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ABSTRACT: Probabilistic forecasts of changes in soil moisture and an evaporative stress index (ESI) on subseasonal time

scales over the contiguous United States are developed. The forecasts use the current land surface conditions and numerical

weather prediction forecasts from the Subseasonal to Seasonal (S2S) Prediction project. Changes in soil moisture are quite

predictable 8–14 days in advance with 50% or more of the variance explained over the majority of the contiguous United

States; however, changes in ESI are significantly less predictable. A simple red noise model of predictability shows that the

spatial variations in forecast skill are primarily a result of variations in the autocorrelation, or persistence, of the predicted

variable, especially for the ESI. The difference in overall skill between soil moisture and ESI, on the other hand, is due to

the greater soil moisture predictability by the numerical model forecasts. As the forecast lead time increases from 8–14 to

15–28 days, however, the autocorrelation dominates the soil moisture and ESI differences as well. An analysis of modeled

transpiration, and bare soil and canopy water evaporation contributions to total evaporation, suggests improvements to

the ESI forecasts can be achieved by estimating the relative contributions of these components to the initial ESI state. The

importance of probabilistic forecasts for reproducing the correct probability of anomaly intensification is also shown.
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1. Introduction

Recently, Otkin et al. (2015a) and Lorenz et al. (2017a,b)

developed probabilistic statistical forecasts of the U.S. Drought

Monitor (USDM; Svoboda et al. 2002) using recent anomalies

in precipitation, evaporative stress index (ESI) (Anderson et

al. 2007b, 2011), and modeled soil moisture. Lorenz et al.

(2018) added output from the North American Multi-Model

Ensemble (NMME; Kirtman et al. 2014) to the original sta-

tistical forecasts to create hybrid statistical/dynamical model

forecasts ofUSDM intensification. These studies, which focused on

2–8-week time scales, were motivated by the prediction of rapidly

intensifying droughts. Such ‘‘flash’’ droughts (Svoboda et al.

2002; Hunt et al. 2009, 2014; Ford et al. 2015; Ford and Labosier

2017; Otkin et al. 2013, 2014, 2015a,b, 2016, 2018; Christian et al.

2019b) are particularly challenging to forecast (Pendergrass

et al. 2020) because their time scales are too long for the best use

of atmosphere initial conditions and too short for best use of

external boundary conditions such as sea surface temperatures.

In this study, we extend the above studies to forecasts of

ESI and soil moisture over 8–28-day time scales. While not as

comprehensive as the USDM, ESI and soil moisture are contin-

uous rather than discrete, categorical variables, and this likely

improves their predictability. For example, Lorenz et al. (2017a,b)

found that USDM forecasts could be improved by first estimating

a continuous USDM that is an ‘‘optimal’’ blend of precipitation,

ESI and soil moisture anomalies that is most consistent with

the actual categorical USDM. Essentially, by discretizing a

continuous process, the USDM loses information about the

closeness of adjacent drought categories. Of course, the USDM

must be categorical given the subjective nature of the index. ESI

and soil moisture, on the other hand, are objective indices, and

therefore are likely more consistent across time and space and

more amenable to statistical prediction.

Like Lorenz et al. (2018), we use a hybrid statistical/dynamical

model forecast where the observed initial state and numerical

model output are predictors for a statistical regression. The

predictand in this case is the change in ESI or soil moisture

from the initial state. Previous studies (Nicolai-Shaw et al.

2016; Zhu et al. 2020) have found that the persistence or au-

tocorrelation of land surface variables, such as soil moisture,

plays a large role in their predictability. For example, areas

with large soil moisture autocorrelation have large predict-

ability resulting from knowledge of the initial condition alone.

Since the focus of this work is rapid changes in ESI and soil

moisture, we predict the change in ESI and soil moisture. In

this case, the above relationships are reversed: small autocor-

relation is associated with large predictability due to the initial

condition because it implies a greater tendency for anomalies

to decay toward climatology.

The paper begins with a description of the land surface data

and the numerical model forecasts. Next, a method to quantify

the role of autocorrelation in forecast skill is developed. In

section 4, the statistical regression methodology is described.

In section 5, we 1) describe the forecast results, 2) explore theCorresponding author: David J. Lorenz, dlorenz@wisc.edu
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role of autocorrelation in the spatial variability of skill, 3) an-

alyze the contributions of transpiration, bare soil, and canopy

evaporation to ESI skill, and 4) discuss the importance of

probabilistic forecasts for unbiased estimates of drought in-

tensification. We end with conclusions and ideas for future

research.

2. Data

a. ESI

The ESI, an index of moisture stress, is the standardized

ratio of evapotranspiration to Penman–Monteith potential

evapotranspiration (PET;Allen et al. 1998). Evapotranspiration

is estimated from remotely sensed thermal infrared imagery

using theAtmospheric Land Exchange Inverse (ALEXI) model

(Norman et al. 1995; Anderson et al. 1997, 2007b). Over the

United States, this energy balance model uses 1) lower tro-

pospheric temperature profiles, surface meteorological vari-

ables and clear-sky solar radiation estimates from the Climate

Forecast System Reanalysis dataset (Saha et al. 2010), 2) surface

temperature measurements from the Geostationary Operational

Environmental Satellite, and 3) an atmospheric boundary layer

growth model (McNaughton and Spriggs 1986) to close the

total surface energy budget from;1.5 h after local sunrise until

1.5 h before local noon, thereby estimating sensible, latent, and

ground heat fluxes. The resulting evapotranspiration estimates

are reasonable for a variety of climate and vegetation types

(Anderson et al. 2007a).

To compute the ESI, the mean and standard deviation are

not computed over the entire record, but rather vary with the

seasonal cycle. The mean seasonal cycle is smoothed using

parabolic shaped weights of the form: wj 5 (n 1 1)2 2 j2, for

j52n,2n1 1, . . . , n. We use n5 15, which corresponds to a

smoothing ‘‘window’’ of 31 days. The resolution of the ESI is

0.048 3 0.048 in space and daily in time. At a given grid point,

many days may be missing due to cloud cover, so composites

are used to provide more complete coverage. Most of the re-

sults below use 7-day composites, which is a good compromise

between smoothing versus temporal resolution. Because the

ultimate goal of this research is forecasting rapid drought

intensification, we forecast the future change in the ESI rather

than the future value in the ESI. Ultimately, forecasts of

changes rather than values contain the same information, so

this is not restrictive.

b. NLDAS

For diagnostic purposes, model-based estimates of ESI from

the Noah (NOAH, Ek et al. 2003; Barlage et al. 2010;Wei et al.

2013), Mosaic (MOS, Koster and Suarez 1994, 1996), and

Variable Infiltration Capacity (VIC, Liang et al. 1996; Bowling

and Lettenmaier 2010) models of the North American Land

Data Assimilation System (NLDAS2; Mitchell et al. 2004; Xia

et al. 2012a,b) are used. The 1) total evapotranspiration,

2) base soil evaporation, 3) canopy water evaporation, and

4) transpiration were taken from each of the three models. The

PET was only available for the Noah model, so it was used

to normalize the evaporation for all three models. Because all

models are driven by the same atmospheric forcing, the Noah

PET should be relevant for all models. The Noah PET uses the

Penman–Monteith methodology (Chen et al. 1996). The re-

sulting ESI was standardized in the same way as the remotely

sensed ESI. The NLDAS ESI fields are used for diagnostic

purposes only because there are pronouncedmodel differences

in the partitioning of evaporation into these components (e.g.,

Kumar et al. 2018). We also use the gridded precipitation,

dewpoint, and temperature fields from the NLDAS forcing

dataset to diagnose numerical model skill. The resolution of

the NLDAS is 0.1258 3 0.1258.

c. SMERGE

SoilMERGE (SMERGE; Tobin et al. 2019) is a ‘‘root zone’’

(0–40-cm depth) soil moisture dataset that combines output

from the Noah NLDAS2 model with satellite retrievals of soil

moisture from various passive and active C- and L-band mi-

crowave sensors from the European Space Agency Climate

Change Initiative satellite. SMERGE uses an exponential filter

to convert 0–5-cm soil moisture retrievals from the satellite

observations to root zone soil moisture content (Tobin et al.

2017). The resolution of the SMERGE is 0.1258 3 0.1258 over
the contiguous United States and daily in time. For the results

below, SMERGE anomalies are found by removing the

smoothed mean seasonal cycle of SMERGE at each grid point.

The mean seasonal cycle is smoothed using the same 31-day

weights as ESI. Like the ESI, we forecast the future change in

SMERGE rather than the future value of SMERGE. Because

ESI benefits from weekly composites due to missing values, we

also forecast weekly soil moisture composites for consistency.

d. Numerical forecast models

Starting in 2015, the Subseasonal to Seasonal (S2S) Prediction

project (Vitart et al. 2017) established an extensive data-

base of subseasonal reforecasts up to 60 days long for 11

atmospheric/coupled climate models. For this project, we use

forecasts from the European Centre forMedium-RangeWeather

Forecasts (ECMWF) model because it has almost complete

daily coverage from 2000 to 2019. Another advantage of the

ECMWF model is that the reforecasts are continuous up to

present unlike many other models that stop at 2010 (leaving a

gap from 2011 until start of the forecast period in 2015). For

these reasons, only the ECMWF model is used in this study.

The ECMWF S2S model has 11 ensemble members (in-

cluding the control) and the forecast length is 46 days with an

output frequency of 6–24 h depending upon the variable. We

considered the following variables as predictors: precipitation,

maximum and minimum daily temperature, mean daily tem-

perature, dewpoint temperature, sensible and latent heat flux,

and net shortwave radiation at surface, as well as linear com-

binations of certain temperature variables. Prior to analysis, all

predictors are daily averaged. The soil moisture fields were

unusable due to a pronounced temporal inhomogeneity in the

data, perhaps due to a land surface model change. In addition,

there is an interpolation problem in the ECMWF data on day 16

of the reforecasts coincidingwith a change in themodel resolution

from triangular spectral truncation at wavenumber 639 (T639)

before day 16 to T319 at longer lead times. This problem
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manifests in the 6-h accumulation fields (precipitation and

sensible and latent heat) used to calculate the daily fields. We

deal with this issue by ignoring the bad 6-h accumulation and

multiplying the remaining 18-h accumulation by 4/3 to roughly

correct for the amplitude lost in ignoring one 6-h accumulation.

Only the ensemble mean values are used for the results below.

The ensemble spread was also considered, but the change in

skill was not consistently better.

To remove systematic model biases, the mean forecast value

is calculated for each date in the seasonal cycle and for each

forecast lead time. The seasonal cycle (for each lead time)

is then smoothed using the same 31-day weights used for

SMERGE. Next, the mean forecast was subtracted from each

forecast to form the forecast anomalies that are used for our

statistical prediction.

e. Time period and spatial resolution

The resolution of the archived ECMWF model output is

1.58 3 1.58. Because this resolution is much coarser than the

ESI and SMERGE, we do not interpolate the model data to

the fine 0.048 or 0.1258 resolutions of the ESI and SMERGE,

respectively. Instead, all of the data are interpolated to an in-

termediate resolution 0.48 3 0.48 grid using bilinear interpo-

lation for the ECMWF model and by averaging the ESI and

SMERGE data. The domain is the contiguous United States

for SMERGE and the continental United States and the sur-

rounding regions for ESI. The forecasts are for the warm sea-

son (1 May–30 September) because flash droughts are most

frequent during this time (Christian et al. 2019a). The length of

the ESI and ECMWF datasets limit the time period of our

forecasts, which are 2000–18 for ESI and 1999–2018 for

the SMERGE.

3. Simple model for understanding predictability

Many geophysical time series are approximately red noise;1

therefore, a forecast based on persistence alone can have sig-

nificant skill (Nicolai-Shaw et al. 2016; Zhu et al. 2020). As

such, a persistence forecast is a good null hypothesis to test

whether Numerical model forecasts add value to the statistical

forecast. When forecasting red noise, higher autocorrelation

means the null hypothesis has more skill. On the contrary,

when predicting the change in a red noise time series, lower

autocorrelation means higher null hypothesis skill. Quantifying

the precise impact of autocorrelation on skill is very important

for understanding the results of this study; therefore, in this

section we develop a simple model that relates the predict-

ability of a change in a variable, S, to the numerical model skill

and autocorrelation.

Simple model

Let an overbar, y(t), denote the time average of the variable

y, which is a function of time t. Also, it is assumed that the time

average has already been subtracted from all variables prior to

analysis. In this case, the correlation between variables x and y

is xy/

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 3 y2

q
and the regression coefficient b that best pre-

dicts y ’ bx, is given by b5 xy/x2.

Returning to our specific problem, let a be the autocorre-

lation of the soil moisture S, for example, at lag T. Then, from

the definition of autocorrelation:

a5
S(t)S(t1T)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S(t)2 3S(t1T)2

q 5
S(t)S(t1T)

S(t)2
. (1)

For the last equality we used the fact that S(t1T)
2 5S(t)

2

for a stationary time series. The last equality is also in the form

of the regression coefficient relating S(t 1 T) and S(t), and

therefore:

S(t1T)5 aS1F(t) , (2)

where F is the residual, or forcing of S. For soil moisture, F

includes any precipitation and evaporation that are not linearly

related to S. Next, square both sides of (2) and average:

S(t1T)2 5 a2S2 1 2aSF1F2 . (3)

Because a is the least squares regression coefficient, the forcing

F must be uncorrelated with S, and therefore SF5 0 and

S(t1T)
2 5 a2S2 1F2 . (4)

The first term on the right is the variance of future S ex-

plained by the initial condition and the second term is the

variance from the forcing, which can potentially be forecast

using numerical model output. Let the portion of the F that can

be predicted by the numerical model output be FP, then the

total S(t1 T) variance that is explained by the initial condition

and the numerical model is

S
P
(t1T)2 5 a2S2 1F2

P . (5)

Dividing (5) by the total variance S(t1T)2, using the as-

sumption of stationarity [S(t1T)
2 5 S2], and noting from re-

gression theory that the correlation squared c2 is the fraction of

variance explained:

c2 5 a2 1
F2
P

S2
. (6)

Stationarity can also be applied to (4) to get an expression

for the S variance in terms of F:

S2 5
F2

12 a2
. (7)

Substituting (7) into (6) and letting c2F 5F2
P/F

2:

c2 5 a2 1 (12 a2)c2F . (8)

Note, F2
P/F

2 is the fraction of forcing variance that is ex-

plained, and thus it is denoted as a correlation squared, c2F .

Also, Eq. (8) is exact because F is simply the residual. The first

term in (8) represents skill from the initial condition and the

1 Red noise is a first-order autoregressive process with positive

autocorrelation at unit time lag.
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second term represents skill from the numerical model fore-

cast. According to (8), large autocorrelation a is associated

with large skill regardless of skill in predicting future atmo-

spheric conditions c2F . On weekly time scales, soil moisture is

persistent enough to be in this large autocorrelation regime.

To recast the above autocorrelation results in terms of the

change, D 5 S(t 1 T) 2 S(t), we first find the variance of D:

D2 5 [S(t1T)2S(t)]2 5 2(12 a)S2 , (9)

where we use stationarity and the definition of autocorrelation,

(1), to simplify the binomial term. Next, (2) is written in terms

of D instead of S(t 1 T):

D5 (a2 1)S1F , (10)

In analogy with (5), a portion of the variance is explained by

the numerical model forecasts:

D2
P 5 (12 a)2S2 1F2

P . (11)

Finally dividing by the total D variance given by (9) and

using (7) to again simplify the term involving FP, we get

c2D 5
12 a

2
1

11 a

2
c2F , (12)

where c2D is the fraction of variance explained for the change in S.

As before, the first term in (12) represents skill from the initial

condition and the second term represents skill from the numerical

model forecast. Comparing (8) and (12), we see that the initial

condition skill is smaller for the change c2D when (1 2 a)/2 , a2,

which simplifies to (2a2 1)(a1 1). 0. Because a is always$21,

the second factor is always positive and therefore the important

factor is the first. Therefore, initial condition skill is smaller for

c2D when 2a2 1. 0, or a. 1/2.2 For soil moisture (SMERGE),

81% of the domain has autocorrelation . 0.5 (8–14-day fore-

cast). Therefore, predicting the change rather than the value is

more desirable because the ‘‘trivial’’ skill from the initial

condition is less emphasized. This further motivates our focus

on forecasts of the change rather than the future value. For

ESI, the autocorrelation condition is ambiguous as only 54%of

the domain has a . 1/2.

Equation (12) is very important for understanding the spa-

tial variability in forecast skill and the differences in skill,

particularly for the ESI. The first term in (12) is the variance

explained by the initial conditions. This term describes a re-

laxation of the anomaly back to climatology. If S is very per-

sistent (i.e., a is close to 1) then this term is small. If persistence

is weak (a is close to 0), then this term alone explains half of the

total S(t 1 T) 2 S(t) variance. The second term is the skill

coming from the numerical model forecasts. If this component

is perfect, then c2F and the total skill is perfect (c2D 5 1). For very

persistent S, the effect of numerical model skill on S(t 1 T) 2
S(t) skill is larger. For weakly persistent S, the effect of nu-

merical model skill on predictability is weaker.

To help gauge the effect of autocorrelation on the spatial

structure of skill, (12) is used to diagnose c2F from the skill c2D
and the SMERGE autocorrelation a:

c2F 5
2c2D 2 11 a

11 a
. (13)

Next, the spatial mean c2F is used at all grid points to calculate

the portion of the correlation c2a, whose spatial variations are

only due to the spatial variations in the autocorrelation:

c2a 5
12 a

2
1

11 a

2
c2F , (14)

where c2F is the domain average of c2F . We also look at the

forcing skill c2F itself and compare it to the numerical model

skill of precipitation and dewpoint depression.

4. Methodology

To predict the change in SMERGE anomalies, DS, one
needs the current state and the ‘‘forcing’’ over the forecast

interval. For an 8–14-day forecast of the change in S (i.e.,

predict the change at days 8–14 from days 26 to 0), our pre-

dictors could be the current S and the precipitation and dew-

point temperature anomalies for days 1–14 of the numerical

model forecast. The total number of daily predictors suggested

by such a statistical forecast is 29 (5 11 141 14), which would

be subject to severe overfitting for any standard regression

scheme.3 Fortunately, in our system, we have a priori knowl-

edge of the appropriate, physically based sign of the regression

coefficients: the precipitation coefficients should be positive,

the dewpoint coefficients should be negative, and the initial

state coefficient should be negative (see section 3). Sign-

constrained regression has regularization properties similar

to more sophisticated regression methods that need some

technique to determine the optimal regularization parameter

(Meinshausen 2013; Slawski and Hein 2013). To see the sig-

nificant constraints imposed by a simple sign constraint, note

that for n predictors, sign-constrained regression restricts the

space of allowable coefficients by a factor of 2n. For n5 29, this

factor is 53 108. Lorenz et al. (2017a,b; 2018) demonstrated the

ability of sign constrained regression to maintain the skill of

drought forecasts on independent data. Algorithmically, sign

constrained regression is implemented by changing the sign of

all predictors with coefficients that are expected to be negative,

and then using non-negative least squares (NNLS). For this

study, we implement NNLS using the cyclic coordinate de-

scent algorithm of Franc et al. (2005) to forecast the change

in SMERGE and ESI.

All results presented below are cross validated: 1) one year

is left out, 2) the regression is trained on all other years, 3) skill

scores are tested on the left out year, and 4) the process is

2 The identical condition holds for the second term as well.

3We also explored the use of 3-, 5-, and 7-day running-mean

anomalies to reduce the number of predictors. This did not im-

prove the cross-validated skill scores of the sign constrained re-

gression, suggesting that overfitting is not significant in our case.
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repeated until all years have had the chance to be left out. Our

null hypothesis is the regression where only one predictor, the

initial state, is used (e.g., persistence):

DS5 a
0
2 a

1
S ,

where a0 is a constant and a1 is positive constant that describes

the rate the soil moisture ‘‘relaxes’’ to climatology. We then

add the numerical model predictors for all daily forecast times:

DS5 a
0
2 a

1
S1� b

j
x
j
,

where the bj have the appropriate a priori sign constraint, j is an

index over both variable and forecast lead time, and the x

values are the numerical model predictors. In this study, the x

values are normalized so that a simple comparison between

regression coefficients provides a useful measure of their

relative importance. This new numerical model regression is

used if and only if the cross validated skill is better than the

(cross validated) null hypothesis. The selection of the nu-

merical model predictors (both number and kind) was tested

using the domain average cross-validated skill. For both

SMERGE and ESI the same two variables work the best:

1) precipitation and 2) the dewpoint depression (maximum

daily temperature minus the dewpoint temperature).4 Other

combinations related to dewpoint depression and the diur-

nal temperature range work almost as well; however, using

three variables did not improve the forecast skill so only two

variables are used for simplicity. We analyzed the regression

residuals, and it appears that the linearity assumption is

valid (not shown).

A statistical forecast typically will not explain all variability

of the predictand. Therefore, a statistical forecast is not com-

plete without a characterization of the probability distribution

function (PDF) of the residuals: y2 yp, where y is the observed

predictand and yp is the prediction. Least squares regression

assumes the PDF of the residuals is a Gaussian distribution

with a standard deviation that is independent of the predictors

xj. For ESI, we find that the standard linear regression as-

sumption works well, so this distribution is used for the prob-

abilistic forecasts below. For SMERGE, on the other hand, the

residuals have nonzero skewness and excess kurtosis. Because

the tails of the SMERGE residuals are of the form exp(2x2),

we choose to use a mixture of two Gaussian distributions to

describe the PDFs of the residuals. While the PDF parameters

of the mixed Gaussian are typically not robust, the quantiles

generated from the fitted distribution are robust (Leytham

1984). Also, we will fit the mixed Gaussian PDFs using a

combination of moments and likelihood instead of the pure

likelihood approach because the combination approach has

better log-likelihood when applied to independent data. The

combination approach constrains four of the five parameters

of the mixed Gaussian using the mean, standard deviation,

skewness, andkurtosis (section 2.1 ofCohen 1967). The remaining

degree of freedom is found by maximizing the likelihood over

one dimension using the standard Brent (1971) method.

5. Results

a. Soil moisture (SMERGE)

We begin with forecasts of the change in 7-day composite

SMERGE 8–14 days in the future. Forecasts are made for each

day in the warm season (May–September). The cross-validated

temporal correlation between the predicted and actual SMERGE

tendency is shown in Fig. 1a. The highest skill is in the northern

Great Basin, the northern Great Lakes region and northern

New England. The least skill is located in the Mojave Desert

and in an east–west band extending across the Corn Belt from

Nebraska toOhio. A portion of the total skill is captured by the

null hypothesis, which only depends on the current anomaly

and quantifies the tendency to relax toward climatology. The

relative skill of the null hypothesis is quantified by taking

the ratio of the variance explained from the null hypothesis

to the total variance explained (Fig. 1b), which in our case is

also the percent variance explained from the initial condition.

We also show the complement of this ratio, which is the percent

variance explained by the numerical model forecast (Fig. 1c).

The skill in the northern Great Lakes and eastern seaboard is

mostly a result of the initial condition. While this is real skill, a

deterministic forecast based on this regression will seldom

predict drought intensification since the relaxation to clima-

tology is the dominantmechanism in the forecast. In section 5d,

we analyze this intensification issue in more detail and show

the advantages of probabilistic forecasts (as opposed to de-

terministic forecasts) in capturing intensification. In the Great

Basin, on the other hand, 60%–70% of the skill is coming from

the numerical model forecasts of precipitation and dewpoint

depression. Furthermore, although the central United States

has some of the least skill, it also has the largest fraction of skill

coming from the model forecast (Fig. 1c).

The role of precipitation and dewpoint depression on the

forecast skill as a function of numerical model time lag is

quantified by the regression coefficients from the NNLS

(Fig. 1d). Because the general structure as a function of time

does not depend that much on space, a domain average regres-

sion coefficient is shown. Due to the nonnegativity constraint

and the normalization of the predictors, this is a reasonable

measure of the relative importance of the two variables. The

weights for precipitation are nearly constant for lead times of

1–7 days. After the start of the forecast composite at day 8, the

weights start to gradually lose amplitude until they reach low

values at day 12. For dewpoint depression, the weights maxi-

mize at day 1, with a secondary maximum at day 8.5 The spatial

structure of the weights given by the regression coefficients

averaged over forecast lead time is shown in Figs. 1e and 1f.

The average precipitation coefficient is largest in the north,

4 Each variable corresponds to n individual predictors, where n is

the maximum forecast lead time; n 5 14 in this case.

5 This secondary maximum structure seen in the domain average

is robust because it is seen in most subdomains. The physical rea-

sons for this structure are currently unknown.
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while the dewpoint depression coefficient is largest across

the southern United States and the Rocky Mountains.

Regardless, almost everywhere precipitation is more impor-

tant than dewpoint depression. A few exceptions are parts of

the southwestern United States, especially the Mojave Desert,

and the far southeastern United States, especially southern

Alabama and Mississippi.

The effect of predictand autocorrelation on the forecast

correlation ca [see Eq. (14)], captures the high skill exhibited in

the northern Great Lakes and the eastern seaboard (Fig. 2a,

compare with Fig. 1a), therefore the high skill in these regions

is caused by low autocorrelation (Fig. 2d). Such skill is due to

the initial condition and captures the tendency of anomalies to

rapidly decay back to climatology. On the contrary, the high

skill in parts of the Intermountain West is not captured by ca.

Instead, the skill here is due to high predictability of the

SMERGE forcing c2F by the numerical model forecasts (Fig. 2c).

Also shown in Fig. 2b is the percent variance explained by the

null hypothesis (i.e., initial condition) as implied by spatial

variations in the autocorrelation:

12 a

(12 a)1 (11 a)c2F

, (15)

which is simply the first term on the right of (12) divided by

the total right-hand side. This figure demonstrates that the

autocorrelation explains a significant fraction of the spatial

variability in the actual percent variance explained by the

FIG. 1. (a) Cross-validated temporal correlation (%) between the observed and predicted SMERGE change

(8–14-day composite SMERGE minus SMERGE from 26 to 0 day). (b) Percent variance in (a) explained by the

null hypothesis (i.e., initial soil moisture anomaly alone). (c) Percent variance in (a) explained by the numerical

model forecasts of precipitation and dewpoint depression. (d) Domain average regression coefficients of precipi-

tation (green) and (the negative of) dewpoint depression (red) as a function of forecast lead time. (e) Temporal

average regression weights for dewpoint depression (sign reversed). (f) Temporal average regression weights for

precipitation.
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null hypothesis (Fig. 1b). In summary, autocorrelation is

quite important in explaining the spatial patterns of skill in

SMERGE, although the skill of the numerical model fore-

casts c2F is also important, especially in the western United

States (Fig. 2c).

To help understand the spatial structure of c2F in Fig. 2c,

we also forecast the 1–14-day-average precipitation and dew-

point depression from corresponding numerical model fields.

Because precipitation tends to be the most important for

SMERGE (Figs. 1e,f), we expect precipitation skill to corre-

spond most closely with c2F . Precipitation skill is largest in the

northwest United States, particularly in the northern Great

Basin and along theOregon coast (Fig. 3a). These same regions

show the highest values of c2F (Fig. 2c). In the southwest United

States and especially Texas, on the other hand, the c2F values

tend to be larger than that expected from the precipitation

skill. This is explained by two factors: 1) the precipitation co-

efficients are smaller in the south (Fig. 1e) and therefore

dewpoint depression skill becomes important and 2) dewpoint

depression skill is largest in these regions (Fig. 3b). East of

Texas, dewpoint depression skill decreases dramatically, which

is consistent with the smaller c2F in the eastern United States. A

more detailed analysis that accounts for 1) covariability be-

tween precipitation and dewpoint depression at different lags

and 2) the relationship between these variables and SMERGE

would ultimately find complete consistency between the forcing

skill, c2F (Fig. 2c), and the precipitation and dewpoint depression

skill (Fig. 3). This result follows from the fact that the simple

model (section 3) is simply partitioning total skill between

1) the initial condition and 2) precipitation and dewpoint

depression.

b. Evaporative stress index

Like SMERGE, we start with forecasts of the change in ESI

8–14 days in the future. The cross-validated temporal corre-

lation between the forecast and actual ESI tendency is largest

in the desert southwest, with isolated pockets of higher skill

elsewhere. (Fig. 4a). In contrast to SMERGE, the percent

variance explained by the null hypothesis is .50% across al-

most the entire domain (Fig. 4b).

The role of precipitation and dewpoint depression on ESI

skill as a function of forecast lead time is shown in Fig. 4d.

Unlike soil moisture, the dewpoint depression is more impor-

tant than precipitation for most forecast times. The temporal

structure of the weights, however, is similar. For example, the

precipitation weights are largest at small forecast times and the

dewpoint depression weights exhibit a relative maximum at

8 days. The dewpoint depression weights are very similar be-

tween ESI and SMERGE in both their spatial structure and

amplitude (Figs. 4e,f). Like SMERGE, the precipitation weights

tend to be more important in the northern United States;

however, the weights are much smaller for ESI (Fig. 4f).

In Fig. 5, we repeat the diagnostics in the previous subsection

in order to gauge the role of autocorrelation on the spatial

FIG. 2. (a) Hypothetical temporal correlation (%) between the observed and predicted SMERGE change when

the value for c2F at each grid point is replaced by its domain averaged value (see text). (b) As in (a), but for the

hypothetical percent variance explained from the null hypothesis. (c) The value of c2F (%), which is the fraction of

the SMERGE ‘‘forcing’’ that is explained by the numericalmodel (see text). The domain averaged c2F , which is used

for (a), is given in the caption. (d) The autocorrelation of the 7-day composite SMERGE at the time lag corre-

sponding to the above forecasts (i.e., 7 days between composites).
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structure of skill. The role of autocorrelation ca (Fig. 5a) is very

similar to the actual correlation (Fig. 4a), demonstrating that

much of the spatial variability in skill is due to spatial vari-

ability in autocorrelation of ESI rather than the numerical

model forecast skill. In particular, the high skill in the

Southwest is due to the low autocorrelation in that region. The

autocorrelation also capturesmuch of the fine scale structure in

the central and eastern United States. On the other hand, the

percent variance explained by the null hypothesis is not as well

captured by the autocorrelation, although small scale features

are well represented (Fig. 5b).

The largest difference between ESI and SMERGE is

that the skill coming from the numerical model forecasts (c2F) is

significantly less for ESI (Figs. 2c, 5c). For example, the area

mean c2F is 10.3% for ESI compared to 28.3% for SMERGE.

Meanwhile, the autocorrelation for ESI is significantly smaller

compared to SMERGE (Figs. 2d, 5d). Acting in isolation, this

small autocorrelation would lead to higher total skill for ESI,

which can be seen by a simple rearrangement of (12):

c2 5
1

2
(11 c2F)2

a

2
(12 c2F) . (16)

(Note that the quantity 12 c2F is never negative.) The fact that

forecast skill is typically higher for SMERGE implies that c2F is

more important than the autocorrelation for between variable

(i.e., SMERGE versus ESI) differences in skill.

An alternate way to highlight the differences between

SMERGEandESI is to plot skill versus autocorrelation for each

grid point in the domain (Fig. 6a). Also superimposed on this

plot are three lines depicting the relationship between c2 and a

described by (14) for three values of c2F : 0, 0.125, and 0.25. The

black line, which corresponds to c2F 5 0, would typically repre-

sent an absolute lower bound on the scatter except that the skill

c2 is the cross-validated value instead of the within-sample value.

The ESI tends to exhibit a linear relationship a small distance

above the c2F 5 0 line, which implies that autocorrelation domi-

nates the spatial variability in skill and that the null hypothesis

dominates the total skill. For SMERGE, the data points are

significantly above the c2F 5 0 line andmoreover the relationship

with autocorrelation is not linear for many grid points. For ex-

ample, points with high autocorrelation that typically have lower

skill instead have some of the highest skill in the entire domain.

Only for a subset of points with low autocorrelation is a linear

relationship between skill and autocorrelation observed.

The scatter between skill and autocorrelation is also a good

way to see the effect of longer forecast lead times on skill. For

example, Fig. 6b shows the same plot but for the 15–28-day

forecasts (i.e., predict the change at days 15–28 from days213

to 0). For ESI (blue), the points contract even closer to the

c2F 5 0 line as the skill becomes more dominated by the initial

conditions. In addition, there is a tendency for the autocorre-

lation to become smaller, which is typical for longer lead times.

The accompanying leftward shift in the points implies an in-

crease in skill due to autocorrelation. Indeed, the domain av-

erage ESI skill actually increases slightly for the 15–28-day

forecasts. In some sense, however, the forecast quality has

degraded as a and c2F decrease because the initial condition skill

only predicts the decay of anomalies. Such forecasts will not

predict much drought intensification (see section 5d). A more

dramatic change in the shape of the scatterplot is seen for

the 15–28-day SMERGE forecasts: the c2F values decrease

so much that most of the nonlinearity in the scatter collapses to

an essentially linear relationship. The SMERGE predictability

becomes much like the ESI with skill mostly determined by the

autocorrelation. Also, unlike the 8–14-day forecasts, the dif-

ferences in ESI and SMERGE predictability are dominated by

the autocorrelation: the ESI (SMERGE) tendency has more

(less) skill because it is less (more) persistent. In summary, Fig. 6

shows that the 8–14-day forecasts are the most interesting be-

cause the skill from the numerical model forecasts is very in-

homogeneous and quite large for SMERGE. As one moves

toward longer time scales (the 15–28-day forecasts in Fig. 6b),

the forecasts are less interesting because skill is dominated by

the initial condition for both SMERGE and ESI. Hence, we do

not discuss the 15–28-day results any further in this paper.

c. Modeled ESI (NLDAS) and evaporation components

Tohelp understand the differences betweenESI and SMERGE,

we also forecasted modeled ESI derived from the NOAH,

MOS, and VIC models. While there are some differences between

the observed and modeled ESI (not shown), the differences are

relatively minor, which suggests that the predictability of ESI is in-

herently different than SMERGE and that the differences are not

due to any satellite retrieval issues associatedwith the observedESI.

FIG. 3. (a) Percent variance explained for forecasts of 1–14-day-

mean precipitation. (b) As in (a) but for dewpoint depression.
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The modeled ESI is also used to assess the relative roles of

transpiration, bare soil, and canopy evaporation on the time

scale of ESI variability. While there are pronounced model

differences in the relative partitioning of evaporation into

these components (e.g., Kumar et al. 2018), the results of this

study are robust among models. Here the total evaporation is

divided into two components: 1) the bare soil and canopy water

(BSCW) evaporation and 2) transpiration (TRANS). The

BSCW and TRANS evaporation are then divided by the total

PET and normalized to create a BSCW and TRANS ESI. The

results from the three models are averaged together to create

the ensemblemean autocorrelation for each component (Fig. 7).

For almost all locations, the TRANS autocorrelation is signifi-

cantly larger than the BSCW autocorrelation. This suggests it is

useful to think of the ESI as two components: 1) a quickly

evolving BSCW component and 2) a slowly evolving TRANS

component. This is also consistent with our physical intuition.

Knowing the ratio of the components in the observed ESI

would help the predictability of the portion of the forecast

involving the initial condition because the rate of decay for the

two components are different:

DE52a
B
E

B
2 a

T
E

T
, (17)

where E is the ESI, the B and T subscripts denote the BSCW

and TRANS components, and the a values are positive re-

gression constants. Because the BSCW evaporation decays

more rapidly, aB . aT. The partitioning of the NLDAS evap-

oration could be used in (15), however, we find that using the

soil moisture (SMERGE) as a proxy for the transpiration ET

works best. To find the proper sign for the constrained re-

gression, note that EB 5 E 2 ET and substitute this into (15):

DE52a
B
E1 (a

B
2 a

T
)E

T
, (18)

where aB2 aT is positive because aB. aT. Since we assume soil

moisture is proportional to ET, our improved regression

should a priori assume that the SMERGE regression coeffi-

cient is positive.

FIG. 4. (a) As in Fig. 1, but for the ESI. White areas over land have no cross-validated skill from the numerical

model forecasts.
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In Fig. 8, we repeat the ESI forecast the same as before but

with one additional predictor: the current value of SMERGE.

The SMERGEpredictor helps constrain the relative contribution

of long versus short time scale contributions to the initial ESI state.

The correlations for the new regression are similar but there is a

consistent improvement in the central United States, particularly

over Missouri and surrounding states. The difference in correla-

tion (Fig. 8b) tends to show themost improvement in regions with

relatively small skill and large autocorrelation (Fig. 5d), which is

consistent with a larger role for root zone soil moisture in the ESI.

Although the improvements are relatively small, for the remainder

of this paper, we use these improved ESI forecasts. A similar

analysis for SMERGE using the current ESI as a predictor did

not yield improvements, perhaps because the root zone soil

moisture does not have a rapidly evolving component like ESI.

d. Probabilistic forecasts and intensification

As mentioned previously, although deterministic forecasts

dominated by null hypothesis skill can have high predictability,

they are less able to forecast intensifying anomalies because

FIG. 5. (a) As in Fig. 2, but for the ESI. White areas over land have no cross-validated skill from the numerical

model forecasts.

FIG. 6. (a) Scatterplot between autocorrelation (x axis) and skill (variance explained, y axis) for the ESI grid

points (blue x) and the SMERGE grid points (purple 1) for the 8–14-day forecasts. For clarity, every other grid

point in both the x and y directions is skipped. The black, gray, and blue lines are the expected relationship between

skill and autocorrelation when c2F is 0, 0.125, and 0.25, respectively. (b) As in (a), but for the 15–28-day forecasts.
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the forecasts are strongly pulled toward the climatological

mean. To diagnose such deficiencies, we first compute the

percent of cases where a positive (wet) anomaly (7-day com-

posite) is followed by a positive (wet) tendency 8–14 days later

for the SMERGE observations (Fig. 9a). For uncorrelated

anomalies and tendencies, one expects a value of 25% for this

statistic. In reality, the values are less than 25%due to a natural

tendency for anomalies to decay. Next, this diagnostic is re-

peated using forecasted tendencies rather than observed ten-

dencies (Fig. 9b). While some patterns are captured, such as

relatively high values in the lower Midwest, the forecasted

amplitude is significantly smaller than observed. This is espe-

cially true in the northern Great Lakes, the Eastern Seaboard,

and California. As expected, these are the same regions where

the fraction of variance explained by the null hypothesis is very

large (Fig. 1b). Since any forecast explains only a portion of the

total variability, one needs to consider the distribution of the

remaining unexplained variance. Using the residual PDFs

(section 4) to expand the range of possible outcomes for a given

yp, we compute a revised probability of positive tendency and

positive anomaly as estimated by our forecasts. One approach

is to randomly sample from the residual PDF and then add that

random value to each forecast. In our case, however, we integrate

the PDFs directly (Fig. 9c). The agreement with the observed

probability (Fig. 9a) is much improved, demonstrating that the re-

siduals arewell capturedby thePDFs in this case. ThePDFmethod

corrects the above errors by assigning nonzero intensification

probabilities even when the mean forecast predicts a reduction.

In Figs. 9d–f, the above analysis is repeated for the case of

negative anomalies and negative tendencies, which is relevant for

intensifying drought. The spatial patterns in this statistic are quite

different than the positive case with large values in western United

States instead of the Midwest. In fact, some regions exhibit values

greater than 25%, signifying that negative anomalies have more

tendency to amplify rather than decay. As before, the raw deter-

ministic forecasts capture spatial features but with significantly re-

duced amplitude. The probabilistic forecasts definitely improve the

chance of intensification but unlike the positive case there is a slight

underestimation of the full amplitude. This suggest that perhaps

alternate PDFs should be used for the SMERGE residuals.

In Fig. 10, the above intensification analysis is repeated for

the ESI. Compared to SMERGE, the intensification proba-

bilities tend be more or less uniform across the domain. In

addition, the deterministic forecasts are significantly worse for

ESI, which is consistent with the large fraction of skill due to

the null hypothesis for ESI (Fig. 4b). On the other hand, the

PDF of the ESI residuals is apparently a better fit to the true

FIG. 7. (a) Autocorrelation (8–14 days) for the bare soil plus

canopy water (BSCW) component of the evaporation averaged

over three NLDAS models. (b) As in (a), but for the transpiration

(TRANS) component of the evaporation.

FIG. 8. (a) As in Fig. 1, but for the ESI with both initial ESI

and initial SMERGE used as predictors. (b) The correlation in

(a) minus the correlation in Fig. 4a (i.e., change in correlation).

Note that the forecast no longer includes southern Canada and

northern Mexico because these are not included in SMERGE.
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PDF and hence the probabilistic forecasts are able to nearly

reproduce the observed intensification statistics (Figs. 10c,f)

We also explored additional probabilistic skill scores such as

the ranked probability skill score (RPSS), which was applied to

tercile forecasts SMERGE and ESI change. These results are

not shown here because we found that the RPSS is well ap-

proximated in terms of the correlation via Eq. (21) in Tippett

et al. (2010): RPSS5 12
ffiffiffiffiffiffiffiffiffiffiffiffiffi
12 r2

p
, where r is the correlation.

e. Examples

In this section, examples of observed and predicted SMERGE

and ESI tendencies are given for the last eight years of the

analysis. Here, only the deterministic forecast (i.e., the mean

forecast) is shown. Because of missing ESI values, we show the

average of all individual forecasts/observations over a month

rather than an individual forecast/observation on a single day.

For consistency, the same averaging is performed for SMERGE.

We begin with SMERGE for the month of June (Fig. 11). For

some years, the spatial structure and amplitude of the forecasts

are quite good, which is encouraging given the intensification

issues documented in the previous subsection. For example,

the intensification of the 2012 flash drought is well captured

by the forecasts (Figs. 11e,f). For other years, the spatial

structures are reasonable, but their amplitudes are too weak

(2013 and 2016), or the spatial structure is not good (2011). For

August, the year 2013 shows good correspondence for both

structure and amplitude (Fig. 12). However, there are two cases

where the forecasts missed a significant soil moistening event in

the central United States (2012, 2018).

Examples for ESI in June are shown in Fig. 13. Despite the

intensification issues described in the previous subsection, the

ESI forecasts are able to predict the amplitude of drought

FIG. 9. (a) Percent of times where a positive SMERGE anomaly (7-day composite) is associated with a positive

change in SMERGE 8–14 days later. (b) As in (a), except the change in SMERGE is replaced by the forecasted

change in SMERGE. (c) As in (b), but the forecasted change is a PDF instead of a single value. The added spread in

possible outcomes increases the chance of positive anomalies and positive changes in the forecasts. (d)–(f) As in

(a)–(c), but for times where a negative SMERGE anomaly is associated with a negative change.
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intensification in the central United States in 2012. Similar

agreement is seen for the drying in 2013 but in this case only

the southern portion of the central United States was already

anomalously dry (not shown). Like SMERGE, 2011 was a poor

forecast for ESI as well. For August 2010 (Fig. 14), there is also

strong correspondence between the observed and predicted

ESI tendency and moreover significant portions of the drying

regions are already dry and therefore ‘‘drought’’ is intensifying.

However, like SMERGE, the ESI forecasts missed the moist-

ening event in Illinois and Missouri in 2012 (but not 2018).

Overall, the ESI forecasts do not look noticeably worse than

the SMERGE forecasts in these examples. Another somewhat

surprising feature of both the SMERGE and ESI examples is

the close correspondence of the patterns at small spatial scales.

6. Conclusions

In this paper, we have developed probabilistic forecasts of

changes in soil moisture (SMERGE) and evaporative stress index

(ESI) on subseasonal time scales over the contiguous United

States. The forecasts use current SMERGE and ESI conditions

together with numerical weather forecasts from the ECMWF

model of the S2S Prediction Project. We have also developed a

deeper understanding of the observed predictability using a sim-

ple analytical model framework and output from NLDAS-2.

Changes in soil moisture are quite predictable on weekly

time scales, with 50% or more of the variance explained over

the majority of the contiguous United States. Changes in ESI

are significantly less predictable than soil moisture except in

the southwest United States. A simple autoregressive red noise

model provides a greater understanding of the predictability.

This model demonstrates that the spatial variations in skill are

primarily a result of spatial variations in the autocorrelation, or

persistence, of the predicted variable, especially for ESI. For ex-

ample, the high ESI skill in the southwest United States is due to

the small autocorrelation of the ESI in this region. The contri-

bution of the numerical model forecasts to skill is more spatially

homogeneous. In contrast to within variable predictability, the

autocorrelation does not explain the differences between

SMERGEandESI. In fact, basedon the autocorrelation alone, one

FIG. 10. As in Fig. 9, but for ESI.
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FIG. 11. Comparison of the change in SMERGE and the cross-validated predictions (i.e., the model has not ‘‘seen’’ the year shown)

averaged over all June days for the latest 9 years. (a) Observed change in SMERGE for June 2010 and (b) prediction for June 2010. The

spatial correlation between the observed and the prediction is shown, and so on. All examples are for the 8–14-day change of the 7-day

composite. Units are percent water by volume.
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FIG. 12. As in Fig. 11, but for August.
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FIG. 13. As in Fig. 11, but for ESI and units are standardized anomalies.

3032 JOURNAL OF HYDROMETEOROLOGY VOLUME 22



FIG. 14. As in Fig. 13, but for August.
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would expect changes in soil moisture to be more predictable than

ESI, but the opposite is the case. Instead, these differences are due

to the greater SMERGEpredictability by theECMWFS2Smodel.

As the forecast lead time is increased from8–14 to 15–28 days, the

initial condition becomes more important for skill for ESI and

especially SMERGE. For these forecasts, SMERGE skill is also

dominated by the relaxation to climatology and the differences be-

tween SMERGE and ESI are due to differences in autocorrelation.

In addition, modeled ESI (NLDAS) was partitioned into

the bare soil plus canopy water (BSCW) evaporation and tran-

spiration (TRANS) components. These two components of ESI

have dramatically different time scales, and therefore different

rates of decay to climatology. This motivated an improved ESI

prediction scheme that uses SMERGE to help partition the total

ESI initial condition into its fast and slow components.

Forecasts dominated by a decay to climatology dramatically

underestimate the number of cases of anomaly intensification.

This problem is most evident for the ESI given the importance of

the initial condition for forecast skill. This issue can be eliminated

by developing probabilistic forecasts that properly characterize

the spread of the forecast errors about the predicted value.

In earlier work predicting the USDM (Lorenz et al. 2018)

from the North American Multi-Model Ensemble (NMME;

Kirtman et al. 2014), we found only very small improvements

due to the NMME. In this paper, we find significantly more

skill from the ECMWFS2Smodel for both SMERGE andESI.

We believe a significant part of the difference stems from the fact

that theUSDMand theNMMEare asynchronized: theUSDM is

weekly and the NMME was integrated every 5 days. This asyn-

chronicity meant that the effective NMME forecast time was

longer than intended. Because the contribution of the numerical

model forecasts to predictability decreases rapidly as forecast lead

time increases, this asynchronicity is consistent with less skill. In

addition, theUSDM is sometimes a lagged indicator of conditions

on the ground, which can lead to timing issues for short forecast

lead times and therefore lower skill. This is consistent with the

fact that the NMME contributes more to the 4-week USDM

forecasts than to the 2-week forecasts (Lorenz et al. 2018).

In the future, improvements to the forecast methodology de-

veloped during this study might be possible through a better

characterization of the initial state. For example, we found that

quantifying the contribution of soil moisture to the initial ESI state

improved skill in the central United States. Further improvements

might be possible to SMERGE by quantifying the role of shallow

versus deep soil moisture to the total root zone soil moisture. In

addition, the timing of precipitation events relative to the non-

missing ESI days might better characterize the canopy water and

bare soil contribution to ESI. Also, this study used the ECMWF

S2S numerical model simulations because of the nearly complete

daily coverage and the relatively large number of ensemble

members (11). Unfortunately, S2S simulations are not available in

real time. In the future, we will apply our methodology to the

models of the Subseasonal Experiment (SubX) (Pegion et al.

2019), which are available in real time.6 For the SubX, however,

the ensemble sizes tend to be smaller (4), and forecasts are

initialized less frequently, which might impact the robustness

of our results. We also plan to apply more advanced machine

learning methods to soil moisture and ESI predictability.

Such nonlinear methods can potentially account for depen-

dencies between soil moisture predictability and initial soil

moisture state that has been observed in previous studies

(Orth and Seneviratne 2013).
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