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Abstract
Software developers are often using instant messaging platforms to communicate with each 
other and other stakeholders. Among these platforms, Gitter has emerged as a popular choice 
and the messages it contains can reveal important information to researchers studying open 
source software systems. Uncovering what developers are communicating about through  
Gitter is an essential first step towards successfully understanding and leveraging this infor-
mation. In this paper, we first describe the largest manually labeled and curated dataset of 
Gitter developer messages, named GitterCom, obtained by manually analyzing and labeling 
10,000 Gitter messages in 10 software projects. We then present a qualitative study to under-
stand the extent to which the categories identified in previous work by Lin et al. (2016) found 
on Slack through surveys are applicable to developer messages exchanged on Gitter. Fur-
ther, in an effort to automate the labeling process, we investigate the accuracy of 9 traditional 
machine learning and deep learning algorithms in predicting the intent of Gitter messages. 
We found that Decision Trees and Random Forest performed the best, achieving an accuracy 
of 88%, which is very promising for this multi-class classification task. Finally, we discuss the  
potential directions for future research enabled by labeled Gitter datasets such as GitterCom.
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1  Introduction

Over time, the increase in the size of software systems has heightened the need for col-
laboration among developers, and has led to large software development teams, often dis-
tributed across multiple locations. Many positive aspects are seen in systems developed 
collaboratively, such as knowledge sharing, strengthened synergy in teamwork, increased 
productivity, and increased code quality (Constantino et al. 2020). However, such collabo-
ration is only possible when there is communication among the team members to coordi-
nate their efforts (e.g., share road maps, progress updates, roadblocks or problems, dead-
lines, and more).

Traditionally, software development teams have used IRC, forums, and mailing lists for 
communication purposes (Chowdhury and Hindle 2015; Storey et  al. 2017; Käfer et  al. 
2018; Stray et al. 2019). In recent years, modern instant messaging communication plat-
forms such as Gitter1 and Slack2 have emerged as a popular alternative for communication 
among software development teams and other stakeholders (Lin et al. 2016; Storey et al. 
2014; Stray et al. 2019). These tools allow for better team collaboration, group awareness, 
and project coordination by providing a user-friendly way of managing and organizing dis-
tributed conversations, facilitating knowledge sharing, and enabling easy access to other 
team members and their expertise. Moreover, these tools further support distributed agile 
development teams by integrating relevant information from external software develop-
ment tools such as GitHub, Travis CI, etc. Storey et  al. (2014). Thus, this new wave of 
communication platforms is bridging the gap between multiple software tools and shaping 
modern software development activities and practices (Storey et al. 2014).

Given the features and support they offer for software development, many open source 
projects have adopted Gitter and Slack as their preferred communication means (Ehsan 
et  al. 2020; Käfer et  al. 2018). Gitter is a popular tool among open source development 
teams (Käfer et  al. 2018; Sahar et  al. 2020; Shi et  al. 2021) for a few reasons. First, in 
Gitter the access to user-generated data is public. In particular, public messages and user-
generated content in Gitter are subject to the Creative Commons license: Attribution + 
Non-Commercial + ShareAlike (BY-NC-SA)3. In addition, the messages posted to public 
Gitter channels are preserved indefinitely in chat room logs, which means that all users can 
see all messages in a chat room, dating back to when the channel was first created.

Given the popularity of Gitter among open source software communities hosted on 
GitHub (over 10,000 communities of developers), the history of communications on this 
platform often contains tens of thousands of message exchanges between the developers 
of a software system. If leveraged, this history could represent a rich source of documen-
tation for developers looking for specific answers about a system or for on-boarding new 
developers in a community. At the same time, this information can also be leveraged by 
researchers wanting to learn more about open source development and the nature of devel-
oper communications. Our goal is to enable such endeavors and we do so by introducing 
the largest manually labeled and curated dataset of Gitter messages, called GitterCom. Git-
terCom contains a set of 10,000 messages collected from the Gitter channels of 10 open 
source software projects and manually labeled based on their purpose, using the categories 

1  https://gitter.im/
2  https://slack.com/
3  https://creativecommons.org/licenses/by-nc-sa/3.0/us/
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identified in previous work by Lin et al. (2016) through surveys of developers. GitterCom 
is currently the largest manually labeled dataset of developer instant messages, surpassing 
the previous largest dataset of 500 manually labeled Slack messages (Stray et al. 2019) by 
two orders of magnitude. We make the data and scripts we used to collect the data avail-
able in our replication package (Parra 2021).

This paper builds upon our previously published paper (Parra et al. 2020), which intro-
duced GitterCom for the first time and presented a study of the messages it contains with 
the goal of observing how developers and other stakeholders communicate about software 
using Gitter in the context of Gitter communities dedicated to the active development of 
open source software systems on GitHub. In this paper, we further extend this work in a 
two main ways: 

i)	 We aim to understand whether the categories that Lin et al. (2016) found on Slack 
through surveys are applicable for messaging data on Gitter, and if so, how prevalent 
each category is in the two data sources. For this purpose, we compare and contrast the 
self-reported usage of chat-based communication platforms by developers based on sur-
vey responses, as reported by Lin et al. (2016) with the actual usage of these platforms, 
as revealed by analyzing the messages in GitterCom. This study sheds a light on the 
similarities and differences between the developers’ perceived usage and their actual 
usage of instant messaging platforms like Slack and Gitter. Moreover, we also provide 
an analysis of message intents across different development communities in GitterCom.

ii)	 We evaluate the use of 9 traditional machine learning and deep learning algorithms 
for the automatic classification of Gitter developer messages by their intent. Given the 
continuously increasing amount of data being generated and the time-consuming nature 
of manual labeling involved in creating this type of dataset, our goal is to facilitate future 
data collection by automating the classification of messages. Our results show that Deci-
sion Trees and Random Forest perform the best, achieving an accuracy of 88%.

The rest of the paper is structured as follows. Section 2 introduces existing work on instant 
messaging tools and other communication channels used by software development teams. 
Section 3 outlines the data gathering and labeling procedures we followed for creating Git-
terCom. Section 4 presents a study on the purpose of developer instant messages in the 
context of open source software development. The study first analyzes the purpose of mes-
sages in GitterCom, it then compares it to the self-reported usage of instant messaging 
platforms by developers based on the survey responses reported by Lin et al. (2016), and 
finally investigates whether traditional machine learning and deep learning algorithms can 
be successfully used for the automatic classification of developer chat messages. Section 5 
discusses potential research directions using GitterCom. We discuss threats to validity in 
Section 6, and finally Section 7 concludes the paper and discusses future work.

2 � Related Work

Our work is closely related to the study of developer communications. We divide the 
related work in two subsections. In the first one, we introduce work done on the analysis of 
instant messaging communication tools such as Gitter and Slack in software engineering, 
which is the closest work related to ours. Then, in the second subsection, we present an 
overview of work related to other communication tools used by developers.

0Empirical Software Engineering (2022) 27: 40    Page 3 of 33 40
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2.1 � Instant Messaging Communication Tools in Software Engineering

Earlier work related to our paper has explored the Internet Relay Chat (IRC), the pre-
cursor of developer chat communities (Shihab et  al. 2009; Elsner and Charniak 2011; 
Chowdhury and Hindle 2015). Shihab et al. (2009) analyzed the properties of meetings 
taking place through IRC. In particular, their work looked at the topics, participant size, 
contributions, and communication styles in these meetings. On the other hand, Chowd-
hury and Hindle (2015) used machine learning classifiers to extract off-topic discus-
sions, while Elsner and Charniak (2011) introduced a coherence model for separating 
multiple conversations taking place in IRC channels.

With the rise of modern chat platforms such as Slack and Gitter, recent works have 
focused on exploring the developer communities using these tools (Anders 2016; Mur-
gia et al. 2016; Storey and Zagalsky 2016; Alkadhi et al. 2017a, b; Lin et al. 2016; Pai-
kari et al. 2018; Käfer et al. 2018; Chatterjee et al. 2019, 2020; Ehsan et al. 2020; Sahar 
et al. 2020).

Käfer et  al. (2018) present the results of an empirical study on the communication 
tools used in 400 open source software repositories in GitHub. Their results show that 
mailing lists are being used less and less, with developers favoring modern enterprise 
chat systems (i.e., Gitter and Slack). Moreover, GitHub Issues, personal e-mail, Gitter, 
Twitter, and mailing lists were found to be the five most popular communication chan-
nels currently used in open source development. Slack was found to be eighth in terms 
of popularity among all the communication means observed.

Lin et  al. (2016) surveyed 53 software developers regarding their use of Slack. 
They found that developers self-reported using Slack for multiple purposes (i.e., per-
sonal benefits, team-wide purposes, and community support), and to support various 
activities. We make use of the classification of purpose types and their categories and 
subcategories identified by Lin et  al. (2016) in order to manually and then automati-
cally classify developer chat messages in Gitter. Our work differs from theirs in a few 
ways. First, instead of surveying developers, we use the chat histories to extract and 
classify actual developer messages. Therefore, while Lin et al. capture the self-reported 
usage of instant messaging platforms by developers, we aim to analyze the actual usage 
of these platforms by looking at messages directly. Using the same categories as Lin 
et al. (2016) also allows us to compare and contrast our findings to theirs and observe 
similarities and differences between self-reported and actual developer instant messag-
ing usage. In addition, we also aim to automatically classify the developer messages in 
order to enable future automatic data collection.

Recent work by Stray et al. (2019) studied a group of 30 developers and their com-
munication through Slack channels at a large software development company. Their 
analysis involved the open coding of 500 messages, identifying in a broad sense that 
the messages were related to the following purposes: general information/coordina-
tion, general discussions, problem-focused communication, technical communication, 
and socializing. Their results show that in this company, about half of the messages 
are related to problem solving (i.e., questions and answers), with very little social talk 
among the team members. Moreover, by interviewing the team members, the paper 
shows that language, unbalanced activity, and the excessive use of private messages are 
the main challenges experienced by the team when using instant messaging tools. While 
we also perform coding on developer chat messages, our work differs from that of Stray 
et  al. (2019) in several ways. First, we perform a large-scale open coding of 10,000 
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messages, which is 20 times more than the amount of messages coded by Stray et  al. 
Second, we focus on 10 open source software communities instead of a single closed-
source software company. Third, we analyze Gitter instead of Slack. Fourth, our classifi-
cation is more fine-grained, using the categories identified by Lin et al. (2016).

Some of the recent works on analyzing developer communications in instant messaging 
platforms have focused on the Q&A conversations taking place on these platforms. Some 
recent work has also focused on analyzing Gitter communications (Ehsan et al. 2020; Sahar 
et al. 2020; Shi et al. 2021). More specifically, the work by Ehsan et al. (2020) analyzed 
384 Q&A threads in Gitter communities in order to develop a methodology for automati-
cally extracting threads from the chats. Moreover, by analyzing these threads, Ehsan et al. 
(2020) identified that 80% of them involve users asking how-to questions. The authors then 
present a set of guidelines that can help users write better questions in order to increase the 
likelihood of obtaining a response. Work by Chatterjee et al. (2019, 2020) has focused on 
disentangling and extracting the Q&A conversations within the chats. Their work leverages 
a supervised model based on a set of features between pairs of chat messages that occur 
within a window of time of each other. This method expands upon the work by Elsner 
and Charniak (2011), who presented an initial approach for this problem, by adding addi-
tional features that are characteristic to instant messaging platforms (e.g., the use of URLs 
and channel references). In a recent work, Shi et al. (2021) presents an empirical study on 
the properties of dialogs/conversation on Gitter by categorizing 749 dialogs/conversations 
from eight Gitter communities using a set of question categories derived from Stack Over-
flow by Beyer et al. (2018) and employed social network algorithms and metrics to assess 
the structure and properties of conversations in chat communication platforms. The paper 
found that developers tend to discuss topics that are domain-specific to the community. In 
particular, they found that the discussions on these communities are oriented towards solv-
ing problems such as API usages and errors. Moreover, among the issues and errors dis-
cussed, developers discuss more ‘unwanted behavior’ and ‘do not work’ errors than issues 
relating to reliability, performance, or test/build failures. The paper also found that the 
social network of developers within the studied communities can be categorized into three 
types of networks (polaris, constellation, and galaxy). Lastly, the paper identified six dialog 
interaction patterns in the live chat communities. Work by Sahar et al. (2020) focused on 
analyzing how developers discuss issue reports within Gitter communities devoted to open 
source systems. Their work extracted and analyzed references to issue reports in the Gitter 
channels of 24 active open source development systems. The empirical analysis of these 
issue discussions shows that end users referenced the majority of the issue reports. Moreo-
ver, the two most common reasons these issues are brought up in Gitter are i) to reference 
an issue than contains additional information on a problem or topic being discussed and ii) 
to inform on the opening, closure, or comments to the issues themselves. Moreover, their 
results indicate that Gitter might be used by developers and users to revive and facilitate 
resolution of issues that have not been addressed in a long time in the project’s issue track-
ing system.

A closely related work to ours concerns the identification of rationale in development 
chat messages (Alkadhi et  al. 2017a, b). Rationale arguments are any messages by the 
developers that contain information justifying the decisions made throughout the soft-
ware life cycle. The work by Alkadhi et al. (2017b) presents an exploratory study on the 
presence of rationale in the chat development messages of three development teams made 
up of students working on a multi-project capstone course. Their findings show the pres-
ence of rationale, as well as the usefulness of SVM and Naïve Bayes classifiers toward the 
automatic identification and classification of messages containing rationale information. 
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In subsequent work, Alkadhi et al. (2017a) introduce REACT, an approach for developers 
to explicitly record the rationale in messages via manual annotation using either in-line 
annotations or Slack reactions, capturing five rationale elements: issues, alternatives, pro-
arguments, con-arguments, and decisions. Our work is different from that by Alkadhi et al. 
as we focus on the identification of the purpose of developer communication on the chat 
platforms of active open source projects, rather than the identification of rationale in stu-
dent projects.

To the best of our knowledge, our work: i) presents the largest dataset of developer chat 
messages annotated by their purpose, containing 10,000 manually labeled Gitter messages; 
ii) is the first to compare the self-reported, general usage of instant messaging platforms to 
the actual usage of these platforms by developers; iii) is the first to show the effectiveness 
of multi-class machine learning classification towards the automatic identification of the 
purpose of open source developer messages in modern chat platforms. The works by Ehsan 
et al. (2020), Sahar et al. (2020), and Shi et al. (2021) also use Gitter as the target of their 
research. However, Ehsan et al. (2020) focused on identifying and analyzing conversation 
threads, while our work analyzes and automatically identifies the purpose of individual 
messages, Sahar et al. (2020) analyzes a subset of Gitter messages that are encompassed 
within the Dev-Ops and costumer support categories in our study, and Shi et  al. (2021) 
focus on analyzing the structure of the communities and the information at a conversation 
level.

2.2 � Other Communication Tools in Software Engineering

One of the most studied avenues of developer communications are Q&A forums, such as 
Stack Overflow. Stack Overflow allows developers from across the globe to communicate 
with each other by posting question and answers to topics ranging across different pro-
gramming languages and software development topics (Allamanis et  al. 2013; Linares-
Vasquez et al. 2013).

Stack Overflow has been used to support software developers by mining API descrip-
tions and examples (Keivanloo et  al. 2014), generating source code comments (Vassallo 
et al. 2014), extracting code snippets (Subramanian and Holmes 2013), helping with bug 
triaging (Sajedi Badashian et al. 2016), summarizing answers to technical questions (Xu 
et al. 2017), etc. The popularity and vast amounts of communications among developers in 
Stack Overflow has also lead to research into using the information present in these forums 
to build a software-specific word similarity database similar to WordNet (Tian et al. 2014). 
Moreover, there has been research towards analyzing and improving the developer interac-
tions with Q&A forums by analyzing the characteristics of developers (Novielli et al. 2014, 
2015), exploring the way developers write answers and questions (Treude et  al. 2011; 
Nasehi et  al. 2012; Arora et  al. 2015; Ponzanelli et  al. 2014), tagging questions (Rekha 
et  al. 2014), and mentoring developers on how to best write questions in Q&A forums 
(Ford et al. 2018).

Open source developers also use Twitter to communicate information related to the soft-
ware development. Work by Fang et  al. (2020) analyzed Twitter messages by repository 
owners and found that they do not engage in work discussion or answering others peo-
ple’s questions. Instead, they mostly use Twitter to share work-related information, devel-
opment updates, and advertise their own work. Guzman et al. (2017) presents ALERTme, 
an approach to classify Twitter messages that may be relevant for developers. These tweets 
can include: problem reports, improvement suggestions, or user needs.

Empirical Software Engineering (2022) 27: 4040 Page 6 of 33
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3 � GitterCom

In this section we present GitterCom, a manually curated dataset containing 10,000 mes-
sages collected from 10 open source software development Gitter communities (1,000 mes-
sages per community). Each message in the dataset was manually labeled with information 
about the purpose of the communication it expresses, based on the categories identified by 
Lin et al. (2016). GitterCom is made available online in two formats: CSV and Microsoft 
Excel Open XML Spreadsheet (XLSX) file formats4. In both formats, each line contains 
the information for a single message and consists of seven information fields, separated by 
comma and using quotes as the text delimiter in the CSV format. In particular, each line 
contains: (i) the channel/system the message belongs to, (ii) a unique message ID, (iii) 
the date and time at which the message was posted, (iv) the author of the message, (v) the 
content of the message in plain text, (vi) the corresponding high-level purpose (manual 
label), (vii) the purpose category (manual label), and (viii) the purpose subcategory (man-
ual label).

The following subsections describe the categories used to classify the developer mes-
sages and the procedure we followed to collect the data and obtain the final GitterCom 
dataset.

3.1 � Message Categorization

Recent works on the use of instant-messaging tools have derived categorizations for mes-
sages exchanged by developers. First, after conducting a survey with software developers 
who adopted Slack, Lin et al. (2016) identified that developers self-report using chat rooms 
for three main purpose types (i.e., personal benefits, team-wide purposes, and community 
support). Moreover, they found that within each purpose type, developers use instant mes-
saging communication tools to support different tasks and activities (which can be seen as 
purpose categories and subcategories for these main types). Second, Stray et al. (2019) also 
derived a set of categories for developer messages exchanged in Slack by analyzing 500 
Slack messages in a large software development company.

We decided to use the purpose types, categories, and subcategories of messages iden-
tified by Lin et al. (2016) in our work for several reasons. First, there is evidence that 
categories derived from one type of software developer communications are applicable 
to describe the communications of developers in a different communication medium. In 
the latest such example, Shi et al. (2021) used categories derived from StackOverflow 
to classify conversations in Gitter. Since both Slack and Gitter are chat-based platforms 
that allow developers to exchange messages in chat rooms, we believe the type of infor-
mation exchanged within these communities is likely to be even more similar, since the 
purpose of the two platforms is the same. Slack and Gitter are fundamentally similar 
tools serving the same goal and developers interact the same way in these platforms, by 
posting and replying to instant messages. We believe the kind of information exchanged 
within these communities by developers is not impacted by the specific tool they use 
(e.g.,, just like developers use different bug tracking tools to serve the same purpose), 
given that the nature of communicating itself is the same for both Slack and Gitter: 
instant messages in community channels. Therefore, we considered the classification of 

4  https://figshare.com/s/576d328da4a5b50ea155
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Lin et al. (2016) to be a good starting point, while also keeping the door open to add-
ing new categories or redefining the categories altogether should we find it necessary 
during our manual labeling. However, we found that the categorization provided by Lin 
et al. (2016) was very comprehensive and accurately reflected the kind of information 
we identified in messages during our labeling. Therefore, we found that no modifica-
tions or additions were needed to accurately reflect the developer communications in 
GitterCom, which confirms the fact that the fundamental purposes of communication 
between the two tools are very similar.

Second, we decided to use the categorization used by Lin et al. (2016) instead of that 
provided by Stray et al. (2019) because the latter was based on messages from developers 
working at a single software company and could, thus, be less generalizable to other soft-
ware companies or open source software systems, which are our main focus. In addition, 
we performed a close inspection of the categories derived by Stray et al. (2019), and found 
that they are a subset of the finer-grained categorization identified by Lin et al. (2016).

We additionally explored the use of Latent Dirichlet Allocation (LDA), a popular 
automated topic modeling technique to derive topics that could be used to classify the 
messages within GitterCom. However, we found the resulting topics to be inadequate 
for describing the higher-level purpose of the messages and inferior to those already 
proposed in previous work (Lin et al. 2016; Stray et al. 2019). The detailed results of the 
LDA modeling can be found in our replication package.

For the rest of the paper, we use the purpose types, categories, and subcategories 
identified by Lin et al. (2016) for classifying the messages in our dataset. We present the 

Table 1   Hierarchy of purpose types, categories, and subcategories identified by Lin et al. (2016) and used 
in our paper

Purpose Types Purpose Category Purpose Subcategories

Personal benefits Discovery and news aggregation Interesting/relevant blogs
Networking and social activities Similar interests

Similar jobs
Fun Gaming

Sharing gifs and memes
Team-wide purposes Communication Communication with teammates

Communication with stakeholders
Non-work topics

Team collaboration Team management
File and code sharing

Customer support Bugs
Troubleshooting
How-to

Dev-Ops Development operation notifications
Software deployments
Team Q&A

Community support Communities of practice Keep up with specific frameworks/communities
Bouncing ideas off of other people in the com-

munity
Learning about new tools and frameworks

Empirical Software Engineering (2022) 27: 4040 Page 8 of 33
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hierarchy of these purpose types, categories, and subcategories of developer messages 
in Table 1. A brief description of each is presented below, based on Lin et al. (2016):

–	 Personal benefits: Messages in which the developer’s main purpose is to fulfill per-
sonal needs. Messages within this purpose type can be further divided into three cat-
egories:

–	 Discovery and aggregation of news and information, where developers post reliable, 
interesting, and relevant blogs or other sources of information.

–	 Messages supporting networking and social activities with other developers who 
share similar interests or jobs.

–	 Fun messages sharing gifs and memes or for participating in gaming activities.

–	 Team-wide purposes: Messages aimed towards carrying out software development 
activities related to the system being developed. Messages within this purpose type can 
be further divided into four categories:

–	 Communication, representing messages in which developers engage in activities 
such as communication with teammates (e.g., members of a distributed team) dur-
ing meetings and note taking, communication with other stakeholders, or discussing 
non-work topics.

–	 Team collaboration through team management, file and code sharing.
–	 Dev-Ops, including messages that communicate updates regarding the status of the 

system (e.g., development operation notifications about recent changes to the sys-
tem, commits, bug fixes, pushes to the repository, merges), software deployments, 
and team Q&As.

–	 Customer support messages, which can incur when assisting new users of the sys-
tem on how to perform certain tasks, troubleshoot errors, identify bugs.

–	 Community support messages in which developers participate in communities of 
practice or special interest groups, where they can keep up with specific frameworks/
communities, bounce ideas off of other people in the community, or learn about new 
tools and frameworks for developing applications.

3.2 � Data Collection

In order to create GitterCom, we first looked at Gitter communities of active open source 
software systems. A Gitter community can have multiple channels devoted to different con-
versation topics. These channels are chat rooms can be about anything and do not have to 
map directly to something in GitHub. For instance, Gitter’s own community5 has one room 
devoted to communication between developers and one room for customer support.

The communities in our dataset have between 1 and 89 channels, with a median of 2 
channels per community. Similarly to Shi et al. (2021), after inspecting the channels within 
the communities, we found that, at the time of data collection, the majority of the historical 
message exchanges and user activity in Gitter communities of open source projects have 
taken place within their main channel.

5  https://gitter.im/gitterHQ/home

00Empirical Software Engineering (2022) 27: 40    Page 9 of 33 40
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Furthermore, we performed an analysis of the communities by gathering data about the 
channel descriptions and the number of users within the channels in each community as of 
July 2021. Table 2 presents details regarding the channels in the ImageJ community as a 
representative example. As seen in Table 2, among the 10 channels in the ImageJ commu-
nity, the main channel (i.e., imagej/imagej) is the one with the most active members.

Each channel in Gitter can have an associated description provided by the administra-
tors of the channel. Some examples of descriptions are shown in Tables  2 and 3. After 
obtaining the descriptions for the 653 channels associated with the 139 communities in our 
raw data, we found that 218 of the channels do not have a description and 9 of the channels 
have descriptions written in languages other than English. We excluded these 227 channels 
from our analysis and performed an analysis of the descriptions of the remaining 426 chan-
nels. For this analysis, we inspected the descriptions and derive insights on the information 
that they provide to developers looking to join or participate in the communities.

The descriptions of Gitter channels that were not left blank were observed to have 
various lengths, starting at a single word or url, and going all the way up to 53 words 
which provided a thorough outline of the community and what type of communication was 
expected within the channel. We also found four instances of channel descriptions that do 

Table 2   User count per room within the ImageJ Gitter community

Channel Users Description

imagej/imagej-omero 19 Server- and client-side communication between ImageJ and 
OMERO

imagej/imagej 273 Open source scientific multidimensional image processing
imagej/imagej-ops 67 ImageJ Ops: “Write once, run anywhere” image processing
imagej/imagej-server 12
imagej/imagej-updater 14
imagej/hackathon-Ostrava-2019 29
imagej/openmpi-parallelization 3 Developing OpenMPI-aware plugins for Fiji
imagej/hackathon-dresden-2019 32
imagej/imagej.github.io 43 This is where we discuss the ImageJ wiki (https://imagej.net/)
imagej/pyimagej 15 Developer discussion for PyImageJ

Table 3   Some descriptions of the Gitter channels explored during the data collection

Channel Description

ceylon/dev Welcome to the developer’s discussion channel for the Ceylon 
programming language. This is where we yell at each other when 
things are broken again; while it’s a public channel, we consider 
it more internal than ceylon/user, and won’t control our speech as 
much here. Enter with caution :

alcatraz/Alcatraz Xcode package manager
airbnb/caravel DEPRECATED CHANNEL - GOTO https://gitter.im/airbnb/superset
dev-ua/clojure Do you<3 Clojure? Enjoys ClojureScript? Welcome to our com-

munity! FAQ: https://gist.github.com/listochkin/c81c198a2b-
7b044a0dc5

ethereum/light-client https://github.com/zsfelfoldi/go-ethereum/wiki/Geth-Light-Client
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not provide any meaningful information regarding the community (e.g., “intentionally left 
blank”, “this is the topic”). However, the vast majority of the channels’ descriptions pro-
vide at least a description of the system/programming language the channel is devoted to. 
A large percentage of the channels opt for shorter descriptions, with 70.66% of them hav-
ing descriptions shorter than 10 words, while 22.30% of them have descriptions between 
10 and 20 words, and only a 7.04% of the channels have longer descriptions of 20 words or 
more.

During our analysis, we found a total of ten channels which indicate in their descrip-
tions that they are meant for internal communication (i.e., only for developers of the sys-
tem). We found that developers will include several key terms in the channel description 
to indicate that a channel is intended for internal communication (e.g., “internal”, “for 
committers”, “coordinate development”, and “contributors”). Moreover, we found 117 of 
the descriptions contain urls. We inspected these urls and identified that they serve one of 
three main purposes: providing a quick access to a frequently asked question (FAQ) page 
regarding the channel{11}, directing the users to either the website, documentation, or the 
GitHub repository of the system the channel is associated with{66}, or redirecting the user 
to either an alternative channel or a different communication platform (e.g., Discord){42}. 
Two of the descriptions contained urls to both the website and to an alternative communi-
cation channels/platforms.

Given the message and user distribution within rooms, when selecting messages for our 
analysis, we focused on messages posted in the main rooms of Gitter communities. To col-
lect the data for the GitterCom dataset, we first gathered the list of all the Gitter com-
munities highlighted in Gitter’s Explore interface6 on April 1, 2019 (the day of our data 
collection). For new users, such as the user we created when collecting our dataset, the 
“Explore” page is populated by querying up to 50 rooms/communities per tag based on 
a predetermined set of 25 tags (e.g., “Mobile”, “iOS”, etc.), which are hardcoded in the 
source code of Gitter. Gitter’s “Explore” page lists the top rooms by number of users for 
each tag, sorted in descending order and only lists rooms that contain at least one user. 
Thus, our initial step on data collection resulted in a list of 139 Gitter communities. We 
then used Gitter’s API7 via a custom python script to extract all of the messages in the 
main rooms of these communities and their corresponding metadata, from their inception 
until April 1, 2019. This resulted in a set of 2,939,335 messages across all 139 communi-
ties. Our data gathering procedure is similar to the one followed by Sahar et al. (2020). We 
then excluded 3 communities in which the conversations were not in English. Afterwards, 
to facilitate the labeling process, we ran a custom script in Java to convert the messages 
from the JSON format provided by Gitter’s API to CSV format.

The data collection scripts, instructions on their usage, and statistics on message and 
user distribution in the rooms and communities, are found in our replication package (Parra 
2020).

After exploring the collected channels we noticed that the they vary in several ways: 
(i) by membership - the channels contain between 101 and 17,000 members per chan-
nel, (ii) by level of activity, with the least active channel containing only 21 messages, 
and the most active one containing over 423,000 messages since its inception, and (iii) 
by type, as channels can be designated for the development of a particular software sys-
tem, where the developers communicate with each other and with the system’s users, or 

6  https://gitter.im/explore
7  https://developer.gitter.im
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made for building communities of practice in which the members’ discussion revolves 
around particular topics, frameworks, or programming languages, but does not involve 
discussion about the active development of a system.

Since our focus in this work is on developer communications related to the develop-
ment of open source software systems, we were interested in Gitter channels associated 
with active open source systems. To determine this, we verified that the communities 
are linked to a GitHub repository where commits have been made within the past year 
and also made sure that the messages in the Gitter channel contained several conversa-
tions within the last month at the time of coding that were devoted to discussing the 
development of the system. We considered only GitHub since at the time of data collec-
tion, Gitter channels only had the ability to directly link to GitHub repositories and not 
to repositories hosted on different services such as GitLab.

After inspecting the 139 communities, we determined that the presence of at least 
1,000 messages in the main channel in the past year is a good indicator of an active com-
munity, with users engaging in various conversations. Moreover, due to the expected 
human effort required for labeling the data, we chose to focus on 10 communities as it 
was an achievable goal.

We randomly selected channels out of the 139 we found until we had 10 that met 
all of the following selection criteria: (i) they are linked to an active GitHub repository 
where commits have been made within the past year, (ii) they are used as a communica-
tion tool for the active development of an open-source software system, (iii) users have 
been active in the channel in the past year, (iv) they have at least 1,000 messages since 
inception, and (v) they cover different application domains. Table 4 shows the details of 
the selected systems/channels.

From each of the 10 channels, we then collected the 1,000 most recent consecutive 
messages up to April 1, 2019, for a total of 10,000 messages across the 10 channels. We 
choose to label consecutive messages rather than randomly selected messages to ensure 
that the dataset accurately represents the conversations that developers engage in when 
communicating using instant messaging platforms. Moreover, we used the most recent 
messages as they would best represent recent communication and usage of the platform.

Two of the authors then carried out a coding procedure to label these messages, 
using the purpose types, categories, and subcategories identified by Lin et  al. (2016) 
(see Table 1) as labels. More specifically, each message was assigned a purpose type, a 

Table 4   Gitter communities 
included in GitterCom

Community Users Messages Application domain

Marionette (mar 2020) 3014 181108 Javascript framework
jspm (jsp 2020) 1103 27245 Package manager
scikit-learn (sci 2020) 3188 9844 Machine Learning
Xenko3d (xen 2020) 103 2890 Game engine
FreezingMoon (fre 2020) 109 207925 Video game
UIkit (uik 2020) 2155 41265 Front-end framework
jHipster (jhi 2020) 2575 39418 Application generator
Cucumber (cuc 2020) 337 2030 Testing framework
Imagej (ima 2020) 209 8149 Image processing
TheHolyWaffle (thw 2020) 196 15046 VoIP communication
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category describing the main purpose of the message, and a subcategory describing the 
specific activity the message relates to.

The procedure employed when labeling the messages was as follows (See Fig.  1). 
For each of the 10 channels, the 1,000 most recent consecutive messages were indepen-
dently classified by two of the authors into the purpose types, categories, and subcat-
egories outlined in Table 1. Messages within the “communication” category are those 
in which the developers communicate among themselves or with other stakeholders, but 
the messages are not directly associated with a particular software/system. For exam-
ple, messages among developers regarding making Scala objects more like Java objects 
using lambdas would be classified as “communication” as they involve communication 
with teammates but they are not related to a particular system. Other examples of mes-
sages that are classified as “communication” include messages discussing personal pro-
jects not related to the system being developed, or discussions about updating the user 
profile picture on Gitter (classified as “non-work”).

Lastly, if a message did not provide any meaningful information by itself (e.g., a 
single emoji, “k”, “cool”, empty messages), it was classified as “Uninformative”. After 
the individual coding, the two authors got together, discussed and resolved any coding 
conflicts. Then, the messages for which a classification of “Uninformative” was agreed 
upon were discarded and replaced by an equal number of messages from the same chan-
nel. Then, the coding process was applied on these new messages. This procedure was 
repeated until 1,000 messages were obtained for each channel, all having a label other 
than “Uninformative”. In total, 1,072 messages across all 10 channels were labeled as 
“Uninformative” during this process.

In addition to the content of the messages, we used the list of contributors to the 
system’s repository to better classify the messages in cases where the content of the 
message might be insufficient to determine a category. One example were questions 
which could be interpreted as either a customer asking about the system (Customer Sup-
port) or a developer of the system asking about a part of the system they are unfamiliar 
with (Team Q&A). In this particular case, if a question was made by a contributor to 
the system it was classified as Team Q&A, and Customer Support otherwise. It is also 

Fig. 1   Manual annotation procedure
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important to note that for these two categories, the question, answer(s), and any conse-
quent clarification are assigned the same category.

The manual coding procedure took the two authors about 100 hours per person to com-
plete (200 hours total) and spread across three weeks with a Cohen-kappa agreement of 
0.89. The annotators resolved a total of 835 conflicts when labeling the messages. During 
the discussion, the majority of conflicts were messages classified as “customer support” but 
were in fact instances of the “Dev-Ops” category, due to the user asking the question being 
a developer rather than a user of the system. Other instances of disagreement included 
messages labeled as “communication” when they were a better fit for other categories (e.g., 
fun, team management, team Q&A). Although we were open to creating new categories 
during the labeling process, we found the categories by Lin et al. (2016) to be appropriate 
to describe the purpose of all the messages encountered during labeling.

After completing the manual labeling, we obtained GitterCom, a dataset comprised of 
10,000 Gitter messages, 1,000 per Gitter channel, classified according to their purpose. 
The dataset can be found in our replication package (Parra 2021). Some samples of mes-
sages and their categories are presented in Table 5.

4 � Study on the Purpose of Developer Instant Messages in Open Source 
Software Development

Based on the GitterCom dataset we collected, we perform an empirical study aimed at 
gaining insights into how developers use instant messaging communication tools in the 
context of open source software development by analyzing the purpose of the messages 
they exchange. In addition, we are also interested in comparing the actual developer usage 
of instant messaging platforms derived from these messages to the self-perceived usage 
that developers report. In other words, we want to compare what developers believe they 
are using instant messaging platforms for versus what they are actually using them for.

Since one of our goals in creating GitterCom was to enable other researchers to perform 
analyzes and obtain insights into developer communications using instant messaging plat-
forms, we also wanted to see if we could further enable researchers to scale up this kind of 
analysis. While building GitterCom, we experienced first-hand the immense manual effort 
involved in labeling historical chat data. In order to reduce this manual effort for potential 
future studies of developer communications by other researchers, we investigate the use of 
machine learning algorithms to automatically classify developer messages. Moreover, we 
believe this kind of automatic techniques could potentially help also the developer com-
munities, as developers may benefit from being presented with the messages that corre-
spond to a particular purpose and category based on their current information needs, so 
they spend less time going through potentially irrelevant information.

With all this in mind, we formulated the following research questions that we aim to 
address in this study: 

	RQ1.	What is the purpose of the instant messages written by developers when using 
chat platforms in the context of open source software development?

	RQ2.	How does the self-perceived usage of instant messaging platforms reported by 
developers compare to their actual usage of these platforms?

	RQ3.	Can machine learning classifiers be used to automatically identify the purpose of 
messages exchanged in developers’ instant messaging communications?
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4.1 � Methodology

To answer RQ1, we performed a descriptive statistics analysis on the purpose categories of 
the developer messages in GitterCom. In particular, we investigated the percentage of mes-
sages in each purpose category across the entire dataset, as well as the number of messages 
in each category, in each of the systems in GitterCom.

To answer RQ2, we compare the results obtained in RQ1, which reflect the actual pur-
poses that developers use instant messaging platforms for, with the self-perceived usage 
of these platforms reported by developers in the survey responses collected by Lin et al. 
(2016). This allows us to understand whether the categories of Lin et al. (2016) found on 
Slack through surveys are applicable to messaging data on Gitter, and if so, how preva-
lent each category is in the two data sources. Since we used the same categories as Lin 
et al. (2016), we can directly compare and contrast what developers believe they use instant 
messaging for with what they actually use these tools for. Although we contrast results 
derived from two different chat-based instant messaging platforms, namely, Slack, used by 
Lin et al. (2016) and Gitter, used to collect GitterCom, the two tools offer extremely similar 
functionality and have the same goal, and the instant messages collected, as well as the 
survey-based opinions do not depend on any specific features of the two platforms.

To answer RQ3, we explore the use of several supervised machine learning algorithms, 
both traditional and deep learning-based, to automatically determine the categories of mes-
sages exchanged by developers. We first describe the methodology we used to train these 
algorithms, followed by a description of the algorithms themselves. We also release the 
complete scripts containing the implementation we used for these algorithms in our repli-
cation package (Parra 2021).

As later described in the results of RQ1, we noticed that messages in GitterCom have 
mostly “team-wide” purposes. Due to the low frequency of messages for “personal ben-
efit” and “community support” purposes, it is unfeasible for machine learning classifiers 
to learn meaningful boundaries for each of these categories. Therefore, we aggregated 
these messages into a single category called “Other purposes” for the scope of this research 
question. Therefore, the classes considered for this research question are the four categories 
under the “team-wide” purpose type in Table 1 and the fifth category, “Other purposes”.

We train and evaluate the performance of the various multi-class machine learning clas-
sifiers on predicting the category of each message among the five possible ones using the 
ground truth in GitterCom. We also compare the machine learning algorithms against a 
baseline represented by a random classifier. For the random baseline classifier, we used 
Python’s stratified DummyClassifier. The baseline classifier predicts classes for the sam-
ples randomly while respecting the training set’s class distribution.

For our analysis, we first removed punctuation, numbers, special characters and com-
mon English stopwords from the data, afterwards, we performed 10-fold cross-validation 
using the standard implementation of each algorithm in the scikit-learn machine learning 
library for Python. For the LSTM and CNN algorithms we use the Keras8 framework. We 
first executed the classifiers without any special parameter tuning. This allowed us to first 
compare the classification algorithms in their default state. Since additional tuning can fur-
ther improve performance, we then selected the top two classifiers in terms of accuracy and 

8  http://keras.io/
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performed hyper-parameter tuning using 10-fold cross-validation to find the best param-
eters for each model.

To evaluate the classifiers, we use standard evaluation metrics which have been previ-
ously used in machine learning applications on software engineering problems (Seiffert 
et al. 2014; Panichella et al. 2015). Since we are interested in the overall performance of 
the classifiers, we use accuracy as our goal metric. However, we also report precision and 
recall for completeness. The definitions of these metrics are provided below.

Accuracy is the ratio of properly classified samples out of the total number of samples in 
the dataset and its formula is: Accuracy = tp+tn

total−number−of−samples
 , where tp is the number of 

true positives and tn is the number of true negatives.
Recall is the computed as the number of true positives over the number of true positives 

plus the number of false negatives. It measures the ability of the classifier to identify the 
positive samples. Its formula is: Recall = tp

tp+fn

Precision is the ratio of true positives over the number of true positives plus the number 
of false positives. It measures the ability of the classifier not to label as positive a sample 
that is negative. Its formula is: Precision =

tp

tp+fp

We performed hyperparameter tuning for each of these classifiers based on accuracy. 
During the hyperparameter tuning each classifier is trained and evaluated via 10-fold cross 
validation with various hyperparameter configurations using Python’s grid search9. For 
LSTM and CNN, however, we performed random search, as it has been shown to be more 
efficient than grid search for hyperparameter optimization in neural networks (Bergstra and 
Bengio 2012). The scripts used for hyperparameter tuning can be found in our replication 
package (Parra 2021).

In our evaluation of the machine learning algorithms we used the best performing con-
figurations for each classifier resulting from the hyperparameter tuning.

In the following subsections we now describe the supervised machine learning classifi-
cation algorithms we used in our study. Supervised classification algorithms aim at produc-
ing a learning model from a labeled training set. In our case, we have a multi-class classifi-
cation problem in which each message can be classified using one of 5 purpose categories. 
Several algorithms have been proposed to solve this type of problem (Aly 2005). In gen-
eral, machine learning algorithms address the multi-class classification problem either by a 
natural extension of the algorithms designed for binary classification or by converting the 
multi-class classification problem into a set of binary classification problems that are effi-
ciently solved using binary classifiers.

In our work, we explore the following 9 multi-class classifiers, using the standard term 
frequency-inverse document frequency (TF-IDF) word vectors as features, as done in pre-
vious software engineering research (Poché 2017): Stochastic Gradient Descent (SGD) 
(Bottou 2010), Decision Trees (DT) (Safavian and Landgrebe 1991), Random Forest (RF) 
(Breiman 2001), k-Nearest Neighbor (kNN) (Khan et  al. 2010), AdaBoost (Hastie et  al. 
2009), Naive Bayes (NB) (McCallum and Nigam 1998), Support Vector Machines (SVM) 
(Cortes and Vapnik 1995), and two neural network architectures: a Recurrent Neural Net-
work composed of Long Short-term Memory units (LSTM) (Gers et al. 2002), and a Con-
volutional Neural Network (CNN) (Kim 2014). We present a brief description of each clas-
sification algorithm below. For a more in-depth discussion of each algorithm, we direct 
the interested reader to the papers that initially introduced them and for a side-by-side 

9  https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html

00Empirical Software Engineering (2022) 27: 40    Page 17 of 33 40



1 3

comparison, we recommend the reviews of these algorithms (Singh et al. 2016; Khan et al. 
2010).

4.1.1 � Stochastic Gradient Descent (SGD)

Stochastic Gradient Descent (SGD) is a simple, yet very efficient approach to discrimina-
tive learning of linear classifiers under convex loss functions such as (linear) Support Vec-
tor Machines and Logistic Regression. Even though SGD has been around in the machine 
learning community for a long time, it has more recently received a considerable amount 
of attention in the context of large-scale learning as it has been shown to have high perfor-
mance for large-scale problems (Bottou 2010).

4.1.2 � Decision Trees (DT)

A Decision Tree is a classification algorithm that learns simple decision rules inferred from 
the data features. The DT rebuilds the manual categorization of data by constructing well-
defined true/false-queries in the form of a tree structure, hence the name. In a DT structure, 
leaves represent the corresponding category of documents and branches represent conjunc-
tions of features that lead to those categories (Safavian and Landgrebe 1991).

4.1.3 � Random Forest (RF)

Random Forest is part of a set of machine learning classifiers known as ensemble clas-
sifiers. Ensemble classifiers combine the predictions of several base classifiers built with 
a given learning algorithm in order to improve the generalizability and robustness over a 
single classifier (Breiman 2001).

An RF is a combination of multiple independent decision trees, where each tree is built 
from a sample drawn with replacement from the training set. When splitting a node dur-
ing the construction of the tree, the split that is chosen is no longer the best split among all 
features. Instead, the split that is picked is the best split among a random subset of the fea-
tures. As a result of this randomness, the bias of the forest usually slightly increases (with 
respect to the bias of a single non-random tree). However, due to averaging, its variance 
also decreases. The amount decreased is usually more than enough to compensate for the 
increase in bias, hence yielding an overall better model (Breiman 2001).

4.1.4 � AdaBoost

Like RF, AdaBoost is an ensemble classifier. AdaBoost is an iterative procedure that com-
bines many weak classifiers. Starting with an unweighted training set, AdaBoost builds 
an initial classifier to produce a classification. If a training data point is misclassified, the 
weight of that training data point is increased (boosted). Then, a new classifier is built 
using the new weights. The classification and boosting procedure is repeated to produce 
multiple classifiers. Lastly, the final classifier is defined as the linear combination of the 
classifiers from each stage. AdaBoost has been shown to minimize the exponential loss, 
making it highly competitive in terms of misclassification error rate (Hastie et al. 2009).
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4.1.5 � k‑Nearest Neighbor (kNN)

K-Nearest Neighbor aims to find the k training samples closest in distance to a new ele-
ment and then predicts the label of this new element from its k-nearest points. The dis-
tance can generally be any similarity function. Despite its simplicity, kNN is often suc-
cessful in classification situations where the decision boundary is very irregular (Khan 
et al. 2010).

4.1.6 � Naïve Bayes (NB)

Naïve Bayes is an efficient linear probabilistic classifier that uses Bayes’ theorem to iden-
tify strong (naive) assumptions between features. NB assumes that all of the features in a 
given class are conditionally independent of each other Russell and Norvig (1995).

In the context of text classification, the multinomial NB model captures word frequency 
information in the documents using a unigram language model with integer word counts. 
Each document is then typically represented as a vector of integer or real number attributes, 
which indicate the importance of words in the document (McCallum and Nigam 1998).

4.1.7 � Support Vector Machine (SVM)

Support Vector Machine is a supervised machine learning algorithm used for binary classi-
fication, regression analysis, and other tasks, like outlier detection in multidimensional data 
spaces. An SVM seeks to find a hyperplane, which separates two classes of samples by 
the maximal margin, in a high dimensional feature space. It can be mathematically proven 
that the hyperplane parameters depend only on a subset of the training samples, which are 
called support vectors. To classify a test sample, it is first projected to the feature space and 
then assigned a class based on which side of the hyperplane it lies on Cortes and Vapnik 
(1995).

4.1.8 � Long Short‑Term Memory (LSTM)

Deep learning classification algorithms that automatically learn compositional represen-
tations of documents have been successfully applied in the fields of speech recognition, 
machine translation, text information retrieval, and natural language processing (Mikolov 
et al. 2011; Deng 2014; West 2000). The success of deep learning in the NLP field and 
other software engineering tasks encouraged us to apply this type of approach for clas-
sifying messages in software development chat communications. We used the pre-trained 
Glove word embeddings (Pennington et al. 2014). We also evaluated the neural networks 
using the software engineering word embeddings, in the word embedding layer (Efstathiou 
et al. 2018).

An LSTM is a type of neural network that uses enriched gating units to avoid the scal-
ing effect, by ensuring that the scaling factor is fixed to one. In an LSTM unit, the memory 
block contains one or more memory cells and three adaptive, multiplicative gating units 
shared by all cells in the block. Each memory cell has, at its core, a recurrently self-con-
nected linear unit called the Constant Error Carousel (CEC). The CEC provides short-term 
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memory storage for extended periods by recirculating activation and error signals indefi-
nitely (Gers et al. 2002).

In this paper, we use an LSTM architecture composed of five layers. The first layer is a 
trainable embedding layer that maps the input text into low-dimensional word vectors, with 
two LSTM layers, followed by two fully connected layers with dropout in between.

4.1.9 � Convolutional Neural Network (CNN)

A Convolutional Neural Network is a type of neural network that uses a combination of 
layers that apply a convolution operation to local features to extract those that encode 
semantic features of words in their dimensions (Kim 2014).

In this paper, we use a CNN architecture composed of four layers. The first layer is a 
trainable embedding layer that maps the input text into low-dimensional word vectors, with 
two convolutional layers with dropout, followed by one fully connected layer.

4.1.10 � Over‑/Under‑sampling

In addition to the machine learning algorithms, we explore the use of under-sampling and 
over-sampling algorithms to mitigate the effect of data imbalances and non-linear separa-
bility in our dataset. More specifically, we use SMOTE, Tomek links, and the Neighbor-
hood Cleaning Rule. We use the Python implementation of these algorithms in the imbal-
anced-learn library10.

Fig. 2   Distribution of messages by category

10  https://imbalanced-learn.readthedocs.io/en/stable/api.html
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SMOTE is an over-sampling approach in which “synthetic” examples of the minority 
classes are created by interpolating existing minority samples rather than by over-sampling 
with replacement. SMOTE focuses on generating new minority class instances near bor-
derlines with SVM to help establish a boundary between classes (Chawla et al. 2002).

Tomek Links is an under-sampling approach to remove the majority samples involved in 
a Tomek link and increases the linear separability of the classes since the retained bound-
ary samples are better chosen (i.e., close to the decision boundary). A Tomek link exists 
when two samples from distinct classes are the nearest neighbors of each other. Samples 
that create a Tomek link have been shown to be either borderline or noisy (Tomek 1976).

The Neighborhood Cleaning Rule (NCL) is an under-sampling approach that aims to 
identify noisy and redundant data points to be removed using the edited nearest neighbor 
rule. In particular, NCL removes points that are misclassified by their 3-nearest neighbor. 
Secondly, the neighbors of each positive sample are found and the ones belonging to the 
majority class are removed. The NCL aims to improve the classification of underrepre-
sented classes while retaining the ability to classify the other classes with an acceptable 
accuracy (Laurikkala 2001).

4.2 � Results

4.2.1 � RQ1 ‑ Purpose of Developer Instant Messages in GitterCom

Table 6 shows the number of messages per category across the 10 systems in our dataset 
and Fig. 2 shows the overall percentage distribution across categories for the entire Git-
terCom dataset. Our results show the purpose of messages based on the purpose categories 
defined by Lin et al. (2016) as we did not encounter any messages that required the crea-
tion of new categories to describe their purpose. However, a larger dataset which samples 
different communities and users may lead to different results and messages that require the 
creation of additional categories needed to describe their purpose.

As seen in Fig. 2, the percentages by category vary greatly. Overall, 83% of the mes-
sages are meant to support activities directly associated with the development of the 
system(i.e., communication, Dev-Ops, team collaboration, and customer support), 14.31% 
of the messages are related to engagement with communities of practice, and only 2.69% 
of the messages are linked to personal benefits (i.e., discovery and news, fun, and network-
ing and social activities). Moreover, about 52.75% of the messages involve communication 
between the developers and stakeholders, 27.75% of the messages communicate updates 

Table 6   Distribution of messages per purpose category

Category cuc fre ima jhi jsp mar sci thw uik xen Overall

Communication 325 794 490 446 635 695 506 583 321 480 5275
Customer support 442 0 150 239 0 0 4 145 451 0 1431
Dev-Ops 198 183 308 269 305 235 464 240 190 383 2775
Discovery and news 13 1 10 9 7 2 3 15 5 32 97
Fun 0 2 0 0 0 39 0 0 1 0 42
Networking and social activities 0 0 1 3 0 3 0 0 0 32 39
Participation in communities of practice 4 2 9 15 21 13 13 10 12 54 153
Team collaboration 18 18 32 19 32 13 10 7 20 19 188
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regarding the status of the system, and 1.53% of the messages involve customer support. 
Based on the hierarchy presented in Table 1, we notice that developers’ use of Gitter instant 
messages in practice focuses mostly on team-wide purposes (83% of all messages).

We found that in the communication category, 74.2% of the messages involve communi-
cation between team members and 25.8% of the messages discuss non-work related topics. 
We did not find any messages related to communication with other stakeholders other than 
developers and customers.

Another interesting finding is that although the channels in our dataset are dedicated to 
the active development of a particular system, we can see some instances of messages by 
developers or customers of the system inquiring about particular technologies and frame-
works or to bounce ideas on how to implement something using either the system in ques-
tion or a related technology.

The high presence of messages that communicate updates regarding the status of the 
system (i.e., Dev-Ops) show that developers still need to communicate some of the updates 
such as bug fixes despite the presence of integrations with GitHub and JIRA within Git-
ter. This finding could indicate that in their current state, these issue tracking tools or their 
integrations may not be displaying all the relevant information. However, further research 
is needed to assess whether this is the case and to determine the information required to 
provide meaningful project status update notifications to other developers.

Moreover, the low percentage of messages associated with customer support shows that 
despite the Gitter channels being open for users of the system to obtain support, Gitter is 
not a widely adopted medium for the users of these communities to directly contact the 
developers for this purpose. We can further find evidence of this phenomenon in Table 6, 
where we see that some of the channels did not have any messages related to customer 
support. In some communities such as cucumber, the lack of this type of messages in our 
dataset can be explained by our data collection focusing on the main channel and the pres-
ence of a channel dedicated to people asking questions. However, other communities such 
as ImageJ, Hibernate and FreezingMoon do not have a dedicated channel for customer 
support.

Additionally, as seen in Table 6, the majority of the systems have the largest category 
of messages dedicated to communication between developers, which is also reflected in 
the overall trend shown in Fig.  2. However, by focusing on individual channels, we can 
observe that half of the channels also have a large amount of messages dedicated to cus-
tomer support (i.e., Cucumber, ImageJ, JHipster, TheHolyWaffle, and UIKIT). These 
observations indicate that further work is needed in the analysis of these communications 
to determine potential barriers or facilitators for customers when using these platforms to 
obtain support.

We believe the reason for the low presence of messages related to personal benefits and 
community support purposes in our dataset is due, in part, to the nature of the channels 
themselves. In particular, we observed that channels for active open source systems follow 
certain informal rules to keep the use of these particular channels focused on team-wide 
purposes. For instance, the scikit-learn Gitter channel description reads, “...Please feel free 
to ask specific questions about scikit-learn. Please try to keep the discussion focused on 
scikit-learn usage and immediately related open source projects from the Python ecosys-
tem.” Moreover, in some cases, some of the developers act as content moderators by asking 
people to keep the content of the channel relevant, “please let’s keep this chat uikit related, 
thanks :-)” or, “I’d like to keep stuff in this channel in English so everyone present under-
stands what’s being talked about.” These informal rules and moderation limit the use of 
these channels for other purposes.
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Our analysis indicates that the use of instant-messaging tools by software developers 
will vary depending on the system and type of channel they interact with. In particular, 
based on the content of the messages, we see that the purpose of messages posted within 
the channels dedicated to the development of open-source software systems is mostly 
focused on the development of the system itself (i.e., team-wide purposes). We believe that 
other purposes are likely to be more prevalent in separate, dedicated channels (e.g., chan-
nels that focus on communities of practice such as the ones explored by Chatterjee et al. 
(2019, 2020)).

4.2.2 � RQ2 ‑ Comparison Between Developer Self‑Reported Usage and Actual Usage 
of Instant Messages

Figure 3 shows the contrast between the percentage of developers that self-reported using 
Slack for a particular purpose in Lin et al. (2016) and the percentage of users that actually 
used instant messages in GitterCom for the same purpose. A user is considered to use the 
messaging platform for a particular purpose if they authored at least one message catego-
rized with that purpose in GitterCom. Note that the percentages across purposes can add to 
more than 100% as each user can use these instant-messaging communication systems for 
more than one purpose.

As seen in Fig. 3, the percentages of self-reported usage and actual-usage by purpose 
vary in some categories but are similar in others. In particular, we see that the distribution 
of usage for networking and social, discovery and news, team collaboration, and communi-
ties of practice are rather similar, whereas the distribution of usage for fun, customer sup-
port, communication, and Dev-Ops are different. More specifically, there is a considerably 
higher usage for purposes like Dev-Ops and customer support in GitterCom compared to 
the self-reported usage, which is to be expected in communities that actively support a 

Fig. 3   Self-reported usage and actual usage per purpose

Fig. 4   Usage per purpose for each system in GitterCom 
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software system such as the ones in GitterCom. Conversely, we see a considerably lower 
percentage of developers in GitterCom using the platform for fun and general communica-
tion, specifically for communication associated with non-work topics. These differences 
are somewhat to be expected due to the rules and moderation generally present in the chan-
nels in GitterCom that aim to keep the content of the channels relevant to the system being 
developed, thus reducing the number of messages related to fun and communication about 
non-work topics.

The similar distribution of self-reported and actual usage for networking and social, dis-
covery and news, team collaboration, and communities of practice purposes suggests that 
GitterCom is representative of developer communications via instant messaging platforms 
that align with these purposes and that they are likely to be present to a similar degree 
whenever chat-based instant messaging is used by developers.

GitterCom was derived from labeling data from actual communities rather than derived 
from interviewing developers. Therefore, we are able to take a closer look at the usage in 
GitterCom to provide an initial insight on how developers use chat-based communication 
platforms, by looking at the usage per category at a system level. For this purpose, we 
performed the same analysis of developers’ actual usage across GitterCom, but aggregat-
ing usage per system. Is it to note that this represents the usage by users in our dataset and 
not all the users in the corresponding channels. In particular, it represents the usage by 111 
users in Cucumber, 8 users of Freezing Moon - Ancient Beast, 25 users in ImageJ, 13 users 
in JSPM, 50 users in Jhipster, 6 users in MarionetteJS, 8 users in SciKit-Learn, 15 users 
in TheHolyWaffle, 43 users in UIKit, and 33 users in Xenko. Figure 4 shows the contrast 
between the percentage of developers that used Gitter for each purpose in each system in 
GitterCom. Although GitterCom is the largest dataset of its kind, it is still limited in size 
and the results from this analysis can only provide an initial insight into developers’ instant 
messaging actual usage in different communities, which can be used as a starting point for 
further research into chat-based communications and communities.

Fig. 5   Distribution of the ground truth messages into the five categories used for automatic classification
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Upon inspecting the usage distribution per system we can see that the majority of the 
systems in GitterCom follow a similar distribution to the one seen in Fig.  4. In particu-
lar, Communication, Dev-Ops, and Team Collaboration are the categories with the highest 
usage, whereas developers rarely use these communication channels for Fun, Discovery of 
news, and Networking purposes. Nonetheless, there are communities that do not follow the 
general distribution. For example, the UIKIT community shows a higher participation in 
customer support than Dev-Ops.

Overall, our results show that there are differences in how developers perceive and self-
report using instant messaging platforms (based on the study by Lin et al. (2016)) and how 
they actually use them in GitterCom. The results show that across different communi-
ties, the most frequent usages of chat-based platforms are general purpose communica-
tion and updates regarding the software system (i.e., Dev-Ops). This phenomenon can be 
a bi-product of the more focused goal and nature of the OSS development communities in 
GitterCom.

4.2.3 � RQ3 ‑ Automatic Classification of Developer Instant Messages

The distribution of the ground truth data in the 5 categories used in the automatic classifi-
cation process is shown in Fig. 5.

Columns 2-4 of Table  7 show the results of the classification algorithms in terms of 
accuracy, precision, and recall. We can see that all the classifiers outperform the random 
classifier used as the baseline. In particular, the random classifier achieves an accuracy of 
0.37, whereas, all the other classifiers achieve accuracies ranging between 0.43 and 0.58. 
The top classifiers are LSTM, with an accuracy of 0.58, followed by Stochastic Gradient 
Descent which achieved an accuracy of 0.54. However, despite outperforming the random 
baseline, the overall performance of the classifiers is still low which would limit the appli-
cability of the automatic classification on Gitter channels.

Table 7   Performance of the machine learning classifiers on GitterCom. LSTM* = LSTM with SE word 
embeddings; CNN* = CNN with SE word embeddings

Bolded entries indicate the highest accuracy given each sampling strategy

Sampling strategy None SMOTE Tomek Links NCL

Classifier Acc Pre Rec Acc Pre Rec Acc Pre Rec Acc Pre Rec

Random 0.37 0.24 0.24 0.24 0.25 0.22 0.37 0.24 0.24 0.73 0.25 0.25
SGD 0.54 0.33 0.26 0.38 0.28 0.24 0.53 0.42 0.28 0.87 0.69 0.41
Naive Bayes 0.53 0.32 0.26 0.53 0.28 0.27 0.53 0.32 0.25 0.86 0.60 0.47
AdaBoost 0.53 0.34 0.27 0.47 0.29 0.26 0.53 0.26 0.28 0.86 0.62 0.43
SVM 0.53 0.11 0.20 0.48 0.28 0.26 0.53 0.13 0.25 0.84 0.21 0.25
Random Forest 0.53 0.38 0.29 0.43 0.28 0.25 0.53 0.41 0.29 0.88 0.69 0.56
Decision Trees 0.52 0.38 0.30 0.45 0.29 0.25 0.53 0.40 0.29 0.88 0.70 0.57
K-NN 0.43 0.27 0.25 0.47 0.30 0.26 0.51 0.44 0.28 0.80 0.63 0.46
LSTM 0.58 0.50 0.40 0.41 0.51 0.47 0.56 0.46 0.40 0.75 0.47 0.31
CNN 0.53 0.38 0.30 0.41 0.28 0.30 0.58 0.40 0.47 0.74 0.39 0.34
LSTM* 0.53 0.15 0.23 0.53 0.12 0.22 0.53 0.12 0.22 0.53 0.12 0.22
CNN* 0.53 0.21 0.24 0.32 0.21 0.28 0.52 0.20 0.24 0.53 0.18 0.24
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After inspecting more closely the results of the classifiers, we identified that their 
performance was likely hindered by misclassifications caused by 1) vocabulary overlap 
between the majority class and the second-largest class and 2) the imbalanced distribu-
tion of the training data among the classes (see Fig. 5), causing all of the classifiers to 
be biased towards the majority class.

To address the negative effects of data imbalances and non-linear separability in 
our dataset, we performed experiments with SMOTE as oversampling algorithm, and 
NCL and the removal of Tomek links as under-sampling algorithms. Columns 5-13 
of Table 7 show the results for each of these experiments. Regarding the performance 
of the classifiers, our results show that over-sampling the smaller classes negatively 
impacts the performance of the classifiers, the removal of Tomek links does not have a 
major impact on the performance, and under-sampling using NCL improves the perfor-
mance of all the classifiers.

SMOTE has a negative impact on the classifiers because although it addressed the 
imbalance of the dataset, it generated synthetic data that fell between the two largest 
classes, therefore decreasing their linear separability.

As shown in Table 7, using the NCL under-sampling algorithm achieves higher per-
formance than using over-sampling or the removal of Tomek Links under-sampling. 
It is to note that the neural networks classifiers only slightly outperform the baseline 
classifier in terms of accuracy after applying the NCL under-sampling algorithm. This 
result could be explained by neural network classifiers’ performance being reliant 
on the availability of large amounts of data for training (Lai et al. 2015), while NCL 
reduces the amount of training data available.

The overall higher performance of the NCL sampling strategy is due to the NCL 
algorithm being designed to prevent the classifiers from overfitting towards the major-
ity classes (Laurikkala 2001), whereas the synthetic data produced by SMOTE solves 
the data imbalance issue but it does not address the linear separability of the samples. 
We see that the best performing classifiers after applying the NCL under-sampling 
algorithm are Random Forest and Decision Trees.

When using the software engineering word embeddings in the deep learning 
approaches (LSTM* and CNN* in Table 7) we found that the neural networks achieved 
a lower performance across all the sampling approaches. The reduced performance 
may be due to the specificity of the word embeddings which seems to hinder the ability 
of the neural networks to classify the messages which contain a large amount of non-
software engineering specific tokens. Future research in the field could benefit from 
exploring a combination of the software engineering word embeddings with dataset-
specific word embeddings.

We further investigate our results by applying statistical tests on the performance 
of the approaches. In particular, we first determined if the distributions of the classifi-
ers’ accuracy were normally distributed using the Shapiro-Wilk test with a significance 
level of 0.01 and found that they were not normally distributed. Next, we compare 
the accuracies of the best performing classifiers (Random Forest and Decision Trees) 
with those of each of the other machine learning classifiers, using the one-sample 
Mann-Whitney U test (since the observations were not normally distributed) and apply 
the Bonferroni correction to adjust the p-values. The results show that the difference 
between the performance of Random Forest and all the other classifiers is statistically 
significant, except for Decision Trees, as confirmed by the results of the Mann-Whit-
ney U tests with 95% confidence interval (p-values < 0.05 and a large Cliff’s delta 
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effect size). The tests indicate no statistically significant difference between Decision 
Trees and Random Forest.

5 � Potential Research Applications

Previous studies have investigated the growing use of alternative communication means by 
developers (Lin et al. 2016; Käfer et al. 2018; Stray et al. 2019). The results of these stud-
ies show the rise of instant messaging tools and the impact they have on reshaping team 
dynamics and the communication landscape in increasingly distributed software develop-
ment environments. Future studies could make use of GitterCom to study the relationship 
between open source development activity and communication trends in chat based plat-
forms. In particular, GitterCom enables further research to analyze and understand patterns 
in developer communications such as the works by Ehsan et al. (2020); Sahar et al. (2020) 
and to address important questions such as: How do software teams use tools like Gitter 
to communicate among themselves and with other stakeholders? How do team dynamics 
reflect in team communications? Do developers exchange different types of messages at 
different times in the software life cycle? Do developers new to a project post different 
types of messages than the more senior developers? How can we facilitate users of the sys-
tems to communicate directly with the developers through these communication platforms?

GitterCom can also be used as a training dataset for machine learning approaches for 
automatic classification of new messages based on their purpose. The study presented in 
Section 4 lays the foundation for this and shows that such a classification is feasible, with a 
relatively high accuracy.

A potential application of GitterCom would be to leverage the data to automatically 
organize messages into threads or to create summaries of developer conversations based 
on their purpose, such that developers that were away for a while or newcomers to a project 
could quickly catch up on important conversations they missed. Machine learning applica-
tions could further complement the developers’ workflow with information from external 
sources related to the messages exchanged, such as Stack Overflow.

Another avenue for future work would be to use GitterCom in order to perform large 
scale replications of previous studies that analyzed developer communications in Slack 
(Alkadhi et al. 2017a; Chatterjee et al. 2019), but used much smaller or restricted datasets 
(e.g., communications in student projects or a particular software company). These replica-
tions on GitterCom could help corroborate previous findings or uncover new information 
about how developers communicate through instant messaging tools. One example of such 
work that could benefit from a large scale replication is work on the identification of mes-
sages that contain rationale for the decisions made by developers throughout the software 
life cycle (Alkadhi et al. 2017b). Thus far, work on rationale has been limited to analyzing 
the chat messages of three student teams working on a multi-project capstone course.

6 � Threats to Validity

In this section, we describe the threats to validity we faced in our work and how we 
addressed them.
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Regarding threats to external validity, due to the size of the dataset, our results may not 
be generalizable to all the software development chat rooms available.It is to note that in 
this work, we focused on Gitter channels associated with open source software systems 
and we only manually analyzed a subset of all the messages within the selected channels 
and communities. Therefore, the messages in our dataset may not be representative of all 
developers or of all messages exchanged by developers in all the software development 
instant messaging platforms and communities. Our study also focuses on Gitter channels 
that are linked to GitHub repositories as Gitter did not have the ability to directly link to 
other hosting services at the time of data collection, therefore the results may not be reflec-
tive of newer Gitter channels that are linked to GitLab repositories. Moreover, the use of 
modern enterprise chat room tools is likely to vary in channels that focus on communities 
of practice, such as the ones explored by Chatterjee et al. (2019). Nonetheless, we aimed 
to increase the generalizability of our findings by including channels of various sizes that 
cover a wide variety of application domains. We used a set of selection criteria for the sys-
tems included in GitterCom to ensure that the chosen channels and the results are focused 
on communications surrounding open source software development. However, due to our 
focus on the main channels within these communities, which showed a higher user activity, 
our results might not be reflective of other channels with a lower level of activity within 
the same communities. Furthermore, it is possible that the distribution of messages across 
different purposes in GitterCom is not representative of all developer communications. We 
mitigated this threat by considering a varied set of communities in the dataset.

Although our results did not require the creation of new categories to describe the mes-
sages in GitterCom, future work may require new categories to be created in addition to 
those derived by Lin et al. (2016) as the communication of developers evolves over time.

Moreover, our approach can be applied to any existing Gitter channel. The imbalance 
of our dataset is another threat to validity. To mitigate the impact of class imbalance, we 
applied robust over-sampling approaches as well as under-sampling approaches, since it 
has been shown that over-sampling can cause over-fitting for classical machine learning 
models, especially for minority classes (Buda et al. 2018). Moreover, since under-sampling 
decreases the amount of data available for training it may lead to loss of information about 
the majority class. To mitigate this risk, we applied the NCL under-sampling algorithm 
which aims to prevent the classifiers from over-fitting towards the majority classes while 
minimizing any impact on the classification performance of the majority classes (Laurik-
kala 2001).

Threats to internal validity we faced in this work relate to whether there is sufficient 
evidence to support our findings. The main threat to validity is that the categorization of 
the messages in GitterCom does not properly reflect the purpose of the developer mes-
sages. Moreover, when comparing the purpose of messages within a community, the 
number of users in our dataset represents only a part of all the users in the communities. 
Therefore, future work analyzing a larger sample of users or different communities may 
lead to different results. In order to mitigate this threat, we leveraged a set of categories 
derived from previous work as a coding guide with detailed instructions, and had two raters 
independently label each message. This was followed by the raters meeting to resolve any 
conflicts and update the coding guide accordingly, resulting in an inter-rater agreement of 
0.89, which is considered high. The second aspect that could negatively impact the internal 
validity of the results is the sampling strategy when selecting the messages to label. We 
mitigated this threat by selecting the most recent messages rather than random selection in 
order to ensure the data reflects current practices and that GitterCom retains the historical/
sequential information associated with chat communications.
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Threats to construct validity refer to how we measured the results of our studies. We 
mitigated threats to construct validity in each study by: 

	 (i)	 Using an established set of categories from previous work and having two authors 
individually annotate the dataset and then discussing any discrepancies that occurred,

	 (ii)	 Using well-tested implementations of the machine learning classifiers and sampling 
algorithms,

	 (iii)	 Employing common performance evaluation metrics, and
	 (iv)	 Using a robust and established evaluation framework from the Natural Language 

Processing field with 10-fold cross-validation and hyper-parameter tuning (Liu and 
Liu 2008).

7 � Conclusions and Future Work

We introduced a dataset, called GitterCom, which is the largest manually labeled and 
curated dataset of software development communications through instant messaging plat-
forms to date. GitterCom contains 10,000 Gitter messages collected from the main Gitter 
channels associated with the development of 10 open source software systems. The mes-
sages were manually labeled according to their purpose, using the message classification 
hierarchy first introduced by Lin et al. (2016).

Our results indicate that developers and other stakeholders use the Gitter channels dedi-
cated to open source systems mostly for activities related to the active development of the 
system. Our findings indicated that Gitter is also used by developers as an alternative to 
communication platforms like Stack Overflow or forums to inquire about new technologies 
or coding challenges they face. Lastly, only a small percentage of the use of these channels 
was devoted to personal benefits or community support. We also found that the distribution 
of messages across various purposes in the channels dedicated to open source development 
can vary significantly from system to system. Furthermore, when comparing the actual-
usage in GitterCom with the self-reported usage by developers based on the work of Lin 
et al. (2016), we found that they present some similarities and differences. The differences 
mostly consist of a higher percentage of messages related to Dev-Ops and Customer Sup-
port, as well as a lower percentage of messages dedicated to participation in communities 
of practice, fun, and communication about non-work topics in GitterCom compared to Lin 
et al. (2016). These differences could be explained by the fact that the channels included 
in GitterCom are dedicated to open source development, whereas the results in Lin et al. 
(2016) are based upon responses to a more general question on the use of Slack by devel-
opers. Moreover, by analyzing the usage on a per-channel basis, we found that the majority 
of channels in our dataset follow a similar distribution to that of GitterCom as a whole.

In their analysis of the use of a single Slack community within a large company, Stray 
et al. (2019) indicated that the team members should agree upon and communicate to new 
members clearly defined guidelines on how to use the instant messaging tools. During our 
study of GitterCom, we found that some open source development teams using Gitter as 
their instant messaging tool have such guidelines in place and that the members of the 
development teams actively work to ensure these guidelines are followed. However, we 
also noticed that these guidelines are focused on keeping the information exchanged in the 
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communities related to the development of the system and not on how to organize the com-
munity itself.

We found that the nature and frequency of the messages exchanged in software develop-
ment Gitter chat rooms have an intrinsic imbalance and language overlap across purposes, 
making it difficult for machine learning classifiers to perform well without dealing with the 
class imbalance problem. We found that machine learning classifiers using under-sampling 
achieve higher performance and up to 88% accuracy, which is a very promising result for 
this multi-class classification problem.

Our future work will focus on improving the performance of the classifiers by using 
a larger amount of data. Moreover, future avenues of research include (i) studying how 
the structure of the information exchanged through these channels may impact developers’ 
engagement with other team members and users of the systems, (ii) the design and imple-
mentation of effective mechanisms to present relevant information from instant messaging 
tools that align with the developers’ purpose.

Another avenue for future work would be to develop mechanisms to allow the develop-
ers and other users to manually indicate the purpose of a message upon its creation, similar 
to the way Hyperdialog (Gomes Pimentel et al. 2003) and REACT (Alkadhi et al. 2017a) 
record the conversation threads and rationale of messages, respectively.
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