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Abstract

Aversive motivation plays a prominent role in driving individuals to exert cognitive control.
However, the complexity of behavioral responses attributed to aversive incentives creates
significant challenges for developing a clear understanding of the neural mechanisms of this
motivation-control interaction. We review the animal learning, systems neuroscience, and
computational literatures to highlight the importance of experimental paradigms that incorporate
both motivational context manipulations and mixed motivational components (e.g., bundling of
appetitive and aversive incentives). Specifically, we postulate that to understand aversive incentive
effects on cognitive control allocation, a critical contextual factor is whether such incentives are
associated with negative reinforcement or punishment. We further illustrate how the inclusion of
mixed motivational components in experimental paradigms enables increased precision in the
measurement of aversive influences on cognitive control. A sharpened experimental and
theoretical focus regarding the manipulation and assessment of distinct motivational dimensions
promises to advance understanding of the neural, monoaminergic, and computational mechanisms

that underlie the interaction of motivation and cognitive control.



1. Introduction

In daily life, individuals demonstrate an impressive ability to weigh the relevant incentives
when deciding the amount and type of effort to invest when completing cognitively demanding
tasks (Shenhav et al., 2017). These incentives can include both the potential positive outcomes
obtained from task completion (e.g., bonus earned, social praise), as well as potential negative
outcomes that can be avoided if the task is not completed (e.g., job termination, social
admonishment). The ability to successfully adjust cognitive control based on diverse motivational
incentives is highly significant for determining one's future academic, career, and social goals
(Bonner & Sprinkle, 2002; Duckworth et al., 2007; Mischel et al., 1989), as well as providing a
necessary intermediary step for informing how motivational and cognitive deficits may arise in
clinical disorders (Barch et al., 2015; Jean-Richard-Dit-Bressel et al., 2018).

Importantly, individuals often face a mixture — or “bundle” — of positive and negative
incentives that may jointly occur as in relation to their behavior (e.g., the motivation to earn a good
salary and to avoid being fired may jointly drive a worker to allocate more effort to optimize their
performance relative to each incentive alone). A crucial factor often neglected in cognitive
neuroscience studies of motivation and cognitive control is that the impact of a negative incentive
on behavior may depend strongly on the context of how it is bundled (e.g., good salary plus the
fear of job termination may motivate an individual to increase their effort, whereas a good salary
accompanied by frequent and harsh criticism from a supervisor may cause that same person to
decrease their effort). In this review, we provide a detailed examination of how contextual factors
moderate bundled incentive effects to better elucidate the mechanisms that underlie interactions of

motivation and cognitive control.



Recent empirical research has shed some light on the neural mechanisms of motivation and
cognitive control interactions (Botvinick & Braver, 2015; Braver et al., 2014; Yee & Braver,
2018). In particular, dopamine has been widely postulated as a key neurotransmitter (Cools, 2008,
2019; Westbrook & Braver, 2016), and a broad network of brain regions have been shown to
underlie these interactions (Parro et al.,, 2018). Extant studies in this domain have almost
exclusively focused on the impact of expected rewards (e.g., monetary bonuses, social praise) on
higher-order cognition and cognitive control (Aarts et al., 2011; Bahlmann et al., 2015; Braem et
al., 2014; Chiew & Braver, 2016; Duverne & Koechlin, 2017; Etzel et al., 2015; Frober &
Dreisbach, 2016; Fromer et al., 2021; Kouneiher et al., 2009; Locke & Braver, 2008; Small et al.,
2005). In contrast, much less is known about the mechanisms through which negative outcomes
(e.g., monetary losses, shocks) interact with cognitive control (Braem et al., 2013; Frobose &
Cools, 2018). Although this dissociation by motivational valence (e.g., rewarding vs. aversive) in
decision-making is not new (Pessiglione & Delgado, 2015; Plassmann et al., 2010), it remains a
significant challenge to determine whether rewarding and aversive motivational values are
processed in common or separate neural circuits (Hu, 2016; Morrison & Salzman, 2009).

A recent theoretical framework that shows great promise for integrating the role of aversive
motivation in cognitive control is the Expected Value of Control (EVC) model (Shenhav et al.,
2013, 2017). The EVC model utilizes a computationally explicit formulation of cognitive control
in terms of reinforcement learning and decision-making processes in order to characterize how
diverse motivational incentives (e.g., rewards, penalties) impact cognitive control allocation.
Critically, EVC reframes adjustments in cognitive control as a fundamentally motivated process,
determined by weighing effort costs against potential benefits of control to yield the integrated,

net expected value. Although the EVC model has been successfully applied to characterize how



rewarding incentives offset the cost of exerting cognitive control, the current cost-benefit analysis
needs to be expanded to account for the diversity of strategies for control allocation that arise from
aversive motivational incentives.

These important gaps in the literature highlight a ripe opportunity and unique challenge for
expanding the investigation of motivation and cognitive control interactions. But why have
researchers not yet made significant inroads into characterizing these mechanisms underlying
aversive motivation effects on cognitive control? We argue that obstacles to progress can be
attributed to two main factors. First, much of the contemporary neuroscience literature has often
neglected to consider the motivational context through which aversive incentives influence
different strategies for allocating cognitive control, that is, whether the motivational context is
operationalized as the degree to which motivation to attain or avoid an outcome will increase (e.g.,
reinforcement) or decrease (e.g., punishment) behavioral responding. For example, whereas
rewarding incentives typically increase behavioral responding to approach the expected reward,
aversive incentives can lead an organism to either invigorate or attenuate behavioral responses to
avoid the aversive outcome, depending on the motivational context (e.g., See Levy & Schiller,
2020; Mobbs et al., 2020). Second, current experimental paradigms rarely include bundled
incentives (i.e., mixed motivation, when both appetitive and aversive outcomes are associated with
a behavior), despite the intuition that people likely integrate diverse motivational incentives when
deciding how much cognitive control to allocate in mentally demanding tasks. A particular
challenge is the lack of well-controlled experimental assays that can explicitly quantify the diverse
effects of aversive incentives on cognitive control.

In this review, our primary objective is to identify and highlight critical motivational

dimensions (e.g., motivational context and mixed motivation), which for the most part have been



neglected in prior treatments. In our opinion, these dimensions have strong potential to advance
understanding regarding the neural, monoaminergic, and computational mechanisms of aversive
motivational and cognitive control. In particular, we demonstrate how incorporating these
motivational dimensions, which have played a prominent role in animal learning experimental
paradigms, into experimental studies with humans, can improve the granularity and precision
through which we can measure aversive incentive effects on cognitive control allocation.
Specifically, we hypothesize that stronger consideration of the motivational context of aversive
incentives can clarify the putative dissociable neural pathways and computational mechanisms
through which aversive motivation may guide cognitive control allocation. Similarly, the inclusion
of mixed motivational components in experimental paradigms will facilitate increased precision in
measuring the aversive influences on cognitive control. In sum, we anticipate this review will
invigorate greater appreciation for foundational learning and motivation theories that have guided
the cornerstone discoveries over the past century, as well as catalyze innovative, groundbreaking
research into the computations, brain networks, and neurotransmitter systems associated with

aversive motivation and cognitive control.

2. Historical Perspectives on Aversively Motivated Behavior
2.1. Paviovian vs. Instrumental Control of Aversive Qutcomes

The dichotomy between Pavlovian and instrumental control of behavior has long played
an influential role in our contemporary understanding of motivation (Guitart-Masip et al., 2014;
Mowrer, 1947; Rescorla & Solomon, 1967). Here, Pavlovian control refers to when a conditioned
stimulus (CS) elicits a conditioned response (CR) that is typically associated with an unconditioned

stimulus (US) (Dickinson & Mackintosh, 1978; Pavlov, 1927; Rescorla, 1967, 1988). For example,



a rat will learn to salivate when they hear a tone that predicts delivery of a food pellet, or
alternatively learn to produce defensive responses (e.g., freezing, panic, anxiety) when they hear
a tone that predicts electric shocks. In contrast to Pavlovian control, instrumental control describes
when an ongoing behavior is “controlled by its consequences,” such that the likelithood of a
behavioral response increases when an organism receives a reinforcing outcome for performing
that response (Skinner, 1937; Staddon & Cerutti, 2003). For example, a rat will increase its rate of
lever pressing if that action is followed by a food reward (e.g., reinforcement), whereas a rat will
decrease its rate of lever pressing if that action is followed by an electric shock. Importantly,
although both examples illustrate how Pavlovian and instrumental control lead to changes in
behavior, the key distinction is that in the former, the appetitive or aversive outcome (US) is
presented independent of an organism’s behavior, whereas, in the latter, an organism must perform
a specific action in order to successfully attain or avoid a certain outcome. This distinction is
detailed in Table 1 and Figure 1a.

Despite the utility of the Pavlovian-instrumental distinction in explaining the influence of
rewarding and aversive incentives on behavior in the animal literature (e.g., conditioned
responses), this distinction has largely been neglected in human cognitive neuroscience studies of
motivation and cognitive control. This neglect may be a primary factor contributing to the
contradictory findings associated with aversive motivation in the contemporary literature, which
we describe in the subsequent sections.

Table 1: Pavlovian vs. Instrumental Control. Detailed comparison of key differences between
Pavlovian and Instrumental Control. CR = conditioned response; CS = conditioned stimulus; US
= unconditioned stimulus; SP = discriminative stimulus

Pavlovian Control Instrumental Control
(e.g., Classical, Respondent) (e.g., Operant)
Behavior is controlled by stimulus preceding Behavior is controlled by consequences of
response response




Responses are elicited by neutral stimuli Responses are driven by the motivation to attain a

repeatedly associated with an appetitive or rewarding outcome or avoid/escape from an

aversive unconditioned outcome aversive outcome

Goal is to increase the probability of a response Goal is to increase the probability of a response in

(CR) to an initially neutral stimulus (CS) by the presence of a discriminative stimulus (SP) by

associating the neutral stimulus with an following a desired response with a reinforcing

unconditioned stimulus (US) outcome or following the undesired response with
a punishing outcome

Stimulus-Stimulus contingencies Response-Outcome contingencies

US follows CS during training regardless of Reinforcer or Punisher follows the response only

whether or not CS occurs. CR is brought under if the organism performs the voluntary action

the control of a stimulus event CS that precedes

the response, rather than the one that follows it
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Figure 1: Pavlovian vs. Instrumental Control of Motivated Behavior. a) Schematic of how
rewarding vs. aversive motivation may elicit various behavioral responses under Pavlovian vs.
instrumental control paradigms. b) Instrumentally controlled responses by motivational valence
(rewarding vs. aversive) and behavioral responding (activation vs. inhibition). Given that the same
outcome may strengthen or weaken responses based on the context, consideration of both the
motivational valence of the expected outcome and its impact on instrumental responding is of
critical importance. In the case of aversive motivation, we highlight how avoidance motivation
may lead to either behavioral activation (active avoidance) or behavioral inhibition (passive
avoidance), depending on the context (negative reinforcement for the former, punishment for the
latter).

2.2. Aversive Outcomes May Strengthen or Weaken Behavioral Responses, Depending on the

Motivational Context



A large source of confusion in aversive motivation stems from the misuse of proper terms
(i.e., the conflation between “aversive outcome” and “punishment”). This misunderstanding likely
stems from insufficient clarity regarding reinforcement theory. Based on Thorndike’s “law of
effect,” the theory posits that responses that produce a satisfying state will be strengthened,
whereas responses that produce a discomforting state will be weakened (Thorndike, 1927, 1933).
Formally, a reinforcer is anything that strengthens an immediately preceding instrumental
response, whereas a punisher is anything that weakens an immediately preceding instrumental
response (Premack, 1971; Skinner, 1953). Reinforcement is produced by denying the subject the
opportunity to occupy a pleasant state as long as it would choose to, thus strengthening
instrumental responding to approach or maintain that pleasant state; whereas punishment is
produced by forcing the subject to occupy an unpleasant state longer than it would choose to, thus
suppressing instrumental responding to avoid or escape from an unpleasant state (Estes, 1944;
Solomon, 1964). A key insight arising from this distinction is that an aversive outcome can either
reinforce (i.e., strengthen) or punish (i.e., weaken) an instrumentally conditioned response,
depending on the context by which that outcome is presented (Crosbie, 1998; McConnell, 1990;
Terhune & Premack, 1974). See Figure 1b for illustration.

The distinction between negative reinforcement and punishment has great potential to
provide insight into the interactions between aversive motivation and cognitive control. Typically,
an individual will desire to avoid aversive outcomes. In these scenarios, Pavlovian conditioned
stimuli can either strengthen or weaken instrumental responses to facilitate avoidance (Bull &
Overmier, 1968; Overmier et al., 1971). Specifically, negative reinforcement refers to when
successful escape from an aversive outcome strengthens instrumental responding in future trials

(Masterson, 1970) and will produce a pleasant or rewarding affective response (H. Kim et al.,



2006). Conversely, punishment refers to when the presence of aversive outcomes weakens
instrumental responding in an approach motivation context (Dickinson & Pearce, 1976; Estes &
Skinner, 1941) and will potentiate defensive responses such as anxiety, stress, arousal, vigilance,
panic, or freezing (Hagenaars et al., 2012; Sege et al., 2017). Importantly, we suggest that the
inclusion of aversive incentives can provide greater granularity into how distinct motivational
factors can bias individuals to use different strategies for allocating cognitive control to accomplish
behavioral goals. For example, a clear representation of the motivational context in which an
aversive outcome will be encountered (e.g., punishment or negative reinforcement) can help
individuals determine the not only amount of effort required to achieve their goal, as well as

discern the strategy through which they will adjust their cognitive control allocation to meet that

goal.
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Figure 2: a) Approach and avoidance motivation elicit divergent behavioral responses, with the
former associated with actions to approach the rewarding outcome and the latter associated with
actions to avoid or escape from the aversive outcome. b) According to Reinforcement Sensitivity
Theory (RST), three core systems underlie human emotion: 1) fight-flight-freeze system (FFFS),
2) behavioral approach system (BAS), and 3) behavioral inhibition system (BIS). Adapted from
Gray, 1982 & Gray & McNaughton, 2000. Relevant to the current proposal, the BIS system
mediates the resolution of goal conflict (e.g., approach-avoidance motivational conflict). The
intensity of this conflict is associated with increased subjective anxiety. c) Recent extensions of
RST have suggested defensive distance and defensive direction as two important dimensions that
may help organize defensive responses to aversive motivation. Defensive distance describes the
perceived distance from a threat (proximal to distal) that influences the intensity of a defensive
response. Defensive direction describes the range of responses between actively avoiding or
escaping a threat (defensive avoidance) to cautiously approaching a threat (defensive approach).
Relevant to the current review, this delineation between defensive avoidance and defensive
approach reveals how the critical distinction between negative reinforcement and punishment may
underlie distinct fear-mediated and anxiety-mediated defensive responses to aversive motivation.
Simplified adaptation from McNaughton & Corr, 2004.

2.3. Mixed Motivation: A Key Ingredient for Motivational Conflict and Mutual Inhibition

One particular challenge for quantifying the effects of aversive motivation is that their
influence on behavior is much less parsimonious than appetitive motivation. Whereas approach-
related motivation typically produces purely appetitive or consummatory responses to pursue a
rewarding outcome, avoidance-related motivation typically engenders a wide range of behavioral
responses to avoid or escape from detected threats (Fanselow, 1994; Fanselow & Lester, 1988;
Masterson & Crawford, 1982) (See Figure 2a). For example, in order to avoid receiving an electric
shock (e.g., active avoidance), an organism may freeze, run (e.g., escape), produce a stress or fear
response, or engage in a combination of such behaviors (Church, 1963).

Although approach and avoidance motivation have long been theorized to be mediated by
distinct systems (Carver, 2006; Carver & White, 1994; Elliot & Covington, 2001), the extent to
which individuals exert mental and physical effort to complete behavioral goals is almost certainly
determined by mixed motivation, 1.e., the combined or integrated net value of multiple incentives

which potentially increase or decrease behavior depending on the motivational context (Aupperle
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et al., 2015; Corr & McNaughton, 2012; Yee & Braver, 2018). For example, an individual who is
motivated to increase their likelithood of attending a good medical school and avoid the
consequences of failing their course (e.g., academic probation) may additionally exert more effort
when vigorously studying for a final exam compared to a single motivation (e.g., approach or
avoidance motivation only). Conversely, an individual may be motivated to perform well on their
exam but also may find the content aversive (e.g., a student who has strong disgust reactions when
studying human anatomy) may be overall less motivated to study relative to an exam on a less
aversive topic (e.g., fly genetics).

Over the years, researchers have attempted to organize the diversity of defensive responses
precipitated by aversive motivation (LeDoux & Pine, 2016; McNaughton, 2011). One well-
established framework that has played an influential role is reinforcement sensitivity theory (RST)
(Gray, 1982; Gray & McNaughton, 2000). According to RST, three core systems underlie human
emotion: 1) a fight-flight-freeze system (FFFS) that is responsible for mediating behaviors in
response to aversive stimuli (e.g., avoidance, escape, panic, phobia), 2) a behavioral approach
system (BAS) that is responsible for mediating reactions to all appetitive stimuli (e.g., reward-
orientation, impulsiveness), and 3) a behavioral inhibition system (BIS) which mediates the
resolution of goal conflict (i.e., between FFFS and BAS, or even FFFS-FFFS and BAS-BAS
conflict) (Pickering & Corr, 2008). Critically, the BIS is hypothesized to play a key role in
generating anxiety during mixed motivational contexts. For example, during approach-avoidance
conflict, activation of the BIS will increase attention to the environment and arousal, with the level
of anxiety that is elicited tracking the intensity of conflict evoked by such attention (See Figure
2b). Although approach-avoidance conflicts are more commonly observed, RST proposes that

anxiety can also arise from approach-approach and avoidance-avoidance conflicts.
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Recent extensions of the RST have postulated two relevant dimensions that may help
organize the variety of defensive responses to aversive motivation (McNaughton, 2011;
McNaughton & Corr, 2004). As illustrated in Figure 2c, defensive direction describes the
functional distinction between leaving a dangerous situation (active avoidance or escape; fear
mediated by the FFFS system) and increasing caution to avoid a dangerous outcome (approach-
avoidance conflict or passive avoidance; anxiety mediated by the BIS system). Conversely,
defensive distance describes how an organism’s intensity of responding is associated with one’s
perceived distance to the threat. For example, more proximal threats would elicit more overt
reactive behavioral responses (e.g., panic, defensive quiescence). In contrast, distal threats may
elicit more covert non-defensive behavior (e.g., obsessive attention towards the potential threat
may drive compulsions to avoid that threat and increased anxiety).

The extended RST framework suggests the importance of mixed motivation for
understanding incentive effects on behavior. In particular, the joint consideration of rewarding
and aversive incentives associated with an outcome could have the effect of either further
strengthening or competitively inhibiting motivational influences on instrumental or goal-directed
behavior (Dickinson & Dearing, 1979; Dickinson & Pearce, 1977; Konorski, 1967). In addition to
the impact of behavior, an important open question in this domain is whether and how the
interaction between different motivational systems increases (Barker et al., 2019) or reduces
(Solomon, 1980; Solomon & Corbit, 1974) affective or emotional responses. To further glean
insight into the neural and computational mechanisms long associated with defensive responses to
aversive motivation (Hofmann et al., 2012; Mobbs et al., 2009, 2020; Steimer, 2002), we argue
that future work incorporating mixed motivation will help clarify of how aversive motivation

modulates the intensity or frequency an individual’s effort allocation in mentally challenging tasks.
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3. Experimental Paradigms to Investigate Aversive Motivation and Cognitive Control

The perspectives that arise from the animal learning literature suggest that a significant gap
in characterizing the effects of aversive motivation of cognitive control is the lack of validated
experimental paradigms to probe such interactions. Therefore, to make progress in this area of
research, it is necessary to develop sensitive and specific task paradigms that allow researchers to
systematically manipulate and measure how aversive outcomes influence goal-directed cognitive
control. In the next section, we highlight several prominent experimental paradigms that have
provided great insight into appetitive-aversive motivation interactions across animals and humans.
Next, we describe several task paradigms that hold great promise for investigating aversive
motivation and cognitive control interactions. In these paradigms, we show how the inclusion of
both mixed motivation and motivational context can help quantify the extent to which aversive
incentives may differentially guide cognitively controlled behavior, an important intermediary step

for characterizing the engagement of underlying neural and computational mechanisms.

3.1 Experimental Paradigms of Aversive Motivation on Goal-Directed Behavior

Researchers in the animal learning domain have dedicated significant time and effort
towards examining how aversive outcomes act as behavioral inhibitors of the response strength
conditioned to appetitive outcomes (Dickinson & Dearing, 1979; Dickinson & Pearce, 1977,
Nasser & McNally, 2012, 2013). Although the combination of aversive and appetitive motivational
incentives is known to produce mutual inhibitory effects on instrumentally controlled responses
(Dickinson & Pearce, 1977), researchers rarely consider the myriad of ways through which this
mutual inhibition occurs when manipulating aversive motivation in behavioral tasks. As illustrated

in Figure 3, we describe four classic experimental paradigms that utilize distinct approaches to
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manipulate how combining rewarding and aversive incentives mutually inhibit instrumental
responding in animals and humans. Importantly, our brief synthesis of such foundational
paradigms aims to inspire novel insight for future experimental research that probes how aversive
motivation influences the cognitive control processes guiding incentive-modulated goal-directed

behavior (as described in Section 3.2).
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Figure 3: Experimental Paradigms of Appetitive-Aversive Interactions. Four established
paradigms to investigate approach-avoidance motivational conflict) are illustrated. These tasks
highlight how including both appetitive and aversive incentives (e.g., mixed motivation) may
exhibit mutual inhibition on instrumental behavior. A key distinction between these procedures is
whether the aversive stimuli are conditioned in a Pavlovian or instrumental manner, as well as
whether the presence of the aversive stimulus strengthens or weakens instrumental behavior (e.g.,
motivational context). The four paradigms are labeled as follows: a) Outcome devaluation. b)
Conditioned Suppression. ¢) Pavlovian Instrumental Transfer. d) Counterconditioning. The black
stimuli indicate a neutral stimulus, which is initially not paired with an unconditioned stimulus
(e.g., food pellet or shock). The green stimuli indicate a rewarding incentive (e.g., food pellet) or
a conditioned stimulus associated with a rewarding outcome (e.g., the rat learns that pulling the
lever leads to a food pellet). In contrast, the red stimuli indicate an aversive incentive (e.g., shock)
or a conditioned stimulus associated with an aversive outcome (e.g., the rat learns that a tone
predicts the shock). The dashed rectangle indicates which incentives are bundled to facilitate
mixed motivation.

3.1.1 Outcome Devaluation

One classic approach for measuring aversive motivation effects on instrumental responding
1s outcome devaluation (also called reinforcer devaluation), a phenomenon in which the bundling
of an aversive outcome (e.g., an electric shock) with a rewarding outcome will weaken
instrumental responding towards the expected reward (e.g., a food pellet). Rachlin (1972) first
demonstrated these punishment effects on pre-conditioned baseline excitatory responses in rats
and pigeons. In these studies, the animals first learned to increase pressing a lever to obtain food
rewards (e.g., positive reinforcement). Next, the food rewards were paired with electric shocks
(e.g., appetitive-aversive motivation), and the decreased overall value of the bundled incentives
suppressed the animal’s rate of lever pressing. Critically, this paradigm demonstrates how
approach motivated behavior can be inhibited by including an additional aversive incentive in a
measurable and systematic manner (Dickinson & Pearce, 1977). For example, the strength of an
additional aversive incentive will determine the degree to which that aversive incentive inhibits

approach-related behavior (e.g., greater suppression of instrumental responding occurs when food
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rewards are paired with more frequent and/or more intense shocks). Although some prior studies
in rodents found that overtraining reduced the effect of outcome devaluation (Adams & Dickinson,
1981), recent work suggests that the degree to which additional aversive incentives may inhibit
behavioral responding may depend on the training duration (Araiba et al., 2018). Interestingly,
however, although outcome devaluation paradigms have been found to robustly elicit behavioral
inhibition effects with outcome devaluation in rodents and monkeys (Balleine et al., 2005;
Izquierdo & Murray, 2010; Murray & Rudebeck, 2013), there is mixed evidence of the degree to
which overtraining impacts outcome devaluation in humans (Tricomi et al., 2009; de Wit et al.,
2018), suggesting a need to examine the degree to which the findings obtained from this paradigm
in animals are transferable to human studies. Nevertheless, outcome devaluation is a well-
established paradigm that provides a promising approach to investigate how the bundling of
rewarding and aversive incentives can modulate the strength of action-outcome contingencies (See

Figure 3a).

3.1.2 Conditioned Suppression

Another approach for manipulating aversive motivation is via Pavlovian mechanisms, such
that the presence of an aversive Pavlovian conditioned stimulus (CS) will inhibit instrumental
behavior (Dickinson & Balleine, 2002; Mowrer, 1947, 1956). One such type of paradigm is
conditioned suppression, which describes how a Pavlovian CS (e.g., a tone) paired with a
noncontingent aversive stimulus (e.g., electric shock) may suppress instrumental responding (e.g.,
lever pressing) for a food reward (Lyon, 1968). In this paradigm, animals receive Pavlovian and
instrumental training in separate phases. In the first phase, they learn an association between the

Pavlovian CS and an aversive outcome (e.g., tone that predicts an electric shock) and develop a
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Pavlovian conditioned response to the aversive Pavlovian CS. In the second phase, they learn an
association between performing an action and receiving a rewarding outcome (e.g., pressing a
lever will lead to a food reward), and receipt of the food reward reinforces instrumental responding
(e.g., positive reinforcement). The key manipulation that evaluates the extent to which the aversive
Pavlovian CS inhibits responding is the test phase, through which both conditioning procedures
are combined. Specifically, when both the Pavlovian CS and the lever are present, one can measure
the extent to which the presence of the aversive Pavlovian CS (e.g., tone that predicts the shock)
may suppress an animal’s desire to press the lever to receive a food reinforcer (Bouton & Bolles,
1980; Estes & Skinner, 1941). Notably, although some versions of this paradigm superimpose the
Pavlovian conditioned aversive stimulus on an instrumentally controlled response (Blackman,
1970; Dickinson, 1976), others have noted that these conditioned suppression effects may also
arise even during extinction of the aversive stimulus, similar to the aversive Pavlovian
instrumental transfer paradigms discussed in the next section. This paradigm is illustrated in

Figure 3b.

3.1.3 Aversive Pavlovian Instrumental Transfer (PIT)

Aversive Pavlovian Instrumental Transfer (PIT; also referred to as transfer-of-control
paradigms) is nearly identical to conditioned suppression, in that animals receive separate
Pavlovian and instrumental training in separate phases. However, the main difference is that the
test phase (transfer) occurs under extinction (Campese et al., 2013, 2020; Cartoni et al., 2016;
Estes, 1943). Specifically, during the test (transfer) phase, the animal is presented with the
Pavlovian CS in extinction (e.g., tone but no shock) while they perform the instrumental task

(Scobie, 1972). This manipulation is important because the ‘transfer’ effect of the aversive
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motivation on instrumental responding is not conflated with the sensory properties of the aversive
outcome. Some have even argued that because of this feature, aversive PIT is a ‘purer’ approach
(than conditioned suppression) to study Pavlovian-instrumental interactions (Campese, 2021;
Campese et al., 2013). The PIT paradigm is illustrated in Figure 3c.

The aversive PIT paradigm has recently garnered much attention in human cognitive
neuroscience, as it has been well documented to measure the effects of aversive motivation on
instrumentally controlled behavior (Garofalo & Robbins, 2017; Geurts et al., 2013a; Lewis et al.,
2013; Rigoli et al., 2012). In this human adaptation, participants first undergo instrumental
conditional training through which they learn to push a button (approach-go) or do nothing
(approach-no-go) to approach a rewarding stimulus (monetary gain) or push a button (withdrawal-
go) or do nothing (withdrawal-no-go) to avoid an aversive stimulus (monetary loss). Participants
would then undergo Pavlovian conditioning, through which unfamiliar audiovisual stimuli (pure
tone and fractal) are paired with various appetitive or aversive liquids. Finally, during the testing
phase (PIT), participants would perform the same task as during instrumental training, except that
now the Pavlovian stimuli are tiled in the background. Critically, these PIT trials are performed in
extinction, such that the liquid incentives were not presented. Interestingly, prior findings have
demonstrated that the aversive Pavlovian CS’s inhibit approach-related instrumental responding
and invigorate withdrawal-related instrumental responding, consistent with a successful PIT effect

(Geurts et al., 2013a; Millner et al., 2018).

3.1.4 Counterconditioning

One important consideration not yet discussed is that an aversive stimulus may

counterintuitively become less effective in suppressing instrumental responding when it predicts a
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rewarding outcome (i.e., it may reinforce instrumental responding). In the counterconditioning
procedure (Dickinson & Pearce, 1976), the animal first learns an association between lever
pressing and a food reward, which results in positive reinforcement of the lever pressing response.
Next, an aversive stimulus (e.g., electric shock) is introduced and always precedes the positive
food reinforcer (e.g., pressing a lever for a food reward). When the animal learns the association
between the aversive stimulus (e.g., shock) and the food reinforcer, the aversive stimulus becomes
less effective in its ability to act as a punisher (compared to without the food reinforcement)
because it predicts a food reward. Interestingly, a separate experiment in this study replaced the
electric shocks with an aversive Pavlovian CS (e.g., a tone predicting a shock) and found the same
counterconditioning effects, confirming that the inhibitory effects of the positive reinforcement on
the aversive Pavlovian CS were not simply due to the stimulus properties of the shock (Nasser &

McNally, 2013). The counterconditioning paradigm is illustrated in Figure 3d.

3.2 Experimental Paradigms of Aversive Motivation and Cognitive Control

Despite the extensive history and foundational establishment of well-designed animal
learning paradigms to characterize appetitive-aversive motivation interactions, this work has
primarily been carried out in rodents. Conversely, there is much less work adapting these
paradigms to investigate how mixed motivation impacts decision making in primates (Amemori
et al., 2015; Amemori & Graybiel, 2012; Leathers & Olson, 2012; Roesch & Olson, 2004) and
humans (Aupperle et al., 2011; Kirlic et al., 2017). Even when such paradigms have been
implemented to examine how animals and humans make decisions based on “bundles” of
rewarding and aversive incentives, only a very few studies have explicitly examined how mixed

motivation impacts the allocation of cognitive control. Moreover, to account for the variety of
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behavioral strategies that arise from aversive incentives, e.g., penalties can facilitate enhancement
or avoidance of cognitive control (Frobose & Cools, 2018; Yee & Braver, 2018), it is imperative
to design innovative experimental paradigms that can accurately characterize the full range of
cognitively controlled behaviors that arise from these interactions.

Here, we draw inspiration from classical reinforcement theory and describe several recent
paradigms that have examined the influence of aversive incentives on cognitive control. Similar
to the classical paradigms previously described, these aversive motivation-control paradigms also
incorporate mixed motivation, the combined influence of multiple incentives. In contrast to prior
studies which have only looked at aversive incentives on conditioned behavioral responses
(Bradshaw et al., 1979; Reynolds, 1968; Weiner, 1989), these paradigms explicitly manipulate
how rewards and aversive motivational incentives combine to impact cognitive control. Moreover,
the inclusion of multiple diverse types of motivational incentives is crucial for studying these
interactions by valence, as they enable us to precisely quantify the relative influence of aversive
incentives (e.g., monetary losses, shocks, saltwater) in terms of their recruitment and allocation of
cognitive control in goal-directed tasks. Lastly, while we acknowledge that these paradigms are
certainly not exhaustive, we hope that consideration of these motivational dimensions (e.g.,
motivational context, mixed motivation) will provide a broad foundation from which to drive future
research that investigates the specific and nuanced ways through which aversive motivational

value interacts with cognitive control.
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Figure 4: Experimental Paradigms for Investigating Aversive Motivation and Cognitive
Control. a) Incentive Integration and Cognitive Control Paradigm. Participants performed cued
task-switching and could earn monetary rewards and liquid incentives for fast and accurate
performance (Yee et al., 2016). Manipulating the motivational value of the monetary and liquid
incentives across bundled incentive conditions ensured a clear comparison of how the relative
motivational value of these incentives influenced cognitive control. b) Dissociable Influences of
Reward and Penalty on Cognitive Control Allocation. Participants performed a self-paced
incentivized mental effort task (Leng et al., 2020). They were rewarded with monetary gains for
correct responses and were penalized with monetary losses for incorrect responses. The
motivational value of the rewards and penalties were varied, which enabled clear dissociation
between how expected rewards increased response rate (via faster response times while
maintaining accuracy) and expected penalties decreased response rate (via slower response times
and increased accuracy). Together, these paradigms demonstrate the utility of using mixed
motivation to more precisely evaluate how aversive motivation influences cognitive control.

3.2.1 Incentive Integration and Cognitive Control

An experimental paradigm that holds great promise for investigating aversive motivation
on cognitive control is the incentive integration and cognitive control paradigm (Yee et al., 2016,
2019, 2021). This paradigm illustrated in Figure 4a parallels the outcome devaluation paradigm

described earlier but replaces the instrumental conditioning procedure (e.g., lever pressing for a
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food reward) with a cognitive control task (cued task-switching). On each trial, a letter-number
pair is visually presented (e.g., one letter and one number on the screen), and participants are tasked
with categorizing the target symbol based on the task instructed briefly presented at the beginning
of each trial (e.g., a randomized cue would indicate whether the participant should classify the
letter as a vowel or consonant or classify a number as odd or even). A monetary reward cue is also
randomly presented with each trial and indicates whether participants can earn low, medium, or
high reward value (displayed as $, $$, or $$$$) for fast and accurate task performance (e.g., faster
than a subjective RT criterion established during baseline blocks with no incentives present).
Importantly, successful attainment of monetary reward is indicated by oral liquid delivery to the
participant’s mouth as post-trial performance feedback. In contrast, participants did not receive
money nor liquid if they were incorrect, too slow, or did not respond. Additionally, the type of
liquid is blocked, such that the liquid feedback can be rewarding (apple juice), neutral (tasteless
isotonic solution), or aversive (saltwater). However, as the symbolic meaning of the liquid is kept
constant across conditions (i.e., always indicating performance success), any behavioral
differences observed can be attributed to the differential subjective evaluation of the bundled
monetary and liquid incentives. Previous results across multiple studies have consistently
demonstrated that humans integrate the motivational value of monetary and liquid incentives to
modulate cognitive task performance and self-reported motivation, such that greater performance
improvements were observed with more rewarding bundled incentives (high monetary reward +
juice) relative to less rewarding bundled incentives (low monetary reward + neural), while
impairments were found for the most aversive bundles (low monetary reward + saltwater).
Importantly, by manipulating both monetary and liquid incentives across rewarding and

aversive domains, this paradigm enables straightforward examination of how much the aversive
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motivational value of the saltwater impacts cognitive control task performance relative to the
neutral solution or apple juice. Moreover, manipulating the valence of the liquid incentives across
bundled incentive conditions ensures that the comparison is related to the motivational value of
the liquids on cognitive control rather than salience properties that are commonly associated with
primary incentives. Broadly, the incentive integration paradigm demonstrates the utility of using
bundled primary and secondary incentives to evaluate how the mutual inhibition between
rewarding and aversive motivational processes influence cognitive control task performance.
Moreover, the motivational manipulations in this paradigm hold great promise for examining how
aversive incentives of different categories (Crawford et al., 2020) may similarly or differently
impact performance in other cognitive control tasks (e.g., Flanker, Stroop, Simon, AX-CPT) and

across the lifespan (Yee et al., 2019).

3.2.2 Dissociable Influences of Reward and Penalty on Cognitive Control

Another approach for investigating the effect of aversive incentives on cognitive control is
to examine the dissociable (rather than the integrated) influence of multiple incentives on cognitive
control. Our group recently developed a novel task that examines how expected rewards and
penalties influence the allocation of cognitive control on a self-paced Stroop task (Leng et al.,
2020). Specifically, in contrast to previous studies that have primarily measured motivation in
terms of performance on a fixed number of obligatory task trials, this task contains fixed time
intervals through which a person can choose how much effort to invest based upon the expected
rewards for success and penalties for failure (Schmidt et al., 2012). Critically, in addition to
estimating the amount of effort invested within a given interval, this task enables us to measure

the extent to which different incentives influence different #ypes of mental effort investment (e.g.,
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attentional control, response caution). In this paradigm, subjects earn monetary rewards for each
correct response (high or low) and are penalized with monetary losses for each incorrect response
(high or low). Each interval is preceded by a cue that indicates the consequences for correct and
incorrect responses and is followed by feedback with the total reward and loss incurred for that
interval. See Figure 4b for an illustration of the task.

Because individuals need to consider both the motivational value of rewards and penalties
when deciding how much cognitive control to allocate within a given interval, this paradigm
enables an explicit comparison of the dissociable influences of reward and penalty on cognitive
control allocation. Behavioral results revealed that participants maximized their net reward unit
per time (e.g., reward rate) based on the bundled expected value of rewards and penalties, with
better performance for higher expected rewards and worse performance for higher expected
penalties. Post-hoc analyses of speed and accuracy revealed dissociable strategies for allocating
effort based on both incentives. Higher rewards resulted in faster response times without a change
in accuracy, whereas higher penalties resulted in slower but more accurate responses. Importantly,
these data suggest the promise of this paradigm as another approach for evaluating the influence

of aversive incentives on cognitive control.

4. Neural Mechanisms of Aversive Motivation and Cognitive Control

In the next section, we propose that considering the motivational context of how aversive
incentives influence behavior may help organize the wide range of neural processes underpinning
aversive motivation and cognitive control. Although the neurobiological mechanisms of aversive
motivation have been of longstanding interest (Campese et al., 2015; Jean-Richard-Dit-Bressel et

al., 2018; Kobayashi, 2012; Levy & Schiller, 2020; Schiller et al., 2008; Seymour et al., 2007;
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Umberg & Pothos, 2011), and other regions such as orbitofrontal cortex, ventromedial PFC, insula,
and amygdala have been broadly implicated in aversive processing (Atlas, 2019; Gehrlach et al.,
2019; Kobayashi, 2012; Maren, 2001; Michely et al., 2020), we primarily focus on neural circuits
implicated in motivation and cognitive control interactions. In particular, a significant challenge
for developing a clear understanding of the mechanisms that underlie aversive motivation and
cognitive control has been the perplexing spectrum of neural findings from extant studies involving
aversive outcomes. Prior research has shown that active avoidance (e.g., increased behavioral
responding to escape from the aversive outcome) is associated with increased dopamine (DA)
release (Bromberg-Martin et al., 2010; Wenzel et al., 2018) as well as activation in the striatum
and dorsal anterior cingulate cortex (Boeke et al., 2017; Delgado et al., 2009). In contrast, the
anticipation of aversive incentives facilitates behavioral inhibition (e.g., decreased behavioral
responding to avoid an aversive outcome) and is associated with increased serotonin (5-HT)
release (Crockett et al., 2009, 2012; Geurts et al., 2013b) as well as activation in the lateral
habenula (Jean-Richard-Dit-Bressel & McNally, 2014, 2015; Lawson et al., 2014; Webster et al.,
2020) and dorsal anterior cingulate cortex (Fujiwara et al., 2009; Monosov, 2017). Importantly,
we believe that greater emphasis on the distinction between how aversive incentives promote
behavioral activation (e.g., negative reinforcement) versus behavioral inhibition (e.g., punishment)
may help organize the diverse neural processes associated with aversive motivation and cognitive
control. Below, we review the monoaminergic and neural mechanisms associated with negative
reinforcement and punishment and present a novel framework (See Figure 6a) that describes how
the motivational context may delineate potential distinct neural pathways through which aversive

incentives modulate cognitive control allocation.
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4.1. Monoaminergic Mechanisms of Aversive Motivation

4.1.1 Dopamine, Behavioral Activation, and Negative Reinforcement

It is unequivocal that dopamine (DA) is a key neurotransmitter involved in motivation-
cognitive control interactions. Prior work has shown that the enhancement of cognitive
performance (e.g., attentional processes, task-switching) by monetary rewards is specifically
linked with increased dopamine release in the striatum and prefrontal cortex (Aarts et al., 2011;
Braver & Cohen, 2000; Cools, 2008; Schouwenburg et al., 2010; Westbrook & Braver, 2016).
However, while there is abundant evidence demonstrating the causal link between dopamine and
exerting effort to obtain rewards (Hamid et al., 2016; Salamone, 2009; Walton & Bouret, 2019;
Westbrook et al., 2020), there is also extensive literature on dopamine facilitating the avoidance
of aversive outcomes (Lloyd & Dayan, 2016; Menegas et al., 2018; Nuland et al., 2020). Notably,
although the role of dopamine in active avoidance seems somewhat counterintuitive, one plausible
explanation may be that the successful avoidance of an aversive outcome may be intrinsically
rewarding and thus drive active defensive strategies that increase effort to continually avoid the
aversive outcome (McCullough et al., 1993; Sokolowski et al., 1994).

One compelling hypothesis that may reconcile these seemingly paradoxical results is that
dopamine may modulate the reinforcement-related responses associated with motivational
incentives (Dayan & Balleine, 2002; Wise, 2004). This idea is consistent with prior research,
which has shown that dopamine modulates both positive reinforcement (Heymann et al., 2020;
Steinberg et al., 2013, 2014) and negative reinforcement (Gentry et al., 2018; Navratilova et al.,
2012; Pignatelli & Bonci, 2015). Others have observed that mesolimbic dopamine is associated
with avoidance learning at the neural circuit level (Antunes et al., 2020; Ilango et al., 2012; Stelly

etal., 2019; Wenzel et al., 2018), but there is not yet evidence that shows that dopamine modulates
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negative reinforcement in humans. Critically, validating this putative dopamine-reinforcement
relationship in humans would provide an important stepping stone towards clarifying the putative

role of dopamine in aversively motivated cognitive control.

4.1.2 Serotonin, Behavioral Inhibition, and Punishment

Serotonin, also known as 5-Hydroxytryptamine (5-HT), has long been linked to aversive
processes (Dayan & Huys, 2009; Deakin & Graeff, 1991; Soubrié, 1986), as well as a broad range
of behavioral functions, including behavioral suppression, neuroendocrine function, feeding
behavior, and aggression (Lucki, 1998). These diverse processes may be largely related to the
numerous (at minimum 14) serotonin receptors in the brain (Carhart-Harris, 2018; Carhart-Harris
& Nutt, 2017; Cools, Roberts, et al., 2008; Cowen, 1991; Homberg, 2012), making it challenging
to map serotonin’s specific role in motivational and cognitive processing. Prior work has shown
that serotonin is linked to reward and punishment processing (Cohen et al., 2015; Hayes &
Greenshaw, 2011; Kranz et al., 2010), coordinating defense mechanisms (Deakin & Graeff, 1991;
Graeft, 2004), behavioral suppression (Soubrié, 1986), aversive learning (Cools, Robinson, et al.,
2008; Daw et al., 2002; Dayan & Huys, 2008; Ogren, 1982), cognitive flexibility (Clarke et al.,
2004, 2005; Matias et al., 2017), impulsivity (Desrochers et al., 2020; Ranade et al., 2014), and
motor control (Jacobs & Fornal, 1993; Wei et al., 2014), to name a few.

Perhaps one of the greatest challenges for developing a unified theory of 5-HT’s functional
role relates to the observation that different 5-HT pathways mediate distinct adaptive responses to
aversive outcomes (Deakin, 2013). For example, 5-HT projections from the dorsal raphé nucleus
(DRN) to the amygdala facilitates anticipatory anxiety that can guide an organism away from the

threat, whereas 5-HT projections to the periaqueductal gray (PAG) facilitate a reflexive fight/flight
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mechanism in response to unconditioned proximal threats (e.g., panic). It may initially seem
paradoxical that 5-HT is engaged to facilitate both anticipatory anxiety and panic, behavioral
responses that appear to be at odds with one another (e.g., anticipatory anxiety should inhibit
panic). However, what is abundantly clear is that a functional topography underlies when and how
5-HT is released, and the adaptive behavioral response depends on the spatiotemporal distance of
the anticipated or imminent aversive outcome or threat (Paul et al., 2014; Paul & Lowry, 2013).
Despite these neurobiological complexities associated with 5-HT, one promising
motivational hypothesis that has gained traction over the years is that serotonin relates to aversive-
related behavioral inhibition or punishment (Robinson & Roiser, 2016). Researchers have found
evidence for this hypothesis in recent years using acute tryptophan depletion (ATD), a
pharmacological challenge that reduces the availability of the essential amino acid and serotonin
precursor tryptophan. ATD is hypothesized the selectively target the serotonin system (Fernstrom,
1979; Hood et al., 2005; Young, 2013, though see also Donkelaar et al., 2011). In particular, prior
research has demonstrated that serotonin specifically modulates punishment-related behavioral
inhibition in humans (Crockett et al., 2009, 2012) and attenuates the influence of aversive
Pavlovian cues on instrumental behavior (Geurts et al., 2013b; den Ouden et al., 2015). Together,
these human pharmacological studies demonstrate that serotonin plays a central role in punishment
by linking Pavlovian-aversive predictions with behavioral inhibition (Crockett & Cools, 2015;
Faulkner & Deakin, 2014), suggesting a potential mechanism through which aversive motivation

may inhibit effort when allocating cognitive control.
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4.1.3. Mutual Inhibition Between Dopamine and Serotonin in The Dorsal Raphé Nucleus

The independent roles of dopamine and serotonin in modulating motivational valence and
adaptive behavior (Hu, 2016; Rogers, 2011) are consistent with the idea that the motivational
opponency between the two systems is what modulates activation responses and higher cognitive
functioning (Boureau & Dayan, 2011; Cools et al., 2011; Daw et al., 2002; Samanin & Garattini,
1975). However, empirical studies attempting to validate this hypothesis have met with limited
success (Fischer & Ullsperger, 2017; Seymour et al., 2012), although the neural mechanisms
through which this mutual inhibition occurs remain an active area of research (Moran et al., 2018).

Recent evidence from the animal literature suggests that the dorsal raphé nucleus (DRN)
may play a central role in modulating mutual inhibition between rewarding and aversive processes
(Hayashi et al., 2015; Li et al., 2016; Nakamura, 2013; Nakamura et al., 2008). The DRN contains
high concentrations of serotonin neurons (Huang et al., 2019; Kirby et al., 2003; Marinelli et al.,
2004; Michelsen et al., 2008) as well as dopamine neurons (Cho et al., 2021; Lin et al., 2021;
Matthews et al., 2016; Stratford & Wirtshafter, 1990; Yoshimoto & McBride, 1992). Some have
shown that serotonergic DRN neurons play a key modulatory role in reward processing (Browne
et al., 2019; Liu et al., 2020; Luo et al., 2015; Nagai et al., 2020; Ren et al., 2018), while
dopaminergic DRN neurons appear to encode the motivational salience of incentives (Cho et al.,
2021). Additionally, serotonergic DRN neurons project to the dopamine-rich ventral tegmental
area (VTA) (Chang et al., 2021; Gervais & Rouillard, 2000), revealing its potentially crucial role
in providing a more comprehensive understanding of mutual inhibition between DA and 5-HT.
Taken together, one possible interpretation of these findings is that DRN may represent the benefits
and costs of motivational incentives (Luo et al., 2016), and this signal may be relayed to cortical

brain regions (e.g., frontal cortex) to drive behavioral control (Azmitia & Segal, 1978).
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4.2 Neural Circuit Mechanisms of Aversive Motivation and Cognitive Control

4.2.1. Lateral Habenula and Aversive Motivational Value

The lateral habenula (LHb) has recently gained much attention as a promising candidate
brain region involved in processing aversive motivational value (Hu et al., 2020; Lawson et al.,
2014; Matsumoto & Hikosaka, 2009) due to its anatomical connections to motivational and
emotional brain regions and influences of dopamine and serotonin neurons (Hikosaka et al., 2008).
In particular, the LHb has been found to inhibit dopamine neurons (Brown & Shepard, 2016;
Hikosaka, 2010; Lammel et al., 2012), but its activity is also suppressed by serotonin neurons
(Shabel et al., 2012; Xie et al., 2016). These findings present provocative evidence that LHb serves
as a critical functional hub for regulating how monoaminergic systems modulate motivated

behavior and affective states (Namboodiri et al., 2016).

globus pallidus internal segment

substantia nigra
ventral tegmental area

dorsal raphé nucleus
medial raphé nucleus

32



Figure 5: Lateral Habenula and Aversive Motivational Value. The lateral habenula (LHb)
receives excitatory afferent projections from the globus pallidus internal segment (GPi). The GPi
is located more lateral but is placed in the same slice for illustration purposes. The LHb sends
efferent projections to target the substantia nigra, ventral tegmental area, dorsal and medial raphé
nuclei, and locus coeruleus, brainstem nuclei with high concentrations of dopamine, serotonin, and
norepinephrine. These modulatory signals are mediated by the rostromedial tegmental nucleus (not
pictured). Serotonin neurons send inhibitory projections to the GPi that suppress the excitatory
projections from GPi to the LHb.

The LHb is part of a larger neural circuit, as illustrated in Figure 5, and is highly connected
to various subcortical brain structures such as the septum, hypothalamus, basal ganglia, globus
pallidus) as well as dopamine and serotonin (Metzger et al., 2017). Within this putative aversive
motivational value neural circuit, the LHb receives afferent projections from the ventral pallidum,
globus pallidus internal segment (GP1), and ventral tegmental area (Haber & Knutson, 2010; Hong
& Hikosaka, 2008; Root et al., 2014; Wulff et al., 2019). The LHb then sends efferent projections
to brainstem nuclei, including dorsal and median raph¢ nuclei, ventral tegmental area, substantia
nigra, and locus coeruleus (Akagi & Powell, 1968; Quina et al., 2015; Sutherland, 1982; Wang &
Aghajanian, 1977; Zahm & Root, 2017). Importantly, these connections suggest LHb likely serves
an important regulatory role of dopamine and serotonin (as well as norepinephrine).

Recent evidence from the animal neuroscience literature lends support to the putative role
of LHb in aversive motivational value, as LHb neurons in primates are strongly excited by aversive
outcomes (e.g., absence of a liquid reward or presence of an air puff punisher). Interestingly, these
“negative reward” signals from the LHb are mediated by the rostromedial tegmental nucleus
(RMTg), a brain structure speculated to modulate both reward-related behaviors of DA neurons in
the SNc/VTA and aversive-related behaviors of 5-HT neurons in the DRN (Hong et al., 2011;
Jhou & Vento, 2019). Interestingly, others have observed that presentation of aversive stimuli to

rodents increased LHb projections to RMTg neurons (Stamatakis & Stuber, 2012) and that
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stimulation of LHb-RMTg transmission in rodents reduced motivation to exert effort to earn
rewards (Proulx et al., 2018). Moreover, recent studies have shown that LHb inactivation alters
both choice flexibility and willingness to exert physical effort, demonstrating that this region is
likely a key contributor in guiding behavior during mentally and/or physically demanding tasks
(Baker et al., 2015; Sevigny et al., 2021). Finally, the LHb both receives direct projections from
the dorsal anterior cingulate cortex (dACC; a critical brain region involved in cognitive control
described in the next section (Chiba et al., 2001; U. Kim & Lee, 2012), and also indirectly
influences dACC via inhibition the activity of midbrain dopamine neurons that project to dACC
(Haber, 2014; Lammel et al., 2012; Williams & Goldman-Rakic, 1995). Thus, it is highly likely
that both regions communicate with each other to support the transmission of aversive
motivational value, in service of monitoring action outcomes and signaling necessary behavioral
adjustments (Baker et al., 2016). Recent evidence from primates has shown that LHb represents
ongoing negative outcomes in ongoing trials, while the dACC represents outcome information
from past trials and signals behavioral adjustments in subsequent trials (Kawai et al., 2015). Yet,
despite these promising results suggesting complementary roles for LHb and dACC processing
aversive outcomes in behavioral control, many open questions remain regarding the nature of how
neural signals jointly interact in the brain.

These studies demonstrate that the habenula plays a prominent role in the neural pathway
through which aversive motivation interacts with cognitive control (Baker & Mizumori, 2017,
Mizumori & Baker, 2017). However, a significant limitation for investigating the LHb in humans
is its relatively small size, which is around 30 mm? in volume (Boulos et al., 2017; Lawson et al.,
2013; Strotmann et al., 2014). While some early fMRI studies suggest that the human habenula is

activated for negative outcomes and negative reward prediction errors (Salas et al., 2010; Shepard
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et al., 2006; Ullsperger & Cramon, 2003), a potential limitation of this early work may be the lack
of spatial specificity due to the available MRI methods at the time. Fortunately, more recent
developments in 7T MRI have enabled researchers to define the human habenula and associated
functional networks with greater precision (Lawson et al., 2013; Torrisi et al., 2017). Although
these high-resolution imaging techniques have demonstrated great promise in providing
preliminary evidence in humans that the habenula is activated by aversive stimuli more broadly
(Hennigan et al., 2015; Lawson et al., 2014; Shelton et al., 2012; Weidacker et al., 2021), much
remains to be elucidated regarding its specific functional role in motivation and cognitive control
interactions.

Finally, while we have emphasized the role of LHb in aversive motivational value, an
important adjacent brain structure also relevant for aversive processing is the medial habenula
(MHb), which some have argued is functionally distinct from the LHb (Namboodiri et al., 2016).
Specifically, as neuroanatomical studies suggest that the MHb sends afferent projections to the
amygdala, a region long implicated in representing Pavlovian conditioned values of threatening or
noxious stimuli (Campese et al., 2015; Moscarello & LeDoux, 2013), or conditioned approach and
avoidance behavior (Choi et al., 2010; Fernando et al., 2013; Schlund & Cataldo, 2010). Although
much less is known about MHb’s impact on aversive motivational processing relative to the LHb,
we speculate that one potential critical factor that may contribute to these functional differences
are the parallel pathways through which DA and 5-HT project from the dorsal and median raph¢
nuclei to distinct cortical brain regions (Azmitia & Segal, 1978). Moreover, while many open
questions remain regarding how these distinct pathways impact aversive processing, future work
clarifying the neural circuitry between LHb and MHb may help elucidate the mechanisms by

which organisms develop adaptive behavioral responses to aversive motivation.
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4.2.2 Dorsal Anterior Cingulate Cortex and the Expected Value of Control

The dorsal anterior cingulate cortex (AACC) has long been implicated in cognitive control
(Botvinick et al., 2001; Ridderinkhof et al., 2004; Sheth et al., 2012), as well as various cognitive,
motor, and affective functions (Heilbronner & Hayden, 2016; Vassena et al., 2020; Vega et al.,
2016), including affect (Braem et al., 2017; Etkin et al., 2011) and emotion-control interactions
(Inzlicht et al., 2015; Pessoa, 2008). In recent years, growing evidence suggests that dACC plays
a central role in modulating the interaction between motivation and cognitive control (Botvinick
& Braver, 2015; Parro et al., 2018). However, despite dACC’s indisputable role in
motivation/affect and cognitive control, surprisingly few studies have investigated aversive
motivation and cognitive control in the brain (Cubillo et al., 2019). This provides a unique
challenge and opportunity to develop a greater mechanistic understanding of exactly how aversive
motivational value is transmitted to dACC to guide cognitive control (Yee & Braver, 2018).

As mentioned at the beginning of this review, the Expected Value of Control (EVC) model
is a promising framework for addressing this crucial gap in the literature. In particular, the EVC
attempts to integrate these broad neuroscientific findings posits that dACC serves as a central hub
that integrates motivational values to modulate cognitive control (Shenhav et al., 2013, 2016).
Recent evidence from the animal literature is consistent with the EVC account, as some studies
have shown how rodent medial prefrontal cortex (one putative rodent analog of human dACC; but
see Heukelum et al., 2020; Vogt et al., 2013) plays a central role in integrating rewarding and
aversive motivational incentives to modulate effort and attention (Hosking et al., 2014; Schneider
et al., 2020). Moreover, as illustrated in Figure 6a, incorporating the motivational context through
which these incentives may help clarify how aversive incentives promote dissociable strategies

for cognitive control allocation (e.g., DA may promote behavioral activation/negative
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reinforcement while 5-HT may promote behavioral inhibition/punishment). Although these neural
pathways are still somewhat speculative and not yet validated in humans, future research
combining innovative experimental tasks with high-resolution MRI or deep-brain stimulation

could help fill this crucial gap in the literature (Boulos et al., 2017; Lawson et al., 2013).
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Figure 6: Aversive Motivation and Cognitive Control. a) Neural mechanisms underlying aversive
motivation and cognitive control. This framework considers the motivational context through
which aversive incentives may facilitate either behavioral activation or behavioral inhibition.
Dissociable monoaminergic mechanisms may underlie these two effort strategies (e.g., DA may
promote negative reinforcement, 5-HT may promote punishment). The arrows represent
information coding, such that reward-related information is passed along the green arrows to
support reinforcement-related behavior. In contrast, aversive-related information is passed along
the red arrows to support punishment-related behavior. Additionally, motivational opponency
between DA and 5-HT (e.g., mutual inhibition; approach-avoidance motivational conflict) may
help understand how “bundled incentives” (e.g., mixed motivation) signals are transmitted to the
dorsal raphe nucleus, lateral habenula, and dorsal anterior cingulate cortex to promote divergent
strategies for cognitive control allocation. b) Dorsal anterior cingulate cortex (dAACC) integrates
Expected Value of Control (EVC)-relevant information (e.g., expected positive and negative
outcomes) to determine the allocation of cognitive control. Our current framework extends the
EVC model from Shenhav et al., 2013 by including mixed motivation (e.g., the dotted rectangle
indicates summed value of bundled incentives) to determine the EVC and cognitive control
allocation (e.g., how much effort to exert). Thus, the inclusion of multiple diverse types of
incentives is crucial for studying these interactions by valence. Specifically, they enable us to
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precisely quantify the relative influence of aversive incentives (e.g., monetary losses, shocks,
saltwater) on the recruitment and allocation of cognitive control in goal-directed tasks.
Additionally, an important core assumption of the EVC model is that dACC “bundles”
expected positive and negative outcomes into a net motivational value (e.g., mixed motivation)
that modulates cognitive control signals in the brain (See Figure 6b). Recent work from a human
fMRI study provides evidence in support of dACC’s role in value integration and cognitive control
(Yee et al., 2021). In particular, we used the incentive integration and cognitive control task (See
Figure 4a) to explicitly test the hypothesis that bundled neural signals in dACC encoded the
motivational value of monetary and liquid incentives in terms of their influence on cognitive
performance and self-reported motivating ratings. In other words, dACC selectively encoded the
integrated subjective motivational value of bundled incentives, and more importantly, the bundled
neural signal was associated with motivated task performance (e.g., juice + monetary rewards
increased dACC signals and boosted performance, whereas saltwater + monetary rewards
decreased dACC signals and impaired performance). However, while these current results lend
support for how mixed motivation may modulate cognitive control via an instrumental manner, it
remains unknown how this integrated value signal may differentially impact cognitive control
when incentives are conditioned in a Pavlovian or even combined (e.g., Pavlovian-Instrumental
Transfer) manner. Future studies could explicitly examine the degree to which dACC activity
reflects the integrated motivational value of different combinations of various types of
motivational incentives on cognitive control processes (e.g., does receiving monetary loss +
saltwater as performance feedback elicit lower activation relative to monetary loss + juice as

performance feedback), or alternatively consider the motivational context of incentives modulate
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cognitive control allocations (e.g., are there dissociable dACC neural signals underlying whether

aversive motivation elicits negative reinforcement vs. punishment behavior).

5. Computational Mechanisms of Aversive Motivation and Cognitive Control
5.1 Dissociable Influences of Reinforcement and Punishment on Cognitive Control Allocation

In this section, we highlight recent theoretical work demonstrating how the inclusion of
aversive motivational incentives enables us to reconceptualize cognitive control allocation, not as
a one-dimensional problem - in which motivation monotonically influences cognitive control
(e.g., higher or lower effort allocation) — but instead as a multi-dimensional one. For example, it
1s important to consider both the amount (e.g., how much effort) and #ype of effort strategy (e.g.,
what kind of effort) utilized for allocating cognitive control must be computed. Specifically, we
describe an instantiation of the EVC model that offers an account of 1) how mixed motivation may
influence the interaction of motivation and cognitive control, and 2) how the motivational context
of aversive incentives can elicit dissociable effort strategies for cognitive control allocation.
Notably, while the motivation to avoid negative outcomes might engage control processes during
amentally challenging tasks, the context of how that outcome can be avoided may drive different
kinds of control signals. For example, whereas the motivation to avoid or escape from expected
negative outcomes may boost effort allocation on a mentally challenging task (e.g., negative
reinforcement) via increasing attentional control, the motivation to avoid being penalized with
negative outcomes may instead reduce effort allocation on a mentally challenging task (e.g.,
punishment) through increased response caution. This example clearly illustrates how the
motivational context through which aversive motivation facilitates behavioral activation (Evans et

al., 2019) or behavioral inhibition (Verharen et al., 2019) has significant implications for

39



understanding how aversive incentives might drive divergent effort strategies for cognitive control
allocation.

Recent theoretical work has demonstrated how these different forms of control adjustment
(e.g., attentional control vs. response caution) can be formalized within the framework of formal
models of evidence accumulation (Danielmeier et al., 2011; Danielmeier & Ullsperger, 2011; Ritz
et al., 2021). In particular, the drift diffusion model (DDM) provides a useful framework for
explicitly quantifying how different types of incentives (e.g., reward, penalty) can guide distinct
adjustments in cognitive control allocation (Ratcliff et al., 2016; Ratcliff & McKoon, 2008).
Moreover, normative models have been developed that incorporate such DDM parameters into an
objective function which putatively accounts for how individuals optimally vary the intensity of
their physical or mental effort to maximize their expected reward rate (Bogacz et al., 2006; Niv et
al., 2007). However, an important gap in this theoretical research relates to characterizing the
degree to which various motivational incentives might modulate similar or dissociable strategies
for mental effort allocation.

The following implementation of the Expected Value of Control (EVC) model extends the
existing reward rate framework to describe how individuals determine the appropriate amount of
cognitive control to allocate in a given situation. A core assumption of the model is that individuals
will allocate the amount and type of cognitive control that maximizes their expected reward rate
while simultaneously minimizing the effort costs associated with exerting cognitive control
(Lieder et al., 2018; Musslick et al., 2015). The difference between these two quantities, referred
to as the Expected Value of Control (EVC; See Equation 1), indexes the extent to which benefits
outweigh the costs (Shenhav et al., 2013, 2017). The EVC model predicts that an individual will

adjust control allocation based upon the expected benefits (e.g., the net value of monetary rewards
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and monetary losses earned for exerting control) and the expected costs (i.e., the mental effort

required to exert control).

Eq 1: EVC(control, state) = RewardRate (control, state) — Cost(control)

In order to maximize EVC, cognitive control can be adjusted to modify specific parameters
of the DDM, which govern how incentives may influence predicted behavior. For example,
increased attentional control from expected reinforcers may correspond to the rate of evidence
accumulation (e.g., drift rate), whereas increased response caution from expected punishers may
correspond to the response threshold. Importantly, changes in drift rate and threshold may predict
distinct patterns of changes in response time RT (which is a combination of both decision-related
and decision-unrelated factors, i.e., decision time [DT] and non-decision time [NDT]) and error
likelihood. For example, increases in drift rate result in faster RT and increased likelihood of error
responses, whereas increases in threshold result in slower RT and increased accuracy (Bogacz et
al., 2006). As described in Equation 2, Reward Rate can be estimated as a function of resulting
performance (e.g., error rate ER and response time RT), as well as the reinforcement for a correct
response R and punishment for an incorrect response P. Critically, by integrating the influence of
multiple incentives, this formulation accounts for contexts involving mixed motivation and thus
has the potential to provide a more comprehensive picture of the explicit ways through which

diverse forms of motivation can influence different strategies for allocating cognitive control.

R x(I—-ER) — P XER

Eq 2: RewardRate =
RT
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An exciting feature of this normative account is the ability to explicitly stipulate distinct
parameters for positive reinforcement and negative reinforcement. For instance, in scenarios where
accurate responses lead to obtaining rewarding incentives, this formulation can be used to
explicitly estimate the effects of positive reinforcement [Rp,s] on reward rate. Conversely, in
scenarios where accurate responses lead to successful avoidance of aversive incentives, the
equation can instead account for the effects of negative reinforcement [Ryee| on reward rate, which
may potentially be distinct from how positive reinforcement may modulate drift rate and threshold
parameters during reward rate optimization. This distinction allows us to delineate the motivational
context of whether an aversive incentive should be treated as negative reinforcement or
punishment. Importantly, this formulation dictates divergent predictions for how an aversive
incentive may modulate the intensity of mental effort allocated in a given cognitive control task
based upon this motivational context. Moreover, the model has the potential to elucidate the degree
to which negative reinforcement may produce similar patterns as positive reinforcement effects
versus punishment effects on cognitive control allocation.

The other key component in the EVC model is the Cost of cognitive control, which refers
to the aversiveness of the mental effort required to exert cognitive control and successfully perform
the task (Kool & Botvinick, 2018; Shenhav et al., 2017). This cost is assumed to be a monotonic
but likely non-linear function (e.g., quadratic) of the intensity of control being allocated (Massar
et al., 2020; Petitet et al., 2021; Soutschek & Tobler, 2020; Vogel et al., 2020). Because the model
assumes that it is optimal to maximize drift rate, the drift rate would not be constrained without a
cost function. Thus, the inclusion of a cost function represented as a squared function of the drift
rate, scaled by parameter E, allows for a more constrained set of parameter values for drift rate and

threshold for reward rate maximization (Leng et al., 2020); shown in Equation 3. For additional
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discussion about the potential forms and source of this cost function, see (Kool & Botvinick, 2018;
Ritz et al., 2021; Westbrook & Braver, 2015). Integrating across considerations of expected reward
rates and effort costs, the model can estimate the EVC of each possible combination of drift rate
and threshold (shown as a heatmap in Figure 7a) and then determine the settings of each of these

control signals that is optimal (i.e., that maximizes EVC).

Eq 3: Cost Function = E X drift rate?
Eq4: EVe = D= 2XR _ E x drift rate?
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Figure 7: Dissociable Influences of Reinforcement and Punishment on Cognitive Control
Allocation a) A core assumption of the Expected Value of Control (EVC) model is that individuals
will adjust control allocation to maximize their expected reward rate and minimize their expected
costs for exerting control. Expected outcomes are determined by considering the likelihood of an
error (ER), the reinforcement for responding correctly (R), and the punishment for responding
incorrectly (P). These expected outcomes are normalized by the expected response time R7 (which
is a combination of both decision-related and decision-unrelated factors, i.e., decision time [DT]
and non-decision time [NDT]) to determine the expected reward rate. EVC is determined by
subtracting from this reward rate a cost function (e.g., here represented by a parameter £ that scales
the square of drift rate), reflecting the non-linear effort cost associated with increased attention on
a given trial (for discussions of alternate forms of effort functions, see Leng et al., 2020; Ritz et
al., 2021). This formulation allows for a distinction between positive reinforcement and negative
reinforcement. Critically, this enables us to delineate whether an aversive incentive should be
treated as negative reinforcement or punishment. b) The EVC model predicts that individuals seek
to configure drift rate and threshold to maximize their EVC and adjust this configuration as task
incentives vary. Specifically, the model predicts that rewards for correct responses (e.g., positive
reinforcement) will bias strategic adjusting in attention (drift rate). In contrast, penalties for
incorrect responses (e.g., punishment) will bias a strategic adjustment in response caution
(threshold). c¢) Task performance from our behavioral study using the task in Figure 4b (Leng et
al., 2020) was consistent with these normative predictions. The upright triangles indicate a higher
value (e.g., high reward, high penalty), while the inverted triangles indicate a lower value (e.g.,
low reward, low penalty).

Recent work from our group has adapted this formulation to estimate the optimal (i.e.,
EVC-maximizing; See Equation 4) allocation of cognitive control across drift rate and threshold
(Leng et al., 2020). The normative model predicts that individuals will seek to optimally combine
drift rate and threshold parameters to maximize their reward rate and adapt this control
configuration to match the current incentive structure in their environment. By estimating the
optimal control configuration for different potential levels of reinforcement (R) and punishment
(P), we showed that these two types of incentives should lead to distinct patterns of control
adjustments (Figure 7b). If participants optimize this formulation of EVC, they should adapt to
higher levels of reinforcement by primarily increasing their drift rate potentially through
adjustments of attentional control (and/or decreasing their threshold). Conversely, they should

adapt to higher levels of punishment by primarily increasing their response threshold (potentially
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through adjustments of inhibitory control). We tested these predictions by estimating the drift
diffusion parameters based on behavioral task performance from participants who performed the
incentivized cognitive control allocation task in Figure 4b. We found that these empirically-
derived estimates of control configuration were remarkably consistent with our normative
predictions (See Figure 4c). These results provide compelling evidence that incentives associated
with reinforcement or punishment should and do lead to dissociable strategies for allocating
cognitive control. Moreover, the findings from this study illustrate the critical importance of
incorporating mixed motivation and motivational context in motivation-control studies, which will
optimistically provide theoretical and empirical tools that may help stimulate innovative novel
research into how aversive motivation can influence divergent types of effort allocation in

cognitive control tasks.

5.2 Predicting Individual Differences in Approach vs. Avoidance Motivation on Cognitive
Control Allocation

An additional exciting aspect of our EVC implementation is the ability to generate
normative predictions about the degree to which individuals are sensitive to rewarding and
aversive motivational incentives. Such a model-based approach for quantifying individual
differences may be significant for advancing longstanding interest in approach vs. avoidance
motivation (Atkinson, 1957) or Pavlovian biases (Beierholm & Dayan, 2010; Guitart-Masip et al.,
2014). Whereas much of the classical work in this domain has focused on using self-report
measures to probe the extent to which approach and avoidance motivational systems may be linked
to personality traits (e.g., disposition to achieve success or avoid failure; (Eder et al., 2013; Elliot

& Thrash, 2002), our normative approach demonstrates the potential to reconcile the weak
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associations often observed between self-reported motivation and motivational influences on
cognitive control task performance (Dang et al., 2020).

The current EVC model builds upon foundational achievement motivation theory
(Atkinson, 1957) by integrating the assumption that an individual’s intensity of approach or
avoidance motivation will be weighted by their sensitivity to reinforcement or punishment relative
to their effort cost (e.g., reinforcement sensitivity is equivalent to the ratio [R/E], punishment
sensitivity is equivalent to the ratio [P/E]). Specifically, because the normative model provides a
mapping from incentives onto control configuration (e.g., reward-rate optimization), we can
‘reverse-engineer’ this approach to use the estimated control configuration across conditions (i.e.,
joint estimates of DDM parameters) for each participant to infer R and P, which represent
individual-specific weights for reward and penalty sensitivity (Leng et al., 2020). An important
feature of this approach of parameterizing individual sensitivities to reinforcement and punishment
on cognitive control allocation is that it delineates how an individual’s sensitivity to positive versus
negative motivational incentives may interact with how motivational influences impact cognitive
control allocation (i.e., instrumental responding). Although additional theoretical and empirical
work is required to validate this formal quantitative approach, our preliminary results demonstrate
the promise of using our EVC model to estimate individual differences in sensitivity to rewarding
and aversive motivational incentives in cognitive control tasks.

The EVC model also provides a powerful framework for addressing open questions
regarding the neural mechanisms that underlie motivation and cognitive control. For example, the
model may help dissociate between motivational accounts of how dopamine (DA) versus serotonin
(5-HT) impact mental effort allocation. Given DA’s known role in promoting the willingness to

exert effort in value-based decisions (Westbrook et al., 2020, 2021), one compelling hypothesis is
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that DA may impact the degree to which expected rewards increase attentional control (e.g.,
facilitating increases in drift rates in task designs where incentives facilitate reinforcement).
Conversely, in light of 5-HT’s established role in punishment-induced response inhibition
(Crockett et al., 2009; Faulkner & Deakin, 2014), one potential hypothesis is that 5-HT may impact
the degree to which expected penalties impact response caution (e.g., facilitating increases in
response thresholds in task designs where aversive incentives facilitate punishment).

In neural terms, the EVC theory proposes that distinct sub-regions or sub-circuits play
differential roles in evaluating potential outcomes; integrating these and other considerations into
the evaluation of EVC (in particular, via dACC); and executing the set of control signals
determined to be EVC-maximizing (Shenhav et al., 2013, 2017). The reinforcement-related
enhancement of attentional control (i.e., increased drift rate) could be mediated by connectivity
between dACC and dorsolateral prefrontal cortex, a region strongly implicated in motivation and
cognitive control interactions (Duverne & Koechlin, 2017; Kouneiher et al., 2009). Conversely,
the punishment-related increases in response inhibition (i.e., increased response threshold) could
be mediated by connectivity between dACC and ventrolateral prefrontal cortex or subthalamic
nucleus (STN), regions strongly implicated in inhibitory control (Cavanagh et al., 2011; Forstmann
et al., 2010; Wiecki & Frank, 2013). These control adjustments may be determined by inputs to
dACC from regions sensitive to expected positive outcomes (e.g., ventral striatum) versus aversive
outcomes (e.g., anterior insula), depending on whether the incentives are positive (i.e., positive
reinforcement) versus negative (i.e., negative reinforcement or punishment). Though these
hypotheses are somewhat speculative, our model provides important testable predictions to guide
empirical investigations into how rewarding and aversive motivation dissociably influences

cognitive control. Developing such a rigorous neurocomputational model would be highly
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significant for understanding how variability in incentive sensitivity and interactions may lead to
the motivational impairments often observed in clinical disorders such as depression, anxiety,
schizophrenia, and addiction (Barch et al., 2018; Clery-Melin et al., 2011; Grahek et al., 2019;

Husain & Roiser, 2018; Ironside et al., 2019; Verharen et al., 2020).

6. Conclusion

This review highlights the pressing need to incorporate motivational context and mixed
motivation to enhance the current understanding of the neural and computational mechanisms
underlying aversive motivation and cognitive control. While this is not the first review of neural
and computational mechanisms of aversive processes (Bissonette et al., 2014; Hayes & Northoff,
2011; Levy & Schiller, 2020), our broad interdisciplinary review cuts across cognitive/behavioral,
neuroscience, and computational perspectives. Further, we highlight how incorporating these
motivational dimensions will be critical for developing a more sophisticated understanding of
diverse ways through which aversive motivation influences cognitive control allocation. We hope
that the topics covered will provide an important key step towards stimulating novel,
groundbreaking research towards elucidating these interactions, which will move us closer towards

unlocking the enigmatic mechanisms of motivation and cognitive control.
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