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Abstract—Modern deep learning (DL) training is memory-
consuming, constrained by the memory capacity of each com-
putation component and cross-device communication band-
width. In response to such constraints, current approaches
include increasing parallelism in distributed training and opti-
mizing inter-device communication. However, model parameter
communication is becoming a key performance bottleneck in
distributed DL training. To improve parameter communication
performance, we propose COARSE, a disaggregated memory
extension for distributed DL training. COARSE is built on
modern cache-coherent interconnect (CCI) protocols and MPI-
like collective communication for synchronization, to allow
low-latency and parallel access to training data and model
parameters shared among worker GPUs. To enable high band-
width transfers between GPUs and the disaggregated memory
system, we propose a decentralized parameter communication
scheme to decouple and localize parameter synchronization
traffic. Furthermore, we propose dynamic tensor routing and
partitioning to fully utilize the non-uniform serial bus band-
width varied across different cloud computing systems. Finally,
we design a deadlock avoidance and dual synchronization
to ensure high-performance parameter synchronization. Our
evaluation shows that COARSE achieves up to 48.3% faster
DL training compared to the state-of-the-art MPI AllReduce
communication.
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I. INTRODUCTION

Deep learning (DL) is a key enabler of tremendous

breakthroughs in tasks ranging from object detection [29] to

speech recognition [18], [19] and language translation [22].

As DL models evolve, the model size has been continu-

ously increasing to adapt to complex tasks and improve

accuracy [4], [9]. The size of training data also increases

to achieve higher accuracy [3], [15], [17].

A common practice to train a large DL model with a large

amount of input data is distributed DL training on multiple

workers (computational devices such as GPUs or TPUs [23],

[47]). These workers are optimized for high-performance

matrix multiplication, which is heavily used in DL training.

However, distributed DL training is increasingly constrained

by (1) single device parallelism and on-device memory

capacity and, (2) cross-device communication overhead [20],

[42], [62].

On the one hand, the state-of-the-art GPUs and TPUs

use tens of Gigabytes of on-device high-performance mem-

ory [14], [44], which is an order of magnitude smaller

than the system memory. The on-device memory capacity

does not evolve as fast as DL model sizes, leading to the

popularity of data parallelism [10], model parallelism [40],

and pipeline parallelism [20], [42], [50]. Although paral-

lelism schemes enable the training of large DL models,

they inevitably introduce additional code complexity and

trade-offs without always leading to training speedup [41].

Another solution is to build extended parameter storage with

system memory and storage [63]. But this only benefits a

subset of DL models with certain parameter characteristics

(e.g., parameter data density) [63].

In addition, the bandwidth of commodity cross-device

communication, including PCIe [51], NVLink [48], and the

network, is an order of magnitude lower than on-device

memory bandwidth. This imposes a major performance

bottleneck when adding more worker devices to a distributed

training system. As discussed in Section II-B, the overhead

due to cross-device communication is up to 76% of total DL

training time, significantly degrading the device utilization

and training performance [42], [62]. Recent efforts are de-

voted to decentralized training with the message passing in-

terface (MPI) to mitigate the communication bottleneck [45],

[57]. However, MPI creates a synchronous point that forces

the faster workers to wait for the slower ones, hence degrad-

ing the computation utilization of worker devices [39].

The emerging cache-coherent interconnection (CCI) [7],

[13] promises new opportunities in addressing the memory

capacity and communication challenges. CCI allows the

memory to be attached to serial buses (e.g., PCIe) instead

of only the memory bus (DDR channels). As such, system

memory capacity is no longer constrained by the memory

channels supported by the processor sockets. CCI protocols

typically provide hardware-level cache coherence support

and customized protocols to reduce memory access latency.

With CCI, host processors can directly issue memory load/-

store instructions to memory devices on a serial bus without

using a software driver. CCI also enables disaggregated

memory systems, where each memory device incorporates

an on-device processor with on-device memory. The on-

device processor can access the host CPU’s memory through

CCI [7], [13].

However, a naı̈ve design, which simply offloads parameter

synchronization to the CCI memory devices, falls short to

enable efficient large-scale DL training due to critical design



challenges. First, parameter data transfer is bounded by a

single memory device’s serial bus bandwidth; coherence

traffic also increases with the number of computation devices

sharing the same memory region, reducing the bandwidth

available to accommodate parameter data transfer. Second,

both parameter size and local/remote communication band-

width characteristics are not uniformly distributed in differ-

ent distributed systems; in addition, there is a non-uniform

bandwidth and latency demand with different parameter

sizes in DL training. As a result, no single partitioning and

configuration of DL operations fit all.

Our goal in this paper is to enable efficient large-

scale DL training by designing a parameter synchronization

scheme that addresses the previously described challenges.

To this end, we propose a Cache cOherent interconnected

pARameter SErver (COARSE), which is built on top of

collective communication for synchronization similar to that

of MPI-based decentralized training. In particular, COARSE

consists of three key design principles. First, we propose

a decentralized parameter communication scheme to de-

centralize parameter synchronization and localize parameter

storage. Second, we propose a tensor routing and partition-

ing scheme, which exploits parameter granularity and non-

uniform interconnection bandwidth to fully utilize serial bus

bandwidth and improve tensor locality in the GPUs. The ten-

sor partitioning enables a pipelined tensor synchronization

and takes advantage of serial bus bi-directional bandwidth;

The bandwidth-aware tensor routing routes a GPU’s tensor

to a bandwidth-friendly memory device, even if they are

not under the same serial bus switch. Finally, we develop a

dual parameter synchronization scheme to reduce parameter

synchronization traffic and enable high GPU computation

utilization.

Internally, COARSE handles parameter synchronization

with a set of collective communication based on CCI proto-

col – similar to that of MPI-based decentralized training

– to reduce the communication latency and improve the

synchronization bandwidth. Yet to allow easy integration

with the commodity DL training frameworks, we provide a

parameter push/pull interface similar to that of conventional

parameter servers.

This paper makes the following key contributions:

• We propose COARSE, an efficient parameter synchroniza-

tion scheme that accelerates distributed DL training by

leveraging disaggregated memory systems.

• We identify non-uniform local and remote bandwidth

distribution in different distributed systems.

• We build a COARSE prototype integrated with Tensor-

Flow, offering significant improvements on training la-

tency, computation utilization, and interconnection band-

width utilization in various distributed training workloads

running in different cloud systems.

(a) Parameter server. (b) MPI AllReduce.

Figure 1. Communication schemes in distributed DL training.

II. BACKGROUND AND MOTIVATION

DL training has witnessed a wave of rapidly increasing

scales of data sets and models. This has led to the popularity

of distributed training to scale-out training workloads on

distributed server nodes (workers), each with an increasing

number of interconnected GPUs (Figure 1). As a result,

the data communication overhead is becoming one of the

key obstacles for the continuous scaling of distributed DL

training [42], [62]. In this section, we motivate our design

by discussing the challenges and opportunities of enabling

efficient parameter communication with cache-coherent dis-

aggregated memory systems.

A. DL Training Parallelism Schemes

Modern large DL models and data sets are too large to

fit in a single worker while achieving the target accuracy

within a reasonable period of time [56]. This leads to the

exploration of various classes of DL parallelism schemes

to train a DL workload on multiple server nodes – data,

model, pipeline, and hybrid parallelism [21] – without an

obvious performance winner. In this paper, we focus on data

parallelism due to its popularity in commodity systems and

the opportunity introduced by the emerging cache-coherent

disaggregated memory systems (Section II-C). The major

advantage of data parallelism is that it is applicable to any

DL model without further domain knowledge of the model.

Data Parallelism. Data parallelism is widely used in state-

of-the-art commodity DL training systems [10]. Rather than

training a model with all the available input data on a single

server, the system replicates the model across many workers

and feeds each replica with a subset of the input data.

Because the model replicas are trained using different input

data, their parameters will typically diverge.

Parameter Server. To reconcile these parameters and ensure

that all model replicas eventually converge, each replica

periodically pushes its local parameter values to a centralized

server, i.e., a parameter server. Parameter server is typically

implemented as a distributed key-value store with consistent

shared metadata, including server status and/or a hash table

with distributed key-value mapping. The parameter server

aggregates all the received updates for each parameter – e.g.,

by averaging them – and then sends back to all replicas

a newly computed set of values, which will be used at
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Figure 2. Communication overhead in ML training.

the beginning of the next training iteration. However, not

only the data but also the model size keeps skyrocketing.

For instance, DLs used in recommendation systems or

natural language processing (NLP) tasks commonly have

large network parameters, e.g., BERT [12] model has ∼ 300
million parameters. To accommodate the huge number of

parameters in large DL models, systems employ multiple

parameter servers, with each one being responsible for a

subset of the parameters.

Model Parallelism. Model parallelism partitions the opera-

tors in a training model across multiple workers; each worker

evaluates and updates a subset of the model parameters

for all inputs. However, model-parallel training suffers from

computing resource under-utilization due to data dependency

and the large communication overhead of intermediate re-

sults, such as activation and gradient [42].

Pipeline Parallelism. Pipeline parallelism partitions DL op-

erations and splits a mini-batch into multiple micro-batches.

Each worker computes the output of a model partition

with a set of micro-batches, then propagates the output

to the subsequent workers. By executing multiple micro-

batches in parallel and making communication traffic point-

to-point (stage to next stage), pipeline parallelism improves

worker utilization compared to model parallelism [20], [42],

[50]. However, such parallelism schemes lead to either low

computing resource utilization [20] or accuracy loss [42],

depending on their implementations.

B. Communication Issues in DL Training

Data parallelism imposes severe communication and syn-

chronization overhead due to back-propagation updates.

Such communication typically relies on two types of training

system architectures (i) centralized communication (Fig-

ure 1a) – commonly used for inter-node communication

between the parameter server and workers and (ii) decen-
tralized communication (Figure 1b) – commonly used for

intra-node communication between worker GPUs [59], [64].

In centralized communication, the computed gradients in

each worker need to be transferred back to the parameter

server for model updates, before continuing to compute

the next mini-batch of training data. A parameter server

(a) Communication schemes.
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Figure 3. CCI bandwidth with CPU load/store instruction (CCI), GPU
indirect copy through CPU (GPU Indirect), and GPU direct peer-to-peer
copy (GPU Direct). Read and write bandwidth are normalized to the CCI
bandwidth, respectively.

provides a push/pull interface for each worker. As a result,

a critical performance bottleneck is the parameter server

communication bandwidth. In decentralized communication,

workers directly communicate with each other via an MPI

interface, such as AllReduce.

Recent studies show that data communication among

workers is a major bottleneck in distributed DL training [42],

[62]. We further evaluate the communication overhead in

decentralized communication with eight DL models im-

plemented by TensorFlow [60] and NVIDIA [46], as il-

lustrated in Figure 2. We use NCCL [45], which is an

optimized decentralized communication scheme using the

MPI AllReduce interface. We train the models on an

AWS EC2 g4dn.12xlarge instance [58] with various

numbers of GPUs, and employ nvprof [49] to measure

the communication overhead in terms of the time spent

on communication operations, including CUDA memory

copy operations and NCCL AllReduce. Figure 2a shows

that an increasing number of GPUs leads to a higher

percentage of communication overhead, with up to 76%

of training time spent on data communication using four

GPUs. Figure 2b shows that AllReduce dominates the

communication latency overhead among all the operations

that perform communication.

The key bottleneck with centralized communication in a

single server node is the limited serial bus lanes in the CPU,

which constrains the service throughput of GPU requests on

parameters: In a multi-GPU server node, the number of serial

bus lanes on CPUs is typically smaller than the total serial

lanes required by all the GPUs. As a result, the concurrent

access from GPUs to the parameter server is constrained by

the CPU serial bus lanes.

The key issue with decentralized communication is that

GPU computation is blocked during parameter synchroniza-

tion: First, a parameter synchronization operation blocks

all GPUs involved for synchronization, forcing the fast

GPUs to wait for the slower ones [38], [39]. Second, the

MPI AllReduce approach generates more communication

requests than centralized training, depending on the topology

adopted. Third, using a commonly adopted ring topology, the

AllReduce performance is bounded by the lowest device-

to-device bandwidth, leading to bandwidth utilization, e.g.,



as low as 34% on NVIDIA DGX-1 systems [62].

C. Opportunities With Disaggregated Memory Systems

Cache-coherent interconnection (CCI) protocols, such as

CCIX [6], Gen-Z [13], and Intel CXL [7], enable cache-

coherent disaggregated memory systems. By offering a

CPU-transparent hardware coherence support, CCI allows

the CPU to directly issue load and store instructions to

access multiple memory devices attached to the existing

or customized serial buses. These memory devices form a

disaggregated memory pool: each memory device adopts an

on-device processor and a large capacity on-device memory;

the memory devices map their local memory into CCI-

unified memory address space and share the address space

with the host CPU and other memory devices [6], [13]. CCI

also allows the host CPU to distribute memory-intensive

computation jobs to the processors on memory devices,

schedule the jobs, and collect computed results.

CCI Performance Benefits. CCI reuses existing serial bus

physical layer protocol and builds a customized higher-

level protocol stack [7]. This customized protocol focuses

on improving fine-grained memory access latency while

providing sufficient peak bandwidth (e.g., 90% of underlying

serial bus peak bandwidth [7]). Thus, compared to existing

serial bus protocols, e.g., PCIe [51]–[53], CCI can achieve

higher bandwidth when accessing small memory blocks.

This unique feature allows GPUs to seamlessly access ex-

ternal large-capacity disaggregated memory devices through

CCI.

Promising CCI-based Peer-to-peer (P2P) Communica-
tion. We identify that peer-to-peer accesses to CCI-based

disaggregated memory achieve significantly higher band-

width than indirect access through the host CPU.

We evaluate the bandwidth of an FPGA-based disaggre-

gated memory prototype implemented on industrial CCI

protocol (more details in Section IV-C) under three use

cases: (i) copying data from a disaggregated memory device

to CPU memory (CCI). (ii) copying data from disaggregated

memory to CPU then to GPU memory (GPU Indirect). (iii)

directly copying data from disaggregated memory to GPU

memory (GPU Direct). Figure 3 shows that GPU direct peer-

to-peer copy provides 17× read bandwidth and 4× write

bandwidth speedup. This motivates us to enable GPU direct

access to CCI memory for better performance.

Benefits to Data Parallel DL Training. CCI is beneficial

to data parallel training in two aspects: (i) in data parallel

training, cross-device communication is a major overhead;

this communication can take advantage of CCI low-latency

memory access to improve the parameter synchronization

performance. (ii) the parameter synchronization operations

block the training procedure and take up GPU computing

resources; while using CCI, GPU can work with memory de-

vice processors coherently to offload these synchronization

Figure 4. System deployment of a single server node.

operations to memory device processors, thus improving the

GPU utilization and reducing the communication overhead.

III. COARSE DESIGN

Overview. Our goal in this paper is to enable efficient

large-scale DL training by designing a parameter synchro-

nization scheme with (1) light communication traffic, (2)

high interconnection bandwidth utilization, and (3) high

GPU computation utilization. To achieve our goal, we

propose Cache cOherent interconnected pARameter SErver

(COARSE), which is a decentralized parameter synchroniza-

tion design offloaded to CCI-based disaggregated memory

systems. COARSE provides a parameter server push/pull

interface for easy integration, while internally, it consists

of the following novel parameter synchronization mecha-

nisms:

• A decentralized parameter communication scheme to

decentralize and localize parameter communication.

• A tensor routing and partitioning scheme which ex-

ploits non-uniform interconnection bandwidth character-

istics to fully utilize serial bus bandwidth and improve

tensor locality in GPUs.

• A dual parameter synchronization scheme to reduce

parameter synchronization traffic and enable high GPU

computation utilization.

This section presents the key ideas of COARSE design.

Implementation details will be described in Section IV.

A. System Deployment

We assume a single server node deployment illustrated

in Figure 4: GPUs are connected to serial bus switches

and communicate with other serial bus devices as in com-

modity systems [47]. Each GPU is paired with a CCI-

based disaggregated memory device (referred to as memory
device in the rest of the paper) sharing the same serial bus

switch, such that communication between a pair of GPU and

memory device achieves full bandwidth. A similar approach

in existing systems is to put a network card under each

PCIe switch to improve GPU RDMA bandwidth [47]. Each

memory device incorporates an on-device processor (e.g.,

with ARM cores) and a large-capacity memory. Intra-node



Figure 5. DENSE architecture.

memory devices are interconnected by a CCI. CCI protocols

allow the memory devices to support (i) full-bandwidth data

copy through a serial bus interface (the solid lines) and (ii)

cache-coherence traffic through a CCI interface (the dashed

lines) [7], [13]. As such, serial bus devices can copy data

peer-to-peer through a serial bus switch or host bridge [43],

bypassing data copy in system memory.

B. A Naı̈ve Design

We assume a baseline architecture – DENSE – as shown in

Figure 5. In DENSE, each GPU maintains a parameter data

cache supported by CCI. To update parameters, the GPU

first updates the local parameter cache and then employs

CCI to update the global parameter coherently. The global

parameters are stored in a memory device, which runs a

parameter server on the on-device processor and stores the

parameters in on-device memory. The memory device maps

the on-device memory to CCI address space and shares it

with other GPUs through CCI. This architecture bypasses

the host CPU data copy, and we use it as a baseline in the

following sections.

In DENSE, parameter synchronization jobs are offloaded

to the processors in memory devices. Such offloading in-

troduces promising benefits for DL training: Compared

to conventional centralized training, the offloading allows

GPUs to directly communicate with memory devices at full

serial bus bandwidth, without being limited by CPU serial

bus lanes; Compared to decentralized training, the offloading

allows GPUs to continue with computation during parameter

synchronization, substantially improving GPU utilization.

C. A Disaggregated Design

Simply offloading parameter synchronization to the mem-

ory devices in DENSE falls short to enable efficient large-

scale DL training. In the following sections, we identify

critical design challenges and insights obtained from our ex-

periments in two different distributed system infrastructures,

from Amazon AWS [58] and San Diego Supercomputing

Center (SDSC) [61], respectively. Based on our observa-

tions, we propose a disaggregated parameter synchronization

architecture, COARSE, as illustrated in Figure 6.

Figure 6. COARSE architecture.

In COARSE, the parameter synchronization service is

further disaggregated to multiple memory devices, providing

higher communication bandwidth compared to DENSE’s

centralized architecture. Each memory device communicates

with one GPU sharing the same serial bus switch for

parameter updates, and communicates with other memory

devices for parameter synchronization. The following sec-

tions introduce the design details of COARSE.

D. Decentralized Parameter Synchronization

Interconnection Bandwidth and Scalability Issues. Al-

though disaggregated memory system allows multiple com-

putation devices (e.g., GPUs) to share memory at low la-

tency, parameter data transfer is bounded by serial bus band-

width in the DENSE architecture. Such bandwidth limitation

will constrain the number of computation devices sharing

the disaggregated memory system. Furthermore, coherence

traffic also increases with more computation devices sharing

the same memory region [7], [13], reducing the bandwidth

available to accommodate parameter data transfer on the CCI

path.

Decentralized Parameter Communication. Our key idea to

address the above challenges is to localize parameter storage

and decentralize parameter synchronization. To this end, we

propose a decentralized parameter synchronization scheme,

which splits the original synchronization functionality be-

tween parameter proxy and storage.

Figure 7 shows an overview of our design, which com-

municates parameters across three levels in a hierarchy:

parameter client, parameter proxy, and parameter storage.

Each worker GPU runs a parameter client that maintains

local parameters and communicates with a dedicated proxy

to perform parameter synchronization. Each client provides a

push and a pull interface to the local DL training operations

– a parameter server functionality in conventional designs.

Both parameter proxy and parameter storage run on the

memory devices. A proxy is a communication service, acting

as a bridge between a client and the parameter storage

located in the same memory devices. The proxy also main-

tains a cache of the parameters stored with the parameter

storage in the same memory device. As such, the multi-level



Figure 7. Decentralized parameter synchronization.

parameter communication scheme reduces the data traffic by

localizing parameter communication between client-proxy

and local proxy-storage pairs. This allows the CCI path to

accommodate proxy-proxy parameter synchronization at low

latency, as illustrated in Figure 7.

E. Tensor Routing and Partitioning

In COARSE clients, we propose (1) a tensor routing
mechanism to exploit non-uniform parameter size and band-

width distribution; and (2) a tensor partitioning mechanism

to exploit the bidirectional bandwidth offered by the serial

bus interface in disaggregated memory systems.

Non-uniform Parameter Size and Local/Remote Band-
width Distribution. We observe that both parameter size

and local/remote communication bandwidth characteristics

are not uniformly distributed in our experiments in AWS and

supercomputing distributed systems. To investigate commu-

nication bandwidth characteristics, we measure PCIe peer-

to-peer communication in two systems: (1) an AWS EC2 p3
instance with eight NVIDIA V100 GPUs, interconnected by

NVLink and PCIe; this is similar to an NVIDIA DGX-1

system [47]; (2) an instance in the supercomputing center

with four NVIDIA P100 GPUs, interconnected by PCIe.

Figure 8 shows the bidirectional bandwidth between pairs

of GPUs. On the supercomputing instance, local PCIe band-

width (under the same PCIe switch) is higher than remote

bandwidth, which is straightforward to imagine. However,

the AWS instance appears to have a reverse bandwidth

characteristic – higher remote than local bandwidth1; such

bandwidth “anti-locality” may be caused by unbalanced

physical signal paths in the PCIe switch chipsets [5], [31]. In

addition, we observe a non-uniform bandwidth and latency

demand with different parameter sizes in our experiments

with DL training in both systems: small-size parameter

communication (less than 2MB) is latency-critical because

the communication does not saturate the serial bus band-

width; instead, transfer of large-size parameters is bandwidth

1This reverse bandwidth distribution is also observed by a recent
study [31] and referred to as “anti-locality”.
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critical. These observations indicate that no single routing

and partitioning of DL operations fits all.

Tensor Routing. Ahead of DL training, COARSE builds a

routing table for each client, which describes the destination

proxies for various sized tensor push/pull requests. This

tensor routing mechanism is based on two observations:

(i) using serial buses, small-sized data transfer is latency-

sensitive while large data transfer is bandwidth-sensitive

(Figure 14); (ii) non-uniform bandwidth: local serial bus

communication bandwidth is not always higher than remote

communication, although local latency is always better.

The routing table contains three entries, a data size

threshold, a proxy id (BwProxy) for large tensor requests,

and another proxy id (LatProxy) for small ones. The client

issues tensor push/pull request to the BwProxy if the tensor

size is larger than the threshold, otherwise to the LatProxy.

Benefits of Bidirectional Data Transfer. Serial bus inter-

faces, such as PCIe and NVLink, support bidirectional data

transfer that delivers close to 2× bandwidth of unidirectional

transfer. For example, we observe that for a pair of local

GPUs, the unidirectional bandwidth is 13GB/s, whereas the

bidirectional bandwidth is 25GB/s, in an instance from the

San Diego Supercomputing Center.

Tensor Partitioning. In COARSE, parameter synchroniza-

tion includes three steps: client push, proxy synchronization,

and client pull. Serial bus bidirectional data transfer allows

the client push/pull to be processed concurrently. But with

unequal-sized tensors, this bidirectional transfer is not fully

utilized: as shown in Figure 9 FIFO case, there is no client

push/pull between the tensor 0 push and tensor 1 pull.

To fully utilize bidirectional bandwidth, COARSE clients

partition the tensors into equal-sized small shards and syn-

chronize them as a pipeline. With tensor partitioning, the

communication pipeline is filled without idle time (Figure 9),

and the proxy synchronization can start as soon as the first

tensor shard arrives.

Dynamic Partitioning. COARSE adopts a profiler to build

the tensor routing table and determine the tensor partitioning



Figure 9. Tensor partitioning and Dual synchronization.

size at runtime.

To build the routing table for a client, the profiler mea-

sures the client’s communication bandwidth and latency

to each proxy, then chooses a proxy with the lowest la-

tency (LatProxy) and one with the highest bandwidth

(BwProxy). If LatProxy and BwProxy are not the same

one, the profiler further measures the communication time

T under different sized data, and determines a size S that

makes TLatProxy(S) = TBwProxy(S). The client considers

a parameter latency-sensitive if it’s smaller than S, and sends

it to LatProxy.

To find the tensor partition size, the profiler measures

communication bandwidth under various sized data between

a client and its BwProxy. The profiler determines the

smallest data size S′ among all tested data sizes that achieve

the full bandwidth. The client partitions large tensors into

S′ sized small shards.

COARSE uses a dynamic profiling mechanism: before the

training starts, COARSE profiles the communication perfor-

mance to determine the initial routing table and partitioning

size; while training is in progress, COARSE periodically

profiles the communication and updates the routing and

partitioning strategies accordingly.

F. Dual Parameter Synchronization

To efficiently synchronize the parameters, we propose (1)

a priority-based dual synchronization mechanism to exploit

the tensor locality and (2) a queue-based synchronization

scheme to prevent synchronization deadlocks.

Dual Synchronization. In a DL model backward pass,

parameters are updated in reverse order. Therefore, tensors

from the first few layers are updated at the end of a training

iteration while immediately consumed by the forward pass

of the next iteration. These tensors need to be prioritized and

synchronized as fast as possible to start the next iteration. To

this end, COARSE adopts dual synchronization (Figure 9):

the first few layers’ tensors are synchronized by worker

GPUs, while the rest layers’ tensors are pushed to proxies

Figure 10. Deadlock in first-come-first-serve synchronization. Ti,j repre-
sents tensor i from client j.

and synchronized by proxies. In dual synchronization, high

priority tensors are synchronized immediately on worker

GPUs, instead of being pushed to proxies and waiting until

low priority tensor synchronizations to be finished.

COARSE determines the dual synchronization strategy

with a performance estimation: suppose there are p worker

GPUs and p memory devices; the DL model synchronizes

n bytes of parameters in each iteration, the first m bytes

are sent to memory devices, and the rest is synchronized by

worker GPUs.

Using ring AllReduce synchronization, each proxy sends
2(p−1)

p × m bytes to one neighbor proxy, and receives

the same amount. So the proxy synchronization time is

Tsync(proxy) = ( 2(p−1)
p ×m)/BWproxy , where BWproxy

is the communication bandwidth between proxies. Similarly,

the GPU synchronization time is Tsync(GPU) = ( 2(p−1)
p ×

(n−m))/BWGPU .

Let TFP denote forward pass computation time and TBP

denote backward pass time. The training iteration time is

estimated as:

Ttrain = max

{
TFP + TBP + Tsync(GPU)

TFP + Tsync(proxy)

p is assigned by the user, n is defined by the DL

model, BWproxy and BWGPU are measured by the profiler

(Section III-E), TFP and TBP are measured by running a

few iterations of training.

COARSE calculates the optimal value for m that mini-

mizes the training time Ttrain. This m is then used for dual

synchronization.

Deadlock Avoidance. A first-come-first-serve (FCFS) syn-

chronization scheme may cause deadlocks, as shown in

Figure 10: client 0 send tensor 1 to proxy 0 and tensor 2 to

proxy 1, for synchronization. In FCFS scheduling, proxy 0

waits to synchronize tensor 1 while proxy 1 waits for tensor

2, and thus causing deadlock.

To prevent such deadlocks, COARSE adopts a queue-

based synchronization if one proxy is shared by multiple

clients: A proxy maintains a queue for each client that stores

the tensors pushed by this client. The proxy synchronizes

all tensor queues concurrently so that it’s not blocked on a

single tensor synchronization.



(a) Cores for sync jobs. (b) Sync groups. (c) Sync scheme.

Figure 11. Parameter synchronization with sync cores (denoted as SC in figure b and c).

IV. IMPLEMENTATION

In this section, we describe the implementation details

of COARSE and the FPGA-based disaggregated memory

prototype.

A. Sync Cores

COARSE offloads parameter synchronization jobs to

memory devices. These jobs rely on simple computation

operations such as the sum of float numbers, which do

not require the full features of a generalized processor.

Executing synchronization jobs on low-power generalized

processors, such as ARM Cortex-A53 on our Bittware Soc-

250 FPGA, does not achieve high performance due to the

limited number of arithmetic logic units. COARSE adopts

specialized near memory processing cores – Sync Cores – to

execute synchronization jobs with low design cost and high

parallelism.

Sync Core Design. As shown in Figure 11a, each memory

device is equipped with a set of sync cores, which can access

local DRAM through the memory controller, and remote

CCI memory device through the on-device CCI controller.

Each sync core communicates with remote sync cores on

other memory devices to synchronize the parameters. Each

sync core maintains three buffers, a RecvBuf, a LocalBuf, and

a SendBuf, to store the intermediate synchronization results.

The sync core maps these buffers to CCI address space to

accommodate direct read and write access from remote sync

cores. To perform the arithmetic operations in parallel, each

sync core employs a set of arithmetic logic units (ALU) that

computes with the first two buffers’ entries and stores the

result into SendBuf.

Sync Scheme. To synchronize parameters, the sync cores

perform group-based collective communication through

CCI, where multiple groups synchronize different parame-

ters in parallel. Each group consists of sync cores from each

memory device, and uses ring-based topology for communi-

cation. Two adjacent groups use different ring directions to

fully utilize the bidirectional bandwidth. Figure 11b shows

an example configuration of two synchronization groups

with four memory devices. In this configuration, group 1 use

a reverse ring direction of group 0, so that communication

between each pair of memory device is always bidirectional.

Figure 11c shows an example of the parameter synchro-

nization scheme with one group of sync cores: Each sync

core first loads a chunk of tensor data from local DRAM into

LocalBuf and starts the iterative synchronization. In each

iteration, each sync core sends an entry from SendBuf to the

next sync core’s RecvBuf, and receives an entry from the last

sync core. It then applies the computation operation on the

received entry and corresponding LocalBuf entry, stores the

result in SendBuf, and sends it in the next iteration. When

all entries are synchronized, the sync core writes back the

updated entries to DRAM and starts to synchronize the next

chunk.

Fault Tolerance. Many existing ML frameworks rely on

checkpointing to ensure fault tolerance: during the training

process, the ML framework periodically takes a snapshot of

ML model’s parameters and saves it to disk. In case any

worker GPU fails during the training, the framework can

recover its training progress with the latest checkpoint in-

stead of training the model from the start. The checkpointing

typically requires GPUs to transfer their model parameters to

a centralized persistent storage and thus degrades the training

performance.

To improve the checkpointing performance, COARSE

leverages low-overhead copy-on-write with fine-grained

snapshotting: when a memory device receives a parameter,

it performs a copy-on-write procedure if the parameter

contains updates to the previous version. Then at the end

of each epoch, the memory device takes a snapshot of the

current version of all parameters and saves it as a checkpoint.

B. COARSE

COARSE is implemented as a Python library with Python

3 and CUDA 11.4, and provides a plugin to TensorFlow

framework [2]. It manages device memory, schedules syn-

chronization, and handles requests between clients, proxies,

and storage.

COARSE leverages GPUs to emulate the CCI memory

device due to the lack of CCI support in existing CPUs

and motherboards. COARSE accepts a user-defined GPU

partition table that describes which GPU acts as a worker

and which acts as a memory device.

Offline Profiling. Ahead of DL training, COARSE profiles

the communication latency and bandwidth between GPUs

and memory devices, as described in Section III-E. This

profiler is implemented as a CUDA program and measures

peer-to-peer GPU communication by default. However, if



Figure 12. Disaggregated memory prototype with two FPGAs.

GPUs are interconnected with NVLink, the profiler disables

the NVLink feature to measure the PCIe bandwidth.

Client. A client maintains a tensor queue in worker GPU

memory. When the DL model pushes a tensor, the client

compares the tensor size with the partition threshold. If

the tensor size is smaller than the threshold, it’s enqueued

directly without partitioning. The client partitions a large

tensor into multiple shards and enqueues them separately,

where each shard’s size is equal to or larger than the

threshold to maximize bandwidth utilization.

The client actively dequeues tensors, sends small tensors

to the latency-friendly proxy, large tensor shards to the

bandwidth-friendly proxy. After the first tensor is pushed

to proxies, the client starts to pull the updated tensors

and reconstruct the original tensors based on the partition

history. These client operations are implemented in Python

and integrated into the TensorFlow computation graph.

Proxy and Storage. Each GPU-emulated memory device

runs one parameter proxy and one parameter storage. The

proxy leverages stream processors on existing GPUs as sync

cores, and uses NCCL AllReduce to emulate collective syn-

chronization operations between CCI memory devices. After

each synchronization, the proxy copies the updated tensors

to the storage. The parameter storage maintains a key-value

table that maps a tensor id to the tensor value. To model the

CCI communication characteristics, we implement a set of

CUDA kernels that inject delays to communications based

on data sizes.

TensorFlow Integration. COARSE provides a distribution
strategy for TensorFlow version 2 or later. To use COARSE,

the user just needs to import COARSE Python library

and replace the original distribution strategy with COARSE

strategy, which typically requires 2 lines of code change.

C. Disaggregated Memory Prototype

We implement a disaggregated memory prototype based

on an industrial CCI protocol using two FPGAs, as illus-

trated in Figure 12.

The first FPGA works as a shared memory pool. We

implement the host controller of the CCI protocol in the first

FPGA. This controller manages the FPGA on-device DRAM

Table I
MACHINES FOR DL TRAINING

Instance CPU & Memory GPU Network

AWS g4dn
Intel 8259CL

384 GB
8 * NVIDIA T4

PCIe
100GBE

AWS p3
Intel E5-2686 v4

768 GB
8 * NVIDIA V100

NVLink, PCIe
100GBE

SDSC
Intel E5-2680 v3

128 GB
4 * NVIDIA P100

PCIe
100GBE

and shares it with the host CPU and other FPGAs. To share

the local memory with the host CPU, the controller exposes

the on-device DRAM as a byte-addressable PCIe bar region.

A program running on the host CPU can mmap [36] this

region and use load/store instructions to access the FPGA

memory. To share the local memory with other FPGAs,

the controller accepts network requests from other FPGAs

through QSFP connections.

The second FPGA works as a near-memory processing

device. It contains the client controller of the CCI protocol

and connects to the first FPGA through a QSFP cable. The

ARM core on this FPGA can access the shared memory

through the CCI client controller.

V. EVALUATION

We first profile the CCI prototype performance and build

a performance model based on the profiling result. We then

use the performance model to evaluate the DL training with

COARSE, on three different systems.

A. Experiment Setup

The disaggregated memory prototype adopts a Xilinx

KCU1500 FPGA [24] and a BittWare 250-SoC FPGA [1] to

emulate the shared memory pool. Two FPGAs are intercon-

nected with one QSFP cable [30] so that the ARM cores on

250-SoC can access the shared memory pool through CCI.

KCU1500 exposes its shared memory as a byte-addressable

PCIe bar region for the host CPU to access. The host system

includes an Intel 8700K CPU, 32GB DDR4 memory, and an

NVIDIA GTX1080 GPU. The motherboard adopts two PCIe

switches enabling the GPU to access KCU1500 through

peer-to-peer PCIe communication.

We profile the performance of this prototype and build

a performance model based on profiling results to estimate

the CCI bandwidth under different access sizes. We use this

performance model to evaluate DL training time only in the

baseline DENSE case (Figure 16).

We evaluate DL training with COARSE on three machine

instances, as listed in Table I. On each machine, we use

half of the GPUs to emulate the CCI memory devices. On

AWS p3 machine, we provide an additional 2:1 configuration

where each memory device is shared by two worker GPUs.

B. CCI Prototype Performance

We map the disaggregated memory prototype’s memory to

the host CPU memory space using mmap [36], and evaluate
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Figure 13. CCI bandwidth with CPU load/store instructions (CCI), GPU
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Figure 14. PCIe DMA bandwidth from host CPU to FPGA.

its bandwidth in three use cases: (1) CCI: Host CPU ac-

cessing CCI memory using memory load/store instructions.

(2) GPU Indirect: GPU accessing CCI memory by first

copying data to host CPU memory. (3) GPU Direct: GPU

directly accessing CCI memory using cudaMemcpy with

prototype’s PCIe address.

Figure 13 shows the CCI bandwidth under different access

sizes. Figure 13a shows that CCI read bandwidth remains

stable under all access sizes. The difference between CCI

line and GPU Indirect line is not visible in Figure 13a, which

means the GPU Indirect read bandwidth is bounded by

CCI bandwidth. However, the GPU Direct read bandwidth

achieves 9x-17x speedup compared to CCI. Figure 13b

shows that GPU Direct write bandwidth achieves 1.25x-4x

speedup. This bandwidth speedup shows that CCI memory

is more beneficial to the serial bus devices (e.g., GPUs) if

CCI enables peer-to-peer communication.

We further profile the FPGA DMA bandwidth to estimate

the full device bandwidth. As shown in Figure 14, DMA

read and write achieves max bandwidth with an access size

of 2MB or higher.

We build a bandwidth versus data size performance model

for the following DL training evaluations. We assume the

GPU Direct method achieves full serial bus bandwidth, and

use correlated speedup/slowdown to derive CCI and GPU

Indirect bandwidth in the DENSE system.

C. Tensor Routing

As discussed in Section III-E, to build the tensor routing

table for a client, COARSE profiles the communication

performance from the client to each proxy. Figure 15 shows

the profiling result for one client on each machine. Each

figure shows client communication to (i) a local proxy that

shares the PCIe switch with the client, and (ii) a remote
proxy that achieves the highest bandwidth.

0

1

2

BW LatN
or

m
al

iz
ed

Pe
rfo

rm
an

ce

local remote

(a) T4

0

1

2

BW LatN
or

m
al

iz
ed

Pe
rfo

rm
an

ce

local remote

(b) V100

1

3

5

7

9

BW LatN
or

m
al

iz
ed

Pe
rfo

rm
an

ce

local remote

(c) P100

Figure 15. Communication performance from one client to its local and
remote proxies. The local proxy shares the PCIe switch with the client.
Numbers are normalized to local proxy performance.

On AWS machines with T4 GPUs (Figure 15a), commu-

nication to local or remote proxy makes no difference, so

each client always communicates with its local proxy.

On AWS machines with V100 GPUs (Figure 15b), access-

ing the local proxy achieves lower latency, while the remote

proxy achieves higher bandwidth. So a client communicates

with the local proxy for small tensors, and the remote proxy

for large tensors.

On SDSC machines with P100 GPUs (Figure 15c), ac-

cessing the local proxy achieves lower latency and higher

bandwidth. So the client always communicates with its local

proxy.

D. Training Speedup

We choose two DL models, ResNet50 [16] and

BERT [12], to evaluate our design. We run ResNet50

training with ImageNet [11] dataset, using a per-GPU batch

size of 64. We run BERT fine-tuning with SQuAD 1.1 [55]

dataset, using a per-GPU batch size of 2.

We evaluate three communication schemes, (1) a naı̈ve

disaggregated CCI memory design as shown in Figure 5

(DENSE), (2) AllReduce using NCCL without CCI memory

(AllReduce), and (3) COARSE where the number of worker

GPUs is equal to the number of CCI memory devices

(COARSE). We use the training speedup (compared to the

DENSE case) as the major metric.

To estimate the communication time in the DENSE case,

we run the DL training with a parameter server running

on CPU, and estimate the GPU to CPU bandwidth ac-

cording to the CCI prototype performance model (Sec-

tion V-B). This parameter server is provided by Tensor-

Flow’s ParameterServer distribution strategy.

Figure 16(a-b) show the evaluation on AWS with NVIDIA

T4 GPUs. COARSE achieves 3.3× and 4.3× speedup for

ResNet50, and 11.3× and 13.3× speedup for BERT, which

is slightly lower than AllReduce. COARSE does not work

efficiently on this platform because there’s no unbalanced

bandwidth (Figure 15a) and this platform does not support

GPU p2p communication.

Figure 16c shows the evaluation on SDSC with P100

GPUs, where COARSE achieves 3.4× speedup for BERT.

On the AWS machine with V100 GPUs (Figure 16d),

COARSE achieves 10.8×-13.8× speedup for BERT. On
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Figure 16. DL training on (a-b) AWS g4dn instance with T4 GPUs, (c) HPC machine with P100 GPUs, (d) AWS p3 instance with V100 GPUs, (e) AWS
single node with V100, (f) AWS multi nodes with V100. In (d) COARSE(2:1), each memory device is shared by two worker GPUs. In (e-f), the baseline
is AllReduce which is equivalent to AllReduce in (d); the numbers in legends represent training batch sizes.
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Figure 17. Blocked communication time in DL training, numbers are normalized to CCI case. The CCI bar is ignored for better comparison between
AllReduce and COARSE.

these two machines, COARSE beats AllReduce by lever-

aging non-uniform bidirectional bandwidth.
Figure 16(e-f) show single- and multi-node training per-

formance. The baseline is set to AllReduce because DENSE

does not assume a multi-node system. On the single node

system (Figure 16e), AllReduce can only use a batch size of

2 due to memory capacity limitation, while COARSE can

use a batch size of 4 and achieves 48.3% faster training. On

the multi-node system (Figure 16f), COARSE is up to 42.7%

faster than AllReduce. Even a single node COARSE with a

large batch size of 4 can achieve 38.6% speedup compared

to a two-node AllReduce training.

E. Communication Time
To understand the speedups in DL training, we break

down the training time and measure the communication time

that blocks the training computation. Figure 17 shows the

result of blocked communication time where numbers are

normalized to (1) CCI communication time in single-node

evaluations (Figure 17(a-d)), and (2) AllReduce in multi-

node evaluations (Figure 17(e-f)). AllReduce and COARSE

reduce the communication to less than 10% compared to the

naı̈ve parameter server running on CCI memory. AllReduce

achieves this speedup by using GPUs without external

parameter storage. While COARSE provides additional pa-

rameter storage through CCI memory, with comparable or

even better performance.
On AWS machine with T4 GPUs (Figure 17b), COARSE

introduces additional 18%-20% blocked communication for

BERT model. This is because COARSE exploits non-

uniform bandwidth for faster communication, but this ma-

chine does not have such a bandwidth feature. On SDSC

machine with P100 GPUs (Figure 17c), COARSE reduces

the communication time by 28% for BERT. On AWS ma-

chine with V100 GPUs (Figure 17d), COARSE reduces the

blocked communication time by 20%-42% for BERT. On

single node and dual node AWS machines with V100 GPUs

(Figure 17(e-f)), COARSE reduces the communication time

by 23%-46%. These results show that COARSE is highly

efficient in reducing communication overhead in distributed

training.

VI. RELATED WORK

To our knowledge, this is the first paper to explore the

cache-coherent disaggregated memory system to accelerate

communication in DL training. This section discusses pre-

vious works related to our study.

Parameter Server. Li et al. [32] propose a distributed

parameter server design based on Ethernet, while COARSE

leverages cache-coherent interconnection. GeePS [8] is a

GPU-specialized parameter server which allows the param-

eter server to store part of the parameters on GPU memory,

so that parameter push/pull can be processed faster. GeePS

enables the multi-server-node training but limits to one

GPU per node, while COARSE works with multiple GPUs

per node. ParameterHub [37] proposes a parameter server

with software-hardware co-design to optimize the rack-scale

Ethernet latency, while COARSE reduces serial bus latency

using cache-coherent interconnection.

Speedup Communication in DL Training. Hop [39] is

a queue-based parameter synchronization in decentralized

DL training. Hop leverages bounded staleness training,

while COARSE targets synchronized training and thus is



orthogonal with this work. Prague [38] proposes a group-

based AllReduce synchronization scheme for distributed DL

training. Prague uses partial synchronization to achieve high

performance, while COARSE provides full synchronization

without losing precision. Zhao et al. [63] propose a hi-

erarchical multi-level parameter server design with GPU

memory, CPU memory, SSD, and network. This parameter

server is helpful in recommendation systems where most

parameters are sparse. It relies on CPU-GPU communication

to exchange parameters, while COARSE enables GPU direct

access to CCI memory device to exploit full serial bus

bandwidth. ByteScheduler [54] introduces a communica-

tion scheduler for DL training. It is beneficial when using

low bandwidth Ethernet communication, but provides less

speedup when using intra-node serial buses for communica-

tion. Compared to ByteScheduler, COARSE leverages CCI

disaggregated memory to speed up the communication on

fast serial buses and support large DL models. Blink [62]

is a collective communication scheme optimized for GPUs

interconnected by both NVLink and PCIe. It runs parameter

synchronization jobs on GPUs while COARSE offloads

these jobs to CCI memory devices to further improve GPU

utilization. Klenk et al. [26] propose an in-network accel-

erator for collective communication. This work does not

support extended memory space for GPUs, while COARSE

leverages CCI memory devices to enable larger models to

be trained. In addition, COARSE exploits the non-uniform

serial bus bandwidth to further improve the performance. As

a result, COARSE achieves 48.3% BERT training speedup

over AllReduce, while this prior work achieves less than

10% speedup [26] in the same model training.

Disaggregated Memory Lim et al. [34], [35] propose a

memory disaggregation architecture with a memory blade

connected over PCIe to expand CPU accessible memory.

COARSE takes one step further to explore the potential of

disaggregated memory using CCI. Kim et al. [25] propose a

memory network for GPU and CPU using packet routing

from HMCs, while COARSE does not rely on specific

memory media technology. Kwon et al. [28] propose a

memory-centric architecture for distributed DL training. This

work assumes unified communication bandwidth in serial

bus, while COARSE exploits the non-uniform bandwidth.

Near Memory Processing for DL Training Tensor-

DIMM [27] provides a near memory processing design to

offload embedding operations in recommendation systems.

It accelerates the specialized operations while COARSE

provides generic acceleration to parameter synchronization

operations. iSwitch [33] proposes a parameter synchroniza-

tion design in Ethernet switch memory. It is beneficial to

reinforcement learning where model size is small enough to

fit in switch memory, while COARSE targets large models

and provides extended parameter storage.

VII. CONCLUSION

In this paper, we propose COARSE, a distributed parame-

ter synchronization scheme based on disaggregated memory,

for distributed DL training. COARSE exploits the non-

uniform serial bus bandwidth and bidirectional bandwidth

to accelerate the parameter synchronization in DL training.

It leverages disaggregated memory to offload the parameter

synchronization jobs and hence improves the GPU utiliza-

tion. It combines the emerging cache-coherent interconnec-

tion with MPI-like collective communication to provide low-

latency parameter synchronization. Our evaluation shows

COARSE significantly speeds up the DL training compared

to the centralized parameter synchronization design with

CCI.
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