, which mainly
includes two sub-components: Virtual Device Manager and Fault Models (Figure 1(a)) as follows:

3.2.1 Virtual Device Manager (VDM). This sub-component manages the states of iSCSI virtual
devices to enable efficient failure emulation. The persistent state of the target PFS depends on the
I/O operations issued to the devices. To capture all I/O operations in the PES, the VDM creates
and maintains a set of backing files, each of which corresponds to one storage device used in
the storage nodes. The backing files are mounted to the storage nodes as virtual devices via the
iSCSI protocol [29]. Thanks to iSCSI, the virtual devices appear to be ordinary local block devices
from the PFS perspective. In other words, PFAULT is transparent to the PFS (including its kernel
components) under study.

Al /O operations in the PFS are eventually translated into low-level disk I/O commands, which
are transferred to the VDM via iSCSL. The VDM updates the content of the backing files according
to the commands received and satisfies the I/O requests accordingly.

Note that the virtual devices can be mounted to either physical machines or virtual machines
(VMs) via iSCSL In the VM case, the entire framework and the target PFS may be hosted on one
single physical machine, which makes studying the PFS with PFAULT convenient. This design
philosophy is similar to ScaleCheck [48], which leverages VMs to enable scalability testing of
distributed systems on a single machine.

3.2.2 Fault Models. This sub-component defines the failure events to be emulated by PFAULT.
For each storage node with a virtual device, PFAULT manipulates the corresponding backing file
and the network daemon based on the pre-defined fault models. The current prototype of PFAULT
includes three representative fault models as follows:

ACM Transactions on Storage, Vol. 18, No. 2, Article 14. Publication date: April 2022.

A Study of Failure Recovery and Logging of High-Performance Parallel File Systems 14:9

(a) Whole Device Failure (a-DevFail). This is the case when a storage device becomes inacces-
sible to the PFS entirely, which can be caused by a number of reasons including RAID controller
failures, firmware bugs, and accumulation of sector errors, [4, 5, 56].

Since PFauULT is designed to decouple the PFS from the virtual devices via iSCSI, we can simply
log out the virtual devices to emulate this fault model. More specifically, PFAULT uses the logout
command in the iSCSI protocol (Section 2.3) to disconnect the backing file to the corresponding
storage node, which makes the device inaccessible to the PFS immediately. Also, different types
of devices (i.e., MGT, MDT, OST) may be disconnected individually or simultaneously to emulate
device failures at different scales. By leveraging the remote storage protocol, PFAULT can emulate
different scenarios automatically without any manual effort.

(b) Global Inconsistency (b-Inconsist). In this case, all storage devices are still accessible to the
PES; i.e., the I/O requests from the PFS can be satisfied normally. Also, the local file system backend
(e.g., Ext4-based 1diskfs for Lustre) on each storage node is consistent. However, the global state
of the PFS, which consists of all local states, is inconsistent from the PFS perspective.

Because PFSs are built on top of (patched) local file systems, PFSs typically rely on local file sys-
tems to maintain the local consistency. For example, the local file system checker (e.g., e2f'sck [63]
for 1diskfs) is required to be executed on every storage node before invoking PFS FSCK. In other
words, it is perhaps unreasonable to expect PFS FSCK to be able to recover the PFS properly when
alocal file system is broken. Therefore, in this model we intentionally enforce that every local file
system in the PFS cluster must be consistent locally. Note that this is different from existing works
that emulate abnormal local file systems (e.g., return errors on local file system operations [21, 23]).

The global inconsistency scenarios may be caused by a variety of reasons. For example, in a data-
center-wide power outage [17], the local file systems on individual storage nodes may be corrupted
to different degrees depending on the PFS I/O operations at the fault time. Similarly, besides power
outages, local file systems may also be corrupted due to file system bugs, latent sector errors, and
so forth [4, 56, 64]. The corruptions of the local file system need to be checked and repaired by
the corresponding local file system checker. However, the local checker only has the knowledge
of local metadata consistency rules (e.g., 1diskf's follows Ext4’s rules), and it can only manipulate
the local state on each node independently. While running the local checker may bring all local
file systems back to a locally consistent state, it may (unintentionally) break the global consistency
rules of the PFS due to its local repair operations (e.g., skipping incomplete journal transactions,
recycling a corrupted local inode, moving a local file to the “lost+found” directory). As a result,
the global consistency across PFS nodes may be compromised.

To emulate the fault model effectively and efficiently, PFAULT uses two complementary ap-
proaches as follows:

(1) PFauLT invokes the debugging tool of the local file system (e.g., debugf's [65] for Ext4) to ma-
nipulate the local states on selected nodes. The debugging tool allows “trashing” specific metadata
structures of the local file system for regression testing. We make use of such feature to randomly
corrupt a given percentage of total on-disk files” inode fields. After introducing local corruptions,
we invoke the checking and repairing utility of the local file system (e.g., e2f'sck [51]) to repair
local inconsistencies and thus bring the local file system back to a (locally) healthy state.

(2) PFauLT invokes Linux command line utilities (e.g., rm) to randomly delete a given percentage
of on-disk files entirely on selected nodes. This is to emulate the repairing effect of the local file
system where the local checker may move a corrupted local file to the “lost+found” directory,
making it “missing” from the PFS’s perspective. Since the delete operations are regular operations
supported by the local file system, the local file system remains consistent. By deleting different
local files (e.g., various object files, links) on different types of nodes (i.e., MGS, MDS, OSS), we can
easily introduce a wide range of global inconsistencies while maintaining the local consistency.

ACM Transactions on Storage, Vol. 18, No. 2, Article 14. Publication date: April 2022.

14:10 R. Han et al.

The two approaches have their tradeoffs. Since the debugging tool can expose accurate type
information of the metadata of the local file system, the first approach allows PFAULT to manipulate
the local metadata structures directly and comprehensively. However, introducing corruptions to
local metadata directly may cause severe damage beyond the repairing capability of the local file
system utility (e.g., e2fsck). Consequently, the local image may be “too broken” to be used for
further analyzing the global consistency of the PFS, and the entire analysis workflow has to be
stopped. Such interruption is one major limitation in our preliminary prototype [33] that makes
the workflow inefficient. In contrast, the second approach always maintains a usable and consistent
local file system state by focusing only on a subset of all possible scenarios, which makes studying
the global inconsistency issues of PFS efficient. We use a mix of both approaches in this work.

(c) Network Partitioning (c-Network). This is a typical failure scenario in large-scale networked
systems [66], which may be caused by dysfunctional network devices (e.g., switch [67]) or hanging
server processes among others [62]. When the failure happens, the cluster splits into more than
one “partition,” which cannot communicate with each other.

To emulate the network partitioning effect, PFAuLT disables the network card(s) used by the PFS
on selected nodes through the network daemon, which effectively isolates the selected nodes to
the rest of the system.

Summary and Expectation. The three fault models defined above represent a wide range of
real-world failure scenarios [4, 5, 56-62]. By emulating these fault models automatically, PFAuLT
enables studying the failure recovery and logging of the target PFS efficiently. Note that in all three
cases, PFAULT introduces the faults from outside of the target PFS (e.g., iSCSI driver below the target
PFS’s local modules), which ensures the non-intrusiveness to the target PFS. Also, since there are
multiple types of storage nodes (e.g., MGS, MDS, OSS) in a typical PFS, a fault may affect the PFS
in different ways depending on the types of nodes affected. Therefore, PFAuLT allows specifying
which types of nodes to apply the fault models through a configuration file. In this study, we cover
the behaviors of PFSs when faults occurred on each and every type of PFS node (Section 5).

Since PFSs are traditionally optimized for high performance, one might argue that it is perhaps
acceptable if the target PFS cannot function normally after experiencing these faults. However, we
expect the checking and repairing component of the target PFS (e.g., LFSCK [31] for Lustre and
BeeGFS-FSCK [2] for BeeGFS) to be able to detect the potential corruptions in PFS and respond
properly (e.g., do not hang or crash during checking). Also, we expect the corresponding failure
logging component to be able to generate meaningful messages. We believe understanding the
effectiveness of such failure handling mechanisms is a fundamental step toward addressing the
catastrophes that occur at HPC centers in practice [17].

3.3 PFS Worker

Compared with a fresh file system, an aged file system is more representative of real-world file
system usage [68, 69]. Also, an aged file system is more likely to encounter recovery issues under
fault due to the more complicated internal state. Therefore, the PFS Worker invokes data-intensive
workloads (e.g., unmodified HPC applications) to age the target PFS and generate a representative
state before injecting faults. Internally, the PFS distributes the I/O operations to storage nodes,
which are further transferred to the Virtual Device Manager as described in Section 3.2.1.

Besides unmodified data-intensive workloads, another type of useful workload is customized
applications specially designed for examining the recoverability of the PFS. For example, the work-
load may embed checksums in the data written to the PFS. The checksums can be used by the end
user to identify the potential corruptions of files stored in the PFS directly. In this way, the integrity
of the user data can be verified without relying on the report of the target PFS (which might be

ACM Transactions on Storage, Vol. 18, No. 2, Article 14. Publication date: April 2022.

A Study of Failure Recovery and Logging of High-Performance Parallel File Systems 14:11

incorrect). The current prototype of PFAULT includes examples of both types of workloads, which
will be described in detail in Section 4.3.

3.4 PFS Checker

Similar to local file systems, maintaining internal consistency and data integrity is critical for large-
scale storage systems including PFSs. Therefore, PFSs typically include an FSCK component (e.g.,
LFSCK, BeeGFS-FSCK, PVFS2-FSCK) to serve as the last line of defense to recover PFS after faults
(Section 2.1).

The PFS Checker of PFAULT invokes the default FSCK component of the target PFS to recover
the PFS after injecting faults with a tunable delay (i.e., the FSCK delay). Note that if the FSCK
component is not designed or implemented properly (which is not uncommon as will be discussed
Section 5), the FSCK itself may hang and thus disturb the automatic workflow of PFaurT. Therefore,
the PFS Checker of PFAuULT includes a tunable time threshold to kill the FSCK procedure in case
it becomes non-responsive. Moreover, to verify if the default FSCK can recover PFS properly, the
PES Checker also invokes a set of customized and verifiable checking workloads to access the
post-FSCK PES. This enables examining the PFS’s recoverability from the end user’s perspective
based on the responses of the workloads without relying on FSCK or PFS logs. Examples of such
workloads include I/O-intensive programs with known checksums for data or known return values
for I/O operations. More details will be described in Section 4.3. Note that the workloads may also
become non-responsive because the default FSCK may not be able to fully recover the target PFS.
Therefore, PFAULT also includes a time threshold to kill the non-responsive workloads.

3.5 Orchestrator

To reduce the manual effort as much as possible, the Orchestrator component controls and coordi-
nates the overall workflow of PFauLT automatically. First, the Orchestrator controls the formatting,
installation, and deployment of all PFS images via iSCSI to create a valid PFS cluster for study. Next,
it coordinates the other three components (i.e., PFS Worker, Failure State Emulator, PFS Checker)
to apply workloads, emulate failure events, and perform post-fault checks accordingly as described
in Sections 3.3, 3.2, and 3.4. In addition, it collects the extensive logs generated by the target system
during the experiment and classifies them based on both time (e.g., pre-fault, post-fault) and space
(e.g., logs from MGS, MDS, or OSS) for further investigation.

3.6 Non-iSCSI PFAuLT

By leveraging the remote storage protocol (Section 2.3), PFAULT can create a target PFS cluster and
perform fault injection testing with little manual effort. While remote storage protocols including
iSCSI are transparent to the upper-layer software by design, one might still have concern about
the potential impact of iSCSI on the failure behavior of the target PES. To address the concern, we
develop a non-iSCSI version of PFauLT for verifying the PFS behavior without iSCSI.

As shown in Figure 1(b), the target PFS is deployed on the physical devices (instead of virtual
devices) of PFS nodes in case of non-iSCSI PFaurT. The PFS Worker and PFS Checker are the same
as that of the default iSCSI-based version, while the Failure State Emulator and the Orchestrator
are adapted to avoid iSCSI.

Specifically, the emulation methods of the three fault models (Section 3.2.2) are adapted to dif-
ferent degrees. First, Network Partitioning (c-NetWork) can be emulated without any modification
because disabling network card(s) is irrelevant to iSCSIL Second, the emulation of Global Incon-
sistency (b-Inconsist) is modified to access the local file system on the physical device of a se-
lected storage node directly, instead of manipulating an iSCSI virtual image file. Third, Whole
Device Failure (a-DevFail) cannot be emulated conveniently without iSCSI (or introducing another

ACM Transactions on Storage, Vol. 18, No. 2, Article 14. Publication date: April 2022.

14:12 R. Han et al.

modification to the local software stack), so we have to leave it as a manual operation. The Orches-
trator component is split accordingly to enable inserting manual operations (e.g., unplug a hard
drive) between automatic steps (e.g., applying pre-fault and post-fault workloads on PFS). Since the
non-iSCSI PFAuLT is designed only for verification purposes, we expect the low-efficient manual
part to be acceptable.

3.7 Putting It All Together

In this subsection, we summarize PFAULT’s overall workflow including both the iSCSI-based ver-
sion and non-iSCSI-based version. Since both versions share a number of common steps, we sum-
marize them together in Algorithm 1.

First of all, there are multiple inputs needed to execute the PFauLT workflow, including the
PFauLT mode “M” (i.e., iSCSI or non-iSCSI), a set of PES cluster configurations “C” (e.g., the number
of PFS nodes, the hostname and IP address of each node), a set of PFAULT internal configurations
(e.g., fault model “F”, target node N to apply the fault, time threshold “T” for determining hang).
We omit other minor parameters (e.g., delay time for invoking FSCK) for clarity. The outputs of the
workflow include a status file (i.e., “STAT_REC”) recording the target PFS and FSCK’s behaviors as
well as a set of log files (i.e., “LOG_REC”) collected at different steps of the workflow. Note that the
entire workflow is controlled by the Orchestrator (Section 3.5), which is invisible in Algorithm 1
for simplicity.

More specifically, the workflow includes the following major steps as shown in Algorithm 1:

(1) Cluster Setup (lines 3 to 8): If PFAULT is executed in iSCSI-based mode, we first connect
each PFS node to a virtual device via iSCSI. In case of non-iSCSI mode, no special iSCSI setup is
needed because we directly use the physical devices on the nodes. Then, PFAuLT formats the PFS
devices (either iSCSI devices or physical devices) and mounts the formatted PFS based on the PFS
commands and configurations.

(2) Pre-Fault Stage (lines 9 to 11): The PFS Worker described in Section 3.3 (i.e., “PWorker”)
applies aging and verifiable workloads to wear the brand-new PFS and to enable verifying post-
FSCK PFS behavior later, respectively. Moreover, PFAULT collects all the logs after applying the
workloads, which consists of normal logs generated during the cluster setup and regular I/O oper-
ations before fault injection (i.e., “LOG_REC.1”).

(3) Fault Injection (lines 12 to 20): The Failure State Emulator described in Section 3.2 (i.e., “FSE”)
applies a specified fault model F to the specified target node(s) N. For a-DevFail, in iSCSI-based
mode (lines 13 and 14), PFAULT automatically disconnects the iSCSI device to emulate a whole
device failure; in non-iSCSI mode (lines 15 and 16), PFAULT prompts the user and waits for the user
to manually remove the physical device. In terms of the other two fault models (i.e., b-Inconsist
and c-Network from lines 17 to 20), there is no difference between iSCSI mode and non-iSCSI mode
since the iSCSI layer is transparent in the two scenarios.

(4) PFS Recovery (lines 21 to 25): The PFS Checker described in Section 3.4 (i.e., “PChecker”)
invokes the PFS’s FSCK component (after a tunable delay) to recover the PFS (line 21). If the FSCK
component hangs for more than a time threshold (“T”), it kills the process to continue the workflow
(i.e., “Kill_Upon_Hang(T)” in line 22). The behavior of FSCK is recorded in STAT_REC (line 23).
Also, the PFS logs and FSCK logs generated during the recovery are recorded in LOG_REC (lines
24 and 25).

(5) Post-FSCK Verification (lines 26 to 30): Besides running FSCK, PFS Checker executes addi-
tional post-FSCK workloads to further verify the PFS status after recovery (Section 3.4). Similar
to the previous steps, hanging workloads will be killed after a time threshold. The behavior of
the post-FSCK workloads is recorded in STAT REC (line 28), which enables further verifying the

ACM Transactions on Storage, Vol. 18, No. 2, Article 14. Publication date: April 2022.

A Study of Failure Recovery and Logging of High-Performance Parallel File Systems 14:13

ALGORITHM 1: PFaurt Workflow

1 Input: PFault modes M, which includes iSCSI mode and non-iSCSI mode; PFS cluster configuration C;
fault model F; target node(s) N; time threshold T
Output: STAT_REC records PFS and FSCK status and behaviors; LOG_REC records logs generated by
PFS and FSCK;
2 Workflow PFaurT(M,C, F,N,T)
3 if M is iSCSI then
/* 1iSCSI mode requires every PFS node to establish one iSCSI virtual device */

4 iSCSI_setup();
5 else
/* non-iSCSI mode uses local physical devices directly so no iSCSI setup is
needed */
6 skip;

7 Format_PFS(C);

8 Mount_PFS(C);

/* PFS Worker applies aging and verifiable workloads */
9 PWorker.aging;

10 PWorker.verifiable;

/* record logs before fault injection (phase 1) */
1 LOG_REC.phasel « PFS_Log_Dump(C);

12 if F is a-DevFail then

13 if M is iSCSI then
/* disconnect the iSCSI virtual device automatically in iSCSI mode */
14 FSE.DevFail(N);
15 else
/* in non-iSCSI mode, wait for manual removal of physical device */
16 L pause;
17 if F is b-Inconsist then
18 ‘ FSE.Inconsist(N);
19 if F is c-Network then
20 ‘ FSE.Network(N);

21 PChecker.FSCK;

22 Kill_Upon_Hang(T);

/* record FSCK status; record PFS logs and FSCK logs (phase 2) */

23 STAT_REC « PChecker.FSCK .status;

24 LOG_REC.phase2 « PFS_Log_Dump(C);

25 LOG_REC.phase2 < FSCK_Log_Dump(C);

/* apply post-FSCK workloads to further verify the PFS status; record workload
behaviors; record PFS logs (phase 3) */

26 PChecker.post FSCK .wkld;

27 Kill_Upon_Hang(T);

28 STAT_REC « PChecker.postFSCK .status;

29 LOG_REC.phase3 « PFS_Log_Dump(C);

30 return STAT_REC, LOG_REC

ACM Transactions on Storage, Vol. 18, No. 2, Article 14. Publication date: April 2022.

14:14 R. Han et al.

PFS status based on the workload responses without relying on PFS FSCK report. The PFS logs
generated during the post-FSCK workloads are also recorded for further analysis (line 29).

(6) Finally, the workflow ends by returning STAT _REC and LOG_REC for in-depth investigation.

Note that while the Orchestrator of PFAULT automates the entire workflow to a great extent,
the target PFS may behave extremely badly during the workflow (e.g., crash or reboot as will be
discussed in Section 5). In such cases, the automatic workflow may be interrupted and manual
intervention may be needed. We believe it is possible to integrate the PFAULT prototype with
additional virtual machine provisioning (with iSCSI mode) or bare-metal provisioning (with non-
iSCSI mode) techniques to reduce the manual intervention further, which we leave as future work.

4 EXPERIMENTAL METHODOLOGY

We build a prototype of PFauLT (including both iSCSI and non-iSCSI versions) and apply it to
study two representative PFSs: Lustre and BeeGFS. In this section, we introduce the experimental
platforms (Section 4.1), the target PFSs (Section 4.2), and the workloads used by PFAULT in this
study (Section 4.3). Also, we summarize the experimental efforts in Section 4.4 and the communi-
cations with developers in Section 4.5. We defer the discussion of detailed study results to the next
section (Section 5).

4.1 Experimental Platforms

As mentioned in Section 2.1, a typical production PFS cluster may include one MGS node, one
or two dedicated MDS node(s), and two or more OSS nodes. We follow such typical setup in our
experiments.

Specifically, we first create a seven-node cluster on VMs hosted on one high-end physical server
(Intel Xeon Gold 2.3GHz CPU x2, 256GB DRAM, 960GB SSD, 2TB HDD). In this seven-node main
cluster, one node is used for hosting the Failure State Emulator and Orchestrator of PFauLT, and
another node is used as a login/compute node to host PFS Worker and PFS Checker and to launch
workloads on behalf of clients. The remaining five nodes are dedicated to the target PES as storage
nodes, which includes one MGS node, one MDS node, and three OSS nodes. On each storage
node, there is one iSCSI virtual device mounted to serve as the corresponding target device (i.e.,
MGT/MDT/OST). This VM-based cluster enables us to deploy PFSs and investigate their behaviors
using iSCSI-based PFAULT conveniently.

In addition, to ensure reproducibility and to investigate the potential impact of iSCSI on the PFS
behaviors, we use another two platforms: (1) a 20-node cluster created on CloudLab [70] where
18 nodes are dedicated to the target PFS with 1 MGS, 1 MDS, and 16 OSSs—this cluster is used for
verifying that the results observed in the previous private platform are reproducible in the public
cloud environment at scale, and (2) a 4-node cluster consisting of four private physical servers
where all physical nodes are used by the target PFS with 1 MGS, 1 MDS, and 2 OSSs—the PFauLT
server is co-located with the PFS (i.e., on a PFS node that is not selected for fault injection). This
cluster is used for verifying the behaviors of PFSs without iSCSL i.e., the platform allows us to apply
the non-iSCSI PFauLT for verification conveniently given the easy access to physical devices on
different physical servers.

All results presented in Section 5 and Appendix Section A are based on experiments using the
iSCSI-based PFAuLT on the first seven-node main cluster. Moreover, a subset with unexpected
symptoms (e.g., hang, rebooting) has been reproduced and verified on CloudLab (using iSCSI-
based PFaurT) and the four-physical-server cluster (using non-iSCSI PFAuLT). The results are con-
sistent across different platforms and different PFAULT modes in our experiments. In other words,
the impact of iSCSI on the abnormal behaviors observed in our experiments is negligible, which is

ACM Transactions on Storage, Vol. 18, No. 2, Article 14. Publication date: April 2022.

A Study of Failure Recovery and Logging of High-Performance Parallel File Systems 14:15

Table 1. Workloads Used for Studying Lustre and BeeGFS

Workload ‘ Description ‘ Purpose
cpttar+rm copy, compress/decompress, and delete files age target PFS
Montage-m101 an astronomical image mosaic engine age target PFS
WikiW-init write an initial set of Wikipedia files (w/ known MD5) generate verifiable data
WikiR read the initial Wikipedia files and verify MD5 analyze post-FSCK behavior
WikiW-async | write new files asynchronously, read back and verify MD5 | analyze post-FSCK behavior
WikiW-sync | write new files synchronously, read back and verify MD5 | analyze post-FSCK behavior

expected because the iSCSI layer is transparent to the PFS kernel modules. Therefore, we do not
differentiate between iSCSI or non-iSCSI modes in the following sections.

4.2 Target PFSs

We have studied three versions of Lustre (v2.8.0, v2.10.0, and v2.10.8) and one version of BeeGFS
(v7.1.3) in this work. The latest version of Lustre when we started our study was v2.8.0, which is
the first minor version of the 2.8 series (referred to as v2.8 in the rest of the article). Lustre has
evolved to the 2.10 series in the last 2 years. To reflect the advancement, we apply the same set
of experiments on two additional versions: v2.10.0 and v2.10.8. For simplicity, we refer to them
together as v2.10.x in the rest of the article. The experimental results (Section 5) are consistent
across versions unless otherwise specified.

In terms of local OS, we use CentOS 7.2 (Linux kernel v3.10.0-327.3.1.el7 with 1diskfs patches)
for Lustre v2.8, CentOS 7.6 (kernel v3.10.0-957.1.3.el7 with 1diskfs patches) for Lustre v2.10.x,
and CentOS 7.5 (kernel v3.10.0-1062.el7.x86_64 with Ext4) for BeeGFS v7.1.3, all of which are the
default or recommended setup for the target PES.

4.3 Workloads

Table 1 summarizes the workloads included in the current PFAULT prototype for this study.
As shown in the table, cp+tar+rm is a set of common file operations (i.e., copying, compress-
ing/decompressing, and deleting files) for aging the PFS under study. Montage-m101 is a classic
HPC application for creating astronomical image mosaics [71], which is used for deriving the tar-
get PFS to a representative state. The Wikipedia workloads (i.e., WikiW-init, WikiR, WikiW-async,
WikiW-sync) use a dataset consisting of archive files of Wikipedia [72]. Each archive file has an
official MD5 checksum for self-verifying its integrity. PFAULT makes use of such property to exam-
ine the correctness of PFS states after executing PFS FSCK (e.g., LFSCK for Lustre, BeeGFS-FSCK
for BeeGFS).

4.4 Experimental Efforts

The current prototype of PFAULT is implemented as bash scripts integrating with a set of Linux
and PFS utilities (e.g., debugfs [65], LFSCK, BeeGFS-FSCK). The iSCSI-based PFAULT is built on
top of the Linux SCSI Target Framework [29] with an additional 1,168 Lines of Code (LOC) for
the Failure State Emulator, PFS Worker, PFS Checker, and Orchestrator (Section 3). The non-iSCSI
PFAULT is a variant of the iSCSI-based version, which differs in Failure State Emulator (77 LOC
difference) and Orchestrator (106 LOC difference). Note that in both versions of PFauLT, only
about 200 LOC are Lustre/BeeGFS specific (mainly for cluster setup and FSCK invocation).

In total, we have performed around 400 different fault injection experiments covering three fault
models (Section 3.2.2) on five different combinations of PFS nodes (i.e., one MGS node, one MDS
node, one OSS node, three OSS nodes, one MDS + one OSS nodes) using the seven-node main
cluster. In each experiment, we collect the logs generated by PFS and its FSCK for further analysis.

ACM Transactions on Storage, Vol. 18, No. 2, Article 14. Publication date: April 2022.

14:16 R. Han et al.

Table 2. Numbers of Log Files Studied

Type of Log Location of Log Sum
MGS | MDS | OSS#1 | OSS#2 | OSS#3 [Client
Lustre 135 135 135 135 135 135 810 Lustre + 405 LFSCK
LFSCK N/A | 135 90 90 90 N/A (1,215 in total)
BeeGFS 135 135 135 135 135 135 810 BeeGFS + 90 BeeGFS-FSCK
BeeGFS-FSCK | N/A | N/A N/A N/A N/A 90 (900 in total)

Table 3. Configurations Used in Experiments

Target Main Configurations for Experiments Additional Config. for Verification Res.
PFS Local Number of Nodes Stripe | Stripe | FSCK | PFaurt | No.of | Stripe Stripe FSCK PFAULT Rep.
FS MGS | MDS | OSS | Count Size Delay Mode 0SS Count Size Delay | Mode ?
Lustre Idiskfs 1 1 3 3 64KB 10s iSCSI 16 16 64KB 30s iSCSI Y
16 8 256KB 15s iSCSI Y
2 2 512KB 10s non-iSCSI Y
2 1 1MB 55 non-iSCSI Y
BeeGFS Ext4 1 1 3 3 64KB 10s iSCSI 16 8 64KB 30s iSCSI Y
16 8 256KB 15s iSCSI Y
2 2 512KB 10s non-iSCSI Y
2 1 1MB 55 non-iSCSI Y

Columns 2 to 9 show the main configurations for experiments; columns 10 to 14 show additional configurations for
verification; the last column shows that the results are reproducible and consistent (Y).

As mentioned in Section 3.7, the logs are collected at three different phases of each experiment
with the help of PFAULT to enable thorough analysis: (1) after aging: this phase contains logs of PFS
under normal conditions (e.g., during cluster setup and the aging workloads); (2) after FSCK: this
phase includes logs generated by PFS and FSCK after fault injection; (3) after post-FSCK workloads:
this phase contains logs triggered by the post-FSCK workloads, which enables examining the PFS
status based on the workload responses without relying on the FSCK report. All experiments are
repeated at least three times to ensure that the results are reproducible.

Table 2 summarizes the subset of log files used for in-depth manual study. In total, we have
studied 1,215 log files for Lustre/LFSCK and 900 log files for BeeGFS/BeeGFS-FSCK. Lustre keeps
a log buffer on each node of the cluster, so the numbers of log files collected on different nodes
are the same (i.e., “135” in Lustre row). LESCK has three steps on MDS and two steps on OSSs, and
each step generates its own status log, so the number of log files on MDS (“135”) is more than that
on OSS (“90”). Similar to Lustre, BeeGFS keeps a log file on each node for debugging purposes and
the log file is created as soon as a service or client is started. On the other hand, different from
LFSCK, BeeGFS-FSCK logs are centralized on two separate files on the client node, which makes
the collection relatively easy. A more detailed characterization of the logs is in Appendix Section A.

In addition, as mentioned in Section 4.1, we have further reproduced and verified a subset of
experiments with abnormal symptoms (e.g., hang, kernel panics) on a CloudLab cluster (with the
iSCSI mode of PFAULT) and a four-physical-server private cluster (with the non-iSCSI mode of
PFauLrT). We find that the abnormal symptoms are reproducible across different platforms and
different modes of PFauLT. We have also tuned another three parameters (i.e., stripe count,
stripe size, FSCK delay) to a wide range of non-default values, and we find that the results
are consistent (i.e., insensitive to the parameters tuned). We summarize all the configurations that
have been used in our experiments in Table 3. Since the results are reproducible and consistent, we
do not differentiate between different configurations in the following sections. Note that we do not
claim our configurations are exhaustive. Given the complexity of PFSs, there is almost an infinite
number of ways to configure a PFS cluster. But we believe that our platforms and configurations
are representative as they cover the default parameters of PFS clusters widely used in practice.

ACM Transactions on Storage, Vol. 18, No. 2, Article 14. Publication date: April 2022.

A Study of Failure Recovery and Logging of High-Performance Parallel File Systems 14:17

More importantly, our setups have helped identify real problems of PFSs confirmed by the PFS
developers (Section 4.5). We discuss other hardware-dependent configuration issues further in
Section 6.3.

4.5 Confirmation with Developers

For the abnormal symptoms observed in the experiments, we try our best to analyze the root
causes based on the extensive PFS logs, source code, and communications with the developers. For
example, in our preliminary experiments [33, 73] we observed a resource leak problem where a
portion of the internal namespace as well as the storage space on OSTs became unusable by Lustre
after running LFSCK. We analyzed the root cause and talked with the developers and eventually
found that the “leaked” resources may be moved to a hidden “lost+found” directory in Lustre by
LFSCK when a parameter is set. While the resources are still not usable directly, it is no longer a
leak problem. Therefore, we skip the discussion of the issue in this article. On the other hand, our
root cause analysis of a kernel panic problem has been confirmed by developers, and a new patch
set has been generated based on our study to fix the problem in the coming Lustre release [34]. We
discuss the patch set in detail in Section 5.2.2.

5 STUDY RESULTS

In this section, we present the study results on Lustre and BeeGFS. The results are centered around
FSCK (i.e., LFSCK and BeeGFS-FSCK) since FSCK is the major recovery component for handling
PES-level issues after faults.

First (Section 5.1), we analyze the target PFS including its FSCK from the end user’s perspective
(e.g., whether a program can finish normally or not). We present the behavior of the PFS under a
variety of conditions enabled by PFauLT (i.e., different fault models applied on different types of
storage nodes) and identify a set of unexpected and abnormal symptoms (e.g., hang, I/O error).

Next (Section 5.2), we study the failure logs and the root causes of abnormal symptoms. We
identify the unique logging methods and patterns of Lustre and BeeGFS. Moreover, based on the
information derived from the logs as well as the PFS source code and the feedback from the devel-
opers, we pinpoint the root causes of a subset of the abnormal behaviors observed (e.g., reboot).

Third (Section 5.3), to further understand the recovery procedures of the PFS after faults, we
characterize the FSCK-specific logs generated under the diverse conditions. By detailed character-
ization, we find that FSCK logs may be incomplete or misleading, which suggests opportunities
for further improvements (Section 6).

In addition, we characterize the extensive logs triggered by non-FSCK components of the target
PES in detail. For clarity, we summarize the additional results in Appendix (Section A).

We would like to clarify that the goal of this study is not to compare Lustre with BeeGFS or to
imply which PFS is better. We study Lustre and BeeGFS because (1) both of them are widely used
in practice and deserve our efforts, (2) neither of them is perfect in terms of failure handling as far
as we know, and (3) they represent different design tradeoffs. So we hope to identify the potential
limitations as well as the opportunities for improving both Lustre and BeeGFS. Also, we do not
claim that our results are conclusive or complete. Due to the complexity of PFSs, we believe our
results only represent a subset of all possible behaviors of Lustre and BeeGFS, and the results may
not be translated directly to interpret other PFSs. We will discuss the general lessons learned and
the opportunities for further improvements (including extending to other PFSs) in Section 6.

5.1 Behavior of PFS FSCK and Post-FSCK Workloads

In this subsection, we present the behavior of LFSCK and BeeGFS-FSCK as perceived by the end
user when recovering the PFS after faults. As mentioned in Sections 3.4 and 4.3, PFAULT applies a

ACM Transactions on Storage, Vol. 18, No. 2, Article 14. Publication date: April 2022.

14:18 R. Han et al.

Table 4. Behavior of LFSCK and Post-LFSCK Workloads

Node(s) Affected | Fault Models | LFSCK WikiR WikiW-async WikiW-sync
a-DevFail normal v v v
MGS b-Inconsist normal v v v
c-Network normal v v v
a-DevFail Invalid I/O err I/O err I/O err
a-DevFail (v2.10.x) I/Oerr I/Oerr I/0 err 1/0 err
MDS b-Inconsist normal v v v
c-Network I/O err hang hang hang
c-Network (v2.10.x) hang hang hang hang
a-DevFail hang hang hang hang
a-DevFail (v2.10.x) normal v v v
OSS#1 b-Inconsist reboot corrupt hang hang
c-Network hang hang hang hang
a-DevFail hang hang hang hang
three a-DevFalil (v2.10.x) normal v hang hang
OSSs b-Inconsist reboot corrupt hang hang
c-Network hang hang hang hang
a-DevFail Invalid hang hang hang
MDS a-DevFail (v2.10.x) I/Oerr I/Oerr I/0O err I/O err
+ b-Inconsist reboot corrupt hang hang
OSS#1 c-Network I/O err hang hang hang
c-Network (v2.10.x) hang hang hang hang

The first column shows where the faults are injected. The second column shows the fault models applied. The remaining
columns show the responses. “normal”: LFSCK appears to finish normally; “reboot”: at least one OSS node is forced to
reboot; “Invalid”: report an “Invalid Argument” error; “I/O err”: report an “Input/Output error”; “hang”: cannot finish
within 1 hour; “corrupt”: checksum mismatch; “ v"”: complete w/o error reported.

set of self-verifiable workloads after LFSCK/BeeGFS-FSCK (i.e., post-FSCK) to further examine the
effectiveness of FSCK. While we do not expect the target PFS to function normally after faults, we
expect LFSCK/BeeGFS-FSCK, which is designed to handle the post-fault PES, to be able to behave
properly (e.g., does not hang) and/or identify the underlying corruptions of the PFS correctly.

5.1.1 LFSCK. Table 4 summarizes the behavior of LFSCK and the behavior of the self-verifiable
workloads after running LFSCK. As shown in the first column, we inject faults to five different
subsets of Lustre nodes: (1) MGS only, (2) MDS only, (3) one OSS only, (4) all three OSSs, and
(5) MDS and one OSS. For each subset, we inject faults based on the three fault models (Section 3.2).
For simplicity, in case only one OSS is affected, we only show the results on OSS#1; the results on
OSS#2 and OSS#3 are similar.

We add the behavior of Lustre/LFSCK v2.10.x when it differs from that of v2.8. As mentioned in
Section 4, we studied two subversions of 2.10.x (i.e., v2.10.0 and v2.10.8). Since the two subversions
behave the same in this set of experiments, we combine the results together (i.e., the “v2.10.x” lines).

When faults happen on MGS (the “MGS” row), there is no user-perceivable impact. This is con-
sistent with Lustre’s design that MGS is not involved in the regular I/O operations after Lustre is
built [25].

When faults happen on other nodes, however, LFSCK may fail unexpectedly. For example, when
“a-DevFail” happens on MDS (the “MDS” rows), LFSCK fails with an “Invalid Argument” error (“In-
valid”) and all subsequent workloads encounter errors (“I/O err”). Arguably, the workloads’ be-
havior might be acceptable given the fault, but the LFSCK behavior is clearly sub-optimal because

ACM Transactions on Storage, Vol. 18, No. 2, Article 14. Publication date: April 2022.

A Study of Failure Recovery and Logging of High-Performance Parallel File Systems 14:19

it is designed to scan and check a corrupted Lustre gracefully. Such incompleteness is consistent
with the observations on local file system checkers [41, 74].

When “a-DevFail” happens on OSS (the “OSS#1” row), v2.8 and v2.10.x differ a lot. On v2.8,
LFSCK and all workloads hang. However, on v2.10.x, LFSCK finishes normally, and all workloads
succeed (i.e., “v”). WikiR can succeed because it reads the initial files buffered in the memory.
We verify this by unmounting and remounting the 1diskfs backend file system, which purges
the buffer cache. After remounting, running WikiR becomes “hang” (same as v2.8). This suggests
that v2.10.x has a more aggressive buffering mechanism compared with v2.8. WikiW-sync and
WikiW-aync can succeed because v2.10.x skips the missing OST and uses the remaining two OSTs
for storing striped data. We verify this by analyzing the internal data files on OSTs. Compared to
the “hang” on v2.8, this is indeed an improvement.

When “a-DevFail” happens on both MDS and OSS (the “MDS+0ST#1” row), v2.8 and v2.10.x
also behave differently. The behaviors of LFSCK and subsequent workloads in v2.8 (i.e., “Invalid”
and “hang”) change to “Input/Output error” (“I/O err”) on v2.10.x, which is an improvement since
“T/O err” is closer to the root cause (i.e., a device failure emulated by PFAuULT).

When “b-Inconsist” happens on MDS (the “MDS” row), it is surprising that LFSCK finishes nor-
mally without any warning (“normal”). In fact, LFSCK’s internal logs also appear to be normal, as
we will discuss in Section 5.3. Such behavior suggests that the set of consistency rules implemented
in LFSCK is likely incomplete, similar to the observation on local file system checkers [41, 74].

When “b-Inconsist” happens on OSS (the “OSS#1” row), running LFSCK may crash storage nodes
and trigger rebooting abruptly (“reboot” in the “LFSCK” column). We will discuss the root cause
of the abnormality in detail in Section 5.2.2. Note that WikiR reports mismatched checksums (“cor-
rupt”) in this case. This is because OSTs store the striped data and “b-Inconsist” on OSTs affects
the user data files, which leads to checksum mismatch in the workload.

5.1.2 BeeGFS-FSCK. Table 5 summarizes the behavior of BeeGFS-FSCK and the behavior of the
workloads after running BeeGFS-FSCK. In general, we find that compared with LFSCK, BeeGFS-
FSCK’s behavior is more unified; i.e., there are fewer types of unexpected symptoms.

Specifically, when faults occur on MGS (the “MGS” row), there is little user-perceivable impact.
For example, BeeGFS-FSCK finishes normally under “a-DevFail” and “b-Inconsist” fault models
and all workloads finish successfully (i.e., “v"”). This is because MGS is mostly involved when
adding/removing nodes to/from the BeeGFS cluster. However, we do observe a difference be-
tween BeeGFS-FSCK and LFSCK (Table 4): when applying “c-Network” to MGS, BeeGFS-FSCK
may “hang” (i.e., no progress within 1 hour), while LFSCK always finishes normally. On one hand,
the hang symptom suggests that BeeGFS-FSCK is more complete because it checks the network
connectivity among all nodes including MGS in the cluster. On the other hand, such behavior
implies that BeeGFS-FSCK itself cannot handle the case gracefully.

When we apply the fault models to other nodes, there are different responses. For example, when
“a-DevFail” or “b-Inconsist” happens on MDS (the “MDS” row), BeeGFS-FSCK appears to complete
normally (“normal”). However, BeeGFS-FSCK is unable to fix the inconsistency. As a result, WikiR
may fail with a “No such file or directory” error (“NoFile”) when reading files from the client,
and WikiW-async and WikiW-sync may fail with an “Input/Output error” (“I/O err”). Also, it is
interesting to see that BeeGFS-FSCK may respond to the device failure on MDS (“a-DevFail”) and
metadata inconsistency (“b-Inconsist”) in the same way (i.e., both appear to be “normal”), which
suggests that the current recovery policy is not thorough enough to identify either of the issues.

When “a-DevFail” or “c-Network” occurs on OSS (the “OSS#1” and “three OSSs” rows),
BeeGFS-FSCK often aborts (“aborted”). While aborting may be understandable because the data
on OSSs become unaccessible under either of the two fault models, the same simple and abrupt

ACM Transactions on Storage, Vol. 18, No. 2, Article 14. Publication date: April 2022.

14:20

Table 5. Behavior of BeeGFS-FSCK and Post-FSCK Workloads

R. Han et al.

Node(s) Affected | Fault Models | BeeGFS-FSCK ~ WikiR WikiW-async WikiW-sync
a-DevFail normal v v v
MGS b-Inconsist normal v v v
c-Network hang v v v
a-DevFail normal NoFile I/0 err I/O err
MDS b-Inconsist normal NoFile I/0 err I/O err
c-Network aborted comm err comm err comm err
a-DevFail aborted corrupt I/O err I/O err
OSS#1 b-Inconsist normal corrupt v v
c-Network aborted comm err comm err comm err
a-DevFail aborted corrupt I/O err I/O err
three OSSs b-Inconsist normal corrupt v v
c-Network aborted comm err comm err comm err
a-DevFail aborted NoFile I/O err I/O err
MDS+0SS#1 b-Inconsist normal NoFile I/0 err I/O err
c-Network aborted hang comm err comm err

The first column shows where the faults are injected. The second column shows the fault models applied. The remaining
columns show the responses. “normal”: BeeGFS-FSCK appears to finish normally; “aborted”: terminate with an
“Aborted” error; “NoFile”: report a “No such file or directory” error; “comm err”: report a “communication error”; “I/O
err”: report an “Input/Output error”; “hang”: cannot finish within 1 hour; “corrupt” checksum mismatch; “ v'”: complete
w/o error reported.

response is not helpful for identifying the underlying issue of the PFS cluster, let alone fixing it.
Unsurprisingly, after FSCK, WikiR may still report checksum mismatch (“corrupt”) as the check-
sum is calculated based on partial file data. WikiW-async and WikiW-sync may still encounter I/O
error (“I/O err”) as they cannot access the data on the affected OSS node(s).

5.1.3 Summary. In summary, the behaviors of Lustre and BeeGFS under the three types of faults
are diverse. The symptoms are also dependent on where the faults occur in the PFS cluster. There
are multiple cases where FSCK itself may fail unexpectedly (e.g., hang, abort) when attempting
to recover the post-fault PFS. In some cases, the FSCK may appear to complete normally with-
out reporting any issue, but the underlying PFS may still be in a corrupted state as exposed by
the abnormal response of the subsequent workloads (e.g., I/O error). Tables 4 and 5 summarize
the incompleteness of FSCK under different fault and node combinations, which may serve as a
reference for further refining FSCK capability (see Section 6).

5.2 Failure Logs and Root Causes

In this subsection, we first characterize the failure logs generated by Lustre and BeeGFS and then
analyze the root causes of a subset of the abnormal symptoms described in Section 5.1 based on
the failure logs, the PFS source code, and communications with the developers.

5.2.1 Failure Logs of PFS. We observe that both Lustre and BeeGFS may generate extensive
logs during operations. Based on our investigation, Lustre maintains an internal debug buffer and
generates logs on various events (including but not limited to failure handling) on each node of the
cluster. Similarly, BeeGFS also maintains log buffers and generates extensive logs. Such substan-
tial logging provides a valuable way to analyze the system behavior. We collect the log messages
generated by the target PFS and characterize the ones related to the handling of failure events.
In addition to the PFS logs, we find that the FSCK component itself may produce explicit status

ACM Transactions on Storage, Vol. 18, No. 2, Article 14. Publication date: April 2022.

A Study of Failure Recovery and Logging of High-Performance Parallel File Systems 14:21

Table 6. Logging Methods Observed in Lustre and BeeGFS

Sources of Log Lustre BeeGFS
Kernel Space | User Space | Kernel Space | User Space
C function printk(), seq_printf() fprintf() seq_printf() printf(), fprintf()
C++ class - - - std::cerr, Logger, LogContext
Debugging Macro | CDEBUG(), CERROR() - - LOG_DEBUG()

logs when it is invoked to recover the corrupted target PFS. For clarity, we defer the discussion of
FSCK-specific logs to the next section (Section 5.3).

Logging Methods. We first look into how the logs are generated by the target PFS. Unlike mod-
ern Java-based cloud storage systems (e.g., HDFS, Cassendra), which commonly use unified and
well-formed logging libraries (e.g., Log4] [32] or SLF4]J [75]), we find that the logging methods of
PFSs are diverse and irregular. Table 6 summarizes the major methods used for logging in Lustre
and BeeGFS. We can see that both Lustre and BeeGFS can generate logs from both kernel space
and user space. The two PFSs have a few methods in common (e.g., fprint, seq_printf), but there are
many differences. For example, Lustre uses a set of debugging macros (e.g., CDEBUG, CERROR)
for reporting errors with different levels of severity, while BeeGFS uses customized logging classes
(e.g., Logger, LogContext) in addition to debugging macro (e.g., LOG_DEBUG) for the same pur-
pose. Moreover, the content and formats of the logs are diverse and irregular. Detailed examples
can be found in Tables 11, 12, and Table 13 of Appendix Section A. Such diversity and irregularity
make analyzing PFSs’ behaviors based on log patterns (e.g., CrashTuner [10]) challenging. On the
other hand, it may also imply new opportunities for learning-based log analysis (see Section 6).

Patterns of Failure Logs. Given the diverse and irregular logs, we use a combination of three
rules to determine if a log message is related to the failure handling activities or not. First, in terms
of timing, a failure handling log message must appear after the fault injection. Second, we find
that both Lustre and BeeGFS may use standard Linux error numbers or equivalent customized
counterparts in their logging methods, so we consider logs with standard Linux error numbers
or equivalent customized errors as failure handling logs. In addition, for logs that appear after
the fault injection but do not contain explicit standard or equivalent errors, we examine failure-
related descriptions (e.g., “failed,” “commit error”; see Section A for detailed examples) and double-
check the corresponding source code to determine their relevance. For clarity, we call the log
messages that are related to the failure handling based on the three rules above error messages.
Note that the third rule above essentially describes the highly customized error messages that are
neither standard nor equivalent to standard error numbers. For clarity, we discuss those messages
in Appendix Section A and only focus on the standard messages (including the equivalent ones)
in the rest of this section.

Table 7 summarizes the major standard and equivalent error messages captured in the two PFSs
after fault injection in our experiments, which includes 11 types (i.e., “a” to “k”) in total. We can
see that Lustre mainly uses a set of seven standard Linux error numbers (e.g., “2,” “5, “11,” “16,”
“30, “107, “110”), while BeeGFS only uses two standard error numbers (i.e., “5” and “30”). On the
other hand, BeeGFS uses a few customized error messages that can be mapped to the standard
Linux error numbers directly (i.e., rows “h” to “k”). For clarity, the customized messages have been
converted to their standard counterparts in Table 7 (e.g., “CEM-2” in row “h” is equivalent to the
standard error number “2,” both of which mean “No such file or directory”). The specific examples
of customized messages can be found in Section A. The difference in the error message logging
reflects the different design choices of the two PFSs: although both Lustre and BeeGFS contain

ACM Transactions on Storage, Vol. 18, No. 2, Article 14. Publication date: April 2022.

14:22 R. Han et al.

Table 7. Standard and Equivalent Error Messages Captured in PFS Failure Logs

ID| Error # Error Name Description Logged by Lustre? | Logged by BeeGFS?
a 2 ENOENT No such file or directory Yes

b 5 EIO I/O error Yes Yes
c 11 EAGAIN Try again Yes

d 16 EBUSY Device or resource busy Yes

e 30 EROFS Read-only file system Yes Yes
f| 107 ENOTCONN | Transport endpoint is not connected Yes

g 110 ETIMEDOUT Connection timed out Yes

h | CEM-2 ENOENT No such file or directory Yes
i | CEM-30 EROFS Read-only file system Yes
j |CEM-101|ENETUNREACH Network is unreachable Yes
k |[CEM-110| ETIMEDOUT Connection timed out Yes

The customized error messages (i.e., h to k rows) are converted to the equivalent standard Linux error messages for clarity.

a-DevFail b-Inconsist c-Network
Node(s)
affected @ b ¢ d e f g h i j k a b c¢c d e f g h i j k a b c d e f g h i j k
MGS
<
& MDs
~
g osst1
2
= 30SSes
-
MDS &
oss#1
a b c¢cd e f gh i j k ab cd e f gh i j k ab cd e f g h i j k
MGS
]
S wos o) O
&
 OSS#L
=
2 308ses —
= mpse
ossH1
a b c¢cd e f gh i j k ab cd e f gh i j k ab cd e f g h i j k
MGS O @)
“«
! MDS
=
£ ossm ‘ ‘ ‘
g
S 30sses
A wvpsa
oss#1

Error appears Error appears Error appears Error appears Error appears
on MGS on MDS on OSS#1 on OSS#2 on OSS#3

Fig. 2. Distribution of PFS error messages. This figure shows the distribution of 11 types of standard error

messages (i.e., “a” to “k”) of Lustre (two major versions) and BeeGFS after applying three fault models (i.e.,
a-DevFail, b-Inconsist, c-Network). The “Node(s) Affected” column shows where the faults are injected.

Linux kernel modules, Lustre implements much more functionalities in the kernel space compared
to BeeGFS. As a result, Lustre captures more standard Linux error numbers and messages directly.

Figure 2 further shows the distribution of the error messages after injecting three types of faults
(i.e., a-DevFail, b-Inconsist, c-Network) on two major versions of Lustre and one version of BeeGFS.
The “Node(s) Affected” column shows where the faults are injected. Columns “a” to “k” represent
the 11 types of standard or equivalent error messages described in Table 7. The five different sym-
bols represent the five different PFS nodes where an error message is observed. In case an error
message is captured on multiple nodes under the same fault, we use superposition of symbols in
the corresponding cell. For example, in Lustre v2.8.0, after PFAULT injects a-DevFail on MGS, the
error message “g” is captured on MDS, OSS#1, OSS#2, and OSS#3.

ACM Transactions on Storage, Vol. 18, No. 2, Article 14. Publication date: April 2022.

A Study of Failure Recovery and Logging of High-Performance Parallel File Systems 14:23

Based on Figure 2, we can clearly see that Lustre v2.10.8 generates error messages on more nodes
with more standard Linux error numbers compared to Lustre v2.8.0. For example, after injecting a-
DevFail to MDS, Lustre v2.10.8 generates error messages with “a” “b,” “c,” and “e¢” on MDS; “f”
on MGS; and “g” on MDS and all OSS nodes. On the other hand, Lustre v2.8.0 only reports “g”
under the same fault. This implies that Lustre v2.10.8 has enhanced the failure logging significantly
compared to v2.8.0. As discussed in the previous sections (e.g., Table 4), most faults are still not
handled properly (e.g., v2.10.x may still expose I/O errors to users after FSCK), but we believe that
the enhanced logging is one step in the right direction. As will be discussed in Section 5.2.2, we
find that the enhanced logging is valuable in diagnosing the issues in PFSs.

Also, it is interesting to see that “g” is heavily logged in the two Lustre versions under all three
fault models. As mentioned in Table 7, “g” means connection timed out, which implies that one
or more PFS nodes are not reachable. This is expected because under all fault models one or more
PFS nodes may crash, hang, or reboot, as described in Table 4. On the other hand, this observation
implies that diagnosing the root causes of failures solely based on logs may be challenging because
different faults may lead to the same error messages. Therefore, we believe that more fine-grained
logging will likely be needed to address the challenge of PFS failure diagnosis.

Compared to Lustre, the distribution of BeeGFS’s standard or equivalent error messages looks
more sparse in Figure 2. For example, only “h” is captured under b-Inconsist. This confirms that
BeeGFS does not leverage standard Linux error numbers as much as Lustre does in terms of logging.
However, this does not necessarily imply that BeeGFS’s logging is less effective. In fact, we find
that BeeGFS may generate a variety of customized error messages beyond the standard set of
Linux error numbers. This reflects the trend of PFS development: similar to many user-level cloud
storage systems (e.g., HDFS), BeeGFS has implemented more functionalities in the user space with
more customized error logging compared to the classic Lustre. Please refer to Appendix Section A
for more concrete examples and more detailed characterization of all error messages (including
non-standard error messages).

5.2.2 Analysis of Error Propagation and Root Cause. The extensive logs collected in the experi-
ments provide a valuable vehicle for understanding the behavior of the target PFS. By combining
information derived from the experimental logs, the source code, and the feedback from the devel-
opers, we are able to identify the error propagation and root causes of a subset of the abnormal
behaviors observed in our experiments. In the rest of this subsection, we further discuss why the
Lustre checker LFSCK itself may exhibit abnormal behaviors during recovery using three specific
examples (i.e., examples of “I/O err,” “hang,” “reboot” on v2.10.x in Table 4). We illustrate the
three simplified cases using Figure 3.

Specifically, Figure 3 shows the critical error propagation path of Lustre and LFSCK under three
fault scenarios, i.e., “a-DevFail” on MDS (Figure 3(a)), “b-Inconsistent” on OSS#1 (Figure 3(b)), and
“c-Network” on MDS (Figure 3(c)), as defined in Sections 3.2 and 5.1. Each bold black statement
represents one internal function of Lustre, which is followed by a short description after it. The in-
ternal error codes are highlighted in red in parentheses after the corresponding functions. PFaurT
operations are represented in blue. The red dashed boxes highlight the key operations and errors
leading to the observable abnormal behaviors. We discuss the three scenarios one by one below.

(1) a-DevFail on MDS (“I/O err”): When “a-DevFail” occurs on MDS, Lustre fails to access the log
file immediately (“mgc_process_log” reports error number “-2”), though the error is invisible to the
client. LEFSCK is able to finish the preparation of its phase 1 normally (“osc_scrub_prepare”). How-
ever, the subsequent operations (e.g., “osc_ldiskfs_write_record”) from LFSCK require accessing
the MDT device, which cannot be accomplished because the MDT is unreachable. These opera-
tions generate I/O errors (e.g., “~5”) that are eventually propagated to the client by MDS. As a

ACM Transactions on Storage, Vol. 18, No. 2, Article 14. Publication date: April 2022.

14:24 R. Han et al.

MDS
Inject a-DevFail
mgc_process_log (-2): fails to access log file
Start LFSCK

osd_scrub_prepare: preparation for LFSCK phase 1
iosd_idiskfs_write_record (5): Tails fo write log Tecord |
'osd_scrub_main (-5): fails to prepare for LFSCK ! \N |/ O /
lfsck_verify_Ipf (-5): fails to scan ./lustre/lost+found 1 2,/‘ err =
10sd_Idiskfs_read (-5): fails to read from local device ! "W
Ifsck_layout_reset (-30)
Ifsck_namespace_reset (-30)
Ifsck_namespace_prep (-30)
Ifsck_post_generic (-30)

(a) a-DevFail on MDS

LFSCK fails to write checkpoint files
because 1diskfs sets the file system
read-only

MDS 0SS#1

Inject b-inconsist

osd_scrub_prepare:
preparation for LFSCK phase 1
Ifsck_async_interpret_common:
notifies OST#1 to start LFSCK
Ifsck_post_generic: Ifsck_layout_slave_in_notify:
waits for OSTs to finish LFSCK , starts LFSCK as notified by MDT

1
1
1
1
Start LFSCK 1
1
1
1
1

Ifsck_layout_scan_orphan(-2): !dt_object_put: Lustre
reports error on OST#1 \ Liu _object_put: storage
! osd ob]ect release: | stack

F b ¢ ,&&o >00_i mode 1
} ePO0T" g 8 0->00_inode->i_nlink == 0)):

/I\/\\N| unexpected object loss !

(b) b-Inconsist on OSS#1

MDS 0SSes

Inject c-Network
ptirpc_initiate_recovery: —— @+ ptlrpc_initiate_recovery:
starts connection recovery h starts connection recovery
ptirpc_connect_interpret (-110): ! ptirpc_connect_interpret(-110):
recovery fails and repeat ' recovery fails and repeats
Start LFSCK !
osd_scrub_prepare i
osd_scrub_main } local checking:
Ifsck_async_interpret... (-11): 1
fails to start LFSCK on OSTs —
Ifsck_layout_master prep
Ifsck_namespace_prep [ENYA
'Ifsck _post_generic: ang %
| waits for OSTS to finish LFSCK] I>M =~

(c) c-Network on MDS

Fig. 3. Internal operations of Lustre and LFSCK after three types of faults. Each bold black statement repre-
sents one Lustre function, which is followed by a short description. Blue lines represent PFault operations.
Red dashed boxes highlight the key operations leading to the abnormal symptoms observed by the end user.

result, the client observes “I/O err” when using LFSCK. Right after the I/O error is reported, we
observe error number “~30” (i.e., read-only file system) on MDS. This is because the previous I/O
error cannot be handled by Lustre’s 1diskfs backend. To prevent further corruption, 1diskf's sets
the file system to read-only [25]. As a result, the subsequent workloads, including LFSCK itself and
also fail on write operations. Since LFSCK is supposed to handle corrupted Lustre, we believe that

ACM Transactions on Storage, Vol. 18, No. 2, Article 14. Publication date: April 2022.

A Study of Failure Recovery and Logging of High-Performance Parallel File Systems 14:25

a more elegant design of LFSCK could be verifying the accessibility of the device before issuing
the I/O requests, which could avoid throwing out the I/O errors to the user abruptly during LFSCK.
We discuss such optimization opportunities further in Section 6.

(2) b-Inconsist on 0OSS#1 (“reboot”): When the fault occurs, OSS#1 does not have any abnor-
mal behaviors initially. When LFSCK is invoked on MDS by PFauLT, the LFSCK main thread on
MDS notifies OSS#1 to start a local thread (i.e., the arrow from “Ifsck_async_interpret_common”
on MDS to “Ifsck_layout_slave_in_notify” on OSS#1). The LFSCK thread on OSS#1 then initi-
ates a put operation (“dt_object_put”) to remove the object affected by the fault. The put re-
quest propagates through the local storage stack of Lustre and eventually reaches the “OSD” layer
(“osd_object_release”), which is the lowest layer of the Lustre abstraction built directly on top of
local file system.

The “OSD” layer (“osd_object_release”) checks an assertion (“LASSERT”) before releasing the
object, which requires that the Lustre file’s flag “0o_destoryed” and attribute “oo_inode—>i_nlink”
cannot be zero simultaneously. This is to ensure that when the Lustre object is not destroyed
(‘oo_destoryed” == 0), the corresponding local file should exist (“oo_inode—>i_nlink” != 0).

However, the two critical conditions in the assertion depend on Lustre and the local file system
operations separately. “0o_destoryed” will be set to 1 by Lustre if Lustre removes the correspond-
ing object, while “oo_inode—>i_nlink” will be set to 0 by the local file system when the file is
removed. Under the fault model, the local file system checker may remove the corrupted local file
without notifying Lustre, leading to inconsistency between the state maintained by the local file
system and the state maintained by Lustre. As a result, the assertion fails and triggers a kernel
panic, which eventually triggers the “reboot.” This subtle interaction between the local file system
checker and LFSCK suggests that a holistic co-design methodology is needed to ensure the end-
to-end correctness. Note that our analysis of the kernel panic issue has been confirmed by Lustre
developers and a new patch set has been generated to fix the problem and other related issues
based on our analysis [34]. We elaborate more on the patch set below.

Patch Description: Figure 4 shows the details of the patch set developed to fix the unexpected
crash and related issues in Lustre. At the time of this writing, this patch set has involved five files
and has been revised and tested for 17 rounds by the developers, which implies the complexity of
the code base as well as the thoroughness of the patching procedure. As shown in Figure 4(a), the
five files modified by the patch set include “lod_object.c,” “lu_object.c,” “osd_handler.c,”
“osd_object.c,” and “sanity-scrub.sh.” Based on our analysis, one key modification is located
in “osd_handler.c” As shown in Figure 4(b), in function “osd_object_release,” the patch adds
the “unlikely” macro to provide hints to the compiler to optimize the branch predication. More
importantly, it replaces the diagnostic macro “LASSERT” with the debugging macro “CERROR;”
because the first assertion always triggers kernel panic when the 1diskfs on-disk inode state is
different from its in-memory copy, which is an “overly-aggressive” bad behavior as commented by
the developers. The modifications to other files include similar refinements to the error-handling
code paths. The last file (i.e., “sanity-scrub. sh”) includes a new test case for sanity check derived
from our report.

Based on our understanding, replacing the assertion with an error message might be a tenta-
tive workaround solution to avoid the immediate crash and reboot. The new test case added to
“sanity-scrub.sh” is essentially a simplified procedure to emulate a specific scenario under the
“b-Inconsist” fault model in PFAULT (Section 3.2.2). By applying the test case in regression testing,
the developers have identified other correlated issues in the code base that might require a careful
re-design. For example, the developers observed another unexpected crash during the testing and
commented as follows: “I can’t align 0x0000000c to any of the ‘oo_inode’, i_sb’, s_id’, ‘oo_header’,

ACM Transactions on Storage, Vol. 18, No. 2, Article 14. Publication date: April 2022.

14:26 R. Han et al.

File Path Comments Size
lustre/lod/lod_object.c 14]
lustre/obdclass/lu_object.c 4 1
lustre/osd-ldiskfs/osd_handler.c comments: 1 1 1
lustre/osd-zfs/osd_object.c 10 |
lustre/tests/sanity-scrub.sh comments: 1 38 1
(a)
Before patch After patch
2 static void osd ob]ect release(const struct lu_env *env, 2207 static void osd ah]el:t release(const struct lu_env *env,
2208 » struct lu_object *1) 2zau| struct lu_object *1o)
2209 { X
D » struct osd_object *o = osd_obj(l); » struct osd_object *obj = osd_obj(lo);
/* 22 » /*
* nobody should be releasing a non-destroyed object with nlink=0 213 » * nobody should be releasing a non-destroyed object with nlink=0
* the API allows this, but ldiskfs doesn't like and then report 2214 » * the API allows this, but ldiskfs doesn't like and then report
* this inode as deleted 2 » * this inode as deleted

6->00_destroyed == 0 && 6-500_inode &8 2217)» if (unlikely(lobj->00_destroyed && obj->0o_inode &&
0->00_inode->i_nlink == 0)); L tobj->00_inode->i_nlink))
22198 » CERROR("$s: undestroyed object "DFID" (%lu) with nlink = O\n",
osd_ino2name(obj->00_inode), PFID(lu_object fid(lo)),
obj->00_inode->i_ino);

2219 })

(b)

Fig. 4. A Lustre patch set developed based on this study. (a) Five files have been modified in the patch set; the
last file (sanity-scrub.sh) includes a new test case generated based on our report. (b) The key modification
of the patch set in osd_handler.c.

or ‘i_ino’ fields in the parent structs. ... It seems that ‘oo_header’ can be NULL in various places in the
code, and the PFID() expansion to (fid)— > f_seq, (fid)— > f_oid, (fid)— > f_ver is triggering on
only ‘f_ver’and not f_seq’ (offset 0x0) or f_oid’ (offset 0x8). We should really get the FID directly from
the passed-in lu_object.” While the patch set is still under active revision and additional re-design
may be needed due to the complexity of the code base, the fact that PFAULT has helped trigger
the latent issue in production PFSs and helped generate a new patch set including a new test case
suggests the effectiveness and practical impact of this work.

(3) c-Network on MDS (“hang”): When the fault occurs, MDS can notice the network parti-
tion quickly because the remote procedure call (RPC) fails, and the RPC-related functions (e.g.,
functions with “ptlrpc” in name) may report network errors and repeatedly try to recover the con-
nection with OSS. When LFSCK starts on MDS, its main thread has no trouble in processing the
local checking steps (e.g., functions with “osd_scrub” in name return successfully). However, when
the main thread tries to notify the OSS to start the LFSCK thread on OSS, the request cannot be
delivered to OSS due to the network partition. After finishing the local checking steps on MDS,
LFSCK keeps waiting (“Ifsck_post_generic”) for the OSS’s response to proceed with global consis-
tency checking. As a result, the system appears to be hanging from the client’s perspective. We
believe it would be more elegant for LFSCK to maintain a timer instead of hanging forever. We
discuss such optimization opportunities further in Section 6.

5.3 Logs of LFSCK and BeeGFS-FSCK

In this subsection, we analyze the logs generated by LFSCK and BeeGFS-FSCK when they check
and repair the post-fault target PES to further understand the failure handling of the PFS.

5.3.1 LFSCK Logs. In addition to the failure logs of Lustre discussed in Section 5.2.1, we find
that LFSCK itself may generate extensive status information in the /proc pseudo file system on
the MDS and OSS nodes [31] as well as in the debug buffer of Lustre. For clarity, in this section we
use status log to refer to LFSCK logs maintained in the /proc pseudo file system, and debug buffer
log to refer to LFSCK-triggered events in the debug buffer of Lustre. We characterize these logs in
detail below.

ACM Transactions on Storage, Vol. 18, No. 2, Article 14. Publication date: April 2022.

A Study of Failure Recovery and Logging of High-Performance Parallel File Systems 14:27

Table 8. Characterization of LFSCK Status Logs Maintained in /proc

Node(s) Fault Logs on MDS Logs on OSS#1 | Logs on OSS#2 | Logs on OSS#3
Affected Models oi lo ns oi lo oi lo oi lo
a-DevFail comp comp comp | comp comp |comp comp |comp comp
MGS b-Inconsist comp comp comp | comp comp |comp comp |comp comp
c-Network comp comp comp | comp comp |comp comp |comp comp
a-DevFail - - - init init init init init init
a-DevFail (v2.10.8) - - - comp comp |comp comp |comp comp
MDS b-Inconsist comp repaired comp | comp comp |comp comp |comp comp
b-Inconsist (v2.10.8) | comp comp comp | comp comp |comp comp | comp comp
c-Network init init init init init init init init init
c-Network (v2.10.8) | comp scan-1 scan-1 | init init init init init init
a-DevFail scan scan-1 init - - comp scan-2 | comp scan-2
a-DevFail (v2.10.8) | comp scan-1 comp - - comp comp2 | comp comp
OSS#1 b-Inconsist comp scan-1 scan-1 | comp comp |comp scan-2 | comp scan-2
c-Network scan scan-1 init init init | comp scan-2 | comp scan-2
c-Network (v2.10.8) | comp scan-1 scan-1 | init init | comp scan-2 | comp scan-2
a-DevFail scan scan-1 init - - - - - -
three a-DevFail (v2.10.8) | scan scan-1 comp - - - - - -
OSSs b-Inconsist comp scan-1 scan-1 | comp comp |comp comp |comp comp
c-Network scan scan-1 init init init init init init init
c-Network (v2.10.8) | comp scan-1 scan-1 | comp comp |comp comp |comp comp
a-DevFail - - - - - init init init init
MDS a-DevFail (v2.10.8) - - - - - comp comp |comp comp
+ b-Inconsist comp repaired scan-1|comp comp |comp scan-2 | comp scan-2
OSS#1 | b-Inconsist (v2.10.8) | comp scan-1 scan-1 | init init | comp scan-2 | comp scan-2
c-Network init init init init init init init init init
c-Network (v2.10.8) | comp scan-1 scan-1 | init init | comp comp |comp comp

PR

The first column shows where the faults are injected. The second column shows the fault models applied. “oi,” “lo,” and
“ns” represent “oi_scrub log,” “layout log,” and “namespace log,” respectively. “comp” means the log shows LFSCK
“completed”; “init” means the log shows the “init” state (no execution of LFSCK); “repaired” means the log shows
“repaired three orphans”; “scan” means the log keeps showing “scanning” without making visible progress for an hour;

5,

“scan-1” means “scanning phase 1”; “scan-2” means “scanning phase 2”; “~” means the log is not available.

We find that there are three types of LFSCK status logs, each of which corresponds to one major
component of LFSCK: (1) oi_scrub log (oi): linearly scanning all objects on the local device and
verifying object indexes; (2) layout log (lo): checking the regular striped file layout and verifying
the consistency between MDT and OSTs; and (3) namespace log (ns): checking the local/global
namespace consistency inside/among MDT(s). On the MDS node, all types of logs are available.
On OSS nodes, the namespace log is not available as it is irrelevant to OSTs. None of the LFSCK
status logs are generated on MGS.

Table 8 summarizes the logs (i.e., “0i,” “lo,” “ns”) generated on different Lustre nodes after running
LFSCK. Similar to Table 4, we add the v2.10.8 logs when it differs from that of v2.8 (i.e., “v2.10.8”
lines). As shown in the table, when “b-Inconsist” happens on MDS, LESCK of v2.8 may report that
three orphans have been repaired (i.e., “repaired”) in the “lo” log. This is because the corruption
and repair of the local file system on MDS may lead to inconsistency between the MDS and the
three OSSs. Based on the log, LFSCK is able to identify and repair some of the orphan objects
on OSSs that do not have corresponding parents (on MDS) correctly. On the other hand, when
the same fault model is applied to Lustre v2.10.8 (“b-Inconsist (v2.10.8)”), LFSCK shows “comp” in
the “lo” log (instead of “repaired”). This is likely because the randomness in introducing global
inconsistencies in PFAULT (Section 3.2) leads to a different set of local files being affected on MDS.
As a result, we did not observe the orphan object case on v2.10.8.

ACM Transactions on Storage, Vol. 18, No. 2, Article 14. Publication date: April 2022.

14:28 R. Han et al.

Table 9. Characterization of LFSCK-triggered Logs in the Debug Buffer of Lustre v2.10.8

Node(s) | Fault Logson Logson Logson Logs on
Affected | Models MDS OSS#1 OSS#2 OSS#3
MDS a-DevFail x1,x2,x3 - - -
c-Network x2 - - -
0SS#1 | a-DevFail x2 x1,x2 - -
c-Network x2 - - -
three a-DevFail x2 x1,x2 x1,x2 x1,x2
0OSSs | c-Network x2 - - -
MDS a-DevFail x1,x2,x3 - - -
+ b-Inconsist x1,x2 - - -
OSS#1 | c-Network x2 - - -
Type Meaning Message Example
x1 oi_scrub failed ...osd_scrub_file_store() sdb: fail to store scrub file, expected =... : rc = =5

...1521:0sd_scrub_main() sdb: OI scrub fail to scrub prep: rc = =5
...fail to notify...for Ifsck_layout start: rc = —5/—11/-30
.Afsck_verify_Ipf()...scan lustre/lost+found/ for bad sub-directories: rc = —5
... Ifsck_post_generic()...waiting for assistant to do Ifsck_layout post, rc = —30

x2 Ifsck_layout failed .. Ifsck_layout_store()...fail to store Ifsck_layout: rc = —30
... Ifsck_layout_reset()...layout LFSCK reset: rc = —30
...master engine fail to verify the .lustre/lost+found/... : rc = =5
...layout LFSCK slave gets the MDT 0 status —11...
...layout LFSCK hit first non-repaired inconsistency at...
x3 Ifsck_namespace failed ...Ifsck_namespace_prep()...namespace LFSCK prep failed: rc = —30
...Ifsck_namespace_reset()...namespace LFSCK reset: rc = —30

Similar to Table 5, the “Node(s) Affected” column shows the node(s) to which the faults are injected. “~” means no error
message is reported, while “x1,” “x2,” and “x3” are failure messages corresponding to the three phases of LFSCK:
oi_scrub, Ifsck_layout, and lfsck_namespace, respectively. The meaning and example of each message type are shown
in the bottom part of the table.

When “a-DevFail” happens on MDS or OSS node(s), all LFSCK logs on the affected node(s) dis-
appear from the /proc file system, and thus are unavailable (i.e., “-”).

When LFSCK hangs (i.e., “hang” in Table 4), the logs may keep showing that it is in scanning.
We find that internally LESCK uses a two-phase scanning to check and repair inconsistencies [31],
and the “lo” and “ns” logs may further show the two scanning phases (i.e., “scan-1” and “scan-2”).
In case the scanning continues for more than 1 hour without making any visible progress, we kill
the LFSCK and show the hanging phases (i.e., “scan-1” or “scan-2”) in Table 8.

Table 9 further summarizes the debug buffer logs triggered by LFSCK. We find that there are
three subtypes of LFSCK debug buffer logs (i.e., x1, x2, x3), which corresponds to the three phases
of LFSCK (i.e., oi_scrub, Ifsck_layout, lfsck_namespace), respectively. Also, most logs are triggered
on MDS (i.e., the “MDS” column), which implies that MDS plays the most important role for LEFSCK
execution and logging; and most of the triggered error messages are related to Ifsck_layout (i.e.,
x2), which implies that checking the post-fault Lustre layout across nodes and maintaining data
consistency is challenging and complicated. Moreover, there are multiple types of Linux error
numbers (e.g., -5, —11, -30) logged, which implies that the Ifsck_layout procedure involves and
depends on a variety of internal operations on local systems. Since LFSCK is designed to check
and repair the corrupted PFS cluster, it is particularly interesting to see that LFSCK itself may fail
when the local systems are locally correct (i.e., “b-Inconsist” row).

To sum up, we find that in terms of LFSCK status logs, in most cases (other than the two “re-
paired” cases in Table 8), the logs are simply about LESCK’s execution steps (e.g., “init,” “scan-1,”
“scan,” “comp” in Table 8), which provides little information on the potential corruption of the PFS

ACM Transactions on Storage, Vol. 18, No. 2, Article 14. Publication date: April 2022.

A Study of Failure Recovery and Logging of High-Performance Parallel File Systems 14:29

Table 10. Characterization of BeeGFS-FSCK Logs

Node(s) Affected ‘ Fault Models ‘ Status Logs (*.log) ‘ Checking Logs (*.out)

a-DevFail conn normal
MGS b-Inconsist conn normal
c-Network wait N/A
a-DevFail conn orphaned chunk
MDS b-Inconsist conn orphaned chunk
c-Network failed metadata err
a-DevFail conn fetch err
OSS#1 b-Inconsist conn comp
c-Network failed metadata err
three a-DevFail conn fetch err
OSSs b-Inconsist conn wrong attributes
c-Network failed metadata err
MDS a-DevFail conn fetch err
+ b-Inconsist conn orphaned chunk
OSS#1 c-Network failed metadata err

The first column shows where the faults are injected. “conn” means the log shows FSCK is
connected to the server/servers; “wait” means the log shows FSCK is waiting for mgmtd; “failed”
means the log shows FSCK “connect failed”; “comp” means the output of FSCK is “normal”;
“N/A” means the FSCK hangs without generating any output file; “orphaned chunk” means
“Checking: Chunk without an inode pointing to it”; “wrong attributes” means “Attributes of file
inode are wrong”; “metadata err” means “Communication with metadata node failed”; “fetch
err” means “An error occurred while fetching data from servers.”

being examined by LFSCK. On the other hand, the corresponding debug buffer log of LFSCK is
relatively more informative (Table 9), as it may directly show the failed operations of LFSCK. To
guarantee that we do not miss any valuable error messages, we run LFSCK before injecting the
faults to generate a set of logs under the normal condition. Then, we compare the logs of the two
runs of LFSCK (i.e., with and without faults) and examine the difference. In most cases there are
no differences, except for minor updates such as the counts of execution and the running time of
LFSCK. Therefore, we believe the characterization of LFSCK logs is accurate.

5.3.2 BeeGFS-FSCK Logs. Unlike LFSCK, which generates logs in a distributed manner (i.e., on
all MDS and OSS nodes), we find that BeeGFS-FSCK centralizes its logs on the client node. We
characterize BeeGFS-FSCK’s logs in Table 10.

Specifically, we find that the BeeGFS-FSCK logs are grouped in two separate files on the client
node. The first file stores the status of BeeGFS-FSCK, which is relatively simple and only includes
one of three states: “conn,” “wait,” and “failed” (i.e., the “Status Logs (*.log)” column). This set of
status logs is roughly equivalent to LFSCK’s status logs.

The second file stores BeeGFS-FSCK’s checking results (the “Checking Logs (*out)” column),
which are relatively more informative. For example, when “b-Inconsist” happens on MDS (the
“MDS” and “MDS+0ST#2” rows), BeeGFS-FSCK reports a message “finding a data chunk without
an inode pointing to it” (‘orphaned chunk”), which correctly implies that BeeGFS is in an incon-
sistent state after the fault. However, based on the logs in Table 5, BeeGFS-FSCK is unable to fix
the inconsistency (i.e., WikiR fails with a “NoFile” error when reading files from the client, and
WikiW-async and WikiW-sync fail with an “I/O err” in Table 5).

Also, it is interesting to see that BeeGFS-FSCK treats the device failure on MDS (“a-DevFail”) and
metadata inconsistency (“b-Inconsist”) in the same way (i.e., both report “orphaned chunk”). This

ACM Transactions on Storage, Vol. 18, No. 2, Article 14. Publication date: April 2022.

14:30 R. Han et al.

may lead to confusion for pinpointing the root cause because the report is the same for different
faults. In other words, more fine-grained checking or logging mechanisms may be needed.

When “a-DevFail” happens on OSS (the “OSS#1” and “three OSSes” rows), BeeGFS-FSCK reports
“errors occurred while fetching data from servers” (“fetch err”). This is reasonable because the data
on OSSs become unaccessible under the fault model.

When “b-Inconsist” occurs on three OSSs, BeeGFS-FSCK may report that the attributes of file
inode are wrong (“wrong attributes”), which suggests that BeeGFS-FSCK can detect the incon-
sistency. This behavior is very accurate and useful compared with that of LFSCK under the same
scenario.

When “c-Network” happens on MDS (the “MDS” and “MDS+0SS#1” rows), BeeGFS-FSCK re-
ports an error message ‘communication with metadata node failed” (“metadata err”). This is
reasonable because MDS is not accessible under the fault model. However, when “c-Network” is
applied to OSSs (the “OSS#1” and “three OSSs” rows), BeeGFS-FSCK still reports the same message,
which may be misleading as OSS nodes are responsible for storing the user data.

In summary, we find that BeeGFS-FSCK is able to detect a number of subtle inconsisten-
cies in BeeGFS after faults (e.g., “orphaned chunk,” “wrong attributes”). Compared with LF-
SCK, BeeGFS-FSCK can report relatively more detailed information for diagnosis. However, in
some cases the error messages are still sub-optimal, which suggests opportunities for further
optimization.

6 LESSONS LEARNED AND FUTURE WORK

We have presented a comprehensive study on Lustre and BeeGFS, which has revealed their unique
failure handling and logging patterns and has led to actual enhancements of PFS. Besides the
specific contributions, this study has a number of general implications and suggests many oppor-
tunities for further improvements. We highlight a number of general lessons learned and discuss
a few promising directions in this section.

6.1 Implications on Analyzing the Failure Handling Mechanisms of PFSs

In this study, we focus on the failure handling mechanisms of PFSs, which is mainly inspired by two
sources: (1) the real-world failure incidents causing downtime and data loss at HPC centers [17-20]
and (2) the abundant research efforts exposing the failure handling issues of local and cloud stor-
age systems [4, 8—12, 21-23, 61, 76, 77]. By looking into the unique architecture of major PFSs, we
identify the gap between the requirements of testing PFSs and the state-of-the-art methods as elab-
orated in Section 2. In order to bridge the gap, we find that we have to sacrifice many sophisticated
designs proposed in the literature (e.g., protocol-aware methods) due to the complexity and the
opaque nature of PESs. Therefore, the current PFAULT prototype follows a black-box principle [28]
to achieve the usability, generality, and fidelity as described in Section 3. The fact that this work
has helped improve the leading PFS suggests that the methodology is effective in filling the void
and bridging the gap in practice.

However, the black-box approach is not perfect. In particular, we find that it is fundamentally
limited in terms of diagnosing the abnormal symptoms observed in PFSs. In this study, we have
to manually investigate the substantial logs generated during the experiments and the associated
PFES code base and documentation to understand the root causes, which is time consuming and not
scalable for complicated large-scale systems like PFSs.

As a tradeoft to the black-box approach, a gray-box or white-box approach [28] may leverage
the knowledge of the internal logic of the target program to collect feedback (e.g., code coverage)
and/or guide the generation of test inputs, which may improve the test efficiency as well as the
diagnosis of target systems. To be effective, such approaches typically require well-documented

ACM Transactions on Storage, Vol. 18, No. 2, Article 14. Publication date: April 2022.

A Study of Failure Recovery and Logging of High-Performance Parallel File Systems 14:31

internal specifications, strong tool support for code analysis or instrumentation (e.g., Aspect] [78]
for Java programs), and so forth, which remains challenging in the context of production PFSs
with substantial weakly typed code (e.g., C) in the kernel space. Therefore, despite the limitation
of the black-box principle, we believe that our work is one fundamental step toward more sophis-
ticated analysis for PFSs in practice, and we hope that the extensive results collected in this work
will facilitate follow-up exploration of gray-box/white-box approaches for analyzing PFSs in the
communities.

6.2 Integration with Other Tools

The prototype of PFAULT is designed and implemented in a modular and extendable manner. For
example, PFAULT invokes the local file systems’ utilities (e.g., debugfs [51]) to manipulate the
states of individual PFS nodes (Section 3.2.2), which may be replaced with other tools (e.g., cus-
tomized fault injectors) to achieve additional functionalities. Also, the modules in PFAULT may be
integrated into other workflows in a standalone manner beyond what is presented in this work
(e.g., manipulating the configurations of PFS nodes and collecting regular logs for performance
tuning). As one concrete example, we elaborate on the research opportunity of integration with
fuzzing tools, which have been gaining significant traction recently [7, 79-85], in this subsection.

Fuzzing is a classic technique for generating effective inputs and improving the test cover-
age [79]. Since the 1990s [86], fuzzing has been applied to study a wide range of programs [7,
79-83, 86]. In particular, a number of fuzzing tools (i.e., fuzzers) have been proposed for practical
systems including file systems and OS kernels in recent years. For instance, Janus [80] uses two-
dimensional fuzzing that mutates both on-disk metadata and system calls to expose bugs in local
file systems. Similarly, Hydra [7] analyzes semantic bugs in local file systems through fuzzing.
However, these existing fuzzers can only handle a local file system on a single node instead of
distributed PFSs.

A few researchers have tried to fuzz networked software systems. For example, the Raft consen-
sus protocol has been fuzzed [83] through manipulation on RPC messages in a black-box manner
without feedback loop or code coverage measurement. Similarly, AFLNET [87] is a gray-box fuzzer
for network protocols used by servers. In this work, the vanilla AFL is expanded by network com-
munication over C Socket APIs [84], which allows the fuzzer to act as a client and enables remote
fuzzing. However, the fuzzer can only mutate the sequence of messages sent from client to server,
the input space of which is much smaller compared to the distributed storage state needed to fuzz
a PFS effectively [85].

Therefore, applying fuzzing to PFSs remains challenging. Multiple innovations are likely needed
for the integration, including reducing the size of the initial seed pool, identifying critical compo-
nents for instrumentation, and collecting execution feedback, among others. One potential tech-
nique we are exploring is the in-memory API fuzzing on a single function [79], which focuses only
a portion of the target program and thus might reduce the complexity. We leave such integration
as future work.

6.3 Analyzing Hardware-Dependent Features of PFS Clusters

In this work, we focus on studying the failure recovery and logging mechanisms of PFSs from
the software perspective (e.g., the FSCK component and the logging methods). As mentioned
in Section 4, to ensure the reproducibility and consistency of our results, we have tried a vari-
ety of different configurations with the resources available to us, including virtual and physical
servers, private and public platforms, PFS node counts, stripe counts, stripe sizes, iSCSI/non-iSCSI,
and FSCK delay, which have helped identify and fix real problems confirmed by PFS developers.
On the other hand, modern PFS clusters may include additional advanced features that require

ACM Transactions on Storage, Vol. 18, No. 2, Article 14. Publication date: April 2022.

14:32 R. Han et al.

special hardware support. For example, Lustre may be configured with a failover feature when the
MDS nodes are equipped with the RPC mechanism, which requires both hardware support (e.g.,
IPMI/BMI device for power control) and external power management software support (e.g., Pow-
erMan, Corosync, Pacemaker) [25]. The failover pair shares the same storage device and provides
server process failover. Similarly, BeeGFS has an advanced feature called buddy mirroring with
additional failover capability. Such advanced features are designed to improve the failure handling
mechanisms of PFSs and to provide additional reliability and/or availability guarantees for PFSs.
Based on our understanding, however, these mechanisms might not be able to handle all the fail-
ure scenarios considered in this study. For example, the process failover mechanism in Lustre is
designed to provide redundancy at the process level while still sharing the physical device; con-
sequently, the a-DevFail fault model may still affect the Lustre cluster. Due to the limitation of
our current hardware platform, we leave the study of such hardware-dependent features as future
work.

6.4 Improving the Failure Handling Mechanisms of PFSs

We have exposed a number of limitations of PFSs in terms of failure recovery and logging in this
study, especially on the FSCK component. We may improve the corresponding mechanisms of Lus-
tre and BeeGFS based on the study results. For example, we find that Lustre logs can often capture
the correct fault types (e.g., network connection fails), which implies that it is possible to detect
the problem and avoid the abnormal behavior during LFSCK (e.g., “hang”). Similarly, it is possible
to eliminate the abrupt “I/O err” by verifying the existence of the device before accessing. Along
the same direction, one recent work studies the recovery rules of LFSCK in detail and proposes to
improve the completeness of LFSCK accordingly [88]. In addition, PFAULT may be applied to study
and improve other important PFSs (e.g., OrangeFS, Ceph). Since PFAuLT is designed with usability
and portability in mind, we expect the porting efforts to be minimal.

Also, we find that the extensive logs generated by PFSs including their FSCK components are
valuable for understanding the behaviors and diagnosing the root causes. However, as detailed in
Section 5, in many cases the log information may be incomplete or misleading, which suggests
opportunities for refining the logging mechanisms. In fact, the patch set created by the developers
to fix the crash problem exposed by our study (Section 5.2.2) is also related to the internal logging
macros of Lustre (e.g., CERROR, LASSERT). Given the complex code base of PFSs, manually refac-
toring the logging code is unlikely to be effective or scalable. Instead, automatic logging support
or enhancements (e.g., LogEnhancer [89]) are likely needed to address the challenge, which we
leave as future work.

6.5 Challenges and Opportunities for Log-Based Analysis

The extensive experimental logs generated in our study include both normal and abnormal cases,
and the PFAULT tool may be applied to other PFSs to generate additional failure logs. Given the
large quantity of the logs, we believe our work provides a valuable vehicle for applying learning-
based log analysis to optimize PFSs, which has proved to be promising for failure detection and
diagnosis of other large-scale systems (e.g., DeepLog [90]). In fact, SentilLog, which leverages
PFauLT and the associated logs, is one recent effort along this direction [91]. On the other hand,
we find that PFS logs are much more diverse and irregular than typical cloud systems logs, which
makes many existing log-based analysis methodologies (e.g., CrashTuner [10]) largely inapplicable
for PFSs. More sophisticated techniques in terms of log parsing and feature extraction [92] are
likely needed to handle the PFS logs effectively. We release the prototype of PFAULT as well as
the experimental logs publicly on GitLab to facilitate the follow-up research in the communities
[93].

ACM Transactions on Storage, Vol. 18, No. 2, Article 14. Publication date: April 2022.

A Study of Failure Recovery and Logging of High-Performance Parallel File Systems 14:33

7 RELATED WORK

In this section, we discuss related work that has not been covered sufficiently in the previous
sections.

Tools and Studies of Parallel File Systems. Due to the prime importance of PFSs, many analy-
sis tools have been proposed by the HPC community to improve them [94-98]. For example, there
are a variety of tools for instrumentation, profiling, and tracing of I/O activities, such as mpiP [95],
LANL-Trace [96], HPCT-IO [99], IOT [97], and TRACE [98]. On the one hand, since these tools
are mostly designed for studying and improving the performance of PFSs, they cannot emulate
external failure events for studying the failure handling of PFSs as in PFAULT. On the other hand,
we believe that these tools may also help in reliability. For example, Darshan [100, 101] is able to
capture the I/O characteristics of various HPC applications, including access patterns, frequencies,
and duration time. Since all I/O requests are served by the backend PES, these captured I/O charac-
terizations may be used by PFAULT to further reason about the behavior of the PFS and identify the
potential root causes of abnormalities observed. More recently, Sun et al. [102] propose to study
the crash consistency of PFSs via replaying workload traces, which may benefit from the exten-
sive real logs collected via PFAULT; also, SentiLog [91] applies sentimental analysis to detect PFS
anomalies based on the logs generated by PFAULT. Therefore, PFAULT and the existing PFS efforts
are complementary.

Tools and Studies of Other Distributed Systems. Many tools have been proposed for analyzing
distributed systems (e.g., [11, 12, 21-23, 42—-47]), especially for modern Java-based cloud systems
(e.g., HDFS [13], Cassandra [14], Yarn [49], ZooKeeper [15]). While they are effective for their
original goals, few of them have been or can be directly applied to study PFSs in practice due to
one or more constraints. For example, they may (1) only work for user-level programs, instead of
PFSs containing OS kernel modules and patches; (2) require modifications to the local storage stack
that are incompatible to major PFSs; (3) rely on Java-specific features/tools that are not applicable
to major PFSs; (4) rely on unified and well-formed logging mechanisms (e.g., Log4] [32]) that are
not available on major PESs; or (5) rely on detailed specifications of internal protocols of the target
system, which are difficult to derive for PFSs due to the complexity and the lack of documentation.
We discuss a number of representative works in more detail below.

As far as we know, the most relevant work is CORDS [21], where the researchers customize a
FUSE file system to analyze eight user-level distributed storage systems and find that none of them
can consistently use redundancy to recover from faults. They inject two types of local corruptions
(i.e., zeros or junk on a single file-system block), which is similar to the global inconsistency fault
model emulated by PFAuLT. On the other hand, the FUSE-based approach is not applicable to
PFSs, which often have special requirements on the OS kernel and/or local file system features
(i.e., Lustre requires a patched version of Ext4 or ZFS).

MOLLY [103] proposes lineage-driven fault injection (LDFI) for discovering bugs in fault-
tolerant protocols of distributed systems. By rewriting protocols in a declarative language (i.e.,
Dedalus) and leveraging an SAT solver, MOLLY can effectively provide correctness and coverage
guarantee for the protocols under test. However, applying LDFI to study PFSs remains challeng-
ing. Among others, rewriting production PFS or FSCK in a declarative language is prohibitively
expensive in practice. Moreover, PFSs do not maintain redundant replica at the PFS level, nor
do they use well-specified protocols for recovery. As a result, it is difficult to derive the execu-
tion model or correctness properties of PFSs required by LDFL On the other hand, the high-level
idea of leveraging data lineage to connect system outcomes to the data and messages that led to
them could potentially help analyze the root causes of the abnormal symptoms observed in our
study.

ACM Transactions on Storage, Vol. 18, No. 2, Article 14. Publication date: April 2022.

14:34 R. Han et al.

SAMC [9] applies semantic-aware model checking to study seven protocols used by Cassandra,
Yarn, and ZooKeeper. Different from the black-box approach taken by PFaurt, SAMC uses a white-
box approach to incorporate semantic information (e.g., local message independence) of the target
system in its state-space reduction policies. While effective in exposing deep bugs in cloud systems,
SAMC depends on detailed specifications of distributed fault-tolerance protocols, which are not
applicable to PFS and FSCK. Moreover, it requires modifying target systems using Aspect] [78],
which is not applicable to major PFSs. In contrast, PFAULT focuses on emulating general external
failure events for PFSs via a black-box transparent approach, trading off fine-grained control for
usability. We leave the potential integration of model checking with PFSs as future work.

ScaleCheck [48] focuses on testing scalability bugs in distributed systems. It leverages Java lan-
guage supports (e.g., JVMTI [104] and Reflection [105]) to identify scale-dependent collections and
makes use of multiple novel co-location techniques (e.g., single-process cluster using the isolation
support of Java class loader) to make the target system single-machine scale-testable. PFAULT is
similar to ScaleCheck in the sense that both aim to make large distributed systems easier to ana-
lyze with fewer physical resource constraints; on the other hand, the Java-specific techniques are
unlikely to be directly applicable to study PFSs, which are mostly written in type-unsafe languages.

More recently, CrashTuner [10] proposes the concept of “meta-info” to locate fault injection
points for detecting crash recovery bugs in distributed systems efficiently and effectively. The
target system must be written in Java because the static analysis and instrumentation tools (i.e.,
WALA [106] and Javasist [107]) are Java specific and rely on the strong type system of Java.
While in theory there may be similar compiler tools for instrumenting PFSs written in C/C++
(e.g., LLVM [108]), implementing the same idea to study PFSs with OS kernel components would
require substantial effort (if possible at all). Moreover, the “meta-info” variables must be derived
from well-formed logs (e.g., messages with clear nodeID and taskID information generated by
Log4] [32] or SLF4] [75]), which is not applicable to PFSs because the log messages of PFSs are di-
verse and irregular as exposed in our study (Sections 5.2.1 and A). On the other hand, the extensive
and complex logs collected in our experiments provide a valuable dataset for exploring potential
implicit “meta-info” of PFSs via sophisticated learning-based approaches as discussed in Section 6.

In addition, many researchers have studied the failures occurring in large-scale production
systems [20, 109-112], which provides valuable insights for emulating realistic failure events
in PFAULT to trigger the failure recovery and logging operations of PFSs.

Tools and Studies of Local Storage Systems. Great efforts have been made to study the
bugs or failure behaviors of local storage software and/or hardware (e.g., hard disks [56, 59],
RAID [5], flash-based SSDs [76, 112, 113], persistent memories [114], local file systems and check-
ers [6, 7, 41, 77, 80, 115-119]) through a variety of approaches (e.g., fault injection [64, 77], model
checking [115], formal methods [120], fuzzing [7, 80]). While the tools are effective for their origi-
nal design goals, applying them to study large-scale PFSs remains challenging. For example, model
checking still faces the state explosion problem despite various path reduction optimizations [9].
Also, turning a practical system like Lustre into a precise or verifiable model is prohibitively expen-
sive in terms of human efforts. On the other hand, these existing efforts provide valuable insights
on the reliability of local storage systems, and they may help in emulating realistic failure states
of individual storage nodes in PFAULT. Moreover, some techniques (e.g., fuzzing) could potentially
be integrated with PFAULT as discussed in Section 6.

8 CONCLUSIONS

As the scale and complexity of PFSs keep increasing, maintaining PFS consistency and data in-
tegrity becomes more and more challenging. Motivated by this real challenge, we perform a study
of the failure recovery and logging mechanisms of PFSs in this article. We apply the PFAULT tool

ACM Transactions on Storage, Vol. 18, No. 2, Article 14. Publication date: April 2022.

A Study of Failure Recovery and Logging of High-Performance Parallel File Systems 14:35

to study two widely used PFSs: Lustre and BeeGFS. Through extensive log analysis and root cause
diagnosis, our study has revealed the abnormal behaviors of the failure handling mechanisms in
PESs. Most importantly, our study has led to a new patch to address a kernel panic problem in the
latest Lustre.

This research study is a critical step on our roadmap toward achieving robust high-performance
computing. Given the prime importance of PFSs in HPC systems and data centers, this study also
calls for the community’s collective efforts in examining reliability challenges and coming up with
advanced and highly efficient solutions. We hope this study can inspire more research efforts along
this direction. We also believe that such a study, including the open-source PFAULT and the exten-
sive PFS logs, can have a long-term impact on the design of large-scale file systems, storage systems,
and HPC systems.

APPENDIX
A CHARACTERIZATION OF PFS FAILURE LOGS

In this appendix, we characterize the extensive failure logs generated by the target PFS in our
experiments. As described in Section 5.2, we use three rules to identify the PFS logs related to
failure handling and we call them error messages. In total, we observe 7, 13, and 15 different types
of error messages on Lustre v2.8, Lustre v2.10.8, and BeeGFS v7.1.3, respectively, which we describe
in detail below.

A.1 Failure Logs of Lustre v2.8

We first analyze the error messages of Lustre v2.8. As shown in Table 11, we observe seven types of
error messages (i.e., y1 to y7) when faults are injected on different nodes, including Recovery failed
(y1-y3), Log updating failed (y4), Lock service failed (y5), and Failing over (y6,y7). If an error message
has a Linux error number, the number is usually appended to the end of the message. A minor
logging inconsistency we observe is that Lustre debug macros use a variable “rc” to represent the
Linux error number and print out both “r¢” and its value in most cases (e.g., “rc 0/0” in y5), while
in some cases only the value is shown (e.g., “~110” in yI).

It is interesting to see that in v2.8, MGS dose not report any error messages under the three
fault models (i.e., empty in the “Logs on MGS” column). This is consistent with Lustre’s design
that MGS/MGT is mostly used for configuration when building Lustre, instead of the core
functionalities.

On the other hand, all three fault models can trigger extensive log messages on MDS and OSS.
For example, when “a-DevFail” happens on MDS (the “MDS” row), all OSS nodes can notice the
failure, and they try to recover MDT but eventually fail (i.e., y2). This is because the OST han-
dler on each OSS node keeps monitoring the connection with MDT (via mdt_health_check) and
automatically tries to reconnect until timeout.

Also, “b-Inconsist” may generate various types of logs, depending on different inconsistencies
caused by different local corruptions. When “b-Inconsist” happens on MDS (the “MDS” row), many
services such as logging (i.e., y4) and locking (i.e., y5) may be affected. This is consistent with
Lustre’s design that MDS/MDT is critical for all regular operations.

Besides, when “a-DevFail” or “b-Inconsist” happens on MDS or OSS, it may trigger the failover
of the affected node (i.e., y6, y7). Because a complete failover configuration on Lustre requires
additional sophisticated software and hardware support [25], we cannot evaluate the effectiveness
of the failover feature further using our current platform, and we leave it as future work.

However, we notice a potential mismatch between the documentation and the failover logs
observed. Based on the documentation [25], the failover functionality of Lustre is designed for
MDS/OSS server processes instead of MDT/OST devices. For example, two MDS nodes configured

ACM Transactions on Storage, Vol. 18, No. 2, Article 14. Publication date: April 2022.

14:36 R. Han et al.

Table 11. Characterization of Logs Generated in the Debug Buffer of Lustre v2.8 after Faults

Node(s) | Fault Logson Logson Logson Logson Logs on
Affected | Models MGS MDS OSS#1 ~ OSS#2 0OSS#3
a-DevFail - y1 y1 y1 y1
MGS | b-Inconsist - y1,y4 y1,y4 y1,y4 y1,y4
c-Network - y1 y1 y1 yl1
a-DevFail - Y6 2 2 2
MDS | b-Inconsist - V4,56 y2,y4y5 y2,y4y5 y2,y4,y5
c-Network - y1,y3 2 2 2
a-DevFail - v3 y7 - -
OSS#1 | b-Inconsist - V3.y4y5 ydy7 4 v4
c-Network - v3 y1Ly2 - -
three | a-DevFail - v3 y7 y7 y7
OSSs | b-Inconsist - V3.y4y5 ydy7 v2,y4 v4,y7
c-Network - v3 y1Ly2 y1Ly2 y1,y2
MDS | a-DevFail - y6 y7 y2 y2
+ b-Inconsist - V4,56 y4,y5y7 y2,y4,y5 y2,y4,y5
OSS#1 | c-Network - y1,y3 y1Ly2 2 2
Type Meaning Message Example
y1 MGS Recovery failed | ...ptlrpc_connect_interpret() recovery of MGS on MGC 192.x.x.x...failed (—110)
2 MDS Recovery failed ...ptlrpc_connect_interpret() recovery of lustre-MDT0000_UUID...failed (—110)
v3 OSS Recovery failed ...ptlrpc_connect_interpret() recovery of lustre-OST0001_UUID...failed (—110)
v4 Log updating failed ...updating log 2 succeed 1 fail [...lustre-sptlrpc(fail)...
5 Lock service failed | ...ldIm_request.c:1317: ldlm_cli_update_pool()...@Zero SLV or Limit found...rc 0/0
y6 Failing over MDT ...obd_config.c:652:class_cleanup() Failing over lustre-MDT0000...
y7 Failing over OST ...obd_config.c:652:class_cleanup() Failing over lustre-OST0001...
The “Node(s) Affected” column shows the node(s) to which the faults are injected. “~” means no error message is

reported. “yI” to “y7” are seven types of messages reported in the logs. The meaning of each type is shown at the bottom
part of the table. The “Message Example” column shows a snippet of each type of message adapted from the logs.

as a failover pair must share the same MDT device, and when one MDS sever fails, the remaining
MDS can begin serving the unserved MDT. Because “a-DevFail” affects only the device (i.e., it
emulates a whole device failure as discussed in Section 3.2) and does not kill the MDS/OSS sever
processes, it is unclear how failing over server processes could handle the device failure.

A.2 Failure Logs of Lustre v2.10.8

Besides Lustre v2.8, we have also studied the logs of Lustre v2.10.8 under the same experiments
and summarized them in Table 12. Note that we have discussed LFSCK-specific debug buffer logs
of Lustre v2.10.8 in Table 9 (Section 5.3), so we skip them here.

As shown in Table 12, the first seven types of error messages (i.e., yI to y7) are almost the same
as the corresponding messages in Table 11. Message y4 has a slightly different wording, but it is
still related to Lustre’s logging service.

On the other hand, we observe more types of error messages on v2.10.8 (i.e., y8to y12in Table 12)
compared to v2.8 (in Table 11). Specifically, y8 to y11 (i.e., Client’s request failed, Client was evicted,
Client-server connection failed, Client-OST I/O errors) are client-related failures; and y12 represents
failures of accessing metadata on OST.

Besides generating different types of error messages, another key difference between v2.10.8
(Table 12) and v2.8 (Table 11) is that MGS does report some information under faults in v2.10.8
(Table 12). In particular, under the “b-Inconsist” or “c-Network” fault models, MGS can report that
the client’s request has failed due to timeout or network error (i.e., y8). This implies that MGS
is aware of Lustre’s internal traffic failures. Moreover, when both MDS and OSS#1 suffer from
“a-DevFail” (the “MDS+0SS#1” row), MGS notifies that the client is evicted by Lustre’s locking

ACM Transactions on Storage, Vol. 18, No. 2, Article 14. Publication date: April 2022.

A Study of Failure Recovery and Logging of High-Performance Parallel File Systems 14:37

Table 12. Characterization of Logs Generated in the Debug Buffer of Lustre v2.10.8 after Faults

Node(s) | Fault Logs on Logs on Logson Logs on Logs on
Affected | Models MGS MDS OSS#1 OSS#2 OSS#3
a-DevFail - - — Z
MGS | b-Inconsist 8 y1,y4 yl,y4 y1,y4 y1,y4
c-Network y8 y1,y4 y1 y1 y1
a-DevFail - v2,v4 y2,y8 v2,¥8 v2,¥8
MDS | b-Inconsist - v2,y4,y6 2 2 2
c-Network 8 y1,y3,y8 y2,Y8 2,8 2,8
a-DevFail - - yi12 - -
OSS#1 | b-Inconsist 8 3,y5,y8 y4,y7 v4 v4
c-Network y8 y3,¥8 y1,y2,y8 - -
three | a-DevFail - - y12 y12 y12
OSSs | b-Inconsist y8 ¥3,¥5,¥8 v4,y7 v4,y7 v4,y7
c-Network y8 y3,y8 y1,y2,y8 yly2,y8 y1,y2,y8
MDS a-DevFail 8,9 v2,y3,94,y10 y2,y8 y2,y8yll y2,y8,y11
+ b-Inconsist 8 2,y3,y4,y5,y6,y8,y10 y2,y4y7 y2,y4 y2,y4
OSS#1 | c-Network y8 y1,y3,y8 y1,y2,y8 Y2,y8 y2,y8
Type Meaning Message Example
y1 MGS Recovery failed ...ptlrpe_connect_interpret() recovery of MGS on MGC 192.x.x.x...failed (—110)
...ptlrpe_fail_import() import MGS@MGC10.x.x.x@tcp_0 for...not replayable...
2 MDS Recovery failed ...ptlrpc_connect_interpret() recovery of lustre-MDT0000_UUID...failed (—110)
y3 OSS Recovery failed ...ptlrpc_connect_interpret() recovery of lustre-OST0001_UUID...failed (—110)
4 Log updating failed ...mgc_process_log() MGC.x.x.x@tcp: configuration from log lustre-sptlrpc failed (-2).
5 Lock service failed ...ldlm_request.c:1317: ldlm_cli_update_pool()...@Zero SLV or Limit found...
V6 Failing over MDT ...obd_config.c:652:class_cleanup() Failing over lustre-MDT0000...
y7 Failing over OST ...obd_config.c:652:class_cleanup() Failing over lustre-OST0001...
8 Client’s request failed ...ptlrpc_expire_one_request()...Request sent has timed out for slow reply:...rc 0/—1
...ptlrpc_expire_one_request()...Request sent has failed due to network error:...rc 0/—1
9 Client was evicted ...ldim_failed_ast()...MGS: A client on nid...tcp was evicted... : rc —107
...ldIm_handle_ast_error()...client...returned error from...(...rc —107), evict it ns: ...
y10 Client-server connection failed ...ptlrpc_check_status()...: operation ost_connect to node...failed: rc = —5/—16/—30
yli1 Client-OST I/O errors ...tgt_client_del()...failed to update server data, skip client ... zeroing, rc =5
...tgt_client_new()...Failed to write client lcd at idx..., rc —5/-30
...osd_ldiskfs_write_record() sdb: error reading offset... rc = =5
yi12 Local metadata unaccessible ...osd_ldiskfs_read() sdb: can’t read ...@...on ino... : rc = =5
...osd_idc_find_or_init() can’t lookup: rc = =5
...osd_trans_commit_cb() transaction @... commit error: 2

Similar to Table 11, this table shows detailed Debug Buffer logs from Lustre v2.10.8. The “Node(s) Affected” column
shows the node(s) to which the faults are injected. “~” means no error message is reported. “yI” to “y12” are 12 types of
messages reported in the logs. The meaning of each type is shown at the bottom part of the table. The “Message Example”
column shows a snippet of each type of messages adapted from the logs.

services (i.e., y9). In the meantime, MDS reports that the connection between the client and servers
fails (i.e., ¥10), and logs from OST#2 and OST#3 show that they encounter errors when dealing with
clients’ I/O requests (i.e., y11). This observation suggests that Lustre v2.10 has a more extensive
logging to help understand system failures across nodes.

Also, we observe that Local metadata unaccessible (i.e., y12) can be triggered when “c-Network”
happens on OSSs (the “OSS#1” and “three OSSs” rows), and it can only be collected from OSSs.
This type of error message appears when the OSS’s local metadata becomes inaccessible. Most of
their Linux error numbers are “-5,” which means an I/O error occurs when Lustre tries to look up
the OSS’s local metadata. Moreover, we find that y12 often appears together with LSFCK-triggered
error messages (Table 9 in Section 5.3). This is because LFSCK is responsible for checking and
repairing the metadata. The second phase of LFSCK (“Ifscl_layout”) needs to access the metadata
on OSSs, which will trigger y12 under the fault models.

In summary, we find the messages in the debug buffer of Lustre (if reported) to be detailed and
informative. As shown in the “Message Example” of Tables 11 and 12, the messages usually include

ACM Transactions on Storage, Vol. 18, No. 2, Article 14. Publication date: April 2022.

14:38 R. Han et al.

Table 13. Characterization of Logs of BeeGFS v7.1.3 after Faults

Node(s) | Fault MGS MDS 0SSs#1 OSS#2 0SS#3
Affected | Models ‘ Logs Logs Logs Logs logs
a-DevFail y1,y2 - - - -
MGS | b-Inconsist - - - - -
c-Network v1,92,y3,y4,y5 v7,y8 - - -
a-DevFail - ¥9,y10,y11 - - -
MDS | b-Inconsist - ¥9.y10,y11 - - -
c-Network v4 V5,97,y8,y12,y13 - - -
a-DevFail - - y14 - -
OSS#1 | b-Inconsist - - - - -
c-Network y3 y7,y8,y12,y14,y15 - - -
three | a-DevFail - - y14 y14 y14
OSSs | b-Inconsist - - - - -
c-Network y3 V7,¥8,y12,y14,y15 y5,y7,y8,y12,y13 y5,y7,y8,y12,y13 5,97,y8,y12,y13
MDS | a-DevFail - ¥9,y10,y11 y14 - -
+ b-Inconsist - ¥9,y10,y11 - - -
OSS#1 | c-Network 4,56 5,y7,y8,y12,y13 y7,y8 - -
Type Meaning Message Example
... TempFileTk.cpp:29 >> Could not open temporary file. tmpname:...
y1 Temporary file failure ... TempFileTk.cpp:65 >> Could not write to temporary file tmpname:...
... TempFileTk.cpp:44 >> Failed to unlink tmpfile after error...Read-only file system...
y2 Target state write failed ...MgmtdTargetStateStore.cpp:431 >> Could not save target states. nodeType...
y3 OSS auto-offline ...Auto-offline >> No...received from storage target for...seconds...set...offline...
...Auto-offline >> No...received from storage target for...seconds...set...probably-offline...
4 MDS auto-offline ...Auto-offline >> No...received from metadata node for...seconds...set...offline...
...Auto-offline >> No...received from metadata node for...seconds...set...probably-offline...
5 Unreachable network ...StandardSocket::sendto >> Attempted to send message to unreachable network:...
...InternodeSyncer.cpp:418 >> Downloading...from management node failed...
6 Download from MGS failed ...InternodeSyncer.cpp:784 >> Download from management node failed...
...Update states and mirror groups >> Downloading...from management node failed...
y7 Connect failed ...NodeConn... >> Connect failed...Error: Unable to establish connection...
...NodeConn... >> Connect failed on all available routes...
8 Retrying communication ...MessagingTk... >> Retrying communication...message type: GetNodes. ..
...Messaging Tk.cpp:281 >> Retrying communication...message type: CloseChunkFile...
y9 Entry directory lost ...Inode... >> Unable to open entries directory:...No such file or directory
10 Inode read failed ...MetaStore... >> Failed to read inodes from hash dirs...
...StorageTkEx... >> Unable to open dentries directory...No such file or directory
y11 Directory entry-related failures ...DirEntry... >> Unable to create dentry file:...No such file or directory
...make meta dir-entry >> Failed to create: name:...entryID:...in path:...
...DirEntryStore...>> Unable to open dentry directory...No such file or directory
...Messaging (RPC) >> Communication error: Receive timed out from...
yiz2 RPC-related failure ...Messaging (RPC) >> Communication error: Receive timed out from:...
...Messaging (RPC) >> Unable to connect to:...
y13 MGS release failed ...XNodeSync >> Pushing node free space to management node failed.
...ChunkFetcherSlave.cpp:108 >> readdir failed...Input/output error...
...ChunkDirStore... >> Unable to create chunk path:...Read-only file system
...ChunkStore.cpp:661 >> Unable to create path for file...Read-only file system...
y14 Chunk related failure ...SessionLocalFile (open) >> Failed to open chunkFile:...
...Close Helper... >> Problems occurred during release of storage server file handles...
...Close Helper (close chunk files S) >> Problems occurred during close of chunk files...
...Stat Helper (refresh chunk files) >> Problems occurred during file attribs refresh...
...Close chunk file work >> Communication with storage target failed...
y15 Communication with OSS failed | ...Close Helper... >> Communication with storage target failed:...Communication error
...Stat chunk file work >> Communication with storage target failed...

The “Node(s) Affected” column shows the node(s) to which the faults are injected. “~” means no error message is
reported. “y1” to “y15” are 15 types of messages reported in the logs. The meaning of each type is shown at the bottom
part of the table. The “Message Example” column shows a snippet of each type of messages adapted from the logs.

specific file names, line numbers, and function calls involved, which are valuable for understanding
and diagnosing the system behavior. On the other hand, some log messages may not directly reflect
the root cause of failures, which may imply that a more precise mechanism for detecting faults is
needed.

ACM Transactions on Storage, Vol. 18, No. 2, Article 14. Publication date: April 2022.

A Study of Failure Recovery and Logging of High-Performance Parallel File Systems 14:39

A.3 Failure Logs of BeeGFS v7.1.3

Table 13 summarizes the BeeGFS logs. As shown in the table, the logs can be roughly classified
into 15 types (“y1” to “y15”). Each log message usually contains multiple sentences describing the
issue in detail, including specific IDs of relevant nodes and/or files (“Message Example”). Therefore,
compared to the logs of Lustre (Table 11, Table 12, and Table 13 in Section A.1 and Section A.2),
we find that BeeGFS’s logging is more sophisticated.

Also, we find that all BeeGFS nodes, including MGS, can report extensive events, which implies
all nodes are always active (unlike Lustre’s MGS). For example, when “c-Network” happens on
MGS, multiple failure events are recorded on MGS (i.e., y1,y2,¥3,94,y5). When “c-Network” hap-
pens on other nodes (e.g., MDS or OSS), MGS can also record failure events accordingly. This
implies that MGS is responsible for monitoring the network connection of all other nodes. If the
network connection between MGS and any other node is broken, MGS will record that the corre-
sponding node is “Auto-offline”

All three fault models can trigger extensive log messages in BeeGFS. However, in contrast to
Lustre, BeeGFS’s logs often concentrate on the affected node(s). For example, when “a-DevFail”
happens on OSS (the “OSS#1” and “three OSSs” rows), only OSSs themselves generate logs (i.e.,
y14), and the logs are all about data chunks on the affected OSS. No MGS or MDS logs are gener-
ated. Similarly, when “a-DevFail” happens on MDS (the “MDS” row) and causes metadata loss (i.e.,
v9,y10,y11), no OSS logs are reported.

Compared to Lustre, BeeGFS generates fewer logs under the “b-Inconsist” fault model. For ex-
ample, only MDS has logs about “b-Inconsist” (i.e., y9,y10,y11). Note that the logs are the same as
the logs under “a-DevFail.” This implies that a more fine-grained checking and logging mechanism
is needed to differentiate the two different cases.

The “c-Network” fault model leads to the largest amount of logs on BeeGFS. When “c-Network”
happens on MGS (the “MGS” row), MGS reports multiple types of logs as discussed previously;
moreover, MDS outputs logs about connection failure (i.e., y7) and communication retry (i.e., y8).
Similarly, when “c-Network” happens on MDS or OSS, the affected node may report a variety of
logs including network/connection failures (i.e., y5and y7), RPC-related failures (i.e., y12), retrying
communication (i.e., ¥8), MGS release failed (i.e., ¥13), and so forth. This diversity suggests that
BeeGFS has a relatively comprehensive monitoring mechanism.

In summary, we find that BeeGFS logs are more detailed and comprehensive than Lustre logs.
Particularly, the MGS is heavily involved in logging, which is consistent with BeeGFS’s design.
On the other hand, we find that BeeGFS’s logging is still suboptimal. For example, there are few
logs about data inconsistencies on OSS nodes, and device failure and metadata inconsistency are
logged in the same way, which suggests that there is still much room for improvement in terms of
accurate logging.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers and the TOS editors for their time and
insightful feedback. The authors also thank Andreas Dilger and other PFS developers for valuable
discussions.

REFERENCES

[1] Lustre File System. http://lustre.org/.

[2] BeeGFS File System. https://www.beegfs.io/.

[3] The OrangeFS Project. 2017. http://www.orangefs.org/.

[4] Mai Zheng, Joseph Tucek, Feng Qin, and Mark Lillibridge. 2013. Understanding the robustness of SSDs under power
fault. In Proceedings of the 11th USENLX Conference on File and Storage Technologies (FAST’13).

ACM Transactions on Storage, Vol. 18, No. 2, Article 14. Publication date: April 2022.

http://lustre.org/
https://www.beegfs.io/
http://www.orangefs.org/

14:40 R. Han et al.

[5] Ao Ma, Fred Douglis, Guanlin Lu, Darren Sawyer, Surendar Chandra, and Windsor Hsu. 2015. RAIDShield: Charac-
terizing, monitoring, and proactively protecting against disk failures. In 13th USENLX Conference on File and Storage
Technologies (FAST’15). 241-256. https://www.usenix.org/conference/fast15/technical-sessions/presentation/ma.

[6] Changwoo Min, Sanidhya Kashyap, Byoungyoung Lee, Chengyu Song, and Taesoo Kim. 2015. Cross-checking se-
mantic correctness: The case of finding file system bugs. In Proceedings of the 25th Symposium on Operating Systems
Principles (SOSP’15). ACM, New York, NY, 361-377. DOI : http://dx.doi.org/10.1145/2815400.2815422

[7] Seulbae Kim, Meng Xu, Sanidhya Kashyap, Jungyeon Yoon, Wen Xu, and Taesoo Kim. 2019. Finding semantic bugs in
file systems with an extensible fuzzing framework. In Proceedings of the 27th ACM Symposium on Operating Systems
Principles (SOSP’19). Association for Computing Machinery, New York, NY, 147-161. DOI : http://dx.doi.org/10.1145/
3341301.3359662

[8] Thanumalayan Sankaranarayana Pillai, Vijay Chidambaram, Ramnatthan Alagappan, Samer Al-Kiswany, Andrea C.
Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. 2014. All file systems are not created equal: On the complexity of
crafting crash-consistent applications. In Proceedings of the 11th USENIX Symposium on Operating Systems Design
and Implementation (OSDI’14).

[9] Tanakorn Leesatapornwongsa, Mingzhe Hao, Pallavi Joshi, Jeffrey F. Lukman, and Haryadi S. Gunawi. 2014. SAMC:
Semantic-aware model checking for fast discovery of deep bugs in cloud systems. In 11th USENIX Symposium on
Operating Systems Design and Implementation (OSDI’14). USENIX Association, 399-414. https://www.usenix.org/
conference/osdil4/technical-sessions/presentation/leesatapornwongsa

[10] Jie Lu, Chen Liu, Lian Li, Xiaobing Feng, Feng Tan, Jun Yang, and Liang You. 2019. CrashTuner: Detecting crash-
recovery bugs in cloud systems via meta-info analysis. In Proceedings of the 27th ACM Symposium on Operating
Systems Principles (SOSP’19). ACM, New York, NY, 114-130. DOI : http://dx.doi.org/10.1145/3341301.3359645

[11] Pallavi Joshi, Haryadi S. Gunawi, and Koushik Sen. 2011. PREFAIL: A programmable tool for multiple-failure injec-
tion. In Proceedings of the 2011 ACM International Conference on Object Oriented Programming Systems Languages
and Applications. 171-188.

[12] Pallavi Joshi, Malay Ganai, Gogul Balakrishnan, Aarti Gupta, and Nadia Papakonstantinou. 2013. SETSUDO:

Perturbation-based testing framework for scalable distributed systems. In Proceedings of the 1st ACM SIGOPS Con-

ference on Timely Results in Operating Systems. 1-14.

[13] Hadoop Distributed File System. 2006-now. https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html.

[14] Apache Cassandra. 2008-now. https://cassandra.apache.org.

[15] Apache Zookeeper. Retrieved January 2021 https://zookeeper.apache.org.

[16] High Performance Computing Center, Texas Tech University. 2017. http://www.depts.ttu.edu/hpcc/.

[17] Power Outage Event at High Performance Computing Center (HPCC) in Texas. 2016. https://www.ece.iastate.edu/

~mai/docs/failures/2016-hpcc-lustre.pdf.

[18] GPFS Failures at Ohio Supercomputer Center (OSC). 2016. https://www.ece.iastate.edu/~mai/docs/failures/2016-
hpce-lustre.pdf.

[19] Multiple Switch Outages at Ohio Supercomputer Center (OSC). 2016. https://www.ece.iastate.edu/~mai/docs/

failures/2016-hpcc-lustre.pdf.

Haryadi S. Gunawi, Riza O. Suminto, Russell Sears, Casey Golliher, Swaminathan Sundararaman, Xing Lin, Tim

Emami, Weiguang Sheng, Nematollah Bidokhti, Caitie McCaffrey, Gary Grider, Parks M. Fields, Kevin Harms,

Robert B. Ross, Andree Jacobson, Robert Ricci, Kirk Webb, Peter Alvaro, H. Birali Runesha, Mingzhe Hao, and

Huaicheng Li. 2018. Fail-slow at scale: Evidence of hardware performance faults in large production systems. In

16th USENIX Conference on File and Storage Technologies (FAST’18).

Aishwarya Ganesan, Ramnatthan Alagappan, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. 2017. Re-

dundancy does not imply fault tolerance: Analysis of distributed storage reactions to single errors and corruptions.

In 15th USENIX Conference on File and Storage Technologies (FAST’17). 149-166.

Haryadi S. Gunawi, Thanh Do, Pallavi Joshi, Peter Alvaro, Joseph M. Hellerstein, Andrea C. Arpaci-Dusseau, Remzi H.

Arpaci-Dusseau, Koushik Sen, and Dhruba Borthakur. 2011. FATE and DESTINI: A framework for cloud recovery

testing. In Proceedings of the 8th USENLX Symposium on Networked Systems Design and Implementation (NSDI'11).

Ramnatthan Alagappan, Aishwarya Ganesan, Eric Lee, Aws Albarghouthi, Vijay Chidambaram, Andrea C. Arpaci-

Dusseau, and Remzi H. Arpaci-Dusseau. 2018. Protocol-aware recovery for consensus-based storage. In 16th USENIX

Conference on File and Storage Technologies (FAST’18). 15-32.

Open MPL. 2004-now. https://www.open-mpi.org.

Lustre Software Release 2.x: Operations Manual. 2017. http://lustre.org/documentation/.

Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. 2003. The Google file system. In ACM SIGOPS Operating

Systems Review, Vol. 37. ACM, 29-43.

[27] Mingyuan Xia, Mohit Saxena, Mario Blaum, and David A. Pease. 2015. A tale of two erasure codes in HDFS. In 13th
USENIX Conference on File and Storage Technologies (FAST’15). 213-226.

—
[3~]
=4

[t

[21

—

[22

—

—
Do
w

=

— ——
[SCR SCI o
[o NN, N
D

ACM Transactions on Storage, Vol. 18, No. 2, Article 14. Publication date: April 2022.

https://www.usenix.org/conference/fast15/technical-sessions/presentation/ma
http://dx.doi.org/10.1145/2815400.2815422
http://dx.doi.org/10.1145/3341301.3359662
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/leesatapornwongsa
http://dx.doi.org/10.1145/3341301.3359645
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
https://cassandra.apache.org
https://zookeeper.apache.org
http://www.depts.ttu.edu/hpcc/
https://www.ece.iastate.edu/~mai/docs/failures/2016-hpcc-lustre.pdf
https://www.ece.iastate.edu/~mai/docs/failures/2016-hpcc-lustre.pdf
https://www.ece.iastate.edu/~mai/docs/failures/2016-hpcc-lustre.pdf
https://www.open-mpi.org
http://lustre.org/documentation/

A Study of Failure Recovery and Logging of High-Performance Parallel File Systems 14:41

[28] Glenford J. Myers, Tom Badgett, Todd M. Thomas, and Corey Sandler. 2004. The Art of Software Testing. Vol. 2. Wiley.

[29] Linux SCSI target framework (tgt). 2017. http://stgt.sourceforge.net/.

[30] NVM Express over Fabrics Specification Released. 2017. http://www.nvmexpress.org/nvm-express-over-fabrics-
specification-released,.

[31] LFSCK: An online file system checker for Lustre. 2017. https://github.com/Xyratex/lustre-stable/blob/master/
Documentation/Ifsck.txt.

[32] Apache log4j, a logging library for Java. 2001-now. http://logging.apache.org/log4j/2.x/.

[33] Jinrui Cao, Om Rameshwar Gatla, Mai Zheng, Dong Dai, Vidya Eswarappa, Yan Mu, and Yong Chen. 2018. PFault: A
general framework for analyzing the reliability of high-performance parallel file systems. In Proceedings of the 2018
International Conference on Supercomputing (ICS’18).

[34] Lustre Patch: LU-13980 osd: remove osd_object_release LASSERT. 2020. https://review.whamcloud.com/#/c/40058/.

[35] David A. Patterson, Garth Gibson, and Randy H. Katz. 1988. A Case for Redundant Arrays of Inexpensive Disks (RAID).
Vol. 17. ACM.

[36] HPC User Site Census. 2016. http://www.intersect360.com/.

[37] Top500 Supercomputers. 2019. https://www.top500.org/lists/2016/11/.

[38] Apache HBase. 2020. https://hbase.apache.org.

[39] BeeGFS Documentation v7.2. 2020. https://doc.beegfs.io/latest/overview/overview.html.

[40] SQLite documents. 2017. http://www.sqlite.org/docs.html.

[41] Haryadi S. Gunawi, Abhishek Rajimwale, Andrea C. Arpaci-dusseau, and Remzi H. Arpaci-dusseau. 2008. SQCK: A
declarative file system checker. In Proceedings of USENIX Symposium on Operating Systems Design and Implementation
(OSDI’08).

[42] S. Dawson, F. Jahanian, and T. Mitton. 1996. ORCHESTRA: A probing and fault injection environment for testing
protocol implementations. In Proceedings of IEEE International Computer Performance and Dependability Symposium.
56.

[43] Seungjae Han, K. G. Shin, and H. A. Rosenberg. 1995. DOCTOR: An integrated software fault injection environment
for distributed real-time systems. In Proceedings of 1995 IEEE International Computer Performance and Dependability
Symposium. 204-213.

[44] D.T. Stott, B. Floering, D. Burke, Z. Kalbarczpk, and R. K. Iyer. 2000. NFTAPE: A framework for assessing dependabil-
ity in distributed systems with lightweight fault injectors. In Proceedings IEEE International Computer Performance
and Dependability Symposium (IPDS’00). 91-100.

[45] J. H. Barton, E. W. Czeck, Z. Z. Segall, and D. P. Siewiorek. 1990. Fault injection experiments using FIAT. IEEE Trans.
Comput. 39, 4 (1990), 575-582.

[46] Jepsen. https://github.com/jepsen-io/jepsen.

[47] Xinhao Yuan and Junfeng Yang. 2020. Effective concurrency testing for distributed systems. In Proceedings of the 25th
International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS’20).
Association for Computing Machinery, New York, NY, 1141-1156. DOI : http://dx.doi.org/10.1145/3373376.3378484

[48] Cesar A. Stuardo, Tanakorn Leesatapornwongsa, Riza O. Suminto, Huan Ke, Jeffrey F. Lukman, Wei-Chiu Chuang,
Shan Lu, and Haryadi S. Gunawi. 2019. ScaleCheck: A single-machine approach for discovering scalability bugs
in large distributed systems. In 17th USENIX Conference on File and Storage Technologies (FAST’19). 359-373. https:
/[www.usenix.org/conference/fast19/presentation/stuardo.

[49] Apache Hadoop YARN. 2020. https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/ YARN.html.

[50] Apache Hadoop. 2019. https://hadoop.apache.org/docs/stable/.

[51] E2fsprogs: Ext2/3/4 Filesystems Utilities. 2017. http://e2fsprogs.sourceforge.net

[52] Dong Dai, Om Rameshwar Gatla, and Mai Zheng. 2019. A performance study of lustre file system checker: Bottle-
necks and potentials. In 2019 35th Symposium on Mass Storage Systems and Technologies (MSST’19).

[53] FUSE. Linux FUSE (Filesystem in Userspace) interface. https://github.com/libfuse/libfuse.

[54] R.Sandberg, D. Golgberg, S. Kleiman, D. Walsh, and B. Lyon. 1988. Design and implementation of the Sun network
filesystem. In Innovations in Internetworking. Artech House, Inc., Norwood, MA, 379-390. http://dl.acm.org/citation.
cfm?id=59309.59338.

[55] Meryem Primmer. 1996. An introduction to fibre channel. HP Journal (1996).

[56] Lakshmi N. Bairavasundaram, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, Garth R. Goodson, and Bianca
Schroeder. 2008. An analysis of data corruption in the storage stack. Trans. Storage 4, 3, Article 8 (Nov. 2008), 28 pages.
DOI:http://dx.doi.org/10.1145/1416944.1416947

[57] Lakshmi N. Bairavasundaram, Garth R. Goodson, Shankar Pasupathy, and Jiri Schindler. 2007. An analysis of latent
sector errors in disk drives. In Proceedings of the 2007 ACM SIGMETRICS International Conference on Measurement
and Modeling of Computer Systems (SIGMETRICS’07). ACM, New York, NY, 289-300. DOI: http://dx.doi.org/10.1145/
1254882.1254917

ACM Transactions on Storage, Vol. 18, No. 2, Article 14. Publication date: April 2022.

http://stgt.sourceforge.net/
http://www.nvmexpress.org/nvm-express-over-fabrics-specification-released/
https://github.com/Xyratex/lustre-stable/blob/master/Documentation/lfsck.txt
http://logging.apache.org/log4j/2.x/
https://review.whamcloud.com/#/c/40058/
http://www.intersect360.com/
https://www.top500.org/lists/2016/11/
https://hbase.apache.org
https://doc.beegfs.io/latest/overview/overview.html
http://www.sqlite.org/docs.html
https://github.com/jepsen-io/jepsen
http://dx.doi.org/10.1145/3373376.3378484
https://www.usenix.org/conference/fast19/presentation/stuardo
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
https://hadoop.apache.org/docs/stable/
http://e2fsprogs.sourceforge.net
https://github.com/libfuse/libfuse
http://dl.acm.org/citation.cfm?id=59309.59338
http://dx.doi.org/10.1145/1416944.1416947
http://dx.doi.org/10.1145/1254882.1254917

14:42 R. Han et al.

[58] Edmund B. Nightingale, John R. Douceur, and Vince Orgovan. 2011. Cycles, cells and platters: An empirical analysis of
hardware failures on a million consumer PCs. In Proceedings of the 6th Conference on Computer Systems (EuroSys’11).
ACM, New York, NY, 343-356.

[59] Bianca Schroeder and Garth A. Gibson. 2007. Disk failures in the real world: What does an MTTF of 1,000,000 hours
mean to you? In Proceedings of the 5th USENIX Conference on File and Storage Technologies (FAST 07).

[60] Sriram Subramanian, Yupu Zhang, Rajiv Vaidyanathan, Haryadi S. Gunawi, Andrea C. Arpaci-Dusseau, Remzi H.
Arpaci-Dusseau, and Jeffrey F. Naughton. 2010. Impact of disk corruption on open-source DBMS. In ICDE. 509-520.

[61] Mai Zheng, Joseph Tucek, Dachuan Huang, Feng Qin, Mark Lillibridge, Elizabeth S. Yang, Bill W. Zhao, and Shashank

Singh. 2014. Torturing databases for fun and profit. In 11th USENIX Symposium on Operating Systems Design

and Implementation (OSDI’14). USENIX Association, 449-464. https://www.usenix.org/conference/osdil4/technical-

sessions/presentation/zheng_mai.

Network Partition. 2017. https://www.cs.cornell.edu/courses/cs614/2003sp/papers/DGS85.pdf.

e2fsck(8) — Linux manual page. 2017. https://man7.org/linux/man-pages/man8/e2fsck.8.html.

Vijayan Prabhakaran, Lakshmi N. Bairavasundaram, Nitin Agrawal, Haryadi S. Gunawi, Andrea C. Arpaci-Dusseau,

and Remzi H. Arpaci-Dusseau. 2005. IRON file systems. In Proceedings of the 20th ACM Symposium on Operating

Systems Principles (SOSP’05). 206-220.

debugfs. 2017. http://man7.org/linux/man-pages/man8/debugfs.8 html.

Ahmed Alquraan, Hatem Takruri, Mohammed Alfatafta, and Samer Al-Kiswany. 2018. An analysis of network-

partitioning failures in cloud systems. In Proceedings of the 13th USENIX Conference on Operating Systems Design

and Implementation (OSDI’18). USENIX Association, 51-68.

Phillipa Gill, Navendu Jain, and Nachiappan Nagappan. 2011. Understanding network failures in data centers:

Measurement, analysis, and implications. SSGCOMM Comput. Commun. Rev. 41, 4 (Aug. 2011), 350-361. DOI : http:

//dx.doi.org/10.1145/2043164.2018477

[68] Keith A. Smith and Margo I. Seltzer. 1997. File system aging-increasing the relevance of file system benchmarks. In
ACM SIGMETRICS Performance Evaluation Review, Vol. 25. ACM, 203-213.

[69] Alex Conway, Ainesh Bakshi, Yizheng Jiao, William Jannen, Yang Zhan, Jun Yuan, Michael A. Bender, Rob Johnson,

Bradley C. Kuszmaul, Donald E. Porter, and Martin Farach-Colton. 2017. File systems fated for senescence? Nonsense,

says science! In 15th USENIX Conference on File and Storage Technologies (FAST’17). USENIX Association, 45-58.

https://www.usenix.org/conference/fast17/technical-sessions/presentation/conway.

] CloudLab. http://cloudlab.us/.

71] Montage: An Astronomical Image Mosaic Engine. 2017. http://montage.ipac.caltech.edu/.

72] Wikipedia:Database download. 2017. https://en.wikipedia.org/wiki/Wikipedia:Database_download.

73] Jinrui Cao, Simeng Wang, Dong Dai, Mai Zheng, and Yong Chen. 2016. A generic framework for testing parallel
file systems. In Proceedings of the 1st Joint International Workshop on Parallel Data Storage & Data Intensive Scalable
Computing Systems (PDSW-DISCS’16).

[74] Joao Carlos Menezes Carreira, Rodrigo Rodrigues, George Candea, and Rupak Majumdar. 2012. Scalable testing of

file system checkers. In Proceedings of the 7th ACM European Conference on Computer Systems (EuroSys’12). 239-252.

[75] Simple logging facade for Java. 2019. http://www.slf4j.org.

[76] Mai Zheng, Joseph Tucek, Feng Qin, Mark Lillibridge, Bill W. Zhao, and Elizabeth S. Yang. 2016. Reliability analysis
of SSDs under power fault. ACM Trans. Comput. Syst. 34, 4 (2016).

[77] Om Rameshwar Gatla, Muhammad Hameed, Mai Zheng, Viacheslav Dubeyko, Adam Manzanares, Filip Blagojevi¢,
Cyril Guyot, and Robert Mateescu. 2018. Towards robust file system checkers. In 16th USENIX Conference on File and
Storage Technologies (FAST’18). USENIX Association.

[78] Aspect]. 2001-now. https://www.eclipse.org/aspectj/.

[79] V.J. M. Manes, H. Han, C. Han, S. K. Cha, M. Egele, E. J. Schwartz, and M. Woo. 2019. The art, science, and engineer-
ing of fuzzing: A survey. IEEE Trans. Softw. Eng. 47, 11 (2019), 2312-2331. DOI : http://dx.doi.org/10.1109/TSE.2019.
2946563

[80] W. Xu, H. Moon, S. Kashyap, P. Tseng, and T. Kim. 2019. Fuzzing file systems via two-dimensional input space
exploration. In 2019 IEEE Symposium on Security and Privacy (SP’19). 818-834. DOI : http://dx.doi.org/10.1109/SP.2019.
00035

[81] Meng Xu, Sanidhya Kashyap, Hanging Zhao, and Taesoo Kim. 2020. Krace: Data race fuzzing for kernel file systems.
In 2020 IEEE Symposium on Security and Privacy (SP’20).

[82] Dae R. Jeong, Kyungtae Kim, Basavesh Shivakumar, Byoungyoung Lee, and Insik Shin. 2019. Razzer: Finding kernel
race bugs through fuzzing. In 2019 IEEE Symposium on Security and Privacy (SP’19).

[83] Colin Scott. 2015. Fuzzing raft for fun and publication. https://colin-scott.github.io/blog/2015/10/07/fuzzing-raft-for-
fun-and-profit/.

[84] socket(2) — Linux manual page. 2020. https://man7.org/linux/man-pages/man2/socket.2.html.

—_——
[= N NN
=W N

(65
(66

(67

—

[70
[
[
[

ACM Transactions on Storage, Vol. 18, No. 2, Article 14. Publication date: April 2022.

https://www.usenix.org/conference/osdi14/technical-sessions/presentation/zheng_mai
https://www.cs.cornell.edu/courses/cs614/2003sp/papers/DGS85.pdf
https://man7.org/linux/man-pages/man8/e2fsck.8.html
http://man7.org/linux/man-pages/man8/debugfs.8.html
http://dx.doi.org/10.1145/2043164.2018477
https://www.usenix.org/conference/fast17/technical-sessions/presentation/conway
http://cloudlab.us/
http://montage.ipac.caltech.edu/
https://en.wikipedia.org/wiki/Wikipedia:Database_download
http://www.slf4j.org
https://www.eclipse.org/aspectj/
http://dx.doi.org/10.1109/TSE.2019.2946563
http://dx.doi.org/10.1109/SP.2019.00035
https://colin-scott.github.io/blog/2015/10/07/fuzzing-raft-for-fun-and-profit/
https://man7.org/linux/man-pages/man2/socket.2.html

A Study of Failure Recovery and Logging of High-Performance Parallel File Systems 14:43

[85] R. Banabic, G. Candea, and R. Guerraoui. 2011. Automated vulnerability discovery in distributed systems. In 2011
IEEE/IFIP 41st International Conference on Dependable Systems and Networks Workshops (DSN-W’11). 188-193. DOI:
http://dx.doi.org/10.1109/DSNW.2011.5958811

[86] BartonP. Miller, Louis Fredriksen, and Bryan So. 1990. An empirical study of the reliability of UNIX utilities. Commun.
ACM 33, 12 (1990), 32-44. DOI : http://dx.doi.org/10.1145/96267.96279

[87] V. T.Pham, M. B6hme, and A. Roychoudhury. 2020. AFLNET: A greybox fuzzer for network protocols. In 2020 IEEE
13th International Conference on Software Testing, Validation and Verification (ICST’20). 460-465. DOI : http://dx.doi.
org/10.1109/ICST46399.2020.00062

[88] Runzhou Han, Duo Zhang, and Mai Zheng. 2020. Fingerprinting the checker policies of parallel file systems. In
Proceedings of the 5th International Parallel Data Systems Workshop (PDSW’20) held in conjunction with IEEE/ACM
SC20: The International Conference for High Performance Computing, Networking, Storage and Analysis.

[89] Ding Yuan, Jing Zheng, Soyeon Park, Yuanyuan Zhou, and Stefan Savage. 2012. Improving software diagnosability
via log enhancement. ACM Trans. Comput. Syst. (TOCS) 30, 1 (2012).

[90] Min Du, Feifei Li, Guineng Zheng, and Vivek Srikumar. 2017. DeepLog: Anomaly detection and diagnosis from system
logs through deep learning. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security (CCS’17). DOI : http://dx.doi.org/10.1145/3133956.3134015

[91] Di Zhang, Dong Dai, Runzhou Han, and Mai Zheng. 2021. SentiLog: Anomaly detecting on parallel file systems via
log-based sentiment analysis. In Proceedings of the 13th ACM Workshop on Hot Topics in Storage and File Systems
(HotStorage’21).

[92] Wei Xu, Ling Huang, Armando Fox, David Patterson, and Michael I. Jordan. 2009. Detecting large-scale system
problems by mining console logs. In Proceedings of the ACM SIGOPS 22nd Symposium on Operating Systems Principles
(SOSP’09).

[93] GitLab repository for PFault by Data Storage Lab@ISU . 2020. https://git.ece.iastate.edu/data-storage-lab/prototypes/
pfault.

[94] Dachuan Huang, Xuechen Zhang, Wei Shi, Mai Zheng, Song Jiang, and Feng Qin. 2013. LiU: Hiding disk access
latency for HPC applications with a new SSD-enabled data layout. In 2013 IEEE 21st International Symposium on
Modelling, Analysis and Simulation of Computer and Telecommunication Systems. 111-120.

[95] Jeffrey S. Vetter and Michael O. McCracken. 2001. Statistical scalability analysis of communication operations in
distributed applications. In ACM SIGPLAN Notices, Vol. 36. ACM, 123-132.

[96] HPC-5 Open Source Software project, LANL-Trace. 2015. institutes.lanl.gov/data/tdata/.

[97] Philip C. Roth. 2007. Characterizing the I/O behavior of scientific applications on the Cray XT. In Proceedings of the
2nd International Workshop on Petascale Data Storage: Held in Conjunction with Supercomputing 2007. ACM, 50-55.

[98] Michael P. Mesnier, Matthew Wachs, Raja R. Simbasivan, Julio Lopez, James Hendricks, Gregory R. Ganger, and
David R. O’Hallaron. 2007. //Trace: Parallel trace replay with approximate causal events. USENIX.

[99] S.Seelam, I. Chung, D.-Y. Hong, H.-F. Wen, and H. Yu. 2008. Early experiences in application level I/O tracing on blue
gene systems. In IEEE International Symposium on Parallel and Distributed Processing, 2008 (IPDPS’08). 1IEEE, 1-8.

[100] Darshan:HPC I/O Characterization Tool. 2017. http://www.mcs.anl.gov/research/projects/darshan/.

[101] Philip Carns, Robert Latham, Robert Ross, Kamil Iskra, Samuel Lang, and Katherine Riley. 2009. 24/7 characterization
of petascale I/O workloads. In IEEE International Conference on Cluster Computing and Workshops, 2009 (CLUSTER 09).
IEEE, 1-10.

[102] Jinghan Sun, Chen Wang, Jian Huang, and Marc Snir. 2020. Understanding and finding crash-consistency bugs in
parallel file systems. In Proceedings of the 12th ACM Workshop on Hot Topics in Storage and File Systems (HotStorage’20).

[103] Peter Alvaro, Joshua Rosen, and Joseph M. Hellerstein. 2015. Lineage-driven fault injection. In Proceedings of the 2015
ACM SIGMOD International Conference on Management of Data. 331-346.

104] Java Virtual Machine Tool Interface (JVM TI). https://docs.oracle.com/javase/8/docs/technotes/guides/jvmti/.

105] Trail: The Reflection APL https://docs.oracle.com/javase/tutorial/reflect/index.html.

106] WALA home page. 2015. http://wala.sourceforge net/wiki/index.php/.

107] Java bytecode engineering toolkit. 1999. https://www.javassist.org/.

108] The LLVM Compiler Infrastructure. 2020. https://llvm.org.

109] Erci Xu, Mai Zheng, Feng Qin, Yikang Xu, and Jiesheng Wu. 2019. Lessons and actions: What we learned from
10K SSD-related storage system failures. In 2019 USENLX Annual Technical Conference (USENLX ATC’19). USENIX
Association, 961-976. https://www.usenix.org/conference/atc19/presentation/xu.

[110] Erci Xu, Mai Zheng, Feng Qin, Jiesheng Wu, and Yikang Xu. 2018. Understanding SSD reliability in large-scale cloud
systems. In 2018 IEEE/ACM 3rd International Workshop on Parallel Data Storage & Data Intensive Scalable Computing
Systems (PDSW-DISCS’18).

[111] HaryadiS. Gunawi, Mingzhe Hao, Riza O. Suminto, Agung Laksono, Anang D. Satria, Jeffry Adityatama, and Kurnia J.
Eliazar. 2016. Why does the cloud stop computing? Lessons from hundreds of service outages. In Proceedings of the

[
[
[
[
[
[

ACM Transactions on Storage, Vol. 18, No. 2, Article 14. Publication date: April 2022.

http://dx.doi.org/10.1109/DSNW.2011.5958811
http://dx.doi.org/10.1145/96267.96279
http://dx.doi.org/10.1109/ICST46399.2020.00062
http://dx.doi.org/10.1145/3133956.3134015
https://git.ece.iastate.edu/data-storage-lab/prototypes/pfault
institutes.lanl.gov/data/tdata/
http://www.mcs.anl.gov/research/projects/darshan/
https://docs.oracle.com/javase/8/docs/technotes/guides/jvmti/
https://docs.oracle.com/javase/tutorial/reflect/index.html
http://wala.sourceforge.net/wiki/index.php/
https://www.javassist.org/
https://llvm.org
https://www.usenix.org/conference/atc19/presentation/xu

14:44 R. Han et al.

7th ACM Symposium on Cloud Computing (SoCC’16). Association for Computing Machinery, New York, NY 1-16.
DOI: http://dx.doi.org/10.1145/2987550.2987583

[112] Arif Merchant Bianca Schroeder and Raghav Lagisetty. 2016. Flash reliability in production: The expected and the
unexpected. In 14th USENIX Conference on File and Storage Technologies (FAST’16). USENIX Association, 67-80. https:
//www.usenix.org/conference/fast16/technical-sessions/presentation/schroeder.

[113] Mai Zheng, Joseph Tucek, Feng Qin, and Mark Lillibridge. 2013. Understanding the robustness of SSDs under power
fault. In Proceedings of 11th USENIX Conference on File and Storage Technologies (FAST’13). 271-284.

[114] Duo Zhang, Om Rameshwar Gatla, Wei Xu, and Mai Zheng. 2021. A study of persistent memory bugs in the Linux
kernel. In Proceedings of the 14th ACM International Conference on Systems and Storage (SYSTOR’21).

[115] Junfeng Yang, Can Sar, and Dawson Engler. 2006. EXPLODE: A lightweight, general system for finding serious
storage system errors. In Proceedings of the 7th Symposium on Operating Systems Design and Implementation (OSDI’06).
131-146.

[116] Lakshmi N. Bairavasundaram, Swaminathan Sundararaman, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. 2009. Tolerating file-system mistakes with EnvyFS. In Proceedings of the 2009 Conference on USENIX Annual
Technical Conference (USENIX’09). USENIX Association, 7-7. http://dl.acm.org/citation.cfm?id=1855807.1855814

[117] Lanyue Lu, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, and Shan Lu. 2013. A study of Linux file system
evolution. In Presented as Part of the 11th USENIX Conference on File and Storage Technologies (FAST’13). USENIX,
31-44. https://www.usenix.org/conference/fast13/technical-sessions/presentation/lu.

[118] Om Rameshwar Gatla, Mai Zheng, Muhammad Hameed, Viacheslav Dubeyko, Adam Manzanares, Filip Blagojevic,
Cyril Guyot, and Robert Mateescu. 2018. Towards robust file system checkers. ACM Trans. Storage (TOS) 14, 4 (2018),
1-25.

[119] Om Rameshwar Gatla and Mai Zheng. 2017. Understanding the fault resilience of file system checkers. In Proceedings
of the 9th USENIX Workshop on Hot Topics in Storage and File Systems (HotStorage’17).

[120] Haogang Chen, Daniel Ziegler, Tej Chajed, Adam Chlipala, M. Frans Kaashoek, and Nickolai Zeldovich. 2015. Using
Crash Hoare logic for certifying the FSCQ file system. In Proceedings of the 25th Symposium on Operating Systems
Principles (SOSP’15). ACM, New York, NY, 18-37. DOI : http://dx.doi.org/10.1145/2815400.2815402

Received February 2021; revised June 2021; accepted August 2021

ACM Transactions on Storage, Vol. 18, No. 2, Article 14. Publication date: April 2022.

http://dx.doi.org/10.1145/2987550.2987583
https://www.usenix.org/conference/fast16/technical-sessions/presentation/schroeder
http://dl.acm.org/citation.cfm?id=1855807.1855814
https://www.usenix.org/conference/fast13/technical-sessions/presentation/lu
http://dx.doi.org/10.1145/2815400.2815402

