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Abstract—Modern deep learning (DL) training is memory-
consuming, constrained by the memory capacity of each com-
putation component and cross-device communication band-
width. In response to such constraints, current approaches
include increasing parallelism in distributed training and opti-
mizing inter-device communication. However, model parameter
communication is becoming a key performance bottleneck in
distributed DL training. To improve parameter communication
performance, we propose COARSE, a disaggregated memory
extension for distributed DL training. COARSE is built on
modern cache-coherent interconnect (CCI) protocols and MPI-
like collective communication for synchronization, to allow
low-latency and parallel access to training data and model
parameters shared among worker GPUs. To enable high band-
width transfers between GPUs and the disaggregated memory
system, we propose a decentralized parameter communication
scheme to decouple and localize parameter synchronization
traffic. Furthermore, we propose dynamic tensor routing and
partitioning to fully utilize the non-uniform serial bus band-
width varied across different cloud computing systems. Finally,
we design a deadlock avoidance and dual synchronization
to ensure high-performance parameter synchronization. Our
evaluation shows that COARSE achieves up to 48.3% faster
DL training compared to the state-of-the-art MPI AllReduce
communication.
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I. INTRODUCTION

Deep learning (DL) is a key enabler of tremendous
breakthroughs in tasks ranging from object detection [29] to
speech recognition [18], [19] and language translation [22].
As DL models evolve, the model size has been continu-
ously increasing to adapt to complex tasks and improve
accuracy [4], [9]. The size of training data also increases
to achieve higher accuracy [3], [15], [17].

A common practice to train a large DL model with a large
amount of input data is distributed DL training on multiple
workers (computational devices such as GPUs or TPUs [23],
[47]). These workers are optimized for high-performance
matrix multiplication, which is heavily used in DL training.
However, distributed DL training is increasingly constrained
by (1) single device parallelism and on-device memory
capacity and, (2) cross-device communication overhead [20],
[42], [62].

On the one hand, the state-of-the-art GPUs and TPUs
use tens of Gigabytes of on-device high-performance mem-
ory [14], [44], which is an order of magnitude smaller
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than the system memory. The on-device memory capacity
does not evolve as fast as DL model sizes, leading to the
popularity of data parallelism [10], model parallelism [40],
and pipeline parallelism [20], [42], [50]. Although paral-
lelism schemes enable the training of large DL models,
they inevitably introduce additional code complexity and
trade-offs without always leading to training speedup [41].
Another solution is to build extended parameter storage with
system memory and storage [63]. But this only benefits a
subset of DL models with certain parameter characteristics
(e.g., parameter data density) [63].

In addition, the bandwidth of commodity cross-device
communication, including PCle [51], NVLink [48], and the
network, is an order of magnitude lower than on-device
memory bandwidth. This imposes a major performance
bottleneck when adding more worker devices to a distributed
training system. As discussed in Section II-B, the overhead
due to cross-device communication is up to 76% of total DL
training time, significantly degrading the device utilization
and training performance [42], [62]. Recent efforts are de-
voted to decentralized training with the message passing in-
terface (MPI) to mitigate the communication bottleneck [45],
[57]. However, MPI creates a synchronous point that forces
the faster workers to wait for the slower ones, hence degrad-
ing the computation utilization of worker devices [39].

The emerging cache-coherent interconnection (CCI) [7],
[13] promises new opportunities in addressing the memory
capacity and communication challenges. CCI allows the
memory to be attached to serial buses (e.g., PCle) instead
of only the memory bus (DDR channels). As such, system
memory capacity is no longer constrained by the memory
channels supported by the processor sockets. CCI protocols
typically provide hardware-level cache coherence support
and customized protocols to reduce memory access latency.
With CCI, host processors can directly issue memory load/-
store instructions to memory devices on a serial bus without
using a software driver. CCI also enables disaggregated
memory systems, where each memory device incorporates
an on-device processor with on-device memory. The on-
device processor can access the host CPU’s memory through
CCI [7], [13].

However, a naive design, which simply offloads parameter
synchronization to the CCI memory devices, falls short to
enable efficient large-scale DL training due to critical design



challenges. First, parameter data transfer is bounded by a
single memory device’s serial bus bandwidth; coherence
traffic also increases with the number of computation devices
sharing the same memory region, reducing the bandwidth
available to accommodate parameter data transfer. Second,
both parameter size and local/remote communication band-
width characteristics are not uniformly distributed in differ-
ent distributed systems; in addition, there is a non-uniform
bandwidth and latency demand with different parameter
sizes in DL training. As a result, no single partitioning and
configuration of DL operations fit all.

Our goal in this paper is to enable efficient large-
scale DL training by designing a parameter synchronization
scheme that addresses the previously described challenges.
To this end, we propose a Cache cOherent interconnected
pARameter SErver (COARSE), which is built on top of
collective communication for synchronization similar to that
of MPI-based decentralized training. In particular, COARSE
consists of three key design principles. First, we propose
a decentralized parameter communication scheme to de-
centralize parameter synchronization and localize parameter
storage. Second, we propose a tensor routing and partition-
ing scheme, which exploits parameter granularity and non-
uniform interconnection bandwidth to fully utilize serial bus
bandwidth and improve tensor locality in the GPUs. The ten-
sor partitioning enables a pipelined tensor synchronization
and takes advantage of serial bus bi-directional bandwidth;
The bandwidth-aware tensor routing routes a GPU’s tensor
to a bandwidth-friendly memory device, even if they are
not under the same serial bus switch. Finally, we develop a
dual parameter synchronization scheme to reduce parameter
synchronization traffic and enable high GPU computation
utilization.

Internally, COARSE handles parameter synchronization
with a set of collective communication based on CCI proto-
col — similar to that of MPI-based decentralized training
— to reduce the communication latency and improve the
synchronization bandwidth. Yet to allow easy integration
with the commodity DL training frameworks, we provide a
parameter push/pull interface similar to that of conventional
parameter servers.

This paper makes the following key contributions:

o We propose COARSE, an efficient parameter synchroniza-
tion scheme that accelerates distributed DL training by
leveraging disaggregated memory systems.

e We identify non-uniform local and remote bandwidth
distribution in different distributed systems.

e We build a COARSE prototype integrated with Tensor-
Flow, offering significant improvements on training la-
tency, computation utilization, and interconnection band-
width utilization in various distributed training workloads
running in different cloud systems.
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Figure 1. Communication schemes in distributed DL training.

II. BACKGROUND AND MOTIVATION

DL training has witnessed a wave of rapidly increasing
scales of data sets and models. This has led to the popularity
of distributed training to scale-out training workloads on
distributed server nodes (workers), each with an increasing
number of interconnected GPUs (Figure 1). As a result,
the data communication overhead is becoming one of the
key obstacles for the continuous scaling of distributed DL
training [42], [62]. In this section, we motivate our design
by discussing the challenges and opportunities of enabling
efficient parameter communication with cache-coherent dis-
aggregated memory systems.

A. DL Training Parallelism Schemes

Modern large DL models and data sets are too large to
fit in a single worker while achieving the target accuracy
within a reasonable period of time [56]. This leads to the
exploration of various classes of DL parallelism schemes
to train a DL workload on multiple server nodes — data,
model, pipeline, and hybrid parallelism [21] — without an
obvious performance winner. In this paper, we focus on data
parallelism due to its popularity in commodity systems and
the opportunity introduced by the emerging cache-coherent
disaggregated memory systems (Section II-C). The major
advantage of data parallelism is that it is applicable to any
DL model without further domain knowledge of the model.
Data Parallelism. Data parallelism is widely used in state-
of-the-art commodity DL training systems [10]. Rather than
training a model with all the available input data on a single
server, the system replicates the model across many workers
and feeds each replica with a subset of the input data.
Because the model replicas are trained using different input
data, their parameters will typically diverge.

Parameter Server. To reconcile these parameters and ensure
that all model replicas eventually converge, each replica
periodically pushes its local parameter values to a centralized
server, i.e., a parameter server. Parameter server is typically
implemented as a distributed key-value store with consistent
shared metadata, including server status and/or a hash table
with distributed key-value mapping. The parameter server
aggregates all the received updates for each parameter —e.g.,
by averaging them — and then sends back to all replicas
a newly computed set of values, which will be used at
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Figure 2. Communication overhead in ML training.

the beginning of the next training iteration. However, not
only the data but also the model size keeps skyrocketing.
For instance, DLs used in recommendation systems or
natural language processing (NLP) tasks commonly have
large network parameters, e.g., BERT [12] model has ~ 300
million parameters. To accommodate the huge number of
parameters in large DL models, systems employ multiple
parameter servers, with each one being responsible for a
subset of the parameters.

Model Parallelism. Model parallelism partitions the opera-
tors in a training model across multiple workers; each worker
evaluates and updates a subset of the model parameters
for all inputs. However, model-parallel training suffers from
computing resource under-utilization due to data dependency
and the large communication overhead of intermediate re-
sults, such as activation and gradient [42].

Pipeline Parallelism. Pipeline parallelism partitions DL op-
erations and splits a mini-batch into multiple micro-batches.
Each worker computes the output of a model partition
with a set of micro-batches, then propagates the output
to the subsequent workers. By executing multiple micro-
batches in parallel and making communication traffic point-
to-point (stage to next stage), pipeline parallelism improves
worker utilization compared to model parallelism [20], [42],
[50]. However, such parallelism schemes lead to either low
computing resource utilization [20] or accuracy loss [42],
depending on their implementations.

B. Communication Issues in DL Training

Data parallelism imposes severe communication and syn-
chronization overhead due to back-propagation updates.
Such communication typically relies on two types of training
system architectures (i) centralized communication (Fig-
ure la) — commonly used for inter-node communication
between the parameter server and workers and (ii) decen-
tralized communication (Figure 1b) — commonly used for
intra-node communication between worker GPUs [59], [64].
In centralized communication, the computed gradients in
each worker need to be transferred back to the parameter
server for model updates, before continuing to compute
the next mini-batch of training data. A parameter server

copy (GPU Direct). Read and write bandwidth are normalized to the CCI
bandwidth, respectively.

provides a push/pull interface for each worker. As a result,
a critical performance bottleneck is the parameter server
communication bandwidth. In decentralized communication,
workers directly communicate with each other via an MPI
interface, such as A11Reduce.

Recent studies show that data communication among
workers is a major bottleneck in distributed DL training [42],
[62]. We further evaluate the communication overhead in
decentralized communication with eight DL models im-
plemented by TensorFlow [60] and NVIDIA [46], as il-
lustrated in Figure 2. We use NCCL [45], which is an
optimized decentralized communication scheme using the
MPI AllReduce interface. We train the models on an
AWS EC2 g4dn.12xlarge instance [58] with various
numbers of GPUs, and employ nvprof [49] to measure
the communication overhead in terms of the time spent
on communication operations, including CUDA memory
copy operations and NCCL Al1Reduce. Figure 2a shows
that an increasing number of GPUs leads to a higher
percentage of communication overhead, with up to 76%
of training time spent on data communication using four
GPUs. Figure 2b shows that A11Reduce dominates the
communication latency overhead among all the operations
that perform communication.

The key bottleneck with centralized communication in a
single server node is the limited serial bus lanes in the CPU,
which constrains the service throughput of GPU requests on
parameters: In a multi-GPU server node, the number of serial
bus lanes on CPUs is typically smaller than the total serial
lanes required by all the GPUs. As a result, the concurrent
access from GPUs to the parameter server is constrained by
the CPU serial bus lanes.

The key issue with decentralized communication is that
GPU computation is blocked during parameter synchroniza-
tion: First, a parameter synchronization operation blocks
all GPUs involved for synchronization, forcing the fast
GPUs to wait for the slower ones [38], [39]. Second, the
MPI A11Reduce approach generates more communication
requests than centralized training, depending on the topology
adopted. Third, using a commonly adopted ring topology, the
AllReduce performance is bounded by the lowest device-
to-device bandwidth, leading to bandwidth utilization, e.g.,



as low as 34% on NVIDIA DGX-1 systems [62].

C. Opportunities With Disaggregated Memory Systems

Cache-coherent interconnection (CCI) protocols, such as
CCIX [6], Gen-Z [13], and Intel CXL [7], enable cache-
coherent disaggregated memory systems. By offering a
CPU-transparent hardware coherence support, CCI allows
the CPU to directly issue load and store instructions to
access multiple memory devices attached to the existing
or customized serial buses. These memory devices form a
disaggregated memory pool: each memory device adopts an
on-device processor and a large capacity on-device memory;
the memory devices map their local memory into CCI-
unified memory address space and share the address space
with the host CPU and other memory devices [6], [13]. CCI
also allows the host CPU to distribute memory-intensive
computation jobs to the processors on memory devices,
schedule the jobs, and collect computed results.

CCI Performance Benefits. CCI reuses existing serial bus
physical layer protocol and builds a customized higher-
level protocol stack [7]. This customized protocol focuses
on improving fine-grained memory access latency while
providing sufficient peak bandwidth (e.g., 90% of underlying
serial bus peak bandwidth [7]). Thus, compared to existing
serial bus protocols, e.g., PCle [51]-[53], CCI can achieve
higher bandwidth when accessing small memory blocks.
This unique feature allows GPUs to seamlessly access ex-
ternal large-capacity disaggregated memory devices through
CCL

Promising CCI-based Peer-to-peer (P2P) Communica-
tion. We identify that peer-to-peer accesses to CCI-based
disaggregated memory achieve significantly higher band-
width than indirect access through the host CPU.

We evaluate the bandwidth of an FPGA-based disaggre-
gated memory prototype implemented on industrial CCI
protocol (more details in Section IV-C) under three use
cases: (i) copying data from a disaggregated memory device
to CPU memory (CCI). (ii) copying data from disaggregated
memory to CPU then to GPU memory (GPU Indirect). (iii)
directly copying data from disaggregated memory to GPU
memory (GPU Direct). Figure 3 shows that GPU direct peer-
to-peer copy provides 17x read bandwidth and 4x write
bandwidth speedup. This motivates us to enable GPU direct
access to CCI memory for better performance.

Benefits to Data Parallel DL Training. CCI is beneficial
to data parallel training in two aspects: (i) in data parallel
training, cross-device communication is a major overhead;
this communication can take advantage of CCI low-latency
memory access to improve the parameter synchronization
performance. (ii) the parameter synchronization operations
block the training procedure and take up GPU computing
resources; while using CCI, GPU can work with memory de-
vice processors coherently to offload these synchronization
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Figure 4. System deployment of a single server node.
operations to memory device processors, thus improving the
GPU utilization and reducing the communication overhead.

ITII. COARSE DESIGN

Overview. Our goal in this paper is to enable efficient
large-scale DL training by designing a parameter synchro-
nization scheme with (1) light communication traffic, (2)
high interconnection bandwidth utilization, and (3) high
GPU computation utilization. To achieve our goal, we
propose Cache cOherent interconnected pARameter SErver
(COARSE), which is a decentralized parameter synchroniza-
tion design offloaded to CCl-based disaggregated memory
systems. COARSE provides a parameter server push/pull
interface for easy integration, while internally, it consists
of the following novel parameter synchronization mecha-
nisms:

e A decentralized parameter communication scheme to
decentralize and localize parameter communication.

e A tensor routing and partitioning scheme which ex-
ploits non-uniform interconnection bandwidth character-
istics to fully utilize serial bus bandwidth and improve
tensor locality in GPUs.

e A dual parameter synchronization scheme to reduce
parameter synchronization traffic and enable high GPU
computation utilization.

This section presents the key ideas of COARSE design.

Implementation details will be described in Section 1V.

A. System Deployment

We assume a single server node deployment illustrated
in Figure 4: GPUs are connected to serial bus switches
and communicate with other serial bus devices as in com-
modity systems [47]. Each GPU is paired with a CCI-
based disaggregated memory device (referred to as memory
device in the rest of the paper) sharing the same serial bus
switch, such that communication between a pair of GPU and
memory device achieves full bandwidth. A similar approach
in existing systems is to put a network card under each
PClIe switch to improve GPU RDMA bandwidth [47]. Each
memory device incorporates an on-device processor (e.g.,
with ARM cores) and a large-capacity memory. Intra-node



GPU 0 GPU 1

DL Model DL Model

Parameter Cache Parameter Cache

Memory Device

e _
Processor Paramete{ Server
Local
Memory Parameter Storage

Parameter Cache Parameter Cache

i

it i

DL Model DL Model

GPU 3 GPU 2

Figure 5. DENSE architecture.

memory devices are interconnected by a CCI. CCI protocols
allow the memory devices to support (i) full-bandwidth data
copy through a serial bus interface (the solid lines) and (ii)
cache-coherence traffic through a CCI interface (the dashed
lines) [7], [13]. As such, serial bus devices can copy data
peer-to-peer through a serial bus switch or host bridge [43],
bypassing data copy in system memory.

B. A Naive Design

We assume a baseline architecture — DENSE — as shown in
Figure 5. In DENSE, each GPU maintains a parameter data
cache supported by CCI. To update parameters, the GPU
first updates the local parameter cache and then employs
CCI to update the global parameter coherently. The global
parameters are stored in a memory device, which runs a
parameter server on the on-device processor and stores the
parameters in on-device memory. The memory device maps
the on-device memory to CCI address space and shares it
with other GPUs through CCI. This architecture bypasses
the host CPU data copy, and we use it as a baseline in the
following sections.

In DENSE, parameter synchronization jobs are offloaded
to the processors in memory devices. Such offloading in-
troduces promising benefits for DL training: Compared
to conventional centralized training, the offloading allows
GPUs to directly communicate with memory devices at full
serial bus bandwidth, without being limited by CPU serial
bus lanes; Compared to decentralized training, the offloading
allows GPUs to continue with computation during parameter
synchronization, substantially improving GPU utilization.

C. A Disaggregated Design

Simply offloading parameter synchronization to the mem-
ory devices in DENSE falls short to enable efficient large-
scale DL training. In the following sections, we identify
critical design challenges and insights obtained from our ex-
periments in two different distributed system infrastructures,
from Amazon AWS [58] and San Diego Supercomputing
Center (SDSC) [61], respectively. Based on our observa-
tions, we propose a disaggregated parameter synchronization
architecture, COARSE, as illustrated in Figure 6.
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Figure 6. COARSE architecture.

In COARSE, the parameter synchronization service is
further disaggregated to multiple memory devices, providing
higher communication bandwidth compared to DENSE’s
centralized architecture. Each memory device communicates
with one GPU sharing the same serial bus switch for
parameter updates, and communicates with other memory
devices for parameter synchronization. The following sec-
tions introduce the design details of COARSE.

D. Decentralized Parameter Synchronization

Interconnection Bandwidth and Scalability Issues. Al-
though disaggregated memory system allows multiple com-
putation devices (e.g., GPUs) to share memory at low la-
tency, parameter data transfer is bounded by serial bus band-
width in the DENSE architecture. Such bandwidth limitation
will constrain the number of computation devices sharing
the disaggregated memory system. Furthermore, coherence
traffic also increases with more computation devices sharing
the same memory region [7], [13], reducing the bandwidth
available to accommodate parameter data transfer on the CCI
path.

Decentralized Parameter Communication. Our key idea to
address the above challenges is to localize parameter storage
and decentralize parameter synchronization. To this end, we
propose a decentralized parameter synchronization scheme,
which splits the original synchronization functionality be-
tween parameter proxy and storage.

Figure 7 shows an overview of our design, which com-
municates parameters across three levels in a hierarchy:
parameter client, parameter proxy, and parameter storage.
Each worker GPU runs a parameter client that maintains
local parameters and communicates with a dedicated proxy
to perform parameter synchronization. Each client provides a
push and a pull interface to the local DL training operations
— a parameter server functionality in conventional designs.
Both parameter proxy and parameter storage run on the
memory devices. A proxy is a communication service, acting
as a bridge between a client and the parameter storage
located in the same memory devices. The proxy also main-
tains a cache of the parameters stored with the parameter
storage in the same memory device. As such, the multi-level
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parameter communication scheme reduces the data traffic by
localizing parameter communication between client-proxy
and local proxy-storage pairs. This allows the CCI path to
accommodate proxy-proxy parameter synchronization at low
latency, as illustrated in Figure 7.

E. Tensor Routing and Partitioning

In COARSE clients, we propose (1) a tensor routing
mechanism to exploit non-uniform parameter size and band-
width distribution; and (2) a fensor partitioning mechanism
to exploit the bidirectional bandwidth offered by the serial
bus interface in disaggregated memory systems.
Non-uniform Parameter Size and Local/Remote Band-
width Distribution. We observe that both parameter size
and local/remote communication bandwidth characteristics
are not uniformly distributed in our experiments in AWS and
supercomputing distributed systems. To investigate commu-
nication bandwidth characteristics, we measure PCle peer-
to-peer communication in two systems: (1) an AWS EC2 p3
instance with eight NVIDIA V100 GPUs, interconnected by
NVLink and PCle; this is similar to an NVIDIA DGX-1
system [47]; (2) an instance in the supercomputing center
with four NVIDIA P100 GPUs, interconnected by PCle.
Figure 8 shows the bidirectional bandwidth between pairs
of GPUs. On the supercomputing instance, local PCle band-
width (under the same PCle switch) is higher than remote
bandwidth, which is straightforward to imagine. However,
the AWS instance appears to have a reverse bandwidth
characteristic — higher remote than local bandwidth!; such
bandwidth “anti-locality” may be caused by unbalanced
physical signal paths in the PCle switch chipsets [5], [31]. In
addition, we observe a non-uniform bandwidth and latency
demand with different parameter sizes in our experiments
with DL training in both systems: small-size parameter
communication (less than 2MB) is latency-critical because
the communication does not saturate the serial bus band-
width; instead, transfer of large-size parameters is bandwidth

IThis reverse bandwidth distribution is also observed by a recent
study [31] and referred to as “anti-locality”.
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critical. These observations indicate that no single routing
and partitioning of DL operations fits all.

Tensor Routing. Ahead of DL training, COARSE builds a
routing table for each client, which describes the destination
proxies for various sized tensor push/pull requests. This
tensor routing mechanism is based on two observations:
(i) using serial buses, small-sized data transfer is latency-
sensitive while large data transfer is bandwidth-sensitive
(Figure 14); (ii) non-uniform bandwidth: local serial bus
communication bandwidth is not always higher than remote
communication, although local latency is always better.

The routing table contains three entries, a data size

threshold, a proxy id (BwProxy) for large tensor requests,
and another proxy id (LatProxy) for small ones. The client
issues tensor push/pull request to the Bw Proxy if the tensor
size is larger than the threshold, otherwise to the LatProxy.
Benefits of Bidirectional Data Transfer. Serial bus inter-
faces, such as PCle and NVLink, support bidirectional data
transfer that delivers close to 2 x bandwidth of unidirectional
transfer. For example, we observe that for a pair of local
GPUs, the unidirectional bandwidth is 13GB/s, whereas the
bidirectional bandwidth is 25GB/s, in an instance from the
San Diego Supercomputing Center.
Tensor Partitioning. In COARSE, parameter synchroniza-
tion includes three steps: client push, proxy synchronization,
and client pull. Serial bus bidirectional data transfer allows
the client push/pull to be processed concurrently. But with
unequal-sized tensors, this bidirectional transfer is not fully
utilized: as shown in Figure 9 FIFO case, there is no client
push/pull between the tensor O push and tensor 1 pull.

To fully utilize bidirectional bandwidth, COARSE clients
partition the tensors into equal-sized small shards and syn-
chronize them as a pipeline. With tensor partitioning, the
communication pipeline is filled without idle time (Figure 9),
and the proxy synchronization can start as soon as the first
tensor shard arrives.

Dynamic Partitioning. COARSE adopts a profiler to build
the tensor routing table and determine the tensor partitioning
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size at runtime.

To build the routing table for a client, the profiler mea-
sures the client’s communication bandwidth and latency
to each proxy, then chooses a proxy with the lowest la-
tency (LatProzxy) and one with the highest bandwidth
(BwProzxy). If LatProry and BwProxy are not the same
one, the profiler further measures the communication time
T under different sized data, and determines a size S that
makes T7.qtProzy(S) = TBwProzy(S). The client considers
a parameter latency-sensitive if it’s smaller than .S, and sends
it to LatProxy.

To find the tensor partition size, the profiler measures
communication bandwidth under various sized data between
a client and its BwProzxy. The profiler determines the
smallest data size S’ among all tested data sizes that achieve
the full bandwidth. The client partitions large tensors into
S’ sized small shards.

COARSE uses a dynamic profiling mechanism: before the
training starts, COARSE profiles the communication perfor-
mance to determine the initial routing table and partitioning
size; while training is in progress, COARSE periodically
profiles the communication and updates the routing and
partitioning strategies accordingly.

F. Dual Parameter Synchronization

To efficiently synchronize the parameters, we propose (1)
a priority-based dual synchronization mechanism to exploit
the tensor locality and (2) a queue-based synchronization
scheme to prevent synchronization deadlocks.
Dual Synchronization. In a DL model backward pass,
parameters are updated in reverse order. Therefore, tensors
from the first few layers are updated at the end of a training
iteration while immediately consumed by the forward pass
of the next iteration. These tensors need to be prioritized and
synchronized as fast as possible to start the next iteration. To
this end, COARSE adopts dual synchronization (Figure 9):
the first few layers’ tensors are synchronized by worker
GPUs, while the rest layers’ tensors are pushed to proxies

Client 0 Proxy O

_Wait to sync T1
Tao 7o [Tao]
Dead lock
Client 1 Proxy 1
- Wait to sync T2

Figure 10. Deadlock in first-come-first-serve synchronization. 75 ; repre-
sents tensor ¢ from client j.

and synchronized by proxies. In dual synchronization, high
priority tensors are synchronized immediately on worker
GPUgs, instead of being pushed to proxies and waiting until
low priority tensor synchronizations to be finished.

COARSE determines the dual synchronization strategy
with a performance estimation: suppose there are p worker
GPUs and p memory devices; the DL model synchronizes
n bytes of parameters in each iteration, the first m bytes
are sent to memory devices, and the rest is synchronized by
worker GPUs.

Using ring AllReduce synchronization, each proxy sends
% X m bytes to one neighbor proxy, and receives
the same amount. So the proxy synchronization time is
Tsyne(prozy) = (@ x m)/BWprogy, Where BWpo0y
is the communication bandwidth between proxies. Similarly,
the GPU synchronization time is Tsy,,.(GPU) = (@ X
(n - m))/BngU.

Let Trp denote forward pass computation time and Tz p
denote backward pass time. The training iteration time is

estimated as:

Tt' . — mar {TFP + TBP + Tsync(GPU)

rawmn TFP + Tsync (proxy)

p is assigned by the user, n is defined by the DL
model, BW,,,.o;y, and BWgpy are measured by the profiler
(Section III-E), Trp and T'pp are measured by running a
few iterations of training.

COARSE calculates the optimal value for m that mini-

mizes the training time 7},.q;,. This m is then used for dual
synchronization.
Deadlock Avoidance. A first-come-first-serve (FCFS) syn-
chronization scheme may cause deadlocks, as shown in
Figure 10: client O send tensor 1 to proxy 0 and tensor 2 to
proxy 1, for synchronization. In FCFS scheduling, proxy 0
waits to synchronize tensor 1 while proxy 1 waits for tensor
2, and thus causing deadlock.

To prevent such deadlocks, COARSE adopts a queue-
based synchronization if one proxy is shared by multiple
clients: A proxy maintains a queue for each client that stores
the tensors pushed by this client. The proxy synchronizes
all tensor queues concurrently so that it’s not blocked on a
single tensor synchronization.
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IV. IMPLEMENTATION

In this section, we describe the implementation details
of COARSE and the FPGA-based disaggregated memory
prototype.

A. Sync Cores

COARSE offloads parameter synchronization jobs to
memory devices. These jobs rely on simple computation
operations such as the sum of float numbers, which do
not require the full features of a generalized processor.
Executing synchronization jobs on low-power generalized
processors, such as ARM Cortex-A53 on our Bittware Soc-
250 FPGA, does not achieve high performance due to the
limited number of arithmetic logic units. COARSE adopts
specialized near memory processing cores — Sync Cores — to
execute synchronization jobs with low design cost and high
parallelism.

Sync Core Design. As shown in Figure 11a, each memory
device is equipped with a set of sync cores, which can access
local DRAM through the memory controller, and remote
CCI memory device through the on-device CCI controller.
Each sync core communicates with remote sync cores on
other memory devices to synchronize the parameters. Each
sync core maintains three buffers, a RecvBuf, a LocalBuf, and
a SendBuf, to store the intermediate synchronization results.
The sync core maps these buffers to CCI address space to
accommodate direct read and write access from remote sync
cores. To perform the arithmetic operations in parallel, each
sync core employs a set of arithmetic logic units (ALU) that
computes with the first two buffers’ entries and stores the
result into SendBuf.

Sync Scheme. To synchronize parameters, the sync cores
perform group-based collective communication through
CCI, where multiple groups synchronize different parame-
ters in parallel. Each group consists of sync cores from each
memory device, and uses ring-based topology for communi-
cation. Two adjacent groups use different ring directions to
fully utilize the bidirectional bandwidth. Figure 11b shows
an example configuration of two synchronization groups
with four memory devices. In this configuration, group 1 use
a reverse ring direction of group 0, so that communication
between each pair of memory device is always bidirectional.

Figure 11c shows an example of the parameter synchro-
nization scheme with one group of sync cores: Each sync
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Parameter synchronization with sync cores (denoted as SC in figure b and c).

core first loads a chunk of tensor data from local DRAM into
LocalBuf and starts the iterative synchronization. In each
iteration, each sync core sends an entry from SendBuf to the
next sync core’s RecvBuf, and receives an entry from the last
sync core. It then applies the computation operation on the
received entry and corresponding LocalBuf entry, stores the
result in SendBuf, and sends it in the next iteration. When
all entries are synchronized, the sync core writes back the
updated entries to DRAM and starts to synchronize the next
chunk.

Fault Tolerance. Many existing ML frameworks rely on
checkpointing to ensure fault tolerance: during the training
process, the ML framework periodically takes a snapshot of
ML model’s parameters and saves it to disk. In case any
worker GPU fails during the training, the framework can
recover its training progress with the latest checkpoint in-
stead of training the model from the start. The checkpointing
typically requires GPUs to transfer their model parameters to
a centralized persistent storage and thus degrades the training
performance.

To improve the checkpointing performance, COARSE
leverages low-overhead copy-on-write with fine-grained
snapshotting: when a memory device receives a parameter,
it performs a copy-on-write procedure if the parameter
contains updates to the previous version. Then at the end
of each epoch, the memory device takes a snapshot of the
current version of all parameters and saves it as a checkpoint.

B. COARSE

COARSE is implemented as a Python library with Python
3 and CUDA 11.4, and provides a plugin to TensorFlow
framework [2]. It manages device memory, schedules syn-
chronization, and handles requests between clients, proxies,
and storage.

COARSE leverages GPUs to emulate the CCI memory
device due to the lack of CCI support in existing CPUs
and motherboards. COARSE accepts a user-defined GPU
partition table that describes which GPU acts as a worker
and which acts as a memory device.

Offline Profiling. Ahead of DL training, COARSE profiles
the communication latency and bandwidth between GPUs
and memory devices, as described in Section III-E. This
profiler is implemented as a CUDA program and measures
peer-to-peer GPU communication by default. However, if
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Figure 12. Disaggregated memory prototype with two FPGAs.

GPUs are interconnected with NVLink, the profiler disables
the NVLink feature to measure the PCle bandwidth.
Client. A client maintains a tensor queue in worker GPU
memory. When the DL model pushes a tensor, the client
compares the tensor size with the partition threshold. If
the tensor size is smaller than the threshold, it’s enqueued
directly without partitioning. The client partitions a large
tensor into multiple shards and enqueues them separately,
where each shard’s size is equal to or larger than the
threshold to maximize bandwidth utilization.

The client actively dequeues tensors, sends small tensors

to the latency-friendly proxy, large tensor shards to the
bandwidth-friendly proxy. After the first tensor is pushed
to proxies, the client starts to pull the updated tensors
and reconstruct the original tensors based on the partition
history. These client operations are implemented in Python
and integrated into the TensorFlow computation graph.
Proxy and Storage. Each GPU-emulated memory device
runs one parameter proxy and one parameter storage. The
proxy leverages stream processors on existing GPUs as sync
cores, and uses NCCL AllReduce to emulate collective syn-
chronization operations between CCI memory devices. After
each synchronization, the proxy copies the updated tensors
to the storage. The parameter storage maintains a key-value
table that maps a tensor id to the tensor value. To model the
CCI communication characteristics, we implement a set of
CUDA kernels that inject delays to communications based
on data sizes.
TensorFlow Integration. COARSE provides a distribution
strategy for TensorFlow version 2 or later. To use COARSE,
the user just needs to import COARSE Python library
and replace the original distribution strategy with COARSE
strategy, which typically requires 2 lines of code change.

C. Disaggregated Memory Prototype

We implement a disaggregated memory prototype based
on an industrial CCI protocol using two FPGAs, as illus-
trated in Figure 12.

The first FPGA works as a shared memory pool. We
implement the host controller of the CCI protocol in the first
FPGA. This controller manages the FPGA on-device DRAM

Table I
MACHINES FOR DL TRAINING

Instance CPU & Memory GPU Network

AWS gddn Imglgfzéaa 87 N;’égA T4 1 100GBE

s | LT T
- kS

SDSC Intel]Ezé é6]§0 v3 | 4 NV;IC)II? P100 100GBE

and shares it with the host CPU and other FPGAs. To share
the local memory with the host CPU, the controller exposes
the on-device DRAM as a byte-addressable PCle bar region.
A program running on the host CPU can mmap [36] this
region and use load/store instructions to access the FPGA
memory. To share the local memory with other FPGAs,
the controller accepts network requests from other FPGAs
through QSFP connections.

The second FPGA works as a near-memory processing
device. It contains the client controller of the CCI protocol
and connects to the first FPGA through a QSFP cable. The
ARM core on this FPGA can access the shared memory
through the CCI client controller.

V. EVALUATION

We first profile the CCI prototype performance and build
a performance model based on the profiling result. We then
use the performance model to evaluate the DL training with
COARSE, on three different systems.

A. Experiment Setup

The disaggregated memory prototype adopts a Xilinx
KCU1500 FPGA [24] and a BittWare 250-SoC FPGA [1] to
emulate the shared memory pool. Two FPGAs are intercon-
nected with one QSFP cable [30] so that the ARM cores on
250-SoC can access the shared memory pool through CCI.
KCU1500 exposes its shared memory as a byte-addressable
PCle bar region for the host CPU to access. The host system
includes an Intel 8700K CPU, 32GB DDR4 memory, and an
NVIDIA GTX1080 GPU. The motherboard adopts two PCle
switches enabling the GPU to access KCU1500 through
peer-to-peer PCle communication.

We profile the performance of this prototype and build
a performance model based on profiling results to estimate
the CCI bandwidth under different access sizes. We use this
performance model to evaluate DL training time only in the
baseline DENSE case (Figure 16).

We evaluate DL training with COARSE on three machine
instances, as listed in Table I. On each machine, we use
half of the GPUs to emulate the CCI memory devices. On
AWS p3 machine, we provide an additional 2:1 configuration
where each memory device is shared by two worker GPUs.

B. CCI Prototype Performance

We map the disaggregated memory prototype’s memory to
the host CPU memory space using mmap [36], and evaluate
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its bandwidth in three use cases: (1) CCI: Host CPU ac-
cessing CCI memory using memory load/store instructions.
(2) GPU Indirect: GPU accessing CCI memory by first
copying data to host CPU memory. (3) GPU Direct: GPU
directly accessing CCI memory using cudaMemcpy with
prototype’s PCle address.

Figure 13 shows the CCI bandwidth under different access
sizes. Figure 13a shows that CCI read bandwidth remains
stable under all access sizes. The difference between CCI
line and GPU Indirect line is not visible in Figure 13a, which
means the GPU Indirect read bandwidth is bounded by
CCI bandwidth. However, the GPU Direct read bandwidth
achieves 9x-17x speedup compared to CCI. Figure 13b
shows that GPU Direct write bandwidth achieves 1.25x-4x
speedup. This bandwidth speedup shows that CCI memory
is more beneficial to the serial bus devices (e.g., GPUs) if
CCI enables peer-to-peer communication.

We further profile the FPGA DMA bandwidth to estimate
the full device bandwidth. As shown in Figure 14, DMA
read and write achieves max bandwidth with an access size
of 2MB or higher.

We build a bandwidth versus data size performance model
for the following DL training evaluations. We assume the
GPU Direct method achieves full serial bus bandwidth, and
use correlated speedup/slowdown to derive CCI and GPU
Indirect bandwidth in the DENSE system.

C. Tensor Routing

As discussed in Section III-E, to build the tensor routing
table for a client, COARSE profiles the communication
performance from the client to each proxy. Figure 15 shows
the profiling result for one client on each machine. Each
figure shows client communication to (i) a local proxy that
shares the PCle switch with the client, and (ii) a remote
proxy that achieves the highest bandwidth.
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Figure 15. Communication performance from one client to its local and

remote proxies. The local proxy shares the PCle switch with the client.
Numbers are normalized to local proxy performance.

On AWS machines with T4 GPUs (Figure 15a), commu-
nication to local or remote proxy makes no difference, so
each client always communicates with its local proxy.

On AWS machines with V100 GPUs (Figure 15b), access-
ing the local proxy achieves lower latency, while the remote
proxy achieves higher bandwidth. So a client communicates
with the local proxy for small tensors, and the remote proxy
for large tensors.

On SDSC machines with P100 GPUs (Figure 15c¢), ac-
cessing the local proxy achieves lower latency and higher
bandwidth. So the client always communicates with its local

proxy.

D. Training Speedup

We choose two DL models, ResNet50 [16] and
BERT [12], to evaluate our design. We run ResNet50
training with ImageNet [11] dataset, using a per-GPU batch
size of 64. We run BERT fine-tuning with SQuAD 1.1 [55]
dataset, using a per-GPU batch size of 2.

We evaluate three communication schemes, (1) a naive
disaggregated CCI memory design as shown in Figure 5
(DENSE), (2) AllReduce using NCCL without CCI memory
(AllReduce), and (3) COARSE where the number of worker
GPUs is equal to the number of CCI memory devices
(COARSE). We use the training speedup (compared to the
DENSE case) as the major metric.

To estimate the communication time in the DENSE case,
we run the DL training with a parameter server running
on CPU, and estimate the GPU to CPU bandwidth ac-
cording to the CCI prototype performance model (Sec-
tion V-B). This parameter server is provided by Tensor-
Flow’s ParameterServer distribution strategy.

Figure 16(a-b) show the evaluation on AWS with NVIDIA
T4 GPUs. COARSE achieves 3.3x and 4.3x speedup for
ResNet50, and 11.3x and 13.3x speedup for BERT, which
is slightly lower than AllReduce. COARSE does not work
efficiently on this platform because there’s no unbalanced
bandwidth (Figure 15a) and this platform does not support
GPU p2p communication.

Figure 16c shows the evaluation on SDSC with P100
GPUs, where COARSE achieves 3.4x speedup for BERT.
On the AWS machine with V100 GPUs (Figure 16d),
COARSE achieves 10.8x-13.8x speedup for BERT. On
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Figure 17.
AllReduce and COARSE.

these two machines, COARSE beats AllReduce by lever-
aging non-uniform bidirectional bandwidth.

Figure 16(e-f) show single- and multi-node training per-
formance. The baseline is set to AllReduce because DENSE
does not assume a multi-node system. On the single node
system (Figure 16e), AllReduce can only use a batch size of
2 due to memory capacity limitation, while COARSE can
use a batch size of 4 and achieves 48.3% faster training. On
the multi-node system (Figure 16f), COARSE is up to 42.7%
faster than AllReduce. Even a single node COARSE with a
large batch size of 4 can achieve 38.6% speedup compared
to a two-node AllReduce training.

E. Communication Time

To understand the speedups in DL training, we break
down the training time and measure the communication time
that blocks the training computation. Figure 17 shows the
result of blocked communication time where numbers are
normalized to (1) CCI communication time in single-node
evaluations (Figure 17(a-d)), and (2) AllReduce in multi-
node evaluations (Figure 17(e-f)). AllReduce and COARSE
reduce the communication to less than 10% compared to the
naive parameter server running on CCI memory. AllReduce
achieves this speedup by using GPUs without external
parameter storage. While COARSE provides additional pa-
rameter storage through CCI memory, with comparable or
even better performance.

On AWS machine with T4 GPUs (Figure 17b), COARSE
introduces additional 18%-20% blocked communication for
BERT model. This is because COARSE exploits non-
uniform bandwidth for faster communication, but this ma-
chine does not have such a bandwidth feature. On SDSC
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machine with P100 GPUs (Figure 17c), COARSE reduces
the communication time by 28% for BERT. On AWS ma-
chine with V100 GPUs (Figure 17d), COARSE reduces the
blocked communication time by 20%-42% for BERT. On
single node and dual node AWS machines with V100 GPUs
(Figure 17(e-f)), COARSE reduces the communication time
by 23%-46%. These results show that COARSE is highly
efficient in reducing communication overhead in distributed
training.

VI. RELATED WORK

To our knowledge, this is the first paper to explore the
cache-coherent disaggregated memory system to accelerate
communication in DL training. This section discusses pre-
vious works related to our study.

Parameter Server. Li et al. [32] propose a distributed
parameter server design based on Ethernet, while COARSE
leverages cache-coherent interconnection. GeePS [8] is a
GPU-specialized parameter server which allows the param-
eter server to store part of the parameters on GPU memory,
so that parameter push/pull can be processed faster. GeePS
enables the multi-server-node training but limits to one
GPU per node, while COARSE works with multiple GPUs
per node. ParameterHub [37] proposes a parameter server
with software-hardware co-design to optimize the rack-scale
Ethernet latency, while COARSE reduces serial bus latency
using cache-coherent interconnection.

Speedup Communication in DL Training. Hop [39] is
a queue-based parameter synchronization in decentralized
DL training. Hop leverages bounded staleness training,
while COARSE targets synchronized training and thus is



orthogonal with this work. Prague [38] proposes a group-
based AllReduce synchronization scheme for distributed DL
training. Prague uses partial synchronization to achieve high
performance, while COARSE provides full synchronization
without losing precision. Zhao et al. [63] propose a hi-
erarchical multi-level parameter server design with GPU
memory, CPU memory, SSD, and network. This parameter
server is helpful in recommendation systems where most
parameters are sparse. It relies on CPU-GPU communication
to exchange parameters, while COARSE enables GPU direct
access to CCI memory device to exploit full serial bus
bandwidth. ByteScheduler [54] introduces a communica-
tion scheduler for DL training. It is beneficial when using
low bandwidth Ethernet communication, but provides less
speedup when using intra-node serial buses for communica-
tion. Compared to ByteScheduler, COARSE leverages CCI
disaggregated memory to speed up the communication on
fast serial buses and support large DL models. Blink [62]
is a collective communication scheme optimized for GPUs
interconnected by both NVLink and PCle. It runs parameter
synchronization jobs on GPUs while COARSE offloads
these jobs to CCI memory devices to further improve GPU
utilization. Klenk et al. [26] propose an in-network accel-
erator for collective communication. This work does not
support extended memory space for GPUs, while COARSE
leverages CCI memory devices to enable larger models to
be trained. In addition, COARSE exploits the non-uniform
serial bus bandwidth to further improve the performance. As
a result, COARSE achieves 48.3% BERT training speedup
over AllReduce, while this prior work achieves less than
10% speedup [26] in the same model training.

Disaggregated Memory Lim et al. [34], [35] propose a
memory disaggregation architecture with a memory blade
connected over PCle to expand CPU accessible memory.
COARSE takes one step further to explore the potential of
disaggregated memory using CCIL. Kim et al. [25] propose a
memory network for GPU and CPU using packet routing
from HMCs, while COARSE does not rely on specific
memory media technology. Kwon et al. [28] propose a
memory-centric architecture for distributed DL training. This
work assumes unified communication bandwidth in serial
bus, while COARSE exploits the non-uniform bandwidth.

Near Memory Processing for DL Training Tensor-
DIMM [27] provides a near memory processing design to
offload embedding operations in recommendation systems.
It accelerates the specialized operations while COARSE
provides generic acceleration to parameter synchronization
operations. iSwitch [33] proposes a parameter synchroniza-
tion design in Ethernet switch memory. It is beneficial to
reinforcement learning where model size is small enough to
fit in switch memory, while COARSE targets large models
and provides extended parameter storage.

VII. CONCLUSION

In this paper, we propose COARSE, a distributed parame-
ter synchronization scheme based on disaggregated memory,
for distributed DL training. COARSE exploits the non-
uniform serial bus bandwidth and bidirectional bandwidth
to accelerate the parameter synchronization in DL training.
It leverages disaggregated memory to offload the parameter
synchronization jobs and hence improves the GPU utiliza-
tion. It combines the emerging cache-coherent interconnec-
tion with MPI-like collective communication to provide low-
latency parameter synchronization. Our evaluation shows
COARSE significantly speeds up the DL training compared
to the centralized parameter synchronization design with
CCIL
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