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Abstract

To invest effort into any cognitive task, people must be sufficiently motivated. Whereas
prior research has focused primarily on how the cognitive control required to complete
these tasks is motivated by the potential rewards for success, it is also known that
control investment can be equally motivated by the potential negative consequence for
failure. Previous theoretical and experimental work has yet to examine how positive and
negative incentives differentially influence the manner and intensity with which people
allocate control. Here, we develop and test a normative model of control allocation
under conditions of varying positive and negative performance incentives. Our model
predicts, and our empirical findings confirm, that rewards for success and punishment
for failure should differentially influence adjustments to the evidence accumulation rate
versus response threshold, respectively. This dissociation further enabled us to infer

how motivated a given person was by the consequences of success versus failure.

Author Summary

From the school to the workplace, whether someone achieves their goals is determined
largely by the mental effort they invest in their tasks. Recent work has demonstrated
both why and how people adjust the amount of effort they invest in response to
variability in the rewards expected for achieving that goal. However, in the real world,
we are motivated both by the positive outcomes our efforts can achieve (e.g., praise)
and the negative outcomes they can avoid (e.g., rejection), and these two types of
incentives can motivate adjustments not only in the amount of effort we invest but also

the types of effort we invest (e.g., whether to prioritize performing the task efficiently or



cautiously). Using a combination of computational modeling and a novel task that
measures voluntary effort allocation under varying incentive conditions, we show that
people should and do engage dissociable forms of mental effort in response to positive
versus negative incentives. With increasing rewards for achieving their goal, they
prioritize efficient performance, whereas with increasing penalties for failure they
prioritize performing cautious performance. We further show that these dissociable
strategies enable us to infer how motivated a given person was based on the positive

consequences of success relative to the negative consequences of failure.



Introduction

People must regularly decide how much mental effort to invest in a task, and for how
long. When doing so, they weigh the costs of exerting this effort against the potential
benefits that would accrue as a result [1,2]. These benefits include not only the positive
consequences of success (e.g., money or praise) but also the negative consequences
of failure (e.g., criticism or rejection). Prior work suggests that people likely vary in the
extent they are motivated by the prospect of achieving a positive outcome versus
avoiding a negative outcome [3,4]. For example, some students study diligently to earn
praise from their parents while others do so to avoid embarrassment. The overall
salience of these incentives will determine when and how a given person decides to
invest mental effort (i.e., engage relevant cognitive control processes [5], including
when they choose to disengage from effortful tasks [6,7]). However, while a great deal
is known about how people adjust cognitive control in response to varying levels of
potential reward [5,8,9], much less is known about how they similarly adjust to varying
levels of potential punishment, nor the types of control allocation strategies that are

most adaptive under these two incentive conditions.

Previous research has examined how control allocation varies as a function of the
reward for performing well on a task, such that participants generally perform better
when offered a greater reward [10-14]. For instance, when earning rewards during a
cognitive control task (e.g., Stroop) is contingent on both speed and accuracy,
participants are faster and/or more accurate as potential rewards increase [11,15-17].

While studies have examined how motivation to avoid negative outcomes influence



cognitive control [18-22], a challenge of interpreting these mixed behavioral patterns is
that participants deploy a variety of behavioral strategies as potential punishments
increase [22,23]. Past work has demonstrated that these strategies, such as increased
task processing (e.g., attentional focus) or adjusting decision thresholds, can be linked
to different forms of control adjustment (e.g., prioritizing speed versus accuracy; [24—
27]). However, it remains unknown whether participants selectively deploy different
forms of control adjustments when incentivized under distinct incentive regimes (i.e., to

avoid poor performance versus achieve good performance).

Recent theoretical work helps to frame predictions regarding when and how people
might vary their control allocation in response to different forms of incentives [1]. For
instance, normative accounts of physical effort allocation have proposed that animals
and humans vary the intensity of their effort (e.g., motor vigor) to maximize their net
reward per unit time (reward rate [28—-31]). We have recently extended this framework
to describe how people determine the appropriate allocation of cognitive control in a
given situation. Specifically, we have suggested that people select the amount and
type(s) of cognitive control that maximize the overall rate of expected rewards, while
minimizing expected effort costs. The difference between these two quantities, referred
to as the Expected Value of Control (EVC), indexes the extent to which the benefits of

control outweigh its costs [1,2,32] (see also [33]).

The EVC model has been successful at accounting for how people vary the intensity of

a particular type of control (e.g., attention to a target stimulus/feature) to achieve greater



rewards [34,35]. However, limitations in existing data have prevented EVC from
addressing how the type of control being allocated should depend on the type of
incentive being varied. One limitation, noted above, is the dearth of research on how
people adjust control to positive versus negative incentives. A second potential
limitation is that most existing studies examine how performance varies over a fixed set
of trials (e.g., 200 total trials completed over the course of an experiment). The maximal
expected reward is determined by the number of trials in the task, which could limit the
underlying drive to maximize reward rate. A stronger test of reward rate maximization,
and one that is arguably more analogous to real-world effort allocation, would allow
participants to perform as much or as little of the task as they like over a fixed duration

[36], to tighten the link between reward rate and overall expected reward.

In the current study, we developed a novel paradigm in which participants perform
consecutive trials of a control-demanding task (the Stroop task) over a fixed time
interval. We examined how the amount and type(s) of control allocated to this task
varied under different incentive types (reward vs. punishment) and different magnitudes
of those incentives (small vs. large). Across two experiments, participants demonstrated
distinct patterns of task performance in the two incentive conditions: faster responses
for increasing rewards, slower but more accurate responses for increasing punishment.
We show that these patterns are consistent with normative predictions of a control
allocation model that maximizes reward rate while minimizing effort costs. The model
predicts that rewards versus punishments favor divergent control strategies: higher

reward promotes faster information processing to maximize (correct) response rate,



whereas higher punishment promotes greater caution to minimize potential errors.
Within the framework of a drift diffusion model (DDM), our normative model predicts that
participants will respond to increases in reward level by both increasing their evidence
accumulation rate (drift rate) and lowering their response threshold, whereas they will
respond to increases in punishment level by primarily increasing their threshold. Model

fits to behavioral data across both studies confirmed these predictions.

Our model’s ability to make divergent predictions about the influence of incentives on
the joint allocation of two forms of control (i.e., across drift rate and threshold) enabled
us to make further inferences based on each participant’s unique behavioral profile.
Specifically, by estimating how these DDM parameters varied together across
conditions, we were able to infer how sensitive that participant might have been to
reward and punishment to generate the pattern of behavior that they did. Collectively,
this work demonstrates a compelling novel method for inferring variability in how people
evaluate costs and benefits when deciding when and how much to allocate cognitive

control.
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Fig 1. Interval-Based Incentivized Cognitive Control Task.

At the start of each interval, a visual cue indicates the amount of reward (monetary gain)
for correct responses and the penalty amount (monetary loss) for incorrect responses
within that interval. Participants can complete as many Stroop trials as they want within
that interval. The cumulative reward over a given interval is tracked at the bottom of the
screen. Correct responses increase this value, while incorrect responses decrease this
value. At the end of each interval, participants are told how much they earned. The

upper right inset shows the cues across the four conditions.

Results

Participants (N=32) performed a task in which they were given fixed time intervals
(between 8 and 12 seconds long) to perform as many trials as they wanted of a

cognitively demanding task (Stroop task; Fig 1). They received monetary reward for



each correct response within a given interval, and incurred a monetary loss (penalty) for
each incorrect response. The magnitude of reward and penalty ($0.01 or $0.10) were

varied across intervals, and were cued prior to the start of each interval.

Behavioral Performance

We found that when participants were expecting a larger reward for each correct
response, they completed more trials correctly in a given interval compared to when
they were expecting smaller rewards (F1,31)=28.72, p<0.001; Fig 2A, Table 1).
Variability in punishment magnitude appeared to have the opposite influence on
behavior. When participants were expecting a larger punishment for each incorrect
response, they completed fewer correct trials in a given interval than when they were
expecting smaller punishments (F,31)=23.11, p<0.001; Fig 2B). We also observed a
trending interaction between reward and punishment (F(120=3.77, p=0.062) whereby
the reward-related improvements in interval-level performance were enhanced in high-

punishment compared to low-punishment intervals.
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Fig 2. Effects of reward and punishment on overall task performance.

(A) With increasing expected reward, participants completed more correct responses

per second within a given interval (left), which reflect faster responding on correct trials

(top right) without any change in overall accuracy (bottom right). (B) With increasing

expected punishment, participants instead completed fewer trials per second over an

interval, reflecting slower and more accurate responses. Error bars reflect 95% CI. n.s.:

p>0.05; ***: p<0.001

Table 1. Mixed Model Results for Correct Responses per Second

* p<0.05, **: p<0.01, ***: p<0.001

Correct Responses Per Second

Predictors Estimates S.E. P-Value
Age -0.036 0.031 0.238
Female - Male 0.075 0.032 0.020*

10



High Penalty - Low Penalty -0.026 0.005 <0.001***

High Reward - Low Reward 0.038 0.007 <0.001***
Average Congruence -0.015 0.005 0.001**
Reward X Penalty 0.009 0.005 0.052
Number of Subjects 32

Observations 2469

Marginal R? / Conditional R? 0.093/0.551

When separately examining how incentives influenced speed and accuracy, we found
an intriguing dissociation that helped account for the inverse effects of reward and
punishment on the number of correct responses per second. We found that larger
potential rewards induced responses that were faster (F1,25=31.83, p<0.001) but not
more or less accurate (Chisq)=0.26, p=0.612; Fig 2A and Table 2). By contrast, larger
potential punishment induced responses that were slower (F(1,30)=35.28, p<0.001) but
also more accurate (Chisq(+)=26.73, p<0.001; Fig 2B). These results control for trial-to-
trial differences in congruence, which, as expected, revealed faster (F1,31)=115.28,
p<0.001) and more accurate (Chisq(1)=4.13, p=0.042) responses for congruent stimuli
compared to incongruent stimuli. Although there were no significant two-way
interactions between incentives and congruency on performance, we observed a
significant three-way interaction between reward, penalty, and congruence
(Chisq(1)=6.24, p=0.013) specific to accuracy. Together, these data suggest that
participants applied distinct strategies for engaging cognitive control across reward and

punishment incentives.
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Table 2. Mixed Model Results for Log-Transformed Reaction Time and Accuracy

* p<0.05, **: p<0.01, ***; p<0.001

Log-transformed RT Accuracy
Predictors Estimates S.E. P-Value Odds Ratios  S.E. P-Value
Age 0.014 0.007 0.066 0.941 0.117 0.623
Female - Male -0.023 0.007 0.002** 1.234 0.155 0.095
High Penalty - Low Penalty 0.014 0.002 <0.001*** 1.381 0.082 <0.001***
High Reward - Low Reward -0.012 0.002 <0.001*** 1.028 0.039 0.464
Trial Congruence (Cong-Incong) -0.020 0.002 <0.001*** 1.105 0.050 0.028*
Reward X Penalty -0.003 0.001 0.015* 1.014 0.042 0.729
Penalty X Congruence 0.001 0.001 0.353 1.043 0.038 0.256
Reward X Congruence -0.001 0.001 0.432 1.044 0.039 0.249
Reward X Penalty X Congruence 0.000 0.001 0.543 1.097 0.041 0.012*
Number of Subjects 32 32
Observations 27509 28785
Marginal R? / Conditional R? 0.056 /0.255 0.055/0.150

Reward Rate-Optimal Control Allocation: Normative Predictions

To generate predictions about performance on the Stroop task, we parameterized the

tasks as a process of noisy evidence accumulating towards one of two boundaries

(correct vs. error), using the drift diffusion model (DDM) [34,37]. We hypothesized that

two of the DDM parameters that determine performance on a given trial are the rate of

evidence accumulation (drift rate, v) and the decision threshold (a). As the drift rate

increases, the likelihood of a correct response increases (error rate decreases), and

12



responses are faster. As the threshold increases, responses are also more likely to be
correct but are slower (Fig 3A; [31]). As we describe below, a key prediction is that
adjustments in these parameters may underlie divergent strategies for cognitive control

allocation.

Previous theoretical and empirical work has shown that participants can adjust
parameters of this underlying decision process to maximize the rate at which they are
rewarded over the course of an experiment [31,38]. This reward rate (RR) is determined
by a combination of performance metrics (response time and error rate [ER], [31]) and

the incentives for performance (i.e., outcomes for correct vs. incorrect responses):

_Rx(1—-ER)—PXER
N DT + NDT

Here, the numerator (expected reward) is determined by the likelihood of a correct
response (1 — ER), scaled by the subjective reward for a correct response (R), relative
to the likelihood of an error (ER), scaled by the associated subjective punishment (P)
[39]. The denominator (response time) is determined by the time it takes to accumulate
evidence for a decision (decision time [DT]) as well as additional time to process stimuli

and execute a motor response (non-decision time [NDT]).

To correctly respond to a Stroop trial (i.e., name stimulus color), participants need to
recruit cognitive control to overcome the automatic tendency to read the word [40,41].

Building on past work [31,38,39], we can use the reward rate formulation above to

13



identify how participants should normatively allocate control to maximize the reward rate
(Fig 3B and 3C). To do so, we make three key assumptions. First, we assume that
participants performing our task choose between adjusting two strategies for increasing
their reward rate: (1) increasing attentional focus on the Stroop stimuli (resulting in
increased drift rate toward the correct response), and (2) increasing their threshold to
require more evidence accumulation before responding. Second, we assume that
participants seek to identify the combination of these two DDM parameters that
maximize reward rate. Third, we assume that increasing the drift rate incurs a nonlinear
cost, which participants seek to minimize. The inclusion of this cost term is motivated by
previous psychological and neuroscientific research [1] and by its sheer necessity for
constraining the model from seeking implausibly high values of drift rate (i.e., as this
cost approaches zero, the reward-rate-maximizing drift rate approaches infinity, as
shown in Fig 3B). While a quadratic cost term was chosen a priori based on previous
work [33,42], follow-up analyses (See Supplementary Results 1) indicated that the
predictions made by this quadratic function are also more consistent with our data than

those for a linear (i.e., absolute) function.

Rx(1—ER)—P xER
N DT + NDT

— FE X v?

In this formula, Erepresents the weight of effort cost. Since the optimal drift rate and
threshold are determined by the ratios R/E and P/E, the magnitude of effort costs is

held constant (E = 1) for the reward rate optimization process, putting reward and

14



punishment into units of effort cost. With this modified form of reward rate, the optimal

drift rate is well-constrained (Fig 3C).
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Fig 3. The influence of DDM parameter settings on estimates of reward rate.

(A) The expected error rate (ER) and decision time (DT) can be estimated as a function
of drift rate and threshold. B-C) Reward rate is traditionally defined as a function of
expected error rate, scaled by the value of correct vs. incorrect responses, and the
overall response time (the combination of decision time and decision-unrelated
processes [31]). The combination of drift rate and threshold settings that maximizes
reward rate (black dots) differs depending on whether drift rate is assumed to incur an
effort cost or not. (B) Without a cost, it is always optimal to maximize drift rate. (C) With
a cost, drift rate and threshold must both fall within a more constrained set of parameter
values. Reward rate isolines in (B-C) are defined at Subjective Reward = 5, Subjective
Penalty = 5, non-decision time = 400ms. (D) As the subjective reward for each correct

response increases (plotted from 8 to 20 a.u.), the optimal joint configuration of drift rate
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and threshold (black dot) moves primarily in the direction of increasing drift rate. As the
subjective penalty for an incorrect response increases (plotted from 5 to 625 a.u.), this

optimal configuration moves in the direction of increasing threshold.

Using this formulation of reward rate (RR), we can generate predictions about the
allocation of cognitive control (the combination of drift rate and threshold) that would be
optimal under different reward and punishment conditions. To do so, we varied reward
and punishment values and, for each pair, identified the pair of drift rate and threshold
that would maximize reward rate. As reward increases, the model suggests that the
optimal strategy is to increase the drift rate. As punishment increases, the optimal
strategy is to increase the threshold (Fig 4A). These findings indicate that the weights
for rewards and punishments jointly modulate the optimal strategy for allocating
cognitive control and that these two types of incentives focus on distinct aspects of the
strategy. Specifically, they predict that people will tend to increase drift rate the more
they value receiving a reward for a correct response. In contrast, people will adjust their
threshold depending on how much they value receiving a reward for a correct response
(decrease threshold) and receiving a punishment for an incorrect response (increase

threshold).

Reward Rate-Optimal Control Allocation: Empirical Evidence

To test whether task performance was consistent with the predictions from our
normative model, we fit behavioral performance on our task (reaction time and
accuracy) with the Hierarchical Drift Diffusion Model (HDDM) package [43]. A

systematic model comparison showed that the best-fitting parameterization of this

16



model for our task allowed both drift rate and threshold to vary with trial-to-trial
differences in congruency, reward level, and/or penalty level (Fig 4B; also see Part 3 in
S1 Supporting Information). Critically, the parameter estimates from this model were
consistent with predictions of our reward-rate-optimal DDM (Figs 4C, 4D, and 4E).
Consistent with normative predictions, we found that reward and punishment exhibited
dissociable influences on DDM parameters, such that larger rewards increased drift rate
and decreased threshold, whereas larger punishment promoted a higher threshold.
These findings control for the effect of congruency on DDM parameters (with
incongruent trials being associated with lower drift rate and higher threshold). Taken
together, our empirical findings are consistent with the prediction that participants are
optimizing reward rate, accounting for potential rewards, potential punishments, and

effort costs.

17
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Fig 4. Normative and empirically observed estimates of incentive effects on DDM

parameters.

(A) Combinations of drift rate and threshold that optimize (cost-discounted) reward rate,
under different values of reward and penalty. (B) We fit our behavioral data to different
parameterizations of the DDM, with drift rate and/or threshold varying with reward,
penalty, and/or congruence levels. The best-fitting model varied both DDM parameters
with all three task variables. (C) Estimated combination of drift rate and threshold for
four conditions in the experiment. The upward triangles indicate high magnitude,
whereas the upside-down triangle indicates low magnitude. Error bars reflect s.d. (D-E)
Consistent with predictions based on reward-rate optimization (D, cf. panel A), we found
that larger expected rewards led to increased drift rate, whereas larger expected
penalties led to increased threshold (E, cf. panel C). To a lesser extent, we found a
decreased threshold with higher expected rewards. Error bars reflect 95% CI. *: p<0.05;
***. p<0.001. See also Part 4 in S1 Supporting Information for posterior predictive check

for DDM.

Inferring Individual Differences in Sensitivity to Reward and Punishment

Our findings show that performance varies as a function of expected reward and
punishment, and that these performance changes are consistent with a normative
model according to which participants are maximizing reward and minimizing effort
costs. However, both our model predictions and empirical findings also show that

performance alone is insufficient to determine to what extent a participant was driven by
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a given incentive. For instance, faster performance could result from a participant being
more sensitive to rewards, less sensitive to penalties, or both. The same is even true for
estimates of individual model parameters within each of these conditions - our model
predicts that a more reward-sensitive participant will lower their threshold than a less
reward-sensitive participant, but that the same would be true for participants less vs.
more sensitive to penalties. However, a key feature of our normative model is that it
predicts how people will jointly configure control over drift rate and threshold based on
their expected reward rate in a given condition, and predicts unique combinations of
these DDM parameters under a given level of expected reward and penalty (Fig 4A). As
a result, we can examine how participants move across this two-dimensional space as
their rewards and penalties vary (Fig 5A), in order to make more robust inferences
about the extent to which their performance was driven by each of these incentives. In
other words, we can “reverse-engineer” how sensitive that participant had been to the

rewards and penalties associated with performance on our task.

To accomplish this, we used inverse reward-rate optimization to infer the individualized
subjective weights of reward and punishment across the four task conditions based on
participants' estimated DDM parameters. For each task condition, we first estimated the
drift rate (v) and threshold (a) for each individual. We then calculated the partial
derivatives of reward rate (RR) with respect to these condition-specific estimates of v
and a. By setting these derivatives to O (i.e., optimizing the reward-rate equation), we

can calculate the sensitivity to reward and punishment (R and P) that make the
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estimated DDM parameters the optimal strategy (Fig 5C). This workflow can be

summarized as follows:

ORR(D,4,R,P) _

0
- T 5 5
DDM = (0.8) >\ opp(p,a, R, Py B F)
— =0
da

To validate this approach, we simulated DDM parameters under different combinations
of reward and penalty sensitivities (R and P), and tested whether we could recover the
ground-truth parameters based on simulated data. We were able to successfully
recover both of these parameters (see Part 5 in S1 Supporting Information; correlation
between simulated and recovered values: r = 0.99 for R, and r = 0.93 for P), confirming
that our estimation approach can be effective at inferring individual’s subjective

valuation of reward and punishment when determining cognitive control adjustments.

A repeated-measures ANOVA on our estimates of R and P (log-transformed) revealed a
main effect of incentive magnitude (F(1,251=12.64, p=4.5e-4), with larger R on high-
reward intervals (f31=4.9, p=3.2e-5) and larger P on high-punishment intervals
(t31)=4.72, p=4.8e-5). We also observed a main effect of valence, such that estimates of
P were higher than estimates of R (F(1,251=603.70, p<2e-16). The ANOVA also revealed
a significant interaction between valence and magnitude (F1,251)=7.47, p=0.007; see Fig
5D), such that P estimates differed more across punishment levels than R estimates
differed across reward levels. These asymmetric effects of rewards and punishment on

reward rate are consistent with research on loss aversion [44] and error aversion [45].

21



C Sensitivity to

Reward and Penalty
Mean (SD)

A Estimated Drift Rate B Inverse Reward-Rate Level] | Hiah
and Threshold Optimization Type ow g
14 ~N | EEReward Reward [11.0 (1.4)[12.5 (1.4)
¥ Reward BN Penalty T T
A Penalty \A Reward
) — A Penalty aRR(ﬁ,&,R,P) 0 Penalty | 292 (3.9)( 749 (7.2)
[<] - —
£ 6v
g2 Y ORR(4,a,R.P) _ o -
= 54 =0 D Contrast Between Sensitivities
¥ Reward
¥ Penalty '4 A Reward log(High/Low)
V Penalty 00 01 02 03 04 05
123 26 29
Drift Rate Reward RRE
*¥
Penalty %%

Fig 5. Inference of sensitivity to reward and penalty based on DDM estimates and
reward rate optimization model. (A) Estimated group-level reward-rate optimal
combinations of drift rate and threshold for the four conditions in the experiment. The
upward triangles indicate high magnitude, whereas the upside-down triangle indicates
low magnitude. Error bars reflect s.d. (B) To infer the sensitivity to reward and penalty
for a given individual, we invert this reward-rate optimization procedure, estimating the
set of reward and penalty weights (R and P) that best accounts for that person's pattern
of behavior in a given condition. (C-D) The resulting estimates of sensitivity to reward
and penalty recapitulate our experimental manipulation, with higher sensitivity to reward
in the high vs. low reward condition, and higher sensitivity to penalty for the high vs. low
penalty condition. Panel (C) shows summary statistics across individual participants.
Panel (D) shows a summary of individual-level contrasts between sensitivity to high vs.

low reward and penalty. Error bars reflect s.e.m. **: p<0.01; ***: p<0.001. Parameter
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recovery validates subjective weight estimates (see Part 5 in S1 Supporting

Information).

Replication and extension of Study 1 findings in an independent sample

To verify the robustness of our observed dissociation between reward effects on drift
rate and penalty effects on threshold, we recruited a separate group of participants
(N=65) to perform our task. To further investigate whether these effects generalize
beyond two levels of reward and penalty, we also included an intermediate level of
reward and penalty between the two extremes previously tested. The magnitude of
reward and punishment in each interval was therefore selected independently from
three possible levels: 1 cent (Low), 5 cents (Medium) and 10 cents (High). The selected

reward and punishment are then combined into a cue indicating these incentive levels.

This second study replicated the dissociable behavioral patterns observed in Study 1.
Consistent with the previous study, we found that participants were faster (F,64)=13.91,
p<0.001) but similarly accurate (Chisq2)=2.23, p=0.317) with higher levels of reward,
resulting in an overall higher number of correct responses per second as expected
reward increased (F(2,70=12.28, p<0.001; Fig 6A). Also consistent with Study 1,
participants were slower (F,63)=8.49, p<0.001) but more accurate (Chisq2=15.21,
p<0.001) with higher levels of punishment, resulting in fewer correct responses per
second (F2,64)=4.30, p=0.018; Fig 6B). Response rates under Medium levels of reward

and penalty were intermediate to response rates under Low and High levels of those
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respective variables. See Part 6 in S1 Supporting Information for the details of the fitted

mixed models.
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Fig 6. Effects of reward and punishment on overall task performance (A, B) and
parameters of drift diffusion model (C) in Study 2.

(A) With increasing expected reward, participants completed more correct responses per
second within a given interval (Left), which reflect faster responding on correct trials (top right)

without any change in overall accuracy (bottom right). (B) With increasing expected punishment,
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participants instead completed fewer trials per second over an interval, reflecting slower and
more accurate responses. (C) Drift rate increases with higher expected reward while threshold
increases with higher expected punishment. Error bars reflect 95% CI. n.s.: p>0.05; *: p<0.05;

**: p<0.01; ***: p<0.001.

When fitting Study 2 data with our best-fitting model from Study 1, we replicate the
normatively predicted dissociation observed in that study. Reward exerted a significant
positive influence on drift rate (p<0.001) and negative influence on threshold (p=0.013).
Penalty exerted a significant positive influence on threshold (p=0.008) but not drift rate
(p=0.47). These findings are consistent with the predictions from the reward rate

optimization model.

Interaction between incentives and trial congruence

We performed a set of exploratory analyses to investigate whether the influence of
reward and penalty on task performance depended on trial congruence. In Study 1, we
found that the main effects of reward and penalty on behavioral performance did not
significantly differ between congruent and incongruent trials (ps>0.20; Fig 7A and Table
2). Similarly, for Study 2 we did not find significant interactions between reward and trial
congruence (response time: F246=1.32, p=0.27; accuracy: Chisqe)=5.83, p=0.054; Fig
7B) or between penalty and trial congruence (reaction Time: Fi263)=1.54, p=0.22;
accuracy: Chisqi2=5.03, p=0.081; Fig 7B). Interestingly, follow-up analyses using the
DDM uncovered a significant interaction between penalty level and congruence on drift

rate in both studies, such that higher penalties increased drift rate on incongruent trials
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and decreased drift rate on congruent trials (see Part 1 in S1 Supporting Information).
While intriguing, given that this particular interaction was not predicted a priori and was

not reliably observed within RTs or accuracy, this finding should be interpreted with

caution.
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Fig 7. Effects of reward and penalty in congruent and incongruent trials.

(A) Participants were faster and more accurate when responding to congruent stimuli
compared to incongruent stimuli. The effects of reward and penalty on response time
and accuracy are consistent across congruent and incongruent trials in Study 1. (B)
Study 2 replicated these parallel influences of reward and penalty on congruent and
incongruent trials, with only a marginal interaction between incentives and trial

congruence observed for accuracy.
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Discussion

We investigated divergent influences of reward versus punishment on cognitive control
allocation, and the normative basis for these incentive-related control adjustments.
Participants performed a self-paced cognitive control task that offered the promise of
monetary rewards for correct responses and penalized monetary losses for errors. We
found that higher potential rewards led to faster but equally accurate responding
(resulting in increased monetary earnings), whereas higher potential punishment led to
more accurate but slower responding (thus earning less reward but avoiding
punishment). We showed that these dissociable patterns of incentive-related
performance could be accounted for by two distinct strategies (adjustment of the
strength of attention vs. response threshold), which are differentially optimal (i.e.,

reward rate maximizing) in response to these two types of incentives.

Our findings build on past research on reward rate maximization that has shown that
people flexibly recruit cognitive control to maximize their subjective reward per unit time
[30,31,35]. Our current experiments build on this research in several important ways.
First, we apply this reward rate optimization model to performance in a self-paced
variant of a cognitive control task. Second, we model and experimentally manipulate the
incentive value for a correct versus incorrect response. Third, we incorporate the well-
known cost of cognitive effort [1,46] into the reward rate optimization model (see below).
Finally, we used our model to perform reverse inference on our data, identifying the

subjective weights of incentives that gave rise to performance on a given trial.
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We showed that adjustments of threshold and drift rate can vary as a function of task
incentives, which then drive adaptive adjustments in cognitive control. Notably,
achieving this result required us to build in the assumption that increases in drift rate
incur a cost, an assumption that is grounded in past research on mental effort [1,33]. In
the absence of this cost, our reward rate model predicts that individuals should maintain
a maximal drift rate across incentive conditions, which is inconsistent with our findings.
However, while we have ruled out the possibility that drift rate is costless, the precise
form of its cost function remains an open question. Follow-up simulations show that our
assumed quadratic cost function -- which was motivated by previous research into
cognitive effort discounting [47,48] -- offers a smoother objective function than linear or
exponential alternatives (Figure A3 in S1 Supporting Information), but all three of these
cost functions make qualitatively similar predictions for our current task. We have also
left open the question of whether and how a cost function applies to increases in
response threshold. While there is reason to believe that threshold adjustments may
incur analogous effort costs to attentional adjustments, in part given the control
allocation mechanisms they share [2,32,34,49-51], threshold adjustments already carry
an inherent cost in the form of a speed-accuracy tradeoff. It therefore wasn't strictly
necessary to incorporate an additional effort cost for threshold in the current simulations
(Figure A4 in S1 Supporting Information), though it is possible such a cost would
provide additional explanatory power under a different task design. Future work should
investigate potential differences in these cost functions across these and other common

control signals.
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While our modified reward rate optimization model was able to accurately characterize
how reward and punishment incentives influenced cognitive control allocation in our
task, a critical next step will be to examine the degree to which these findings
generalize to other tasks and incentive schemes, and to refine the model accordingly.
For instance, in addition to testing the form that different control cost functions take,
future work can clarify how people discount time when optimizing this reward function.
Our model assumes that people discount time in a multiplicative fashion (i.e., as the
denominator for reward), which is a standard assumption in models of reward rate
optimization [31,38]. However, we cannot rule out an alternative possibility that they are
instead discounting time additively, as is assumed by models that treat time as an
opportunity cost of effort [35,52], because these models are likely to make similar
predictions with respect to drift and threshold optimization in our current study.
Identifying and testing tasks that differentiate between these predictions holds value for
bridging these two lines of research in the service of better understanding effort

allocation.

Another open question is whether people weigh the incentives for a correct response

differently depending on whether these incentives are positive or negative. In our study,
correct responses were only associated with potential rewards (positive reinforcement),
but a key prediction of our model is that people should adjust their control configuration
similarly (i.e., increase drift rate, lower threshold) when correct responses instead avoid

a negative outcome (negative reinforcement), though perhaps to different degrees. Our
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approach thus offers promise for disentangling the roles of incentive valence (positive
vs. negative) and incentive type (reinforcement vs. punishment) in motivated control

[53].

More generally, it will be important to test whether similar drift and threshold
adjustments occur across other cognitive control tasks that carry a similar structure to
this one, and to extend our optimization approach to tasks that require different forms
of multivariate control configuration, such as distributing attention across multiple
stimuli or features [54,55]. Broadening the applications of this approach to a wider array
of control signals will also provide a critical step towards understanding how people
distribute their cognitive effort across a multitude of tasks in real-world settings. Along
these lines, a simplifying assumption of our current approach was that people assume
reward rate is constant within a given task environment. While this assumption was
reasonable given the parameters of our task (i.e., where incentives were explicitly cued
and pseudorandomized), a crucial next step will be to examine how people dynamically
reconfigure control as they learn from feedback that the expected rewards and
penalties in their environment are changing. Research has shown that people
dynamically adjust their response threshold in both decision-making tasks [56] and
cognitive control tasks [30,57] as they learn to expect greater rewards. It remains to be
tested how these cognitive control adjustments are distributed across both threshold
and drift rate with changes in both reward and punishment, as well as with individual-
specific [58,59] and context-specific [60] differences in learning from these positive and

negative outcomes.
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Interestingly, research into how people learn differentially from positive versus negative
outcomes is that these learned values also differentially influence a person’s
confidence on a given task, with negative feedback resulting in lower confidence in
one’s performance on both perceptual and value-based choice tasks [61,62] Given the
connections that have been separately drawn between confidence and adjustments of
response threshold [63,64], these findings converge with our own observations of
increasing threshold in the face of higher expected punishment. Thus, an important
direction for future work will be to examine how metacognitive experiences associated
with our task vary with experienced incentives and potentially serve to moderate

subsequent control adjustments.

Finally, our combined theoretical and empirical approach enabled us to quantify
individual differences in how participants subjectively valued expected rewards and
punishments based solely on their task performance. We found that people weighed
punishments more heavily than rewards, despite the equivalent currency (i.e., amounts
of monetary gain vs. loss). This finding is consistent with past work on loss aversion [44]
and motivation to avoid failure [45,65], and more generally, with the findings that distinct
neural circuits are specialized for processing appetitive versus aversive outcomes
[66,67]. While our approach to estimating these individual differences is exploratory and
requires further validation across different tasks and incentive schemes (such as those
noted above), we believe that it holds promise for understanding how people vary in

their motivation to succeed and/or avoid failure in daily life [21,68—72]. Not only can this
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method help to infer these sensitivity parameters for a given individual implicitly (i.e.,
based on task performance rather than self-report), it can also provide valuable insight
into the cognitive and computational mechanisms that underpin adaptive control
adjustments, and when and how they become maladaptive (e.g., for individuals with

anxiety, depression, or schizophrenia) [73-78].

Materials and Methods

Participants

Study 1

We collected 36 participants online through Amazon’s Mechanical Turk. We limited the
sample to participants located within the United States, but did not put any other
restrictions on demographics (e.g., race). Participants gave informed written consent
and received cash ($3 to $6, depending on their performance and task contingencies)
for participation. The study was approved by Brown University’s Institutional Review

Board.

4 participants were excluded for either not understanding the task properly (based on
their responses to quiz questions after the instructions) or having mean accuracy below
60% and mean reaction times outside of 3 standard deviations of the mean reaction
time of all the participants. The remaining 32 participants (Gender: 31% Female; Age:

35110 years) were included in all of our analyses.
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Study 2

We collected 71 participants online through Amazon’s Mechanical Turk. Participants
gave informed written consent and received cash ($3 to $6, depending on their
performance and task contingencies) for participation. The study was approved by

Brown University’s Institutional Review Board.

6 participants were excluded for either not understanding the task properly (based on
their responses to quiz questions after the instructions) or having mean accuracy below
60% and mean reaction times outside of 3 standard deviations of the mean reaction
time of all the participants. The remaining 65 participants (Gender: 45% Female; Age:

3819 years) were included in all of our analyses.

Incentivized Cognitive Control Task

Study 1

We designed a new task to investigate cognitive control allocation in a self-paced
environment (Fig 1). During this task, participants are given fixed time intervals (e.g., 10
seconds) to perform a cognitively demanding task (Stroop task), in which they have to
name the ink color of a color word. There were four possible ink colors (red, yellow,
green and blue) across four possible color words (‘RED’, ‘YELLOW’, ‘GREEN’, ‘BLUE’).
Participants were instructed to press the key corresponding to the ink color of each
stimulus. The ink color could be congruent (e.g., BLUE) or incongruent (e.g., BLUE)
with the meaning of the word. Responding to incongruent stimuli has been shown to
require an override of their more automatic tendency to respond based on the word

meaning. The overall ratio of congruent versus incongruent trials was 1:1. Participants
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could perform as many Stroop trials as they wanted and were able during each interval,
with a new trial appearing immediately after each response. Due to this self-paced
design, the proportion of congruent trials could vary slightly across intervals. To
discourage participants from developing a trial-counting strategy (e.g., aiming to
complete 10 responses per interval), the duration of intervals varied across the session

(i.e., ranging from 8 to 12 seconds).

Participants were instructed that they would be rewarded for correct responses and
penalized for incorrect responses. At the start of each interval, a visual cue indicated the
level of reward and punishment associated with their responses in the subsequent
interval. We varied reward for correct responses (+1 cent or +10 cents) and punishment
for incorrect responses (-1 cent or -10 cents) within each subject, which leads to four
distinct conditions (Fig 1). Each participant performed 20 intervals per condition. The
main task was divided into 4 blocks. Within each block, one incentive was fixed across
intervals (e.g., reward level) while the other incentive (e.g., penalty level) randomly
varied across intervals. The type of incentive that was fixed vs. varying was swapped
halfway through the experiment. The order of fixed incentives was counterbalanced
across participants. During each interval, participants could complete as many Stroop
trials as they would like. Below each Stroop stimulus, a tracker indicated the cumulative
amount of monetary reward within that interval. After each interval, participants were
informed how much they earned. To ensure that each interval was evaluated
independently, participants were informed (veridically) that 8 out of the 80 intervals in

the main task were randomly selected and the total money earned in these selected
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intervals would be part of their final payment. The experiment was implemented within

the PsiTurk framework [79].

Before the main task, participants performed several practice sessions. First, they
practiced the mapping between keyboard keys and colors (80 trials). Then they
completed practice for the Stroop task (60 trials). Participants then practiced the Stroop
task in the self-paced setting (4 intervals). In a final practice block, participants were
introduced to the visual cues and practiced the self-paced intervals with these visual

cues (12 intervals).

Study 2

The task in Study 2 has a similar structure compared to Study 1. The major difference
between tasks was that the magnitude of reward and penalty was selected from three
possible levels (1 cent, 5 cents and 10 cents) instead of binary levels in Study 1, such
that there exist 9 distinct conditions in the experiment (3 levels of reward by 3 levels of
punishment, Fig 6). Each participant performed 8 intervals per condition. Given that
there were 3 levels of each incentive type in this study, the main task was divided into 6
blocks (compared to 4 blocks in Study 1). As in Study 1, the condition was cued prior to

the start of each interval.

Analyses

Study 1
With this paradigm, we can analyze performance at the level of a given interval and at

the level of responses to individual Stroop stimuli within that interval. We analyzed
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participants' interval-level performance by fitting a linear mixed model (Ime4 package in
R; [80] to estimate the correct responses per second as a function of contrast-coded
reward and punishment levels (High Reward = 1, Low Reward = -1, High Punishment
=1, Low Punishment = -1) as well as their interaction. The models controlled for age,
gender, and proportion of congruent stimuli, and using models with maximally specified
random effects [81].

Correct/second ~ age + gender + reward * penalty + mean congruence
To understand how the incentive effects on overall performance are composed of the
influences on speed and accuracy, we separately fit linear mixed models to trial-wise
reaction time (correct responses only) and accuracy, controlling for the stimuli
congruency. We performed analysis of variance on the fitted mixed models to test the
overall effects of reward and punishment.

log(RT for correct response) ~ age + gender + reward * penalty * congruence
Accuracy ~ logit(age + gender +reward * penalty * congruence)

We parameterized participants' responses in the task as a process of noisy evidence
accumulating towards one of two boundaries (correct vs. error) using the Drift Diffusion
Model (DDM). The DDM is a mechanistic model of decision-making that decomposes
choices into a set of constituent processes (e.g., evidence accumulation and response
thresholding), allowing precise measurement of how different components of the choice
process (e.g., RT and accuracy) are simultaneously optimized [37]. We performed
hierarchical fitting of DDM parameters using the HDDM package [43]. In the DDM
model, the drift rate and threshold depend on trial type (congruent or incongruent),

reward level and/or penalty level. The selection of predictors for drift rate and threshold

36



is based on the model comparison using DIC. We fixed the starting point at the mid-
point between the two boundaries as there was no prior bias toward a specific response

in the task. The non-decision time was fitted as a free parameter.

We characterized the optimal allocation of cognitive control as the maximization of the
reward rate [31] with modification for effort cost. Based on qualitative comparisons
between predictions of different cost functions (see Part 2 in S1 Supporting
Information), we chose to express these cost functions as a quadratic function of drift
rate and to assume no cost on increases in threshold, but note that alternate formats of
each of these cost functions yield qualitatively similar predictions for all of our key
findings (see Part 2 in S1 Supporting Information). With the effort-discounted reward
rate, we make predictions about the influences of incentives on control allocation by
numerically identifying the optimal drift rate and threshold under varying reward and
punishment. To validate our normative prediction, we fit accuracies and RTs across the
different task conditions with a DDM [43], which allowed us to derive estimates of how a
participant's drift rate and threshold varied across different levels of reward and
punishment. We performed model comparison based on deviance information criterion
(DIC; lower is better) to identify the best model for the behavioral data. Based on the
assumption that participants' cognitive control allocation optimizes the reward rate, we
inferred participants' subjective weights of reward and punishment from the estimated

drift rate and threshold.

Study 2
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We performed linear mixed model analysis on the participants' interval-level
performance with reward and punishment levels coded with sliding-difference contrast
so that the two contrasts represent the difference between two consecutive reward or
punishment levels (Medium - Low, High - Medium). We separately fit linear mixed
models to trial-wise reaction time (correct responses only) and accuracy, controlling for

the stimuli congruency.

We fit participants’ responses with the DDM using three-level polynomial contrast
coding to obtain the linear and nonlinear patterns of incentive effects on DDM
parameters. The coefficients in these contrasts were then transformed back to the DDM

parameters under each condition.
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