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Abstract 

To invest effort into any cognitive task, people must be sufficiently motivated. Whereas 

prior research has focused primarily on how the cognitive control required to complete 

these tasks is motivated by the potential rewards for success, it is also known that 

control investment can be equally motivated by the potential negative consequence for 

failure. Previous theoretical and experimental work has yet to examine how positive and 

negative incentives differentially influence the manner and intensity with which people 

allocate control. Here, we develop and test a normative model of control allocation 

under conditions of varying positive and negative performance incentives. Our model 

predicts, and our empirical findings confirm, that rewards for success and punishment 

for failure should differentially influence adjustments to the evidence accumulation rate 

versus response threshold, respectively. This dissociation further enabled us to infer 

how motivated a given person was by the consequences of success versus failure. 

 

Author Summary 

From the school to the workplace, whether someone achieves their goals is determined 

largely by the mental effort they invest in their tasks. Recent work has demonstrated 

both why and how people adjust the amount of effort they invest in response to 

variability in the rewards expected for achieving that goal. However, in the real world, 

we are motivated both by the positive outcomes our efforts can achieve (e.g., praise) 

and the negative outcomes they can avoid (e.g., rejection), and these two types of 

incentives can motivate adjustments not only in the amount of effort we invest but also 

the types of effort we invest (e.g., whether to prioritize performing the task efficiently or 
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cautiously). Using a combination of computational modeling and a novel task that 

measures voluntary effort allocation under varying incentive conditions, we show that 

people should and do engage dissociable forms of mental effort in response to positive 

versus negative incentives. With increasing rewards for achieving their goal, they 

prioritize efficient performance, whereas with increasing penalties for failure they 

prioritize performing cautious performance. We further show that these dissociable 

strategies enable us to infer how motivated a given person was based on the positive 

consequences of success relative to the negative consequences of failure.  
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Introduction 

People must regularly decide how much mental effort to invest in a task, and for how 

long. When doing so, they weigh the costs of exerting this effort against the potential 

benefits that would accrue as a result [1,2]. These benefits include not only the positive 

consequences of success (e.g., money or praise) but also the negative consequences 

of failure (e.g., criticism or rejection). Prior work suggests that people likely vary in the 

extent they are motivated by the prospect of achieving a positive outcome versus 

avoiding a negative outcome [3,4]. For example, some students study diligently to earn 

praise from their parents while others do so to avoid embarrassment. The overall 

salience of these incentives will determine when and how a given person decides to 

invest mental effort (i.e., engage relevant cognitive control processes [5], including 

when they choose to disengage from effortful tasks [6,7]). However, while a great deal 

is known about how people adjust cognitive control in response to varying levels of 

potential reward [5,8,9], much less is known about how they similarly adjust to varying 

levels of potential punishment, nor the types of control allocation strategies that are 

most adaptive under these two incentive conditions.  

 

Previous research has examined how control allocation varies as a function of the 

reward for performing well on a task, such that participants generally perform better 

when offered a greater reward [10–14]. For instance, when earning rewards during a 

cognitive control task (e.g., Stroop) is contingent on both speed and accuracy, 

participants are faster and/or more accurate as potential rewards increase [11,15–17]. 

While studies have examined how motivation to avoid negative outcomes influence 
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cognitive control [18–22], a challenge of interpreting these mixed behavioral patterns is 

that participants deploy a variety of behavioral strategies as potential punishments 

increase [22,23]. Past work has demonstrated that these strategies, such as increased 

task processing (e.g., attentional focus) or adjusting decision thresholds, can be linked 

to different forms of control adjustment (e.g., prioritizing speed versus accuracy; [24–

27]). However, it remains unknown whether participants selectively deploy different 

forms of control adjustments when incentivized under distinct incentive regimes (i.e., to 

avoid poor performance versus achieve good performance).  

 

Recent theoretical work helps to frame predictions regarding when and how people 

might vary their control allocation in response to different forms of incentives [1]. For 

instance, normative accounts of physical effort allocation have proposed that animals 

and humans vary the intensity of their effort (e.g., motor vigor) to maximize their net 

reward per unit time (reward rate [28–31]). We have recently extended this framework 

to describe how people determine the appropriate allocation of cognitive control in a 

given situation. Specifically, we have suggested that people select the amount and 

type(s) of cognitive control that maximize the overall rate of expected rewards, while 

minimizing expected effort costs. The difference between these two quantities, referred 

to as the Expected Value of Control (EVC), indexes the extent to which the benefits of 

control outweigh its costs [1,2,32] (see also [33]). 

 

The EVC model has been successful at accounting for how people vary the intensity of 

a particular type of control (e.g., attention to a target stimulus/feature) to achieve greater 
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rewards [34,35]. However, limitations in existing data have prevented EVC from 

addressing how the type of control being allocated should depend on the type of 

incentive being varied. One limitation, noted above, is the dearth of research on how 

people adjust control to positive versus negative incentives. A second potential 

limitation is that most existing studies examine how performance varies over a fixed set 

of trials (e.g., 200 total trials completed over the course of an experiment). The maximal 

expected reward is determined by the number of trials in the task, which could limit the 

underlying drive to maximize reward rate. A stronger test of reward rate maximization, 

and one that is arguably more analogous to real-world effort allocation, would allow 

participants to perform as much or as little of the task as they like over a fixed duration 

[36], to tighten the link between reward rate and overall expected reward.  

 

In the current study, we developed a novel paradigm in which participants perform 

consecutive trials of a control-demanding task (the Stroop task) over a fixed time 

interval. We examined how the amount and type(s) of control allocated to this task 

varied under different incentive types (reward vs. punishment) and different magnitudes 

of those incentives (small vs. large). Across two experiments, participants demonstrated 

distinct patterns of task performance in the two incentive conditions: faster responses 

for increasing rewards, slower but more accurate responses for increasing punishment. 

We show that these patterns are consistent with normative predictions of a control 

allocation model that maximizes reward rate while minimizing effort costs. The model 

predicts that rewards versus punishments favor divergent control strategies: higher 

reward promotes faster information processing to maximize (correct) response rate, 
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whereas higher punishment promotes greater caution to minimize potential errors. 

Within the framework of a drift diffusion model (DDM), our normative model predicts that 

participants will respond to increases in reward level by both increasing their evidence 

accumulation rate (drift rate) and lowering their response threshold, whereas they will 

respond to increases in punishment level by primarily increasing their threshold. Model 

fits to behavioral data across both studies confirmed these predictions.  

 

Our model’s ability to make divergent predictions about the influence of incentives on 

the joint allocation of two forms of control (i.e., across drift rate and threshold) enabled 

us to make further inferences based on each participant’s unique behavioral profile. 

Specifically, by estimating how these DDM parameters varied together across 

conditions, we were able to infer how sensitive that participant might have been to 

reward and punishment to generate the pattern of behavior that they did. Collectively, 

this work demonstrates a compelling novel method for inferring variability in how people 

evaluate costs and benefits when deciding when and how much to allocate cognitive 

control.  
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Fig 1. Interval-Based Incentivized Cognitive Control Task.  

At the start of each interval, a visual cue indicates the amount of reward (monetary gain) 

for correct responses and the penalty amount (monetary loss) for incorrect responses 

within that interval. Participants can complete as many Stroop trials as they want within 

that interval. The cumulative reward over a given interval is tracked at the bottom of the 

screen. Correct responses increase this value, while incorrect responses decrease this 

value. At the end of each interval, participants are told how much they earned. The 

upper right inset shows the cues across the four conditions. 

Results 

Participants (N=32) performed a task in which they were given fixed time intervals 

(between 8 and 12 seconds long) to perform as many trials as they wanted of a 

cognitively demanding task (Stroop task; Fig 1). They received monetary reward for 
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each correct response within a given interval, and incurred a monetary loss (penalty) for 

each incorrect response. The magnitude of reward and penalty ($0.01 or $0.10) were 

varied across intervals, and were cued prior to the start of each interval.  

Behavioral Performance 

We found that when participants were expecting a larger reward for each correct 

response, they completed more trials correctly in a given interval compared to when 

they were expecting smaller rewards (F(1,31)=28.72, p<0.001; Fig 2A, Table 1). 

Variability in punishment magnitude appeared to have the opposite influence on 

behavior. When participants were expecting a larger punishment for each incorrect 

response, they completed fewer correct trials in a given interval than when they were 

expecting smaller punishments (F(1,31)=23.11, p<0.001; Fig 2B). We also observed a 

trending interaction between reward and punishment (F(1,29)=3.77, p=0.062) whereby 

the reward-related improvements in interval-level performance were enhanced in high-

punishment compared to low-punishment intervals.  
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Fig 2. Effects of reward and punishment on overall task performance.  

(A) With increasing expected reward, participants completed more correct responses 

per second within a given interval (left), which reflect faster responding on correct trials 

(top right) without any change in overall accuracy (bottom right). (B) With increasing 

expected punishment, participants instead completed fewer trials per second over an 

interval, reflecting slower and more accurate responses. Error bars reflect 95% CI. n.s.: 

p>0.05; ***: p<0.001 

 

Table 1. Mixed Model Results for Correct Responses per Second 

*: p<0.05, **: p<0.01, ***: p<0.001  

 

  Correct Responses Per Second 

Predictors Estimates S.E. P-Value 

Age -0.036 0.031 0.238 

Female - Male 0.075 0.032 0.020* 



11 

High Penalty - Low Penalty -0.026 0.005 <0.001*** 

High Reward - Low Reward 0.038 0.007 <0.001*** 

Average Congruence -0.015 0.005 0.001** 

Reward ⨉ Penalty 0.009 0.005 0.052 

Number of Subjects 32 

Observations 2469 

Marginal R2 / Conditional R2 0.093 / 0.551 

 

When separately examining how incentives influenced speed and accuracy, we found 

an intriguing dissociation that helped account for the inverse effects of reward and 

punishment on the number of correct responses per second. We found that larger 

potential rewards induced responses that were faster (F(1,28)=31.83, p<0.001) but not 

more or less accurate (Chisq(1)=0.26, p=0.612; Fig 2A and Table 2). By contrast, larger 

potential punishment induced responses that were slower (F(1,30)=35.28, p<0.001) but 

also more accurate (Chisq(1)=26.73, p<0.001; Fig 2B). These results control for trial-to-

trial differences in congruence, which, as expected, revealed faster (F(1,31)=115.28, 

p<0.001) and more accurate (Chisq(1)=4.13, p=0.042) responses for congruent stimuli 

compared to incongruent stimuli. Although there were no significant two-way 

interactions between incentives and congruency on performance, we observed a 

significant three-way interaction between reward, penalty, and congruence 

(Chisq(1)=6.24, p=0.013) specific to accuracy. Together, these data suggest that 

participants applied distinct strategies for engaging cognitive control across reward and 

punishment incentives. 
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Table 2. Mixed Model Results for Log-Transformed Reaction Time and Accuracy 

*: p<0.05, **: p<0.01, ***: p<0.001 

 

  Log-transformed RT Accuracy 

Predictors Estimates S.E. P-Value Odds Ratios S.E. P-Value 

Age 0.014 0.007 0.066 0.941 0.117 0.623 

Female - Male -0.023 0.007 0.002** 1.234 0.155 0.095 

High Penalty - Low Penalty 0.014 0.002 <0.001*** 1.381 0.082 <0.001*** 

High Reward - Low Reward -0.012 0.002 <0.001*** 1.028 0.039 0.464 

Trial Congruence (Cong-Incong) -0.020 0.002 <0.001*** 1.105 0.050 0.028* 

Reward ⨉ Penalty -0.003 0.001 0.015* 1.014 0.042 0.729 

Penalty ⨉ Congruence 0.001 0.001 0.353 1.043 0.038 0.256 

Reward ⨉ Congruence -0.001 0.001 0.432 1.044 0.039 0.249 

Reward ⨉ Penalty ⨉ Congruence 0.000 0.001 0.543 1.097 0.041 0.012* 

Number of Subjects 32 32 

Observations 27509 28785 

Marginal R2 / Conditional R2 0.056 / 0.255 0.055 / 0.150 

Reward Rate-Optimal Control Allocation: Normative Predictions 

To generate predictions about performance on the Stroop task, we parameterized the 

tasks as a process of noisy evidence accumulating towards one of two boundaries 

(correct vs. error), using the drift diffusion model (DDM) [34,37]. We hypothesized that 

two of the DDM parameters that determine performance on a given trial are the rate of 

evidence accumulation (drift rate, 𝑣) and the decision threshold (𝑎). As the drift rate 

increases, the likelihood of a correct response increases (error rate decreases), and 
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responses are faster. As the threshold increases, responses are also more likely to be 

correct but are slower (Fig 3A; [31]). As we describe below, a key prediction is that 

adjustments in these parameters may underlie divergent strategies for cognitive control 

allocation. 

 

Previous theoretical and empirical work has shown that participants can adjust 

parameters of this underlying decision process to maximize the rate at which they are 

rewarded over the course of an experiment [31,38]. This reward rate (𝑅𝑅) is determined 

by a combination of performance metrics (response time and error rate [𝐸𝑅], [31]) and 

the incentives for performance (i.e., outcomes for correct vs. incorrect responses): 

 

𝑅𝑅 =
𝑅 × (1 − 𝐸𝑅) − 𝑃 × 𝐸𝑅

𝐷𝑇 + 𝑁𝐷𝑇 	

 

Here, the numerator (expected reward) is determined by the likelihood of a correct 

response (1 − 𝐸𝑅), scaled by the subjective reward for a correct response (𝑅), relative 

to the likelihood of an error (𝐸𝑅), scaled by the associated subjective punishment (𝑃) 

[39]. The denominator (response time) is determined by the time it takes to accumulate 

evidence for a decision (decision time [𝐷𝑇]) as well as additional time to process stimuli 

and execute a motor response (non-decision time [𝑁𝐷𝑇]). 

 

To correctly respond to a Stroop trial (i.e., name stimulus color), participants need to 

recruit cognitive control to overcome the automatic tendency to read the word [40,41]. 

Building on past work [31,38,39], we can use the reward rate formulation above to 
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identify how participants should normatively allocate control to maximize the reward rate 

(Fig 3B and 3C). To do so, we make three key assumptions. First, we assume that 

participants performing our task choose between adjusting two strategies for increasing 

their reward rate: (1) increasing attentional focus on the Stroop stimuli (resulting in 

increased drift rate toward the correct response), and (2) increasing their threshold to 

require more evidence accumulation before responding. Second, we assume that 

participants seek to identify the combination of these two DDM parameters that 

maximize reward rate. Third, we assume that increasing the drift rate incurs a nonlinear 

cost, which participants seek to minimize. The inclusion of this cost term is motivated by 

previous psychological and neuroscientific research [1] and by its sheer necessity for 

constraining the model from seeking implausibly high values of drift rate (i.e., as this 

cost approaches zero, the reward-rate-maximizing drift rate approaches infinity, as 

shown in Fig 3B). While a quadratic cost term was chosen a priori based on previous 

work [33,42], follow-up analyses (See Supplementary Results 1) indicated that the 

predictions made by this quadratic function are also more consistent with our data than 

those for a linear (i.e., absolute) function. 

 

𝑅𝑅 =
𝑅 × (1 − 𝐸𝑅) − 𝑃 × 𝐸𝑅

𝐷𝑇 + 𝑁𝐷𝑇 − 𝐸 × 𝑣!	

 

In this formula, 𝐸represents the weight of effort cost. Since the optimal drift rate and 

threshold are determined by the ratios 𝑅/𝐸 and 𝑃/𝐸, the magnitude of effort costs is 

held constant (𝐸 = 1) for the reward rate optimization process, putting reward and 
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punishment into units of effort cost. With this modified form of reward rate, the optimal 

drift rate is well-constrained (Fig 3C). 

 

Fig 3. The influence of DDM parameter settings on estimates of reward rate.  

(A) The expected error rate (𝐸𝑅) and decision time (𝐷𝑇) can be estimated as a function 

of drift rate and threshold. B-C) Reward rate is traditionally defined as a function of 

expected error rate, scaled by the value of correct vs. incorrect responses, and the 

overall response time (the combination of decision time and decision-unrelated 

processes [31]). The combination of drift rate and threshold settings that maximizes 

reward rate (black dots) differs depending on whether drift rate is assumed to incur an 

effort cost or not. (B) Without a cost, it is always optimal to maximize drift rate. (C) With 

a cost, drift rate and threshold must both fall within a more constrained set of parameter 

values. Reward rate isolines in (B-C) are defined at Subjective Reward = 5, Subjective 

Penalty = 5, non-decision time = 400ms. (D) As the subjective reward for each correct 

response increases (plotted from 8 to 20 a.u.), the optimal joint configuration of drift rate 
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and threshold (black dot) moves primarily in the direction of increasing drift rate. As the 

subjective penalty for an incorrect response increases (plotted from 5 to 625 a.u.), this 

optimal configuration moves in the direction of increasing threshold. 

 

Using this formulation of reward rate (𝑅𝑅), we can generate predictions about the 

allocation of cognitive control (the combination of drift rate and threshold) that would be 

optimal under different reward and punishment conditions. To do so, we varied reward 

and punishment values and, for each pair, identified the pair of drift rate and threshold 

that would maximize reward rate. As reward increases, the model suggests that the 

optimal strategy is to increase the drift rate. As punishment increases, the optimal 

strategy is to increase the threshold (Fig 4A). These findings indicate that the weights 

for rewards and punishments jointly modulate the optimal strategy for allocating 

cognitive control and that these two types of incentives focus on distinct aspects of the 

strategy. Specifically, they predict that people will tend to increase drift rate the more 

they value receiving a reward for a correct response. In contrast, people will adjust their 

threshold depending on how much they value receiving a reward for a correct response 

(decrease threshold) and receiving a punishment for an incorrect response (increase 

threshold). 

Reward Rate-Optimal Control Allocation: Empirical Evidence 

To test whether task performance was consistent with the predictions from our 

normative model, we fit behavioral performance on our task (reaction time and 

accuracy) with the Hierarchical Drift Diffusion Model (HDDM) package [43]. A 

systematic model comparison showed that the best-fitting parameterization of this 
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model for our task allowed both drift rate and threshold to vary with trial-to-trial 

differences in congruency, reward level, and/or penalty level (Fig 4B; also see Part 3 in 

S1 Supporting Information). Critically, the parameter estimates from this model were 

consistent with predictions of our reward-rate-optimal DDM (Figs 4C, 4D, and 4E). 

Consistent with normative predictions, we found that reward and punishment exhibited 

dissociable influences on DDM parameters, such that larger rewards increased drift rate 

and decreased threshold, whereas larger punishment promoted a higher threshold. 

These findings control for the effect of congruency on DDM parameters (with 

incongruent trials being associated with lower drift rate and higher threshold). Taken 

together, our empirical findings are consistent with the prediction that participants are 

optimizing reward rate, accounting for potential rewards, potential punishments, and 

effort costs. 
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Fig 4. Normative and empirically observed estimates of incentive effects on DDM 

parameters.  

(A) Combinations of drift rate and threshold that optimize (cost-discounted) reward rate, 

under different values of reward and penalty. (B) We fit our behavioral data to different 

parameterizations of the DDM, with drift rate and/or threshold varying with reward, 

penalty, and/or congruence levels. The best-fitting model varied both DDM parameters 

with all three task variables. (C) Estimated combination of drift rate and threshold for 

four conditions in the experiment. The upward triangles indicate high magnitude, 

whereas the upside-down triangle indicates low magnitude. Error bars reflect s.d. (D-E) 

Consistent with predictions based on reward-rate optimization (D, cf. panel A), we found 

that larger expected rewards led to increased drift rate, whereas larger expected 

penalties led to increased threshold (E, cf. panel C). To a lesser extent, we found a 

decreased threshold with higher expected rewards. Error bars reflect 95% CI. *: p<0.05; 

***: p<0.001. See also Part 4 in S1 Supporting Information for posterior predictive check 

for DDM. 

 

Inferring Individual Differences in Sensitivity to Reward and Punishment  

Our findings show that performance varies as a function of expected reward and 

punishment, and that these performance changes are consistent with a normative 

model according to which participants are maximizing reward and minimizing effort 

costs. However, both our model predictions and empirical findings also show that 

performance alone is insufficient to determine to what extent a participant was driven by 
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a given incentive. For instance, faster performance could result from a participant being 

more sensitive to rewards, less sensitive to penalties, or both. The same is even true for 

estimates of individual model parameters within each of these conditions - our model 

predicts that a more reward-sensitive participant will lower their threshold than a less 

reward-sensitive participant, but that the same would be true for participants less vs. 

more sensitive to penalties. However, a key feature of our normative model is that it 

predicts how people will jointly configure control over drift rate and threshold based on 

their expected reward rate in a given condition, and predicts unique combinations of 

these DDM parameters under a given level of expected reward and penalty (Fig 4A). As 

a result, we can examine how participants move across this two-dimensional space as 

their rewards and penalties vary (Fig 5A), in order to make more robust inferences 

about the extent to which their performance was driven by each of these incentives. In 

other words, we can “reverse-engineer” how sensitive that participant had been to the 

rewards and penalties associated with performance on our task.  

 

To accomplish this, we used inverse reward-rate optimization to infer the individualized 

subjective weights of reward and punishment across the four task conditions based on 

participants' estimated DDM parameters. For each task condition, we first estimated the 

drift rate (𝑣) and threshold (𝑎) for each individual. We then calculated the partial 

derivatives of reward rate (𝑅𝑅) with respect to these condition-specific estimates of 𝑣 

and 𝑎. By setting these derivatives to 0 (i.e., optimizing the reward-rate equation), we 

can calculate the sensitivity to reward and punishment (𝑅2 and 𝑃2) that make the 
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estimated DDM parameters the optimal strategy (Fig 5C). This workflow can be 

summarized as follows: 

 

 

𝐷𝐷𝑀 → (𝑣5, 𝑎5) → 7

𝜕𝑅𝑅(𝑣5, 𝑎5, 𝑅, 𝑃)
𝜕𝑣5 = 0

𝜕𝑅𝑅(𝑣5, 𝑎5, 𝑅, 𝑃)
𝜕𝑎5 = 0

→ (𝑅2, 𝑃2) 

To validate this approach, we simulated DDM parameters under different combinations 

of reward and penalty sensitivities (𝑅 and 𝑃), and tested whether we could recover the 

ground-truth parameters based on simulated data. We were able to successfully 

recover both of these parameters (see Part 5 in S1 Supporting Information; correlation 

between simulated and recovered values: 𝑟 = 0.99 for 𝑅, and 𝑟 = 0.93 for 𝑃), confirming 

that our estimation approach can be effective at inferring individual’s subjective 

valuation of reward and punishment when determining cognitive control adjustments. 

 

A repeated-measures ANOVA on our estimates of 𝑅 and 𝑃 (log-transformed) revealed a 

main effect of incentive magnitude (F(1,251)=12.64, p=4.5e-4), with larger 𝑅2 on high-

reward intervals (t(31)=4.9, p=3.2e-5) and larger 𝑃2 on high-punishment intervals 

(t(31)=4.72, p=4.8e-5). We also observed a main effect of valence, such that estimates of 

𝑃2 were higher than estimates of 𝑅2 (F(1,251)=603.70, p<2e-16). The ANOVA also revealed 

a significant interaction between valence and magnitude (F(1,251)=7.47, p=0.007; see Fig 

5D), such that 𝑃2 estimates differed more across punishment levels than 𝑅2 estimates 

differed across reward levels. These asymmetric effects of rewards and punishment on 

reward rate are consistent with research on loss aversion [44] and error aversion [45].  
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Fig 5. Inference of sensitivity to reward and penalty based on DDM estimates and 

reward rate optimization model. (A) Estimated group-level reward-rate optimal 

combinations of drift rate and threshold for the four conditions in the experiment. The 

upward triangles indicate high magnitude, whereas the upside-down triangle indicates 

low magnitude. Error bars reflect s.d. (B) To infer the sensitivity to reward and penalty 

for a given individual, we invert this reward-rate optimization procedure, estimating the 

set of reward and penalty weights (𝑅 and 𝑃) that best accounts for that person's pattern 

of behavior in a given condition. (C-D) The resulting estimates of sensitivity to reward 

and penalty recapitulate our experimental manipulation, with higher sensitivity to reward 

in the high vs. low reward condition, and higher sensitivity to penalty for the high vs. low 

penalty condition. Panel (C) shows summary statistics across individual participants. 

Panel (D) shows a summary of individual-level contrasts between sensitivity to high vs. 

low reward and penalty. Error bars reflect s.e.m. **: p<0.01; ***: p<0.001. Parameter 
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recovery validates subjective weight estimates (see Part 5 in S1 Supporting 

Information). 

 

 

Replication and extension of Study 1 findings in an independent sample   

To verify the robustness of our observed dissociation between reward effects on drift 

rate and penalty effects on threshold, we recruited a separate group of participants 

(N=65) to perform our task. To further investigate whether these effects generalize 

beyond two levels of reward and penalty, we also included an intermediate level of 

reward and penalty between the two extremes previously tested. The magnitude of 

reward and punishment in each interval was therefore selected independently from 

three possible levels: 1 cent (Low), 5 cents (Medium) and 10 cents (High). The selected 

reward and punishment are then combined into a cue indicating these incentive levels.  

 

This second study replicated the dissociable behavioral patterns observed in Study 1. 

Consistent with the previous study, we found that participants were faster (F(2,64)=13.91,  

p<0.001) but similarly accurate (Chisq(2)=2.23, p=0.317) with higher levels of reward, 

resulting in an overall higher number of correct responses per second as expected 

reward increased (F(2,70)=12.28, p<0.001; Fig 6A). Also consistent with Study 1, 

participants were slower (F(2,63)=8.49, p<0.001) but more accurate (Chisq(2)=15.21, 

p<0.001) with higher levels of punishment, resulting in fewer correct responses per 

second (F(2,64)=4.30, p=0.018; Fig 6B). Response rates under Medium levels of reward 

and penalty were intermediate to response rates under Low and High levels of those 
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respective variables. See Part 6 in S1 Supporting Information for the details of the fitted 

mixed models. 

 

Fig 6. Effects of reward and punishment on overall task performance (A, B) and 

parameters of drift diffusion model (C) in Study 2.  

(A) With increasing expected reward, participants completed more correct responses per 

second within a given interval (Left), which reflect faster responding on correct trials (top right) 

without any change in overall accuracy (bottom right). (B) With increasing expected punishment, 
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participants instead completed fewer trials per second over an interval, reflecting slower and 

more accurate responses. (C) Drift rate increases with higher expected reward while threshold 

increases with higher expected punishment. Error bars reflect 95% CI. n.s.: p>0.05; *: p<0.05; 

**: p<0.01; ***: p<0.001. 

 

 

When fitting Study 2 data with our best-fitting model from Study 1, we replicate the 

normatively predicted dissociation observed in that study. Reward exerted a significant 

positive influence on drift rate (p<0.001) and negative influence on threshold (p=0.013). 

Penalty exerted a significant positive influence on threshold (p=0.008) but not drift rate 

(p=0.47). These findings are consistent with the predictions from the reward rate 

optimization model.  

 

Interaction between incentives and trial congruence 

We performed a set of exploratory analyses to investigate whether the influence of 

reward and penalty on task performance depended on trial congruence. In Study 1, we 

found that the main effects of reward and penalty on behavioral performance did not 

significantly differ between congruent and incongruent trials (ps>0.20; Fig 7A and Table 

2). Similarly, for Study 2 we did not find significant interactions between reward and trial 

congruence (response time: F(2,246)=1.32, p=0.27; accuracy: Chisq(2)=5.83, p=0.054; Fig 

7B) or between penalty and trial congruence (reaction Time: F(2,63)=1.54, p=0.22; 

accuracy: Chisq(2)=5.03, p=0.081; Fig 7B). Interestingly, follow-up analyses using the 

DDM uncovered a significant interaction between penalty level and congruence on drift 

rate in both studies, such that higher penalties increased drift rate on incongruent trials 
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and decreased drift rate on congruent trials (see Part 1 in S1 Supporting Information). 

While intriguing, given that this particular interaction was not predicted a priori and was 

not reliably observed within RTs or accuracy, this finding should be interpreted with 

caution. 

 

 

Fig 7. Effects of reward and penalty in congruent and incongruent trials.  

(A) Participants were faster and more accurate when responding to congruent stimuli 

compared to incongruent stimuli. The effects of reward and penalty on response time 

and accuracy are consistent across congruent and incongruent trials in Study 1. (B) 

Study 2 replicated these parallel influences of reward and penalty on congruent and 

incongruent trials, with only a marginal interaction between incentives and trial 

congruence observed for accuracy.  



27 

Discussion  

We investigated divergent influences of reward versus punishment on cognitive control 

allocation, and the normative basis for these incentive-related control adjustments. 

Participants performed a self-paced cognitive control task that offered the promise of 

monetary rewards for correct responses and penalized monetary losses for errors. We 

found that higher potential rewards led to faster but equally accurate responding 

(resulting in increased monetary earnings), whereas higher potential punishment led to 

more accurate but slower responding (thus earning less reward but avoiding 

punishment). We showed that these dissociable patterns of incentive-related 

performance could be accounted for by two distinct strategies (adjustment of the 

strength of attention vs. response threshold), which are differentially optimal (i.e., 

reward rate maximizing) in response to these two types of incentives. 

 

Our findings build on past research on reward rate maximization that has shown that 

people flexibly recruit cognitive control to maximize their subjective reward per unit time 

[30,31,35]. Our current experiments build on this research in several important ways. 

First, we apply this reward rate optimization model to performance in a self-paced 

variant of a cognitive control task. Second, we model and experimentally manipulate the 

incentive value for a correct versus incorrect response. Third, we incorporate the well-

known cost of cognitive effort [1,46] into the reward rate optimization model (see below). 

Finally, we used our model to perform reverse inference on our data, identifying the 

subjective weights of incentives that gave rise to performance on a given trial. 
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We showed that adjustments of threshold and drift rate can vary as a function of task 

incentives, which then drive adaptive adjustments in cognitive control. Notably, 

achieving this result required us to build in the assumption that increases in drift rate 

incur a cost, an assumption that is grounded in past research on mental effort [1,33]. In 

the absence of this cost, our reward rate model predicts that individuals should maintain 

a maximal drift rate across incentive conditions, which is inconsistent with our findings. 

However, while we have ruled out the possibility that drift rate is costless, the precise 

form of its cost function remains an open question. Follow-up simulations show that our 

assumed quadratic cost function -- which was motivated by previous research into 

cognitive effort discounting [47,48] -- offers a smoother objective function than linear or 

exponential alternatives (Figure A3 in S1 Supporting Information), but all three of these 

cost functions make qualitatively similar predictions for our current task. We have also 

left open the question of whether and how a cost function applies to increases in 

response threshold. While there is reason to believe that threshold adjustments may 

incur analogous effort costs to attentional adjustments, in part given the control 

allocation mechanisms they share [2,32,34,49–51], threshold adjustments already carry 

an inherent cost in the form of a speed-accuracy tradeoff. It therefore wasn't strictly 

necessary to incorporate an additional effort cost for threshold in the current simulations 

(Figure A4 in S1 Supporting Information), though it is possible such a cost would 

provide additional explanatory power under a different task design. Future work should 

investigate potential differences in these cost functions across these and other common 

control signals.  
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While our modified reward rate optimization model was able to accurately characterize 

how reward and punishment incentives influenced cognitive control allocation in our 

task, a critical next step will be to examine the degree to which these findings 

generalize to other tasks and incentive schemes, and to refine the model accordingly. 

For instance, in addition to testing the form that different control cost functions take, 

future work can clarify how people discount time when optimizing this reward function. 

Our model assumes that people discount time in a multiplicative fashion (i.e., as the 

denominator for reward), which is a standard assumption in models of reward rate 

optimization [31,38]. However, we cannot rule out an alternative possibility that they are 

instead discounting time additively, as is assumed by models that treat time as an 

opportunity cost of effort [35,52], because these models are likely to make similar 

predictions with respect to drift and threshold optimization in our current study. 

Identifying and testing tasks that differentiate between these predictions holds value for  

bridging these two lines of research in the service of better understanding effort 

allocation.  

 

Another open question is whether people weigh the incentives for a correct response 

differently depending on whether these incentives are positive or negative. In our study, 

correct responses were only associated with potential rewards (positive reinforcement), 

but a key prediction of our model is that people should adjust their control configuration 

similarly (i.e., increase drift rate, lower threshold) when correct responses instead avoid 

a negative outcome (negative reinforcement), though perhaps to different degrees. Our 
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approach thus offers promise for disentangling the roles of incentive valence (positive 

vs. negative) and incentive type (reinforcement vs. punishment) in motivated control 

[53]. 

 

More generally, it will be important to test whether similar drift and threshold 

adjustments occur across other cognitive control tasks that carry a similar structure to 

this one, and to extend our optimization approach to tasks that require different forms 

of multivariate control configuration, such as distributing attention across multiple 

stimuli or features [54,55]. Broadening the applications of this approach to a wider array 

of control signals will also provide a critical step towards understanding how people 

distribute their cognitive effort across a multitude of tasks in real-world settings. Along 

these lines, a simplifying assumption of our current approach was that people assume 

reward rate is constant within a given task environment. While this assumption was 

reasonable given the parameters of our task (i.e., where incentives were explicitly cued 

and pseudorandomized), a crucial next step will be to examine how people dynamically 

reconfigure control as they learn from feedback that the expected rewards and 

penalties in their environment are changing. Research has shown that people 

dynamically adjust their response threshold in both decision-making tasks [56] and 

cognitive control tasks [30,57] as they learn to expect greater rewards. It remains to be 

tested how these cognitive control adjustments are distributed across both threshold 

and drift rate with changes in both reward and punishment, as well as with individual-

specific [58,59] and context-specific [60] differences in learning from these positive and 

negative outcomes.  
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Interestingly, research into how people learn differentially from positive versus negative 

outcomes is that these learned values also differentially influence a person’s 

confidence on a given task, with negative feedback resulting in lower confidence in 

one’s performance on both perceptual and value-based choice tasks [61,62] Given the 

connections that have been separately drawn between confidence and adjustments of 

response threshold  [63,64], these findings converge with our own observations of 

increasing threshold in the face of higher expected punishment. Thus, an important 

direction for future work will be to examine how metacognitive experiences associated 

with our task vary with experienced incentives and potentially serve to moderate 

subsequent control adjustments.  

 

Finally, our combined theoretical and empirical approach enabled us to quantify 

individual differences in how participants subjectively valued expected rewards and 

punishments based solely on their task performance. We found that people weighed 

punishments more heavily than rewards, despite the equivalent currency (i.e., amounts 

of monetary gain vs. loss). This finding is consistent with past work on loss aversion [44] 

and motivation to avoid failure [45,65], and more generally, with the findings that distinct 

neural circuits are specialized for processing appetitive versus aversive outcomes 

[66,67]. While our approach to estimating these individual differences is exploratory and 

requires further validation across different tasks and incentive schemes (such as those 

noted above), we believe that it holds promise for understanding how people vary in 

their motivation to succeed and/or avoid failure in daily life [21,68–72]. Not only can this 
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method help to infer these sensitivity parameters for a given individual implicitly (i.e., 

based on task performance rather than self-report), it can also provide valuable insight 

into the cognitive and computational mechanisms that underpin adaptive control 

adjustments, and when and how they become maladaptive (e.g., for individuals with 

anxiety, depression, or schizophrenia) [73–78]. 

Materials and Methods 

Participants 

Study 1 

We collected 36 participants online through Amazon’s Mechanical Turk. We limited the 

sample to participants located within the United States, but did not put any other 

restrictions on demographics (e.g., race). Participants gave informed written consent 

and received cash ($3 to $6, depending on their performance and task contingencies) 

for participation. The study was approved by Brown University’s Institutional Review 

Board. 

 

4 participants were excluded for either not understanding the task properly (based on 

their responses to quiz questions after the instructions) or having mean accuracy below 

60% and mean reaction times outside of 3 standard deviations of the mean reaction 

time of all the participants. The remaining 32 participants (Gender: 31% Female; Age: 

35±10 years) were included in all of our analyses. 
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Study 2 

We collected 71 participants online through Amazon’s Mechanical Turk. Participants 

gave informed written consent and received cash ($3 to $6, depending on their 

performance and task contingencies) for participation. The study was approved by 

Brown University’s Institutional Review Board. 

 

6 participants were excluded for either not understanding the task properly (based on 

their responses to quiz questions after the instructions) or having mean accuracy below 

60% and mean reaction times outside of 3 standard deviations of the mean reaction 

time of all the participants. The remaining 65 participants (Gender: 45% Female; Age: 

38±9 years) were included in all of our analyses. 

Incentivized Cognitive Control Task 

Study 1 

We designed a new task to investigate cognitive control allocation in a self-paced 

environment (Fig 1). During this task, participants are given fixed time intervals (e.g., 10 

seconds) to perform a cognitively demanding task (Stroop task), in which they have to 

name the ink color of a color word. There were four possible ink colors (red, yellow, 

green and blue) across four possible color words (‘RED’, ‘YELLOW’, ‘GREEN’, ‘BLUE’). 

Participants were instructed to press the key corresponding to the ink color of each 

stimulus. The ink color could be congruent (e.g., BLUE) or incongruent (e.g., BLUE) 

with the meaning of the word. Responding to incongruent stimuli has been shown to 

require an override of their more automatic tendency to respond based on the word 

meaning. The overall ratio of congruent versus incongruent trials was 1:1. Participants 
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could perform as many Stroop trials as they wanted and were able during each interval, 

with a new trial appearing immediately after each response. Due to this self-paced 

design, the proportion of congruent trials could vary slightly across intervals. To 

discourage participants from developing a trial-counting strategy (e.g., aiming to 

complete 10 responses per interval), the duration of intervals varied across the session 

(i.e., ranging from 8 to 12 seconds). 

 

Participants were instructed that they would be rewarded for correct responses and 

penalized for incorrect responses. At the start of each interval, a visual cue indicated the 

level of reward and punishment associated with their responses in the subsequent 

interval. We varied reward for correct responses (+1 cent or +10 cents) and punishment 

for incorrect responses (-1 cent or -10 cents) within each subject, which leads to four 

distinct conditions (Fig 1). Each participant performed 20 intervals per condition. The 

main task was divided into 4 blocks. Within each block, one incentive was fixed across 

intervals (e.g., reward level) while the other incentive (e.g., penalty level) randomly 

varied across intervals. The type of incentive that was fixed vs. varying was swapped 

halfway through the experiment. The order of fixed incentives was counterbalanced 

across participants. During each interval, participants could complete as many Stroop 

trials as they would like. Below each Stroop stimulus, a tracker indicated the cumulative 

amount of monetary reward within that interval. After each interval, participants were 

informed how much they earned. To ensure that each interval was evaluated 

independently, participants were informed (veridically) that 8 out of the 80 intervals in 

the main task were randomly selected and the total money earned in these selected 
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intervals would be part of their final payment. The experiment was implemented within 

the PsiTurk framework [79].  

 

Before the main task, participants performed several practice sessions. First, they 

practiced the mapping between keyboard keys and colors (80 trials). Then they 

completed practice for the Stroop task (60 trials). Participants then practiced the Stroop 

task in the self-paced setting (4 intervals). In a final practice block, participants were 

introduced to the visual cues and practiced the self-paced intervals with these visual 

cues (12 intervals). 

 

Study 2 

The task in Study 2 has a similar structure compared to Study 1. The major difference 

between tasks was that the magnitude of reward and penalty was selected from three 

possible levels (1 cent, 5 cents and 10 cents) instead of binary levels in Study 1, such 

that there exist 9 distinct conditions in the experiment (3 levels of reward by 3 levels of 

punishment, Fig 6). Each participant performed 8 intervals per condition. Given that 

there were 3 levels of each incentive type in this study, the main task was divided into 6 

blocks (compared to 4 blocks in Study 1). As in Study 1, the condition was cued prior to 

the start of each interval.  

Analyses 

Study 1 

With this paradigm, we can analyze performance at the level of a given interval and at 

the level of responses to individual Stroop stimuli within that interval. We analyzed 
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participants' interval-level performance by fitting a linear mixed model (lme4 package in 

R; [80] to estimate the correct responses per second as a function of contrast-coded 

reward and punishment levels (High Reward = 1, Low Reward = -1, High Punishment 

=1, Low Punishment = -1) as well as their interaction. The models controlled for age, 

gender, and proportion of congruent stimuli, and using models with maximally specified 

random effects [81].  

𝐶𝑜𝑟𝑟𝑒𝑐𝑡/𝑠𝑒𝑐𝑜𝑛𝑑	 ∼ 𝑎𝑔𝑒	 + 	𝑔𝑒𝑛𝑑𝑒𝑟	 + 𝑟𝑒𝑤𝑎𝑟𝑑	 ∗ 	𝑝𝑒𝑛𝑎𝑙𝑡𝑦	 + 𝑚𝑒𝑎𝑛	𝑐𝑜𝑛𝑔𝑟𝑢𝑒𝑛𝑐𝑒 

To understand how the incentive effects on overall performance are composed of the 

influences on speed and accuracy, we separately fit linear mixed models to trial-wise 

reaction time (correct responses only) and accuracy, controlling for the stimuli 

congruency. We performed analysis of variance on the fitted mixed models to test the 

overall effects of reward and punishment. 

𝑙𝑜𝑔(𝑅𝑇	𝑓𝑜𝑟	𝑐𝑜𝑟𝑟𝑒𝑐𝑡	𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒) 	∼ 𝑎𝑔𝑒	 + 	𝑔𝑒𝑛𝑑𝑒𝑟	 + 𝑟𝑒𝑤𝑎𝑟𝑑	 ∗ 	𝑝𝑒𝑛𝑎𝑙𝑡𝑦	 ∗ 	𝑐𝑜𝑛𝑔𝑟𝑢𝑒𝑛𝑐𝑒 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦	 ∼ 𝑙𝑜𝑔𝑖𝑡(𝑎𝑔𝑒	 + 	𝑔𝑒𝑛𝑑𝑒𝑟	 + 𝑟𝑒𝑤𝑎𝑟𝑑	 ∗ 	𝑝𝑒𝑛𝑎𝑙𝑡𝑦	 ∗ 	𝑐𝑜𝑛𝑔𝑟𝑢𝑒𝑛𝑐𝑒) 

We parameterized participants' responses in the task as a process of noisy evidence 

accumulating towards one of two boundaries (correct vs. error) using the Drift Diffusion 

Model (DDM). The DDM is a mechanistic model of decision-making that decomposes 

choices into a set of constituent processes (e.g., evidence accumulation and response 

thresholding), allowing precise measurement of how different components of the choice 

process (e.g., RT and accuracy) are simultaneously optimized [37]. We performed 

hierarchical fitting of DDM parameters using the HDDM package [43]. In the DDM 

model, the drift rate and threshold depend on trial type (congruent or incongruent), 

reward level and/or penalty level. The selection of predictors for drift rate and threshold 
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is based on the model comparison using DIC. We fixed the starting point at the mid-

point between the two boundaries as there was no prior bias toward a specific response 

in the task. The non-decision time was fitted as a free parameter.  

 

We characterized the optimal allocation of cognitive control as the maximization of the 

reward rate [31] with modification for effort cost. Based on qualitative comparisons 

between predictions of different cost functions (see Part 2 in S1 Supporting 

Information), we chose to express these cost functions as a quadratic function of drift 

rate and to assume no cost on increases in threshold, but note that alternate formats of 

each of these cost functions yield qualitatively similar predictions for all of our key 

findings (see Part 2 in S1 Supporting Information). With the effort-discounted reward 

rate, we make predictions about the influences of incentives on control allocation by 

numerically identifying the optimal drift rate and threshold under varying reward and 

punishment. To validate our normative prediction, we fit accuracies and RTs across the 

different task conditions with a DDM [43], which allowed us to derive estimates of how a 

participant's drift rate and threshold varied across different levels of reward and 

punishment. We performed model comparison based on deviance information criterion 

(DIC; lower is better) to identify the best model for the behavioral data. Based on the 

assumption that participants' cognitive control allocation optimizes the reward rate, we 

inferred participants' subjective weights of reward and punishment from the estimated 

drift rate and threshold. 

 

Study 2 
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We performed linear mixed model analysis on the participants' interval-level 

performance with reward and punishment levels coded with sliding-difference contrast 

so that the two contrasts represent the difference between two consecutive reward or 

punishment levels (Medium - Low, High - Medium). We separately fit linear mixed 

models to trial-wise reaction time (correct responses only) and accuracy, controlling for 

the stimuli congruency. 

 

We fit participants’ responses with the DDM using three-level polynomial contrast 

coding to obtain the linear and nonlinear patterns of incentive effects on DDM 

parameters. The coefficients in these contrasts were then transformed back to the DDM 

parameters under each condition. 
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