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Abstract 
 
A hallmark of adaptation in humans and other animals is our ability to control how we think and 
behave across different settings. Research has characterized the various forms cognitive control 
can take – including enhancement of goal-relevant information, suppression of goal-irrelevant 
information, and overall inhibition of potential responses – and has identified computations and 
neural circuits that underpin this multitude of control types. Studies have also identified a wide 
range of situations that elicit adjustments in control allocation (e.g., those eliciting signals 
indicating an error or increased processing conflict), but the rules governing when a given 
situation will give rise to a given control adjustment remain poorly understood. Significant 
progress has recently been made on this front by casting the allocation of control as a decision-
making problem. This approach has developed unifying and normative models that prescribe 
when and how a change in incentives and task demands will result in changes in a given form of 
control. Despite their successes, these models, and the experiments that have been developed to 
test them, have yet to face their greatest challenge: deciding how to select among the multiplicity 
of configurations that control can take at any given time. Here, we will lay out the complexities 
of the inverse problem inherent to cognitive control allocation, and their close parallels to inverse 
problems within motor control (e.g., choosing between redundant limb movements). We discuss 
existing solutions to motor control’s inverse problems drawn from optimal control theory, which 
have proposed that effort costs act to regularize actions and transform motor planning into a 
well-posed problem. These same principles may help shed light on how our brains optimize over 
complex control configuration, while providing a new normative perspective on the origins of 
mental effort. 
 
Keywords: Cognitive control; Motor control; Decision making; Inverse problem
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"There are many paths up the mountain, but the view from the top is always the same" 
- Chinese Proverb 
 
Over the past half-century, our understanding of the human brain’s capacity for cognitive control 
has grown tremendously (Abrahamse et al., 2016; Botvinick and Cohen, 2014; Fortenbaugh et 
al., 2017; Friedman and Robbins, 2021; Koch et al., 2018; Menon and D’Esposito, 2021; von 
Bastian et al., 2020; Westbrook and Braver, 2015). The field has developed consistent ways of 
defining and operationalizing control, such as in terms of its functions and what distinguishes 
different degrees of automaticity (Cohen et al., 1992; Posner and Snyder, 1975; Shiffrin and 
Schneider, 1977). It has developed consistent methods for eliciting control and measuring the 
extent to which control is engaged by a given task (Danielmeier and Ullsperger, 2011; Egner, 
2007; Gonthier et al., 2016; Koch et al., 2018; von Bastian et al., 2020; Weichart et al., 2020). It 
has demonstrated how such control engagement varies across individuals (Friedman and Miyake, 
2017; von Bastian et al., 2020) and over the lifespan (Braver and Barch, 2002; Luna, 2009). 
Finally, research in this area has made substantial progress towards mapping the neural circuitry 
that underpins the execution of different forms of cognitive control (Friedman and Robbins, 
2021; Menon and D’Esposito, 2021; Parro et al., 2018; Shenhav et al., 2013). The factors that 
determine how cognitive control is configured have, on the other hand, remained mysterious and 
heavily debated (Shenhav et al., 2017).  
 
Studies have uncovered reliable antecedents for control adjustments, including the commission 
of an error (Danielmeier and Ullsperger, 2011; Rabbitt, 1966) or changes in task demands 
(Gratton et al., 1992; Logan and Zbrodoff, 1979). However, it has been a longstanding goal for 
the field to develop a comprehensive model of how people use the broader array of information 
they monitor to configure the broader array of control signals they can deploy. To address this 
question, models proposed that the problem of determining control allocation can be solved 
through a general decision-making process that involves weighing the costs and benefits of 
potential control allocations (Lieder et al., 2018; Shenhav et al., 2013; Verguts et al., 2015; 
Westbrook and Braver, 2015). These models have already shown promise in accounting for how 
people adjust individual control signals (e.g., how much to adjust attention towards a particular 
task) based on the incentives and demands of a given task environment (Bustamante et al., 2021; 
Lieder et al., 2018; Musslick et al., 2015; Verguts et al., 2015). Here, we focus on a different 
aspect of this problem: how is it that people navigate the multitude of solutions that can match 
the demands of their environment? How can cognitive control scale to configuring the complex 
information processing we deploy throughout our daily life? What is the relationship of mental 
effort to the multiplicity of options for configuring control? Building off well-characterized 
computational models from motor planning, we examine how multiplicity presents a critical 
challenge to cognitive control configuration, and how algorithmic principles from motor control 
can help to overcome these challenges and refine our understanding of goal-directed cognition. 

The multiplicity of cognitive control 
To study the mechanisms that govern the allocation of cognitive control, researchers have sought 
to identify reliable predictors of changes in control allocation within and across experiments. 
These triggers for control adjustment have in turn provided insight into signals – such as errors 
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and processing conflict – that the brain could monitor to increase or decrease control. Research 
has shown that control adjustments induced by these signals, even within the same setting, vary 
not only in degree but also kind (see Table 1). 

Error-related control adjustments 
In common cognitive control tasks such as the Stroop, Simon, and Eriksen flanker task (Egner, 
2007; von Bastian et al., 2020), participants have prepotent biases that often lead to incorrect 
responses (e.g., responding based on the salient flanking arrows rather than the goal-relevant 
central arrow). Errors thus serve a useful indicator that the participant was likely under-exerting 
control and should adjust their control accordingly. The best-studied instantiation of error-related 
control adjustments manifests in a participant’s tendency to respond more slowly and more 
accurately after an error (Danielmeier and Ullsperger, 2011; Laming, 1979a; Rabbitt, 1966), 
which can be understood as together reflecting post-error adjustments in caution. Indeed, work 
has shown that models like the drift diffusion model1 (DDM; Ratcliff, 1978; Ratcliff and 
McKoon, 2008; see Figure 1A), post-error slowing and post-error increases in accuracy can be 
jointly accounted for by an increase in one’s response threshold, the criterion they set for how 
much evidence to accumulate about the task stimuli before deciding how to respond (Dutilh et 
al., 2012; Fischer et al., 2018).  
 
Experiments investigating the neural implementation of these post-error adjustments have found 
that threshold adjustments are associated with the suppression of motor-related activity 
(Danielmeier et al., 2011; Fischer et al., 2018). For instance, Danielmeier and colleagues (2011) 
had participants perform a Simon-like task that required them to respond based on the color of an 
array of dots that were moving in a direction compatible or incompatible with the correct color 
response. When participants responded incorrectly, they tended to be slower and more accurate 
on the following trial. This increased caution was coupled with decreased BOLD activity in 
motor cortex on that subsequent trial, consistent with the possibility that errors led to controlled 
adjustments of decision threshold (in this case by putatively lowering the baseline activity to 
require more evidence before responding). 
 
In addition to changing overall caution, errors can also influence how specific stimuli are 
processed. Studies have shown that error trials can be followed by selective enhancement of 
task-relevant (target) processing (Danielmeier et al., 2015, 2011; King et al., 2010; Maier et al., 
2011; Steinhauser and Andersen, 2019) and/or suppression of task-irrelevant (distractor) 
processing (Danielmeier et al., 2015, 2011; Fischer et al., 2018)). For instance, in the same study 
by Danielmeier and colleagues (2011), errors tended to be followed by increased activity in 
regions encoding the target stimulus dimension and decreased activity in regions encoding the 
distractor dimension (see also (Fischer et al., 2018; King et al., 2010)). Thus, whereas post-error 
slowing effects reflect control over one’s decision threshold, such post-error reductions of 

 
 
1 Note that the DDM shares properties with several other evidence accumulation models that enable similar 
behavioral predictions, and in some cases finer-grained predictions for neural implementation (Bogacz, 2007). We 
focus on the DDM as a reference point through much of this article because its properties have been closely studied 
from the theoretical and empirical perspective and it lends itself well to mechanistic hypotheses, but our attributions 
to this model and its parameters should be seen as potentially generalizable to related models. 
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interference likely reflect a different form of control, one that adjusts the influence of target- and 
distractor-related information on the evidence that is accumulated before reaching that threshold 
(target and distraction contribution to the drift rate in the DDM). 

Conflict-related control adjustments 
In addition to error commission, another potential indicator of insufficient control is the presence 
of processing conflict (Berlyne, 1957; Botvinick et al., 2001), such as when a person feels 
simultaneously drawn to respond left (e.g., based on target information) and right (e.g., based on 
a distractor). One of the best-studied forms of conflict-related control adjustment is the conflict 
adaptation or congruency sequence effect, which manifests as reduced sensitivity to response 
(in)congruency after a person has previously performed one or more high-conflict (e.g., 
incongruent) trials (Egner et al., 2007; Egner and Hirsch, 2005; Funes et al., 2010; Gratton et al., 
1992; Jiang and Egner, 2013). These adaptations are analogous to examples of post-error 
reductions of interference described above, and have the same candidate computational 
underpinnings in adjustments to the rate of evidence accumulation (Kerns et al., 2004; Musslick 
et al., 2015, 2019b) These control adjustments have likewise been found to be associated with 
changes in neural activity in goal-relevant perceptual processing pathways. For example, Egner 
& Hirsch (2005) showed that participants were less sensitive to Stroop incongruence after 
higher-conflict trials, and that this was coupled with increased activity in the target-associated 
cortical areas (fusiform face area for face targets). 
 
Another body of work has shown that conflict can trigger changes to response threshold, 
particularly within a trial, for instance when selecting between two similarly-valued options 
(Aron, 2007; Cavanagh et al., 2011; Fontanesi et al., 2019; Frank et al., 2015; Ratcliff and Frank, 
2012; Verguts et al., 2011; Wiecki and Frank, 2013). These adjustments have been linked to 
interactions between dorsal anterior cingulate cortex (dACC) and the subthalamic nucleus 
(Brittain et al., 2012; Cavanagh et al., 2011; Frank et al., 2015; Schroeder et al., 2002; Wessel et 
al., 2019). For instance, simultaneous EEG-fMRI has revealed that BOLD in dACC and 
mediofrontal EEG theta power moderates the relationship between decision conflict and 
adjustments to response threshold (Frank et al., 2015).  

Incentive-related control adjustments 
In addition to signals like error and conflict that reflect dips in performance, the need for control 
can also be signaled by the presence of performance-based incentives (e.g., monetary rewards for 
good performance). Incentives can influence overall performance, for instance often leading 
participants to perform tasks faster and more accurately across trials (Parro et al., 2018; Yee and 
Braver, 2018). Incentives can also trigger task-specific adjustments of cognitive control, 
enhancing the processing of goal-relevant information (Etzel et al., 2016; Krebs et al., 2010; 
Soutschek et al., 2014) and/or suppressing the processing of distractor information (Padmala and 
Pessoa, 2011), likely reflecting changes in associated drift rates similar to error-related 
adjustments discussed above (cf. Ritz & Shenhav, 2021, discussed further below). Also similar 
to error-related findings, there is evidence that incentive-related control adjustments are mediated 
by changes in processing within stimulus-selective circuits (Esterman et al., 2017; Etzel et al., 
2016; Hall-McMaster et al., 2019; Padmala and Pessoa, 2011; Soutschek et al., 2015). For 
example, Padmala and Pessoa (2011) used a Stroop task to show that participants are less 
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sensitive to distractor information when under performance-contingent rewards. They found that 
this distractor inhibition was mediated by reduced activation in cortical areas sensitive to the 
distracting stimuli (visual word form area for text distractors). 
 
Performance incentives have been shown to influence not only how well one performs on a 
given trial but also how consistently they perform within and across trials. When performing 
sustained attention tasks that require participants to repeat the same response on most trials (e.g., 
frequent go trials) but respond differently on rare occurrences of a different trial type (e.g., 
infrequent no-go trials), attentional lapses can manifest as increased variability in response times 
across trials (Fortenbaugh et al., 2017). When performance is incentivized, participants 
demonstrate both higher accuracy and lower response time variability (Esterman et al., 2017, 
2016, 2014). These performance improvements can be accounted for by assuming that incentives 
influence control over how noisily evidence is accumulated within each trial (e.g., due to mind-
wandering; (Ritz et al., 2020); Manohar et al., 2015). Neuroimaging studies suggest that enacting 
the control required to achieve more consistent (less variable) performance is associated with 
increases in both sustained and evoked responses in domain-general attentional networks and 
stimulus-specific regions (Esterman et al., 2017). 
 

 
Behavior Cognitive process (DDM) Neuroscience 

Errors 

RT ­ Threshold ­ Motor cortex activation ¯ 

(Danielmeier et al., 2011; 
Debener et al., 2005; Gehring 

and Fencsik, 2001; Jentzsch and 
Dudschig, 2009; King et al., 

2010; Rabbitt, 1966) 
(Dutilh et al., 2012; Fischer et al., 

2018) 
(Danielmeier et al., 2011; King et 

al., 2010) 

Error Rate ¯   
(Danielmeier et al., 2011; 

Laming, 1979b, 1968; Maier et 
al., 2011; Marco-Pallarés et al., 

2008)   
Interference ¯ Distractor Drift Rate ¯ Target-related activation ­ 

(King et al., 2010; Maier et al., 
2011; Ridderinkhof, 2002; 

Steinhauser and Andersen, 2019)  (Fischer et al., 2018) 

(Danielmeier et al., 2011; King et 
al., 2010; Maier et al., 2011; 

Steinhauser and Andersen, 2019)  

  Distractor-related activation ¯ 

  
(Danielmeier et al., 2011; Fischer 
et al., 2018; King et al., 2010) 

Conflict 

RT ­ Threshold ­ STN activation ­ 

(Herz et al., 2016; Verguts et al., 
2011) 

(Fontanesi et al., 2019; Herz et 
al., 2016) 

(Aron, 2007; Cavanagh et al., 
2011; Frank et al., 2015; Ratcliff 
and Frank, 2012; Wiecki and 

Frank, 2013) 

Interference ¯ Distractor Drift Rate ¯ Target-related activation ­ 
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(Braem et al., 2012; Danielmeier 
et al., 2011; Funes et al., 2010; 

Gratton et al., 1992; Kerns, 2006; 
Kerns et al., 2004; Ullsperger et 

al., 2005) (Ritz and Shenhav, 2021) 
(Egner et al., 2007; Egner and 

Hirsch, 2005) 
 

  

   

Incentives 

RT ¯  Accuracy ­ Threshold ­  
(Chiew and Braver, 2016; Fröber 
and Dreisbach, 2014; Frömer et 
al., 2021; Ličen et al., 2016; 

Soutschek et al., 2014; Yee et al., 
2016) 

(Dix and Li, 2020; Leng et al., 
2020; Thurm et al., 2018)  

 Threshold ¯  

 (Leng et al., 2020)  
Target effect ­ Drift rate ­ Target-related activation ­ 
(Adkins and Lee, 2021; Krebs et 

al., 2010) 
(Dix and Li, 2020; Jang et al., 

2021; Leng et al., 2020) 
(Etzel et al., 2016; Grahek et al., 
2021; Soutschek et al., 2015) 

Distractor effect ¯ Target Drift Rate ­ Distractor-related activation ¯ 

(Chiew and Braver, 2016; 
Padmala and Pessoa, 2011; 

Soutschek et al., 2014) (Ritz and Shenhav, 2021) (Padmala and Pessoa, 2011) 

RT variability ¯ Accumulation noise ¯ Sustained task-relevant 
activation ­ 

(Esterman et al., 2016, 2014) 

 
(Manohar et al., 2015; Ritz et al., 

2020) (Esterman et al., 2017) 
Table 1. Multiplicity of control adaptations in response to errors, conflict, and incentives. 

Multidimensional configuration of cognitive control 
Previous research has uncovered a multiplicity of adjustments that occur in response to changes 
in the demands or incentives for control. Importantly, they show that a monitored signal2 (e.g., an 
error) can produce several different control adjustments, and that a control adjustment (e.g., 
increased caution) can be elicited by several different monitored signals. Rather than a strict one-
to-one relationship between monitored signals and control adjustments, this diversity suggests 
that participants make simultaneous decisions across multiple control effectors. 
 
This control multiplicity is evident in studies of post-error adjustments discussed above 
(Danielmeier and Ullsperger, 2011), in which errors can result in both increased caution (i.e., 

 
 
2 We will use the term ‘monitored signal’ to refer to signals that act as inputs to decisions about control allocation. 
In contrast, we use ‘control signals’ to refer to the control that is allocated as a result of this decision process 
(analogous to ‘motor commands’) (Shenhav et al., 2013). 
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more conservative response thresholds) and a change in attentional focus to favor target over 
distractor information (putatively underpinned by adjustments in drift rate). Experiments have 
found that both adjustments appear to occur simultaneously (Danielmeier et al., 2015, 2011; 
Fischer et al., 2018; King et al., 2010), reflecting a multi-faceted response to the error event. 
 
In a recent experiment, we showed that people can also exert independent control over their 
processing of targets and distractors (Ritz and Shenhav, 2021)). Like Danielmeier and colleagues 
(2011), we had participants perform a random dot kinematogram that required responding to dot 
color while ignoring dot motion. Across trials, we parametrically varied both the target 
coherence (how easily the correct color could be identified), and distractor interference (how 
coherently dots were moving in the same or opposite direction as the target response). We found 
that participants exerted control over their processing of both target and distractor information, 
but that they did so independently and differentially depending on the relevant task demands. 
Under performance incentives, participants preferentially enhanced their target sensitivity, 
whereas after high-conflict trials, participants preferentially suppressed their distractor sensitivity 
(and, to a lesser extent, also enhanced target sensitivity). A similar pattern has been observed at 
the neural level while participants perform a Stroop task (Soutschek et al., 2015). Whereas 
performance incentives preferentially enhanced sensitivity in target-related areas (visual word 
form area for text targets), conflict expectations preferentially suppressed sensitivity in 
distractor-related areas (fusiform face area for face distractors). These findings demonstrate that 
control can be flexibly reconfigured across multiple independent control signals to address 
relevant incentives and task demands.  
 
There is also evidence that different people prioritize different control strategies within the same 
setting. For instance, Boksem and colleagues (2006) had participants perform the Simon task 
over an extended experimental session, and observed performance fatigue in the form of slower 
and less accurate responding over time. Towards the end of the session, the experimenters 
introduced monetary incentives and found that this counteracted the effects of fatigue, but did so 
heterogeneously across the group. When making an error during this incentivized period, some 
participants responded by focusing more on responding quickly while others focused on 
responding accurately. The engagement of these differential control strategies was associated 
with changes in distinct event-related potentials (error-related negativity vs. contingent negative 
variation). Similar variability in reliance on different control strategies has been seen across the 
lifespan (Braver and Barch, 2002; Fortenbaugh et al., 2015; Luna, 2009; Ritz et al., 2020) and 
between clinical and healthy populations (Casey et al., 2007; Grahek et al., 2019; Lesh et al., 
2011). 
 
Collectively, previous research suggests that there is a many-to-many mapping between the 
information that participants monitor related to task demands, performance, and incentives, and 
the multitude of control signals that participants can deploy. Recent theoretical models have 
explained this heterogeneity in terms of the flexible deployment of control, proposing that there 
is an intervening decision process that integrates monitored information, determining which 
strategies to engage, and to what extent, based on the current situation (Lieder et al., 2018; 
Shenhav et al., 2013; Verguts et al., 2015).  
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Selection and configuration of multivariate control  
Casting control allocation as a decision process provides a path toward addressing how people 
integrate information from their environment to select the optimal control allocation. This 
process of optimization entails finding the best solution for an objective function and set of 
constraints. Objective functions define the costs and benefits of different solutions, whereas soft 
constraints (e.g., costs) and hard constraints (e.g., boundary conditions) limit the space of 
possible solutions. Optimization has long played a central and productive role in building 
computational accounts of multivariate planning in the domain of motor control (Flash and 
Hogan, 1985; Shadmehr and Ahmed, 2020; Todorov and Jordan, 2002; Uno et al., 1989; Wolpert 
and Landy, 2012), suggesting that this research into how the brain coordinates actions may thus 
offer general principles for how the brain coordinates cognition.  
 
The starting point for solving any optimization problem is identifying the objective function. 
Researchers in decision making and motor control have suggested that participants maximize the 
amount of reward harvested per unit time (reward rate; (Harris and Wolpert, 2006; Manohar et 
al., 2015; Niv et al., 2007; Shadmehr et al., 2010). Studies have found that people’s motor 
actions are sensitive to incentives, with faster and/or more accurate movement during periods 
when they can earn more rewards (Adkins et al., 2021; Codol et al., 2021, 2020; Manohar et al., 
2019, 2017, 2015; Pekny et al., 2015; Sukumar et al., 2021; Trommershäuser et al., 2003a, 
2003b; Yoon et al., 2020). For example, participants will saccade toward a target location more 
quickly and more precisely on trials that are worth more money (Manohar et al., 2019, 2017, 
2015). Responding faster and more accurately breaks the traditional speed-accuracy trade-off 
(Bogacz et al., 2006; Manohar et al., 2015), and is thought to reflect the use of control to 
optimize both reward and duration (Shadmehr and Ahmed, 2020). 
 
It has been similarly proposed that a core objective of cognitive control allocation is also the 
maximization of reward rate (Bogacz et al., 2006; Boureau et al., 2015; Lieder et al., 2018; 
Manohar et al., 2015; Shenhav et al., 2013). That is, that people select how much and what kinds 
of control to engage at a given time based on how control will maximize expected payoff (e.g., 
performance-based incentives like money or social capital) while minimizing the time it takes to 
achieve that payoff. Consistent with this proposal, studies have shown that people configure 
information processing (e.g., adjust their response thresholds) in ways that maximize reward rate 
(Balci et al., 2011; Simen et al., 2009; Starns and Ratcliff, 2010), and that they adjust this 
configuration over time based on local fluctuations in reward rate (Guitart-Masip et al., 2011; 
Otto and Daw, 2019).  
 
We recently used a reward-rate optimization framework to make model-based predictions for 
how people coordinate multiple types of control (Leng et al., 2020). Participants performed a 
Stroop task that was self-paced, enabling them to dynamically adjust at least two forms of 
control: their overall drift rate (governing both how fast and accurate they are) and their response 
threshold (governing the extent to which they trade off speed for accuracy; Figure 1A). We 
varied the amount of money participants could gain with each correct response and the amount 
they could lose with each incorrect response. Participants could increase their response threshold 
to guarantee that every response was correct, but this came at the cost of completing fewer trials 
and therefore earning fewer rewards over the course of the. Increasing their drift rate can achieve 



Cognitive control as a multivariate optimization problem  
 
 

 

8 

 

higher reward rates, but is subject to effort costs, that we will return to later. The reward-rate 
optimal configuration across both drift and threshold would be to increase drift rate and decrease 
threshold for larger rewards, and increase thresholds for larger penalties (Figure 1B). Critically, 
we found that participants’ DDM configuration matched the predictions of this optimal model 
(Figure 1C). These results provide evidence that participants’ performance can align with the 
optimal joint configuration across multiple control parameters. 
 

 
Figure 1.  Multivariate control configurations optimize reward rate. A) In the drift diffusion model (DDM), 
the speed and accuracy of a decision are largely determined by the rate of evidence accumulation (drift rate; 
blue) and how much evidence the decision mechanism requires to make a choice (threshold; red). Evidence 
accumulates according to both the drift rate (v) and Gaussian diffusion noise (s). B) Leng and colleagues (2020) 
had participants perform a self-paced Stroop task, and examined how they adjusted their drift rate and threshold 
with varying levels of reward for correct responses and penalties for errors. A reward-rate optimal model 
predicted that higher rewards should bias their control configuration towards higher drift rates and lower 
thresholds, whereas larger penalties should bias these configurations towards higher thresholds and have little 
impact on drift C) DDM fits to task performance confirmed these predictions, demonstrating that participants 
adjusted their control configuration in a multivariate and reward-rate-optimal manner. 

 
These studies validate the proposal that control allocation can be framed as decision-making over 
multidimensional configurations of control (i.e., combination of different control types engaged 
to different degrees) and that these decisions seek to optimize an objective function such as 
expected reward rate. While the DDM is useful for studying these configuration processes, 
providing a well-defined cognitive process model with criteria for good performance, similar 
optimality analyses have been performed in domains like working memory (Sims, 2015; Sims et 
al., 2012), demonstrating the generality of this approach. However, for all the algorithmic tools it 
provides, this decision-making framework also presents an entirely new set of challenges. Most 
notably, the many possible control configurations to choose from often means that there will be 
multiple equivalent solutions to this decision. Here, again, valuable insights can be gained from 
research on motor control, where these challenges and their potential solutions have been 
extensively explored.  

Inverse problems in motor and cognitive control 

Inverse problems in motor control 
Some of the most influential computational modelling of motor planning was founded at the 
Central Labor Institute in Moscow in the early 20th century. This group formalized for the first 
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time a fundamental problem for motor control: how does the motor system choose among the 
many similar actions that could be taken to achieve a goal (Bernstein, 1935; Whiting, 1983)? 
This problem is centered around the fact that motor control is inherently ill-posed, with more 
degrees of freedom in the body (e.g., joints) than in the task space, increasing the inherent 
challenge of selecting the best motor action among many equivalent options.  

These motor redundancies can occur in several domains of motor planning (Kawato et al., 1990). 
At the task level, there may be many trajectories through the task space that achieve the same 
goals, such as the paths a hand could take on its way to picking up a cup (Task Degeneracy; 
Figure 2A). At the effector level, there are often more degrees of freedom in the skeletomotor 
system than in the task space, creating an ‘inverse kinematics’ problem for mapping from goals 
on to actions (Effector Degeneracy; Figure 2B). For example, there are many ways you could 
move your arm to trace a line with the tip of your finger. A related problem arises when there is 
redundancy across effectors, such as in agonist and antagonistic muscles (Effector Antagonism; 
Figure 2C). Due to their opponency, the same action can occur by trading off the contraction of 
one muscle against the relaxation of the other. These inverse problems have been a major 
challenge for theoretical motor control, and to the extent that a similar problem occurs in 
cognitive control, solutions from the motor domain may help guide our understanding of ill-
posed cognitive control. 
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Figure 2. Degeneracies in motor and cognitive control. A) The fact that many trajectories can achieve the 
goal of moving from a start point to an endpoint during motor control results in task degeneracy. B) The fact 
that there are more degrees of freedom in the effectors (arm joints) than in the task (1D movement), and that 
there are many configurations that can produce the same movement, results in effector degeneracy. C). The 
fact that some effectors have opposite influences over actions (e.g., agonist and antagonist muscles) results in 
effector antagonism. D-F) Analogous forms of degeneracy arise in relatively simple examples of cognitive 
control (left side of each panel)), such as when optimizing parameters of a DDM to achieve a target reward 
rate. Each of these forms of degeneracy can be solved in analogous way to motor control using different forms 
of regularization (right side of each panel). D) The target reward rate can be achieved with an infinite number 
of speed-accuracy trade-offs (points along dashed line), resulting in task degeneracy. A solution to this 
degeneracy is to include an additional preference for high accuracy, creating a globally optimal solution. E) 
Equivalent reward rates can also be achieved with various trade-offs between different model parameters being 
controlled (e.g., levels of drift rate and threshold), resulting in a form of ‘effector’ degeneracy. A solution to 
effector degeneracy is to place a cost on higher drift rates, biasing parameter configurations towards lower drift 
rates and creating a globally optimal solution.  F) ‘Effector’ antagonism in cognitive control can result from 
opposing contributions of target gains (positive effect on drift rate) and distractor gains (negative effect on drift 
rate) on reward rate. A solution to effector antagonism is to set a prior on control gains, biasing these gains 
towards the prior configuration (e.g., high distractor sensitivity and low target sensitivity) and creating a 
globally optimal solution. Panels A-C adapted from (Kawato et al., 1990).  
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Inverse problems in cognitive control: the algorithmic level 
Considering the massive degrees of freedom that exist in neural information processing systems, 
cognitive control is a prime candidate for inverse problems of its own. To illustrate this, we can 
return to the example of how people decide to allocate control across parameters of the drift 
diffusion model (Figure 2D). As reviewed above, participants can separately control individual 
parameters of evidence accumulation, specifically drift rate (Bond et al., 2021; Ritz and 
Shenhav, 2021), threshold (Cavanagh and Frank, 2014; Fischer et al., 2018), and accumulation 
noise (Mukherjee et al., 2021; Nakajima et al., 2019; Ritz et al., 2020). This test case of finding a 
reward-rate optimal configuration of DDM parameters faces the same set of challenges as those 
outlined above from motor control.  

First, just as there are many hand trajectories that can produce a desired outcome, there are also 
many ways to produce good decision-making performance (Figure 2D). Different combinations 
of accuracy (numerator) and reaction time (denominator) can trade-off to produce the same 
reward rate. This creates an equivalence in the task space between different performance 
outcomes with regards to the goals of the system.  

Second, just as there are more degrees of freedom in the arm than in many motor tasks, there is 
more flexibility in information processing than in many cognitive tasks. For example, the same 
patterns of behavior (and therefore expected reward rates) can result from different 
configurations of DDM parameters (Bogacz et al., 2006); Figure 2E). From a model-fitting 
perspective, this forces researchers to limit the parameters they attempt to infer from behavior, 
fixing at least one parameter value (often accumulation noise), while estimating the others 
(Bogacz et al., 2006; Ratcliff and Rouder, 1998). This degeneracy similarly limits a person’s 
ability to perform the “mental model-fitting” required to optimize across all these control 
configurations when deciding how to allocate control. These difficulties are exacerbated in more 
biologically plausible models of evidence accumulation like the leaky competing accumulator 
(Usher and McClelland, 2001), which introduce additional parameters (e.g., related to memory 
decay and levels of inhibition across competing response units), resulting in even greater 
parameter degeneracy (Miletić et al., 2017). A similar trade-off exists in the classic debate 
between early and late attentional selection, namely whether attention operates closer to 
sensation or closer to response selection (Driver, 2001). Given that attention appears to operate at 
multiple processing stages (Lavie, 1995), degeneracies will arise if early or late attentional 
control will similarly influence task performance. 

Third, just as there is antagonism across motor effectors, there is also antagonism across 
cognitive processes. That is, even when the algorithmic goal is clear, there are degenerate control 
signals that can achieve this goal. For instance, in typical interference-based paradigms (e.g., 
flanker or Stroop), participants must respond to one element of a stimulus while ignoring 
information that is irrelevant and/or distracting. To increase the overall rate of accumulation of 
goal-related information, the person can engage two different forms of attentional control: 
enhance targets or suppress distractors. Utilizing either of these strategies will improve 
performance, meaning that cognitive controller could trade off enhancing targets or suppressing 
distractors to reach the same level of performance (Figure 2F). Recent work has shown that 
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target and distractor processing can be controlled independently in conflict tasks (Adkins and 
Lee, 2021; Evans and Servant, 2020; Ritz and Shenhav, 2021), creating an ill-posed problem of 
coordinating across these strategies.  

Inverse problems in cognitive control: the implementational level 
It is difficult to optimally configure decision-making, and this control faces several equivalent 
problems to those faced in motor control. In the case of algorithmic cognitive models, we find 
that parameter degeneracy (e.g., DDM) and process degeneracy (e.g., target-distractor trade-off) 
make it difficult to optimally configure information processing. However, problems at this level 
of analysis reflect the best-case scenario, as these cognitive models are themselves often intended 
to be lower-dimensional representations of the underlying neural processes (Bogacz, 2007). At 
the implementational level, cognitive control occurs over the complex neural instantiation of 
these algorithms, further exacerbating the ill-posed nature of the control problem. 

One domain in which there can be redundancy in neural control is at the stage of processing at 
which control is applied, mirroring debates about early and late attentional selection highlighted 
above. Previous work has suggested that control can influence ‘early’ sensory processing (Adam 
and Serences, 2021; Egner and Hirsch, 2005) and ‘late’ processing in PFC (Mante et al., 2013; 
Stokes et al., 2013). To the extent that interventions along processing pathways have a similar 
influence on performance for a given task, there is a dilemma for where to allocate control. 

The difficulty in deciding ‘where’ to allocate control is magnified as the control targets move 
from macro-scale processing pathways to local configurations of neural populations. For 
example, a controller could need to configure a small neural network to produce a specific 
spiking profile in response to inputs. Confounding this goal, it has been shown that a broad range 
of cellular and synaptic parameters produce very similar neuron- and network-level dynamics at 
the scale of only a few units (Alonso and Marder, 2019; Goaillard and Marder, 2021; Marder and 
Goaillard, 2006; Prinz et al., 2004). For example, very different configuration of sodium and 
potassium conductance can produce very similar bursting profiles (Golowasch et al., 2002), 
analogously to the redundancy of antagonistic muscles. These findings demonstrates that even 
simple neural networks face an ill-posed configuration problem, highlighting additional 
challenges to the biological implementation of cognitive control. Despite this degeneracy, 
research on brain-computer interfaces has shown that animals can exert fine-grained control over 
neural populations. Animals are capable of evoking arbitrary activity patterns to maximize 
reward (Athalye et al., 2019), even at the level of controlling single neurons (Prsa et al., 2017).  

Across these different scales of implementation, the optimization of neural systems faces a core 
set of inverse problems. There are many macro-scale configurations that map similarly onto task 
goals, and there are many micro-scale configurations that map similarly on to local dynamics. 
This problem is closely related to the long-debated issue of multiple realizability in philosophy 
of science which, in its applications to neuroscience, has explored the lack of one-to-one 
mapping between neural and mental phenomena (e.g., whether pain is identical to ‘C fiber’ 
activity; (Putnam, 1967)). The lack of one-to-one mappings between structure and function poses 
not only an inferential problem to scientists and philosophers, but also an optimization problem 
to a brain’s control system. 
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The problem with inversion 
As we’ve outlined above, the core difficulty in planning cognitive control comes from situations 
in which the brain needs to map a higher-dimensional control configuration on to a lower-
dimensional task space, particularly when there is redundancy in this mapping (Figure 3). This 
class of problems has been carefully explored in applied mathematics (Calvetti and Somersalo, 
2018; Engl et al., 1996; Evans and Stark, 2002; Willcox et al., 2021), and this field has 
developed helpful formalisms and solutions to the problems faced by the brain. We can first 
consider the forward problem, where a brain forecasts what would happen if it adopted a specific 
control configuration. For example, the controller may predict how performance will change if it 
raises its decision threshold. This problem generally has a unique solution, as a specific 
configuration will usually produce a specific result even if there is redundancy. Furthermore, 
projecting from a higher-dimensional configuration to a lower-dimensional outcome will 
compress the output, resulting in a stable solution.  
 
However, the goal in optimization is to solve the inverse problem, in this case inferring which 
control configurations will produce a desired task state. As discussed earlier, this problem is 
generally ill-posed (Hadamard, 1902) because there are multiple redundant solutions for 
implementing cognitive control. Another reason this is an ill-posed problem is that this projects a 
lower-dimensional outcome into a higher-dimensional configuration (Calvetti and Somersalo, 
2018; Engl et al., 1996). For example, the controller may optimize reward rate, but to do so must 
configure many potential neural targets. Since outcomes are noisy (e.g., noisy estimates of values 
due to sampling error or an imperfect forecasting), projection into a higher dimensional control 
space will amplify this noise. In this regime, small changes in values or goals can produce 
dramatically different control configurations, leading to an unstable optimization process. 
Without compensatory measures, these features of ill-posed cognitive control would impede the 
brain’s ability to effectively achieve goals. 
 

 
Figure 3. Forward and inverse problems in cognitive control. The forward problem in cognitive control 
entails predicting how a control configuration (left) would lead to a task state (right). This problem is stable 
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because it maps from a high-dimensional control space into a lower-dimensional task space. Specification of 
cognitive control requires solving the inverse problem, inferring the optimal control configuration to achieve 
a goal. This problem is unstable because it (redundantly) maps from a lower-dimensional task space into a 
higher-dimensional control space. Schematic adapted from (Krakauer et al., 2017). 

 
This fundamental challenge of inferring the actions that will achieve goals has long been a 
central one within research on computational motor control (McNamee and Wolpert, 2019). 
Thankfully, these inverse problems can be made tractable though well-established modifications 
to the optimization process (Engl et al., 1996; Tikhonov, 1963). Motor theorists have leveraged 
these solutions to help explain action planning, and in doing so providing insight into the nature 
of effort costs. 

Solving the inverse problem 

Motor solutions to the inverse problem 
A major innovation in theoretical motor control was to reframe the motor control problem as an 
optimization problem. Under this perspective, actions optimize an objective function over the 
duration of the motor action (similarly to the reward rate used for decision optimization). For 
scientists who took this approach, a primary focus was to understand people’s objective 
functions, and in particular the costs that constrain people’s actions. Researchers proposed that 
people place a cost on jerky movements (Flash and Hogan, 1985), muscle force (Chow and 
Jacobson, 1971; Nelson, 1983; Uno et al., 1989), or action-dependent noise (Harris and Wolpert, 
1998), and therefore try to minimize one or more of these while pursuing their goals. A core 
difference between these accounts was whether costs depended on movement trajectories (Flash 
and Hogan, 1985) or muscle force (Uno et al., 1989), with the latter better explaining bodily 
constraints on actions (e.g., due to range of movement).  
 
It now appears that actions are constrained by a muscle-force-dependent cost (Diedrichsen et al., 
2010; Morel et al., 2017; O’Sullivan et al., 2009; Uno et al., 1989), and likely also endpoint noise 
(Harris and Wolpert, 1998; O’Sullivan et al., 2009; Todorov, 2005)). However, it remains 
unclear whether these effort costs are due to physiological factors like metabolism, or whether 
they reflect a more general property of the decision process. While metabolism would be an 
obvious candidate for these effort costs, researchers have found that subjective effort appraisals 
are largely uncorrelated with information being signaled by bodily afferents (Marcora, 2009). 
Furthermore, whereas metabolic demands should increase linearly with muscle force, effort costs 
are better accounted for by a quadratic relationship (Diedrichsen et al., 2010; Shadmehr and 
Ahmed, 2020).  
 
These discrepancies suggest that motor effort may not depend solely on energy expenditure, but 
also on properties of the optimization process (e.g., related to the anticipated control investment). 
A promising explanation for these effort costs may arise from the solution to motor control’s ill-
posed inverse problem. A central method for solving ill-posed problems is to constrain the 
solution space through regularization (i.e., placing costs on higher intensities of motor control), a 
role that motor control theorists have proposed for effort costs (Jordan, 1989; Kawato et al., 
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1990). For example, across all motor plans that would produce equivalent performance 
outcomes, there is only one solution that also expends the least effort. From this perspective, 
motor effort enables better planning by creating global solutions to degenerate planning 
problems. 

Regularization as a solution to ill-posed cognitive control selection 
Much like motor control, cognitive control must also solve a degenerate inverse problem. Like 
motor control, cognitive control is subjectively costly (Shenhav et al., 2017). For example, 
participants will forego money (Westbrook et al., 2013) and even accept pain (Vogel et al., 2020) 
to avoid more cognitively demanding tasks. If physical effort regularizes degenerate motor 
planning, then it is plausible that cognitive effort similarly regularizes degenerate cognitive 
planning. Re-casting physical and mental effort as a regularization cost brings these domains in 
line with a wide range of related psychological phenomena. For example, inferring depth from 
visual inputs is also an ill-posed problem, and this inference has been argued to depend on 
regularization (Bertero et al., 1988; Poggio et al., 1985b, 1985a).  
 
Recent proposals have drawn connections between cognitive effort and regularization under a 
variety of theoretical motivations. For instance, it has been proposed that cognitive effort 
enhances multi-task learning (Kool and Botvinick, 2018; Musslick et al., 2020), where effort 
costs regularize towards task-general policies (‘habits’) that enable better transfer learning. It has 
been also been proposed, based on principles of efficient coding (Zénon et al., 2019), that effort 
costs enable compressed and more metabolically efficient stimulus-action representations. 
Finally, effort costs have been motivated from the perspective of model-based control (Piray and 
Daw, 2021), where regularization towards a default policy allows for more efficient long-range 
planning. These accounts offer different perspectives on the benefits of regularized control, 
complementing motor control’s emphasis on solving ill-posed inverse problems.  
 
Regularization in inverse problems has a normative Bayesian interpretation, in which constraints 
come from prior knowledge about the solution space (Calvetti and Somersalo, 2018). This 
Bayesian perspective has been influential in modelling ill-posed problems like inferring 
knowledge from limited exemplars (Tenenbaum et al., 2011, 2006) and planning sequential 
actions (Botvinick and Toussaint, 2012; Friston et al., 2012; Solway and Botvinick, 2012). 
Regularization and Bayesian inference have been a productive approach for understanding how 
people solve ill-posed problems in cognition and action. Within the Bayesian frameworks, effort 
costs can be re-cast in terms of shrinkage towards a prior, providing further insight into how a 
regularization perspective could inform cognitive control. If there are priors on cognitive or 
neural configurations, such as automatic processes like habits, then regularized control would 
penalize deviations from those defaults.  
 
A Bayesian perspective on the relationship between automaticity and control costs makes an 
interesting and counterintuitive prediction: when people’s priors are to exert high levels of 
control, they will find it difficult to relax their control intensity. Research on control learning 
supports these predictions. A large body of work has found that participants learn to exert more 
control when they expect a task to be difficult (Bugg and Chanani, 2011; Jiang et al., 2015; 
Logan and Zbrodoff, 1979; Yu et al., 2009), or when stimuli are associated with conflict (Bugg 
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and Crump, 2012; Bugg and Hutchison, 2013). This results in an allocation of excessive and 
maladaptive levels of control when a trial turns out to be easy (Logan and Zbrodoff, 1979). A 
recent experiment by Bustamante and colleagues (2021) extended these findings by showing 
how biases in control exertion can emerge through feature-specific reward learning. Participants 
performed a color-word Stroop task where they could choose to either name the color (more 
control-demanding) or read the word (less control-demanding). They learned that certain 
stimulus features would yield greater reward for color-naming and others for word-reading. 
Critically, during a subsequent transfer phase, participants had trouble learning to adaptively 
disengage control when faced with a combination of stimulus features that had each previously 
predicted greater reward for greater effort. That is, they had learned to over-exert control. 
However, further work is needed to understand whether this over-exertion is due to effort 
mobilization, or control priors that make color-naming less effortful (Yu et al., 2009).  
 
This work highlights connections between control theory and forms of reinforcement learning 
that have been well-characterized within the cognitive sciences, whereby an agent is presumed to 
select actions (or sequences of actions) that maximize their expected long-term reward (Collins, 
2019; Neftci and Averbeck, 2019; Sutton and Barto, 2018). Indeed, the parallels between these 
two modeling frameworks are rich, most notably in that both seek to optimize goal-directed 
behavior by optimizing the Bellman equation (a formula for estimating an action’s expected 
future payoff; (Anderson and Moore, 2007; Kalman, 1960)). Ways in which these traditions 
often differ is that LQR emphasizes prospective model-based planning of a feedback policy over 
a continuous state space, whereas reinforcement learning usually focuses on gradually learning 
an action policy over a discrete state space (Recht, 2018). Reinforcement learning could 
speculatively intersect with cognitive control by learning the control priors highlighted above 
(complementing use-based automaticity (Miller et al., 2019) and evolutionary priors (Cisek, 
2019; Zador, 2019)), or could be involved in learning higher-level control policies (e.g., learning 
a sequence of subgoals (Frank and Badre, 2012)). 

Algorithms for motor and cognitive control 
Motor and cognitive control appear to solve similar problems (action-outcome inversion), and 
plausibly through similar computational principles (regularized optimization). The next logical 
step is to ask whether cognitive control has developed similar algorithmic solutions to this 
inversion as the motor control system. A longstanding gold-standard algorithm for modelling 
motor actions is the Linear Quadratic Regulator (LQR), which plays a central role in the Optimal 
Feedback Control theory of motor planning (Haar and Donchin, 2020; Shadmehr and Krakauer, 
2008; Todorov and Jordan, 2002). Building off the success of Optimal Feedback Control in the 
motor domain, this algorithm provides a promising candidate for understanding the planning and 
execution of cognitive actions.  
 
LQR can provide the optimal solution to sequential control problems when two specific criteria 
are met. First, the system under control must have linear dynamics, such as a cruise controller 
that adjusts the speed of a car. Second, the control process must be optimizing a quadratic 
objective function. This usually involves minimizing both the squared goal error (e.g., the 
squared deviation from   desired speed) and the squared control intensity (e.g., the squared motor 
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torque). Under these conditions, LQR provides an analytic (i.e., closed-form) solution to the 
optimal policy3, avoiding the curse of dimensionality (Van Rooij, 2008). LQR is equivalent to 
the Kalman filtering method for optimal inference (Kalman and Bucy, 1961; Todorov, 2008), 
and the Linear Quadratic Gaussian algorithm combines inference and control for 
computationally tractable optimal behavior under state uncertainty (Todorov, 2005; Yeo et al., 
2016). 

 
In the domain of motor control, this model empirically captures participants’ motor trajectories 
(Stevenson et al., 2009; Todorov and Jordan, 2002; Yeo et al., 2016), particularly in the case 
where there are mid-trajectory perturbations to goals or effectors (Diedrichsen, 2007; Knill et al., 
2011; Liu and Todorov, 2007; Nashed et al., 2012; Takei et al., 2021). A striking example of the 
power of this model to capture behavior was observed in an experiment on motor coordination 
(Diedrichsen, 2007). Participants performed a reaching task in which the goal either depended on 
both arms (e.g., rowing), or where each arm had a separate goal (e.g., juggling). During the 
reach, the experimenters perturbed one of the arms, and found that participants compensated 
with both arms only when they were both involved in the same goal. In LQR, this goal-
dependent coordination arises due to the algorithm’s model-based feedback control, with squared 
effort costs favoring distributing the work across goal-relevant effectors. Accordingly, this study 
found that LQR simulations accurately captured participants’ reach trajectories. Furthermore, 
participants’ behavior also confirmed a key prediction of LQR, namely that noise correlations 
between arms will be task-specific, constraining control to the goal-relevant dimensions of the 
task manifold (the ‘minimal intervention principle’; (Todorov and Jordan, 2002)).  
 
A starting point for developing algorithmic links between cognitive and motor control is to 
consider whether cognitive control is a problem that is well-suited for LQR. The first prediction 
from LQR is that the dynamics between cognitive states are approximately linear. One measure 
of these dynamics comes from task switching, in which participants switch between multiple 
stimulus-response rules (‘task sets’; (Monsell, 2003)). Researchers have found that these 
transitions between task sets are well-captured by linear dynamics (Musslick et al., 2019a; 
Musslick and Cohen, 2021; Steyvers et al., 2019). For example, when participants are given a 
variable amount of time to prepare for a transition between two tasks (e.g., responding based on 
letters vs digits), the stereotypical switch cost of slower responding after a task switch compared 
to a task repetition decreases with greater preparation time (Rogers and Monsell, 1995). A simple 
re-analysis of this pattern shows that switch costs can be well-captured by a linear dynamical 
model (Figure 4A). Whereas switching to the ‘letter’ or ‘digit’ task had different initial and 
asymptotic performance costs, they appear to exhibit a similar rate of change. 
 
Linear dynamics have also been observed in attentional adjustments that occur within a trial of a 
given task. For instance, recent work has shown that performance on an Eriksen flanker task can 
be accounted for by a DDM variant in which initially-broad attention narrows within a trial to 
primarily focus only the central target, resulting in a shift from the drift rate being initially 

 
 
3 The analytic solutions to these algorithms rely on ordinary least squares solutions for optimizing quadratic loss 
functions and Gaussian identities describing how quadratic loss functions change under linear dynamics. For in-
depth mathematical treatments, see (Anderson and Moore, 2007; Recht, 2018; Shadmehr and Krakauer, 2008).  
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dominated by the flankers to being primarily dominated by the target (Servant et al., 2014; 
Weichart et al., 2020; White et al., 2011). Using the dot motion task described earlier, we 
recently showed that these within-trial dynamics can be further teased apart into target-enhancing 
and distractor-suppressing elements of feature-based attention, each with its own independent 
dynamics (Ritz and Shenhav, 2021). These dynamics were well-captured by an accumulation 
model that regulated feature gains with a linear feedback control law (Figure 4B).  
 

 
Figure 4. Linear-Quadratic properties of cognitive control. A-B) There is evidence of linear cognitive 
control reconfiguration dynamics both between trials and within a given trial. (A) In task-switching 
experiments, participants’ switch costs (slower and less accurate performance when performing a different task 
than on the previous trial) exponentially decay with longer preparation time (time between the end of one trial 
and the start of the next), consistent with linear dynamics. Lines show a maximum likelihood fit to data from 
Rogers and Monsell (1995) in which participants switched between letter and digit tasks at predictable intervals. 
We estimated a shared decay rate (K) across tasks, with separate initial conditions and asymptote fit to average 
switch costs in each task. (B) In a response conflict task, participants were less sensitive to distractor conflict 
(parametrically varying stimulus-response congruence) at later response times (Ritz and Shenhav, 2021). This 
experiment modelled participants’ distractor sensitivity dynamics as exponentially decaying over time within 
each trial (inset), consistent with linear dynamics (Weichart et al., 2020; White et al., 2011). C-D) Quadratic 
cost functions are evident in studies of effort discounting and working memory. (C) In effort-discounting tasks, 
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participants’ subjective cost of n-back tasks quadratically increases with their working memory load. Estimated 
cost functions are plotted from (Massar et al., 2020; Vogel et al., 2020). (D) Errors on working memory tasks 
are approximately Gaussian, consistent with a quadratic loss function on accuracy (Sims et al., 2012).  

 
A second prediction from LQR is that cognitive effort costs are quadratic. There are two lines of 
evidence that support this prediction. One line of evidence comes from studies of cognitive effort 
discounting, which examine how people explicitly trade off different amounts reward (e.g., 
money) against different levels of cognitive effort (e.g., n-back load). These studies quantify the 
extent to which different levels of effort are treated as a cost when making those decisions (i.e., 
how much reward is discounted by this effort), and many of them find that quadratic effort 
discounting captures choice the best among their tested models4 (Figure 4C; (Białaszek et al., 
2017; Massar et al., 2020; Petitet et al., 2021; Soutschek et al., 2014; Vogel et al., 2020); though 
see also (Chong et al., 2017; Hess et al., 2021; McGuigan et al., 2019). A second line of evidence 
supporting quadratic costs is found in tasks that require participants to hold a stimulus in 
working memory (e.g., a Gabor patch of a given orientation) and then reproduce that stimulus 
after a delay period. Errors on this task tend to be approximately Gaussian (Bays and Husain, 
2008; Ma et al., 2014; Sprague et al., 2016; van den Berg et al., 2012; Wilken and Ma, 2004), 
consistent with the predictions of ideal observer models that incorporate quadratic loss function 
(Sims, 2015; Sims et al., 2012); Figure 4D).  

 
Recent work has begun to make explicit links between LQR and the neural implementation of 
cognitive control. Most notably, Bassett and colleagues have used LQR to model the large-scale 
control of brain networks (Tang and Bassett, 2018)). This approach uses LQR modelling of 
whole-brain network dynamics to understand the ability of  sub-networks to reconfigure macro-
scale brain states (Betzel et al., 2016; Braun et al., 2021; Gu et al., 2021, 2015), see also (Yan et 
al., 2017). For instance, in an fMRI experiment using the n-back task, Braun and colleagues 
(2021) found that their LQR model inferred that the brain requires more control to maintain a 
stable 2-back state than a 0-back state, as well as more control to transition from a 0-back state 
into a 2-back state than vice versa. Interestingly, individual differences in these model-derived 
estimates of stability and flexibility were associated with differences in dopamine genotype, 
dopaminergic receptor blockade, and schizophrenia diagnosis (Braun et al., 2021). An LQR 
modelling approach has been similarly used to model dynamics in directly-recorded neural 
activity to understand how local connectivity influences control demands (Athalye et al., 2021; 
Stiso et al., 2019), with accompanying theories of how these configuration processes are learned 
through reinforcement learning (Athalye et al., 2019).  

Conclusions and future directions 
The second half of the twentieth century saw a wave of progress on mathematical models for 
optimal control problems in applied mathematics. A second wave of computational motor 
control followed closely, combining rigorous measurement of motor actions with normative 

 
 
4 A concern about effort discounting is that it ought to be estimated based on cognitive demands rather than task 
demands. Notably, participants consistently show quadratic effort discounting in the n-back task, one domain where 
there is at least a well-characterized linear relationship between these levels of task load and PFC activity (Braver et 
al., 1997).  
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models from this new optimal control theory (Chow and Jacobson, 1971; Flash and Hogan, 
1985; Nelson, 1983; Todorov and Jordan, 2002; Uno et al., 1989). Recently, a third wave of 
cognitive control research has extended optimal control principles to goal-directed cognition 
(Bogacz et al., 2006; Lieder et al., 2018; Musslick and Cohen, 2021; Piray and Daw, 2021; 
Shenhav et al., 2017, 2013; Tang and Bassett, 2018; Yu et al., 2009). This work tries to formalize 
the principles that tie these different frameworks together, highlighting how cognitive control 
can learn from decades of computational motor control research. These principles have the 
potential to inform the theoretical development and focused empirical investigation into the 
architecture of goal-directed cognition. As behavioral tasks, statistical techniques, and 
neuroimaging methods improve our measurements of how the brain configures information 
processing, theoretical constraints will be essential for asking the right questions.  
 
One insight from casting cognitive control as regularized optimization is that the sources of the 
control costs that can enable ‘failures’ of control are not necessarily due to cognitive limitations 
(e.g., limited capacity to engage multiple control signals). Instead, these costs can arise due to the 
flexibility of cognition, enabling a complex brain to optimize over degenerate control actions. 
Under this framework, effort helps solve the decision problem of how to configure control. One 
productive application of this perspective may be to help shed light on why people differ in how 
they configure these multivariate signals, for instance prioritizing some forms of control over 
others. A regularization perspective would emphasize understanding different people’s priors 
(such as judgements of ability, (Bandura, 1977; Shenhav et al., 2021)) and configural 
redundancy when accounting for people’s mental effort costs.  
 
There are several important avenues for building further on the promising theoretical and 
empirical foundations that have been recently established in the study of multivariate control 
optimization. For instance, it will be important to understand how effort’s role in solving the 
inverse problem trades off against other proposed benefits like generalization (Kool and 
Botvinick, 2018; Musslick et al., 2020) and efficiency (Zénon et al., 2019). It will also be 
important to develop finer-grained connections between computational theories of regularized 
cognitive control and the algorithmic and implementational theories of how the brain performs 
control optimization and execution. For instance, to what extent can specific regularized control 
algorithms such as LQR explain the dynamics of cognitive control optimization and deployment? 
How does the cognitive control system integrate across multiple monitored signals of goal 
progress and achievement (Haar and Donchin, 2020), including different forms of errors and 
conflict (Ebitz and Platt, 2015; Shen et al., 2015)?  While LQR modelling has been a powerful 
approach for understanding the role of neural connectivity in goal-driven brain dynamics, more 
work is needed to bridge these findings to cognitive models of control optimization and 
specification.  
 
In addition to understanding the computational goals of cognitive control optimization, it will be 
equally important to understand how biological control algorithms deviate from optimality. A 
substantial body of research has characterized apparent deviations from optimality during 
judgment and decision-making in the form of heuristics and biases (Kahneman, 2003; Tversky 
and Kahneman, 1974). Such seemingly irrational behaviors have been accounted for within 
decision frameworks by formalizing the rational bounds on optimality (Bhui and Xiang, 2021; 
Gershman and Bhui, 2020; Lieder et al., 2014, 2012; Lieder and Griffiths, 2019; Parpart et al., 
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2018; Simon, 1955). The LQR algorithm may similarly reflect bounded optimality, as LQR is 
sub-optimal when its linear-quadratic assumptions are a poor match to a task. A cognitive control 
system that uses LQR could reflect a trade-off between better computational tractability and 
poorer worst-case performance. Future research should investigate how the heuristics, biases, 
and approximations that influence cognitive control can inform our models of control planning. 
 
Progress on these questions will in turn require more precise estimates of the underlying control 
processes. The study of motor control has benefited immensely from high resolution 
measurements of motor effectors, for instance tracking hand position during reaching. Analogous 
measures of cognitive control are much more difficult to acquire, in part because they require 
inference from motor movements (e.g., response time) and/or patterns of activity within neural 
populations whose properties are still poorly understood and are typically measured with limited 
spatiotemporal resolution. Future experiments should combine computational modelling with 
spatiotemporally resolved neuroimaging to understand the implementation of different types of 
control. In addition to addressing core questions at the heart of multivariate control optimization, 
such methodological improvements will also help us better understand the heterogeneity of 
multivariate effort. For instance, an untested assumption implied by existing theoretical 
frameworks is that all forms of cognitive control will incur subjective costs in a similar fashion, 
for instance that higher levels of drift rate and higher levels of threshold will both be experienced 
as effortful (cf. (Shenhav et al., 2013)). While there is consistent evidence that enhancements to 
drift rate incur a cost, it remains less clear whether adjustments to response threshold incur a cost 
over and above the reductions to reward rate they can cause (cf. Leng et al., 2020). Further 
research is needed to examine this question and to explore both the magnitude and functional 
form of these cost functions across a wider array of control signals, especially with respect to 
deviations from participants’ default configurations.  
 
Our cognitive control is extremely complex, flexible, primarily operates over latent processes 
like decision making, all features that make studying cognitive control a challenge. Thankfully, 
we can gain better traction on this inference by drawing from the rich empirical and theoretical 
traditions in better-constrained fields like motor control (Broadbent, 1977). The normative 
principles of optimal control theory, which have proven so fruitful in motor control, can similarly 
help inform our theories and investigations into cognitive control. While our cognition will 
certainly diverge from these normative theories, these approaches can provide a core foundation 
for understanding how we control our thoughts and actions. 
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