
1

Graph Signal Restoration Using
Nested Deep Algorithm Unrolling

Masatoshi Nagahama, Student Member, IEEE, Koki Yamada, Student Member, IEEE,
Yuichi Tanaka, Senior Member, IEEE, Stanley H. Chan, Senior Member, IEEE, and Yonina C. Eldar, Fellow, IEEE

Abstract—Graph signal processing is a ubiquitous task in many
applications such as sensor, social, transportation and brain
networks, point cloud processing, and graph neural networks.
Often, graph signals are corrupted in the sensing process, thus
requiring restoration. In this paper, we propose two graph signal
restoration methods based on deep algorithm unrolling (DAU).
First, we present a graph signal denoiser by unrolling iterations
of the alternating direction method of multiplier (ADMM). We
then suggest a general restoration method for linear degradation
by unrolling iterations of Plug-and-Play ADMM (PnP-ADMM).
In the second approach, the unrolled ADMM-based denoiser is
incorporated as a submodule, leading to a nested DAU structure.
The parameters in the proposed denoising/restoration methods
are trainable in an end-to-end manner. Our approach is inter-
pretable and keeps the number of parameters small since we only
tune graph-independent regularization parameters. We overcome
two main challenges in existing graph signal restoration methods:
1) limited performance of convex optimization algorithms due
to fixed parameters which are often determined manually. 2)
large number of parameters of graph neural networks that
result in difficulty of training. Several experiments for graph
signal denoising and interpolation are performed on synthetic
and real-world data. The proposed methods show performance
improvements over several existing techniques in terms of root
mean squared error in both tasks.

Index Terms—Graph signal processing, signal restoration, deep
algorithm unrolling, Plug-and-Play ADMM

I. INTRODUCTION

Signal restoration is a ubiquitous task in many applications.
Depending on the types of signals, the interconnectivity among
samples can often be exploited, for example, signals residing
on sensor networks, social networks, transportation networks,
and brain networks, power grids, 3D meshes, and point clouds,
all have various connectivities which can often be represented
as graphs.

Preliminary results of this work was presented in [1].
M. Nagahama and Y. Tanaka are with the Department of Electrical Engi-

neering and Computer Science, Tokyo University of Agriculture and Tech-
nology, Koganei, Tokyo 184–8588, Japan. Y. Tanaka is also with PRESTO,
Japan Science and Technology Agency, Kawaguchi, Saitama 332–0012, Japan
(email: nagahama@msp-lab.org; ytnk@cc.tuat.ac.jp).

K. Yamada was with the Department of Electrical Engineering and Com-
puter Science, Tokyo University of Agriculture and Technology, Koganei,
Tokyo 184-8588, Japan. He is now with the Department of Electrical En-
gineering, Tokyo University of Science, Katsushika, Tokyo 125–8585, Japan
(email: k-yamada@rs.tus.ac.jp).

S. H. Chan is with School of Electrical and Computer Engineering,
Purdue University, West West Lafayette, IN 47907, USA (email: stan-
chan@purdue.edu).

Y. C. Eldar is with Faculty of Mathematics and Computer Science,
The Weizmann Institute of Science, Rehovot 7610001, Israel (email: yon-
ina.eldar@weizmann.ac.il).

Y. Tanaka was partially funded by JST PRESTO under Grant JPMJPR1935
and JSPS KAKENHI under Grant 20H02145.

A graph signal is defined as a signal whose domain is the
nodes of the graph. The relations between the samples, i.e.,
nodes, are given by the edges. In contrast to standard signals
on a regular grid such as audio and image signals, graph
signal processing (GSP) explicitly exploits the underlying
structure of the signal [2]–[4]. GSP has been used in a
wide range of applications for irregularly-structured data such
as compression [5], sampling and restoration [6]–[10], and
analysis of graph signals [11], [12].

Graph signal restoration is an important task aiming to
address the problems of noise and missing values. For example
in sensor networks, some sensors may not work properly
resulting in missing values, and samples on the nodes are often
noisy [13]. Many approaches for graph signal restoration have
been proposed based on regularized optimization [14], graph
filters and filter banks [15]–[17], and deep learning on graphs
[18]. These existing works can be classified into two main
approaches: 1) model-based restoration and 2) neural network-
based restoration.

Model-based restoration: Model-based approaches often
rely on convex optimization whose objective function contains
a data fidelity term and a regularization term [14]. Signal
priors are often required in such tasks because the problem
is ill-posed. For example, a smoothness prior like graph total
variation (GTV) has demonstrated effectiveness in graph signal
denoising, whereas graph spectral filters have been shown
to satisfy certain quadratic optimization solutions [19]–[22].
A limitation of model-based restoration methods is that they
are often iterative as illustrated in Fig. 1 (left). Performance
and speed of the algorithm depend on the hyper-parameters θ
(e.g., step size and regularization strength) whose values are
determined manually and are fixed throughout the iterations.

Neural network-based restoration: Graph convolutional
networks (GCNs) are considered as a counterpart of the
convolutional neural networks for image processing [23].
GCNs can automatically learn network parameters to minimize
a loss function. However, GCNs have two drawbacks: 1)
lack of interpretability and 2) the requirement of a large
dataset for training. Furthermore, as reported in [23]–[25],
deeper networks cannot always achieve good performance in
the graph settings, in contrast to the remarkable success of
convolutional networks for signals on a regular grid [26].
Therefore, many GCNs are limited to a small number of layers
[27], [28].

As a hybrid approach of the model- and neural network-
based restoration methods, we utilize deep algorithm unrolling
(DAU) by integrating learnable parameters into the iterative
algorithm [25], [29]–[32]. As illustrated in Fig. 1 (right),
DAU unrolls the iterations of the iterative algorithm and

This article has been accepted for publication in IEEE Transactions on Signal Processing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSP.2022.3180546

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

2

Algorithm
Step

Iterative Optimization Algorithm Deep Algorithm Unrolling

Network
Layer

Network
Layer

Feedback

…
Input

ErrorBackpropagationFixed
Parameter

Trainable
Parameters

Output

Target

Input Output

Unrolling

Fig. 1: Conventional iterative optimization algorithm (left) and deep algorithm unrolling (right).

deploys the trainable parameters at each unrolled iteration
[32], [33]. Instead of manually choosing the parameters as
in the conventional iterative approach, parameters in each
unrolled iteration are determined from the training data so as
to minimize a loss function. The practical advantages of DAU
against the classical iterative solver are faster convergence and
performance improvement since the parameters are learned
to fit the target signals. Advantages compared with fully
parameterized neural networks are the interpretability and a
small number of parameters. Hence, the networks can be
trained with a small number of training data.

An extension of DAU for graph signal denoising was
recently developed in [25], which proposed unrolled GCNs
based on two optimization problems of sparse coding and
trend filtering. Although the formulation itself allows the
network to be arbitrarily deep, the number of layers is set
to be very small (typically one middle layer) in its practical
implementation. This is because deeper networks do not result
in better performance in this case. Additionally, GCNs often
assume a fixed graph both in the training and testing phases.
However, the underlying graphs are often slightly perturbed
in practice. Hence, restoration algorithms should be robust
to (small) perturbations of graphs. A detailed comparison
between [25] and our approach is further discussed in Section
III-D.

In this work, we first propose a simple yet efficient graph
signal denoising method that utilizes DAU of the alternating
direction method of multiplier (ADMM) to solve a mini-
mization problem with two regularizers based on graph total
variation and elastic net. In contrast to [25], we only train
the graph-independent regularization parameters in the model-
based iterative algorithms. The resulting denoising algorithm
contains a significantly smaller number of parameters than
neural network-based methods while showing better denoising
results.

Next, we propose a nested version of DAU based on un-
rolling the iterations of Plug-and-Play ADMM (PnP-ADMM)
[34]–[38]. This version is designed for general graph signal
restoration problems with linear degradation. In this approach,
the ADMM-based denoiser is plugged into the unrolled PnP-
ADMM algorithm leading to a nested DAU structure. All of
the parameters in the algorithm are trained in an end-to-end
fashion [30], [32], [33].

In contrast to GCN-based methods, parameters to be tuned
in the proposed techniques are graph-independent leading to
the following advantages:

1) Interpretability: All internal modules are designed based
on (convex) optimization algorithms.

2) Ease to train: Our techniques do not require large
training data due to the small number of parameters.

3) Transferability: Since our methods only tune graph-
independent parameters, we can immediately use the
same parameter set for graphs with different sizes.

We also avoid large matrix inversion by using popular acceler-
ation techniques in GSP: 1) precomputing graph Fourier bases
and 2) polynomial approximation. Through comprehensive
experiments on denoising and interpolation for synthetic and
real-world data, our proposed methods are shown to achieve
better performance than existing restoration methods including
graph low-pass filters, model-based iterative optimization, and
[25], in terms of root mean squared error (RMSE).

The remainder of this paper is organized as follows. Signal
restoration algorithms using ADMM and PnP-ADMM are in-
troduced in Section II along with notation used throughout the
paper. The proposed two restoration methods are introduced
in Section III. Experimental results comparing denoising and
interpolation performances with existing methods are shown
in Sections IV and V. Section VI concludes this paper.

II. SIGNAL RESTORATION WITH ADMM

In this section, we first present notations and the problem
formulation. Then, we review ADMM and PnP-ADMM which
are the fundamental building blocks of our algorithms.

A. Notation

Throughout the paper, vectors and matrices are written in
bold style and sets are written as calligraphic letters. An
undirected graph G = (V, E ,W) consists of a collection of
undirected vertices V = {vi}Ni=1 and edges E = {(ei,j , wi,j)}.
The number of vertices and edges is |V| = N and |E|,
respectively; wi,j ∈ R≥0 denotes the edge weight between
vi and vj . We define a weighted adjacency matrix of G as
an N × N matrix with [W]ij = wi,j ; [W]ij = 0 represents
unconnected vertices. In this paper, we consider a graph that
does not have self-loops, i.e., [W]ii = 0 for all i. The degree
matrix of G is defined as a diagonal matrix [D]ii =

∑
j wi,j .

The combinatorial graph Laplacian matrix of G is given by
L = D−W. Since L is a real symmetric matrix, L always
has an eigendecomposition. Let the eigendecomposition of
the graph Laplacian matrix be L = UΛU>, where U is an
eigenvector matrix and Λ = diag(λ1, . . . , λN). The weighted
graph incidence matrix is denoted as M ∈ R|E|×N . We index

This article has been accepted for publication in IEEE Transactions on Signal Processing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSP.2022.3180546

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

3

integers to the set of edges as E = {es}|E|s=1. Then, the sth row
and tth column of M corresponding to es and vt is

[M]s,t =


√
wi,j es = (vi, vj) and t = i,
−√wi,j es = (vi, vj) and t = j,
0 otherwise.

A graph signal x : V → R is a function that assigns a
value to each vertex. It can be written as a vector x ∈ RN in
which the ith element x[i] represents the signal value at the
ith vertex.

B. General Restoration Problem

Consider an observed graph signal y ∈ RN which is related
to an input graph signal x ∈ RN as

y = Hx + n, (1)

where H ∈ RN×N is a degradation matrix and n ∼ N (0, σ2I)
is an i.i.d. additive white Gaussian noise (AWGN).

Throughout the paper, we assume that x is a graph signal,
i.e., its domain is given by G. This graph structure will
be exploited to provide a prior for the recovery problem.
The degradation model (1) generally appears in restoration
problems such as denoising, interpolation, deblurring, and
super-resolution, to name a few. The main objective of many
restoration problems is estimating an unknown x from a given
degraded signal y. We assume that H is known a priori. In
this paper, we perform two representative experiments with
the following H: 1) H = I (denoising), and 2) a binary H
matrix (interpolation).

C. Plug-and-Play ADMM

1) ADMM: Many inverse problems are posed as the fol-
lowing unconstrained minimization problem:

min
x∈RN

1

2
‖y −Hx‖22 + λg(Ax), (2)

where g is some regularization function, λ ∈ R≥0 is the
regularization parameter, and A ∈ RM×N is an arbitrary
matrix. A widely used algorithm to solve (2) is the alternating
direction of multipliers (ADMM) which has been used to
solve generic unconstrained optimization problems with non-
differentiable convex functions (see [39] for details). Through
variable splitting, the general problem (2) is rewritten as the
following constrained minimization problem:

(x̃, s̃) = argmin
x∈RN ,s∈RM

1

2
‖y −Hx‖22 + λg(s),

subject to s = Ax. (3)

Applying ADMM to (3) leads to the following sequence of
subproblems:

x(p+1) =
(
H>H + ρA>A

)−1 (
H>y + ρA>x̄(p)

)
, (4a)

s(p+1) = argmin
s∈RM

λg(s) +
ρ

2
‖s− s̄(p)‖22, (4b)

t(p+1) = t(p) + Ax(p+1) − s(p+1), (4c)

where t(p) ∈ RM is the Lagrangian multiplier, s(p) ∈ RM is
an auxiliary variable, g is the regularization function in (2),
x̄(p) def

= s(p) − t(p) and s̄(p)
def
= Ax(p+1) + t(p).

2) Plug-and-Play ADMM: PnP-ADMM is a variation of
the classical ADMM [34] for the problem of (3) with A = I.
Oftentimes, (4a) and (4b) are called the inverse step and
denoising step (i.e., denoiser), respectively [35]. A notable
feature is that any off-the-shelf denoiser, including deep neural
networks, can be used instead of naively solving (4b) without
explicitly specifying regularization terms g before implemen-
tation. Such examples are found in [40]–[42].

Empirically, PnP-ADMM has demonstrated improved per-
formance over the standard ADMM with explicit regulariza-
tion in some image restoration tasks [36], [43], [44]. Graph
signal restoration with PnP-ADMM is also studied in [21]
showing improved restoration performance over the existing
model-based techniques.

In this paper, we follow an approach of PnP-ADMM pro-
posed in [37]. Suppose that two initial variables s(0), t(0) ∈
RN are set. The algorithm of PnP-ADMM corresponding to
(4a)–(4c) (again, assuming A = I) is represented as

x(p+1) =
(
H>H + ρI

)−1 (
H>y + ρ

(
s(p) − t(p)

))
, (5a)

s(p+1) = Dg
(
x(p+1) + t(p)

)
, (5b)

t(p+1) = t(p) + x(p+1) − s(p+1), (5c)

where Dg is an off-the-shelf denoiser. Note that we still need
to determine the parameter ρ and the off-the-shelf graph signal
denoiser Dg (and its internal parameters) prior to running the
algorithm.

The key idea of our proposed method is to unroll the
ADMM and PnP-ADMM for graph signal processing.

III. GRAPH SIGNAL RESTORATION ALGORITHMS

In this section, we propose the following two graph signal
restoration methods, both based on DAU.

1) GraphDAU: Graph signal denoiser by unrolling ADMM
to address the problem H = I. We consider a mixture of
`1 and `2 regularization terms like the elastic net [45].
GraphDAU works as a better independent denoiser than
the model-based and deep-learning-based approaches.

2) NestDAU: General graph signal restoration algorithm
by unrolling PnP-ADMM to handle a generic H. We
plug the GraphDAU into each layer of an unrolled PnP-
ADMM as a denoiser.

Our methods are illustrated in Fig. 2.

A. GraphDAU

GraphDAU considers the case where H = I due to signal
denoising and A = M in (2). It combines the regularization
terms of graph total variation (GTV) and graph Laplacian
regularization [46], leading to

Dg(y) = argmin
x∈RN

1

2
‖x− y‖22 + λ1‖Mx‖1 +

λ2
2
‖Mx‖22,

(6)

This article has been accepted for publication in IEEE Transactions on Signal Processing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSP.2022.3180546

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

4

NestDAU

Variable updateInverse step Denoiser Soft-threshold

Degraded graph signal

Noisy graph signal

Initial variables

… …
Restored graph signal

Denoised graph signal

Variable passing

Layer 0 Layer Layer

… …

Layer 0 Layer Layer

Initial variables

Variable passing

GraphDAU

Fig. 2: Overview of GraphDAU and NestDAU for graph signal restoration. The top represents NestDAU: General restoration
based on PnP-ADMM. The bottom represents GraphDAU: Denoiser based on ADMM. GraphDAU can be used as the off-the-
shelf denoiser in NestDAU.

where ‖Mx‖1 and ‖Mx‖22 = x>Lx (since L = M>M)
are the regularization terms for first-order and second-order
differences, respectively, and λ1 and λ2 are nonnegative reg-
ularization parameters. The second and third terms in (6) can
be written explicitly as

‖Mx‖1 =
∑
j∈Ni

√
wij |xi − xj |, (7)

‖Mx‖22 =
∑
j∈Ni

wij (xi − xj)2, (8)

where Ni is a set of vertices connecting with vi. The norms
(7) and (8) are effective regularization functions for piecewise
constant and smooth graph signals [20].

In this paper, GraphDAU is only applied for denoising and
not used for the general restoration problems in (2). This is
because we use various acceleration techniques introduced in
Section III-A3 under the assumption H = I.

We utilize ADMM as a baseline iterative solver of (6). The
variable splitting is applied to (6) with v = Mx, leading to
the following constrained minimization problem:

Dg(y) = argmin
x∈RN ,v∈R|E|

1

2
‖x− y‖22 + λ1‖v‖1 +

λ2
2
‖v‖22,

subject to v = Mx. (9)

The solution of (9) can be found by solving a sequence of the
following subproblems [47]:

x(`+1) =

(
I +

1

γ
M>M

)−1(
y +

1

γ
M>(v(`) − u(`))

)
,

(10a)

v(`+1) =
1

1 + λ2γ
Sλ1γ(Mx(`+1) + u(`)), (10b)

u(`+1) = u(`) + Mx(`+1) − v(`+1), (10c)

where γ is the step size of the algorithm and Sλ1γ is the soft-
thresholding operator

[Sλ1γ(x)]i = sgn(xi) max{|xi| − λ1γ, 0}, (11)

where sgn(·) denotes the signum function.
Next, we unroll the iteration of (10a)–(10c) to design a train-

able Dg . In other words, instead of using fixed parameters in
(10a)–(10b), we deploy trainable parameters in each iteration.
The terms including M and M>M in (10a)–(10c) are graph
filters, i.e., graph convolution, and are fixed: We only tune
three parameters, γ, λ1, and λ2, in each unrolled iteration.
This is because we aim to construct an interpretable and
easy-to-train graph signal restoration algorithm. The training
configurations are described later in Section IV-A21. In the
following sections, we propose two forms of GraphDAU and
introduce its acceleration techniques.

1) GraphDAU-TV: In this method, we only consider the `1
term of (9) by setting λ2 = 0. Then, we choose γ and γλ1
to be learnable, i.e., γ → {γ`}L−1`=0 and γλ1 → {β`}L−1`=0 . This
regularization is based on the assumption that the signal is
piecewise constant.

2) GraphDAU-EN: This GraphDAU is based on a combi-
nation of the `1 and `2 regularizations in (9) like the elastic net
(EN), defined by the weighted incidence matrix M. We intro-
duce a set of trainable parameters 1/(1+λ2γ)→ {α`}L−1`=0 in
addition to {γ`}L−1`=0 and {β`}L−1`=0 . This method automatically
controls piecewise and smoothness terms at each layer.

3) Algorithm Acceleration: The graph filter
(I + 1

γM>M)−1 in (10a) requires matrix inversion and
its computational complexity is typically O(N3) (for a dense
matrix). If each layer requires calculating the inversion, the

1The detailed gradient computations for training the parameters are given
in the Appendix.

This article has been accepted for publication in IEEE Transactions on Signal Processing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSP.2022.3180546

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

5

complexity becomes O(N3L). We consider accelerating
GraphDAU by the following two popular techniques: 1)
eigendecomposition of L, and 2) Chebyshev polynomial
approximation of a graph filter.
Precomputing Eigendecomposition: In this approach, we
precompute the eigendecomposition (EVD) of L. The inverse
matrix in (10a) can be decomposed as(

I +
1

γ`
L

)−1
= U

(
I +

1

γ`
Λ

)−1
U>. (12)

Since I + (1/γ`)Λ is a diagonal matrix, the inversion has
O(N) complexity. If G does not change frequently throughout
the iterations (which often is the case), the eigenvalues Λ and
eigenvectors U are fixed. Therefore, the eigendecomposition
of the graph Laplacian is performed only once. This Graph-
DAU with acceleration is represented with the suffix -E and
is summarized in Algorithm 1.
Chebyshev Polynomial Approximation: This technique ap-
proximates (12) with a polynomial, for example, using the
Chebyshev polynomial approximation (CPA) (see [48], [49]
for details).

First, we rewrite the inverse step at the `th layer correspond-
ing to (12) as

x(`+1) = H(`)(L)ỹ(`), (13)

where ỹ(`) = y + 1
γ`

M> (v(`) − u(`)
)

and H(`)(L) :=

UH(`)(Λ)U> is the filter function. This filter kernel has the
following graph frequency response:

H(`)(Λ) = diag
(
h(`)(λ1), . . . , h(`)(λN)

)
, (14)

where h(`)(x) = γ`/(γ`+x) is the filter kernel which acts as a
graph low-pass filter. By performing K-truncated Chebyshev
approximations to h(`)(x), the approximated version H̃(`)(L)
is represented as:

x(`+1) = H̃(`)(L)ỹ(`). (15)

GraphDAU with Chebyshev polynomial approximation is
specified by a suffix -C in Algorithm 1.

B. NestDAU: Unrolled PnP-ADMM with GraphDAU as the
Denoiser

Next, we develop a restoration algorithm for general H
in (2). The baseline algorithm we consider is PnP-ADMM
introduced in (4a)–(4c) because it is able to adapt to general H.
In addition, any denoiser can be used in its internal algorithm
to boost performance.

Suppose that the iteration number P is given. We then
unroll (5a)–(5c) of the PnP-ADMM iterations to construct P
layer networks. That is, we set ρ in (5a) to be learnable, i.e.,
ρ → {ρp}P−1p=0 in which p indicates the layer number. The
restoration steps are equivalent to those in PnP-ADMM with
P iterations, but each iteration is conducted with different
regularization parameters.

The important part of the restoration algorithm is the design
of the off-the-shelf denoiser Dg in (5b) since (5a) and (5c)
are independent of the underlying graph. In this paper, we

Algorithm 1 GraphDAU for graph signal denoising D(p)
g

NOTE: Background colors correspond to those in Fig. 2.

Input: noisy graph signal y; graph incidence matrix M;
initial variables v(0),u(0); network layers L; polynomial
order K (for GraphDAU-TV-C and GraphDAU-EN-C).

Output: denoised graph signal x(L).
1: compute the graph Laplacian L = M>M
2: If GraphDAU-TV-E or GraphDAU-EN-E then
3: compute the eigendecomposition L = UΛU>

4: for ` = 0, · · · , L− 1 do

5: ỹ(`) ← y + 1
γ`

M> (v(`) − u(`)
)

6: x(`+1) ←



U
(
I + 1

γ`
Λ
)−1

U>ỹ(`)

for GraphDAU-TV-E and
GraphDAU-EN-E

H̃(`)(L)ỹ(`)

for GraphDAU-TV-C and
GraphDAU-EN-C

7: v(`+1) ←


Sβ`

(
Mx(`+1) + u(`)

)
for GraphDAU-TV

α`Sβ`

(
Mx(`+1) + u(`)

)
for GraphDAU-EN

8: u(`+1) ← u(`) + Mx(`+1) − v(`+1)

9: end for
10: return x(L)

aim to keep the algorithm fully interpretable and the number
of parameters small for efficient training, and thereby, we
utilize GraphDAU in each layer as D(p)

g . As a result, the
restoration algorithm has a nested unrolled structure as shown
in Fig. 2. Based on this structure, we refer to the proposed
method as NestDAU. Note that all the parameters in NestDAU,
including those in GraphDAU, can be trained in an end-to-end
fashion from a training set. The training details are presented
in Section IV-A2.

Algorithm 2 shows the details of NestDAU. Note that we
perform two representative signal restoration experiments (i.e.,
denoising and interpolation) in this paper, but NestDAU can
be applicable to other cases as well, e.g., deblurring [50] and
point cloud super-resolution [51].

C. Summary of Computation Issues

In Table I, we compare the proposed methods in terms of the
regularization function, the acceleration technique, the number
of parameters, and the computational complexity. NestDAUs
are classified based on its GraphDAU specifications and have
the same suffix as the corresponding GraphDAU.

The number of parameters linearly increases in proportion
to the number of layers L but is independent of N . The

This article has been accepted for publication in IEEE Transactions on Signal Processing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSP.2022.3180546

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

6

TABLE I: Comparison among the proposed methods.

Methods Task Regularization Acceleration # of params Computational complexity

GraphDAU-TV-E

Denoising
Graph total variation Precomputing EVD

2L
O(N3 +N2L)

GraphDAU-TV-C CPA O(K|E|L)
GraphDAU-EN-E Elastic net Precomputing EVD

3L
O(N3 +N2L)

GraphDAU-EN-C CPA O(K|E|L)
NestDAU-TV-E

General restoration
Graph total variation Precomputing EVD

(2L+ 1)P
O(N3 +N2LP)

NestDAU-TV-C CPA O(K|E|LP)
NestDAU-EN-E Elastic net Precomputing EVD

(3L+ 1)P
O(N3 +N2LP)

NestDAU-EN-C CPA O(K|E|LP)

Algorithm 2 NestDAU for graph signal restoration
NOTE: Background colors correspond to those in Fig. 2.

Input: degraded graph signal y; initial variables s(0), t(0);
network layers P ; trainable denoiser D(p)

g .
Output: restored graph signal x(P).

1: for p = 0, · · · , P − 1 do

2: x(p+1) ←
(
H>H + ρpI

)−1 (
H>y + ρp

(
s(p) − t(p)

))
3: s(p+1) ← D(p)

g

(
x(p+1) + t(p)

)
4: t(p+1) ← t(p) + x(p+1) − s(p+1)

5: end for
6: return x(P)

complexity mainly depends on the use of EVD. The methods
with EVD have complexities depending on the number of
nodes N , while those with CPA only rely on the number of
edges |E| and the polynomial order K; K|E| is generally much
smaller than N2 when N becomes large.

As mentioned, the proposed methods require training data
(i.e., a set of ground-truth and degraded data) to tune param-
eters. They come from the hyperparameter(s) of the origi-
nal (PnP-)ADMM algorithms. Note that, even for a regular
ADMM, we need to determine the optimal hyperparameter(s)
for practical applications: This often needs training data.

In general, many trainable parameters in deep learning
require a large dataset to avoid overfitting. This implies that
GNNs require many training data. In contrast, NestDAU and
GraphDAU have significantly fewer parameters than represen-
tative deep learning methods. This leads to that the proposed
method can train with the small number of training data, which
is beneficial for practical applications. This is experimentally
verified in Sections IV and V.

D. Comparison to [25]

Two approaches for graph signal denoising based on DAU,
called graph unrolling sparse coding (GUSC) and graph un-
rolling trend filtering (GUTF), were proposed in [25]. Since
they have the same objective as that for GraphDAU, we
compare the details of DAU-based graph signal restoration
methods in Table II.

First, GUSC/GUTF only consider the problem of graph sig-
nal denoising. This is the same objective as that of GraphDAU,

while NestDAU focuses on a generic restoration problem in
(1). This is possible by employing the PnP-ADMM as a
prototype of the iterative algorithm. Second, the regularization
of GUSC/GUTF only contains the `1 term, while GraphDAU
also includes an `2 term ‖Mx‖22 = x>Lx, which is beneficial
for globally smooth signals. GraphDAU-EN can automatically
control the regularization weights between the `1 and `2 terms,
leading to flexibility in capturing signal characteristics. Third,
GUSC and GUTF train parameters in an unsupervised setting
while our proposed methods train the network in a supervised
way. In the following experiments, we train GUSC/GUTF in a
supervised setting for a fair comparison. Extending GraphDAU
and NestDAU to the unsupervised setting is left for future
work.

In (10a), we keep the structure of the original graph filter
h(L) = (I+ 1

γL)−1 of the ADMM algorithm and only train a
graph-independent parameter γ. As such, GraphDAU performs
stably with many layers (typically L = 10 in the experiments).
In contrast, GUSC/GUTF use GCNs for its internal algorithm.
Therefore, they result in few middle layers (as reported in
[25], they have only one middle layer in the experiment). They
reduce many learnable parameters compared to usual GCNs
thanks to their edge-weight-sharing convolution, however, they
still contain many parameters. A detailed comparison of the
number of parameters is presented along with the restoration
performance in Section IV.

IV. EXPERIMENTAL RESULTS: DENOISING

In the following two sections, we compare graph signal
restoration performances of NestDAU and GraphDAU with
existing methods using synthesized and real-world data. In
both sections, parameters of the proposed and neural network-
based methods are trained by setting the mean squared error
(MSE) 1

N ‖x̂ − x∗‖22 as a loss function, where x̂ ∈ RN is
the restored signal and x∗ ∈ RN is the ground-truth signal
available during the training phase.

In this section, we consider denoising corresponding to H =
I in (1).

We conduct three experiments:

1) Denoising on fixed graphs;
2) Denoising on graphs with perturbation;
3) Transferring tuned parameters to different N .

In the following subsections, we describe the details of the
denoising experiment. We also show an in-depth analysis of
the proposed methods in terms of the number of layers (i.e.,
L or P) and the polynomial order K.

This article has been accepted for publication in IEEE Transactions on Signal Processing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSP.2022.3180546

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

7

TABLE II: Comparison between related works and ours.

GUSC/GUTF [25] GraphDAU NestDAU
Optimization algorithm for unrolling Half-quadratic splitting [52] ADMM [39] PnP-ADMM [34]
Problem setting unsupervised & supervised supervised
Considered restoration problem denoising denoising general restoration

TABLE III: Training configuration.

Batch size 1
Epochs ≤ 3

Weight decay 1.0× 104

Optimizer Adam [58]
Learning rate 0.02

Scheduler StepLR

A. Methods and Training Configurations

1) Alternative Methods: We compare the denoising perfor-
mance with several existing methods using smoothing filters
and optimization approaches:
• Graph spectral diffusion with heat kernel (HD) [53];
• Spectral graph bilateral filter (SGBF) [22], [54];
• ADMM-based smoothing with a fixed parameter; ((10a)–

(10c)) with 10 iterations;
• PnP-ADMM-based smoothing with fixed parameters with

8 iterations [21]: Its formulation is given in Section III-B
and off-the-shelf denoisers are HD or SGBF.

Filtering operations of the algorithms are partly implemented
by pygsp [55]. For a fair comparison, their fixed parameters
are tuned by performing a grid search on the validation data
to minimize RMSE.

We also include the following deep learning-based methods
for comparison:
• Multi-layer perceptron (MLP);
• Graph convolutional network (GCN) and that with resid-

ual connections (GCN-R) [23];
• Graph attention networks (GAT) [56];
• Graph unrolling-based trend filtering (GUTF) [25];
• Graph unrolling-based sparse coding (GUSC) [25].

These existing methods are set to 64 dimensions as a hidden
layer of neural nets as in the setting in [25]. These methods and
ours are implemented with Pytorch [57]. MLP, GCN, GCN-
R, and GAT are trained for 30 epochs that lead to convergence
of the loss function. GUTF and GUSC are trained with the
same hyper-parameters as [25], but they are trained in the
supervised setting in this paper.

2) Training Configuration: On the basis of preliminary
experiments, hyper-parameters used for training of the pro-
posed methods are summarized in Table III. Training scheduler
StepLR in Pytorch is used to gradually decay the learning
rate by multiplying 0.6 each epoch. Since our proposed
methods have a small number of parameters, training usually
converges in no more than three epochs. A detailed perfor-
mance analysis is discussed in Section IV-F.

B. Datasets and Setup

Here, we describe the details of the experiments and
datasets. The dataset specifications are summarized in Ta-
ble IV.

1) Denoising on Fixed Graphs: The first experiment is
graph signal denoising for the following fixed graphs:
• Synthetic signals on a community graph having three

clusters (N = 250);
• Synthetic signals on a random sensor graph (N = 150);
• Temperature data in the United States (N = 614).

We assume that the graph is consistent in all of the training,
validation, and testing phases.
Characteristics of Graphs and Graph Signals: The commu-
nity graph is generated by pygsp [55] and is shown in Fig. 3a.
We synthetically create piecewise constant graph signals based
on the cluster labels of the community graph. Note that the
cluster labels are different while the graph itself is fixed. Each
cluster in the graph is assigned an integer value between 1 to
6 randomly as its cluster label. Then, AWGN (σ = {0.5, 1.0})
is added to the ground-truth signals.

The random sensor graph is also obtained by pygsp [55]
and is shown in Fig. 4a. On the random sensor graph,
piecewise-smooth signals are synthesized in the following
manner. First, vertices on a graph are partitioned into eight
non-overlapping subgraphs {Gk}8k=1. Then, smooth signals on
Gk are synthesized based on the first three eigenvectors of the
graph Laplacian of Gk. Let Lk and Uk be the graph Laplacian
of Gk and its eigenvector matrix, respectively. Then, a smooth
signal on Gk is given by

xk = Uk,3d, (16)

where Uk,3 is the first three eigenvectors in Uk and d ∈ R3

are expansion coefficients whose element is randomly selected
from [0, 5]. Finally, a piecewise-smooth signal on G is obtained
by combining eight xk’s as follows:

x =
∑
k

1Ckxk (17)

where 1Ck ∈ {0, 1}N×|Ck| is the indicator matrix in which
[1Ck]i,j = 1 when the node i in G corresponds to the node j
in Gk and 0 otherwise. AWGN (σ = {0.5, 1.0}) is added to
the ground-truth signals.

In order to demonstrate the effectiveness of our method for
real-world data, we use daily average temperature data in the
United States in 2017, provided by QCLCD2 [59]. The data
contain local temperatures recorded at weather stations, yet
they include missing observations. To obtain the completed
data (as the ground truth) for a year, we conduct the following
preprocessing: 1) 614 stations (out of 7501 ones) having
relatively few missing values are selected. 2) Missing values
in these stations are filled using the average temperatures
observed at the same station in the previous and subsequent
days. For experiment, we split the dataset into three parts: 304

2https://www.ncdc.noaa.gov/orders/qclcd/

This article has been accepted for publication in IEEE Transactions on Signal Processing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSP.2022.3180546

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

8

TABLE IV: Summary of data used in Section IV

Experiment Graph Signal characteristic Type Data splitting (train/valid/test)

Denoising on fixed graphs
Community graph Piecewise constant Synthetic data 500/50/50
Sensor graph Piecewise smooth Synthetic data 500/50/50
U.S. geometry Daily temperature (time-series) Real data 304/30/31

Denoising on perturbed graphs Sensor graph
Piecewise constant

Synthetic data
500/50/50

Piecewise smooth 500/50/50
Globally smooth 500/50/50

3D Point clouds RGB color attributes Real data 129/43/44
Parameter transfer 3D Point clouds RGB color attributes for different N Real data N/A

TABLE V: Denoising results on fixed graphs (average RMSEs for test data)

Community graph Random sensor graph U.S. temperature
(Piecewise constant) (Piecewise smooth) (Globally smooth)

Methods # params L K P σ = 0.5 1.0 0.5 1.0 3.0 5.0 7.0 9.0

Noisy - - - - 0.495 1.002 0.499 0.996 2.986 5.032 7.029 9.012
HD - - - - 0.230 0.325 0.405 0.598 1.712 2.149 2.475 2.751

SGBF - - - - 0.195 0.256 0.394 0.588 1.731 2.167 2.470 2.762
ADMM (GTV) - 10 - - 0.114 0.233 0.378 0.603 1.784 2.249 2.483 2.805

PnP-HD - - - 8 0.218 0.324 0.400 0.592 1.706 2.168 2.467 2.745
PnP-SGBF - - - 8 0.195 0.294 0.399 0.586 1.730 2.164 2.457 2.749

MLP 4,353 - - - 0.436 0.795 0.454 0.739 2.892 4.588 6.634 7.816
GCN 4,353 - - - 0.258 0.283 0.649 0.705 2.208 2.380 2.653 2.948

GCN-R 4,353 - - - 0.272 0.305 0.718 0.759 2.285 2.411 2.642 2.931
GAT 2,050 - - - 0.236 0.247 0.560 0.752 2.213 2.776 3.042 3.698

GUTF 19,397 - - - 0.100 0.158 0.419 0.523 2.127 2.293 2.551 2.891
GUSC 11,205 - - - 0.139 0.206 0.383 0.512 2.069 2.248 2.587 2.935

GraphDAU-TV-E 20 10 - - 0.060 0.117 0.364 0.583 1.688 2.154 2.436 2.775
GraphDAU-TV-C 20 10 10 - 0.073 0.142 0.364 0.583 1.693 2.170 2.536 2.743
GraphDAU-EN-E 30 10 - - 0.081 0.138 0.340 0.547 1.652 2.123 2.411 2.723
GraphDAU-EN-C 30 10 10 - 0.095 0.165 0.339 0.554 1.685 2.151 2.479 2.745
NestDAU-TV-E 168 10 - 8 0.054 0.106 0.324 0.559 1.661 2.153 2.429 2.736
NestDAU-TV-C 168 10 10 8 0.056 0.103 0.374 0.631 1.665 2.124 2.458 2.730
NestDAU-EN-E 248 10 - 8 0.072 0.105 0.324 0.528 1.656 2.087 2.409 2.713
NestDAU-EN-C 248 10 10 8 0.061 0.110 0.330 0.530 1.654 2.100 2.434 2.674

training (January to October), 30 validation (November), and
31 testing (December) data. In this experiment, we study four
noise strengths of AWGN, i.e., σ = {3.0, 5.0, 7.0, 9.0}. The
weighted graph is constructed by an 8-nearest neighbor (NN)
graph based on the stations’ geographical coordinates.

2) Denoising on Graphs with Perturbation: The second
experiment is conducted for signals on graphs with pertur-
bation to verify the robustness of the proposed method to
small perturbations of the underlying graph. Indeed, the tuned
parameters for one graph are not expected to work properly
for a completely different graph because the topologies and
graph Fourier basis on different graphs are different. However,
signals on similar graphs, in terms of their edge weights, could
have similar characteristics and therefore, it is expected that
the learned parameters for one graph could work satisfactorily
for the signal on another graph if these two graphs are similar
enough.

Note that many graph neural network-based methods as-
sume the graph is fixed, while our approach based on DAU
only needs to tune graph-independent parameters. Thus, we
can use different graphs in each epoch for training, validation,
and testing. In this experiment, we only showcase the perfor-
mance with a comparison to the model-based methods because
the model-based approaches are applicable even if the graphs
are different.

We used the following graph signals:

• Synthetic signals on random sensor graphs (N =

150) having piecewise-constant, piecewise-smooth, and
globally-smooth characteristics;

• RGB color attributes on 3D point clouds (N = 1, 000).
Characteristics of Graphs and Graph Signals: For the ex-
periment on random sensor graphs, each graph is synthetically
generated by using a different seed of graphs.Sensor from
pygsp [55]. This results in that all graphs have different
topologies and edge weights, but their characteristics are
similar.

We then synthetically generate the following graph signals:
a) Piecewise constant signals: We first partition each graph

into five clusters with non-overlapping nodes and ran-
domly assign an integer for each cluster between 1 to 6.
The cluster labels are used as a graph signal.

b) Piecewise smooth signal: Similar to the piecewise con-
stant case, we first partition each graph into five clusters
with non-overlapping nodes. The signal is generated by
(16) and (17).

c) Globally smooth signal: The signal is obtained with a
linear combination of the first five graph Fourier basis
with random expansion coefficients d ∈ R5 like (16).

In this experiment, we study two noise strengths of AWGN,
i.e., σ = {0.5, 1.0}.

As real data on graphs with perturbation, we use the color
attributes of 3D point clouds from JPEG Pleno Database3 [60],

3http://plenodb.jpeg.org/pc/microsoft/

This article has been accepted for publication in IEEE Transactions on Signal Processing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSP.2022.3180546

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

9

where the human motions are captured as point clouds. We
randomly sample 1, 000 points from the original data. Then,
weighted graphs are constructed using a 4-NN method whose
weights are determined based on the Euclidean distance.
Graphs in this dataset are, therefore, not fixed because the
Euclidean distances between points are different due to random
sampling. AWGN with σ = {20, 30, 40} is added to each
sample to yield a noisy signal. Note that the implementation
of the proposed methods are conducted channel-wise so that
the parameters are adjusted to each channel.

3) Parameter Transfer for Different N : The number of
nodes of a graph directly influences computation complexities
for all (training, validation, and testing) phases. To apply the
proposed methods to a signal with large N , naive training
results in large computational burden. Motivated by this, in
the third experiment, we consider transferring the learned
parameters to graph signals having different N . That is,
parameters trained with signals on a small graph G′ with
N ′ (� N) nodes are reused for evaluation with signals on
G with N nodes. This approach can be easily realized with
the proposed method since its parameters are independent of
N .

We first train the GraphDAU-TV-C (i.e., Chebyshev polyno-
mial version of GraphDAU based on the GTV regularization)
on the 3D point cloud datasets with N ′ = 1, 000 points. After
that, the pre-trained parameters are applied to the datasets with
larger N = {2, 000, 5, 000, 10, 000}.

C. Denoising Results: Fixed Graph

The experimental results on the fixed graphs are summarized
with the number of parameters in Table V. Visualizations of
the denoising results are also shown in Figs. 3, 4, and 5.

In most cases, the proposed methods show RMSE im-
provements compared to all of the alternative methods. It
is observed that the proposed approach successfully restored
graph signals having various characteristics. Note that, in
spite of the performance improvements, our methods have
a significantly smaller number of parameters than the neural
network-based approaches.

Although GraphDAU-TV and -EN outperform existing
methods, NestDAUs provide even better performance by in-
corporating GraphDAUs as submodules of NestDAU. These
results imply that the nested structure is effective for graph
signal restoration. NestDAU using EVD often outperforms that
using CPA in most datasets and conditions.

D. Denoising Results: Graphs with Perturbation

Table VI summarizes the results of the second experiment,
denoising on graphs with small perturbation. Overall, our algo-
rithms outperform the alternatives as in the case for the fixed
graph. The proposed techniques show RMSE improvements
for all of the signal types under consideration. This implies
that our methods effectively reflect the signal prior as the tuned
parameters through training, leading to robustness against a
slight change of graphs.

E. Transferring Tuned Parameters for Different N

The results of the third experiment, transferring the tuned
parameters to different N , are summarized in Table VII.
This shows that even if the number of nodes increases, the
proposed method works well as long as the signal and graph
properties are similar. Fig. 6 shows the visualization of noisy
and denoised results.

F. Performance Study: The Number of Layers

Along with the denoising results, the effect of the number
of layers is studied here. We use the dataset of the fixed
community graph whose details are described in Section IV-B.

1) GraphDAU: Fig. 7a shows the performance analysis in
terms of the number of layers L of GraphDAU for L ∈
{1, . . . , 30}. The average RMSE in the test data is reported.
As can be seen in the figure, the RMSE of GraphDAU
rapidly decreases for L ≤ 10, whereas there is a slight
improvement for L > 10. We observed that GraphDAU-TV-E
steadily decreases RMSEs while they are slightly oscillated
for GraphDAU-EN-E. Fig. 7b shows the influence of the
polynomial order K ∈ {2, . . . 30} of GraphDAU-TV-C and
-EN-C with L = 10. Both methods almost monotonically
decrease RMSEs as K becomes larger.

2) NestDAU: Fig. 7c shows the performance in terms of the
number of layers P of NestDAU. The submodule GraphDAU
contains L = 10 for using EVD and L = 10 and K = 10
with that using CPA. The number of layers is selected to
P ∈ {1, . . . , 10}. For NestDAU, all configurations are stable
in terms of the layer size P . Even if the in-loop denoisers are
changed, the performances are almost equivalent.

G. RMSE Analysis during Training

Fig. 8 shows the average RMSEs of the validation data
during training. The data used are signals on community
graphs (σ = 0.5) described in Section IV-B. As shown in
the figure, the RMSEs rapidly decrease with less than 250
iterations (that is, the number of training data). Furthermore,
NestDAUs converge faster than their GraphDAU counterparts.

V. EXPERIMENTAL RESULTS: INTERPOLATION

In this section, graph signal interpolation is performed and
compared with the alternative methods. We assume the nodes
for missing signal values are known and they are set to zero.
This leads to a diagonal binary matrix H = diag{0, 1}N in
(1) with various missing rates.

A. Alternative Methods

For interpolation, the following techniques are selected for
comparison:
• Bandlimited graph signal recovery based on graph sam-

pling theory [8]: Bandwidth is set to N/10;
• PnP-ADMM-based interpolation with fixed parameters

with 8 iterations [21]: Its formulation is given in Sec-
tion III-B and off-the-shelf denoisers are HD or SGBF;

This article has been accepted for publication in IEEE Transactions on Signal Processing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSP.2022.3180546

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

10

0

1

2

3

4

5

6

(a) Ground truth

0

1

2

3

4

5

6

(b) Noisy

0

1

2

3

4

5

6

(c) PnP-HD

0

1

2

3

4

5

6

(d) ADMM (GTV)

0

1

2

3

4

5

6

(e) GUSC

0

1

2

3

4

5

6

(f) GUTF

0

1

2

3

4

5

6

(g) GraphDAU-TV-E

0

1

2

3

4

5

6

(h) NestDAU-TV-C

Fig. 3: Visualization: Denoising results of signals on community graph with σ = 1.0.

3

2

1

0

1

2

3

(a) Ground truth

3

2

1

0

1

2

3

(b) Noisy

3

2

1

0

1

2

3

(c) PnP-SGBF

3

2

1

0

1

2

3

(d) ADMM (GTV)

3

2

1

0

1

2

3

(e) GUSC

3

2

1

0

1

2

3

(f) GUTF

3

2

1

0

1

2

3

(g) GraphDAU-EN-E

3

2

1

0

1

2

3

(h) NestDAU-TV-C

Fig. 4: Denoising signals on random sensor graph (σ = 1.0).

• GUTF [25];
• GUSC [25].

Although GUSC and GUTF are originally developed for a
denoising task, we also include these methods to compare with
neural network-based approaches. The setup is the same as the
previous section.

B. Datasets and Setup

We used the following graph signals for interpolation:
• Synthetic signals on a community graph having three

clusters (N = 250);

• Temperature data of the United States (N = 614).
They are the same signals as those used in the denoising
experiment in the previous section.
Characteristics of Graphs and Graph Signals: Synthetic
graph signals on the community graph are generated in the
same setup as that of the denoising experiment. We then
consider two interpolation conditions: 1) noiseless and 2) noisy
(AWGN with σ = 0.5). Three types of missing rate are
considered: 30%, 50%, and 70%.

The U.S. temperature data are also used in this experiment
as a real-world example. In this case, AWGN (σ = 9.0) are
added onto the observed daily temperature data with the same

This article has been accepted for publication in IEEE Transactions on Signal Processing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSP.2022.3180546

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

11

5

0

5

10

15

20

25

(a) Ground truth

0

25

50

75

100

125

150

175

200

(b) Noisy

0

25

50

75

100

125

150

175

200

(c) HD

0

25

50

75

100

125

150

175

200

(d) PnP-HD

0

25

50

75

100

125

150

175

200

(e) ADMM (GTV)

0

25

50

75

100

125

150

175

200

(f) GUTF

0

25

50

75

100

125

150

175

200

(g) GraphDAU-EN-E

0

25

50

75

100

125

150

175

200

(h) NestDAU-EN-C

Fig. 5: Denoising results of U.S. temperature data (σ = 9.0). (a) is the original signal. The noisy and denoised results show
the differences from the original signal: For visualization, the area of the nodes is proportional to the magnitude of the error,
i.e., a large node has a large error.

TABLE VI: Denoising results on graphs with perturbation (average RMSEs for test data)

Random sensor graph 3D Point Clouds
Piecewise constant Piecewise smooth Globally smooth RGB colors

Methods L K P σ = 0.5 1.0 0.5 1.0 0.5 1.0 20 30 40

Noisy - - - 0.500 1.000 0.500 1.000 0.500 1.000 18.18 26.00 33.19
HD - - - 0.412 0.627 0.417 0.646 0.357 0.537 11.84 14.74 17.42

SGBF - - - 0.405 0.634 0.411 0.691 0.336 0.459 14.76 16.12 17.94
ADMM (GTV) 10 - - 0.271 0.505 0.462 0.652 0.361 0.543 10.96 14.08 16.84

PnP-HD - - 8 0.415 0.645 0.413 0.645 0.343 0.538 11.89 14.97 17.78
PnP-SGBF - - 8 0.403 0.630 0.412 0.635 0.308 0.462 15.92 20.49 24.33

GraphDAU-TV-E 10 - - 0.240 0.446 0.385 0.629 0.306 0.467 10.92 13.97 16.69
GraphDAU-TV-C 10 10 - 0.221 0.447 0.385 0.623 0.308 0.473 10.88 13.70 15.90
GraphDAU-EN-E 10 - - 0.192 0.401 0.394 0.629 0.312 0.451 10.74 13.83 16.64
GraphDAU-EN-C 10 10 - 0.230 0.436 0.398 0.638 0.293 0.436 10.88 13.67 15.90
NestDAU-TV-E 10 - 8 0.206 0.407 0.368 0.613 0.290 0.439 10.83 13.75 16.06
NestDAU-TV-C 10 10 8 0.207 0.402 0.371 0.606 0.290 0.439 10.84 13.68 15.87
NestDAU-EN-E 10 - 8 0.206 0.410 0.371 0.612 0.290 0.441 10.89 13.92 16.45
NestDAU-EN-C 10 10 8 0.211 0.398 0.366 0.609 0.295 0.436 10.81 13.65 15.89

TABLE VII: Parameter transfer of 3D point clouds (average
RMSEs for test data)

N ′ N
1,000 2,000 5,000 10,000

Noisy (σ = 30) 26.00 25.96 25.94 25.95
Denoised 13.70 12.69 11.63 11.03

setting as the denoising experiment. Then, missing rates are set
to 30%, 50%, and 70% to validate the interpolation method.
Note that the missing nodes are randomly chosen, i.e., H are
set to be different across all data.

C. Interpolation Results
The RMSE results obtained by the proposed and existing

methods are summarized in Table VIII. The visualizations of
the interpolation results are also shown in Figs. 9 and 10.

As can be seen, the proposed approaches show better RMSE
than the alternatives. For the community graph, NestDAU-
TV shows better results than NestDAU-EN. This is because
NestDAU-TV reflects the prior of the graph signals, i.e.,
piecewise constant. For the U.S. temperature data, NestDAU-
EN is better than NestDAU-TV because the temperature data

tend to be very smooth on the graph. In particular, NestDAU-
EN-C outperforms the others in all missing rates. This implies
that the proposed NestDAU presents its effectiveness beyond
denoising.

VI. CONCLUDING REMARKS

In this paper, we proposed graph signal denoising and
restoration methods based on ADMM and Plug-and-Play
ADMM with deep algorithm unrolling, respectively. The
ADMM-based unrolled denoiser automatically controls its
regularization strengths by tuning its parameters from training
data. The PnP-ADMM-based unrolled restoration is applicable
to any linear degradation matrix and contains the proposed
ADMM-based denoiser in its sub-module, leading to a nested
DAU structure. The unrolled restoration methods provide fully
interpretable structures and have a small number of parameters
with respect to fully parameterized neural networks. The
techniques only tune layer-wise trainable parameters in the
iterative algorithm and do not include fully-connected neural
networks. This implies that we only need a small set of
training data: It is beneficial especially for graph signals
because their underlying structures often change. In extensive

This article has been accepted for publication in IEEE Transactions on Signal Processing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSP.2022.3180546

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

12

TABLE VIII: Interpolation results. (average RMSEs for test data)

Community graph U.S. temperature
noiseless σ = 0.5 σ = 9.0

P params/miss(%) 30 50 70 30 50 70 30 50 70
Noisy + missing - - 2.034 2.633 3.092 2.099 2.691 3.155 9.143 9.169 9.170

Graph sampling theory - - 0.214 0.279 0.571 0.341 0.465 1.411 3.961 4.851 10.06
PnP-HD 8 - 0.131 0.179 0.386 0.263 0.316 0.462 2.938 3.155 3.558

PnP-SGBF 8 - 0.136 0.174 0.268 0.218 0.236 0.331 2.982 3.293 3.512
GUSC - 11,270 0.384 0.543 0.706 0.414 0.551 0.722 3.853 4.921 6.657
GUTF - 19,397 0.309 0.470 0.641 0.338 0.472 0.636 3.478 4.395 6.162

NestDAU-TV-E 8 168 0.013 0.025 0.059 0.077 0.094 0.140 2.940 3.177 3.491
NestDAU-TV-C 8 168 0.012 0.022 0.082 0.072 0.093 0.148 2.968 3.179 3.501
NestDAU-EN-E 8 248 0.077 0.140 0.160 0.107 0.185 0.311 2.907 3.116 3.466
NestDAU-EN-C 8 248 0.084 0.120 0.175 0.123 0.128 0.321 2.903 3.105 3.461

Fig. 6: Parameter transfer: The parameters of GraphDAU-
TV-C with L = 10 and K = 10 are trained with N = 1, 000.
Then, the model with trained parameters are applied to the
larger number of points (N = 5, 000 (top row) and N =
10, 000 (bottom row)).

experiments, the proposed methods experimentally outperform
various alternative techniques for graph signal restoration.
Furthermore, we can reuse the learned parameters for graphs
with different sizes.

APPENDIX

Here, we present some non-trivial gradient computations
of the trainable parameters with respect to the learnable
parameters in GraphDAU.

First, let L be the loss function. Its partial derivatives with
respect to parameters are given as follows using the chain rule:

∂L
∂γ`

=
∂L

∂x(`+1)
· ∂x(`+1)

∂γ`
, (18)

∂L
∂β`

=
∂L

∂v(`+1)
· ∂v(`+1)

∂β`
, (19)

∂L
∂α`

=
∂L

∂v(`+1)
· ∂v(`+1)

∂α`
. (20)

From (10a), x(`+1) is given as

x(`+1) =Udiag
(

γ`
γ` + λ1

, . . . ,
γ`

γ` + λN

)
U>

×
(

y +
1

γ`
M>(v(`) − u(`))

)
=U

[
diag

(
γ`

γ` + λ1
, . . . ,

γ`
γ` + λN

)
U>y

+ diag
(

1

γ` + λ1
, . . . ,

1

γ` + λN

)
x̃(`)

]
,

where x̃(`) = U>M>(v(`) − u(`)). Then, ∂x(`+1)

∂γ`
in (18) is

calculated as follows:

∂x(`+1)

∂γ`
=U

[
∂

∂γ`
diag

(
γ`

γ` + λ1
, . . . ,

γ`
γ` + λN

)
U>y

+
∂

∂γ`
diag

(
1

γ` + λ1
, . . . ,

1

γ` + λN

)
x̃(`)

]
=U

[
diag

(
λ1

(γ` + λ1)2
, . . . ,

λN
(γ` + λN)2

)
U>y

− diag
(

1

(γ` + λ1)2
, . . . ,

1

(γ` + λN)2

)
x̃(`)

]
.

(21)

We also derive the partial derivatives with respect to β` for
both GraphDAU-TV and EN. Let ṽ(`) = Mx(`+1) + u(`) and
σ(·) be the ReLU activation function. The soft-thresholding
operator can be represented with two ReLU functions as

Sβ`
(ṽ

(`)
i) = σ(ṽ

(`)
i − β`)− σ(−ṽ

(`)
i − β`).

Therefore, the auxiliary variable v(`+1) is explicitly given
by v(`+1) = Sβ`

(ṽ(`)), and its gradient for β` is shown as
follows:

∂v
(`+1)
i

∂β`
= −σ′(ṽ(`)

i − β`) + σ′(−ṽ
(`)
i − β`), (22)

where σ′(·) is the derivative of σ(·). GraphDAU-EN also
contains the parameter α`. By taking the partial derivative of
v(`+1) with respect to α` is given as follows:

v
(`+1)
i = α`

(
σ(ṽ

(`)
i − β`)− σ(−ṽ

(`)
i − β`)

)
,

∂v
(`+1)
i

∂α`
= σ(ṽ

(`)
i − β`)− σ(−ṽ

(`)
i − β`). (23)

This article has been accepted for publication in IEEE Transactions on Signal Processing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSP.2022.3180546

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

13

0 5 10 15 20 25 30
L

0.10

0.15

0.20

0.25

0.30

0.35

0.40
R
M
SE

GraphDAU-TV-E
GraphDAU-EN-E

10 15 20 25 30
0.10

0.12

0.14

0.16

(a) GraphDAU: L.

5 10 15 20 25 30
K

0.2

0.4

0.6

0.8

1.0

1.2

1.4

R
M
SE

GraphDAU-TV-C
GraphDAU-EN-C

10 15 20 25 30

0.12

0.14

0.16

0.18

(b) GraphDAU: K.

2 4 6 8 10
P

0.2

0.4

0.6

0.8

1.0

R
M
SE

NestDAU-TV-E
NestDAU-TV-C

NestDAU-EN-E
NestDAU-EN-C

4 6 8 10
0.10

0.11

0.12

0.13

0.14

0.15

(c) NestDAU: P .

Fig. 7: Denoiser analysis with the results on community graph (σ = 1.0).

0 200 400 600 800 1000 1200 1400
of iterations

0.0

0.2

0.4

0.6

0.8

1.0

RM
SE

0 50 100 150 200 2500.0

0.1

0.2

0.3

0.4

0.5
GraphDAU-TV-E
GraphDAU-EN-E
NestDAU-TV-E
NestDAU-EN-E

Fig. 8: Average RMSEs of the validation data for graph signal
denoising. The upper right box is the zoomed-in part of the
red area at bottom left.

REFERENCES

[1] M. Nagahama, K. Yamada, Y. Tanaka, S. H. Chan, and Y. C. Eldar,
“Graph signal denoising using nested-structured deep algorithm un-
rolling,” in Proc. IEEE Int. Conf. Acoust. Speech. Signal Process., 2021,
pp. 5280–5284.

[2] A. Sandryhaila and J. M. F. Moura, “Discrete signal processing on
graphs,” IEEE Trans. Signal Process., vol. 61, no. 7, pp. 1644–1656,
Apr. 2013.

[3] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Van-
dergheynst, “The emerging field of signal processing on graphs: Ex-
tending high-dimensional data analysis to networks and other irregular
domains,” IEEE Signal Process. Mag., vol. 30, no. 3, pp. 83–98, May
2013.

[4] A. Ortega, P. Frossard, J. Kovačević, J. M. F. Moura, and P. Van-
dergheynst, “Graph signal processing: Overview, challenges, and ap-
plications,” in Proc. the IEEE, vol. 106, no. 5, pp. 808–828, May 2018.

[5] W. Hu, G. Cheung, A. Ortega, and O. C. Au, “Multiresolution graph
fourier transform for compression of piecewise smooth images,” IEEE
Trans. on Image Process., vol. 24, no. 1, pp. 419–433, Jan. 2015.

[6] S. Chen, R. Varma, A. Sandryhaila, and J. Kovačević, “Discrete signal
processing on graphs: Sampling theory,” IEEE Trans. Signal Process.,
vol. 63, no. 24, pp. 6510–6523, Dec. 2015.

[7] A. Anis, A. Gadde, and A. Ortega, “Efficient sampling set selection for
bandlimited graph signals using graph spectral proxies,” IEEE Trans.
Signal Process., vol. 64, no. 14, pp. 3775–3789, Jul. 2016.

[8] Y. Tanaka, Y. C. Eldar, A. Ortega, and G. Cheung, “Sampling signals
on graphs: From theory to applications,” IEEE Signal Process. Mag.,
vol. 37, no. 6, pp. 14–30, Nov. 2020.

[9] J. Hara, Y. Tanaka, and Y. C. Eldar, “Generalized graph spectral
sampling with stochastic priors,” in Proc. IEEE Int. Conf. Acoust.
Speech. Signal Process., 2020, pp. 5680–5684.

[10] Y. Tanaka and Y. C. Eldar, “Generalized sampling on graphs with
subspace and smoothness priors,” IEEE Trans. Signal Process., vol. 68,
pp. 2272–2286, 2020.

[11] A. Sakiyama, K. Watanabe, and Y. Tanaka, “Spectral graph wavelets
and filter banks with low approximation error,” IEEE Trans. Signal Inf.
Process. Netw., vol. 2, no. 3, pp. 230–245, Sep. 2016.

[12] D. I. Shuman, “Localized spectral graph filter frames: A unifying
framework, survey of design considerations, and numerical comparison,”
IEEE Signal Process. Mag., vol. 37, no. 6, pp. 43–63, Nov. 2020.

[13] S. K. Narang, A. Gadde, and A. Ortega, “Signal processing techniques
for interpolation in graph structured data,” in Proc. IEEE Int. Conf.
Acoust. Speech Signal Process., pp. 5445–5449, May 2013.

[14] S. Chen, A. Sandryhaila, J. M. F. Moura, and J. Kovačević, “Signal re-
covery on graphs: Variation minimization,” IEEE Trans. Signal Process.,
vol. 63, no. 17, pp. 4609–4624, Sep. 2015.

[15] S. Chen, A. Sandryhaila, J. M. F. Moura, and J. Kovacevic, “Signal
denoising on graphs via graph filtering,” in Proc. IEEE Global Conf. on
Signal and Inf. Process., Dec. 2014, pp. 872–876.

[16] M. Onuki, S. Ono, M. Yamagishi, and Y. Tanaka, “Graph signal
denoising via trilateral filter on graph spectral domain,” IEEE Trans.
on Signal and Inf. Process. over Networks, vol. 2, no. 2, pp. 137–148,
Jun. 2016.

[17] Y. Tanaka and A. Sakiyama, “M-channel oversampled graph filter
banks,” IEEE Trans. Signal Process., vol. 62, no. 14, pp. 3578–3590,
Jul. 2014.

[18] T. H. Do, D. Minh Nguyen, and N. Deligiannis, “Graph auto-encoder
for graph signal denoising,” in Proc. IEEE Int. Conf. Acoust. Speech.
Signal Process., pp. 3322–3326, May 2020.

[19] T. Chan, S. Osher, and J. Shen, “The digital TV filter and nonlinear
denoising,” IEEE Trans. on Image Process., vol. 10, no. 2, pp. 231–
241, Feb. 2001.

[20] S. Ono, I. Yamada, and I. Kumazawa, “Total generalized variation for
graph signals,” in Proc. IEEE Int. Conf. Acoust. Speech. Signal Process.,
pp. 5456–5460, Apr. 2015.

[21] Y. Yazaki, Y. Tanaka, and S. H. Chan, “Interpolation and denoising of
graph signals using Plug-and-Play ADMM,” in Proc. IEEE Int. Conf.
Acoust. Speech. Signal Process., pp. 5431–5435, May 2019.

[22] A. Gadde, S. K. Narang, and A. Ortega, “Bilateral filter: Graph spectral
interpretation and extensions,” in Proc. IEEE Int. Conf. Image Process.,
Mar. 2013.

[23] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in Proc. Int. Conf. Learn. Representations,
2017, p. 14.

[24] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural
networks on graphs with fast localized spectral filtering,” in Proc. Int.
Conf. Neural Inf. Process. Syst., pp. 3844–3852, 2016.

[25] S. Chen, Y. C. Eldar, and L. Zhao, “Graph unrolling networks: Inter-
pretable neural networks for graph signal denoising,” IEEE Trans. Signal
Process., Jun. 2020.

[26] D. Ulyanov, A. Vedaldi, and V. Lempitsky, “Deep image prior,” Int J
Comput Vis, vol. 128, no. 7, pp. 1867–1888, Jul. 2020.

[27] M. Zhang, Z. Cui, M. Neumann, and Y. Chen, “An end-to-end deep
learning architecture for graph classification,” in Proc. AAAI, 2018, p. 8.

This article has been accepted for publication in IEEE Transactions on Signal Processing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSP.2022.3180546

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

14

0

1

2

3

4

5

6

(a) Ground truth

0

1

2

3

4

5

6

(b) Noisy + missing (50%)

0

1

2

3

4

5

6

(c) Graph sampling theory

0

1

2

3

4

5

6

(d) PnP-HD

0

1

2

3

4

5

6

(e) PnP-SGBF

0

1

2

3

4

5

6

(f) GUTF

0

1

2

3

4

5

6

(g) NestDAU-TV-E

0

1

2

3

4

5

6

(h) NestDAU-EN-E

Fig. 9: Interpolation results of a community graph (AWGN (σ = 0.5) with 50% missing). The proposed method ((g) and (h))
captured the property of the ground truth signal.

5

0

5

10

15

20

25

(a) Ground truth

5

0

5

10

15

20

25

(b) Noisy + missing (50%)

0

25

50

75

100

125

150

175

200

(c) PnP-HD

0

25

50

75

100

125

150

175

200

(d) PnP-SGBF

0

25

50

75

100

125

150

175

200

(e) GUSC

0

25

50

75

100

125

150

175

200

(f) GUTF

0

25

50

75

100

125

150

175

200

(g) NestDAU-TV-E

0

25

50

75

100

125

150

175

200

(h) NestDAU-EN-C

Fig. 10: Interpolation results of U.S temperature data. (a) and (b) are shown in the original scale. For clear visualization, the
node size of the interpolation results are set to be proportional to the magnitude of the error.

[28] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M.
Solomon, “Dynamic graph CNN for learning on point clouds,” ACM
Transactions on Graphics, 2019.

[29] X. Zhang, Y. Lu, J. Liu, and B. Dong, “Dynamically unfolding recurrent
restorer: A moving endpoint control method for image restoration,” Proc.
Int. Conf. Learn. Representations, Sep. 2018.

[30] Y. Li, M. Tofighi, J. Geng, V. Monga, and Y. C. Eldar, “Efficient and
interpretable deep blind image deblurring via algorithm unrolling,” IEEE
Trans. Comput. Imaging, vol. 6, pp. 666–681, 2020.

[31] C. Bertocchi, E. Chouzenoux, M.-C. Corbineau, J.-C. Pesquet, and
M. Prato, “Deep unfolding of a proximal interior point method for image
restoration,” Inverse Problems, vol. 36, no. 3, p. 034005, Feb. 2020.

[32] V. Monga, Y. Li, and Y. C. Eldar, “Algorithm unrolling: Interpretable,
efficient deep learning for signal and image processing,” IEEE Signal
Process. Mag., vol. 38, no. 2, pp. 18–44, 2021.

[33] K. Gregor and Y. LeCun, “Learning fast approximations of sparse
coding,” in Proc. Int. Conf. Mach. Learn., 2010, pp. 399–406.

[34] S. V. Venkatakrishnan, C. A. Bouman, and B. Wohlberg, “Plug-and-play
priors for model based reconstruction,” in Proc. IEEE Global Conf. on

Signal and Inf. Process. IEEE, Dec. 2013, pp. 945–948.
[35] R. Ahmad, C. A. Bouman, G. T. Buzzard, S. Chan, S. Liu, E. T.

Reehorst, and P. Schniter, “Plug-and-play methods for magnetic res-
onance imaging: Using denoisers for image recovery,” IEEE Signal
Process. Mag., vol. 37, no. 1, pp. 105–116, Jan. 2020.

[36] S. Sreehari, S. V. Venkatakrishnan, B. Wohlberg, L. F. Drummy, J. P.
Simmons, and C. A. Bouman, “Plug-and-play priors for bright field
electron tomography and sparse interpolation,” IEEE Trans. Comput.
Imaging, pp. 1–1, 2016.

[37] S. H. Chan, X. Wang, and O. A. Elgendy, “Plug-and-play ADMM
for image restoration: Fixed-point convergence and applications,” IEEE
Trans. Comput. Imaging, vol. 3, no. 1, pp. 84–98, Mar. 2017.

[38] S. H. Chan, “Performance analysis of plug-and-play ADMM: A graph
signal processing perspective,” IEEE Trans. Comput. Imaging, vol. 5,
no. 2, pp. 274–286, Jun. 2019.

[39] S. Boyd, “Distributed optimization and statistical learning via the
alternating direction method of multipliers,” FNT in Machine Learning,
vol. 3, no. 1, pp. 1–122, 2010.

[40] K. Zhang, W. Zuo, S. Gu, and L. Zhang, “Learning deep CNN denoiser

This article has been accepted for publication in IEEE Transactions on Signal Processing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSP.2022.3180546

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

15

prior for image restoration,” in IEEE/CVF Conf. on Comput. Vision and
Pattern Recognition. IEEE, 2017, pp. 2808–2817.

[41] K. Zhang, W. Zuo, and L. Zhang, “Deep Plug-and-Play super-resolution
for arbitrary blur kernels,” in IEEE/CVF Conf. on Computer Vision and
Pattern Recognition. IEEE, 2019, pp. 1671–1681.

[42] K. Wei, A. Aviles-Rivero, J. Liang, Y. Fu, C.-B. Schönlieb, and
H. Huang, “Tuning-free Plug-and-Play proximal algorithm for inverse
imaging problems,” in Proc. Int. Conf. Mach. Learn. ICML, 2020.

[43] U. S. Kamilov, H. Mansour, and B. Wohlberg, “A Plug-and-Play priors
approach for solving nonlinear imaging inverse problems,” IEEE Signal
Process. Lett., vol. 24, no. 12, pp. 1872–1876, 2017.

[44] S. K. Shastri, R. Ahmad, and P. Schniter, “Autotuning Plug-and-Play
algorithms for MRI,” arXiv:2012.00887 [cs, math], 2020.

[45] H. Zou and T. Hastie, “Regularization and variable selection via the
elastic net,” J Royal Statistical Soc B, vol. 67, no. 2, pp. 301–320, Apr.
2005.

[46] J. Pang and G. Cheung, “Graph laplacian regularization for image
denoising: Analysis in the continuous domain,” IEEE Trans. Image
Process., vol. 26, no. 4, pp. 1770–1785, Apr. 2017.

[47] N. Parikh and S. Boyd, “Proximal algorithms,” OPT, vol. 1, no. 3, pp.
127–239, Jan. 2014.

[48] S. G. Mallat, A Wavelet Tour of Signal Processing: The Sparse Way,
3rd ed. Elsevier/Academic Press, 2009.

[49] M. Onuki, S. Ono, K. Shirai, and Y. Tanaka, “Fast singular value
shrinkage with chebyshev polynomial approximation based on signal
sparsity,” IEEE Trans. Signal Process., vol. 65, no. 22, pp. 6083–6096,
Nov. 2017.

[50] K. Yamamoto, M. Onuki, and Y. Tanaka, “Deblurring of point cloud
attributes in graph spectral domain,” in Proc. IEEE Int. Conf. Image
Process., 2016, pp. 1559–1563.

[51] C. Dinesh, G. Cheung, and I. V. Bajić, “Super-resolution of 3D color
point clouds via fast graph total variation,” in Proc. IEEE Int. Conf.
Acoust. Speech. Signal Process., 2020, pp. 1983–1987.

[52] Y. Wang, J. Yang, W. Yin, and Y. Zhang, “A new alternating minimiza-
tion algorithm for total variation image reconstruction,” SIAM J. Imaging
Sci., vol. 1, no. 3, pp. 248–272, Jan. 2008.

[53] F. Zhang and E. R. Hancock, “Graph spectral image smoothing using
the heat kernel,” Pattern Recognition, vol. 41, no. 11, pp. 3328–3342,
Nov. 2008.

[54] Y. Wang, A. Ortega, D. Tian, and A. Vetro, “A graph-based joint bilateral
approach for depth enhancement,” in Proc. IEEE Int. Conf. Acoust.
Speech. Signal Process., pp. 885–889, May 2014.

[55] M. Defferrard, L. Martin, R. Pena, and N. Perraudin, “Pygsp: Graph
signal processing in python,” Zenodo, Oct. 2017.

[56] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and
Y. Bengio, “Graph attention networks,” in Proc. Int. Conf. Learn.
Representations, 2018.

[57] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style, high-
performance deep learning library,” in Proc. Int. Conf. Neural Inf.
Process. Syst., pp. 8026–8037, 2019.

[58] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in Proc. Int. Conf. Learn. Representations, 2015, pp. 1–15.

[59] National Oceanic and Atmospheric Administration,
“Quality controlled local climatological data (QCLCD),”
https://www.ncdc.noaa.gov/orders/qclcd/.

[60] C. Loop, Q. Cai, S. Orts-Escolano, and P. A. Chou, “Microsoft voxelized
upper bodies - a voxelized point cloud dataset.”

Masatoshi Nagahama (S’20) received the B.E.
degree in Computer and Information Sciences in
2020 and the M.E. degree in Engineering in 2022
from Tokyo University of Agriculture and Technol-
ogy, Tokyo, Japan. His current research interests
are graph signal processing and deep algorithm
unrolling.

Koki Yamada (S’19) received the B.S. degree in
physics and informatics in 2015 and the M.S. degree
in science and engineering in 2017 from Yamaguchi
University. He also received the Ph.D. degree in
engineering from Tokyo University of Agriculture
and Technology in 2022. He has been an Assistant
Professor in the Department of Electrical Engineer-
ing, Tokyo University of Science, Tokyo, Japan,
since 2022. He was a Research Fellow (DC2) of the
Japan Society for the Promotion of Science (JSPS)
from 2020 to 2022. His current research interests are

graph signal processing and high-dimensional data analysis.

Yuichi Tanaka (S’06–M’07–SM’18) received the
B.E., M.E. and Ph.D. degrees in electrical engineer-
ing from Keio University, Yokohama, Japan, in 2003,
2005, and 2007, respectively. He was a Postdoctoral
Scholar at Keio University, Yokohama, Japan, from
2007 to 2008, and supported by the Japan Society
for the Promotion of Science (JSPS). From 2006 to
2008, he was also a visiting scholar at the University
of California, San Diego. From 2008 to 2012, he was
an Assistant Professor in the Department of Informa-
tion Science, Utsunomiya University, Tochigi, Japan.

Since 2012, he has been an Associate Professor in the Department of Electrical
Engineering and Computer Science, Tokyo University of Agriculture and
Technology, Tokyo, Japan. Currently he has a cross appointment as a PRESTO
Researcher, Japan Science and Technology Agency. His current research
interests are in the field of high-dimensional signal processing and machine
learning which includes: graph signal processing, geometric deep learning,
sensor networks, image/video processing in extreme situations, biomedical
signal processing, and remote sensing.

Dr. Tanaka served as an associate editor for the IEEE TRANSACTIONS
ON SIGNAL PROCESSING from 2016 to 2020 and the IEICE Transactions on
Fundamentals from 2013 to 2017. Currently he is an elected member of the
APSIPA SIPTM (Signal and Information Processing Theory and Methods)
and IVM (Image, Video and Multimedia) Technical Committees. He was
a recipient of the Yasujiro Niwa Outstanding Paper Award in 2010, the
TELECOM System Technology Award in 2011, and Ando Incentive Prize for
the Study of Electronics in 2015. He also received IEEE Signal Processing
Society Japan Best Paper Award in 2016 and Best Paper Awards in APSIPA
ASC 2014 and 2015.

Stanley H. Chan (S’06–M’12–SM’17) received the
B.Eng. degree (with first-class honor) in Electrical
Engineering from the University of Hong Kong in
2007, the M.A. degree in Mathematics from the
University of California at San Diego in 2009, and
the Ph.D. degree in Electrical Engineering from the
University of California at San Diego in 2011. From
2012 to 2014, he was a postdoctoral research fellow
at Harvard John A. Paulson School of Engineering
and Applied Sciences. He joined Purdue University,
West Lafayette, IN in 2014, where he is currently

an Elmore Associate Professor of Electrical and Computer Engineering.
Dr. Chan is a recipient of the Best Paper Award of IEEE International

Conference on Image Processing 2016, IEEE Signal Processing Cup 2016
Second Prize, Purdue College of Engineering Exceptional Early Career
Teaching Award 2019, Purdue College of Engineering Outstanding Graduate
Mentor Award 2016, and Eta Kappa Nu (Beta Chapter) Outstanding Teaching
Award 2015. He is also a recipient of the Croucher Foundation Fellowship for
Postdoctoral Research 2012-2013 and the Croucher Foundation Scholarship
for PhD Studies 2008-2010. His research interests include single-photon imag-
ing, imaging through atmospheric turbulence, and computational photography.

He is an Associate Editor of the IEEE Transactions on Computational
Imaging since 2018 where he is recognized as an outstanding editorial board
member in 2021. He also served as an Associate Editor of the OSA Optics
Express in 2016-2018, and an Elected Member of the IEEE Signal Processing
Society Technical Committee in Computational Imaging in 2015-2020.

This article has been accepted for publication in IEEE Transactions on Signal Processing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSP.2022.3180546

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

16

Yonina C. Eldar (S’98–M’02–SM’07–F’12) re-
ceived the B.Sc. degree in Physics in 1995 and the
B.Sc. degree in Electrical Engineering in 1996 both
from Tel-Aviv University (TAU), Tel-Aviv, Israel,
and the Ph.D. degree in Electrical Engineering and
Computer Science in 2002 from the Massachusetts
Institute of Technology (MIT), Cambridge. She is
currently a Professor in the Department of Mathe-
matics and Computer Science, Weizmann Institute
of Science, Rehovot, Israel. She was previously a
Professor in the Department of Electrical Engineer-

ing at the Technion. She is also a Visiting Professor at MIT, a Visiting
Scientist at the Broad Institute, and an Adjunct Professor at Duke University
and was a Visiting Professor at Stanford. She is a member of the Israel
Academy of Sciences and Humanities (elected 2017), an IEEE Fellow and a
EURASIP Fellow. Her research interests are in the broad areas of statistical
signal processing, sampling theory and compressed sensing, learning and
optimization methods, and their applications to biology, medical imaging and
optics.

Dr. Eldar has received many awards for excellence in research and teaching,
including the IEEE Signal Processing Society Technical Achievement Award
(2013), the IEEE/AESS Fred Nathanson Memorial Radar Award (2014), and
the IEEE Kiyo Tomiyasu Award (2016). She was a Horev Fellow of the
Leaders in Science and Technology program at the Technion and an Alon
Fellow. She received the Michael Bruno Memorial Award from the Rothschild
Foundation, the Weizmann Prize for Exact Sciences, the Wolf Foundation
Krill Prize for Excellence in Scientific Research, the Henry Taub Prize for
Excellence in Research (twice), the Hershel Rich Innovation Award (three
times), the Award for Women with Distinguished Contributions, the Andre
and Bella Meyer Lectureship, the Career Development Chair at the Technion,
the Muriel & David Jacknow Award for Excellence in Teaching, and the
Technion’s Award for Excellence in Teaching (two times). She received
several best paper awards and best demo awards together with her research
students and colleagues including the SIAM outstanding Paper Prize, the
UFFC Outstanding Paper Award, the Signal Processing Society Best Paper
Award and the IET Circuits, Devices and Systems Premium Award, was
selected as one of the 50 most influential women in Israel and in Asia, and
is a highly cited researcher.

She was a member of the Young Israel Academy of Science and Humanities
and the Israel Committee for Higher Education. She is the Editor in Chief
of Foundations and Trends in Signal Processing, a member of the IEEE
Sensor Array and Multichannel Technical Committee and serves on several
other IEEE committees. In the past, she was a Signal Processing Society
Distinguished Lecturer, member of the IEEE Signal Processing Theory and
Methods and Bio Imaging Signal Processing technical committees, and served
as an associate editor for the IEEE Transactions On Signal Processing, the
EURASIP Journal of Signal Processing, the SIAM Journal on Matrix Analysis
and Applications, and the SIAM Journal on Imaging Sciences. She was
Co-Chair and Technical Co-Chair of several international conferences and
workshops. She is author of the book ”Sampling Theory: Beyond Bandlim-
ited Systems” and co-author of five other books published by Cambridge
University Press.

This article has been accepted for publication in IEEE Transactions on Signal Processing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSP.2022.3180546

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

