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ABSTRACT: Probabilistic forecasts of changes in soil moisture and an evaporative stress index (ESI) on subseasonal time
scales over the contiguous United States are developed. The forecasts use the current land surface conditions and numerical
weather prediction forecasts from the Subseasonal to Seasonal (S2S) Prediction project. Changes in soil moisture are quite
predictable 8-14 days in advance with 50% or more of the variance explained over the majority of the contiguous United
States; however, changes in ESI are significantly less predictable. A simple red noise model of predictability shows that the
spatial variations in forecast skill are primarily a result of variations in the autocorrelation, or persistence, of the predicted
variable, especially for the ESI. The difference in overall skill between soil moisture and ESI, on the other hand, is due to
the greater soil moisture predictability by the numerical model forecasts. As the forecast lead time increases from 8-14 to
15-28 days, however, the autocorrelation dominates the soil moisture and ESI differences as well. An analysis of modeled
transpiration, and bare soil and canopy water evaporation contributions to total evaporation, suggests improvements to
the ESI forecasts can be achieved by estimating the relative contributions of these components to the initial ESI state. The
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importance of probabilistic forecasts for reproducing the correct probability of anomaly intensification is also shown.
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1. Introduction

Recently, Otkin et al. (2015a) and Lorenz et al. (2017a,b)
developed probabilistic statistical forecasts of the U.S. Drought
Monitor (USDM,; Svoboda et al. 2002) using recent anomalies
in precipitation, evaporative stress index (ESI) (Anderson et
al. 2007b, 2011), and modeled soil moisture. Lorenz et al.
(2018) added output from the North American Multi-Model
Ensemble (NMME; Kirtman et al. 2014) to the original sta-
tistical forecasts to create hybrid statistical/dynamical model
forecasts of USDM intensification. These studies, which focused on
2-8-week time scales, were motivated by the prediction of rapidly
intensifying droughts. Such “flash” droughts (Svoboda et al.
2002; Hunt et al. 2009, 2014; Ford et al. 2015; Ford and Labosier
2017; Otkin et al. 2013, 2014, 2015a,b, 2016, 2018; Christian et al.
2019b) are particularly challenging to forecast (Pendergrass
et al. 2020) because their time scales are too long for the best use
of atmosphere initial conditions and too short for best use of
external boundary conditions such as sea surface temperatures.

In this study, we extend the above studies to forecasts of
ESI and soil moisture over 8-28-day time scales. While not as
comprehensive as the USDM, ESI and soil moisture are contin-
uous rather than discrete, categorical variables, and this likely
improves their predictability. For example, Lorenz et al. (2017a,b)
found that USDM forecasts could be improved by first estimating
a continuous USDM that is an “optimal” blend of precipitation,
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ESI and soil moisture anomalies that is most consistent with
the actual categorical USDM. Essentially, by discretizing a
continuous process, the USDM loses information about the
closeness of adjacent drought categories. Of course, the USDM
must be categorical given the subjective nature of the index. ESI
and soil moisture, on the other hand, are objective indices, and
therefore are likely more consistent across time and space and
more amenable to statistical prediction.

Like Lorenz et al. (2018), we use a hybrid statistical/dynamical
model forecast where the observed initial state and numerical
model output are predictors for a statistical regression. The
predictand in this case is the change in ESI or soil moisture
from the initial state. Previous studies (Nicolai-Shaw et al.
2016; Zhu et al. 2020) have found that the persistence or au-
tocorrelation of land surface variables, such as soil moisture,
plays a large role in their predictability. For example, areas
with large soil moisture autocorrelation have large predict-
ability resulting from knowledge of the initial condition alone.
Since the focus of this work is rapid changes in ESI and soil
moisture, we predict the change in ESI and soil moisture. In
this case, the above relationships are reversed: small autocor-
relation is associated with large predictability due to the initial
condition because it implies a greater tendency for anomalies
to decay toward climatology.

The paper begins with a description of the land surface data
and the numerical model forecasts. Next, a method to quantify
the role of autocorrelation in forecast skill is developed. In
section 4, the statistical regression methodology is described.
In section 5, we 1) describe the forecast results, 2) explore the
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role of autocorrelation in the spatial variability of skill, 3) an-
alyze the contributions of transpiration, bare soil, and canopy
evaporation to ESI skill, and 4) discuss the importance of
probabilistic forecasts for unbiased estimates of drought in-
tensification. We end with conclusions and ideas for future
research.

2. Data
a. ESI

The ESI, an index of moisture stress, is the standardized
ratio of evapotranspiration to Penman-Monteith potential
evapotranspiration (PET; Allen et al. 1998). Evapotranspiration
is estimated from remotely sensed thermal infrared imagery
using the Atmospheric Land Exchange Inverse (ALEXT) model
(Norman et al. 1995; Anderson et al. 1997, 2007b). Over the
United States, this energy balance model uses 1) lower tro-
pospheric temperature profiles, surface meteorological vari-
ables and clear-sky solar radiation estimates from the Climate
Forecast System Reanalysis dataset (Saha et al. 2010), 2) surface
temperature measurements from the Geostationary Operational
Environmental Satellite, and 3) an atmospheric boundary layer
growth model (McNaughton and Spriggs 1986) to close the
total surface energy budget from ~1.5 h after local sunrise until
1.5 h before local noon, thereby estimating sensible, latent, and
ground heat fluxes. The resulting evapotranspiration estimates
are reasonable for a variety of climate and vegetation types
(Anderson et al. 2007a).

To compute the ESI, the mean and standard deviation are
not computed over the entire record, but rather vary with the
seasonal cycle. The mean seasonal cycle is smoothed using
parabolic shaped weights of the form: w; = (n + 1)? — 2 for
j=-n,—n+1,...,n. Weuse n = 15, which corresponds to a
smoothing “window” of 31 days. The resolution of the ESI is
0.04° X 0.04° in space and daily in time. At a given grid point,
many days may be missing due to cloud cover, so composites
are used to provide more complete coverage. Most of the re-
sults below use 7-day composites, which is a good compromise
between smoothing versus temporal resolution. Because the
ultimate goal of this research is forecasting rapid drought
intensification, we forecast the future change in the ESI rather
than the future value in the ESI. Ultimately, forecasts of
changes rather than values contain the same information, so
this is not restrictive.

b. NLDAS

For diagnostic purposes, model-based estimates of ESI from
the Noah (NOAH, Ek et al. 2003; Barlage et al. 2010; Wei et al.
2013), Mosaic (MOS, Koster and Suarez 1994, 1996), and
Variable Infiltration Capacity (VIC, Liang et al. 1996; Bowling
and Lettenmaier 2010) models of the North American Land
Data Assimilation System (NLDAS2; Mitchell et al. 2004; Xia
et al. 2012a,b) are used. The 1) total evapotranspiration,
2) base soil evaporation, 3) canopy water evaporation, and
4) transpiration were taken from each of the three models. The
PET was only available for the Noah model, so it was used
to normalize the evaporation for all three models. Because all
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models are driven by the same atmospheric forcing, the Noah
PET should be relevant for all models. The Noah PET uses the
Penman-Monteith methodology (Chen et al. 1996). The re-
sulting ESI was standardized in the same way as the remotely
sensed ESI. The NLDAS ESI fields are used for diagnostic
purposes only because there are pronounced model differences
in the partitioning of evaporation into these components (e.g.,
Kumar et al. 2018). We also use the gridded precipitation,
dewpoint, and temperature fields from the NLDAS forcing
dataset to diagnose numerical model skill. The resolution of
the NLDAS is 0.125° X 0.125°.

¢. SMERGE

SoilMERGE (SMERGE; Tobin et al. 2019) is a “‘root zone”
(0—40-cm depth) soil moisture dataset that combines output
from the Noah NLDAS?2 model with satellite retrievals of soil
moisture from various passive and active C- and L-band mi-
crowave sensors from the European Space Agency Climate
Change Initiative satellite. SMERGE uses an exponential filter
to convert 0-5-cm soil moisture retrievals from the satellite
observations to root zone soil moisture content (Tobin et al.
2017). The resolution of the SMERGE is 0.125° X 0.125° over
the contiguous United States and daily in time. For the results
below, SMERGE anomalies are found by removing the
smoothed mean seasonal cycle of SMERGE at each grid point.
The mean seasonal cycle is smoothed using the same 31-day
weights as ESI. Like the ESI, we forecast the future change in
SMERGE rather than the future value of SMERGE. Because
ESI benefits from weekly composites due to missing values, we
also forecast weekly soil moisture composites for consistency.

d. Numerical forecast models

Starting in 2015, the Subseasonal to Seasonal (S2S) Prediction
project (Vitart et al. 2017) established an extensive data-
base of subseasonal reforecasts up to 60 days long for 11
atmospheric/coupled climate models. For this project, we use
forecasts from the European Centre for Medium-Range Weather
Forecasts (ECMWF) model because it has almost complete
daily coverage from 2000 to 2019. Another advantage of the
ECMWF model is that the reforecasts are continuous up to
present unlike many other models that stop at 2010 (leaving a
gap from 2011 until start of the forecast period in 2015). For
these reasons, only the ECMWF model is used in this study.

The ECMWF S2S model has 11 ensemble members (in-
cluding the control) and the forecast length is 46 days with an
output frequency of 624 h depending upon the variable. We
considered the following variables as predictors: precipitation,
maximum and minimum daily temperature, mean daily tem-
perature, dewpoint temperature, sensible and latent heat flux,
and net shortwave radiation at surface, as well as linear com-
binations of certain temperature variables. Prior to analysis, all
predictors are daily averaged. The soil moisture fields were
unusable due to a pronounced temporal inhomogeneity in the
data, perhaps due to a land surface model change. In addition,
there is an interpolation problem in the ECMWEF data on day 16
of the reforecasts coinciding with a change in the model resolution
from triangular spectral truncation at wavenumber 639 (T639)
before day 16 to T319 at longer lead times. This problem
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manifests in the 6-h accumulation fields (precipitation and
sensible and latent heat) used to calculate the daily fields. We
deal with this issue by ignoring the bad 6-h accumulation and
multiplying the remaining 18-h accumulation by 4/3 to roughly
correct for the amplitude lost in ignoring one 6-h accumulation.
Only the ensemble mean values are used for the results below.
The ensemble spread was also considered, but the change in
skill was not consistently better.

To remove systematic model biases, the mean forecast value
is calculated for each date in the seasonal cycle and for each
forecast lead time. The seasonal cycle (for each lead time)
is then smoothed using the same 31-day weights used for
SMERGE. Next, the mean forecast was subtracted from each
forecast to form the forecast anomalies that are used for our
statistical prediction.

e. Time period and spatial resolution

The resolution of the archived ECMWEF model output is
1.5° X 1.5°. Because this resolution is much coarser than the
ESI and SMERGE, we do not interpolate the model data to
the fine 0.04° or 0.125° resolutions of the ESI and SMERGE,
respectively. Instead, all of the data are interpolated to an in-
termediate resolution 0.4° X 0.4° grid using bilinear interpo-
lation for the ECMWF model and by averaging the ESI and
SMERGE data. The domain is the contiguous United States
for SMERGE and the continental United States and the sur-
rounding regions for ESI. The forecasts are for the warm sea-
son (1 May-30 September) because flash droughts are most
frequent during this time (Christian et al. 2019a). The length of
the ESI and ECMWF datasets limit the time period of our
forecasts, which are 2000-18 for ESI and 1999-2018 for
the SMERGE.

3. Simple model for understanding predictability

Many geophysical time series are approximately red noise;’
therefore, a forecast based on persistence alone can have sig-
nificant skill (Nicolai-Shaw et al. 2016; Zhu et al. 2020). As
such, a persistence forecast is a good null hypothesis to test
whether Numerical model forecasts add value to the statistical
forecast. When forecasting red noise, higher autocorrelation
means the null hypothesis has more skill. On the contrary,
when predicting the change in a red noise time series, lower
autocorrelation means higher null hypothesis skill. Quantifying
the precise impact of autocorrelation on skill is very important
for understanding the results of this study; therefore, in this
section we develop a simple model that relates the predict-
ability of a change in a variable, S, to the numerical model skill
and autocorrelation.

Simple model

Let an overbar, )Tt), denote the time average of the variable
y, which is a function of time ¢. Also, it is assumed that the time
average has already been subtracted from all variables prior to

! Red noise is a first-order autoregressive process with positive
autocorrelation at unit time lag.
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analysis. In this case, the correlation between variables x and y
is Xy/y/x2 X 2 and the regression coefficient b that best pre-
dicts y ~ bx, is given by b = Xy/x2.

Returning to our specific problem, let a be the autocorre-
lation of the soil moisture S, for example, at lag 7. Then, from
the definition of autocorrelation:

S@®OSt+T)

B \V/S(0) X St + T

For the last equality we used the fact that S(r + T)* = S(r)°
for a stationary time series. The last equality is also in the form
of the regression coefficient relating S(+ + 7) and S(¢), and
therefore:

_S@S¢+T)
s’

)

S(t+T)=aS+F(), @)

where F is the residual, or forcing of S. For soil moisture, F
includes any precipitation and evaporation that are not linearly
related to S. Next, square both sides of (2) and average:

S(t+ T)* = a®S? + 2aSF + F2. (3)

Because a is the least squares regression coefficient, the forcing
F must be uncorrelated with S, and therefore SF =0 and

S+ T) =2+ F2. 4)

The first term on the right is the variance of future S ex-
plained by the initial condition and the second term is the
variance from the forcing, which can potentially be forecast
using numerical model output. Let the portion of the F that can
be predicted by the numerical model output be Fp, then the
total S(¢ + T) variance that is explained by the initial condition
and the numerical model is

S,(t+T) =a*S* + F}. (5)

Dividing (5) by the total variance S(¢ + T)?, using the as-
sumption of stationarity [S(¢ + T)* = §2], and noting from re-
gression theory that the correlation squared ¢? is the fraction of
variance explained:

2
c=a+ %. 6)

Stationarity can also be applied to (4) to get an expression
for the § variance in terms of F:

_ P
§2 = . 7
= ™)

Substituting (7) into (6) and letting ¢% = F_%/ﬁ:
=a*+ (1 —d")ck. ®)

Note, F—,%/ﬁ is the fraction of forcing variance that is ex-
plained, and thus it is denoted as a correlation squared, cz.
Also, Eq. (8) is exact because Fis simply the residual. The first
term in (8) represents skill from the initial condition and the
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second term represents skill from the numerical model fore-
cast. According to (8), large autocorrelation a is associated
with large skill regardless of skill in predicting future atmo-
spheric conditions c. On weekly time scales, soil moisture is
persistent enough to be in this large autocorrelation regime.
To recast the above autocorrelation results in terms of the
change, A = S(¢t + T) — S(¢), we first find the variance of A:

A =[St+T)- SO =2(1 - a)S?, )

where we use stationarity and the definition of autocorrelation,
(1), to simplify the binomial term. Next, (2) is written in terms
of A instead of S(¢ + T):

A=(a—1)S+F, (10)

In analogy with (5), a portion of the variance is explained by
the numerical model forecasts:
A =(1-a) S +F3. (11)
Finally dividing by the total A variance given by (9) and
using (7) to again simplify the term involving Fp, we get

l1—a
2

1+a ,
I I

(12)

where c% is the fraction of variance explained for the change in S.
As before, the first term in (12) represents skill from the initial
condition and the second term represents skill from the numerical
model forecast. Comparing (8) and (12), we see that the initial
condition skill is smaller for the change ¢} when (1 — a)12 < a,
which simplifies to (2a — 1)(a + 1) > 0. Because a is always =—1,
the second factor is always positive and therefore the important
factor is the first. Therefore, initial condition skill is smaller for
3 when 2a — 1> 0, or a > 1/2.% For soil moisture (SMERGE),
81% of the domain has autocorrelation > 0.5 (8-14-day fore-
cast). Therefore, predicting the change rather than the value is
more desirable because the “trivial” skill from the initial
condition is less emphasized. This further motivates our focus
on forecasts of the change rather than the future value. For
ESI, the autocorrelation condition is ambiguous as only 54 % of
the domain has a > 1/2.

Equation (12) is very important for understanding the spa-
tial variability in forecast skill and the differences in skill,
particularly for the ESI. The first term in (12) is the variance
explained by the initial conditions. This term describes a re-
laxation of the anomaly back to climatology. If S is very per-
sistent (i.e., a is close to 1) then this term is small. If persistence
is weak (a is close to 0), then this term alone explains half of the
total S(t + T) — S(¢) variance. The second term is the skill
coming from the numerical model forecasts. If this component
is perfect, then ¢% and the total skill is perfect (cX = 1). For very
persistent S, the effect of numerical model skill on S(t + T) —
S(#) skill is larger. For weakly persistent S, the effect of nu-
merical model skill on predictability is weaker.

2 The identical condition holds for the second term as well.
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To help gauge the effect of autocorrelation on the spatial
structure of skill, (12) is used to diagnose ¢ from the skill c%
and the SMERGE autocorrelation a:

2c§—1+a

1+a (13

2 =
R
Next, the spatial mean c2 is used at all grid points to calculate
the portion of the correlation ¢2, whose spatial variations are
only due to the spatial variations in the autocorrelation:

2:1—a+1+a=2

K

(14)

where é is the domain average of c%. We also look at the
forcing skill ¢% itself and compare it to the numerical model
skill of precipitation and dewpoint depression.

4. Methodology

To predict the change in SMERGE anomalies, AS, one
needs the current state and the “forcing” over the forecast
interval. For an 8-14-day forecast of the change in S (i.e.,
predict the change at days 8-14 from days —6 to 0), our pre-
dictors could be the current S and the precipitation and dew-
point temperature anomalies for days 1-14 of the numerical
model forecast. The total number of daily predictors suggested
by such a statistical forecast is 29 (= 1 + 14 + 14), which would
be subject to severe overfitting for any standard regression
scheme.? Fortunately, in our system, we have a priori knowl-
edge of the appropriate, physically based sign of the regression
coefficients: the precipitation coefficients should be positive,
the dewpoint coefficients should be negative, and the initial
state coefficient should be negative (see section 3). Sign-
constrained regression has regularization properties similar
to more sophisticated regression methods that need some
technique to determine the optimal regularization parameter
(Meinshausen 2013; Slawski and Hein 2013). To see the sig-
nificant constraints imposed by a simple sign constraint, note
that for n predictors, sign-constrained regression restricts the
space of allowable coefficients by a factor of 2". For n = 29, this
factoris 5 X 10%. Lorenz et al. (2017a,b; 2018) demonstrated the
ability of sign constrained regression to maintain the skill of
drought forecasts on independent data. Algorithmically, sign
constrained regression is implemented by changing the sign of
all predictors with coefficients that are expected to be negative,
and then using non-negative least squares (NNLS). For this
study, we implement NNLS using the cyclic coordinate de-
scent algorithm of Franc et al. (2005) to forecast the change
in SMERGE and ESIL.

All results presented below are cross validated: 1) one year
is left out, 2) the regression is trained on all other years, 3) skill
scores are tested on the left out year, and 4) the process is

3We also explored the use of 3-, 5-, and 7-day running-mean
anomalies to reduce the number of predictors. This did not im-
prove the cross-validated skill scores of the sign constrained re-
gression, suggesting that overfitting is not significant in our case.
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repeated until all years have had the chance to be left out. Our
null hypothesis is the regression where only one predictor, the
initial state, is used (e.g., persistence):

AS=a,—a,S,

where ag is a constant and a; is positive constant that describes
the rate the soil moisture “relaxes” to climatology. We then
add the numerical model predictors for all daily forecast times:

AS=a, —a1S+Zb].xj,

where the b; have the appropriate a priori sign constraint, j is an
index over both variable and forecast lead time, and the x
values are the numerical model predictors. In this study, the x
values are normalized so that a simple comparison between
regression coefficients provides a useful measure of their
relative importance. This new numerical model regression is
used if and only if the cross validated skill is better than the
(cross validated) null hypothesis. The selection of the nu-
merical model predictors (both number and kind) was tested
using the domain average cross-validated skill. For both
SMERGE and ESI the same two variables work the best:
1) precipitation and 2) the dewpoint depression (maximum
daily temperature minus the dewpoint temperature).* Other
combinations related to dewpoint depression and the diur-
nal temperature range work almost as well; however, using
three variables did not improve the forecast skill so only two
variables are used for simplicity. We analyzed the regression
residuals, and it appears that the linearity assumption is
valid (not shown).

A statistical forecast typically will not explain all variability
of the predictand. Therefore, a statistical forecast is not com-
plete without a characterization of the probability distribution
function (PDF) of the residuals: y — y,, where y is the observed
predictand and y, is the prediction. Least squares regression
assumes the PDF of the residuals is a Gaussian distribution
with a standard deviation that is independent of the predictors
x;. For ESI, we find that the standard linear regression as-
sumption works well, so this distribution is used for the prob-
abilistic forecasts below. For SMERGE, on the other hand, the
residuals have nonzero skewness and excess kurtosis. Because
the tails of the SMERGE residuals are of the form exp(—x?),
we choose to use a mixture of two Gaussian distributions to
describe the PDFs of the residuals. While the PDF parameters
of the mixed Gaussian are typically not robust, the quantiles
generated from the fitted distribution are robust (Leytham
1984). Also, we will fit the mixed Gaussian PDFs using a
combination of moments and likelihood instead of the pure
likelihood approach because the combination approach has
better log-likelihood when applied to independent data. The
combination approach constrains four of the five parameters
of the mixed Gaussian using the mean, standard deviation,
skewness, and kurtosis (section 2.1 of Cohen 1967). The remaining

+Each variable corresponds to 7 individual predictors, where 7 is
the maximum forecast lead time; n = 14 in this case.
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degree of freedom is found by maximizing the likelihood over
one dimension using the standard Brent (1971) method.

5. Results
a. Soil moisture (SMERGE)

We begin with forecasts of the change in 7-day composite
SMERGE 8-14 days in the future. Forecasts are made for each
day in the warm season (May—September). The cross-validated
temporal correlation between the predicted and actual SMERGE
tendency is shown in Fig. 1a. The highest skill is in the northern
Great Basin, the northern Great Lakes region and northern
New England. The least skill is located in the Mojave Desert
and in an east-west band extending across the Corn Belt from
Nebraska to Ohio. A portion of the total skill is captured by the
null hypothesis, which only depends on the current anomaly
and quantifies the tendency to relax toward climatology. The
relative skill of the null hypothesis is quantified by taking
the ratio of the variance explained from the null hypothesis
to the total variance explained (Fig. 1b), which in our case is
also the percent variance explained from the initial condition.
We also show the complement of this ratio, which is the percent
variance explained by the numerical model forecast (Fig. 1c).
The skill in the northern Great Lakes and eastern seaboard is
mostly a result of the initial condition. While this is real skill, a
deterministic forecast based on this regression will seldom
predict drought intensification since the relaxation to clima-
tology is the dominant mechanism in the forecast. In section 5d,
we analyze this intensification issue in more detail and show
the advantages of probabilistic forecasts (as opposed to de-
terministic forecasts) in capturing intensification. In the Great
Basin, on the other hand, 60%-70% of the skill is coming from
the numerical model forecasts of precipitation and dewpoint
depression. Furthermore, although the central United States
has some of the least skill, it also has the largest fraction of skill
coming from the model forecast (Fig. 1c).

The role of precipitation and dewpoint depression on the
forecast skill as a function of numerical model time lag is
quantified by the regression coefficients from the NNLS
(Fig. 1d). Because the general structure as a function of time
does not depend that much on space, a domain average regres-
sion coefficient is shown. Due to the nonnegativity constraint
and the normalization of the predictors, this is a reasonable
measure of the relative importance of the two variables. The
weights for precipitation are nearly constant for lead times of
1-7 days. After the start of the forecast composite at day 8, the
weights start to gradually lose amplitude until they reach low
values at day 12. For dewpoint depression, the weights maxi-
mize at day 1, with a secondary maximum at day 8.° The spatial
structure of the weights given by the regression coefficients
averaged over forecast lead time is shown in Figs. le and 1f.
The average precipitation coefficient is largest in the north,

5 This secondary maximum structure seen in the domain average
is robust because it is seen in most subdomains. The physical rea-
sons for this structure are currently unknown.
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FIG. 1. (a) Cross-validated temporal correlation (%) between the observed and predicted SMERGE change
(8-14-day composite SMERGE minus SMERGE from —6 to 0 day). (b) Percent variance in (a) explained by the
null hypothesis (i.e., initial soil moisture anomaly alone). (c) Percent variance in (a) explained by the numerical
model forecasts of precipitation and dewpoint depression. (d) Domain average regression coefficients of precipi-
tation (green) and (the negative of) dewpoint depression (red) as a function of forecast lead time. (¢) Temporal
average regression weights for dewpoint depression (sign reversed). (f) Temporal average regression weights for

precipitation.

while the dewpoint depression coefficient is largest across
the southern United States and the Rocky Mountains.
Regardless, almost everywhere precipitation is more impor-
tant than dewpoint depression. A few exceptions are parts of
the southwestern United States, especially the Mojave Desert,
and the far southeastern United States, especially southern
Alabama and Mississippi.

The effect of predictand autocorrelation on the forecast
correlation ¢, [see Eq. (14)], captures the high skill exhibited in
the northern Great Lakes and the eastern seaboard (Fig. 2a,
compare with Fig. 1a), therefore the high skill in these regions
is caused by low autocorrelation (Fig. 2d). Such skill is due to
the initial condition and captures the tendency of anomalies to
rapidly decay back to climatology. On the contrary, the high

skill in parts of the Intermountain West is not captured by c,.
Instead, the skill here is due to high predictability of the
SMERGE forcing c2 by the numerical model forecasts (Fig. 2c).
Also shown in Fig. 2b is the percent variance explained by the
null hypothesis (i.e., initial condition) as implied by spatial
variations in the autocorrelation:

1—a

—_, 15
(1-a)+ (1 +a) >

which is simply the first term on the right of (12) divided by
the total right-hand side. This figure demonstrates that the
autocorrelation explains a significant fraction of the spatial
variability in the actual percent variance explained by the
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FIG. 2. (a) Hypothetical temporal correlation (%) between the observed and predicted SMERGE change when
the value for ¢% at each grid point is replaced by its domain averaged value (see text). (b) As in (a), but for the
hypothetical percent variance explained from the null hypothesis. (c) The value of ¢ (%), which is the fraction of
the SMERGE ““forcing” that is explained by the numerical model (see text). The domain averaged c%, which is used
for (a), is given in the caption. (d) The autocorrelation of the 7-day composite SMERGE at the time lag corre-
sponding to the above forecasts (i.e., 7 days between composites).

null hypothesis (Fig. 1b). In summary, autocorrelation is
quite important in explaining the spatial patterns of skill in
SMERGE, although the skill of the numerical model fore-
casts ¢Z is also important, especially in the western United
States (Fig. 2c).

To help understand the spatial structure of ¢ in Fig. 2c,
we also forecast the 1-14-day-average precipitation and dew-
point depression from corresponding numerical model fields.
Because precipitation tends to be the most important for
SMERGE (Figs. le,f), we expect precipitation skill to corre-
spond most closely with ¢Z. Precipitation skill is largest in the
northwest United States, particularly in the northern Great
Basin and along the Oregon coast (Fig. 3a). These same regions
show the highest values of ¢ (Fig. 2c). In the southwest United
States and especially Texas, on the other hand, the c,zg values
tend to be larger than that expected from the precipitation
skill. This is explained by two factors: 1) the precipitation co-
efficients are smaller in the south (Fig. le) and therefore
dewpoint depression skill becomes important and 2) dewpoint
depression skill is largest in these regions (Fig. 3b). East of
Texas, dewpoint depression skill decreases dramatically, which
is consistent with the smaller ¢Z in the eastern United States. A
more detailed analysis that accounts for 1) covariability be-
tween precipitation and dewpoint depression at different lags
and 2) the relationship between these variables and SMERGE
would ultimately find complete consistency between the forcing
skill, ¢% (Fig. 2¢), and the precipitation and dewpoint depression

skill (Fig. 3). This result follows from the fact that the simple
model (section 3) is simply partitioning total skill between
1) the initial condition and 2) precipitation and dewpoint
depression.

b. Evaporative stress index

Like SMERGE, we start with forecasts of the change in ESI
8-14 days in the future. The cross-validated temporal corre-
lation between the forecast and actual ESI tendency is largest
in the desert southwest, with isolated pockets of higher skill
elsewhere. (Fig. 4a). In contrast to SMERGE, the percent
variance explained by the null hypothesis is >50% across al-
most the entire domain (Fig. 4b).

The role of precipitation and dewpoint depression on ESI
skill as a function of forecast lead time is shown in Fig. 4d.
Unlike soil moisture, the dewpoint depression is more impor-
tant than precipitation for most forecast times. The temporal
structure of the weights, however, is similar. For example, the
precipitation weights are largest at small forecast times and the
dewpoint depression weights exhibit a relative maximum at
8 days. The dewpoint depression weights are very similar be-
tween ESI and SMERGE in both their spatial structure and
amplitude (Figs. 4e.f). Like SMERGE, the precipitation weights
tend to be more important in the northern United States;
however, the weights are much smaller for ESI (Fig. 4f).

In Fig. 5, we repeat the diagnostics in the previous subsection
in order to gauge the role of autocorrelation on the spatial
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FIG. 3. (a) Percent variance explained for forecasts of 1-14-day-
mean precipitation. (b) As in (a) but for dewpoint depression.

structure of skill. The role of autocorrelation ¢, (Fig. 5a) is very
similar to the actual correlation (Fig. 4a), demonstrating that
much of the spatial variability in skill is due to spatial vari-
ability in autocorrelation of ESI rather than the numerical
model forecast skill. In particular, the high skill in the
Southwest is due to the low autocorrelation in that region. The
autocorrelation also captures much of the fine scale structure in
the central and eastern United States. On the other hand, the
percent variance explained by the null hypothesis is not as well
captured by the autocorrelation, although small scale features
are well represented (Fig. 5b).

The largest difference between ESI and SMERGE is
that the skill coming from the numerical model forecasts (c2) is
significantly less for ESI (Figs. 2c, 5c). For example, the area
mean c% is 10.3% for ESI compared to 28.3% for SMERGE.
Meanwhile, the autocorrelation for ESI is significantly smaller
compared to SMERGE (Figs. 2d, 5d). Acting in isolation, this
small autocorrelation would lead to higher total skill for ESI,
which can be seen by a simple rearrangement of (12):

=

1+ -1 —ch). (16)

1
2
(Note that the quantity 1 — c% is never negative.) The fact that
forecast skill is typically higher for SMERGE implies that c% is
more important than the autocorrelation for between variable
(i.e., SMERGE versus ESI) differences in skill.
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An alternate way to highlight the differences between
SMERGE and ESlI is to plot skill versus autocorrelation for each
grid point in the domain (Fig. 6a). Also superimposed on this
plot are three lines depicting the relationship between ¢® and a
described by (14) for three values of ¢%: 0, 0.125, and 0.25. The
black line, which corresponds to c;. = 0, would typically repre-
sent an absolute lower bound on the scatter except that the skill
¢?is the cross-validated value instead of the within-sample value.
The ESI tends to exhibit a linear relationship a small distance
above the ¢ = 0 line, which implies that autocorrelation domi-
nates the spatial variability in skill and that the null hypothesis
dominates the total skill. For SMERGE, the data points are
significantly above the c2 = 0 line and moreover the relationship
with autocorrelation is not linear for many grid points. For ex-
ample, points with high autocorrelation that typically have lower
skill instead have some of the highest skill in the entire domain.
Only for a subset of points with low autocorrelation is a linear
relationship between skill and autocorrelation observed.

The scatter between skill and autocorrelation is also a good
way to see the effect of longer forecast lead times on skill. For
example, Fig. 6b shows the same plot but for the 15-28-day
forecasts (i.e., predict the change at days 15-28 from days —13
to 0). For ESI (blue), the points contract even closer to the
¢ =0 line as the skill becomes more dominated by the initial
conditions. In addition, there is a tendency for the autocorre-
lation to become smaller, which is typical for longer lead times.
The accompanying leftward shift in the points implies an in-
crease in skill due to autocorrelation. Indeed, the domain av-
erage ESI skill actually increases slightly for the 15-28-day
forecasts. In some sense, however, the forecast quality has
degraded as a and c% decrease because the initial condition skill
only predicts the decay of anomalies. Such forecasts will not
predict much drought intensification (see section 5d). A more
dramatic change in the shape of the scatterplot is seen for
the 15-28-day SMERGE forecasts: the c% values decrease
so much that most of the nonlinearity in the scatter collapses to
an essentially linear relationship. The SMERGE predictability
becomes much like the ESI with skill mostly determined by the
autocorrelation. Also, unlike the 8-14-day forecasts, the dif-
ferences in ESI and SMERGE predictability are dominated by
the autocorrelation: the ESI (SMERGE) tendency has more
(less) skill because it is less (more) persistent. In summary, Fig. 6
shows that the 8-14-day forecasts are the most interesting be-
cause the skill from the numerical model forecasts is very in-
homogeneous and quite large for SMERGE. As one moves
toward longer time scales (the 15-28-day forecasts in Fig. 6b),
the forecasts are less interesting because skill is dominated by
the initial condition for both SMERGE and ESI. Hence, we do
not discuss the 15-28-day results any further in this paper.

¢. Modeled ESI (NLDAS) and evaporation components

To help understand the differences between ESI and SMERGE,
we also forecasted modeled ESI derived from the NOAH,
MOS, and VIC models. While there are some differences between
the observed and modeled ESI (not shown), the differences are
relatively minor, which suggests that the predictability of ESI is in-
herently different than SMERGE and that the differences are not
due to any satellite retrieval issues associated with the observed ESI.
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FIG. 4. (a) As in Fig. 1, but for the ESI. White areas over land have no cross-validated skill from the numerical
model forecasts.

The modeled ESI is also used to assess the relative roles of
transpiration, bare soil, and canopy evaporation on the time
scale of ESI variability. While there are pronounced model
differences in the relative partitioning of evaporation into
these components (e.g., Kumar et al. 2018), the results of this
study are robust among models. Here the total evaporation is
divided into two components: 1) the bare soil and canopy water
(BSCW) evaporation and 2) transpiration (TRANS). The
BSCW and TRANS evaporation are then divided by the total
PET and normalized to create a BSCW and TRANS ESI. The
results from the three models are averaged together to create
the ensemble mean autocorrelation for each component (Fig. 7).
For almost all locations, the TRANS autocorrelation is signifi-
cantly larger than the BSCW autocorrelation. This suggests it is
useful to think of the ESI as two components: 1) a quickly
evolving BSCW component and 2) a slowly evolving TRANS
component. This is also consistent with our physical intuition.
Knowing the ratio of the components in the observed ESI
would help the predictability of the portion of the forecast

involving the initial condition because the rate of decay for the
two components are different:

AE=—ayE, —a E,, 17)

where E is the ESI, the B and T subscripts denote the BSCW
and TRANS components, and the a values are positive re-
gression constants. Because the BSCW evaporation decays
more rapidly, ag > ar. The partitioning of the NLDAS evap-
oration could be used in (15), however, we find that using the
soil moisture (SMERGE) as a proxy for the transpiration E7
works best. To find the proper sign for the constrained re-
gression, note that Eg = E — E7 and substitute this into (15):

AE=—ay,E+ (ay—a,)E (18)

T>

where ag — aris positive because ag > ar. Since we assume soil
moisture is proportional to Ez, our improved regression
should a priori assume that the SMERGE regression coeffi-
cient is positive.
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FIG. 5. (a) As in Fig. 2, but for the ESI. White areas over land have no cross-validated skill from the numerical
model forecasts.

In Fig. 8, we repeat the ESI forecast the same as before but
with one additional predictor: the current value of SMERGE.
The SMERGE predictor helps constrain the relative contribution
of long versus short time scale contributions to the initial ESI state.
The correlations for the new regression are similar but there is a
consistent improvement in the central United States, particularly
over Missouri and surrounding states. The difference in correla-
tion (Fig. 8b) tends to show the most improvement in regions with
relatively small skill and large autocorrelation (Fig. 5d), which is
consistent with a larger role for root zone soil moisture in the ESI.

a) 8—14 day forecast

Although the improvements are relatively small, for the remainder
of this paper, we use these improved ESI forecasts. A similar
analysis for SMERGE using the current ESI as a predictor did
not yield improvements, perhaps because the root zone soil
moisture does not have a rapidly evolving component like ESI.

d. Probabilistic forecasts and intensification

As mentioned previously, although deterministic forecasts
dominated by null hypothesis skill can have high predictability,
they are less able to forecast intensifying anomalies because

b) 15-28 day forecast
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FIG. 6. (a) Scatterplot between autocorrelation (x axis) and skill (variance explained, y axis) for the ESI grid
points (blue x) and the SMERGE grid points (purple +) for the 8-14-day forecasts. For clarity, every other grid
point in both the x and y directions is skipped. The black, gray, and blue lines are the expected relationship between
skill and autocorrelation when % is 0, 0.125, and 0.25, respectively. (b) As in (a), but for the 15-28-day forecasts.
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F1G. 7. (a) Autocorrelation (8-14 days) for the bare soil plus
canopy water (BSCW) component of the evaporation averaged
over three NLDAS models. (b) As in (a), but for the transpiration
(TRANS) component of the evaporation.

the forecasts are strongly pulled toward the climatological
mean. To diagnose such deficiencies, we first compute the
percent of cases where a positive (wet) anomaly (7-day com-
posite) is followed by a positive (wet) tendency 8-14 days later
for the SMERGE observations (Fig. 9a). For uncorrelated
anomalies and tendencies, one expects a value of 25% for this
statistic. In reality, the values are less than 25% due to a natural
tendency for anomalies to decay. Next, this diagnostic is re-
peated using forecasted tendencies rather than observed ten-
dencies (Fig. 9b). While some patterns are captured, such as
relatively high values in the lower Midwest, the forecasted
amplitude is significantly smaller than observed. This is espe-
cially true in the northern Great Lakes, the Eastern Seaboard,
and California. As expected, these are the same regions where
the fraction of variance explained by the null hypothesis is very
large (Fig. 1b). Since any forecast explains only a portion of the
total variability, one needs to consider the distribution of the
remaining unexplained variance. Using the residual PDFs
(section 4) to expand the range of possible outcomes for a given
¥p, We compute a revised probability of positive tendency and
positive anomaly as estimated by our forecasts. One approach
is to randomly sample from the residual PDF and then add that
random value to each forecast. In our case, however, we integrate
the PDFs directly (Fig. 9c). The agreement with the observed

-8 -6 -4 -2 0 2 4 6 8
FIG. 8. (a) As in Fig. 1, but for the ESI with both initial ESI
and initial SMERGE used as predictors. (b) The correlation in
(a) minus the correlation in Fig. 4a (i.e., change in correlation).
Note that the forecast no longer includes southern Canada and
northern Mexico because these are not included in SMERGE.

probability (Fig. 9a) is much improved, demonstrating that the re-
siduals are well captured by the PDFs in this case. The PDF method
corrects the above errors by assigning nonzero intensification
probabilities even when the mean forecast predicts a reduction.

In Figs. 9d-, the above analysis is repeated for the case of
negative anomalies and negative tendencies, which is relevant for
intensifying drought. The spatial patterns in this statistic are quite
different than the positive case with large values in western United
States instead of the Midwest. In fact, some regions exhibit values
greater than 25%, signifying that negative anomalies have more
tendency to amplify rather than decay. As before, the raw deter-
ministic forecasts capture spatial features but with significantly re-
duced amplitude. The probabilistic forecasts definitely improve the
chance of intensification but unlike the positive case there is a slight
underestimation of the full amplitude. This suggest that perhaps
alternate PDFs should be used for the SMERGE residuals.

In Fig. 10, the above intensification analysis is repeated for
the ESI. Compared to SMERGE, the intensification proba-
bilities tend be more or less uniform across the domain. In
addition, the deterministic forecasts are significantly worse for
ESI, which is consistent with the large fraction of skill due to
the null hypothesis for ESI (Fig. 4b). On the other hand, the
PDF of the ESI residuals is apparently a better fit to the true
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FIG. 9. (a) Percent of times where a positive SMERGE anomaly (7-day composite) is associated with a positive
change in SMERGE 8-14 days later. (b) As in (a), except the change in SMERGE is replaced by the forecasted
change in SMERGE. (c) Asin (b), but the forecasted change is a PDF instead of a single value. The added spread in
possible outcomes increases the chance of positive anomalies and positive changes in the forecasts. (d)—(f) As in

(a)—(c), but for times where a negative SMERGE anomaly is associated with a negative change.

PDF and hence the probabilistic forecasts are able to nearly
reproduce the observed intensification statistics (Figs. 10c,f)
We also explored additional probabilistic skill scores such as
the ranked probability skill score (RPSS), which was applied to
tercile forecasts SMERGE and ESI change. These results are
not shown here because we found that the RPSS is well ap-
proximated in terms of the correlation via Eq. (21) in Tippett
et al. (2010): RPSS =1 — /1 — p?, where p is the correlation.

e. Examples

In this section, examples of observed and predicted SMERGE
and ESI tendencies are given for the last eight years of the
analysis. Here, only the deterministic forecast (i.e., the mean
forecast) is shown. Because of missing ESI values, we show the
average of all individual forecasts/observations over a month
rather than an individual forecast/observation on a single day.

For consistency, the same averaging is performed for SMERGE.
We begin with SMERGE for the month of June (Fig. 11). For
some years, the spatial structure and amplitude of the forecasts
are quite good, which is encouraging given the intensification
issues documented in the previous subsection. For example,
the intensification of the 2012 flash drought is well captured
by the forecasts (Figs. 1le,f). For other years, the spatial
structures are reasonable, but their amplitudes are too weak
(2013 and 2016), or the spatial structure is not good (2011). For
August, the year 2013 shows good correspondence for both
structure and amplitude (Fig. 12). However, there are two cases
where the forecasts missed a significant soil moistening event in
the central United States (2012, 2018).

Examples for ESI in June are shown in Fig. 13. Despite the
intensification issues described in the previous subsection, the
ESI forecasts are able to predict the amplitude of drought
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F1G. 10. As in Fig. 9, but for ESI.

intensification in the central United States in 2012. Similar
agreement is seen for the drying in 2013 but in this case only
the southern portion of the central United States was already
anomalously dry (not shown). Like SMERGE, 2011 was a poor
forecast for ESI as well. For August 2010 (Fig. 14), there is also
strong correspondence between the observed and predicted
ESI tendency and moreover significant portions of the drying
regions are already dry and therefore ““drought” is intensifying.
However, like SMERGE, the ESI forecasts missed the moist-
ening event in Illinois and Missouri in 2012 (but not 2018).
Overall, the ESI forecasts do not look noticeably worse than
the SMERGE forecasts in these examples. Another somewhat
surprising feature of both the SMERGE and ESI examples is
the close correspondence of the patterns at small spatial scales.

6. Conclusions

In this paper, we have developed probabilistic forecasts of
changes in soil moisture (SMERGE) and evaporative stress index
(ESI) on subseasonal time scales over the contiguous United

States. The forecasts use current SMERGE and ESI conditions
together with numerical weather forecasts from the ECMWF
model of the S2S Prediction Project. We have also developed a
deeper understanding of the observed predictability using a sim-
ple analytical model framework and output from NLDAS-2.
Changes in soil moisture are quite predictable on weekly
time scales, with 50% or more of the variance explained over
the majority of the contiguous United States. Changes in ESI
are significantly less predictable than soil moisture except in
the southwest United States. A simple autoregressive red noise
model provides a greater understanding of the predictability.
This model demonstrates that the spatial variations in skill are
primarily a result of spatial variations in the autocorrelation, or
persistence, of the predicted variable, especially for ESI. For ex-
ample, the high ESI skill in the southwest United States is due to
the small autocorrelation of the ESI in this region. The contri-
bution of the numerical model forecasts to skill is more spatially
homogeneous. In contrast to within variable predictability, the
autocorrelation does not explain the differences between
SMERGE and ESI. In fact, based on the autocorrelation alone, one
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F1G. 11. Comparison of the change in SMERGE and the cross-validated predictions (i.e., the model has not “seen” the year shown)
averaged over all June days for the latest 9 years. (a) Observed change in SMERGE for June 2010 and (b) prediction for June 2010. The
spatial correlation between the observed and the prediction is shown, and so on. All examples are for the 8-14-day change of the 7-day
composite. Units are percent water by volume.
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FIG. 12. As in Fig. 11, but for August.
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FI1G. 13. As in Fig. 11, but for ESI and units are standardized anomalies.
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would expect changes in soil moisture to be more predictable than
ESI, but the opposite is the case. Instead, these differences are due
to the greater SMERGE predictability by the ECMWF S2S model.

As the forecast lead time is increased from 8-14 to 15-28 days, the
initial condition becomes more important for skill for ESI and
especially SMERGE. For these forecasts, SMERGE skill is also
dominated by the relaxation to climatology and the differences be-
tween SMERGE and ESI are due to differences in autocorrelation.

In addition, modeled ESI (NLDAS) was partitioned into
the bare soil plus canopy water (BSCW) evaporation and tran-
spiration (TRANS) components. These two components of ESI
have dramatically different time scales, and therefore different
rates of decay to climatology. This motivated an improved ESI
prediction scheme that uses SMERGE to help partition the total
ESI initial condition into its fast and slow components.

Forecasts dominated by a decay to climatology dramatically
underestimate the number of cases of anomaly intensification.
This problem is most evident for the ESI given the importance of
the initial condition for forecast skill. This issue can be eliminated
by developing probabilistic forecasts that properly characterize
the spread of the forecast errors about the predicted value.

In earlier work predicting the USDM (Lorenz et al. 2018)
from the North American Multi-Model Ensemble (NMME;
Kirtman et al. 2014), we found only very small improvements
due to the NMME. In this paper, we find significantly more
skill from the ECMWEF S2S model for both SMERGE and ESI.
We believe a significant part of the difference stems from the fact
that the USDM and the NMME are asynchronized: the USDM is
weekly and the NMME was integrated every 5 days. This asyn-
chronicity meant that the effective NMME forecast time was
longer than intended. Because the contribution of the numerical
model forecasts to predictability decreases rapidly as forecast lead
time increases, this asynchronicity is consistent with less skill. In
addition, the USDM is sometimes a lagged indicator of conditions
on the ground, which can lead to timing issues for short forecast
lead times and therefore lower skill. This is consistent with the
fact that the NMME contributes more to the 4-week USDM
forecasts than to the 2-week forecasts (Lorenz et al. 2018).

In the future, improvements to the forecast methodology de-
veloped during this study might be possible through a better
characterization of the initial state. For example, we found that
quantifying the contribution of soil moisture to the initial ESI state
improved skill in the central United States. Further improvements
might be possible to SMERGE by quantifying the role of shallow
versus deep soil moisture to the total root zone soil moisture. In
addition, the timing of precipitation events relative to the non-
missing ESI days might better characterize the canopy water and
bare soil contribution to ESI. Also, this study used the ECMWF
S2S numerical model simulations because of the nearly complete
daily coverage and the relatively large number of ensemble
members (11). Unfortunately, S2S simulations are not available in
real time. In the future, we will apply our methodology to the
models of the Subseasonal Experiment (SubX) (Pegion et al.
2019), which are available in real time.® For the SubX, however,

®The SubX includes NOAA’s Global Ensemble Forecast
System (GEFS).
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the ensemble sizes tend to be smaller (4), and forecasts are
initialized less frequently, which might impact the robustness
of our results. We also plan to apply more advanced machine
learning methods to soil moisture and ESI predictability.
Such nonlinear methods can potentially account for depen-
dencies between soil moisture predictability and initial soil
moisture state that has been observed in previous studies
(Orth and Seneviratne 2013).
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