
Vol.:(0123456789)

https://doi.org/10.1007/s10664-021-10095-1

1 3

A comparative study and analysis of developer
communications on Slack and Gitter

Esteban Parra1  · Mohammad Alahmadi2 · Ashley Ellis1 · Sonia Haiduc1

Accepted: 2 December 2021 /
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
Software developers are often using instant messaging platforms to communicate with each
other and other stakeholders. Among these platforms, Gitter has emerged as a popular choice
and the messages it contains can reveal important information to researchers studying open
source software systems. Uncovering what developers are communicating about through
Gitter is an essential first step towards successfully understanding and leveraging this infor-
mation. In this paper, we first describe the largest manually labeled and curated dataset of
Gitter developer messages, named GitterCom, obtained by manually analyzing and labeling
10,000 Gitter messages in 10 software projects. We then present a qualitative study to under-
stand the extent to which the categories identified in previous work by Lin et al. (2016) found
on Slack through surveys are applicable to developer messages exchanged on Gitter. Fur-
ther, in an effort to automate the labeling process, we investigate the accuracy of 9 traditional
machine learning and deep learning algorithms in predicting the intent of Gitter messages.
We found that Decision Trees and Random Forest performed the best, achieving an accuracy
of 88%, which is very promising for this multi-class classification task. Finally, we discuss the
potential directions for future research enabled by labeled Gitter datasets such as GitterCom.

Keywords  Gitter · Dataset · Developer communications

Communicated by : Georgios Gousios and Sarah Nadi.

This work is supported in part by the National Science Foundation grant CCF-1526929.

This article belongs to the Topical Collection: Mining Software Repositories (MSR)

 *	 Esteban Parra
	 parrarod@cs.fsu.edu

	 Mohammad Alahmadi
	 malahmdi@uj.edu.sa

	 Ashley Ellis
	 ake17@cs.fsu.edu

	 Sonia Haiduc
	 shaiduc@cs.fsu.edu

1	 Florida State University, 600 W College Ave, 32306 Tallahassee, FL, USA
2	 Department of Software Engineering, College of Computer Science and Engineering, University

of Jeddah, Jeddah, Saudi Arabia

Published online: 13 January 2022

Empirical Software Engineering (2022) 27: 40

http://orcid.org/0000-0001-9813-9518
http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-021-10095-1&domain=pdf

1 3

1  Introduction

Over time, the increase in the size of software systems has heightened the need for col-
laboration among developers, and has led to large software development teams, often dis-
tributed across multiple locations. Many positive aspects are seen in systems developed
collaboratively, such as knowledge sharing, strengthened synergy in teamwork, increased
productivity, and increased code quality (Constantino et al. 2020). However, such collabo-
ration is only possible when there is communication among the team members to coordi-
nate their efforts (e.g., share road maps, progress updates, roadblocks or problems, dead-
lines, and more).

Traditionally, software development teams have used IRC, forums, and mailing lists for
communication purposes (Chowdhury and Hindle 2015; Storey et al. 2017; Käfer et al.
2018; Stray et al. 2019). In recent years, modern instant messaging communication plat-
forms such as Gitter1 and Slack2 have emerged as a popular alternative for communication
among software development teams and other stakeholders (Lin et al. 2016; Storey et al.
2014; Stray et al. 2019). These tools allow for better team collaboration, group awareness,
and project coordination by providing a user-friendly way of managing and organizing dis-
tributed conversations, facilitating knowledge sharing, and enabling easy access to other
team members and their expertise. Moreover, these tools further support distributed agile
development teams by integrating relevant information from external software develop-
ment tools such as GitHub, Travis CI, etc. Storey et al. (2014). Thus, this new wave of
communication platforms is bridging the gap between multiple software tools and shaping
modern software development activities and practices (Storey et al. 2014).

Given the features and support they offer for software development, many open source
projects have adopted Gitter and Slack as their preferred communication means (Ehsan
et al. 2020; Käfer et al. 2018). Gitter is a popular tool among open source development
teams (Käfer et al. 2018; Sahar et al. 2020; Shi et al. 2021) for a few reasons. First, in
Gitter the access to user-generated data is public. In particular, public messages and user-
generated content in Gitter are subject to the Creative Commons license: Attribution +
Non-Commercial + ShareAlike (BY-NC-SA)3. In addition, the messages posted to public
Gitter channels are preserved indefinitely in chat room logs, which means that all users can
see all messages in a chat room, dating back to when the channel was first created.

Given the popularity of Gitter among open source software communities hosted on
GitHub (over 10,000 communities of developers), the history of communications on this
platform often contains tens of thousands of message exchanges between the developers
of a software system. If leveraged, this history could represent a rich source of documen-
tation for developers looking for specific answers about a system or for on-boarding new
developers in a community. At the same time, this information can also be leveraged by
researchers wanting to learn more about open source development and the nature of devel-
oper communications. Our goal is to enable such endeavors and we do so by introducing
the largest manually labeled and curated dataset of Gitter messages, called GitterCom. Git-
terCom contains a set of 10,000 messages collected from the Gitter channels of 10 open
source software projects and manually labeled based on their purpose, using the categories

1  https://gitter.im/
2  https://slack.com/
3  https://creativecommons.org/licenses/by-nc-sa/3.0/us/

Empirical Software Engineering (2022) 27: 4040 Page 2 of 33

1 3

identified in previous work by Lin et al. (2016) through surveys of developers. GitterCom
is currently the largest manually labeled dataset of developer instant messages, surpassing
the previous largest dataset of 500 manually labeled Slack messages (Stray et al. 2019) by
two orders of magnitude. We make the data and scripts we used to collect the data avail-
able in our replication package (Parra 2021).

This paper builds upon our previously published paper (Parra et al. 2020), which intro-
duced GitterCom for the first time and presented a study of the messages it contains with
the goal of observing how developers and other stakeholders communicate about software
using Gitter in the context of Gitter communities dedicated to the active development of
open source software systems on GitHub. In this paper, we further extend this work in a
two main ways:

i)	 We aim to understand whether the categories that Lin et al. (2016) found on Slack
through surveys are applicable for messaging data on Gitter, and if so, how prevalent
each category is in the two data sources. For this purpose, we compare and contrast the
self-reported usage of chat-based communication platforms by developers based on sur-
vey responses, as reported by Lin et al. (2016) with the actual usage of these platforms,
as revealed by analyzing the messages in GitterCom. This study sheds a light on the
similarities and differences between the developers’ perceived usage and their actual
usage of instant messaging platforms like Slack and Gitter. Moreover, we also provide
an analysis of message intents across different development communities in GitterCom.

ii)	 We evaluate the use of 9 traditional machine learning and deep learning algorithms
for the automatic classification of Gitter developer messages by their intent. Given the
continuously increasing amount of data being generated and the time-consuming nature
of manual labeling involved in creating this type of dataset, our goal is to facilitate future
data collection by automating the classification of messages. Our results show that Deci-
sion Trees and Random Forest perform the best, achieving an accuracy of 88%.

The rest of the paper is structured as follows. Section 2 introduces existing work on instant
messaging tools and other communication channels used by software development teams.
Section 3 outlines the data gathering and labeling procedures we followed for creating Git-
terCom. Section 4 presents a study on the purpose of developer instant messages in the
context of open source software development. The study first analyzes the purpose of mes-
sages in GitterCom, it then compares it to the self-reported usage of instant messaging
platforms by developers based on the survey responses reported by Lin et al. (2016), and
finally investigates whether traditional machine learning and deep learning algorithms can
be successfully used for the automatic classification of developer chat messages. Section 5
discusses potential research directions using GitterCom. We discuss threats to validity in
Section 6, and finally Section 7 concludes the paper and discusses future work.

2 � Related Work

Our work is closely related to the study of developer communications. We divide the
related work in two subsections. In the first one, we introduce work done on the analysis of
instant messaging communication tools such as Gitter and Slack in software engineering,
which is the closest work related to ours. Then, in the second subsection, we present an
overview of work related to other communication tools used by developers.

0Empirical Software Engineering (2022) 27: 40 Page 3 of 33 40

1 3

2.1 � Instant Messaging Communication Tools in Software Engineering

Earlier work related to our paper has explored the Internet Relay Chat (IRC), the pre-
cursor of developer chat communities (Shihab et al. 2009; Elsner and Charniak 2011;
Chowdhury and Hindle 2015). Shihab et al. (2009) analyzed the properties of meetings
taking place through IRC. In particular, their work looked at the topics, participant size,
contributions, and communication styles in these meetings. On the other hand, Chowd-
hury and Hindle (2015) used machine learning classifiers to extract off-topic discus-
sions, while Elsner and Charniak (2011) introduced a coherence model for separating
multiple conversations taking place in IRC channels.

With the rise of modern chat platforms such as Slack and Gitter, recent works have
focused on exploring the developer communities using these tools (Anders 2016; Mur-
gia et al. 2016; Storey and Zagalsky 2016; Alkadhi et al. 2017a, b; Lin et al. 2016; Pai-
kari et al. 2018; Käfer et al. 2018; Chatterjee et al. 2019, 2020; Ehsan et al. 2020; Sahar
et al. 2020).

Käfer et al. (2018) present the results of an empirical study on the communication
tools used in 400 open source software repositories in GitHub. Their results show that
mailing lists are being used less and less, with developers favoring modern enterprise
chat systems (i.e., Gitter and Slack). Moreover, GitHub Issues, personal e-mail, Gitter,
Twitter, and mailing lists were found to be the five most popular communication chan-
nels currently used in open source development. Slack was found to be eighth in terms
of popularity among all the communication means observed.

Lin et al. (2016) surveyed 53 software developers regarding their use of Slack.
They found that developers self-reported using Slack for multiple purposes (i.e., per-
sonal benefits, team-wide purposes, and community support), and to support various
activities. We make use of the classification of purpose types and their categories and
subcategories identified by Lin et al. (2016) in order to manually and then automati-
cally classify developer chat messages in Gitter. Our work differs from theirs in a few
ways. First, instead of surveying developers, we use the chat histories to extract and
classify actual developer messages. Therefore, while Lin et al. capture the self-reported
usage of instant messaging platforms by developers, we aim to analyze the actual usage
of these platforms by looking at messages directly. Using the same categories as Lin
et al. (2016) also allows us to compare and contrast our findings to theirs and observe
similarities and differences between self-reported and actual developer instant messag-
ing usage. In addition, we also aim to automatically classify the developer messages in
order to enable future automatic data collection.

Recent work by Stray et al. (2019) studied a group of 30 developers and their com-
munication through Slack channels at a large software development company. Their
analysis involved the open coding of 500 messages, identifying in a broad sense that
the messages were related to the following purposes: general information/coordina-
tion, general discussions, problem-focused communication, technical communication,
and socializing. Their results show that in this company, about half of the messages
are related to problem solving (i.e., questions and answers), with very little social talk
among the team members. Moreover, by interviewing the team members, the paper
shows that language, unbalanced activity, and the excessive use of private messages are
the main challenges experienced by the team when using instant messaging tools. While
we also perform coding on developer chat messages, our work differs from that of Stray
et al. (2019) in several ways. First, we perform a large-scale open coding of 10,000

Empirical Software Engineering (2022) 27: 4040 Page 4 of 33

1 3

messages, which is 20 times more than the amount of messages coded by Stray et al.
Second, we focus on 10 open source software communities instead of a single closed-
source software company. Third, we analyze Gitter instead of Slack. Fourth, our classifi-
cation is more fine-grained, using the categories identified by Lin et al. (2016).

Some of the recent works on analyzing developer communications in instant messaging
platforms have focused on the Q&A conversations taking place on these platforms. Some
recent work has also focused on analyzing Gitter communications (Ehsan et al. 2020; Sahar
et al. 2020; Shi et al. 2021). More specifically, the work by Ehsan et al. (2020) analyzed
384 Q&A threads in Gitter communities in order to develop a methodology for automati-
cally extracting threads from the chats. Moreover, by analyzing these threads, Ehsan et al.
(2020) identified that 80% of them involve users asking how-to questions. The authors then
present a set of guidelines that can help users write better questions in order to increase the
likelihood of obtaining a response. Work by Chatterjee et al. (2019, 2020) has focused on
disentangling and extracting the Q&A conversations within the chats. Their work leverages
a supervised model based on a set of features between pairs of chat messages that occur
within a window of time of each other. This method expands upon the work by Elsner
and Charniak (2011), who presented an initial approach for this problem, by adding addi-
tional features that are characteristic to instant messaging platforms (e.g., the use of URLs
and channel references). In a recent work, Shi et al. (2021) presents an empirical study on
the properties of dialogs/conversation on Gitter by categorizing 749 dialogs/conversations
from eight Gitter communities using a set of question categories derived from Stack Over-
flow by Beyer et al. (2018) and employed social network algorithms and metrics to assess
the structure and properties of conversations in chat communication platforms. The paper
found that developers tend to discuss topics that are domain-specific to the community. In
particular, they found that the discussions on these communities are oriented towards solv-
ing problems such as API usages and errors. Moreover, among the issues and errors dis-
cussed, developers discuss more ‘unwanted behavior’ and ‘do not work’ errors than issues
relating to reliability, performance, or test/build failures. The paper also found that the
social network of developers within the studied communities can be categorized into three
types of networks (polaris, constellation, and galaxy). Lastly, the paper identified six dialog
interaction patterns in the live chat communities. Work by Sahar et al. (2020) focused on
analyzing how developers discuss issue reports within Gitter communities devoted to open
source systems. Their work extracted and analyzed references to issue reports in the Gitter
channels of 24 active open source development systems. The empirical analysis of these
issue discussions shows that end users referenced the majority of the issue reports. Moreo-
ver, the two most common reasons these issues are brought up in Gitter are i) to reference
an issue than contains additional information on a problem or topic being discussed and ii)
to inform on the opening, closure, or comments to the issues themselves. Moreover, their
results indicate that Gitter might be used by developers and users to revive and facilitate
resolution of issues that have not been addressed in a long time in the project’s issue track-
ing system.

A closely related work to ours concerns the identification of rationale in development
chat messages (Alkadhi et al. 2017a, b). Rationale arguments are any messages by the
developers that contain information justifying the decisions made throughout the soft-
ware life cycle. The work by Alkadhi et al. (2017b) presents an exploratory study on the
presence of rationale in the chat development messages of three development teams made
up of students working on a multi-project capstone course. Their findings show the pres-
ence of rationale, as well as the usefulness of SVM and Naïve Bayes classifiers toward the
automatic identification and classification of messages containing rationale information.

Empirical Software Engineering (2022) 27: 40 Page 5 of 33 40

1 3

In subsequent work, Alkadhi et al. (2017a) introduce REACT, an approach for developers
to explicitly record the rationale in messages via manual annotation using either in-line
annotations or Slack reactions, capturing five rationale elements: issues, alternatives, pro-
arguments, con-arguments, and decisions. Our work is different from that by Alkadhi et al.
as we focus on the identification of the purpose of developer communication on the chat
platforms of active open source projects, rather than the identification of rationale in stu-
dent projects.

To the best of our knowledge, our work: i) presents the largest dataset of developer chat
messages annotated by their purpose, containing 10,000 manually labeled Gitter messages;
ii) is the first to compare the self-reported, general usage of instant messaging platforms to
the actual usage of these platforms by developers; iii) is the first to show the effectiveness
of multi-class machine learning classification towards the automatic identification of the
purpose of open source developer messages in modern chat platforms. The works by Ehsan
et al. (2020), Sahar et al. (2020), and Shi et al. (2021) also use Gitter as the target of their
research. However, Ehsan et al. (2020) focused on identifying and analyzing conversation
threads, while our work analyzes and automatically identifies the purpose of individual
messages, Sahar et al. (2020) analyzes a subset of Gitter messages that are encompassed
within the Dev-Ops and costumer support categories in our study, and Shi et al. (2021)
focus on analyzing the structure of the communities and the information at a conversation
level.

2.2 � Other Communication Tools in Software Engineering

One of the most studied avenues of developer communications are Q&A forums, such as
Stack Overflow. Stack Overflow allows developers from across the globe to communicate
with each other by posting question and answers to topics ranging across different pro-
gramming languages and software development topics (Allamanis et al. 2013; Linares-
Vasquez et al. 2013).

Stack Overflow has been used to support software developers by mining API descrip-
tions and examples (Keivanloo et al. 2014), generating source code comments (Vassallo
et al. 2014), extracting code snippets (Subramanian and Holmes 2013), helping with bug
triaging (Sajedi Badashian et al. 2016), summarizing answers to technical questions (Xu
et al. 2017), etc. The popularity and vast amounts of communications among developers in
Stack Overflow has also lead to research into using the information present in these forums
to build a software-specific word similarity database similar to WordNet (Tian et al. 2014).
Moreover, there has been research towards analyzing and improving the developer interac-
tions with Q&A forums by analyzing the characteristics of developers (Novielli et al. 2014,
2015), exploring the way developers write answers and questions (Treude et al. 2011;
Nasehi et al. 2012; Arora et al. 2015; Ponzanelli et al. 2014), tagging questions (Rekha
et al. 2014), and mentoring developers on how to best write questions in Q&A forums
(Ford et al. 2018).

Open source developers also use Twitter to communicate information related to the soft-
ware development. Work by Fang et al. (2020) analyzed Twitter messages by repository
owners and found that they do not engage in work discussion or answering others peo-
ple’s questions. Instead, they mostly use Twitter to share work-related information, devel-
opment updates, and advertise their own work. Guzman et al. (2017) presents ALERTme,
an approach to classify Twitter messages that may be relevant for developers. These tweets
can include: problem reports, improvement suggestions, or user needs.

Empirical Software Engineering (2022) 27: 4040 Page 6 of 33

1 3

3 � GitterCom

In this section we present GitterCom, a manually curated dataset containing 10,000 mes-
sages collected from 10 open source software development Gitter communities (1,000 mes-
sages per community). Each message in the dataset was manually labeled with information
about the purpose of the communication it expresses, based on the categories identified by
Lin et al. (2016). GitterCom is made available online in two formats: CSV and Microsoft
Excel Open XML Spreadsheet (XLSX) file formats4. In both formats, each line contains
the information for a single message and consists of seven information fields, separated by
comma and using quotes as the text delimiter in the CSV format. In particular, each line
contains: (i) the channel/system the message belongs to, (ii) a unique message ID, (iii)
the date and time at which the message was posted, (iv) the author of the message, (v) the
content of the message in plain text, (vi) the corresponding high-level purpose (manual
label), (vii) the purpose category (manual label), and (viii) the purpose subcategory (man-
ual label).

The following subsections describe the categories used to classify the developer mes-
sages and the procedure we followed to collect the data and obtain the final GitterCom
dataset.

3.1 � Message Categorization

Recent works on the use of instant-messaging tools have derived categorizations for mes-
sages exchanged by developers. First, after conducting a survey with software developers
who adopted Slack, Lin et al. (2016) identified that developers self-report using chat rooms
for three main purpose types (i.e., personal benefits, team-wide purposes, and community
support). Moreover, they found that within each purpose type, developers use instant mes-
saging communication tools to support different tasks and activities (which can be seen as
purpose categories and subcategories for these main types). Second, Stray et al. (2019) also
derived a set of categories for developer messages exchanged in Slack by analyzing 500
Slack messages in a large software development company.

We decided to use the purpose types, categories, and subcategories of messages iden-
tified by Lin et al. (2016) in our work for several reasons. First, there is evidence that
categories derived from one type of software developer communications are applicable
to describe the communications of developers in a different communication medium. In
the latest such example, Shi et al. (2021) used categories derived from StackOverflow
to classify conversations in Gitter. Since both Slack and Gitter are chat-based platforms
that allow developers to exchange messages in chat rooms, we believe the type of infor-
mation exchanged within these communities is likely to be even more similar, since the
purpose of the two platforms is the same. Slack and Gitter are fundamentally similar
tools serving the same goal and developers interact the same way in these platforms, by
posting and replying to instant messages. We believe the kind of information exchanged
within these communities by developers is not impacted by the specific tool they use
(e.g.,, just like developers use different bug tracking tools to serve the same purpose),
given that the nature of communicating itself is the same for both Slack and Gitter:
instant messages in community channels. Therefore, we considered the classification of

4  https://figshare.com/s/576d328da4a5b50ea155

00Empirical Software Engineering (2022) 27: 40 Page 7 of 33 40

1 3

Lin et al. (2016) to be a good starting point, while also keeping the door open to add-
ing new categories or redefining the categories altogether should we find it necessary
during our manual labeling. However, we found that the categorization provided by Lin
et al. (2016) was very comprehensive and accurately reflected the kind of information
we identified in messages during our labeling. Therefore, we found that no modifica-
tions or additions were needed to accurately reflect the developer communications in
GitterCom, which confirms the fact that the fundamental purposes of communication
between the two tools are very similar.

Second, we decided to use the categorization used by Lin et al. (2016) instead of that
provided by Stray et al. (2019) because the latter was based on messages from developers
working at a single software company and could, thus, be less generalizable to other soft-
ware companies or open source software systems, which are our main focus. In addition,
we performed a close inspection of the categories derived by Stray et al. (2019), and found
that they are a subset of the finer-grained categorization identified by Lin et al. (2016).

We additionally explored the use of Latent Dirichlet Allocation (LDA), a popular
automated topic modeling technique to derive topics that could be used to classify the
messages within GitterCom. However, we found the resulting topics to be inadequate
for describing the higher-level purpose of the messages and inferior to those already
proposed in previous work (Lin et al. 2016; Stray et al. 2019). The detailed results of the
LDA modeling can be found in our replication package.

For the rest of the paper, we use the purpose types, categories, and subcategories
identified by Lin et al. (2016) for classifying the messages in our dataset. We present the

Table 1   Hierarchy of purpose types, categories, and subcategories identified by Lin et al. (2016) and used
in our paper

Purpose Types Purpose Category Purpose Subcategories

Personal benefits Discovery and news aggregation Interesting/relevant blogs
Networking and social activities Similar interests

Similar jobs
Fun Gaming

Sharing gifs and memes
Team-wide purposes Communication Communication with teammates

Communication with stakeholders
Non-work topics

Team collaboration Team management
File and code sharing

Customer support Bugs
Troubleshooting
How-to

Dev-Ops Development operation notifications
Software deployments
Team Q&A

Community support Communities of practice Keep up with specific frameworks/communities
Bouncing ideas off of other people in the com-

munity
Learning about new tools and frameworks

Empirical Software Engineering (2022) 27: 4040 Page 8 of 33

1 3

hierarchy of these purpose types, categories, and subcategories of developer messages
in Table 1. A brief description of each is presented below, based on Lin et al. (2016):

–	 Personal benefits: Messages in which the developer’s main purpose is to fulfill per-
sonal needs. Messages within this purpose type can be further divided into three cat-
egories:

–	 Discovery and aggregation of news and information, where developers post reliable,
interesting, and relevant blogs or other sources of information.

–	 Messages supporting networking and social activities with other developers who
share similar interests or jobs.

–	 Fun messages sharing gifs and memes or for participating in gaming activities.

–	 Team-wide purposes: Messages aimed towards carrying out software development
activities related to the system being developed. Messages within this purpose type can
be further divided into four categories:

–	 Communication, representing messages in which developers engage in activities
such as communication with teammates (e.g., members of a distributed team) dur-
ing meetings and note taking, communication with other stakeholders, or discussing
non-work topics.

–	 Team collaboration through team management, file and code sharing.
–	 Dev-Ops, including messages that communicate updates regarding the status of the

system (e.g., development operation notifications about recent changes to the sys-
tem, commits, bug fixes, pushes to the repository, merges), software deployments,
and team Q&As.

–	 Customer support messages, which can incur when assisting new users of the sys-
tem on how to perform certain tasks, troubleshoot errors, identify bugs.

–	 Community support messages in which developers participate in communities of
practice or special interest groups, where they can keep up with specific frameworks/
communities, bounce ideas off of other people in the community, or learn about new
tools and frameworks for developing applications.

3.2 � Data Collection

In order to create GitterCom, we first looked at Gitter communities of active open source
software systems. A Gitter community can have multiple channels devoted to different con-
versation topics. These channels are chat rooms can be about anything and do not have to
map directly to something in GitHub. For instance, Gitter’s own community5 has one room
devoted to communication between developers and one room for customer support.

The communities in our dataset have between 1 and 89 channels, with a median of 2
channels per community. Similarly to Shi et al. (2021), after inspecting the channels within
the communities, we found that, at the time of data collection, the majority of the historical
message exchanges and user activity in Gitter communities of open source projects have
taken place within their main channel.

5  https://gitter.im/gitterHQ/home

00Empirical Software Engineering (2022) 27: 40 Page 9 of 33 40

1 3

Furthermore, we performed an analysis of the communities by gathering data about the
channel descriptions and the number of users within the channels in each community as of
July 2021. Table 2 presents details regarding the channels in the ImageJ community as a
representative example. As seen in Table 2, among the 10 channels in the ImageJ commu-
nity, the main channel (i.e., imagej/imagej) is the one with the most active members.

Each channel in Gitter can have an associated description provided by the administra-
tors of the channel. Some examples of descriptions are shown in Tables 2 and 3. After
obtaining the descriptions for the 653 channels associated with the 139 communities in our
raw data, we found that 218 of the channels do not have a description and 9 of the channels
have descriptions written in languages other than English. We excluded these 227 channels
from our analysis and performed an analysis of the descriptions of the remaining 426 chan-
nels. For this analysis, we inspected the descriptions and derive insights on the information
that they provide to developers looking to join or participate in the communities.

The descriptions of Gitter channels that were not left blank were observed to have
various lengths, starting at a single word or url, and going all the way up to 53 words
which provided a thorough outline of the community and what type of communication was
expected within the channel. We also found four instances of channel descriptions that do

Table 2   User count per room within the ImageJ Gitter community

Channel Users Description

imagej/imagej-omero 19 Server- and client-side communication between ImageJ and
OMERO

imagej/imagej 273 Open source scientific multidimensional image processing
imagej/imagej-ops 67 ImageJ Ops: “Write once, run anywhere” image processing
imagej/imagej-server 12
imagej/imagej-updater 14
imagej/hackathon-Ostrava-2019 29
imagej/openmpi-parallelization 3 Developing OpenMPI-aware plugins for Fiji
imagej/hackathon-dresden-2019 32
imagej/imagej.github.io 43 This is where we discuss the ImageJ wiki (https://imagej.net/)
imagej/pyimagej 15 Developer discussion for PyImageJ

Table 3   Some descriptions of the Gitter channels explored during the data collection

Channel Description

ceylon/dev Welcome to the developer’s discussion channel for the Ceylon
programming language. This is where we yell at each other when
things are broken again; while it’s a public channel, we consider
it more internal than ceylon/user, and won’t control our speech as
much here. Enter with caution :

alcatraz/Alcatraz Xcode package manager
airbnb/caravel DEPRECATED CHANNEL - GOTO https://gitter.im/airbnb/superset
dev-ua/clojure Do you<3 Clojure? Enjoys ClojureScript? Welcome to our com-

munity! FAQ: https://gist.github.com/listochkin/c81c198a2b-
7b044a0dc5

ethereum/light-client https://github.com/zsfelfoldi/go-ethereum/wiki/Geth-Light-Client

Empirical Software Engineering (2022) 27: 4040 Page 10 of 33

1 3

not provide any meaningful information regarding the community (e.g., “intentionally left
blank”, “this is the topic”). However, the vast majority of the channels’ descriptions pro-
vide at least a description of the system/programming language the channel is devoted to.
A large percentage of the channels opt for shorter descriptions, with 70.66% of them hav-
ing descriptions shorter than 10 words, while 22.30% of them have descriptions between
10 and 20 words, and only a 7.04% of the channels have longer descriptions of 20 words or
more.

During our analysis, we found a total of ten channels which indicate in their descrip-
tions that they are meant for internal communication (i.e., only for developers of the sys-
tem). We found that developers will include several key terms in the channel description
to indicate that a channel is intended for internal communication (e.g., “internal”, “for
committers”, “coordinate development”, and “contributors”). Moreover, we found 117 of
the descriptions contain urls. We inspected these urls and identified that they serve one of
three main purposes: providing a quick access to a frequently asked question (FAQ) page
regarding the channel{11}, directing the users to either the website, documentation, or the
GitHub repository of the system the channel is associated with{66}, or redirecting the user
to either an alternative channel or a different communication platform (e.g., Discord){42}.
Two of the descriptions contained urls to both the website and to an alternative communi-
cation channels/platforms.

Given the message and user distribution within rooms, when selecting messages for our
analysis, we focused on messages posted in the main rooms of Gitter communities. To col-
lect the data for the GitterCom dataset, we first gathered the list of all the Gitter com-
munities highlighted in Gitter’s Explore interface6 on April 1, 2019 (the day of our data
collection). For new users, such as the user we created when collecting our dataset, the
“Explore” page is populated by querying up to 50 rooms/communities per tag based on
a predetermined set of 25 tags (e.g., “Mobile”, “iOS”, etc.), which are hardcoded in the
source code of Gitter. Gitter’s “Explore” page lists the top rooms by number of users for
each tag, sorted in descending order and only lists rooms that contain at least one user.
Thus, our initial step on data collection resulted in a list of 139 Gitter communities. We
then used Gitter’s API7 via a custom python script to extract all of the messages in the
main rooms of these communities and their corresponding metadata, from their inception
until April 1, 2019. This resulted in a set of 2,939,335 messages across all 139 communi-
ties. Our data gathering procedure is similar to the one followed by Sahar et al. (2020). We
then excluded 3 communities in which the conversations were not in English. Afterwards,
to facilitate the labeling process, we ran a custom script in Java to convert the messages
from the JSON format provided by Gitter’s API to CSV format.

The data collection scripts, instructions on their usage, and statistics on message and
user distribution in the rooms and communities, are found in our replication package (Parra
2020).

After exploring the collected channels we noticed that the they vary in several ways:
(i) by membership - the channels contain between 101 and 17,000 members per chan-
nel, (ii) by level of activity, with the least active channel containing only 21 messages,
and the most active one containing over 423,000 messages since its inception, and (iii)
by type, as channels can be designated for the development of a particular software sys-
tem, where the developers communicate with each other and with the system’s users, or

6  https://gitter.im/explore
7  https://developer.gitter.im

00Empirical Software Engineering (2022) 27: 40 Page 11 of 33 40

1 3

made for building communities of practice in which the members’ discussion revolves
around particular topics, frameworks, or programming languages, but does not involve
discussion about the active development of a system.

Since our focus in this work is on developer communications related to the develop-
ment of open source software systems, we were interested in Gitter channels associated
with active open source systems. To determine this, we verified that the communities
are linked to a GitHub repository where commits have been made within the past year
and also made sure that the messages in the Gitter channel contained several conversa-
tions within the last month at the time of coding that were devoted to discussing the
development of the system. We considered only GitHub since at the time of data collec-
tion, Gitter channels only had the ability to directly link to GitHub repositories and not
to repositories hosted on different services such as GitLab.

After inspecting the 139 communities, we determined that the presence of at least
1,000 messages in the main channel in the past year is a good indicator of an active com-
munity, with users engaging in various conversations. Moreover, due to the expected
human effort required for labeling the data, we chose to focus on 10 communities as it
was an achievable goal.

We randomly selected channels out of the 139 we found until we had 10 that met
all of the following selection criteria: (i) they are linked to an active GitHub repository
where commits have been made within the past year, (ii) they are used as a communica-
tion tool for the active development of an open-source software system, (iii) users have
been active in the channel in the past year, (iv) they have at least 1,000 messages since
inception, and (v) they cover different application domains. Table 4 shows the details of
the selected systems/channels.

From each of the 10 channels, we then collected the 1,000 most recent consecutive
messages up to April 1, 2019, for a total of 10,000 messages across the 10 channels. We
choose to label consecutive messages rather than randomly selected messages to ensure
that the dataset accurately represents the conversations that developers engage in when
communicating using instant messaging platforms. Moreover, we used the most recent
messages as they would best represent recent communication and usage of the platform.

Two of the authors then carried out a coding procedure to label these messages,
using the purpose types, categories, and subcategories identified by Lin et al. (2016)
(see Table 1) as labels. More specifically, each message was assigned a purpose type, a

Table 4   Gitter communities
included in GitterCom

Community Users Messages Application domain

Marionette (mar 2020) 3014 181108 Javascript framework
jspm (jsp 2020) 1103 27245 Package manager
scikit-learn (sci 2020) 3188 9844 Machine Learning
Xenko3d (xen 2020) 103 2890 Game engine
FreezingMoon (fre 2020) 109 207925 Video game
UIkit (uik 2020) 2155 41265 Front-end framework
jHipster (jhi 2020) 2575 39418 Application generator
Cucumber (cuc 2020) 337 2030 Testing framework
Imagej (ima 2020) 209 8149 Image processing
TheHolyWaffle (thw 2020) 196 15046 VoIP communication

Empirical Software Engineering (2022) 27: 4040 Page 12 of 33

1 3

category describing the main purpose of the message, and a subcategory describing the
specific activity the message relates to.

The procedure employed when labeling the messages was as follows (See Fig. 1).
For each of the 10 channels, the 1,000 most recent consecutive messages were indepen-
dently classified by two of the authors into the purpose types, categories, and subcat-
egories outlined in Table 1. Messages within the “communication” category are those
in which the developers communicate among themselves or with other stakeholders, but
the messages are not directly associated with a particular software/system. For exam-
ple, messages among developers regarding making Scala objects more like Java objects
using lambdas would be classified as “communication” as they involve communication
with teammates but they are not related to a particular system. Other examples of mes-
sages that are classified as “communication” include messages discussing personal pro-
jects not related to the system being developed, or discussions about updating the user
profile picture on Gitter (classified as “non-work”).

Lastly, if a message did not provide any meaningful information by itself (e.g., a
single emoji, “k”, “cool”, empty messages), it was classified as “Uninformative”. After
the individual coding, the two authors got together, discussed and resolved any coding
conflicts. Then, the messages for which a classification of “Uninformative” was agreed
upon were discarded and replaced by an equal number of messages from the same chan-
nel. Then, the coding process was applied on these new messages. This procedure was
repeated until 1,000 messages were obtained for each channel, all having a label other
than “Uninformative”. In total, 1,072 messages across all 10 channels were labeled as
“Uninformative” during this process.

In addition to the content of the messages, we used the list of contributors to the
system’s repository to better classify the messages in cases where the content of the
message might be insufficient to determine a category. One example were questions
which could be interpreted as either a customer asking about the system (Customer Sup-
port) or a developer of the system asking about a part of the system they are unfamiliar
with (Team Q&A). In this particular case, if a question was made by a contributor to
the system it was classified as Team Q&A, and Customer Support otherwise. It is also

Fig. 1   Manual annotation procedure

00Empirical Software Engineering (2022) 27: 40 Page 13 of 33 40

1 3

important to note that for these two categories, the question, answer(s), and any conse-
quent clarification are assigned the same category.

The manual coding procedure took the two authors about 100 hours per person to com-
plete (200 hours total) and spread across three weeks with a Cohen-kappa agreement of
0.89. The annotators resolved a total of 835 conflicts when labeling the messages. During
the discussion, the majority of conflicts were messages classified as “customer support” but
were in fact instances of the “Dev-Ops” category, due to the user asking the question being
a developer rather than a user of the system. Other instances of disagreement included
messages labeled as “communication” when they were a better fit for other categories (e.g.,
fun, team management, team Q&A). Although we were open to creating new categories
during the labeling process, we found the categories by Lin et al. (2016) to be appropriate
to describe the purpose of all the messages encountered during labeling.

After completing the manual labeling, we obtained GitterCom, a dataset comprised of
10,000 Gitter messages, 1,000 per Gitter channel, classified according to their purpose.
The dataset can be found in our replication package (Parra 2021). Some samples of mes-
sages and their categories are presented in Table 5.

4 � Study on the Purpose of Developer Instant Messages in Open Source
Software Development

Based on the GitterCom dataset we collected, we perform an empirical study aimed at
gaining insights into how developers use instant messaging communication tools in the
context of open source software development by analyzing the purpose of the messages
they exchange. In addition, we are also interested in comparing the actual developer usage
of instant messaging platforms derived from these messages to the self-perceived usage
that developers report. In other words, we want to compare what developers believe they
are using instant messaging platforms for versus what they are actually using them for.

Since one of our goals in creating GitterCom was to enable other researchers to perform
analyzes and obtain insights into developer communications using instant messaging plat-
forms, we also wanted to see if we could further enable researchers to scale up this kind of
analysis. While building GitterCom, we experienced first-hand the immense manual effort
involved in labeling historical chat data. In order to reduce this manual effort for potential
future studies of developer communications by other researchers, we investigate the use of
machine learning algorithms to automatically classify developer messages. Moreover, we
believe this kind of automatic techniques could potentially help also the developer com-
munities, as developers may benefit from being presented with the messages that corre-
spond to a particular purpose and category based on their current information needs, so
they spend less time going through potentially irrelevant information.

With all this in mind, we formulated the following research questions that we aim to
address in this study:

	RQ1.	What is the purpose of the instant messages written by developers when using
chat platforms in the context of open source software development?

	RQ2.	How does the self-perceived usage of instant messaging platforms reported by
developers compare to their actual usage of these platforms?

	RQ3.	Can machine learning classifiers be used to automatically identify the purpose of
messages exchanged in developers’ instant messaging communications?

Empirical Software Engineering (2022) 27: 4040 Page 14 of 33

1 3

Ta
bl

e 
5  

R
ep

re
se

nt
at

iv
e

ex
am

pl
es

 o
f m

es
sa

ge
s i

n
ou

r d
at

as
et

C
ha

nn
el

M
es

sa
ge

C
at

eg
or

y
Su

bc
at

eg
or

y

C
uc

um
be

r
@

as
la

kh
el

le
so

y
I t

hi
nk

 I’
m

 m
ak

in
g

so
m

e
go

od
 h

ea
dw

ay
. I

 a
ls

o
no

tic
ed

 th
er

e’
s a

 p
os

si
bi

l-
ity

 fo
r d

up
lic

at
e

fe
at

ur
e

pa
th

s,
I’

m
 a

dd
in

g
a

un
it

te
st

fo
r t

ha
t a

nd
 a

 fi
x.

 I’
m

 p
la

nn
in

g
on

re

m
ov

in
g

th
e

C
uc

um
be

rF
ea

tu
re

 st
uff

 a
nd

 ju
st

cr
ea

te
 a

 T
re

eM
ap

 w
ith

 k
ey

(fe
at

ur
ep

at
h)

 a
nd

va

lu
e(

fe
at

ur
e)

.

D
ev

-O
ps

D
ev

el
op

m
en

t o
pe

ra
tio

n
no

tifi
ca

tio
ns

Im
ag

eJ
(S

ee
 [t

hi
s b

lo
g

po
st]

(h
ttp

://
bl

og
.c

hr
om

iu
m

.o
rg

/2
01

4/
11

/th
e-

fin
al

-c
ou

nt
do

w
n-

fo
r-n

pa
pi

.
ht

m
l)

fo
r d

et
ai

ls
.)

D
is

co
ve

ry
 a

nd

ag
gr

eg
at

e
ne

w
s a

nd

in
fo

rm
at

io
n

In
te

re
sti

ng
 a

nd
 re

le
va

nt
 b

lo
gs

M
ar

io
ne

tte
 JS

go
in

g
to

 d
o

a
re

le
as

e
in

 li
ke

 5
 m

in
D

ev
-O

ps
So

ftw
ar

e
de

pl
oy

m
en

ts
Sc

ik
it-

le
ar

n
to

ok
 m

e
on

ly
 3

 d
ay

s t
o

ca
tc

h
up

 w
ith

 7
 d

ay
s o

f s
kl

ea
rn

 n
ot

ifi
ca

tio
ns

...
.

C
om

m
un

ic
at

io
n

C
om

m
un

ic
at

io
n

w
ith

 te
am

m
at

es
JS

PM
Pe

rs
on

al
ly

 I
th

in
k

au
th

or
s s

ho
ul

d
no

t c
ar

e
ab

ou
t 1

00
0

w
ay

s t
o

pa
ck

ag
e

th
ei

r p
ro

je
ct

. T
he

y
ju

st
ne

ed
 to

 d
ec

la
re

 w
ha

t m
od

ul
e

sy
ste

m
 th

ey
 u

se
 (a

t t
he

 sa
m

e
tim

e
de

cl
ar

in
g

m
od

ul
e

sy
ste

m
 th

ey
 e

xp
ec

t o
f d

ep
en

de
nc

ie
s)

 a
nd

 p
ub

lis
h

on
ly

 in
 th

at
 m

od
ul

e
sy

ste
m

.

Pa
rti

ci
pa

tio
n

in

co
m

m
un

iti
es

of

 p
ra

ct
ic

e

B
ou

nc
in

g
Id

ea
s o

ff
of

 o
th

er
s i

n
th

e
co

m
m

un
ity

00Empirical Software Engineering (2022) 27: 40 Page 15 of 33 40

1 3

4.1 � Methodology

To answer RQ1, we performed a descriptive statistics analysis on the purpose categories of
the developer messages in GitterCom. In particular, we investigated the percentage of mes-
sages in each purpose category across the entire dataset, as well as the number of messages
in each category, in each of the systems in GitterCom.

To answer RQ2, we compare the results obtained in RQ1, which reflect the actual pur-
poses that developers use instant messaging platforms for, with the self-perceived usage
of these platforms reported by developers in the survey responses collected by Lin et al.
(2016). This allows us to understand whether the categories of Lin et al. (2016) found on
Slack through surveys are applicable to messaging data on Gitter, and if so, how preva-
lent each category is in the two data sources. Since we used the same categories as Lin
et al. (2016), we can directly compare and contrast what developers believe they use instant
messaging for with what they actually use these tools for. Although we contrast results
derived from two different chat-based instant messaging platforms, namely, Slack, used by
Lin et al. (2016) and Gitter, used to collect GitterCom, the two tools offer extremely similar
functionality and have the same goal, and the instant messages collected, as well as the
survey-based opinions do not depend on any specific features of the two platforms.

To answer RQ3, we explore the use of several supervised machine learning algorithms,
both traditional and deep learning-based, to automatically determine the categories of mes-
sages exchanged by developers. We first describe the methodology we used to train these
algorithms, followed by a description of the algorithms themselves. We also release the
complete scripts containing the implementation we used for these algorithms in our repli-
cation package (Parra 2021).

As later described in the results of RQ1, we noticed that messages in GitterCom have
mostly “team-wide” purposes. Due to the low frequency of messages for “personal ben-
efit” and “community support” purposes, it is unfeasible for machine learning classifiers
to learn meaningful boundaries for each of these categories. Therefore, we aggregated
these messages into a single category called “Other purposes” for the scope of this research
question. Therefore, the classes considered for this research question are the four categories
under the “team-wide” purpose type in Table 1 and the fifth category, “Other purposes”.

We train and evaluate the performance of the various multi-class machine learning clas-
sifiers on predicting the category of each message among the five possible ones using the
ground truth in GitterCom. We also compare the machine learning algorithms against a
baseline represented by a random classifier. For the random baseline classifier, we used
Python’s stratified DummyClassifier. The baseline classifier predicts classes for the sam-
ples randomly while respecting the training set’s class distribution.

For our analysis, we first removed punctuation, numbers, special characters and com-
mon English stopwords from the data, afterwards, we performed 10-fold cross-validation
using the standard implementation of each algorithm in the scikit-learn machine learning
library for Python. For the LSTM and CNN algorithms we use the Keras8 framework. We
first executed the classifiers without any special parameter tuning. This allowed us to first
compare the classification algorithms in their default state. Since additional tuning can fur-
ther improve performance, we then selected the top two classifiers in terms of accuracy and

8  http://keras.io/

Empirical Software Engineering (2022) 27: 4040 Page 16 of 33

1 3

performed hyper-parameter tuning using 10-fold cross-validation to find the best param-
eters for each model.

To evaluate the classifiers, we use standard evaluation metrics which have been previ-
ously used in machine learning applications on software engineering problems (Seiffert
et al. 2014; Panichella et al. 2015). Since we are interested in the overall performance of
the classifiers, we use accuracy as our goal metric. However, we also report precision and
recall for completeness. The definitions of these metrics are provided below.

Accuracy is the ratio of properly classified samples out of the total number of samples in
the dataset and its formula is: Accuracy = tp+tn

total−number−of−samples
 , where tp is the number of

true positives and tn is the number of true negatives.
Recall is the computed as the number of true positives over the number of true positives

plus the number of false negatives. It measures the ability of the classifier to identify the
positive samples. Its formula is: Recall = tp

tp+fn

Precision is the ratio of true positives over the number of true positives plus the number
of false positives. It measures the ability of the classifier not to label as positive a sample
that is negative. Its formula is: Precision =

tp

tp+fp

We performed hyperparameter tuning for each of these classifiers based on accuracy.
During the hyperparameter tuning each classifier is trained and evaluated via 10-fold cross
validation with various hyperparameter configurations using Python’s grid search9. For
LSTM and CNN, however, we performed random search, as it has been shown to be more
efficient than grid search for hyperparameter optimization in neural networks (Bergstra and
Bengio 2012). The scripts used for hyperparameter tuning can be found in our replication
package (Parra 2021).

In our evaluation of the machine learning algorithms we used the best performing con-
figurations for each classifier resulting from the hyperparameter tuning.

In the following subsections we now describe the supervised machine learning classifi-
cation algorithms we used in our study. Supervised classification algorithms aim at produc-
ing a learning model from a labeled training set. In our case, we have a multi-class classifi-
cation problem in which each message can be classified using one of 5 purpose categories.
Several algorithms have been proposed to solve this type of problem (Aly 2005). In gen-
eral, machine learning algorithms address the multi-class classification problem either by a
natural extension of the algorithms designed for binary classification or by converting the
multi-class classification problem into a set of binary classification problems that are effi-
ciently solved using binary classifiers.

In our work, we explore the following 9 multi-class classifiers, using the standard term
frequency-inverse document frequency (TF-IDF) word vectors as features, as done in pre-
vious software engineering research (Poché 2017): Stochastic Gradient Descent (SGD)
(Bottou 2010), Decision Trees (DT) (Safavian and Landgrebe 1991), Random Forest (RF)
(Breiman 2001), k-Nearest Neighbor (kNN) (Khan et al. 2010), AdaBoost (Hastie et al.
2009), Naive Bayes (NB) (McCallum and Nigam 1998), Support Vector Machines (SVM)
(Cortes and Vapnik 1995), and two neural network architectures: a Recurrent Neural Net-
work composed of Long Short-term Memory units (LSTM) (Gers et al. 2002), and a Con-
volutional Neural Network (CNN) (Kim 2014). We present a brief description of each clas-
sification algorithm below. For a more in-depth discussion of each algorithm, we direct
the interested reader to the papers that initially introduced them and for a side-by-side

9  https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html

00Empirical Software Engineering (2022) 27: 40 Page 17 of 33 40

1 3

comparison, we recommend the reviews of these algorithms (Singh et al. 2016; Khan et al.
2010).

4.1.1 � Stochastic Gradient Descent (SGD)

Stochastic Gradient Descent (SGD) is a simple, yet very efficient approach to discrimina-
tive learning of linear classifiers under convex loss functions such as (linear) Support Vec-
tor Machines and Logistic Regression. Even though SGD has been around in the machine
learning community for a long time, it has more recently received a considerable amount
of attention in the context of large-scale learning as it has been shown to have high perfor-
mance for large-scale problems (Bottou 2010).

4.1.2 � Decision Trees (DT)

A Decision Tree is a classification algorithm that learns simple decision rules inferred from
the data features. The DT rebuilds the manual categorization of data by constructing well-
defined true/false-queries in the form of a tree structure, hence the name. In a DT structure,
leaves represent the corresponding category of documents and branches represent conjunc-
tions of features that lead to those categories (Safavian and Landgrebe 1991).

4.1.3 � Random Forest (RF)

Random Forest is part of a set of machine learning classifiers known as ensemble clas-
sifiers. Ensemble classifiers combine the predictions of several base classifiers built with
a given learning algorithm in order to improve the generalizability and robustness over a
single classifier (Breiman 2001).

An RF is a combination of multiple independent decision trees, where each tree is built
from a sample drawn with replacement from the training set. When splitting a node dur-
ing the construction of the tree, the split that is chosen is no longer the best split among all
features. Instead, the split that is picked is the best split among a random subset of the fea-
tures. As a result of this randomness, the bias of the forest usually slightly increases (with
respect to the bias of a single non-random tree). However, due to averaging, its variance
also decreases. The amount decreased is usually more than enough to compensate for the
increase in bias, hence yielding an overall better model (Breiman 2001).

4.1.4 � AdaBoost

Like RF, AdaBoost is an ensemble classifier. AdaBoost is an iterative procedure that com-
bines many weak classifiers. Starting with an unweighted training set, AdaBoost builds
an initial classifier to produce a classification. If a training data point is misclassified, the
weight of that training data point is increased (boosted). Then, a new classifier is built
using the new weights. The classification and boosting procedure is repeated to produce
multiple classifiers. Lastly, the final classifier is defined as the linear combination of the
classifiers from each stage. AdaBoost has been shown to minimize the exponential loss,
making it highly competitive in terms of misclassification error rate (Hastie et al. 2009).

Empirical Software Engineering (2022) 27: 4040 Page 18 of 33

1 3

4.1.5 � k‑Nearest Neighbor (kNN)

K-Nearest Neighbor aims to find the k training samples closest in distance to a new ele-
ment and then predicts the label of this new element from its k-nearest points. The dis-
tance can generally be any similarity function. Despite its simplicity, kNN is often suc-
cessful in classification situations where the decision boundary is very irregular (Khan
et al. 2010).

4.1.6 � Naïve Bayes (NB)

Naïve Bayes is an efficient linear probabilistic classifier that uses Bayes’ theorem to iden-
tify strong (naive) assumptions between features. NB assumes that all of the features in a
given class are conditionally independent of each other Russell and Norvig (1995).

In the context of text classification, the multinomial NB model captures word frequency
information in the documents using a unigram language model with integer word counts.
Each document is then typically represented as a vector of integer or real number attributes,
which indicate the importance of words in the document (McCallum and Nigam 1998).

4.1.7 � Support Vector Machine (SVM)

Support Vector Machine is a supervised machine learning algorithm used for binary classi-
fication, regression analysis, and other tasks, like outlier detection in multidimensional data
spaces. An SVM seeks to find a hyperplane, which separates two classes of samples by
the maximal margin, in a high dimensional feature space. It can be mathematically proven
that the hyperplane parameters depend only on a subset of the training samples, which are
called support vectors. To classify a test sample, it is first projected to the feature space and
then assigned a class based on which side of the hyperplane it lies on Cortes and Vapnik
(1995).

4.1.8 � Long Short‑Term Memory (LSTM)

Deep learning classification algorithms that automatically learn compositional represen-
tations of documents have been successfully applied in the fields of speech recognition,
machine translation, text information retrieval, and natural language processing (Mikolov
et al. 2011; Deng 2014; West 2000). The success of deep learning in the NLP field and
other software engineering tasks encouraged us to apply this type of approach for clas-
sifying messages in software development chat communications. We used the pre-trained
Glove word embeddings (Pennington et al. 2014). We also evaluated the neural networks
using the software engineering word embeddings, in the word embedding layer (Efstathiou
et al. 2018).

An LSTM is a type of neural network that uses enriched gating units to avoid the scal-
ing effect, by ensuring that the scaling factor is fixed to one. In an LSTM unit, the memory
block contains one or more memory cells and three adaptive, multiplicative gating units
shared by all cells in the block. Each memory cell has, at its core, a recurrently self-con-
nected linear unit called the Constant Error Carousel (CEC). The CEC provides short-term

00Empirical Software Engineering (2022) 27: 40 Page 19 of 33 40

1 3

memory storage for extended periods by recirculating activation and error signals indefi-
nitely (Gers et al. 2002).

In this paper, we use an LSTM architecture composed of five layers. The first layer is a
trainable embedding layer that maps the input text into low-dimensional word vectors, with
two LSTM layers, followed by two fully connected layers with dropout in between.

4.1.9 � Convolutional Neural Network (CNN)

A Convolutional Neural Network is a type of neural network that uses a combination of
layers that apply a convolution operation to local features to extract those that encode
semantic features of words in their dimensions (Kim 2014).

In this paper, we use a CNN architecture composed of four layers. The first layer is a
trainable embedding layer that maps the input text into low-dimensional word vectors, with
two convolutional layers with dropout, followed by one fully connected layer.

4.1.10 � Over‑/Under‑sampling

In addition to the machine learning algorithms, we explore the use of under-sampling and
over-sampling algorithms to mitigate the effect of data imbalances and non-linear separa-
bility in our dataset. More specifically, we use SMOTE, Tomek links, and the Neighbor-
hood Cleaning Rule. We use the Python implementation of these algorithms in the imbal-
anced-learn library10.

Fig. 2   Distribution of messages by category

10  https://imbalanced-learn.readthedocs.io/en/stable/api.html

Empirical Software Engineering (2022) 27: 4040 Page 20 of 33

1 3

SMOTE is an over-sampling approach in which “synthetic” examples of the minority
classes are created by interpolating existing minority samples rather than by over-sampling
with replacement. SMOTE focuses on generating new minority class instances near bor-
derlines with SVM to help establish a boundary between classes (Chawla et al. 2002).

Tomek Links is an under-sampling approach to remove the majority samples involved in
a Tomek link and increases the linear separability of the classes since the retained bound-
ary samples are better chosen (i.e., close to the decision boundary). A Tomek link exists
when two samples from distinct classes are the nearest neighbors of each other. Samples
that create a Tomek link have been shown to be either borderline or noisy (Tomek 1976).

The Neighborhood Cleaning Rule (NCL) is an under-sampling approach that aims to
identify noisy and redundant data points to be removed using the edited nearest neighbor
rule. In particular, NCL removes points that are misclassified by their 3-nearest neighbor.
Secondly, the neighbors of each positive sample are found and the ones belonging to the
majority class are removed. The NCL aims to improve the classification of underrepre-
sented classes while retaining the ability to classify the other classes with an acceptable
accuracy (Laurikkala 2001).

4.2 � Results

4.2.1 � RQ1 ‑ Purpose of Developer Instant Messages in GitterCom

Table 6 shows the number of messages per category across the 10 systems in our dataset
and Fig. 2 shows the overall percentage distribution across categories for the entire Git-
terCom dataset. Our results show the purpose of messages based on the purpose categories
defined by Lin et al. (2016) as we did not encounter any messages that required the crea-
tion of new categories to describe their purpose. However, a larger dataset which samples
different communities and users may lead to different results and messages that require the
creation of additional categories needed to describe their purpose.

As seen in Fig. 2, the percentages by category vary greatly. Overall, 83% of the mes-
sages are meant to support activities directly associated with the development of the
system(i.e., communication, Dev-Ops, team collaboration, and customer support), 14.31%
of the messages are related to engagement with communities of practice, and only 2.69%
of the messages are linked to personal benefits (i.e., discovery and news, fun, and network-
ing and social activities). Moreover, about 52.75% of the messages involve communication
between the developers and stakeholders, 27.75% of the messages communicate updates

Table 6   Distribution of messages per purpose category

Category cuc fre ima jhi jsp mar sci thw uik xen Overall

Communication 325 794 490 446 635 695 506 583 321 480 5275
Customer support 442 0 150 239 0 0 4 145 451 0 1431
Dev-Ops 198 183 308 269 305 235 464 240 190 383 2775
Discovery and news 13 1 10 9 7 2 3 15 5 32 97
Fun 0 2 0 0 0 39 0 0 1 0 42
Networking and social activities 0 0 1 3 0 3 0 0 0 32 39
Participation in communities of practice 4 2 9 15 21 13 13 10 12 54 153
Team collaboration 18 18 32 19 32 13 10 7 20 19 188

00Empirical Software Engineering (2022) 27: 40 Page 21 of 33 40

1 3

regarding the status of the system, and 1.53% of the messages involve customer support.
Based on the hierarchy presented in Table 1, we notice that developers’ use of Gitter instant
messages in practice focuses mostly on team-wide purposes (83% of all messages).

We found that in the communication category, 74.2% of the messages involve communi-
cation between team members and 25.8% of the messages discuss non-work related topics.
We did not find any messages related to communication with other stakeholders other than
developers and customers.

Another interesting finding is that although the channels in our dataset are dedicated to
the active development of a particular system, we can see some instances of messages by
developers or customers of the system inquiring about particular technologies and frame-
works or to bounce ideas on how to implement something using either the system in ques-
tion or a related technology.

The high presence of messages that communicate updates regarding the status of the
system (i.e., Dev-Ops) show that developers still need to communicate some of the updates
such as bug fixes despite the presence of integrations with GitHub and JIRA within Git-
ter. This finding could indicate that in their current state, these issue tracking tools or their
integrations may not be displaying all the relevant information. However, further research
is needed to assess whether this is the case and to determine the information required to
provide meaningful project status update notifications to other developers.

Moreover, the low percentage of messages associated with customer support shows that
despite the Gitter channels being open for users of the system to obtain support, Gitter is
not a widely adopted medium for the users of these communities to directly contact the
developers for this purpose. We can further find evidence of this phenomenon in Table 6,
where we see that some of the channels did not have any messages related to customer
support. In some communities such as cucumber, the lack of this type of messages in our
dataset can be explained by our data collection focusing on the main channel and the pres-
ence of a channel dedicated to people asking questions. However, other communities such
as ImageJ, Hibernate and FreezingMoon do not have a dedicated channel for customer
support.

Additionally, as seen in Table 6, the majority of the systems have the largest category
of messages dedicated to communication between developers, which is also reflected in
the overall trend shown in Fig. 2. However, by focusing on individual channels, we can
observe that half of the channels also have a large amount of messages dedicated to cus-
tomer support (i.e., Cucumber, ImageJ, JHipster, TheHolyWaffle, and UIKIT). These
observations indicate that further work is needed in the analysis of these communications
to determine potential barriers or facilitators for customers when using these platforms to
obtain support.

We believe the reason for the low presence of messages related to personal benefits and
community support purposes in our dataset is due, in part, to the nature of the channels
themselves. In particular, we observed that channels for active open source systems follow
certain informal rules to keep the use of these particular channels focused on team-wide
purposes. For instance, the scikit-learn Gitter channel description reads, “...Please feel free
to ask specific questions about scikit-learn. Please try to keep the discussion focused on
scikit-learn usage and immediately related open source projects from the Python ecosys-
tem.” Moreover, in some cases, some of the developers act as content moderators by asking
people to keep the content of the channel relevant, “please let’s keep this chat uikit related,
thanks :-)” or, “I’d like to keep stuff in this channel in English so everyone present under-
stands what’s being talked about.” These informal rules and moderation limit the use of
these channels for other purposes.

Empirical Software Engineering (2022) 27: 4040 Page 22 of 33

1 3

Our analysis indicates that the use of instant-messaging tools by software developers
will vary depending on the system and type of channel they interact with. In particular,
based on the content of the messages, we see that the purpose of messages posted within
the channels dedicated to the development of open-source software systems is mostly
focused on the development of the system itself (i.e., team-wide purposes). We believe that
other purposes are likely to be more prevalent in separate, dedicated channels (e.g., chan-
nels that focus on communities of practice such as the ones explored by Chatterjee et al.
(2019, 2020)).

4.2.2 � RQ2 ‑ Comparison Between Developer Self‑Reported Usage and Actual Usage
of Instant Messages

Figure 3 shows the contrast between the percentage of developers that self-reported using
Slack for a particular purpose in Lin et al. (2016) and the percentage of users that actually
used instant messages in GitterCom for the same purpose. A user is considered to use the
messaging platform for a particular purpose if they authored at least one message catego-
rized with that purpose in GitterCom. Note that the percentages across purposes can add to
more than 100% as each user can use these instant-messaging communication systems for
more than one purpose.

As seen in Fig. 3, the percentages of self-reported usage and actual-usage by purpose
vary in some categories but are similar in others. In particular, we see that the distribution
of usage for networking and social, discovery and news, team collaboration, and communi-
ties of practice are rather similar, whereas the distribution of usage for fun, customer sup-
port, communication, and Dev-Ops are different. More specifically, there is a considerably
higher usage for purposes like Dev-Ops and customer support in GitterCom compared to
the self-reported usage, which is to be expected in communities that actively support a

Fig. 3   Self-reported usage and actual usage per purpose

Fig. 4   Usage per purpose for each system in GitterCom 

00Empirical Software Engineering (2022) 27: 40 Page 23 of 33 40

1 3

software system such as the ones in GitterCom. Conversely, we see a considerably lower
percentage of developers in GitterCom using the platform for fun and general communica-
tion, specifically for communication associated with non-work topics. These differences
are somewhat to be expected due to the rules and moderation generally present in the chan-
nels in GitterCom that aim to keep the content of the channels relevant to the system being
developed, thus reducing the number of messages related to fun and communication about
non-work topics.

The similar distribution of self-reported and actual usage for networking and social, dis-
covery and news, team collaboration, and communities of practice purposes suggests that
GitterCom is representative of developer communications via instant messaging platforms
that align with these purposes and that they are likely to be present to a similar degree
whenever chat-based instant messaging is used by developers.

GitterCom was derived from labeling data from actual communities rather than derived
from interviewing developers. Therefore, we are able to take a closer look at the usage in
GitterCom to provide an initial insight on how developers use chat-based communication
platforms, by looking at the usage per category at a system level. For this purpose, we
performed the same analysis of developers’ actual usage across GitterCom, but aggregat-
ing usage per system. Is it to note that this represents the usage by users in our dataset and
not all the users in the corresponding channels. In particular, it represents the usage by 111
users in Cucumber, 8 users of Freezing Moon - Ancient Beast, 25 users in ImageJ, 13 users
in JSPM, 50 users in Jhipster, 6 users in MarionetteJS, 8 users in SciKit-Learn, 15 users
in TheHolyWaffle, 43 users in UIKit, and 33 users in Xenko. Figure 4 shows the contrast
between the percentage of developers that used Gitter for each purpose in each system in
GitterCom. Although GitterCom is the largest dataset of its kind, it is still limited in size
and the results from this analysis can only provide an initial insight into developers’ instant
messaging actual usage in different communities, which can be used as a starting point for
further research into chat-based communications and communities.

Fig. 5   Distribution of the ground truth messages into the five categories used for automatic classification

Empirical Software Engineering (2022) 27: 4040 Page 24 of 33

1 3

Upon inspecting the usage distribution per system we can see that the majority of the
systems in GitterCom follow a similar distribution to the one seen in Fig. 4. In particu-
lar, Communication, Dev-Ops, and Team Collaboration are the categories with the highest
usage, whereas developers rarely use these communication channels for Fun, Discovery of
news, and Networking purposes. Nonetheless, there are communities that do not follow the
general distribution. For example, the UIKIT community shows a higher participation in
customer support than Dev-Ops.

Overall, our results show that there are differences in how developers perceive and self-
report using instant messaging platforms (based on the study by Lin et al. (2016)) and how
they actually use them in GitterCom. The results show that across different communi-
ties, the most frequent usages of chat-based platforms are general purpose communica-
tion and updates regarding the software system (i.e., Dev-Ops). This phenomenon can be
a bi-product of the more focused goal and nature of the OSS development communities in
GitterCom.

4.2.3 � RQ3 ‑ Automatic Classification of Developer Instant Messages

The distribution of the ground truth data in the 5 categories used in the automatic classifi-
cation process is shown in Fig. 5.

Columns 2-4 of Table 7 show the results of the classification algorithms in terms of
accuracy, precision, and recall. We can see that all the classifiers outperform the random
classifier used as the baseline. In particular, the random classifier achieves an accuracy of
0.37, whereas, all the other classifiers achieve accuracies ranging between 0.43 and 0.58.
The top classifiers are LSTM, with an accuracy of 0.58, followed by Stochastic Gradient
Descent which achieved an accuracy of 0.54. However, despite outperforming the random
baseline, the overall performance of the classifiers is still low which would limit the appli-
cability of the automatic classification on Gitter channels.

Table 7   Performance of the machine learning classifiers on GitterCom. LSTM* = LSTM with SE word
embeddings; CNN* = CNN with SE word embeddings

Bolded entries indicate the highest accuracy given each sampling strategy

Sampling strategy None SMOTE Tomek Links NCL

Classifier Acc Pre Rec Acc Pre Rec Acc Pre Rec Acc Pre Rec

Random 0.37 0.24 0.24 0.24 0.25 0.22 0.37 0.24 0.24 0.73 0.25 0.25
SGD 0.54 0.33 0.26 0.38 0.28 0.24 0.53 0.42 0.28 0.87 0.69 0.41
Naive Bayes 0.53 0.32 0.26 0.53 0.28 0.27 0.53 0.32 0.25 0.86 0.60 0.47
AdaBoost 0.53 0.34 0.27 0.47 0.29 0.26 0.53 0.26 0.28 0.86 0.62 0.43
SVM 0.53 0.11 0.20 0.48 0.28 0.26 0.53 0.13 0.25 0.84 0.21 0.25
Random Forest 0.53 0.38 0.29 0.43 0.28 0.25 0.53 0.41 0.29 0.88 0.69 0.56
Decision Trees 0.52 0.38 0.30 0.45 0.29 0.25 0.53 0.40 0.29 0.88 0.70 0.57
K-NN 0.43 0.27 0.25 0.47 0.30 0.26 0.51 0.44 0.28 0.80 0.63 0.46
LSTM 0.58 0.50 0.40 0.41 0.51 0.47 0.56 0.46 0.40 0.75 0.47 0.31
CNN 0.53 0.38 0.30 0.41 0.28 0.30 0.58 0.40 0.47 0.74 0.39 0.34
LSTM* 0.53 0.15 0.23 0.53 0.12 0.22 0.53 0.12 0.22 0.53 0.12 0.22
CNN* 0.53 0.21 0.24 0.32 0.21 0.28 0.52 0.20 0.24 0.53 0.18 0.24

00Empirical Software Engineering (2022) 27: 40 Page 25 of 33 40

1 3

After inspecting more closely the results of the classifiers, we identified that their
performance was likely hindered by misclassifications caused by 1) vocabulary overlap
between the majority class and the second-largest class and 2) the imbalanced distribu-
tion of the training data among the classes (see Fig. 5), causing all of the classifiers to
be biased towards the majority class.

To address the negative effects of data imbalances and non-linear separability in
our dataset, we performed experiments with SMOTE as oversampling algorithm, and
NCL and the removal of Tomek links as under-sampling algorithms. Columns 5-13
of Table 7 show the results for each of these experiments. Regarding the performance
of the classifiers, our results show that over-sampling the smaller classes negatively
impacts the performance of the classifiers, the removal of Tomek links does not have a
major impact on the performance, and under-sampling using NCL improves the perfor-
mance of all the classifiers.

SMOTE has a negative impact on the classifiers because although it addressed the
imbalance of the dataset, it generated synthetic data that fell between the two largest
classes, therefore decreasing their linear separability.

As shown in Table 7, using the NCL under-sampling algorithm achieves higher per-
formance than using over-sampling or the removal of Tomek Links under-sampling.
It is to note that the neural networks classifiers only slightly outperform the baseline
classifier in terms of accuracy after applying the NCL under-sampling algorithm. This
result could be explained by neural network classifiers’ performance being reliant
on the availability of large amounts of data for training (Lai et al. 2015), while NCL
reduces the amount of training data available.

The overall higher performance of the NCL sampling strategy is due to the NCL
algorithm being designed to prevent the classifiers from overfitting towards the major-
ity classes (Laurikkala 2001), whereas the synthetic data produced by SMOTE solves
the data imbalance issue but it does not address the linear separability of the samples.
We see that the best performing classifiers after applying the NCL under-sampling
algorithm are Random Forest and Decision Trees.

When using the software engineering word embeddings in the deep learning
approaches (LSTM* and CNN* in Table 7) we found that the neural networks achieved
a lower performance across all the sampling approaches. The reduced performance
may be due to the specificity of the word embeddings which seems to hinder the ability
of the neural networks to classify the messages which contain a large amount of non-
software engineering specific tokens. Future research in the field could benefit from
exploring a combination of the software engineering word embeddings with dataset-
specific word embeddings.

We further investigate our results by applying statistical tests on the performance
of the approaches. In particular, we first determined if the distributions of the classifi-
ers’ accuracy were normally distributed using the Shapiro-Wilk test with a significance
level of 0.01 and found that they were not normally distributed. Next, we compare
the accuracies of the best performing classifiers (Random Forest and Decision Trees)
with those of each of the other machine learning classifiers, using the one-sample
Mann-Whitney U test (since the observations were not normally distributed) and apply
the Bonferroni correction to adjust the p-values. The results show that the difference
between the performance of Random Forest and all the other classifiers is statistically
significant, except for Decision Trees, as confirmed by the results of the Mann-Whit-
ney U tests with 95% confidence interval (p-values < 0.05 and a large Cliff’s delta

Empirical Software Engineering (2022) 27: 4040 Page 26 of 33

1 3

effect size). The tests indicate no statistically significant difference between Decision
Trees and Random Forest.

5 � Potential Research Applications

Previous studies have investigated the growing use of alternative communication means by
developers (Lin et al. 2016; Käfer et al. 2018; Stray et al. 2019). The results of these stud-
ies show the rise of instant messaging tools and the impact they have on reshaping team
dynamics and the communication landscape in increasingly distributed software develop-
ment environments. Future studies could make use of GitterCom to study the relationship
between open source development activity and communication trends in chat based plat-
forms. In particular, GitterCom enables further research to analyze and understand patterns
in developer communications such as the works by Ehsan et al. (2020); Sahar et al. (2020)
and to address important questions such as: How do software teams use tools like Gitter
to communicate among themselves and with other stakeholders? How do team dynamics
reflect in team communications? Do developers exchange different types of messages at
different times in the software life cycle? Do developers new to a project post different
types of messages than the more senior developers? How can we facilitate users of the sys-
tems to communicate directly with the developers through these communication platforms?

GitterCom can also be used as a training dataset for machine learning approaches for
automatic classification of new messages based on their purpose. The study presented in
Section 4 lays the foundation for this and shows that such a classification is feasible, with a
relatively high accuracy.

A potential application of GitterCom would be to leverage the data to automatically
organize messages into threads or to create summaries of developer conversations based
on their purpose, such that developers that were away for a while or newcomers to a project
could quickly catch up on important conversations they missed. Machine learning applica-
tions could further complement the developers’ workflow with information from external
sources related to the messages exchanged, such as Stack Overflow.

Another avenue for future work would be to use GitterCom in order to perform large
scale replications of previous studies that analyzed developer communications in Slack
(Alkadhi et al. 2017a; Chatterjee et al. 2019), but used much smaller or restricted datasets
(e.g., communications in student projects or a particular software company). These replica-
tions on GitterCom could help corroborate previous findings or uncover new information
about how developers communicate through instant messaging tools. One example of such
work that could benefit from a large scale replication is work on the identification of mes-
sages that contain rationale for the decisions made by developers throughout the software
life cycle (Alkadhi et al. 2017b). Thus far, work on rationale has been limited to analyzing
the chat messages of three student teams working on a multi-project capstone course.

6 � Threats to Validity

In this section, we describe the threats to validity we faced in our work and how we
addressed them.

00Empirical Software Engineering (2022) 27: 40 Page 27 of 33 40

1 3

Regarding threats to external validity, due to the size of the dataset, our results may not
be generalizable to all the software development chat rooms available.It is to note that in
this work, we focused on Gitter channels associated with open source software systems
and we only manually analyzed a subset of all the messages within the selected channels
and communities. Therefore, the messages in our dataset may not be representative of all
developers or of all messages exchanged by developers in all the software development
instant messaging platforms and communities. Our study also focuses on Gitter channels
that are linked to GitHub repositories as Gitter did not have the ability to directly link to
other hosting services at the time of data collection, therefore the results may not be reflec-
tive of newer Gitter channels that are linked to GitLab repositories. Moreover, the use of
modern enterprise chat room tools is likely to vary in channels that focus on communities
of practice, such as the ones explored by Chatterjee et al. (2019). Nonetheless, we aimed
to increase the generalizability of our findings by including channels of various sizes that
cover a wide variety of application domains. We used a set of selection criteria for the sys-
tems included in GitterCom to ensure that the chosen channels and the results are focused
on communications surrounding open source software development. However, due to our
focus on the main channels within these communities, which showed a higher user activity,
our results might not be reflective of other channels with a lower level of activity within
the same communities. Furthermore, it is possible that the distribution of messages across
different purposes in GitterCom is not representative of all developer communications. We
mitigated this threat by considering a varied set of communities in the dataset.

Although our results did not require the creation of new categories to describe the mes-
sages in GitterCom, future work may require new categories to be created in addition to
those derived by Lin et al. (2016) as the communication of developers evolves over time.

Moreover, our approach can be applied to any existing Gitter channel. The imbalance
of our dataset is another threat to validity. To mitigate the impact of class imbalance, we
applied robust over-sampling approaches as well as under-sampling approaches, since it
has been shown that over-sampling can cause over-fitting for classical machine learning
models, especially for minority classes (Buda et al. 2018). Moreover, since under-sampling
decreases the amount of data available for training it may lead to loss of information about
the majority class. To mitigate this risk, we applied the NCL under-sampling algorithm
which aims to prevent the classifiers from over-fitting towards the majority classes while
minimizing any impact on the classification performance of the majority classes (Laurik-
kala 2001).

Threats to internal validity we faced in this work relate to whether there is sufficient
evidence to support our findings. The main threat to validity is that the categorization of
the messages in GitterCom does not properly reflect the purpose of the developer mes-
sages. Moreover, when comparing the purpose of messages within a community, the
number of users in our dataset represents only a part of all the users in the communities.
Therefore, future work analyzing a larger sample of users or different communities may
lead to different results. In order to mitigate this threat, we leveraged a set of categories
derived from previous work as a coding guide with detailed instructions, and had two raters
independently label each message. This was followed by the raters meeting to resolve any
conflicts and update the coding guide accordingly, resulting in an inter-rater agreement of
0.89, which is considered high. The second aspect that could negatively impact the internal
validity of the results is the sampling strategy when selecting the messages to label. We
mitigated this threat by selecting the most recent messages rather than random selection in
order to ensure the data reflects current practices and that GitterCom retains the historical/
sequential information associated with chat communications.

Empirical Software Engineering (2022) 27: 4040 Page 28 of 33

1 3

Threats to construct validity refer to how we measured the results of our studies. We
mitigated threats to construct validity in each study by:

	 (i)	 Using an established set of categories from previous work and having two authors
individually annotate the dataset and then discussing any discrepancies that occurred,

	 (ii)	 Using well-tested implementations of the machine learning classifiers and sampling
algorithms,

	 (iii)	 Employing common performance evaluation metrics, and
	 (iv)	 Using a robust and established evaluation framework from the Natural Language

Processing field with 10-fold cross-validation and hyper-parameter tuning (Liu and
Liu 2008).

7 � Conclusions and Future Work

We introduced a dataset, called GitterCom, which is the largest manually labeled and
curated dataset of software development communications through instant messaging plat-
forms to date. GitterCom contains 10,000 Gitter messages collected from the main Gitter
channels associated with the development of 10 open source software systems. The mes-
sages were manually labeled according to their purpose, using the message classification
hierarchy first introduced by Lin et al. (2016).

Our results indicate that developers and other stakeholders use the Gitter channels dedi-
cated to open source systems mostly for activities related to the active development of the
system. Our findings indicated that Gitter is also used by developers as an alternative to
communication platforms like Stack Overflow or forums to inquire about new technologies
or coding challenges they face. Lastly, only a small percentage of the use of these channels
was devoted to personal benefits or community support. We also found that the distribution
of messages across various purposes in the channels dedicated to open source development
can vary significantly from system to system. Furthermore, when comparing the actual-
usage in GitterCom with the self-reported usage by developers based on the work of Lin
et al. (2016), we found that they present some similarities and differences. The differences
mostly consist of a higher percentage of messages related to Dev-Ops and Customer Sup-
port, as well as a lower percentage of messages dedicated to participation in communities
of practice, fun, and communication about non-work topics in GitterCom compared to Lin
et al. (2016). These differences could be explained by the fact that the channels included
in GitterCom are dedicated to open source development, whereas the results in Lin et al.
(2016) are based upon responses to a more general question on the use of Slack by devel-
opers. Moreover, by analyzing the usage on a per-channel basis, we found that the majority
of channels in our dataset follow a similar distribution to that of GitterCom as a whole.

In their analysis of the use of a single Slack community within a large company, Stray
et al. (2019) indicated that the team members should agree upon and communicate to new
members clearly defined guidelines on how to use the instant messaging tools. During our
study of GitterCom, we found that some open source development teams using Gitter as
their instant messaging tool have such guidelines in place and that the members of the
development teams actively work to ensure these guidelines are followed. However, we
also noticed that these guidelines are focused on keeping the information exchanged in the

00Empirical Software Engineering (2022) 27: 40 Page 29 of 33 40

1 3

communities related to the development of the system and not on how to organize the com-
munity itself.

We found that the nature and frequency of the messages exchanged in software develop-
ment Gitter chat rooms have an intrinsic imbalance and language overlap across purposes,
making it difficult for machine learning classifiers to perform well without dealing with the
class imbalance problem. We found that machine learning classifiers using under-sampling
achieve higher performance and up to 88% accuracy, which is a very promising result for
this multi-class classification problem.

Our future work will focus on improving the performance of the classifiers by using
a larger amount of data. Moreover, future avenues of research include (i) studying how
the structure of the information exchanged through these channels may impact developers’
engagement with other team members and users of the systems, (ii) the design and imple-
mentation of effective mechanisms to present relevant information from instant messaging
tools that align with the developers’ purpose.

Another avenue for future work would be to develop mechanisms to allow the develop-
ers and other users to manually indicate the purpose of a message upon its creation, similar
to the way Hyperdialog (Gomes Pimentel et al. 2003) and REACT (Alkadhi et al. 2017a)
record the conversation threads and rationale of messages, respectively.

References

Alkadhi R, Johanssen JO, Guzman E, Bruegge B (2017a) REACT: An Approach for Capturing Rationale
in Chat Messages. In: Proceedings of the 11th ACM/IEEE international symposium on empirical soft-
ware engineering and measurement (ESEM’17), pp 175–180

Alkadhi R, Lata T, Guzmany E, Bruegge B (2017b) Rationale in development chat messages: An explora-
tory study. In: Proceedings of the 14th IEEE/ACM international conference on mining software reposi-
tories (MSR’17), pp 436–446

Allamanis M, Sutton C (2013) Why, when, and what: Analyzing stack overflow questions by topic, type,
and code. In: Proceedings of the 10th IEEE working conference on mining software repositories
(MSR’13), pp 53–56

Aly M (2005) Survey on multiclass classification methods. Neural Network 19:1–9
Anders A (2016) Team communication platforms and emergent social collaboration practices. Int J Business

Commun 53(2):224–261
Arora P, Ganguly D, Jones GJF (2015) The good, the bad and their Kins: Identifying questions with nega-

tive scores in StackOverflow. In: Proceedings of the 2nd IEEE/ACM international conference on
advances in social networks analysis and mining (ASONAM’15), pp 1232–1239

Bergstra J, Bengio Y (2012) Random Search for Hyper-Parameter Optimization. J Mach Learn Res
13(2):281–305

Beyer S, Macho C, Pinzger M, Di Penta M (2018) Automatically classifying posts into question categories
on stack overflow. In: Proceedings of the 26th IEEE international conference on program comprehen-
sion (ICPC’18), Association for Computing Machinery, New York, NY, USA, ICPC ’18, pp 211–221
https://​doi.​org/​10.​1145/​31963​21.​31963​33

Bottou L (2010) Large-Scale Machine Learning with Stochastic Gradient Descent. In: Lechevallier Y,
Saporta G (eds) Proceedings of the 19th international conference on computational statistics (COMP-
STAT’10), pp 177–186

Breiman L (2001) Random Forests. Mach Learn 45(1):5–32
Buda M, Maki A, Mazurowski MA (2018) A Systematic Study of the Class Imbalance Problem in Convolu-

tional Neural Networks. Neural Networks 106:249–259
Chatterjee P, Damevski K, Pollock L, Augustine V, Kraft NA (2019) Exploratory study of slack Q&A chats

as a mining source for software engineering tools. In: Proceedings of the 16th IEEE international con-
ference on mining software repositories (MSR’19), pp 490–501

Empirical Software Engineering (2022) 27: 4040 Page 30 of 33

https://doi.org/10.1145/3196321.3196333

1 3

Chatterjee P, Damevski K, Kraft NA, Pollock L (2020) Software-related slack chats with disentangled con-
versations. In: Proceedings of the 17th IEEE international conference on mining software repositories
(MSR’20), pp 588–592

Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP (2002) SMOTE: Synthetic Minority Over-sampling
Technique. J Artif Intell Res 16(1):321–357

Chowdhury SA, Hindle A (2015) Mining StackOverflow to filter out Off-topic IRC discussion. In: Proceed-
ings of the 12th IEEE working conference on mining software repositories (MSR’15), pp 422–425

Constantino K, Zhou S, Souza M, Figueiredo E, Kastner C (2020) Understanding collaborative software
development: An interview study. In: Proceedings of the 15th ACM/IEEE international conference on
global software engineering (ICGSE’20), pp 55–65

Cortes C, Vapnik V (1995) Support-vector Networks. Mach Learn 20(3):273–297
cuc (2020) Cucumber. https://github.com/cucumber/cucumber
Deng L (2014) A Tutorial Survey of Architectures, Algorithms, and Applications for Deep Learning. Trans-

actions on Signal and Information Processing 3
Efstathiou V, Chatzilenas C, Spinellis D (2018) Word embeddings for the software engineering domain.

In: Proceedings of the 15th IEEE international conference on mining software repositories (MSR’18),
MSR ’18, p 38–41 DOI: https://​doi.​org/​10.​1145/​31963​98.​31964​48

Ehsan O, Hassan S, Mezouar ME, Zou Y (2020) An Empirical Study of Developer Discussions in the Gitter
Platform. TOSEM pp 1–39

Elsner M, Charniak E (2011) Disentangling chat with local coherence models. In: Proceedings of the
49th annual meeting of the association for computational linguistics: Human language technologies
(ACL’11), pp 1179–1189

Fang H, Klug D, Lamba H, Herbsleb J, Vasilescu B (2020) Need for tweet: How open source developers
Talk about their GitHub work on twitter. In: Proceedings of the 17th IEEE international conference on
mining software repositories (MSR’20), pp 322–326

Ford D, Lustig K, Banks J, Parnin C (2018) “We Don’t Do That Here”: How collaborative editing with
mentors improves engagement in social Q&A communities. In: Proceedings of the 2018 conference on
human factors in computing systems (CHI’18)’, pp 1–12

fre (2020) Freezingmoon. https://github.com/FreezingMoon
Gers FA, Schraudolph NN, Schmidhuber J (2002) Learning Precise Timing with LSTM Recurrent Net-

works. J Mach Learn Res 3(1):115–143
Gomes Pimentel M, Fuks H, de Lucena CJP (2003) Co-text loss in textual chat tools. In: Procceedings of

the 4th international and interdisciplinary conference on modeling and using context (CONTEXT’03),
pp 483–490

Guzman E, Ibrahim M, Glinz M (2017) A little bird told me: Mining tweets for requirements and soft-
ware evolution. In: Proceedings of the 25th IEEE international requirements engineering conference
(RE’17), pp 11–20

Hastie T, Rosset S, Zhu J, Zou H (2009) Multi-class AdaBoost. Statistics and Its. Interface 2(3):349–360
ima (2020) Imagej. https://​github.​com/​imagej/​imagej
jhi (2020) jhipster. https://​github.​com/​jhips​ter/​jhips​ter/
jsp (2020) jspm. https://​github.​com/​jspm
Käfer V, Graziotin D, Bogicevic I, Wagner S, Ramadani J (2018) Communication in Open-Source Projects-

End of the E-mail Era? In: Proceedings of the 40th IEEE/ACM international conference on software
engineering(ICSE’18), pp 242–243

Keivanloo I, Rilling J, Zou Y (2014) Spotting working code examples. In: Proceedings of the 36th IEEE
international conference on software engineering (ICSE’14), pp 664–675

Khan A, Baharudin B, Lee LH, Khan K (2010) A Review of Machine Learning Algorithms for Text-Docu-
ments Classification. J Adv Inform Technol 1(1):4–20

Kim Y (2014) Convolutional neural networks for sentence classification. In: Proceedings of the 11th SIG-
DAT conference on empirical methods in natural language processing (EMNLP’14), pp 1746–1751

Lai S, Xu L, Liu K, Zhao J (2015) Recurrent convolutional neural networks for text classification. In: Pro-
ceedings of the 29th AAAI conference for artificial intelligence (AAAI’15), pp 2267–2273

Laurikkala J (2001) Improving identification of difficult small classes by balancing class distribution. In:
Conference in artificial intelligence in medicine in Europe (AIME’01), Lecture Notes in Computer
Science, pp 63–66

Lin B, Zagalsky A, Storey MA, Serebrenik A (2016) Why developers are slacking off: Understanding how
software teams use slack. In: Proceedings of the 19th ACM conference on computer supported coop-
erative work and social computing (CSCW’16), pp 333–336

00Empirical Software Engineering (2022) 27: 40 Page 31 of 33 40

https://doi.org/10.1145/3196398.3196448
https://github.com/imagej/imagej
https://github.com/jhipster/jhipster/
https://github.com/jspm

1 3

Linares-Vasquez M, Dit B, Poshyvanyk D (2013) An exploratory analysis of mobile development issues
using stack overflow. In: Proceedings of the 10th IEEE working conference on mining software reposi-
tories (MSR’13), pp 93–96

Liu F, Liu Y (2008) Correlation between ROUGE and human evaluation of extractive meeting summaries.
In: Proceedings of the 46th ACL annual meeting of the association for computational linguistics on
human language technologies (HTL’08), pp 201–204

mar (2020) Marionette. https://github.com/marionettejs/backbone.marionette
McCallum A, Nigam K (1998) A comparison of event models for naïve bayes text classification. In: Pro-

ceedings of the 1st AAAI workshop on learning for text categorization (ICML/AAAI’98), pp 41–48
Mikolov T, Deoras A, Povey D, Burget L, Cernocký J (2011) Strategies for training large scale neural net-

work language models. In: Proceedings of the 12th IEEE workshop on automatic speech recognition
understanding (ASRU’11), pp 196–201

Murgia A, Janssens D, Demeyer S, Vasilescu B (2016) Among the machines: Human-Bot interaction on
social Q&A websites. In: Proceedings of the 2016 conference extended abstracts on human factors in
computing systems (CHI/EA’16), pp 1272–1279

Nasehi SM, Sillito J, Maurer F, Burns C (2012) What makes a good code example?: A study of program-
ming Q&A in StackOverflow. In: Proceedings of the 28th IEEE international conference on software
maintenance (ICSM’12), pp 25–34

Novielli N, Calefato F, Lanubile F (2014) Towards discovering the role of emotions in stack overflow. In:
Proceedings of the 6th international workshop on social software engineering, SSE’2014, pp 33–36

Novielli N, Calefato F, Lanubile F (2015) The challenges of sentiment detection in the social programmer
ecosystem. In: Proceedings of the 7th international workshop on social software engineering (SSE’15),
pp 33–40

Paikari E, van der Hoek A (2018) A framework for understanding chatbots and their future. In: Proceed-
ings of the 11th international workshop on cooperative and human aspects of software engineering
(CHASE’18), pp 13–16

Panichella S, Di Sorbo A, Guzman E, Visaggio C, Canfora G, Gall H (2015) How can I improve my App?
Classifying user reviews for software maintenance and evolution. In: Proceedings of the 31st IEEE
international conference on software maintenance and evolution (ICSME’15), pp 281–290

Parra E (2020) Gittercom, dataset. https://​doi.​org/​10.​6084/​m9.​figsh​are.​11626​008
Parra E (2021) Replication package. https://​figsh​are.​com/s/​576d3​28da4​a5b50​ea155
Parra E, Ellis A, Haiduc S (2020) GitterCom - A dataset of open source developer communications in gitter.

In: Proceedings of the 17th IEEE international conference on mining software repositories (MSR’20),
pp 563–567

Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Empirical
methods in natural language processing (EMNLP), pp 1532–1543

Poché EH (2017) Analyzing User Comments On YouTube Coding Tutorial Videos. mathesis, Louisiana
State University, Baton Rouge, LA, USA

Ponzanelli L, Mocci A, Bacchelli A, Lanza M (2014) Understanding and classifying the quality of technical
forum questions. In: Proceedings of the 14th international conference on quality software (QSIC’14),
pp 343–352

Rekha S, Divya N, Bagavathi S (2014) A hybrid auto-tagging system for StackOverflow forum questions.
In: Proceedings of the 1st international conference on interdisciplinary advances in applied computing
(ICONIAAC’14), pp 1–5

Russell SJ, Norvig P (1995) Artificial Intelligence: A Modern Approach
Safavian SR, Landgrebe D (1991) A survey of Decision Tree Classifier Methodology. IEEE Trans Syst Man

Cybern 21(3):660–674
Sahar H, Hindle A, Bezemer CP (2020) How are Issue Reports Discussed in Gitter Chat Rooms? Journal

of Systems and Software pp 110852, https://​doi.​org/​10.​1016/j.​jss.​2020.​110852., http://​www.​scien​cedir​
ect.​com/​scien​ce/​artic​le/​pii/​S0164​12122​03024​29

Sajedi Badashian A, Hindle A, Stroulia E (2016) Crowdsourced bug triaging: Leveraging Q&A platforms
for bug assignment. In: fundamental approaches to software engineering, lecture notes in computer
science, pp 231–248

sci (2020) scikit-learn. https://​github.​com/​scikit-​learn/​scikit-​learn
Seiffert C, Khoshgoftaar TM, Van Hulse J, Folleco A (2014) An Empirical Study of the Classification Per-

formance of Learners on Imbalanced and Noisy Software Quality Data. Inform Sci 259(1):571–595
Shi L, Chen X, Yang Y, Jiang H, Jiang Z, Niu N, Wang Q (2021) A first look at developers’ live chat on git-

ter. In: Proceedings of the 29th ACM joint meeting on European software engineering conference and
symposium on the foundations of software engineering (ESEC/FSE’21), Association for Computing
Machinery, pp 391–403 https://​doi.​org/​10.​1145/​34682​64.​34685​62

Empirical Software Engineering (2022) 27: 4040 Page 32 of 33

https://doi.org/10.6084/m9.figshare.11626008
https://figshare.com/s/576d328da4a5b50ea155
https://doi.org/10.1016/j.jss.2020.110852
http://www.sciencedirect.com/science/article/pii/S0164121220302429
http://www.sciencedirect.com/science/article/pii/S0164121220302429
https://github.com/scikit-learn/scikit-learn
https://doi.org/10.1145/3468264.3468562

1 3

Shihab E, Jiang ZM, Hassan AE (2009) Studying the use of developer IRC meetings in open source pro-
jects. In: Proceedings of the IEEE international conference on software maintenance (ICSM’09), pp
147–156

Singh A, Thakur N, Sharma A (2016) A review of supervised machine learning algorithms. In: Proceed-
ings of the 3rd IEEE international conference on computing for sustainable global development (INDI-
ACom’16), pp 1310–1315

Storey M, Zagalsky A, Filho FF, Singer L, German DM (2017) How Social and Communication Chan-
nels Shape and Challenge a Participatory Culture in Software Development. IEEE Trans Softw Eng
43(2):185–204

Storey MA, Zagalsky A (2016) Disrupting developer productivity one bot at a time. In: Proceedings of the
24th ACM/SIGSOFT international symposium on foundations of software engineering (FSE’16), pp
928–931

Storey MA, Singer L, Cleary B, Figueira Filho F, Zagalsky A (2014) The (R) Evolution of social media
in software engineering. In: Proceedings of the 36th ACM/IEEE international conference in software
engineering, future of software engineering (FOSE’14), pp 100–116

Stray V, Moe NB, Noroozi M (2019) Slack me if you can!: Using enterprise social networking tools in
virtual agile teams. In: Proceedings of the 14th IEEE international conference on global software engi-
neering (ICGSE’19), pp 101–111

Subramanian S, Holmes R (2013) Making sense of online code snippets. In: Proceedings of the 10th IEEE
working conference on mining software repositories (MSR’13), pp 85–88

thw (2020) Theholywaffle. https://​github.​com/​TheHo​lyWaf​fl e
Tian Y, Lo D, Lawall J (2014) Automated construction of a Software-Specific word similarity database. In:

Proceedings of the 1st joint meeting of The IEEE conference on software maintenance, reengineering,
and reverse engineering (CSMR-WCRE’04), pp 44–53

Tomek I (1976) Two Modifications of CNN. IEEE Transactions on Systems, Man, and Cybernetics
SMC–6(11):769–772

Treude C, Barzilay O, Storey MA (2011) How do programmers ask and answer questions on the Web? In:
Proceedings of the 33rd IEEE/ACM international conference on software engineering (ICSE’11), pp
804–807

uik (2020) uikit. https://​github.​com/​uikit/​uikit
Vassallo C, Panichella S, Di Penta M, Canfora G (2014) CODES: Mining source code descriptions from

developers discussions. In: Proceedings of the 22nd IEEE international conference on program com-
prehension (ICPC’14), pp 106–109

West D (2000) Neural Network Credit Scoring Models. Computers & Operations Research
27(11):1131–1152

xen (2020) Xenko3d. https://​gitter.​im/​xenko​3d/​xenko
Xu B, Xing Z, Xia X, Lo D (2017) Answerbot: Automated generation of answer summary to developers’

technical questions. In: Proceedings of the 32nd IEEE/ACM international conference on automated
software engineering (ASE’17), pp 706–716

00Empirical Software Engineering (2022) 27: 40 Page 33 of 33 40

https://github.com/TheHolyWaffle
https://github.com/uikit/uikit
https://gitter.im/xenko3d/xenko

	A comparative study and analysis of developer communications on Slack and Gitter
	Abstract
	1 Introduction
	2 Related Work
	2.1 Instant Messaging Communication Tools in Software Engineering
	2.2 Other Communication Tools in Software Engineering

	3 GitterCom
	3.1 Message Categorization
	3.2 Data Collection

	4 Study on the Purpose of Developer Instant Messages in Open Source Software Development
	4.1 Methodology
	4.1.1 Stochastic Gradient Descent (SGD)
	4.1.2 Decision Trees (DT)
	4.1.3 Random Forest (RF)
	4.1.4 AdaBoost
	4.1.5 k-Nearest Neighbor (kNN)
	4.1.6 Naïve Bayes (NB)
	4.1.7 Support Vector Machine (SVM)
	4.1.8 Long Short-Term Memory (LSTM)
	4.1.9 Convolutional Neural Network (CNN)
	4.1.10 Over-Under-sampling

	4.2 Results
	4.2.1 RQ1 - Purpose of Developer Instant Messages in GitterCom
	4.2.2 RQ2 - Comparison Between Developer Self-Reported Usage and Actual Usage of Instant Messages
	4.2.3 RQ3 - Automatic Classification of Developer Instant Messages

	5 Potential Research Applications
	6 Threats to Validity
	7 Conclusions and Future Work
	References

