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ABSTRACT: Flat optics foresees a promising route to ultracompact optical devices, where metasurfaces serve as the
foundation. Conventional designs of metasurfaces start with a certain structure as the prototype, followed by
extensive parametric sweeps to accommodate the requirements of phase and amplitude of the emerging light.
Regardless of how computation consuming the process is, a predefined structure can hardly realize the independent
control over polarization, frequency, and spatial channels, which hinders the potential of metasurfaces to be
multifunctional. Besides, achieving complicated and multiple functions calls for designing metasystems with
multiple cascading layers of metasurfaces, which introduces exponential complexity. In this work, we present a
hybrid deep learning framework for designing multilayer metasystems with multifunctional capabilities. We
demonstrate examples of a polarization-multiplexed dual-functional beam generator, a second-order differentiator
for all-optical computing, and a space-polarization-wavelength multiplexed hologram. These examples are barely
achievable by single-layer metasurfaces and unattainable by traditional design processes.

KEYWORDS: deep learning, metasurface, photonics, neural network, optics

etasurface is one of the most appealing ideas in

nanophotonics in the past decade."” As the two-

dimensional counterpart of metamaterials, meta-
surfaces introduce abrupt phase change to the interface, which
empowers the ultrathin layer to function as a bulky optical
component. This intriguing advantage allows for numerous
applications of metasurfaces, such as metalenses, wavefront
shaping, compact imaging, to name a few.>® At the early stage,
most optical metasurfaces were implemented through
plasmonics,” which can achieve the complete phase control
of the cross-polarized output wave. Nevertheless, the
theoretical limit of the cross-polarized conversion efliciency
of plasmonic metasurfaces is only 25%, and the ohmic loss
associated with plasmonic metasurfaces further leads to lower
efficiency. The other family of metasurfaces, the dielectric ones,
can achieve a much higher efficiency and are more compatible
with the modern semiconductor industry.” The transmittance
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of nonresonant dielectric metasurfaces can reach near unity in
the optical regime, providing high efficiency but mediocre
amplitude control. Apart from the individual merit and demerit
of plasmonic and dielectric metasurfaces, most metasurfaces
are built upon single-layer unit cells, which have rather low
degrees of freedom (DOF) to accomplish a sophisticated
objective. For instance, a single-layer metasurface can hardly be
highly multifunctional, since the optical responses of a unit cell
at different polarizations, frequencies, and spatial positions are
correlated with each other, which cannot be treated as
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Figure 1. Description of the modules of the DL framework. The design flow goes through the NN generator, the NN simulator, and the ES
optimizer in a loop. The generator is a CPPN of a GAN. The simulator is trained sequentially through transfer learning. The workflow
proceeds as follows: the generator (a) first decodes a batch of latent vectors and produces corresponding candidate nanostructures (b),
followed by the NN simulator (c) computing the transmittance and reflectance spectra of the nanostructures (d). Next, the ES optimizer (e)
selects the structures with satisfactory performance, refines and evolves their latent vectors, and sends the latent vectors back to the
generator to get a better batch of nanostructures (f—h). Different layers at the same position can be collectively viewed as a supercell (g).
One layer of the supercell is optimized in every single iteration, and the design proceeds in a round-robin fashion until the overall
performance of the supercell is satisfactory (h). The design of the metasystem (i) terminates when all the spatially variant supercells are
obtained. The metasystem can be designed as a multifunctional optical device, for applications such as multifunctional beam shaping (j),
operators for all-optical computing (k), and space-wavelength-polarization multiplexed holography (1).

independent channels to multiplex information. Trials are
made to design multifunctional metasurfaces by integratin%
several types of nanostructures onto one metasurface,’ "

where each type of nanostructure functions toward a distinct
objection. However, this scheme may impede the resolution of
metasurfaces, and the crosstalk between nanostructures is
unavoidable. These limitations of metasurfaces call for a
metasystem with multiple metasurfaces to fulfill a complicated
objective, analogous to an optical system with cascading lenses.
In this sense, a metasystem is a favorable choice for
implementing highly multifunctional devices.

The metasystem can be intuitively viewed as multiple layers
of metasurfaces, with a subwavelength total thickness. 213
Nevertheless, most multilayer metasurfaces regard each layer as
an individual device, and the ultimate performance can be
calculated through ray-tracing or other methods. In contrast to
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the general idea of multilayer metasurfaces, here we introduce
the multilayer metasystem, which does not necessarily require
each layer to have a distinct function. Hence, we only need to
design the entire system toward the ultimate objective without
distinguishing the layer-wise properties. Besides, the meta-
system also bridges the gap between plasmonic and dielectric
metasurfaces. For one thing, the metasystem provides sufficient
propagation length for waves, similar to dielectric metasurfaces,
which aids the full coverage of phase. For another, the
metasystem can be composed of either metals or dielectrics, or
both, to achieve complete amplitude modulation. In addition,
high DOF of the metasystem provides independent control of
the optical responses of different multiplexed channels. The
microscopic patterns of such metasystems can be as
complicated as arbitrary geometries, which further improves
the DOFs.'* In this article, we will demonstrate that
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Figure 2. DL designed metasystem as a polarization-multiplexed dual-functional beam generator. When the incident light is x-polarized, the
transmitted x-polarized wave forms a Bessel beam, while y-in-y-out response is an Airy beam. (a—c) Detailed structure of the metasystem.
The system has three layers (a—c), each layer consists of 25 X 25 unit cells. The light incidence is on the layer 1 side and output on the layer
3 side. (d and g) Desired amplitude distributions (blue) and simulated amplitudes (orange) of the metasystem on the central axis, for the x-
polarized and the y-polarized incidence, respectively. (e and h) Simulated amplitude distributions of the light field on the output plane, for
the x- and y-polarized incidence, respectively. (f and i) Simulated amplitude distributions of the transmitted light along the propagation z

direction, for the x- and y-polarized incidence, respectively.

metasystems can be one of the best candidates to achieve
multifunctional purposes for light waves. As for analog
computing applications such as all-optical computing, signal
and imaging processing, pattern recognition, efc., metasystems
also represent one of the most promising media.

Meanwhile, increased design complexity is coexistent with
the advantages of the metasystem. The conventional design
process requires a predefined nanostructure as the building
block, then a thorough sweep of the geometric parameters of
the nanostructure is necessary. This design flow suffers two
major shortcomings when applied to metasystems. One is that
the selected nanostructure may not cover the solution space of
the desired functions. For instance, predefining a nanostructure
with distinct functionality at different wavelengths is never a
closed form question, and tedious trial-and-error attempts to
vary the parameters of the nanostructure is usually necessary,
but with no guarantee of a solution. The other is that adding
layers will increase the number of parameters exponentially.
Therefore, the parameter-scanning process will consume huge
computational resources and storage, which is unacceptable or
even impractical. This dilemma can be perfectly mitigated by
our hybrid deep learning (DL) framework. Advances in neural
networks (NNs) and computational hardware have given birth
to diverse applications of DL in information technology," ™"
such as pattern recognition, natural language processing,
autonomous vehicles, etc. Besides, DL also benefits the
methodology of natural science,'®72° including biology,
chemistry, quantum mechanics, as well as optics and
nanophononics. Recently, the interdisciplinary regime between
optics and DL has caught intense attention. Various studies
have validated the potential of leveraging DL for the design of
optical components and proven that DL design methods can
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essentially outlperform traditional human design processes on
certain tasks.” It is worth noting that researchers to date
may have not paid enough attention to the tasks with
formidably high complexity, which are hardly resolvable by
conventional design processes and thus exclusive to DL design
methods. In this work, we introduce the DL framework for the
discovery and design of a multilayer multifunctional meta-
system, which is too complicated to be accomplished through
conventional design processes. As solid illustrations, we report
three examples designed by our framework: a polarization-
multiplexed dual-functional beam generator, a second-order
differentiator for all-optical computing, and a space-polar-
ization-wavelength multiplexed hologram. These functions are
barely achievable by single-layer metasurfaces, and the devices
are hardly approachable by conventional design means. The
designed devices are constituted of arbitrary patterns, which
indicates the extremely high DOFs of the structures involved.

RESULTS AND DISCUSSION

Pipeline of the DL Framework. The design flowchart of
our DL framework is presented in Figure 1. The algorithm
architecture consists of a NN generator,34 a NN simulator,
and an evolutionary strategy (ES)-based optimizer.”® As the
design initiates, the compositional-pattern generating network
(CPPN) generator decodes a batch of latent Vectors and
produces corresponding candidate nanostructures,”” followed
by the ResNet-based s1mulator computmg the optical
responses of those nanostructures.'” It is worth noting that
the simulator is trained with a tiny data set through transfer
learning to reduce the data requirement and maintain a high
accuracy. Here, we assume all the nanostructures have a unit
size of 320 nm and thickness of 40 nm, embedded in polymer

https://dx.doi.org/10.1021/acsnano.0c09424
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Figure 3. DL designed metasystem for second-order differentiation. (a) Schematic of the function of the second-order differentiator. When
the input is a wave with a spatially variant real part along the x direction, the real part of the output wave will be the second-order derivative
of the input. (b) Detailed structure of the metasystem. Each layer of the trilayered system has 25 spatially variant unit cells along the x
direction and is periodic along the y direction. The incidence is on layer 1 side, and the output is on layer 3 side. (c) Three examples to test
the functionality of the differentiator. The left column is three examples of the input, while the middle and right columns are the target
output and the actual output of the meta-optic second-order differentiator, respectively. Since the differentiator has only 25 unit cells along
the x direction, the resolution of the differentiation is limited, which leads to the ripples in the simulated output.

with refractive index of 1.57. Next, the ES optimizer selects the
structures with good performance, refines and evolves their
latent vectors, and sends the latent vectors back to the
generator to get a better batch of structures. The optimizer
regards unit cells at the same planar position but on different
layers as one supercell collectively, and the procedure proceeds
as a loop until a satisfactory supercell is obtained (e.g,, mean-
square-error between the objective and the achieved perform-
ance is lower than 0.01), then the framework will work on
designing the supercells at other planar positions. Generally,
designing a three-layered supercell takes no more than 5 min,
which is much more efficient than parametric sweeping
methods. Detailed descriptions of the framework are presented
in the Methods section.

Dual-Functional Polarization-Multiplexed Beam Gen-
erator. The first case study of the DL designed metasystem is
a dual-functional beam generator, as shown in Figure 2. When
the incident light is an x-polarized plane wave, the transmitted
x-polarized output represents the zeroth-order Bessel beam,
while the y-in-y-out response is an Airy beam. Beam shaping is
a classical application of metasurfaces, by which the ultrathin
beam generator is feasible, while bulky optical components,
such as axicons and lenses, are no longer necessary. Beam
shaping calls for a spatially variant magnitude and phase of the
output light, and polarization-dependent functions further
increase the design complexity. This task is too complicated for
traditional design processes or single-layered metasurfaces, so
one promising solution is to implement the DL algorithm to
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design a multilayer metasystem with target multifunctional
properties. Without loss of generality, we preset the
metasystem to possess three layers, with 2S5 spatially variant
supercells in both x and y directions, and the polymer spacer
between adjacent layers is set to 200 nm. The wavelength here
is 659 nm in the polymer, which is randomly chosen to validate
the performance of our algorithm. Upon settling down the
amplitude and phase requirements and the physical parame-
ters, the framework will generate the best possible supercells at
each planar position. The full-wave simulation is further used
to validate the design eflicacy.

The details of the dual-functional Bessel—Airy beam
generator are displayed in Figure 2. Figure 2a—c depicts the
detailed structure of each layer, from the top layer to the
bottom, respectively, and we assume the incidence light
illuminates from the top. Some of the complicated patterns can
be smoothed by applying denoising and Fourier filter
algorithms to extract the main features without compromising
the device performance, as the tiny details of the structures do
not contribute much to the far-field distributions. The detailed
discussion concerning the shape tolerance in experiment is
provided in the Supporting Information, and this work mainly
focuses on the DL algorithm and uncovers the promising
merits of metasystems. Figure 2d,g demonstrates the
comparison between the amplitude distributions of designed
and target transmittances for the two polarizations on the
central axis of the beam generator, which reveals the notable
agreement between the achieved and target performance. For
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Figure 4. DL designed space-polarization-wavelength multiplexed hologram. The hologram can project 36 different holographic images in
total. (a) The flowchart to obtain the amplitude-and-phase distributions of the design objective. The first step is to pin down the target
images projected by the hologram and their distances to the hologram plane, then random phases are added to each of them. Next, their
projected amplitude and phase distributions on the hologram plane are computed by the Huygens propagation, the weighted superposition
is calculated, and then the amplitude is normalized to between 0 and 1. Lastly, the amplitude and the phase are discretized. The hologram
functions at two wavelengths and two polarizations, which means the process should be carried out four times to get all the distributions. (b)
Some examples of the designed supercells. Their target responses at x and y-polarized incidence at 562 nm (4,) and 659 nm (4,) in the
polymer are denoted as E, .E; E, E; . (c) A part of the designed hologram. The total hologram consists of 2000 X 2000 trilayered

supercells, and here we display a locality of 25 X 25 supercells. The incidence is on layer 1 side and output on layer 3 side. (d) Simulated
performances of the hologram. The hologram works at both x and y polarizations, 659 and 562 nm, and the projected images are at 9
distances to the hologram, from 100 to 740 pm. The projected 36 images are the numerical digits 0—9 and capital letters A—Z.
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the whole metasystem, the average design accuracy of the
optical responses of the supercells can reach approximately
90%, which guarantees the effectiveness of the designed dual-
functional beam generator. Figure 2e,h presents the simulated
output of the beam generator at x and y polarizations,
respectively, where the light field distributions undoubtedly
represent the desired Bessel and Airy patterns. The simulated
light propagations are illustrated in Figure 2fi, where the
nondiffracting characteristics of both beams and the self-
bending of the Airy beam are evidenced. Besides being
multifunctional, the designed beam generator exhibits a decent
efficiency compared to beam generators by conventional
plasmonic metasurfaces. For x-polarized incidence, assuming
an input intensity of 100%, the peak intensity of the
transmitted Bessel beam reaches 98%. For y-polarized
incidence, since the peak value of an Airy function is not
unity, to reveal the capability of our DL algorithm, we
randomly choose 50% as the peak value of the objective Airy
beam on the central axis, as indicated in Figure 2d. Our design
fulfills the objective as expected, and the peak intensity of the
transmitted Airy beam is approximately 55%. Compared to
conventional plasmonic metasurfaces with a theoretical upper
limit of 25% transmitted power, the designed metasystem
achieves far superior efficiency.

All-Optical Second-Order Differentiator. The second
example of the DL designed multilayer metasystem is a
second-order differentiator, which is a representative example
of all-optical computing and all-optical signal processing.
Calculation and signal processing with metasurfaces has long
been an intriguing topic to achieve all-optical comput-
ing.>**~* A number of approaches have been proposed on
this subject, however, some require design of a metasurface
and two bulky gradient-index structures independently, and
others are based on multilayer homogeneous metamaterials
but only applicable to math operations with even symmetry
and the design may need too many layers or unrealistic
materials. Inspired by the theoretical background of the
multilayer metamaterial method, we can exploit the meta-
system to realize certain functions for all-optical computing.
The metasystem is an ideal candidate to achieve the spatially
variant Green’s function, which represents wavenumber-
dependent transmittance in k-space. Since the spatially
distributed supercells are not necessarily symmetric, the
metasystem can be adapted to any linear operation, such as
derivation, integration, convolution, efc.

In our example of metasystem for second-order differ-
entiation, the schematic of the three-layered computing
metasystem is illustrated in Figure 3a. In this showcase,
when the incident light (659 nm in the polymer) is y-polarized
with the real part of the electric field as a spatially distributed
function along the x-axis, the real part of the y-polarized output
wave will be proportional to the second-order derivative of the
input function. Figure 3b depicts the structure of the designed
metasystem. The system has three layers, each of which has 25
spatially variant unit cells along the x direction and is periodic
along the y direction, with a spacer of 200 nm between
adjacent layers. We define layer 1 on the input side and layer 3
for output. To evaluate the performance of the differentiator,
we tested it with three different inputs. The three images in the
left column of Figure 3c present the input functions, while the
middle and the right columns represent the corresponding
target outputs and the simulated outputs of the metasurface,
respectively. The great similarities between the targets and the
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simulated results of the device validate the performance of the
differentiator. Some minor discrepancies such as the
asymmetric features and small ripples in the output may
appear in our simulation results. These imperfections stem
from the incapability of full wave simulation for handling large-
sized three-dimensional models as well as the low spatial
resolution of the discretized differentiator. Since the meta-
system consists of only 25 unit cells along the x direction for
the representation and operation of a continuous function, the
computational resolution of the differentiation is limited due to
the discretization in the spatial domain. Increasing the number
of unit cells of the metasurface is expected to substantially
suppress the ripples in the simulated output. To take one step
forward, if a two-dimensional image is the input, the
differentiator will detect the second-order edges of the image
along the x direction. While if the differentiator is designed to
be spatially variant in two dimensions, it will be able to
distinguish all the second-order edges of an input image. As a
result, the devices designed by the DL framework are
potentially applicable to all-optical image processing, comput-
ing, NNs, and more.

Space-Polarization-Wavelength Multiplexed Metaho-
logram. In the last example of multilayer multifunctional
metasystems, we present a space-polarization-wavelength
multiplexed metasurface hologram. This metahologram
functions at the wavelengths (in the polymer) of both 562
and 659 nm, in both x and y polarizations, with 9 operational
positions along the propagation, and projects a total of 36
holographic images: numerical digits 0—9 and capital letters
A—Z7. Metasurface has been exploited as one of the most
promising media to achieve holography, with high imaging
quality and ultrathin thickness.”** Most of such optical
metaholograms are static and monofunctional, which leads to a
limited information-storing capacity of the holography. Multi-
plexed metasurfaces may offer the opportunity to encode an
enormous amount of information into a single hologram. Some
of the recent works have shown the possibility to realize a
multiplexed hologram in the spatial, polarization, or wave-
length channel, and some have attempted two of the above
channels.”'**>*® Here, we present a multiplexed hologram
that utilizes all three channels, with no upper limit on the total
amount of displayed images.

The hologram is neither phase only nor amplitude only, but
with mixed phase and amplitude information carried in one
integrated system. It consists of three layers, with an overall
size of 2000 X 2000 supercells. The design flowchart is
presented in Figure 4a. We first virtually align all the objective
images on axis and parallel to the hologram plane at different
distances (100—740 um from the metahologram, with 80 ym
interval). While the projected function only pertains to the
magnitude of light at the generated images, we still need to
introduce a random phase to the images in order to suppress
the crosstalk between different image planes. Next, we apply a
Sommerfeld—Fresnel transformation (Huygens propagation)
to obtain the amplitude and phase distribution on the
hologram plane as derived from the image planes."” The
final amplitude and phase distribution is the weighted sum of
the projections, where the weight is proportional to the square
root of the distance from the metahologram to a particular
image. The weight is introduced to ensure that each image can
be recovered by the hologram with both high fidelity and
sufficient brightness. To reduce the computational complexity,
the objective field amplitude after the hologram is binarized
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into the values of 0.75 or 0 with a threshold of 0.3. The phase
is also discretized into three values within the 27 period: —7,

—%ﬂ,’, and én’. Therefore, for each polarization at a specific
wavelength, there will be four possible amplitude and phase
combinations: 0, —0.75, 0.752 — éﬂ', and 0.754§ﬂ. Since the

hologram is designed to work at two different wavelengths
(562 and 659 nm) and two polarization states (x and y
polarizations), there are a total of (4*)> = 256 amplitude and
phase combinations, which means the same number of unique
supercells should be used to constitute the metahologram. The
detailed structures of the supercells are presented in the
Supporting Information, and Figure 4b shows a few
representative ones. The numbers below each supercell
indicate its target responses under x- and y-polarized incidence
at 562 nm (4,) and 659 nm (4,), denoted as E; .E; E; .E, .

Once the 256 supercells are designed by the algorithm, any
hologram that operates for both x and y polarizations at the
two wavelengths can be designed in a matter of seconds, since
different holograms are simply different maps of the same
collection of supercells. In this example, the hologram consists
of 2000 X 2000 supercells, and Figure 4c displays a small
portion of the overall structure. We assume the incidence light
illuminates from layer 1, and the output light beyond layer 3
automatically forms the projected images at the expected
locations. Figure 4d shows the 36 simulated holographic
images, and the color tones of the images are applied to
distinguish the shorter (562 nm, blue) and longer (659 nm,
red) operating wavelengths. Most of the holographic images
are formed with clear outlines and fine features. The image
quality does not degrade at large distances, and the fidelity of
images is satisfactory at each polarization and each wavelength.
As for the scalability, the 256 unique supercells can be readily
adapted to design any space-polarization-wavelength multi-
plexed holograms for the polarization states and operating
wavelengths specified before. Additional examples and further
discussions on the performance and capacity of the metaholo-
gram are presented in the Supporting Information. It is worth
noting that our method can be extended to the design of
holograms at more operating wavelengths and image positions.
Adding one wavelength with both polarizations will increase
the number of unique supercells by 16 times.

CONCLUSIONS

In summary, we have proposed a hybrid DL framework for
designing highly complicated, multifunctional metasystems.
The framework is of high efficiency and accuracy and requires
only a small amount of data and a low computational expense,
and the algorithm proceeds automatically with no need for
human intervention. It is very versatile and can be applied to
other configurations through transfer learning. We have
presented three examples designed by the DL framework: a
polarization-multiplexed dual-functional beam generator, a
second-order differentiator for all-optical computing, and a
space-polarization-wavelength multiplexed hologram. These
devices are virtually insoluble through a conventional design
method, with functions hardly achievable by a single-layer
metasurface. We acknowledge that most of the metastructures
presented in these examples are highly complicated. Exper-
imental realization of these designs would require demanding
aligned lithography techniques to fabricate the delicate
arrangements of trilayered supercells. These real-life challenges
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can be mitigated to a certain extent if we explore the
microwave counterparts of the proposed systems, where the
feature size would lie within the millimeter scale. We further
note that the primary theme of this research is to reveal the
capacity of the machine-learning frameworks for the design
and implementation of multifunctional metasystems, while the
experimental demonstration of these proposed concepts is
beyond the scope of the current work.

The DL framework developed here is also applicable to the
design of other photonic components and systems, including
photonic crystals, chip-scale silicon devices, and quantum-
optical devices. The methodology of our DL design algorithm
is also significant to other disciplines of natural sciences, such
as the design of nanomaterials, searching for new topological
insulators, planning of chemical syntheses, prediction of
protein structures, and many more. Consolidating the power
of artificial intelligence into scientific research foresees the
emergence of novel devices beyond human design capacities,
discovers underlying physics from nebulous or counterintuitive
observations, and pushes forward the limits of knowledge as we
know today.

METHODS

The NN generator is the generative model of a generative adversarial
network (GAN). Most GANs are constructed by CNN, which is
beneficial to extract the inherent features of images. However,
different nanostructures of metasurfaces seldom share common
features, so we turn to a CPPN to implement the generator of the
GAN, which is proven to be effective for generating artistic patterns
with various styles. As for the NN simulator, it is adapted from
ResNet18, with 64 X 64 pixelated images as the input and the
complex transmission and reflection spectra (170—600 THz in
frequency, corresponding to the wavelength from 500 to 1765 nm in
free space) as the output. Each image represents the two-dimensional
nanostructure of a unit cell, with a unit cell size of 320 nm and pattern
thickness of 40 nm. To be reasonable for multilayer designs, we
assume all nanostructures are gold and embedded in a polymer with a
refractive index of 1.57. Although the simulator is a very deep NN, it
is trained with a tiny data set of only 2000 image-spectra pairs. We
avoid simulating the spectra of a gigantic number of nanostructures to
generate the training data set by applying transfer learning to reduce
the data requirement. Previously we have simulated 16,000 image-
spectra data pairs of unit cells of the same size and pattern thickness,
where the gold structure is deposited on glass and exposed in air.
Although the material configurations are different, transfer learning is
capable of identifying the connection. We first use the previous data
(air-glass-gold configuration) to train our simulator and obtain 98%

p|P

accuracy. The accuracy is defined as 1 — ﬁ 2 Zp HE‘ PRl
by k k

where E, , is the objective complex transmission at wavelength 4 and
polarization p, T, , represents the corresponding transmission, and n,
and n, denotes the numbers of wavelength points and polarization
states, respectively. When we consider both x and y polarizations, n, =
2. After that, with freezing all the network layers of the simulator
except for the last layer, we continue training the simulator with only
2000 new data (polymer-gold configuration) and achieve 96%
accuracy. The high efficacy of the simulator suggests that transferring
learning successfully transfers the knowledge from the air-glass
environment to the polymer-embedded environment. It also indicates
that our framework can be readily transferred into any other setups of
materials or sizes. For instance, while in this work we present
examples of plasmonic metasystems, the design framework can be
seamlessly adapted for dielectric metasystems. The only revision
needed here is to replace the simulator with a new one for dielectric
structures. In fact, we can simply simulate a small data set of dielectric
unit cells and use transfer learning to fine tune the simulator. Without
a significant change of other parts in the framework, our method will
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be capable of designing complex, multifunctional dielectric meta-
systems.

With the generator and the simulator working on the unit cells of
single-layer nanostructures, the optimizer assembles unit cells into
multilayers. The unit cells at the same planar position but on different
layers can be collectively viewed as a supercell of the metasystem, and
the overall performance of the supercell is calculated by the matrix-
chain multiplication of the wave matrix of each unit cell and the
spacers in between. In one iteration, the ES optimizer will optimize
one layer of the supercell and keep other layers unaltered. After the
selection, reproduction, mutation, and elimination processes of the
evolutionary algorithm, the optimizer will select the nanostructure
which leads to the least discrepancy between the optical response of
the supercell and the predefined objective. In the next iteration, the
framework will optimize the next layer of the supercell (from the top
layer to the bottom, then back to top). The loop will proceed until
satisfactory performance of the supercell is obtained, then the
framework will work on designing the supercells at other planar
positions. Compared to other optimization methods for multilayer
metasurfaces, our ES optimizer needs no sub-objective of every layer
but instead optimizes the supercell toward an overall objective, which
is more efficient and avoids the null-space problem of the solutions to
the sub-objectives. Network architectures and training details of our
DL algorithm framework are presented in the Supporting
Information.
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