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ABSTRACT
Socioeconomic indicators are essential to help design and monitor the impact of 
public policies on society. Such indicators are usually obtained through census data 
collected at 10-year intervals, which are not only temporally coarse but expensive. 
Over recent years other ways of collecting data and producing these indicators have 
been explored, in particular using the new surveillance capabilities that remote 
observations can provide. The objective of this paper is to evaluate the assessment of 
socioeconomic indicators using street-view imagery, through a case study conducted 
in a region of Brazil, the Vale do Ribeira, one of the poorest semi-rural regions in Brazil. 
In this study we used socioeconomic indicators collected by the Brazilian Institute 
of Geography and Statistics (IBGE) and used Google Street View (GSV) images as our 
source of remote observations. A pre-trained convolutional neural network (CNN) was 
used to predict socio-economic indicators from GSV. To evaluate the performance of 
the classifier, we performed five-fold cross-validation between the predicted indicator 
and its true value. The best performance was obtained for the highest income class, 
with 80% of correct prediction. We conclude that the method has the potential to 
predict socioeconomic indicators across a large area with social challenges such as 
Vale do Ribeira, and that the network model is general enough to be used even when 
the imagery dataset is from semi-rural areas. This demonstrates the applicability of 
GSV datasets for similar settings and perhaps ensuring their replicability, which is a 
scientific requirement that requires further experimentation/evaluation.

*Author affiliations can be found in the back matter of this article
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1 INTRODUCTION
The primary goal of the United Nations 2030 Agenda for Sustainable Development (2015) is to 
‘eradicate extreme poverty for all people everywhere’ (https://sdgs.un.org/goals/goal1). This goal 
proposes international and national targets and standards for various indicators of economic 
well-being. Establishing the thresholds for these indicators is a challenge but obtaining the 
basic information on these variables around the world is an equal, if not greater, challenge.

Most economic and population statistics used to define a socio-economic indicator are 
obtained through a national census. A census is taken at regular intervals, usually every 10 
years. In order to make international comparisons, the censuses of different countries need 
considerable harmonisation, as there is no global standard for their content. There is also 
no synchronisation in the dates when the censuses are conducted in different parts of the 
world. This variability makes global predictions highly inaccurate. The Covid-19 pandemic has 
illustrated this inadequacy, predictions depending on data collected at widely varying spatio-
temporal scales (Franch-Pardo et al., 2020). In recent years other means to collect socio-
economic data have been explored, including using the new monitoring capacities that remote 
observations, such as satellite imagery, can provide.

Satellite imagery has been used with some success to collect information on socio-economic 
status, particularly using machine learning (e.g. Jean et al., 2016; Xie et al. 2016, Ayush et al., 
2020 and Burke et al., 2021). Although satellite images have good resolution with broad global 
coverage and availability to the public at a reasonable cost, they only contain information on 
the vertical perspective. It is therefore worth exploring other aspects of remote detection from 
a horizontal perspective. Google Street View (GSV) is one possible source of such data. It offers 
geolocated images along roads allowing virtual exploration of an area. 

There are a number of examples of the use of GSV to discover information about various 
attributes of human activity, such as detecting the spatial occurrence of ertain car models 
(Gebru et al., 2017), assessing the amount of green space for health outcomes (Larkin and 
Hystad, 2019), detecting urban conditions that predispose criminal activity (He et al., 2017), 
and in detecting the socio-economic status of urban neighbourhoods (Diou et al., 2018 in 
Greece and Suel et al., 2019 in London).

These images are usually trained with a deep learning network such as convolutional neural 
networks (CNN). These networks are known for their excellent performance in tackling various 
machine learning and artificial intelligence tasks. Using these relatively modern techniques, 
a large number of images can be scanned in an objective manner. The machine is trained 
using a series of images to recognise patterns that may be an abstraction to the human eye. 
Understanding what is in the ‘black box’ of the deep neural network is an area of current 
research (Li, et al., 2021; Abitbol, et al., 2020 and Dai, et al., 2021).

Monitoring socio-economic inequalities at the global scale requires the use of standardized 
global composite indicators. Most of them have been developed by the statistics departments 
of global organisations such as the United Nations, the Organisation for Economic Co-operation 
and Development (OECD), and the World Bank (e.g., Stiglitz et al., 2009; United Nations 
Department of Economic and Social Affairs, 2015; Statistical Office of the European Union, 
2017). They are used in various international surveillance programmes (e.g. Household Surveys, 
Living Standards Measurement Study, Demographic & Health Surveys), or have been developed 
by national statistical offices. They rely on a wide range of data, some of which are provided 
at the granular, people-centred level and therefore not easily collected in a standardised way.

The United Nations Human Development Index (HDI), for example, is a summary measure 
of average performance around key dimensions of human development: a long and healthy 
life, level of education, and a decent standard of living. The HDI is the geometric mean of the 
normalized indices for each of these three dimensions. The health dimension is assessed by 
life expectancy at birth, and the education dimension is measured by the average number of 
years of schooling for adults aged 25 and over and the expected number of years of schooling 
for children at school entry age. The standard of living dimension is measured by gross national 
income (GNI) per capita. The HDI uses the logarithm of income to reflect the decreasing 
importance of income as GNI increases. The scores for the three HDI dimensions are then 
aggregated into a composite index using a geometric mean.

https://doi.org/10.5334/dsj-2022-006
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Well-documented data, methods and workflows help ensure that research can be well 
evaluated, reproduced and replicated (National Academies of Sciences, Engineering, and 
Medicine, 2019). We aim to ensure that our methods are fully reproducible as well as replicable. 
The data, software, and workflow used for the paper is preserved in a trusted repository, 
described in the availability statement and cited in the references. Our methods are detailed in 
a linked Jupyter notebook.

Most of the previous applications of GSV have been in urban environments, where the density of 
images and available indicators match. In this paper, (a) we will replicate the Suel et al. (2019) 
use of GSV to assess socio-economic indicators in London to (b) assess the efficacy of the use 
of GSV in detection of some selected socio-economic indicators in a semi-rural environment 
(Vale do Ribeira in Brazil), and (c) to document our research workflow in a replicable manner. To 
our knowledge no previous study has covered such a large area, and a formal assessment of 
replicability is rarely documented.

2 CASE STUDY: VALE DO RIBEIRA
Our case study is situated in the Vale do Ribeira (VR), one of the most biodiverse areas in the 
world, declared as a Natural Heritage of Humanity site by UNESCO (United Nations Educational, 
Scientific and Cultural Organization) in 1999. It covers 28,306 square kilometers and includes 
30 municipalities distributed across two different Brazilian states, São Paulo and Paraná, in 
southeastern Brazil (Figure 1). 

This region is noted for the preservation of its forests and its great ecological diversity. The 
area contains a mosaic of protected areas covering a total of 4,700 square kilometers covering 
62% of the area of the Vale do Ribeira. These protected areas–part of the World Heritage-listed 
Atlantic Forest South-East Reserves–comprise one of the largest and best-preserved areas of 
Brazilian Atlantic Forest, one of the most threatened biomes in the world (https://whc.unesco.org/

en/list/893). The Vale do Ribeira holds 21% of the total area of this forest in Brazil, making it the 
largest contiguous area of any ecosystem in Brazil (Dias et al., 2015). Besides that, the area is 
host to important indigenous communities. 

The Vale do Ribeira, in contrast to the otherwise wealthy São Paulo State, is economically 
poor having the lowest HDI of the state (Bueno et al., 2020). The region has low population 
density, with 0.66% of the population of São Paulo State. The sewage network is below the São 
Paulo State average and there is a high illiteracy rate. On the other hand, it has the best health 
conditions and health surveillance in the state of São Paulo (Mendes et al., 2015). 

3 METHODS
3.1 OVERALL WORKFLOW

In this section, we present the workflow used to replicate the work of Suel et al. (2019). The 
workflow was divided into four components (Figure 2): 

Figure 1 The 30 municipalities 
of the Vale do Ribeira in 
southeastern Brazil. The 
boundary between the States 
within which the Vale do 
Ribeira lies is shown by a 
yellow line. Smaller divisions 
within each municipality 
are ‘census sectors’, each 
containing about 300 
households. These census 
sectors are the finest 
subdivision available in IBGE 
publications (https://ibge.gov.br).

https://doi.org/10.5334/dsj-2022-006
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Step 1, GSV and IBGE data acquisition and aggregation. Socio-economic proxy indicators 
were calculated from the census data available through the IBGE. GSV images and socio-
economic proxy indicators were then aggregated to obtain image-labeled datasets. 

Step 2, feature extraction, in which a pre-trained VGG-16 network model (removing 
the last layers) was applied to extract one feature vector for each image. 

Step 3, training, in which the four feature vectors (one per angle) with inputs 
averaged element-wise, were fed to the last fully connected layer of the VGG-16. The 
loss function used was the cross entropy. The training followed the k-fold method. 

Step 4, validation, in which the predicted instances were compared with the actual, 
obtained in Step 1. Performance metrics were calculated to validate the training 
step, and graphs were obtained to better analyze the results, such as the differences 
between the real and predicted value and the confusion matrix.

3.2 DATA ACQUISITION AND AGGREGATION
3.2.1 Construction of socioeconomic indicators for Vale do Ribeira 

Socio-economic data were obtained from the Brazilian Institute of Geography and Statistics 
(IBGE), which is responsible for official statistical and geoscientific information. The IBGE has 
been conducting surveys of the Brazilian population every ten years since 1872. In each of 
these surveys, all households in the 5,565 municipalities of Brazil are interviewed. The data 
are compiled, excluding data that could identify specific individuals, businesses, entities or 
products. We used data from the 2010 census, the latest available data at the time of our work. 
Details of the data sources we used are given in Section 6 of this paper. 

There are there are 30 municipalities 954 census sectors in the Vale do Ribeira (Figure 1). 
However, it should be noted that IBGE does not publish the data if a defined census sector 
has a low population density or if there are too few answers to a question to ensure data 
protection. For the variables used in our analysis, 30 sectors fell into this category, resulting in 
880 valid sectors for this work (Table 1).

STATE MUNICIPALITY NUM. CENSUS 
SECTORS

STATE MUNICIPALITY NUM. CENSUS 
SECTORS

PR Adrianópolis 21 SP Itariri 61

SP Apiaí 55 SP Itaóca 9

SP Barra Do Chapéu 11 SP Jacupiranga 26

SP Barra Do Turvo 14 SP Juquitiba 54

PR Bocaiúva Do Sul 23 SP Juquiá 36

SP Cajati 38 SP Miracatu 48

SP Cananéia 27 SP Pariquera-açu 27

PR Cerro Azul 42 SP Pedro De Toledo 17

PR Doutor Ulysses 13 SP Registro 69

SP Eldorado 30 SP Ribeira 8

SP Iguape 60 PR Rio Branco Do Sul 58

SP Ilha Comprida 28 SP Sete Barras 26

SP Iporanga 19 SP São Lourenço Da Serra 27

PR Itaperuçu 34 SP Tapiraí 15

SP Itapirapuã Paulista 9 PR Tunas Do Paraná 12

Table 1 Statistics of census 
sectors, municipalities and 
states in the Vale do Ribeira.

Figure 2 Workflow diagram 
showing the four main steps: 
1) dataset preparation, 2) 
feature extraction, 3) training, 
and 4) validation. Street image 
samples were obtained from 
Google Street View. 

https://doi.org/10.5334/dsj-2022-006
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The demographic census survey provides multiple variables for different domains. The HDI is 
an internationally recognised index to assess a country’s development not only in economic 
terms, but also to include data on government policies and practices that affect well-being, 
health, and education. The HDI consists of three independently calculated dimensions: income, 
longevity and education. 

The IBGE and Atlas Brazil (https://atlasbrasil.org.br/acervo/atlas) publish a municipal HDI every 
decade based on the census data and other surveys (Abreu et al., 2011). Gross Domestic 
Product per capita is used to measure HDI-Income. For municipal HDI-Income, IBGE uses per 
capita income, therefore we used the same strategy to construct an intra-municipal proxy. The 
formula used to calculate this index was as follows:

	
( ) ln( )

.
ln( ) ln( )
ln PC min

HDI Income
max min

−
− =

−
� (1)

Where PC is the monthly per capita income of a census sector, min and max are the reference 
values for minimum and maximum income respectively. PC is calculated as dividing the total 
nominal monthly income of responsible household heads by the total resident population of 
the census sector. Source files can be found on the IBGE website and detailed in Section 6. The 
minimum and maximum income is set to min = R$ 8.00 and max = R$ 4033.00, respectively 
(Atlas Brazil, 2013).

To construct the outcome labels for the predictive model, we focused on the intra-municipal 
HDI-Income indicator, which is divided into five classes according to the HDI value. The first 
class contains the bottom fifth of the population on the income scale (i.e., the population with 
the lowest income), the second class contains the population with income levels between 20% 
and 40% of the maximum, and so on, with the top class containing the population with the 
highest income levels (80–100%) (Table 2). 

3.2.2 Street View Images

The GSV images of Vale do Ribeira were acquired using a crawling algorithm that automated 
the acquisition of information using the Application Programming Interface (API) service of 
Google Street View (https://developers.google.com/maps/documentation/streetview/overview). We 
defined a bounding box for the area and established uniformly distributed (in two-minute 
intervals) geolocated points as shown in Figure 3 for a sample census sector.

INCOME SCORE HDI–INCOME VALUE ABSOLUTE INCOME REFERENCE USD (2021 6 APRIL)

1 HDI [0.00–0.20] R$ 8.00–R$ 813.00 $1.41–$143.52

2 HDI [0.20–0.40] R$ 813.00–R$ 1618.00 $ 143.52–$285.63

3 HDI [0.40–0.60] R$ 1618.00–R$ 2423.00 $ 285.63–$427.74

4 HDI [0.60–0.80] R$ 2423.00–R$ 3228.00 $ 427.74–$569.85

5 HDI [0.80–1.00] R$ 3228.00–R$ 4033.00 $569.85–$711.97

Table 2 The Income Score and 
income range for each HDI 
income class calculated on a 
monthly basis. The details of 
the source data are found in 
section 6. 

Figure 3 The sampling regime 
using an example of the 
Juquitiba municipality. The 
red dots represent the defined 
geolocated points searched by 
the crawler algorithm.

https://doi.org/10.5334/dsj-2022-006
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The first step in using the API is to determine if GSV images for each defined geolocation 
are available. If they are, the service returns the unique identifier for the nearest available 
panoramic image. It should be noted that these identifiers correspond to the most recently 
acquired images and their timestamp varied from 2011 to 2019 when accessed in March 2021. 

Since GSV images are panoramic (‘panoid’) images with cylindrical projection, we requested 
four picture orientations (0°, 90°, 180° and 270°) to fully cover the image view. In this manner 
we obtained 112,368 unique images from the Google Street View API for our study area, 
corresponding to 28,092 postcodes (also known as CEP in Brazil). It should be noted that only 
500 census sectors had images. We were unable, for example, to acquire any images for the 
municipalities of Barra do Chapéu and Itapirapuã Paulista, both composed mainly of rural and 
semi-rural areas. We therefore used the ground truth (census) classification for these census 
sectors.

3.3 FEATURE EXTRACTION

Following the method proposed by Suel et al. (2019), we used a VGG-16 network model 
(Simonyan and Zisserman, 2015), where weights are initialized with the pre-trained model 
using an ImageNet benchmark (Russakovsky et al., 2015). This method focuses on large objects 
in millions of images and behaves as a feature extractor and afterward transfers the learning to 
a dataset of images. This is a common method for fine-tuning a pre-trained CNN to other novel 
tasks with a small dataset (Yosinski et al. 2014; Zhuang et al., 2021). 

When a CNN is used as a feature extractor, usually the last three fully connected layers are 
removed and the remaining feature maps of the last convolutional layer are used to compose 
the feature vector (also called latent space). The street view dataset is fed into the pre-
trained network, which then returns a feature vector with 4096 dimensions as output for 
each image. Since four angles are presented at each time, then the feature representation for 
each panoramic location consists of four 4096-D vectors, related to the four images at each 
geolocation. The input images were reduced in size from 512 × 512 to 224 × 224 pixels, the 
default input size for the VGG-16 model. 

3.4 TRAINING

After applying the deep learning model, the three remaining fully connected layers of the VGG-
16 network are used to predict each output label, performing an ordinal classification from four 
angle images for each CEP. All of our source code was implemented using TensorFlow 2.2 in 
Python 2.7. Besides that, we conducted all the experiments (Section 4) on a workstation with 
an 8-core CPU Intel(R) Core(TM) i7 and 1TB RAM and it took approximately 96hs to complete the 
training process. The network was trained for 1,000 iterations and a batch size of 400 images 
per step. Batch normalization was used in all layers of the network except the output layer. The 
Adam optimizer was used and set with a learning rate of 5 × 10–6. The network that provided 

Figure 4 Geolocations at 
which GSV images were 
available, the census sectors 
shown in blue. In white the 
sectors in which there was no 
GSV available.

https://doi.org/10.5334/dsj-2022-006
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the best validation error in the last iteration was kept as the final model. The categorical cross-
entropy given by the following loss function was used.

	 min lnm m
n n

w n m
y p∑∑ � (2)

Where w are the network weights, yn is the label vector of the nth sample (for one-hot encoding), 
and pn

m  is the probability of the mth income score for the nth sample. We paid special attention 
to maintain a ‘natural’ distribution in both the training and test datasets to prevent overfitting.

The network model used all four feature vectors corresponding to the image orientation 
as inputs for the last three fully connected layers (Figure 2). These four feature vectors are 
combined by calculating the average of all the elements of the vectors into a new vector. This 
neutralises the semantic information of the separate images, creating only one panoramic-view 
feature vector. This feature vector is then passed to the last dense layer which compute a single 
continuous value between 0 and 1 using the sigmoid function. This single continuous value 
was then used to compute probabilities (P1, P2, P3, P4, P5), considering them as the probability 
of Bernoulli trials (coin toss) and transforming to a five-class problem, i.e. an indicator score 
between 1 and 5. Finally, the obtained scores are compared with the actual scores. 

3.5 VALIDATION

To evaluate the performance of the classifier, we used five-fold cross-validation (Bishop, 2006), 
in which the predicted indicator for the census sector with the known but hidden score, was 
compared to its true value. This cross-validation method is a reliable strategy because it divides 
the data into two mutually exclusive sets: 80% for the training dataset (the set of instances 
used for training purposes) and the remaining 20% for the testing set (for testing purposes), 
thus ensuring the generalizability of the model.

We also evaluated performance in the same manner as Suel et al. (2019), using the Pearson 
correlation coefficient (r), which measures the correlation between true and predicted classes 
(the closer to 1, the higher the relationship), the Kendall-Tau’s coefficient (τ), which is interpreted 
similarly to the Pearson coefficient, and the mean absolute error (MAE), which expresses 
the average prediction error of the model. For the final accuracy metrics, we measured the 
percentage of correctly predicted classes with an allowable error margin of ±1, ±2 per class, i.e., 
including the corresponding score ±1 or ±2.

A confusion matrix was used to evaluate the performance of the network model. In this matrix, 
the columns represent the true classes to which the elements belong and the rows correspond 
to the classes predicted by the model. For this we converted continuous values of the socio-
economic indicator to an ordinal value, with an error margin of ±1, ±2. A perfect case would 
be a diagonal value of 100% showing a perfect match. Otherwise the prediction is expected to 
decrease as the score decreases.

4 RESULTS
4.1 INCOME PREDICTION FOR VALE DO RIBEIRA

The kinds of images we obtained from the geolocated positions are illustrated in Figure 5. These 
samples were extracted from each geolocation according to their true income score derived 
from the census data. Each row shows the view from two different geolocations with four 
images corresponding to the set suite of angles (0°, 90°, 180° and 270°). 

The distribution of images across income indicators was naturally unbalanced, from 4% of the 
total number of images for the lowest income value to 42% for the highest (Figure 6), which 
reflects the actual income situation of the residents of Vale do Ribeira. In turn we think this 
data imbalance will not affect the results, an assumption consistent with the work of Tetila et 
al. (2020).

The use of a VGG network pre-trained on the ImageNet benchmark gives us confidence in 
using an imbalanced dataset. As far as we know, there is yet no formal proof of the sensitivity 
of a VGG network to imbalanced data, but the work of Johnson and Khoshgoftaar (2019, 
page 30) has shown that using a VGG network as a baseline is more than adequate to handle 
imbalanced classes. The ability to deal with imbalances in this way shows the power of reusing 
strong feature extractors trained on large volumes of data such as ImageNet.

https://doi.org/10.5334/dsj-2022-006
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There was no clear division in income scores between census sectors and municipalities, so we 
treated the results as a heterogeneous distribution. On visual inspection, a slight division can be 
made between the given highest income areas in the centre and northeast of Vale do Ribeira, 
corresponding to the municipalities of the state of São Paulo, while the lowest and middle 
income scores are mainly located in the southwest of the study area (Figure 7a). The spatial 
representation of the predicted income score shows that some of the lowest income cluster 
regions were consistent with the observed data (Figure 7b). Since the test dataset for each 
census area often included a range of values, the mode was plotted, and if all values were the 
same, a random selection was made. Notably there are more predicted instances of the lowest 
income (score 1) than in the actual. 

To complement the visual analysis in Figure 7, we calculated the difference d between the real 
income score y and the predicted ŷ value, defined as follows: 

	 |ˆ|d y y= − � (3)

Figure 5 Examples of two 
panoramic images for each 
income score taken randomly 
from Vale do Ribeira. Each 
image sample was taken over 
four angles. 

Figure 6 The distribution of 
images sampled (112,368 in 
total) for each income score 
for both the training and the 
testing datasets.

https://doi.org/10.5334/dsj-2022-006
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To better analyse how well our deep learning model predicts income, we plotted the difference 
between the actual and predicted incomes (Figure 8). To facilitate interpretation, we show 
the geolocations (red dots) for which a street view image was available (as in Figure 4). It is 
clear that the census sectors with the worst prediction are correlated with a lack of street 
view images in these specific census sectors: the more data, the more knowledge the neural 
network can learn.

Figure 7 The distribution of 
income scores for the mode 
for each census sector is 
shown for (a) the observed 
(true) income score, and (b) 
the predicted income score. 
The scale ranges from 1 to 5, 
corresponding to the lowest to 
highest income score. 

Figure 8 Differences between 
the real and predicted labels 
for each census sector of Vale 
do Ribeira. The grey scale 
shows the difference between 
the real and predicted labels 
(Eq. 3), with d = 3 being a big 
difference, and d = 0 a perfect 
match. The red dots represent 
geolocations for which street 
images were available. Census 
sectors for which street 
imagery was not available are 
shaded green.

https://doi.org/10.5334/dsj-2022-006
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To better understand the relationship between each predicted value and the number of images 
used to determine the final class we examined the difference between correct predictions (range 
from 0 to 3) without considering geographic location (Figure 9). Each dot represents one analysed 
census sector out of the 500 available. It is clear from this figure that the best predictions are for 
the high income level images (income score 5, d = 0). One reason for this result could be that the 
VGG-16 model decides from a collection of predictions which value to return as the value for a 
location (census sector) and the more images per location, the more robust the result as long as 
the information is balanced within a class. In contrast, the areas with lower income levels, with 
fewer images and a greater concentration on roads, produced poorer results. Another possibility 
is that the images in the high income class contain more objects that the machine learning 
protocol can detect, which increases the reliability of the predictions.

4.2 PERFORMANCE

The full performance results for the experiments on the test set for each fold show that the 
best prediction for income score classification is on average of 55% (with perfect discrimination 
between the five classes) and 80% (with an error margin of ±1), which was confirmed by the 
metrics mean absolute error (MAE), Pearson’s correlation coefficient (r) and Kendall’s Tau rank 
correlation coefficient (τ). The results were MAE = 0.21, r = 0.71, τ = 0.32 (Table 3). 

The normalized confusion matrix for the classification tasks showed that the best performance 
was obtained for the highest income score of 5, which yielded 80% of the correct prediction 
cases (Figure 10). A perfect scenario would be represented by a diagonal line with 100% correct 
prediction. Prediction decreases smoothly as the score decreases. The income score 1 reached 
40.2% of the corrected classification. We can observe that the misclassifications tend to 
decrease when the score values are increased.

4.3 COMPARISON WITH SUEL ET AL. 2019

The main difference between this study and that of Suel et al. (2019) is that the latter is a study 
of a highly urbanised area (with high and very low levels of income) whereas our work is in a 

ACCURACY ERROR MARGIN (%) MAE r τ

±0 ±1

fold 0 53 78 0.21 0.74 0.30

fold 1 55 80 0.21 0.72 0.32

fold 2 56 80 0.20 0.71 0.32

fold 3 57 81 0.23 0.67 0.34

fold 4 56 81 0.22 0.69 0.33

Avg fold. 55 80 0.21 0.71 0.32

Table 3 Prediction results 
using the test set for each 
fold. Each column represents 
a different metric, from left 
to right the percentage of 
correctly predicted classes 
with an error margin of ± 
0, ± 1, mean absolute error 
(MAE), Pearson’s correlation 
coefficient (r), and Kendall’s 
Tau rank correlation coefficient 

(τ). 

Figure 9 Distribution of 
predictions by the model 
indicating the prediction 
difference of the income score 
and the number of images 
per census sector (points). 
Each income score category 
includes the 500 census 
sectors available in Vale do 
Ribeira. The scale bar shows 
the difference from 0 (exact 
match) to 3 (poor match) 
between the real label and the 
predicted label (Eq. 3).
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semi-rural environment. Suel et al. (2019) examined several socio-economic indicators, and 
obtained good results for mean income. Comparing their performance using mean income 
with ours, they reported 32.7% as the percentage of correctly predicted classes while we 
obtained 55%. With respect to the percentage of correctly predicted classes with ±1 allowed 
error margin, Suel et al. (2019) reported 71.7%, while we obtained 80%. They reported MAE = 
1.10, r = 0.86, τ = 0.72 while we obtained MAE = 0.21, r = 0.71, τ = 0.32. Therefore, our results 
(Table 3) achieved almost as high a performance as Suel et al. (2019), but these comparisons 
should be regarded with some caution because of the difference in the divisions between 
indicator classes (Suel et al., 2019 used deciles while we used quintiles).

5 DISCUSSION AND CONCLUSION
We started from the premise that street images contain rich visual information. In principle, 
the presence of vehicles, highways, infrastructure, houses, buildings or correlated objects in 
the image are associated with wealth, so a deep learning model should have the ability to 
learn from the data. Our results have shown that the deep learning framework used here is 
able to estimate high and low values of the income indicator using images of streets as input. 
We were successfully able to apply the model supplied by Suel et al. (2019) to the semi-rural 
situation of Vale do Ribeira, demonstrating the re-usability, reproducibility and replicability of 
GSV datasets. We paid particular attention to these factors, a common challenge to achieving 
FAIR outcomes (Wilkinson et al., 2016). The question arises whether the proposed method is 
generalizable to other types of indicators that may not be as translatable as income, such as 
longevity and literacy.

GSV is inherently dependent on the presence of roads, which are limited in this study area. This 
does not mean that the results are not representative of the situation as the road network 
reflects the location and density of the population. However, the semi-rural nature of the 
population in this area meant that there was little built infrastructure from which we could 
derive indicators. This limited our options compared to the wealth of indicators available in 
dense urban environments such as those studied by Suel et al. (2019) and Diou et al. (2018). 
An adjustment of the crawler algorithm presented by Suel et al. (2019) was necessary to obtain 
the images in the systematic manner illustrated in Figure 3 to ensure optimal linkage with the 
census data.

The ubiquity of GSV worldwide, and its seemingly complete coverage can be deceptive. The 
images are not systematically collected or published, since it is the policy of the service to 
provide the most current image. To reduce the impact of this policy on the reproducibility and 
replicability of our work, we have published the libraries, datasets and images we used. This 

Figure 10 Confusion matrix 
between observed and 
predicted income scores. Each 
cell represents the percentage 
of the correct predictions. 
The best case would be a 
complete diagonal line with 
perfect accuracy.
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results in images of different dates adjoining each other (in one case, an image from 2011 next 
to one from 2015). The exact information on each date is imprecise because the timestamp 
is not available through the GSV API. This problem was pointed out by Diou et al. (2018). In 
addition, the timestamps of the GSV (which ranged from 2011 to 2019) and the census data 
(2010) rarely matched. This is not an impediment if there have been no major changes in that 
time but can be misleading if this is the case. We noted that the image dates in this study could 
not be extracted by digital means, nor was it possible to do so manually given the numbers 
of images we were interested in. This was also noted by Diou et al. (2018). This potential 
source of uncertainty had to be accepted, and based on our knowledge of the stability of the 
communities in Vale do Ribeira during the study period, we were confident that this posed a 
minor risk to our results. This was an important factor in our ability to compare GSV imagery 
with census data (and thus train the method). 

Although this work was located in a specific area (Vale do Ribeira), the deep learning model has 
shown great generalizability that could be replicated to other areas of the world (or other areas 
in Brazil), however the availability of socioeconomic indicators are strongly influenced by the 
specific situation and the model must be re-trained for each new indicator.

For those who want to repeat this project it worth noting that the acquisition stage is a time-
consuming process requiring a stable internet connection and the costs can escalate quickly. 
Considering that, at the time of this study there was an initial credit of US$300 for use of the 
API service with the cost per 1,000 images being US$2.00. Above 100,000 requisitions the cost 
reduced to US$1.60 for every 1,000. 

5.1 ETHICS IMPLICATIONS

The feasibility of this work relied on the public availability of street view imagery. However, 
despite the great utility of GSV imagery, its use can raise serious privacy concerns. GSV provides 
high-resolution 360° panoramic photos of streets, cities, mountains, and forests. Some images 
are taken from elevated positions, allowing viewers to see over hedges and walls designed 
to prevent certain areas from being accessible to the public. The large scale of the GSV 
approach combined with the extremely easy accessibility of the images increases the potential 
harmfulness of such information. 

To balance the privacy and anonymity issues, GSV now blurs portions of the images that contain 
licence plates and human faces. However, the current level of blurring does not always prevent 
a person from being identified; moreover, other non-blurred information can also be indirectly 
identified. Thus, researchers should be careful with the data they make publicly available.

5.2 NEXT STEPS

Future projects to explore the following strategies would be profitable: (i) use of more complex 
neural network architectures; (ii) using more heterogeneous datasets in other locations; 
(iii) testing different training configurations, such as different regional granularities (e.g., 
municipalities instead of census sectors); (iv) training and validation with images from a range 
of regions could improve the generalization power of the image classifier; and (v) to update the 
study with the 2021 census (when it is available), which would improve the consistency with 
the period of coverage of the images.

Another aspect that could be enhanced by future work is the ability to improve the interpretation 
of the results of the deep learning model (Li et al. 2021; Abitbol et al. 2020; Dai et al. 2021). 
There are experiments, like those of Ayush et al. (2020), in generating metrics from the deep 
learning image interpretation, to correlate with the income indicator estimation. An approach 
by creating parallel metrics from the model to correlate with main indicator estimation could 
be a reasonable improvement to increase interpretation level from the model.

6 DATA AND SOFTWARE AVAILABILITY
The curated data (including the images and the income indicator dataset for Vale do Ribeira) 
and source code is available in a public and academic repository with the following formats and 
settings to ensure: (1) maximum protection of personal data, (2) compliance with all ethical 
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requirements of journals, and (3) an optimal level of openness to ensure maximum reuse of the 
data by potential third parties.

Our source code can be found on the GitHub Digital Repository: https://github.com/PARSECworld/

streetsValeRibeira and released at https://doi.org/10.5281/zenodo.4898335.

The original Census data from the IBGE per census sector can be found at: ftp://ftp.ibge.gov.

br/Censos/Censo_Demografico_2010/Resultados_do_Universo/Agregados_por_Setores_Censitarios/SP__

Exceto_a_Capital_20190207.zip and ftp://ftp.ibge.gov.br/Censos/Censo_Demografico_2010/Resultados_do_

Universo/Agregados_por_Setores_Censitarios/PR_20171016.zip.

We used the data from these files:

From files ResponsavelRenda_PR.xls and ResponsavelRenda_SP2.xls, we used the 
columns ‘V022’ named “Total do rendimento nominal mensal das pessoas responsáveis” (Total 
nominal monthly income for responsible householders).

From files Basico_PR.xls and Basico_SP2.xls we used the columns ‘V002’ named 
“Moradores em domicílios particulares permanentes ou população residente em domicílios 
particulares permanentes” (‘Residents in permanent private households or population residing 
in permanent private households’ in english). 

The curated dataset is open for access and reuse under the terms of the Creative Commons 
Attribution 4.0 license. 
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