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Abstract

Fast and accurate simulation of imaging through atmo-
spheric turbulence is essential for developing turbulence
mitigation algorithms. Recognizing the limitations of pre-
vious approaches, we introduce a new concept known as
the phase-to-space (P2S) transform to significantly speed
up the simulation. P2S is built upon three ideas: (1) re-
formulating the spatially varying convolution as a set of in-
variant convolutions with basis functions, (2) learning the
basis function via the known turbulence statistics models,
(3) implementing the P2S transform via a light-weight net-
work that directly converts the phase representation to spa-
tial representation. The new simulator offers 300× – 1000×
speed up compared to the mainstream split-step simulators
while preserving the essential turbulence statistics.

1. Introduction

Despite several decades of research, imaging through at-
mospheric turbulence remains an open problem in optics
and image processing. The challenge is not only in recon-
structing images from a stack of distorted frames but also
in a less known image formation model that can be used
to formulate and evaluate image reconstruction algorithms
such as deep neural networks. Simulating images distorted
by atmospheric turbulence has received considerable atten-
tion in the optics community [29, 3, 11, 24], but using these
simulators to develop deep learning image reconstruction
algorithms remains a challenge as there is no physically jus-
tifiable approach to synthesize large-scale datasets at a low
computational cost for training and testing.

Recognizing the demand for a fast, accurate, and open-
source simulator, we present a new method to generate a
dense-grid image distorted by turbulence with theoretically
verifiable statistics. The simulator consists of mostly op-
tics/signal processing steps and a lightweight shallow neu-
ral network to perform a new concept called the Phase-to-
Space (P2S) transform. By parallelizing the computation
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(a) Hardie et al. [11] (b) Ours

Figure 1. This paper presents a new turbulence simulator that is
substantially (1000×) faster than the prior art, while preserving
the essential turbulence statistics.

(a) Input (real) (b) [17]+U-Net (c) Ours+U-Net
Figure 2. Using our simulator to synthesize training set for train-
ing an image reconstruction network (U-Net [28]) offers a consid-
erable amount of improvement in image quality. The network is
identical for both (b) and (c); only the simulator used to synthesize
the training data is different.

across the pixels, the simulator offers a 1000× speed-up
compared to the mainstream approach as shown in Figure 1.
When using the new simulator to synthesize training data to
train a deep neural network image reconstruction model, the
resulting network outperforms the same architecture trained
with data synthesized by a less sophisticated simulator, as
illustrated in Figure 2.

An overview of the proposed simulator is illustrated in
Figure 3. Our proposed approach is based on linking the
following two ideas:

• Convolution via basis functions (Section 3.1). While
conventional approaches model the turbulence distor-
tion as a spatially varying convolution, we reformu-
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Fi g ur e 3. T his p a p er i ntr o d u c es t hr e e i d e as t o si g ni i c a ntl y s p e e d
u p t h e si m ul ati o n. T h e t hr e e i d e as ar e: ( S e cti o n 3. 1) A p pr o xi m at-
i n g t h e s p ati all y v ar yi n g c o n v ol uti o n b y i n v ari a nt c o n v ol uti o ns,
( S e cti o n 3. 2) l e ar ni n g t h e b asis r e pr es e nt ati o n vi a k n o w n t ur b u-
l e n c e st atisti cs, ( S e cti o n 3. 3) i m pl e m e nti n g t h e P h as e-t o- S p a c e
tr a nsf or m n et w or k.

l at e t h e pr o bl e m b y m o d eli n g t h e dist orti o n as a s u m
of s p ati all y i n v ari a nt c o n v ol uti o ns. T h e i d e a is t o uti-
li z e a b asis r e pr es e nt ati o n of t h e p oi nt s pr e a d f u n cti o ns
( P S Fs). T his c o n c e pt is si mil ar t o t h e pri or w or k of
[2 3 ], b ut i n a diff er e nt c o nt e xt.

• L e a r ni n g t h e b asis f u n cti o ns ( S e cti o n 3. 2). T o e n a bl e
t h e pr e vi o us i d e a, w e n e e d t o h a v e t h e b asis f u n cti o ns.
T his is d o n e b y utili zi n g [ 5 ] t o dr a w Z er ni k e s a m pl es
f or all hi g h- or d er a b err ati o ns. T h e n, pri n ci p al c o m p o-
n e nt a n al ysis is us e d t o c o nstr u ct t h e b asis f u n cti o ns
as pr o p os e d b y M a o et al. [ 2 1 ]. T his is als o r e mi nis-
c e nt t o t h e di cti o n ar y a p pr o a c h pr o p os e d b y H u nt et al.
[1 3 ].

T h e missi n g pi e c e b et w e e n t h es e t w o i d e as is t h e r e-
l ati o ns hi p b et w e e n t h e b asis c o ef i ci e nts i n t h e p h as e a n d
s p ati al d o m ai ns. T his is a n o p e n pr o bl e m, a n d t h er e is
n o k n o w n a n al yti c s ol uti o n.  We cir c u m v e nt t his dif i-
c ult y b y i ntr o d u ci n g a n e w c o n c e pt k n o w n as t h e P h as e-
t o- S p a c e t r a nsf o r m ( S e cti o n 3. 3). T o d o s o, w e c o nstr u ct
a li g ht w ei g ht s h all o w n e ur al n et w or k t o tr a nsf or m fr o m t h e
p h as e d o m ai n t o t h e s p ati al d o m ai n. I nt e gr ati n g t his n et-
w or k i nt o t h e t w o af or e m e nti o n e d i d e as, o ur o v er all si m u-
l at or a d h er es t o t h e p h ysi cs w hil e off eri n g si g ni i c a nt s p e e d
u p a n d a d diti o n al r e c o nstr u cti o n utilit y.

2. B a c k g r o u n d

I n t his s e cti o n w e pr o vi d e a bri ef s u m m ar y of t h e t ur b u-
l e n c e p h ysi cs a n d pri or w or k i n t ur b ul e n c e si m ul ati o n. T h e
t h e or y of i m a gi n g t hr o u g h at m os p h eri c t ur b ul e n c e c a n b e
tr a c e d b a c k t o t h e w or k of K ol m o g or o v [1 4 ] a n d Tat ars ki
[3 2 ], f oll o w e d b y a s eri es of m aj or br e a kt hr o u g hs b y Fri e d
[6 , 7 , 8 ] a n d N oll [2 2 ]. R e a d ers ar e e n c o ur a g e d t o c h e c k o ut
[2 7 , 1 0 ] f or a n i ntr o d u cti o n.

Fi g ur e 4. S plit-st e p pr o p a g ati o n [ 1 1 ] m o d els t h e t ur b ul e n c e as a
dis cr et e s et of p h as e s cr e e ns w h er e t h e w a v efr o nt dist orti o n is
c a us e d b y cr o p pi n g r e gi o ns of t h e p h as e s cr e e n at e v er y pi x el l o c a-
ti o n. T h e k e y o p er ati o ns ar e Fr es n el pr o p a g ati o n a n d K ol m o g or o v
p h as e i m p arti n g. T h e e n d r es ult of a s e q u e n c e of t h es e o p er ati o ns
is a P S F f or o n e pi x el. T h e o v erl a ps of t h e p h as e s cr e e ns cr e at e t h e
s p ati al c orr el ati o ns. S e e [ 1 1 ] f or d et ail e d d es cri pti o n.

2. 1. S plit-st e p si m ul ati o n

T h e i m a g e f or m ati o n pr o c ess t hr o u g h t ur b ul e n c e is b est
d es cri b e d i n t h e p h as e d o m ai n. I n fr e e s p a c e, a n e mitt e d
w a v e pr o p a g at es s p h eri c all y o ut w ar d a n d, if at a s uf i ci e ntl y
l o n g dist a n c e, arri v es u p o n t h e a p ert ur e a p pr o xi m at el y l at.
If t h e m e di u m c o nt ai ns r a n d o m l u ct u ati o ns, t h e p h as e of
t h e w a v efr o nt will b e dist ort e d al o n g t h e p at h of pr o p a g a-
ti o n. We c a n i m a gi n e t h e w a v e l e a di n g a n d l a g gi n g i n p h as e
i n r ef er e n c e t o its u n p ert ur b e d c o u nt er p art as a r es ult of s p a-
ti all y v ar yi n g i n di c es of r efr a cti o n.

T h e m ost wi d el y us e d si m ul ati o n a p pr o a c h t o t h e a b o v e
pr o c ess is t h e s plit-st e p pr o p a g ati o n [ 2 9 , 3 , 1 1 ]. T h e i d e a
is t o dis cr eti z e t h e w a v e pr o p a g ati o n p at h as ill ustr at e d i n
Fi g ur e 4 . S plit-st e p si m ul ati o n pr o p a g at es e v er y p oi nt i n
t h e o bj e ct pl a n e t hr o u g h a dis cr et e s et of p h as e s cr e e ns , al-
t er n ati n g b et w e e n fr e e s p a c e pr o p a g ati o n, gi v e n b y Fr es n el
diffr a cti o n, a n d p h as e i m p arti n g. T h e st atisti c al b e h a vi or
of t h e p h as e s cr e e ns is d e i n e d t hr o u g h its p o w er s p e ctr al
d e nsit y ( P S D) [ 1 1 , 2 9 ], m a n y of w hi c h ar e r el at e d t o t h e
K ol m o g or o v P S D. T his s e q u e n c e of o p er ati o ns is b est d e-
s cri b e d b y t h e e q u ati o n

Fr es n el → K ol m o g or o v → . . . → Fr es n el → K ol m o g or o v .

Aft er p assi n g t hr o u g h a t ur b ul e nt m e di u m, t h e p oi nt s pr e a d
f u n cti o ns ( P S Fs) will b e s p ati all y v ar yi n g as ill ustr at e d i n
Fi g ur e 5

1 4 7 6 0

.
T h e b e n e it of s plit-st e p is t w o f ol d: ( 1) it is i nt er-

pr et a bl e, as it mirr ors t h e p h ysi c al pr o c ess, ( 2) s p ati al c or-
rr el ati o ns ar e o bt ai n e d wit h mi ni m al eff ort, as n ei g h b or-
i n g p oi nt s o ur c es s h ar e o v erl a p pi n g cr o p p e d p h as e s cr e e ns.
T h e dr a w b a c k of s plit-st e p pr o p a g ati o n is its c o m p ut ati o n al
r e q uir e m e nts: e a c h Fr es n el pr o p a g ati o n r e q uir es a p air of



Fi g ur e 5. If w e i m a g e a gri d of p oi nt s o ur c es t hr o u g h t ur b ul e n c e,
w e will o bs er v e a s et of s p ati all y v ar yi n g p oi nt s pr e a d f u n cti o ns
( P S Fs). T h e s h a p e a n d ori e nt ati o n of t h e P S Fs ar e d et er mi n e d b y
t h e p h as e str u ct ur e of t h e t ur b ul e n c e.

F o uri er tr a nsf or ms. T his is r e p e at e d f or e v er y p oi nt a n d
e v er y st e p al o n g t h e p at h. M or e o v er, p erf or mi n g t h e s p a-
ti all y v ar yi n g c o n v ol uti o n a d ds a n ot h er l a y er of c o m p ut a-
ti o n al c ost [1 1 , 2 9 ].

2. 2. P h as e- o v e r- a p e rt u r e si m ul ati o n

O ur pr o p os e d si m ul at or is i ns pir e d b y t h e w or k of
C hi mitt a n d C h a n [ 5 ]. T h e i d e a is t o c oll a ps e t h e s plit-
st e p pr o p a g ati o n i nt o t h e r es ult a nt p h as e a cr oss t h e a p ert ur e.
C o m p ar e d t o s plit-st e p w hi c h us es gl o b al p h as e s cr e e ns,
t h e c oll a ps e d m o d el g e n er at es t h e l o c al p h as e r e ali z ati o n
dir e ctl y, w hi c h w e ill ustr at e i n Fi g ur e 6 .

Fi g ur e 6. T h e c oll a ps e d p h as e- o v er- a p ert ur e m o d el [ 5 ] r e pl a c es t h e
gl o b al p h as e s cr e e ns a n d Fr es n el diffr a cti o n b y l o c al p h as e s cr e e ns
p er pi x el. T his tr a nsl at es t h e w a v e pr o p a g ati o n t o a s p ati all y v ar y-
i n g c o n v ol uti o n wit h P S Fs t h at ar e c h ar a ct eri z e d b y t h e tilts a n d
a b err ati o ns p er- pi x el . W hil e t h e p h as e cr o p pi n g a n d pr o p a g ati o n
of t h e s plit-st e p m et h o d is eli mi n at e d, F o uri er tr a nsf or ms at e v er y
pi x el l o c ati o n ar e still e d n e e d e d.

I n t h e c oll a ps e d m o d el, t h e l o c al p er- pi x el p h as e is g e n-
er at e d usi n g N oll’s i d e a [ 2 2 ] t h at t h e p h as e ϕ (ρ ) ( d e i n e d
o v er t h e a p ert ur e of di a m et er D wit h ρ b ei n g t h e c o or di-
n at e) c a n b e r e pr es e nt e d vi a t h e Z er ni k e b asis f u n cti o ns

ϕ (ρ ) =

K

j = 1

α j Z j (ρ ), ( 1)

w h er e Z j (ρ ) is t h e Z er ni k e b asis a n d α j ar e t h e Z er ni k e
c o ef i ci e nts [α 1 , α2 , ... αK ] = α ∼ N (0 , RZ ), wit h [2 2 ]
pr o vi di n g t h e e x pr essi o n f or R Z . T h e r es ult a nt i n c o h er e nt

P S F is f or m e d vi a

h = F W (ρ )e − j ϕ ( ρ )
2

, ( 2)

o mitti n g a f e w c o nst a nts f or br e vit y, wit h W (ρ ) as t h e p u pil
f u n cti o n of t h e a p ert ur e.

T h e Z er ni k e r e pr es e nt ati o n off ers a n at ur al gr o u pi n g of
t er ms as s u g g est e d i n Fi g ur e 6 : tilt a n d hi g h er or d er a b err a-
ti o ns. T h e t er ms α 2 a n d α 3 c orr es p o n d t o t h e h ori z o nt al a n d
v erti c al tilt of t h e pl a n e of b est it t o t h e p h as e dist orti o n ϕ .
T h e t er ms α 4 , α5 , . . . c orr es p o n d t o t h e hi g h er or d er a b err a-
ti o ns a n d a c c o u nt f or t h e c o m pli c at e d dist orti o ns t h e p h as e
of t h e w a v e e x hi bits. C o m p ut ati o n all y, t h es e t w o gr o u ps
c a n b e s e p ar at e d b y g e n er ati n g t h e hi g h or d er a b err ati o ns,
a p pl yi n g t h e r es ult a nt P S Fs t o t h e i m a g e, t h e n l o c all y s hift-
i n g t h e i m a g e a c c or di n g t o its tilt st atisti cs.

A t e c h ni c al c h all e n g e of t h e c oll a ps e d m o d el is e ns uri n g
t h e Z er ni k e c o ef i ci e nts ar e als o s p ati all y c orr el at e d . I n [5 ],
t his c orr el ati o n is e n a bl e d t hr o u g h t h e i n v e nti o n of a m ulti-
a p ert ur e a p pr o xi m ati o n i n w hi c h t h e c orr el ati o ns c o ul d b e
d es cri b e d a n al yti c all y b y l e v er a gi n g s e v er al cl assi c w or ks
[2 , 4 , 3 1 ]. Wit h t h e c orr el ati o n m atri x d e i n e d, t h e s p ati all y
c orr el at e d tilts c a n b e g e n er at e d. F or t h e hi g h er- or d er t er ms,
it w as s u g g est e d i n [5 ] t h at o n e c a n d e i n e a gri d of P S Fs a n d
s p ati all y i nt er p ol at e b et w e e n t h e m.

2. 3. Li mit ati o ns of p h as e- o v e r- a p e rt u r e

As r e p ort e d i n [ 5 ], t h e c oll a ps e d m o d el is si g ni i c a ntl y
f ast er t h a n t h e st a n d ar d s plit-st e p pr o p a g ati o n. H o w e v er, b y
e v al u ati n g t h e si m ul at or, it is e vi d e nt t h at t h er e ar e s e v er al
li miti n g f a ct ors:

• T h e c oll a ps e d m o d el e x cl usi v el y dr a ws Z er ni k e c o ef-
i ci e nts t o cr e at e t h e dist orti o n. H o w e v er, e v e n wit h all
Z er ni k e c o ef i ci e nts a v ail a bl e, o n e still n e e ds t o c o n-
v ert t h e m t o P S Fs t hr o u g h ( 2 ) at e v er y pi x el . T his is
t h e bi g g est b ottl e n e c k.

• It w as s u g g est e d t h at i n or d er t o r e d u c e t h e n u m b er of
F o uri er tr a nsf or ms, o n e c a n c o nstr u ct t h e P S Fs f or a
gri d of p oi nts, t h e n i nt er p ol at e b et w e e n t h e m s p ati all y .
H o w e v er, m at h e m ati c all y t his is i n c orr e ct, as t h e s u-
p er p ositi o n i n t h e s p ati al d o m ai n is n ot t h e s a m e as
s u p er p ositi o n i n t h e p h as e d o m ai n.

• E v e n if w e c a n r es ol v e t h e a b o v e t w o pr o bl e ms, t o i-
n all y si m ul at e a dist ort e d i m a g e, w e still n e e d t o p er-
f or m t h e s p ati all y v ar yi n g c o n v ol uti o n. T his i n v ol v es
st ori n g t h e P S Fs, a n d e x e c uti n g t h e c o n v ol uti o n, b ot h
of w hi c h ar e r es o ur c e d e m a n di n g.

2. 4. Ot h e r si m ul at o rs

R a y Tr a ci n g . A n alt er n ati v e t o t h e s plit-st e p si m ul ati o n
is r a y tr a ci n g [2 4 , 1 5

1 4 7 6 1

], w hi c h r e q uir es tr a ci n g e a c h p oi nt
s o ur c es t hr o u g h t h e pr o p a g ati o n m e di u m. T h er e ar e als o



r a y tr a ci n g t e c h ni q u es d e v el o p e d i n c o m p ut er gr a p hi cs [3 0 ].
H o w e v er, t h e l a c k of q u a ntit ati v e e v al u ati o n b as e d o n t ur b u-
l e n c e st atisti cs m a k es it dif i c ult t o ass ess t h es e m et h o ds.

W a r p- a n d- bl u r . F or f ast er si m ul ati o ns, o n e c a n c o m-
pr o mis e t h e a c c ur a c y b y si m ul ati n g o nl y t h e pi x el-s hifts,
c o m m o nl y r ef err e d t o as tilts, a n d ass u mi n g a s p ati all y-
i n v ari a nt bl ur [2 6 , 1 9 ]. T h es e si m ul ati o ns a n d m o d els ar e
wi d el y us e d i n t h e i m a g e pr o c essi n g lit er at ur e [ 3 6 , 1 6 , 1 ,
2 0 ], w h er e t h e g o al w as t o pr o vi d e q ui c k e v al u ati o ns of t h e
r e c o nstr u cti o n al g orit h ms. H o w e v er, t h es e m et h o ds f ail t o
m at c h t h e k n o w n st atisti c al b e h a vi or of t h e dist orti o ns.

3. M et h o d

T h e p a p er i n cl u d es t w o k e y b uil di n g bl o c ks: ( 1) r e-
f or m ul ati n g t h e s p ati all y v ar yi n g c o n v ol uti o n vi a a s et of
s p ati all y i n v ari a nt c o n v ol uti o ns, ( 2) c o nstr u cti n g t h e i n v ari-
a nt c o n v ol uti o ns b y l e ar ni n g t h e b asis f u n cti o ns. T h e m aj or
i n v e nti o n h er e is t h e li n k a g e b et w e e n t h e t w o f or w hi c h w e
i ntr o d u c e t h e P 2 S tr a nsf or m t o c o n v ert t h e Z er ni k e c o ef i-
ci e nts t o t h e P S F c o ef i ci e nts.

3. 1. I d e a 1: C o n v ol uti o n vi a b asis f u n cti o ns

T h e t ur b ul e nt dist orti o ns c a n b e m o d el e d as a s p ati all y
v ar yi n g c o n v ol uti o n at e a c h pi x el. D e n oti n g x ∈ R N as t h e
s o ur c e i m a g e, a n d y ∈ R N as t h e p u pil i m a g e, t h e s p ati all y
v ar yi n g c o n v ol uti o n s a ys t h at y is f or m e d b y

y =






y 1

...
y N




 = H x =






h T
1 x
...

h T
N x




 , ( 3)

w h er e { h n | n = 1 , . . . , N } ar e t h e N s p ati all y v ar yi n g
P S Fs st or e d as r o ws of t h e li n e ar o p er at or H ∈ R N × N .

T h e irst k e y i d e a of t h e p a p er is t o writ e h n as

h n =

M

m = 1

β m, n φ m , ( 4)

f or s o m e b asis f u n cti o ns φ m (t o b e dis c uss e d) of t h e P S Fs,
a n d c o ef i ci e nts β m, n of t h e m t h b asis at t h e n t h pi x el. T h e n,
e a c h pi x el y n i n (3 ) c a n b e writt e n as

y n =

M

m = 1

β m, n φ T
m x , n = 1 , . . . , N. ( 5)

Si n c e c o n v ol uti o n is li n e ar, t his t ur ns t h e N s p ati all y v ar y-
i n g c o n v ol uti o ns { h T

n x } N
n = 1 i n (3 ) i nt o M s p ati all y i n v ari-

a nt c o n v ol uti o ns { φ T
m x } M

m = 1 i n (5 ). If M ≪ N , t h e c o m-
p ut ati o n al c ost of ( 5 ) c a n b e m u c h l o w er.

T o e n a bl e t h e c o n v ol uti o n usi n g t h e b asis f u n cti o ns, t h er e
ar e t w o q u a ntiti es w e n e e d t o l e ar n fr o m t h e d at a. T h es e ar e
t h e b asis f u n cti o ns φ m a n d t h e c o ef i ci e nts β m, n . If w e

ar e a bl e t o i n d b ot h, t h e i m a g e c a n b e f or m e d b y a si m pl e
m ulti pl y- a d d b et w e e n t h e b asis c o n v ol v e d i m a g es φ T

m x a n d
t h e r e pr es e nt ati o n c o ef i ci e nts β m, n , as ill ustr at e d i n Fi g-
ur e 3 .

3. 2. I d e a 2: L e a r ni n g t h e b asis f u n cti o ns

T o g e n er at e t h e b asis f u n cti o ns φ m , w e c o nsi d er t h e pr o-
c ess d es cri b e d i n [ 5 ] of f or mi n g a z er o- m e a n G a ussi a n v e c-
t or wit h a c o v ari a n c e m atri x R Z fr o m [2 2 ]. T h e str e n gt h of
c orr el ati o n is di ct at e d b y t h e o pti c al p ar a m et ers as w ell as
t h e r el ati o ns hi p D / r 0 , w h er e D is t h e a p ert ur e di a m et er a n d
r 0 is t h e Fri e d p ar a m et er [7 ]. Fi g ur e 7 (t h e u p p er h alf) il-
l ustr at es t h e g e n er ati o n of t h e tilts; r e m o vi n g t h es e d o es n ot
c h a n g e t h e s h a p e of t h e P S F, b ut i nst e a d c e nt ers it. We t h e n
s e e k a b asis r e pr es e nt ati o n of t h e r es ulti n g c e nt er e d P S Fs,
w hi c h w e s h o w i n t h e l o w er h alf of Fi g ur e 7 .

Fi g ur e 7. T h e b asis r e pr es e nt ati o n is g e n er at e d i n t w o diff er e nt
w a ys. F or t h e tilts, w e f oll o w t h e w or k of [ 5 ] t o dr a w s p ati all y
c orr el at e d tilts b y m ulti pl yi n g a n i.i. d. G a ussi a n v e ct or wit h t h e
tilt c orr el ati o n m atri x. F or t h e hi g h- or d er a b err ati o n t er ms, w e
c o nsi d er t h e m ulti- a p ert ur e c o n c e pt of [ 5 ] a n d t h e a n al yti c s ol u-
ti o n d eri v e d i n [3 1 ]. Pri n ci p al c o m p o n e nt a n al ysis is c o n d u ct e d t o
e xtr a ct t h e s p ati al b asis f u n cti o ns.

T o g e n er at e t h e b asis f u n cti o ns { φ m } M
m = 1 , w e us e t h e

a b o v e pr o c e d ur e t o c o nstr u ct a d at as et c o nt ai ni n g 5 0, 0 0 0
P S Fs fr o m w e a k t o str o n g t ur b ul e n c e l e v els. ( S e e s u p pl e-
m e nt ar y m at eri al f or d et ails.) Gi v e n t h e d at as et, w e p er-
f or m a pri n ci p al c o m p o n e nt a n al ysis. F or t h e n u m eri c al e x-
p eri m e nts r e p ort e d i n t his p a p er, a t ot al of M = 1 0 0 b asis
f u n cti o ns w er e us e d. T h e b asis f u n cti o ns ar e t h e n c o m bi n e d
wit h t h e tilts, a n d ar e s e nt t o t h e p h as e-t o-s p a c e ( P 2 S) tr a ns-
f or m t o d et er mi n e t h e b asis c o ef i ci e nts { β m, n } .

3. 3. I d e a 3: P h as e-t o- S p a c e ( P 2 S) t r a nsf o r m

T h e t hir d i d e a, a n d t h e m ost i m p ort a nt o n e, is t h e p h as e-
t o-s p a c e tr a nsf or m.  T h e g o al is t o d e i n e a n o nli n e ar
m a p pi n g t h at c o n v erts t h e p er- pi x el Z er ni k e c o ef i ci e nts
α = [ α 1 , . . . , αK ] t o t h eir ass o ci at e d P S F b asis c o ef i ci e nts
β = [ β 1 , . . . , βM ], w h er e w e’ v e dr o p p e d t h e pi x el i n d e x
s u bs cri pt n f or n ot ati o n al cl arit y.

At t h e irst gl a n c e, si n c e t h e b asis f u n cti o ns { φ m } M
m = 1

1 4 7 6 2

ar e alr e a d y f o u n d, a str ai g htf or w ar d a p pr o a c h is t o pr oj e ct



t h e P S F h ( w hi c h is d e i n e d at e a c h pi x el l o c ati o n) o nt o
{ φ m } M

m = 1 . H o w e v er, d oi n g s o will d ef e at t h e p ur p os e of
s ki p pi n g t h e r etri e v al of h fr o m t h e Z er ni k e c o ef i ci e nts as
t his is t h e c o m p ut ati o n al b ottl e n e c k. O n e m a y als o c o n-
si d er a n al yti c all y d es cri bi n g t h e P S F i n t er ms of φ m a n d
t h e Z er ni k e c o ef i ci e nts,

h = F W (ρ )e − j ϕ ( ρ )
2 ?

=

M

m = 1

β m φ m . ( 6)

H o w e v er, d oi n g s o (i. e., est a blis hi n g t h e e q u alit y i n ( 6 ) b y
writi n g a n e q u ati o n f or β m ) is a n o p e n pr o bl e m. E v e n if w e
f o c us o n a s p e ci al c as e wit h j ust a si n gl e Z er ni k e c o ef i ci e nt,
t h e c al c ul ati o n of t h e b asis f u n cti o ns will i n v ol v e n o n-tri vi al
i nt e gr ati o n o v er t h e cir c ul ar a p ert ur e [9 ].

T o b y p ass t h e c o m pli c ati o n arisi n g fr o m ( 6 ), w e i ntr o-
d u c e a c o m p ut ati o n al t e c h ni q u e. T h e i d e a is t o b uil d a s h al-
l o w n e ur al n et w or k t o p erf or m t h e c o n v ersi o n fr o m α ∈ R K

t o β ∈ R M . We r ef er t o t h e pr o c ess as t h e p h as e-t o-s p a c e
tr a nsf or m a n d t h e n et w or k as t h e P 2 S n et w or k, as t h e i n p ut-
o ut p ut r el ati o ns hi p is fr o m t h e p h as e d o m ai n t o t h e s p ati al
( P S F) d o m ai n.

Fi g ur e 8. Ill ustr ati o n of t h e P h as e-t o- S p a c e tr a nsf or m. We b y p ass
t h e c o m p ut ati o n all y e x p e nsi v e P S F f or m ati o n pr o c ess b y a l e ar n e d
m a p pi n g b et w e e n t h e Z er ni k e a n d s p ati al d o m ai n. We als o n ot e t h e
si z es of t h e P 2 S l a y ers h er e.

A s c h e m ati c di a gr a m of t h e P 2 S tr a nsf or m is s h o w n i n
Fi g ur e 8 . Gi v e n t h e t w o Z er ni k e c o ef i ci e nts r e pr es e nti n g
t h e tilts a n d t h e ot h er Z er ni k e c o ef i ci e nts r e pr es e nti n g t h e
hi g h er- or d er a b err ati o ns, t h e P 2 S tr a nsf or m us es t h e irst
t w o Z er ni k e c o ef i ci e nts t o dis pl a c e t h e pi x els, a n d us es t h e
n et w or k t o c o n v erts t h e l ast K − 2 Z er ni k e c o ef i ci e nts t o
M b asis r e pr es e nt ati o ns.

T h e ar c hit e ct ur e of t h e P 2 S tr a nsf or m n et w or k c o nsists
of t hr e e f ull y c o n n e ct e d l a y ers as s u m m ari z e d i n Fi g ur e 8 .
I n t er ms of tr ai ni n g, w e r e- us e t h e 5 0, 0 0 0 P S Fs g e n er at e d
f or I d e a 2 tr ai n t h e P 2 S n et w or k. T h e tr ai ni n g l oss is d e-
i n e d as t h e ℓ 2 dist a n c e b et w e e n t h e pr e di ct e d b asis c o ef i-
ci e nts a n d t h e tr u e c o ef i ci e nts (f o u n d of li n e b y pr oj e cti n g
t h e P S F o nt o t h e l e ar n e d b asis f u n cti o ns). N ot e t h at t his

n et w or k is li g ht- w ei g ht b e c a us e t h e P 2 S tr a nsf or m is p er-
f or m e d p er pi x el . F or a n i m a g e wit h a l ar g e i el d- of- vi e w,
t h e P 2 S n et w or k c a n b e e x e c ut e d i n p ar all el. T h er ef or e,
e v e n wit h a 5 1 2 × 5 1 2 i m a g e, t h e e ntir e tr a nsf or m ati o n is
d o n e i n a si n gl e p ass.

3. 4. I nt e r p ol ati o n a c r oss t h e g ri d

We n o w a d dr ess t h e c o m p ut ati o n al dif i c ult y f or g e n er-
ati n g a d e ns e s et of Z er ni k e c o ef i ci e nts α ∈ R K f or a hi g h
r es ol uti o n i m a g e. T o a c c o m plis h t his g o al, w e p artiti o n t h e
i m a g e i nt o a us er- d e i n e d gri d of a n c h or p oi nts, f or e x a m-
pl e, a 6 4 × 6 4 gri d. T his gri d c orr es p o n ds t o a c orr el ati o n
m atri x of si z e 6 4 2 × 6 4 2 = 4 0 9 6 × 4 0 9 6 w hi c h c a n b e pr e-
c o m p ut e d. F oll o wi n g Fi g ur e 7 , 4 0 9 6 s ets of Z er ni k e c o ef-
i ci e nts ar e dr a w n fr o m t h e c orr el ati o n m atri x. T o g o fr o m
t h e gri d of 6 4 × 6 4 a n c h or p oi nts t o t h e f ull i m a g e, w e i nt er-
p ol at e t h e Z er ni k e c o ef i ci e nts usi n g bili n e ar i nt er p ol ati o n.

F or g e n er ati o n of t h e a n c h or p oi nts, w e i m pl e m e nt t h e
a n gl e- of- arri v al st atisti cs a c c or di n g t o [ 3 1 ], i n c o nj u n cti o n
wit h [ 2 , 4 ]. T h e pr o c ess is m at h e m ati c all y t e di o us b ut c o n-
c e pt u all y si m pl e: O n e j ust n e e ds t o r e writ e t h e e ntri es of t h e
c orr el ati o n m atri x i n [ 5 ] wit h t h e f or m ul a pr o vi d e d b y [3 1 ].
T h e o ut p ut of t h e n e w c orr el ati o n m atri x is a s et of s p ati all y
c orr el at e d Z er ni k e c o ef i ci e nts.

It is i m p ort a nt t o e m p h asi z e t h e diff er e n c e b et w e e n t h e
w a y w e i nt er p ol at e a n d t h e i nt er p ol ati o n us e d i n [ 5 ]. I n [5 ],
t h e i nt er p ol ati o n is p erf or m e d i n t h e s p ati al d o m ai n w h er e
t w o P S Fs ar e s u p eri m p os e d t o g e n er at e a n e w P S F. I n o ur
si m ul at or, w e i nt er p ol at e t h e Z er ni k e c o ef i ci e nts t o s u p er-
i m p os e t w o p h as e f u n cti o ns. If t h e p h as e ϕ a n d t h e P S F h

is r el at e d b y t h e P 2 S tr a nsf or m, ϕ
P 2 S

← → h , it is i m p ort a nt t o
n ot e t h at f or a n y 0 ≤ λ ≤ 1 ,

λ ϕ 1 + ( 1 − λ )ϕ 2 ✚
✚✚P 2 S

← → λ h 1 + ( 1 − λ )h 2 .

T h er ef or e, t h e i nt er p ol ati o n us e d i n [ 5 ] is l ess j usti i a bl e. I n
Fi g ur e 9 w e ill ustr at e t h e t w o i nt er p ol ati o n s c h e m es. We
h a v e s el e ct e d a r e alisti c a n d e asil y- o bs er v a bl e c as e f or il-
l ustr ati o n i n w hi c h i nt er p ol ati o n i n t h e Z er ni k e s p a c es g e n-
er at es a n e ar- diffr a cti o n-li mit e d P S F (t h e l u c k y eff e ct [ 8 ])
b ut i n t h e s p ati al d o m ai n is miss e d.

3. 5. E xt e nsi o n t o c ol o r i m a g es

1 4 7 6 3

M ost d e e p n e ur al n et w or ks t o d a y ar e d esi g n e d t o h a n dl e
c ol or i m a g es. T o e ns ur e t h at o ur si m ul at or is c o m p ati bl e
wit h t h es e n et w or ks, w e e xt e n d it t o h a n dl e c ol or.

I n pri n ci pl e, t h e s p e ctr al r es p o ns e of t h e t ur b ul e nt
m e di u m is w a v el e n gt h d e p e n d e nt, a n d t h e dist orti o n m ust
b e si m ul at e d f or a d e ns e s et of w a v el e n gt hs. H o w e v er, if
t h e t ur b ul e n c e l e v el is m o d er at e, w a v el e n gt h- d e p e n d e nt b e-
h a vi or of t h e Fri e d p ar a m et er is l ess si g ni i c a nt f or t h e visi-
bl e s p e ctr u m (r o u g hl y 4 0 0 n m t o 7 0 0 n m) w h e n c o m p ar e d t o
ot h er f a ct ors of t h e t ur b ul e n c e.



Figure 9. Comparison between the spatial interpolation scheme
from [5] and our interpolation in the phase domain. For both cases,
we show the PSFs and example resultant images. [Top] Spatial in-
terpolation of two PSFs is performed via λh1 +(1−λ)h2, which
is a superposition of the two PSFs. [Bottom] Phase interpolation is
performed via λϕ1+(1−λ)ϕ2. In this example, the superposition
of the two phase functions will lead to a PSF with very mild phase
distortion known as a lucky observation [8]. This lucky observa-
tion is absent in the spatial domain interpolation.

To illustrate this observation, we show in Figure 10 the
individual PSFs for several wavelength from 400nm (blue)
to 700nm (red). It is evident that the shape of the PSFs
barely changes from one wavelength to another. In the same
figure, we simulate two color images. The first image is
simulated by using a single PSF (525nm) for the color chan-
nels (and displayed as an RGB image). The second image is
simulated by considering 3 PSFs with wavelengths 450nm,
540nm, and 570nm. We note that (c) is a more realistic sim-
ulation but requires 3× computation. However, the similar
PSFs across the color makes difference is visually indistin-
guishable, as seen in (d). The small gap demonstrated in
Figure 10 suggests that we can simulate the RGB channels
identically in such conditions.

(a)

(b) (c) (d)
Figure 10. (a) PSFs across the visible spectrum. (b) Same dis-
tortion applied to three channels using center wavelength of the
visible spectrum . (c) Wavelength dependent distortions applied to
three channels. (d) Error map between (b) and (d).

4. Experimental Evaluation

Our experimental results consist of four parts: (i) Quan-
titative evaluation based on known turbulence statistics, (ii)
visual comparison with real turbulence data, (iii) impact to
deep neural network image reconstruction methods, (iv) run
time comparison. Additionally, videos are included in the
supplementary materials.

4.1. Quantitative evaluation

Evaluation schemes. In the turbulence simulation liter-
ature, there are two standard ways to quantitatively evaluate
a simulator: (i) the Z-tilt and the differential tilt statistics,
and (ii) the short and long exposure statistics. For a simu-
lator to be valid, it is necessary to match the simulated data
with the theoretical curves.

Turbulence conditions. To conduct this evaluation, we
follow a similar setting as [5] and [11]. The parameters of
the turbulence are listed in the supplementary material.

Evaluation 1: Tilt statistics. We first report the Z-
tilt and the differential-tilt statistics. The Z-tilt and the
differential-tilt statistics measure tilt correlation across the
angle-of-arrivals. For example, the Z-tilt should drop as the
angle-of-arrival increases, because two pixels that are far
apart should have less (but non-zero) correlation. The re-
sults of the Z-tilt and the differential-tilt are shown in Fig-
ure 11. It is evident that the tilt statistics of the proposed
simulator matches well with the theoretical predictions.

0 5 10 15 20 25 30 35 40 45 50
0

1

2

3

4

5

6 10-11

Simulated Z-Tilt
Theoretical Z-tilt
Simulated Differential-Tilt
Theoretical Differential-Tilt

Figure 11. The Z-tilt and differential-tilt statistics produced by our
simulator match with the theoretical values.

Evaluation 2: Long and short exposure. We also ana-
lyze the long and short exposure (LE and SE, respectively)
behavior of the generated PSFs. The LE PSF is a standard
temporal average over the PSF realizations, while the SE is
a temporal average over the centered PSFs. Since the LE
includes pixel shifts, the spread of the LE PSF is larger than
its SE counterpart. Furthermore, the SE is a valuable metric
as it quantifies the blur the system experiences regardless
of its shift behavior. We present these results in Figure 12,
where we again see a match between the simulated and the-
oretical behavior.
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(a) Short exposure (b) Long exposure
Figure 12. The short and long exposure PSFs produced by our
simulator match with the theoretical PSFs.

4.2. Visual comparison with real data

We emphasize the results of the previous quantitative
discussion are significant statistically. However, visual
comparisons with real data, while subjective, are an impor-
tant consideration and serve as a useful reality check. In
the following discussion, we present data simulated at the
same optical parameters as those provided and show their
real counterparts for visual comparison.

NATO dataset. The carefully recorded NATO RTG40
dataset [25, 33] contains both optical and estimated turbu-
lence parameters. For these particular sets of images, the
target is 1 km from the imaging system using passive vis-
ible light for imaging. Turbulence parameters were mea-
sured that help to evaluate what the appropriate turbulence
level was at the time of taking the images. We select these
parameters to use in our simulation technique, with compar-
isons shown in Figure 13.

In comparing simulated against their real counterparts,
we can see a match in blur and shifting effects. At higher
turbulence levels, there are some small observable differ-
ences, though we argue this is inherent to modeling just the
phase in this type of problem as well as differences in il-
lumination (e.g. digital representation of target pattern vs.
illumination by the sun).

Datasets used in [12] and [1]. In addition to the NATO
dataset, there are also those used in [12] and [1]. The im-
ages in Figure 14 show a method of collecting turbulence
data that uses stream of gas in front of the camera to pro-
duce images at different turbulence levels. While this is a
different scenario than the typical long-distance imaging se-
quences, this data serves as a decent proxy and is useful as
it is easier to collect and can provide ground truth by sim-
ply turning the gas system off. We present for visual com-
parison the results in Figure 14 and note the similarity in
random draws vs. observations.

4.3. Impact on training deep networks

We conduct an experiment to demonstrate the impact of
the proposed simulator on a multi-frame turbulence image
reconstruction task. The goal of this experiment is to show
that a deep neural network trained with the data synthesized
by the proposed simulator outperforms the same network

(a) real (b) simulated (c) tilt map
Figure 13. Contrast balanced NATO RTG-40 dataset reported by
[25, 33]. The optical parameters are listed in supplementary mate-
rials.

(a) ground truth (b) real frame (c) sim. frame

Figure 14. Visual comparison of simulated and real turbulence
data. With comparing individual frames, we can see similar blur-
ring and warping effects.

trained with the data generated by simulators that are less
physically justified.

To demonstrate the impact of the simulator, we do not
use any sophisticated network structure or training strategy.
Our network has a simple U-Net architecture [28] with 50
input channels and is trained with an MSE loss for 200
epochs. The network is trained with 5000 simulated se-
quences, where each sequence contains 50 degraded frames.
The ground truth images used for simulation are obtained
from the Places dataset [35]. The sequences are simulated
with a turbulence level D/r0 uniformly sampled from [1,8].

For comparison, we train the same network using a simu-
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(a) Input (real) (b) Temp. Avg. (c) Mao et al. [21] (d) [17]+U-Net (e) Ours+U-Net
Figure 15. Image reconstruction using real data (so ground truth is not available). For (d) and (e), we train a UNet using data synthesized
by [17] and our simulator, respectively. Notice the artifacts in (d).

D/r0 Mao et al. [21] Ours+U-Net [17]+U-Net
1.5 27.33dB 27.18dB 26.59dB
3.0 27.04dB 26.98dB 26.11dB
4.5 25.85dB 26.01dB 25.40dB

Table 1. PSNR values of the reconstruction results, averaged over
30 testing sequences. The testing data is synthesized by the split-
step propagation method [11].

lation technique proposed by Lau et al. [17]. This simulator
has been used in several recent works [18, 34]. To ensure a
fair comparison, we perform a uniform sweep for the Gaus-
sian blur (σ2 sampled from [1, 3]) and tilt strength (sampled
from [0.1, 0.4]). As a reference, we also report the results of
a deterministic (non-learning based) state-of-the-art recon-
struction method by Mao et al. [21].

Two qualitative reconstruction results are shown in Fig-
ure 15. It can be seen that the network trained with proposed
simulator has performance close to state-of-the-art. Visible
artifacts are generated from the network trained with [17].
We also include a quantitative evaluation, where a split-step
simulator [11] is used to generate 30 testing sequences un-
der low, medium, and high (D/r0 = 1.5, 3, and 4.5). PSNR
values are reported in Table 1. It is worth nothing that the
network trained with the data synthesized by our simulator
achieves a comparable performance to the state-of-the-art.

4.4. Run time

Finally, we compare the run time of the proposed method
with several existing methods [5, 11, 17]. The simulators
are run on a computing cluster node with Intel Xeon “Sky
Lake” processors (16 cores) and a Tesla V100 GPU. We use
16× 16 PSF grid for [5], which is comparable to our initial
PSF grid. The for-loop in [17] is executed 1000 times as
suggested by the authors. The run time of [11] is reported

Reference Method CPU (s) GPU (s)
Hardie et al. [11] split-step 119.63 24.36
Chimitt-Chan [5] collapsed 5.88 N/A

Lau et al. [17] subsampling 3.13 N/A
Ours P2S 0.35 0.026

Table 2. Average run time for each method to process a 256× 256
frame. Unit are in seconds.

by the authors. The required time to process a 256 × 256
frame is reported in Table 2. The proposed method offers
300×–1000× speed up compared to Hardie et al. [11].

5. Conclusion
The simulation approach towards imaging through atmo-

spheric turbulence we have presented in this work has desir-
able advantages over existing methods. The key innovation
of the P2S transform network allows for significant speedup
and additional reconstruction utility. With respect to deep-
learning based reconstruction, the outlined approach allows
for the generation of large amounts of training data not pre-
viously feasible. Additionally, the ability to use the simula-
tion approach as a differentiable module in a neural-network
suggests additional benefit towards reconstruction. Finally,
we expect the ability to produce statistically accurate data
far more efficiently will allow for further statistical analysis
of turbulent imaging properties through numerical analysis
methods not previously possible.

Acknowledgement

The work is supported, in part, by the National Sci-
ence Foundation under the grants CCF-1763896 and ECCS-
2030570.

14766



References
[1] Nantheera Anantrasirichai, Alin Achim, Nick G. Kingsbury,

and David R. Bull. Atmospheric turbulence mitigation using
complex wavelet-based fusion. IEEE Transactions on Image
Processing, 22(6):2398–2408, June 2013. 4, 7

[2] Santasri Basu, Jack E. McCrae, and Steven T. Fiorino. Es-
timation of the path averaged atmospheric refractive index
structure constant from time lapse imagery. In Proc. SPIE
9465, Laser Radar Technology and Applications XX; and At-
mospheric Propagation XII, pages 1–9, May 2015. 3, 5

[3] Jeremy P. Bos and Michael C. Roggemann. Technique for
simulating anisoplanatic image formation over long horizon-
tal paths. Optical Engineering, 51(10):1 – 9 – 9, 2012. 1,
2

[4] Gary A. Chanan. Calculation of wave-front tilt correlations
associated with atmospheric turbulence. Journal of Optical
Society of America A, 9(2):298–301, Feb. 1992. 3, 5

[5] Nicholas Chimitt and Stanley H. Chan. Simulating anisopla-
natic turbulence by sampling intermodal and spatially cor-
related Zernike coefficients. Optical Engineering, 59(8):1 –
26, 2020. 2, 3, 4, 5, 6, 8

[6] David L. Fried. Statistics of a geometric representation of
wavefront distortion. Journal of the Optical Society of Amer-
ica, 55(11):1427–1435, Nov. 1965. 2

[7] David L. Fried. Optical resolution through a randomly inho-
mogeneous medium for very long and very short exposures.
Journal of Optical Society of America, 56(10):1372–1379,
1966. 2, 4

[8] David L. Fried. Probability of getting a lucky short-exposure
image through turbulence∗. J. Opt. Soc. Am., 68(12):1651–
1658, Dec 1978. 2, 5, 6

[9] Joseph W. Goodman. Introduction to Fourier Optics.
Roberts and Company, Englewood, Colorado, 3 edition,
2005. 5

[10] Joseph W. Goodman. Statistical Optics. John Wiley and
Sons Inc., Hoboken, New Jersey, 2 edition, 2015. 2

[11] Russell C. Hardie, Jonathan D. Power, Daniel A. LeMaster,
Douglas R. Droege, Szymon Gladysz, and Santasri Bose-
Pillai. Simulation of anisoplanatic imaging through optical
turbulence using numerical wave propagation with new vali-
dation analysis. Optical Engineering, 56(7):1 – 16, 2017. 1,
2, 3, 6, 8

[12] Michael Hirsch, Suvrit Sra, Bernhard Schölkopf, and Ste-
fan Harmeling. Efficient filter flow for space-variant mul-
tiframe blind deconvolution. In The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages
607–614, June 2010. 7

[13] Bobby R. Hunt, Amber L. Iler, Christopher A. Bailey, and
Michael A. Rucci. Synthesis of atmospheric turbulence point
spread functions by sparse and redundant representations.
Optical Engineering, 57(2):1–11, Feb. 2018. 2

[14] Andrei N. Kolmogorov. The Local Structure of Turbulence
in Incompressible Viscous Fluid for Very Large Reynolds’
Numbers. Akademiia Nauk SSSR Doklady, 30:301–305,
1941. 2

[15] Svetlana L. Lachinova, Mikhail A. Vorontsov, Grigorii A.
Filimonov, Daniel A. LeMaster, and Matthew E. Trippel.

Comparative analysis of numerical simulation techniques for
incoherent imaging of extended objects through atmospheric
turbulence. Optical Engineering, 56(7):071509.1–11, 2017.
3

[16] Chun Pong Lau, Yu Hin Lai, and Lok Ming Lui. Restoration
of atmospheric turbulence-distorted images via RPCA and
quasiconformal maps. Inverse Problems, Mar. 2019. 4

[17] Chun Pong Lau and Lok Ming Lui. Subsampled turbulence
removal network. Mathematics, Computation and Geometry
of Data, 1(1):1–33, 2021. 1, 8

[18] Chun Pong Lau, Hossein Souri, and Rama Chellappa. At-
facegan: Single face semantic aware image restoration and
recognition from atmospheric turbulence. IEEE Transac-
tions on Biometrics, Behavior, and Identity Science, pages
1–1, 2021. 8

[19] Kevin R. Leonard, Jonathan Howe, and David E. Oxford.
Simulation of atmospheric turbulence effects and mitiga-
tion algorithms on stand-off automatic facial recognition. In
Proc. SPIE 8546, Optics and Photonics for Counterterror-
ism, Crime Fighting, and Defence VIII, pages 1–18, Oct.
2012. 4

[20] Yifei Lou, Sung Ha Kang, Stefano Soatto, and Andrea
Bertozzi. Video stabilization of atmospheric turbulence dis-
tortion. Inverse Problems and Imaging, 7(3):839–861, Aug.
2013. 4

[21] Zhiyuan Mao, Nicholas Chimitt, and Stanley H. Chan. Image
reconstruction of static and dynamic scenes through aniso-
planatic turbulence. IEEE Transactions on Computational
Imaging, 6:1415–1428, 2020. 2, 8

[22] Robert J. Noll. Zernike polynomials and atmospheric tur-
bulence. J. Opt. Soc. Am., 66(3):207–211, Mar 1976. 2, 3,
4

[23] Timothy Popkin, Andrea Cavallaro, and David Hands. Ac-
curate and efficient method for smoothly space-variant gaus-
sian blurring. IEEE Transactions on Image Processing,
19(5):1362–1370, 2010. 2

[24] Guy Potvin, Luc Forand, and Denis Dion. A simple physical
model for simulating turbulent imaging. In Proceedings of
SPIE, volume 8014, pages 80140Y.1–13, 2011. 1, 3

[25] Endre Repasi and Robert Weiss. Analysis of image distor-
tions by atmospheric turbulence and computer simulation of
turbulence effects. Proc SPIE, 6941, 05 2008. 7

[26] Endre Repasi and Robert Weiss. Computer simulation of
image degradations by atmospheric turbulence for horizontal
views. In Proc. SPIE 8014, Defense, Security, and Sensing,
May 2011. 4

[27] Micheal C. Roggemann and Byron M. Welsh. Imaging
through Atmospheric Turbulence. Laser & Optical Science
& Technology. Taylor & Francis, 1996. 2

[28] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net:
Convolutional networks for biomedical image segmentation.
In Nassir Navab, Joachim Hornegger, William M. Wells, and
Alejandro F. Frangi, editors, Medical Image Computing and
Computer-Assisted Intervention – MICCAI 2015, pages 234–
241, Cham, 2015. Springer International Publishing. 1, 7

[29] Jason D. Schmidt. Numerical simulation of optical wave
propagation: With examples in MATLAB. SPIE Press, Jan.
2010. 1, 2, 3

14767



[30] Armin Schwartzman, Marina Alterman, Rotem Zamir, and
Yoav Y. Schechner. Turbulence-indueced 2D correlated im-
age distortion. In Proc. International Conference on Compu-
tational Photography, pages 1–12, 2017. 4

[31] Naruhisa Takato and Ichirou Yamaguchi. Spatial correlation
of Zernike phase-expansion coefficients for atmospheric tur-
bulence with finite outer scale. Journal of Optical Society of
America A, 12(5):958–963, May 1995. 3, 4, 5

[32] Valeryan I. Tatarski. Wave Propagation in a Turbulent
Medium. New York: Dover Publications, 1961. 2

[33] David Tofsted, Sean O’Brien, Jimmy Yarbrough, David
Quintis, and Manuel Bustillos. Characterization of atmo-
spheric turbulence during the NATO RTG-40 land field tri-
als. In Cynthia Y. Young and G. Charmaine Gilbreath, edi-
tors, Atmospheric Propagation IV, volume 6551, pages 199
– 208. International Society for Optics and Photonics, SPIE,
2007. 7

[34] Rajeev Yasarla and Vishal M. Patel. Learning to restore a
single face image degraded by atmospheric turbulence using
cnns. ArXiv, abs/2007.08404, 2020. 8

[35] Bolei Zhou, Agata Lapedriza, Aditya Khosla, Aude Oliva,
and Antonio Torralba. Places: A 10 million image database
for scene recognition. IEEE Transactions on Pattern Analy-
sis and Machine Intelligence, 40(6):1452–1464, 2018. 7

[36] Xiang Zhu and Peyman Milanfar. Removing atmospheric
turbulence via space-invariant deconvolution. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence,
35(1):157–170, Jan. 2013. 4

14768


