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SUMMARY

Factorial designs are widely used because of their ability to accommodate multiple factors
simultaneously. Factor-based regression with main effects and some interactions is the dominant
strategy for downstream analysis, delivering point estimators and standard errors simultaneously
via one least-squares fit. Justification of these convenient estimators from the design-based per-
spective requires quantifying their sampling properties under the assignment mechanism while
conditioning on the potential outcomes. To this end, we derive the sampling properties of the
regression estimators under a wide range of specifications, and establish the appropriateness of
the corresponding robust standard errors for Wald-type inference. The results help to clarify the
causal interpretation of the coefficients in these factor-based regressions, and motivate the defi-
nition of general factorial effects to unify the definitions of factorial effects in various fields. We
also quantify the bias-variance trade-off between the saturated and unsaturated regressions from
the design-based perspective.

Some key words: Factorial effect; Potential outcome; Randomization inference; Robust standard error.

1. INTRODUCTION

Factorial designs have become increasingly popular in field experiments in the social sciences
(e.g., Duflo et al., 2007; Dasgupta et al., 2015; Branson et al., 2016; Egami & Imai, 2019) as well
as in traditional agricultural, industrial and biomedical applications (e.g., Wu & Hamada, 2009).
Factor-based regression remains the dominant strategy for downstream analysis (e.g., Karlan &
List, 2007; Eriksson & Rooth, 2014; Torres et al., 2021), enabling not only direct estimation of the
factorial effects as regression coefficients, but also flexible unsaturated specifications to reduce
model complexity. A formal justification of its role in causal inference, however, requires both
clearly defining the estimands of interest and deriving the sampling properties of the resulting
estimators under the potential outcomes framework.

This article makes several contributions. First, we clarify the causal interpretation of the coeffi-
cients in factor-based linear regressions, and propose a location-shift strategy for reproducing the
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design-based inference of various factorial effects via least squares. Importantly, we show that the
robust covariance, also known as the Eicker—Huber—White covariance, affords an asymptotically
conservative estimator of the true sampling covariance from the design-based perspective, justi-
fying its use for large-sample Wald-type inference. Second, we review and clarify the definitions
of factorial effects in the causal inference, experimental design, epidemiology and social sciences
literature, and extend them to allow for arbitrary weighting schemes to accommodate external
validity concerns. Third, we derive for the first time the design-based properties of estimators
from unsaturated factor-based regressions, and quantify the bias-variance trade-off between the
saturated and unsaturated regressions from the design-based perspective.

We use Y; ~ x; to denote the least-squares regression of ¥; on x; and focus on, not only the
causal interpretation of the regression coefficients for estimating the general factorial effects, but
also the design-based properties of the robust covariance, for large-sample Wald-type inference.
The terms regression, coefficients and robust covariance refer to the numeric outputs of least
squares free of any modelling assumptions; we evaluate their sampling properties from the design-
based perspective. We omit discussion of the ordinary covariance derived under homoskedasticity
owing to its lack of design-based guarantees even with the simple treatment-control experiment
(Freedman, 2008).

Let 1y and 1p denote the N x 1 and Q x 1 vectors of ones, respectively. Let Z(-) be the
indicator function. Let [m] = {1,...,m]} be the set of positive integers from 1 to m. For two
symmetric matrices M| and M», write M1 > 0 if M is positive semidefinite and write M7 < M>
or M1 > M, if M, — M is positive or negative semidefinite, respectively.

2. FRAMEWORK, CAUSAL EFFECTS AND TREATMENT-BASED REGRESSION

Consider an experiment with N units indexed by i = 1,..., N and Q treatment levels indexed
byz e 7 ={l1,...,0}. Let Y;(z) be the potential outcome of unit i if assigned to level z, and let
Yz =N"! Zf\’: | Yi(z) be the finite-population average, vectorized as ¥ = {Y(1),..., Y (O)}".
LetS = {S(z,z')}. ~e7 be the finite-population covariance matrix of the potential outcomes with
Sz,z) = N=1)"" SN (Yie) - Y @}{Yi(z))— Y (z')}. The goal is to estimate T = G ¥ for some
contrast matrix G with rows orthogonal to 1p. Complete randomization assigns completely at
random NV, > 2 unitsto level z with ZzeT N, = Nande, = N,/N.Foruniti,letZ; € 7 denotethe
treatmentleveland ¥; = ) __+ 7(Z; = z)Y;(z) the observed outcome. Let V() = NZ_1 Do zi=: Vi
be the average observed outcome under treatment level z, vectorized as Y = {f/ m,..., 4 (O
Then ¢ = GY is an intuitive choice for estimating 7.

Design-based inference, also known as randomization inference, concerns the sampling
properties of estimators over the distribution of the treatment indicators, conditioning on the
potential outcomes (Neyman 1923; Imbens and Rubin 2015). In this paper we focus on complete
randomization and assume the following condition for asymptotic properties (Li & Ding, 2017).

Condition 1. As N goes to infinity, for all z € 7" we have that (i) N; > 2 and e; has a limit
between (0, 1); (ii) ¥ and S have finite limits; and (iii) max;<;<y{Yi(z) = Y (2)}*/N — 0.

Under complete randomization, Y . is unbiaseAd for Y with covari'imce cov(f/ ) =
diag{S(z,2)/N:}.er — N~'S. Define V' = diag{S(z,2)/N:}.e7, where S(z,2) = (N —
D! Zi:Z,-:z{Yi — Y(2)}?, as a moment estimator of cov(Y). It is conservative in the sense
that £ (IA/A) — cov(I:/ ) = N~18 > 0. Condition 1 further ensures that ¥ is asymptotically normal
with N{V — cov(Y)} = § + op(1) (Li & Ding, 2017). The Wald-type inference of t can thus be
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conducted using T = GY and cov(T) = GV GT as the point estimator and estimated covariance,
respectively. It is in general conservative because of the overestimation of the covariance; one
exception is when the treatment effects are constant across all units, as specified in the following.

Condition 2. Forall z,z € T, the Y;(z) — Y;(z') = c(z,Z') are constant acrossi = 1,...,N.
This ensures that the S(z,z’) are identical for all z,z" € 7, denoted by S(z,z") = so.

Treatment-based regression is a convenient tool for computing Y and 7 from least squares.
The regression ¥; ~ I(Z; = D) +---+1(Z; = Q) w1thout an intercept ylelds a coefﬁment vector
,B and a robust covariance V; that satlsfy ﬂ =Yand I = diag(l — N~ )ZGTV =V+ op(l)
(Wu & Ding, 2021, § 3.3). The Wald-type inference of 7 can therefore also be conducted using
Gp and GVyG" as the point estimator and estimated covariance, respectively.

This set-up encompasses as a special case the Q1 x --- x Qg factorial experiment, which
involves O = ]_[kK=1 Oy treatment levels as the combinations of K > 2 factors with Q; (k =
1,...,K) levels. Treatment-based regression accordingly provides a principled way of studying
general factorial experiments. It is nevertheless not the dominant strategy in practice when the
estimands of interest take certain special forms. When the goal is to estimate the main effects or
interactions of the factors under study, a more prevalent practice is to regress the outcome on the
factors themselves, and interpret the coefficients as the corresponding factorial effects of interest.
This seemingly straightforward approach has several variants used in different fields, which turn
out to target factorial effects under distinct weighting schemes. The first contribution of this work
is to unify these variants within a class of location-shifted factor-based regressions, and establish
the design-based properties of the resulting coefficients and robust covariances.

More importantly, treatment-based regression is saturated and requires the estimation of
0 = ]_[le O > 2X parameters. This can be demanding in terms of sample size even with
a moderate number of factors. Factor-based regression, on the other hand, enables the use of flex-
ible unsaturated specifications that include only the main effects and possibly some lower-order
interactions corresponding to the factorial effects of interest. Despite the intuitiveness of such an
approach and its dominance in practice, the existing literature on the design-based properties of
factor-based regression focuses on saturated specifications (Dasgupta et al., 2015; Lu, 2016), and
the theory of their unsaturated counterparts remains an open question. Our second contribution is
to fill this gap and establish the design-based properties of unsaturated factor-based regressions.

Because of the notational burden involved in the general setting, we start with the 22 and 23
experiments to illustrate the main ideas and then unify the results under the 2X experiment. The
results convey all key points for the theory of the general Q1 x - - - x O experiment. We present
the formal theory of the general case in the Supplementary Material.

3. THE 22 FACTORIAL EXPERIMENT
3.1. A review of existing strategies

The 22 factorial experiment is the simplest factorial experiment with two binary factors,
which we denote by A and B. The Q = 2> = 4 treatment combinations consist of 7 =
{(00), (01), (10), (11)}, indexed by z = (ab) for a,b = 0,1. Let 4;,B; € {0, 1} indicate the
levels of factors A and B received by unit i. We first review five factor-based regression strategies
commonly used to analyse 2> experiments, and then clarify their respective causal interpretations.

The canonical factor-based regression takes the form Y; ~ 1 + A; + B; + A;B;. Strat-
egy (i) directly uses the coefficients of (4;, Bi, 4;B;), denoted by 7o = (Yo.a, Y0.85 Y0.a8)
to estimate the main effects of factors A and B, and their interaction. Strategy (ii) uses
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(Y0.a + BiYo.as> Yo.8 + AiY0.a8, Y0.48) to estimate the main effects and interaction at the unit level,
and then takes their re%ective averages to estimate the factorial effects at the population level.
Define ey = N~! Zi:l A;jandeg—1 = N -1 va: 1 Bi as the empirical probabilities of factors A
and B, respectively. The final estimators are e = (Ve.a, Ve.s» Yean) ' > Where Ye a = 70.4+€p=170.48,
Ve = Y0 + ea=1Y0,a8 and Yeas = Yo.as. Strategy (ii) is popular in econometrics, where the
estimators of the main effects, namely y., and y.p, are also known as the average partial or
marginal effects (Greene, 2018). Strategy (iii) codes the factors by their signs as 4} = 24; — 1
and B} = 2B; — 1 € {41, —1}, and uses the coefficients from Y; ~ 1 + 4} + B} 4 43B}, after
multiplication by 2, to estimate the main effects and the interaction, respectively (Wu & Hamada,
2009; Lu, 2016). Let s = (Psa, Vs.s» Vs.an) | denote the estimators under strategy (iii). These three
strategies can simultaneously estimate the main effects and interaction via one least-squares fit.

Strategies (iv) and (v), on the other hand, focus on only the two main effects. Strategy (iv)
considers two separate regressions, ¥; ~ 1 4+ 4; and ¥; ~ 1 4+ B;, and estimates the two main
effects by the coefficients of 4; and B; (e.g., Bertrand & Mullainathan, 2004; Eriksson & Rooth,
2014). Strategy (v) considers the additive regression Y; ~ 1 + A; + B; and estimates the two
effects via one least-squares fit.

A factor-based regression is said to be saturated if it contains all possible interactions between
the factors in addition to the constant term and main effects. The regressions under strategies

(1)—(iii) are saturated, whereas those under strategies (iv) and (v) are unsaturated.

3.2. Unifying the saturated regressions and introducing the general factorial effects

We now unify strategies (i)—(iii) within a class of location-shifted factor-based regressions that
turn out to target factorial effects under different weighting schemes. The result highlights the
correspondence between the location shifts in specifying the models and the weighting schemes
in defining the factorial effects.

To this end, we first formalize the notion of general factorial effects, which are central to
clarifying the effective estimands under strategies (i)—(iii). Define 7,5 = Tajp=p = Y (1b)—Y (0b)
and Tp|q = Tgja=¢ = Y (al) — Y (a0) as the conditional effects of factors A and B when the level
of the other factor is fixed at b € {0,1} and at @ € {0, 1}, respectively. As a convention, we
abbreviate the A = a and B = b in the subscripts to simply a and » when confusion is unlikely to
arise. Define

TA () = Te=0 Talz=0 + 7Tp=1 Ta[p=1, Ta(7TA) = TTa=0 Tgja=0 T+ Ta=1 Tp|a=1

as the main effects of factors A and B under weighting schemes 73 = (73—, 75=1) and w, =
(Ta=0, Ta=1), respectively, with 0 < ma—g, m—p < 1 for a,6 = 0,1 and a0 + Ta=1 =
=0 + =1 = 1. As a convention, the subscript of the weighting scheme indicates the factor
that is being marginalized out. The standard main effects correspond to 7, = 7z = (1/2,1/2),
weighting all conditional effects equally (Dasgupta et al., 2015).

Define 7,5 = Y(11) — Y (10) — Y (01) + Y (00) as the interaction between A and B. It satisfies
Tap = Tajp=1 — Tals=0 = Tn|a=1 — Tn]a=0 and characterizes the difference in the conditional effects
of one factor at the two levels of the other factor. Observe that 7, (77,) — 74 (75) = (7)_; —7Tp=1)Tas
and t5(1r,) — T3(7wa) = (7, _; — a=1)Ta, such that 7, also quantifies the difference in causal
estimands between different weighting schemes. The absence of interaction, i.e., T,z = 0, ensures
that 7, (715) = Tap=0 and 73(4) = Tp|a—o are constant across all possible weighting schemes.

Recall that ¥ = {Y(00), Y (01), Y(10), Y(11)}T. We vectorize the main effects and the
interaction as T, = {Ta(mg), Ts(a), Tag}T = GrY, where m = (m,,75) and the contrast
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matrix G,; consists of row vectors (—mTg—0, —Tg=1, Tp=0> Tp=1), (—Ta=0, Ta=0, —TTa=1, Ta=1)
and (1,—1, —1, 1). An unbiased estimator for t,; is Ty = G ¥ = {Ta(7rg), Ta(T4), Tas)".

Letey—o = 1 —es—1 and eg—g = 1 —ez— be, respectively, the proportions of units that receive
level 0 of factors A and B in the experiment. The following proposition is a numeric result and
clarifies the causal interpretations of the regression estimators from strategies (i)—(iii).

PROPOSITION 1. Under the 2% experiment, the coefficients from strategies (i)—(iii) satisfy:

(1) );0 = {‘EA(IJ 0)7 fB(lz 0)7 fAB}T Wlth jTA = YTB = (17 0)7
(i) Pe = {Ta(es=0,es=1), Tu(er=0, €r=1), Tas}’ With m; = (er—o, er=1) for factors [ = A, B;
(i) 75 = {Ta(1/2,1/2), 75(1/2,1/2), Tan/2}" with s = 75 = (1/2,1/2).

Strategies (i)—(iii) thus yield identical estimators of 7,5 up to a scaling factor and yet target
distinct main effects under different weighting schemes. Strategy (i) is unbiased for estimating
7A(1,0) = Tajs=0 and 73(1,0) = 75)4=0 as the conditional effects when the other factor is at the
baseline level. Strategy (ii) is unbiased for estimating 7, (eg—g, eg—1) and tz(e,—0, ea—1); the aver-
age partial effects in econometrics thus weight the conditional effects by the empirical treatment
probabilities. Strategy (iii) is unbiased for estimating the standard effects t, = 7,(1/2,1/2) and
3 = 13(1/2,1/2) that weight all conditional effects equally. This clarifies the causal interpre-
tations of 7y, ye and s from strategies (i), (ii) and (iii), respectively. In particular, ps targets the
standard factorial effects regardless of whether the experiment is balanced or not.

Inspired by how transformation applied to factors allows one to obtain the moment estimators
ofthe standard main effects directly as regression coefficients under strategy (iii), we now propose
a location-shift strategy to generalize strategies (i)—(iii) and estimate 7, with arbitrary weights
7 = (m,, wp) vialeast squares. For 4] = 4,—6, and B; = B;—&; with prespecified 0 < 84,85 < 1,
define the location-shifted regression

Yi ~ 1+ A4} + B} + A;B; (1)

with coefficients 7 = (P, P, 7as)" and robust covariance W for the three nonintercept terms.
Strategies (i)—(iii) are special cases: setting (54, 65) = (0, 0) gives strategy (i); setting (5, dg) =
(ea=1,es=1) is equivalent to strategy (ii) in the sense of y = y. by Proposition 2 below; and
setting (8,,05) = (1/2,1/2) ylelds strategy (ii) up to scaling factors of 2 or 4.

Recall the unbiased estimator 7, = G,TY of T, = G.Y. Let cov(7;) = Gy VGT be the
corresponding estimated covariance, where Visa conservative estimator of cov(Y). The next
proposition states the numeric correspondence between {y, \IJ} and {7, cov(T,)}, elucidating the
design-based properties of 7 and U for general (8,4, ds).

PROPOSITION 2. Under the 22 experiment, the outputs of (1) satisfy = Ty and W = cov(y)—
G7T dlag(N;l)VG]TTfOI”T[ - (7TA, T[B) Wlth Tty = (1 - (SA, 8A) a}’ldTL’B - (1 - 53,53).

Proposition 2 ensures that 7 from (1) is unbiased for estimating 7, with w, = (1 — 84,84)
and 3 = (1 — &g, 8g). Location shifts of 4; and B; by (84,88) = (wa=1,7s=1) thus enable
direct estimation of 7, from (1) for arbitrary 7. This provides the intuition behind the condition
0 < 84,85 < 1 introduced earlier. Moreover, the difference between W and cdv(%,) diminishes
as N goes to infinity. This enables the large-sample Wald-type inference of 7 by using 7 and &
as the point estimator and estimated covariance, respectively.

Remark 1. The classical experimental design literature focuses mostly on the standard
main effects (Wu & Hamada, 2009), with equal weights on all conditional effects: 7, =
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21 (Talp=0+Tajp=1) and 73 = 2-1 (t8]a=0+Ts|a=1). The standard main effects, together with bal-
anced experiments with N; = N/Q for all z € 7T, have many advantages in practice. Corollary 1
later states a result for the 2X experiment with a general K.

In practice, however, applications may not always value 7,js—o and 7,p=1, and likewise tp|s=0
and 1ps=1, equally. Alternative weighting schemes based on perceived importance therefore also
merit attention, and could provide more relevant summaries of the marginal effects (Finney,
1948). We give an example based on the consideration of external validity of the experimental
results.

Assume that the experiment in question is a pilot study for a large-scale implementation in
which one-third of the population is intended to receive level 1 of factor B marginally. Since we
know that two-thirds of the population will be experiencing the effect of factor A at the baseline
level of factor B, the general effect 7,(2/3,1/3) = (2/3)7ajs=0 + (1/3)TAjs=1 may be a better
summary of the effect of factor A compared with the standard effect with equal weights. This
illustrates the connection between the general weighting schemes and external validity.

When 7,5 F 0, we are also interested in finding the optimal level of factor B to maximize the
effect of factor A. This requires us to compare 7,|s=1 and t,z—o, which correspond to two special
estimands 7, (0, 1) and 7, (1, 0).

In summary, the choice of estimand depends on the scientific question of interest. We provide
the theory for the general estimand, which includes the above examples as special cases.

3.3. Factor-based regression with unsaturated models

Strategies (iv) and (v) concern only the main effects of factors A and B. Strategy (iv) fits two
separate regressions for estimating the main effects of factors A and B. The resulting estimators
equal the differences in means between {Y; : f; = 1} and {Y; : f; = 0} for f = 4, B, and are
biased for estimating factorial effects of the form 7, (;r3) and 73 (r,) in general. We thus exclude
strategy (iv) from the ensuing discussion.

Strategy (v), on the other hand, estimates the two main effects together via one additive
regression. Consider a generalized version, incorporating the location-shift transformation:

Y; ~ 1+ 4;+ B;. ()

We first derive the effective estimands of (2) as a pair of general factorial effects, and then state
the bias-variance trade-off between (1) and (2). The result establishes the optimality of (2) for
estimating arbitrary t, when the nuisance effect 7,5 indeed does not exist.

Let y, and 9 be the coefficients of 4; and B, respectively, from (2). Let 75jp—p and Tyjs—4 be
the moment estimators of t,z—p and Tg|s—, for a, b = 0, 1, respectively.

PROPOSITION 3. Under the 2° experiment, the coefficients from (2) satisfy
J7A = ﬁ'B:O 'EAlB:O + ﬁ'B:l 'EAlB:l, )713 = ﬁ'A:O fB\A:O + ﬁA:l fB|A=1

g ~ ~ —1,,-1 -1 1 ~1 ~ ~ ~ —1/,—1
with g = (Tp=0, Tp=1) = O l(e()l +e1.€e0 T €0 ) and Ty = (Ta=0, Ta=1) = O 1(310 +
-1 -1, 1 -
erlsepn +eo) wherea =Y, rel.
Proposition 3 shows y, and yp to be the moment estimators of 7,(77) and t(774) under
a specific weighting scheme that is fully determined by (e;).c7 and independent of (34, &z).
Therefore, the unsaturated regression (2) no longer accommodates flexible weighting schemes
even with location-shifted factors. Under balanced designs with equal treatment sizes N, = N /4
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forall z € 7, y, = 7,(1/2,1/2) and y = 75(1/2,1/2) give the moment estimators of the
standard main effects, and thus equal the coefficients of 4; and B; from the saturated regression
(1) with §, = 8z = 1/2. This is no coincidence, but arises from the fact that the columns of
the design matrix of (1) with 6, = 8z = 1/2 are mutually orthogonal, such that the deletion of
A}B; has no effect on the estimation of the remaining coefficients. This highlights the connection
between standard effects and balanced designs from a different angle, echoing the classical
principle that recommends the use of balanced designs whenever possible.

In general, y, and yp; are biased for 7, () and t3(rs) unless (w4, 75) = (Ta, Ts) or the
interaction 7,5 does not exist. Nevertheless, under Condition 2, they minimize the sampling
variances of 7,(7) = mg—0 fA\B:O + =1 'EA\B:I and Ta(ms) = a0 fB|A=O + Ta=1 'EB\A:I
over all possible wz and 7, respectively. In particular, the constant treatment effects ensure
var(Tajp=0) = S0 (NO_O1 + Nl_ol) and var(Typ=1) = S()(N(Hl + Nl_ll). Minimizing the variance of
T, (7rp) is thus equivalent to having the weights proportional to the inverses of var(Z,z=0) and
var(Typ=1), resulting in (7—0, 7p=1) as defined in Proposition 3. A similar argument applies to
7s. This demonstrates the bias-variance trade-off between (1) and (2).

This concludes our discussion of the 22 experiment. We next extend the results to the 23 exper-
iment to illustrate one additional point: with more than two factors, the factor-based regression
is capable of estimating only a subset of all causally meaningful factorial effects in general, yet
it regains generality in the absence of three-way interactions.

4. THE 23 FACTORIAL EXPERIMENT

4.1. Notation and definition of the general factorial effects

The 23 factorial experiment features Q = 23 = 8 treatment combinations arising from three
binary factors, denoted by A, B and C. Let 4;, B; and C; € {0, 1} indicate the levels of the factors
received by unit i. The eight treatment combinations consist of 7 = {(abc) : a,b,c = 0, 1}. Let
Y (abc) be the average potential outcome under treatment combination (abc) € 7. Define the
conditional effects of factors A, B and C as

Tajpe = Y(1be) — Y(0bc),  Tajae = Y(ale) — Y(aOc), e = Y (abl) — Y (ab0),

respectively, with the other two factors fixed at bc, ac, ab € {0, 1}2. Define the conditional two-
way interactions between factors A and B, factors A and C, and factors B and C as

Tasle = Y (11c) — Y (10c) — Y (0lc) + Y (00c),

Tacip = Y (161) — Y(160) — Y (0b1) + Y (050),

Tacla = Y(all) — ¥ (al0) — Y (a01) + Y (a00),
respectively, with the third factor fixed at ¢, b, a € {0, 1}. When there is possibility of confusion,
we write out A = a, B = b and ¢ = ¢ for @, b and ¢ in the subscripts to emphasize both the factors

and their respective levels; for example, Tyjpc = Tajp=b,c=c aNd Tapjc = Tap|c=c. These conditional
effects are the building blocks for defining the general factorial effects.

To simplify the presentation, we call a set of W numbers (7y,...,7) a W-dimensional
weighting vector if fozl 7, = 1 and m, > 0; a weighting scheme is then a collection

of weighting vectors with composition that will be clear from the context. Throughout this
section, assume that m\y = (Tap)a,p=0,1,Tac = (Tac)a,e=0,1 and Tpc = (Tpe)pe=0,1 are some
prespecified four-dimensional weighting vectors, and that 7, = (74)a=0,1, T8 = (775)p=0,1 and



8 A.ZHAO AND P. DING

e = (7e)e=0,1 are some prespecified two-dimensional weighting vectors. We summarize them
as T = {jTABa nAC, nBCa nAs nBa 7Tc} = {nabs 7[003 nbc, T[Lb ijs nC : a5 bs ¢ = O’ 1}

DEFINITION 1. Under the 23 experiment, define

TA(Tpc) = anc Talbes Tg(TTac) = Zﬂ'ac TBlac» Tc(Tag) = Z”ab Tclab

b,c a.c a,b

as the main effects of factors A, B and C under weighting vectors myc, mac and T ag, respectively;

define

Tap(7c) = Z Tc TAB|cs Tac(mg) = Z TTph Tac|bs Tpe (M) = Z Tq TpCla

c¢=0,1 b=0,1 a=0,1

as the two-way interactions between factors A and B, factors A and C, and factors B and C under
weighting vectors 1, g, and 7y, respectively, define

Z +htetl§
Tasc = TaBlc=1 — TaBlc=0 = Tac|=1 — TacB=0 = Tsc|la=1 — Tec|]a=0 = (=D “TY (abc)

ab,c
as the three-way interaction between factors A, B and C.

Definition 1 gives a total of 23 — 1 = 7 general factorial effects, vectorized as

T = {Ta(Tpe), T (Tac), Te(Ta), Tas(7c), Tac (), Toc (7Ta), TABC}T =Gy Y.

Following the convention from the 22 experiment, the subscripts of the weighting vectors indicate
the factors that are being marginalized out. We refer to = as the equal weighting scheme if
Tap = Tpe = Mge = 1/4and n, = 1p = . = 1/2 forall a,b,c = 0, 1; and we refer to 7 as the
empirical weighting scheme if 7, = N ! vazl TA; =a), gy =N"! vazl Z(4; =a,B; = b)
and so on, equal to the empirical treatment proportions in the experiment. Although Definition 1
can be general, we focus on the following coherent weighting scheme throughout the paper.

DEFINITION 2. A weighting scheme 1 is said to be coherent if there exists a probability dis-
tribution over T, represented by mwap. = pr(Ad = a,B = b,C = ¢) for a,b,c = 0,1, such
that

g = pr(d = a), 7y = pr(B =b), 7. = pr(C = ¢),
Tap = pI’(A =a,B=0b), muy = pr(A =a,C=c), mp = pI'(B =b,C =o0).

Coherence imposes mild restrictions on the elements in 7 and, building on the intuition from
Remark 1, provides the causal interpretation of the general factorial effects from a thought exper-
iment perspective. Consider a target thought experiment in which we assign unit i to combination
(abc) € T with probability pr{Z; = (abc)} = pr(4; = a,B; = b, C; = ¢) = mwap.. The weighting
vector mpe = (The)pe=0,1 gives the marginal distribution of (B;, C;) and renders the weighted
average T, ;(7pc) = Zb,c The Talbe,i> Where Type; = Yi(1bc) — Y;(0bc), an intuitive summary of
the main effect of factor A on unit 7, accounting for the target treatment probabilities of factors
B and C (see also Hainmueller et al., 2014; Egami & Imai, 2019; de la Cuesta et al., 2021).
Averaging 7, ;(mgc) overi = 1,...,N yields N -1 Zf\’: 1 Ta,i () = TA(7pc) as the average effect
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at the population level. The general weights as such allow for external validity beyond the actual
experiment being conducted. The equal weighting scheme is coherent with 7,5, = 1/8, implying
balanced design in the thought experiment. The empirical weighting scheme is also coherent with
Tabe = €abe = Nabe/N .

4.2. Factor-based regression with the saturated model
Define 4] = A; — 85, B; = B;i — 8z and C] = C; — & for prespecified § = (84, 83, 8c) with
0 < 84,08, 6¢c < 1, and extend (1) to the 23 experiment to define

Yi~1+4A4;+ B;+ C; + A;B; + A;C; + B;C; + A;B;C:. 3)
Let 7 and W be, respectively, the coefficient vector and robust covariance of the 23 — 1 = 7
nonintercept terms in (3). In this subsection we study their design-based properties, illustrat-
ing two important characteristics of factor-based regressions with more than two factors. First,
saturated regressions like (3) can only recover a subset of the coherent factorial effects with
weighting schemes featuring a product structure as in Definition 3 below. Second, the absence of
the three-way interaction restores the generality of (3) for estimating all coherent factorial effects.

DEFINITION 3. A coherent weighting scheme 7 is said to be a product weighting scheme if
Tabe = TqMpTe for a,b,c =0, 1.

A product weighting scheme 7 is fully determined by the values of (7 -1, 7s=1, Tc=1) and
implies independent factors in the corresponding thought experiment. The equal weighting
scheme satisfies Definition 3 with m,—; = ms—1 = mc=1 = 1/2; the empirical weighting scheme,
on the other hand, in general does not.

Let §« be the product weighting scheme with pr(4; = 1) = 6, pr(B; = 1) = 3 and
pr(C; = 1) = é¢ in the corresponding thought experiment. As a convention, we use X in the
subscript to indicate product welghtlng schemes Let t5x = Gsy Y be the corresponding vector
of general factorial effects, Tsx = GaxY its moment estimator, and cov(Tsx) = Gsx VG6><
the estimated covariance of 75 . The following proposition gives the numeric correspondence
between {y, \iJ} and {Tsx, cOV(Tsx )}, elucidating the utility of (3) for inferring 5.

PROPOSITION 4. Under the 23 experiment, the outputs of (3) satisfy y = t5x and W =
cOv(T5x) — Gsx diag(N; DV G],, .

Proposition 4 highlights the commonality and difference between the 2% and 23 experiments.
On the one hand, it ensures the asymptotic equivalence between {7, Ul and {Tsx, cOv(Tsx)} as N
goes to infinity, and thereby allows for the large-sample Wald-type inference of 75 based on (3).
On the other hand, the product structure of §« constrains the generality of (3), and suggests that
it recovers the full vector of 7,; simultaneously if and only if (84,85, 8¢c) = (Ta=1, Te=1, Tc=1)
and 7 is a product weighting scheme. The standard effects satisfy the product structure with
TTa—] = g=] = Tc=1 = 1/2 and thus admit direct estimation with §, = 8y = 6. = 1/2.

The resulting specification is equivalent to that under the {+1, —1} coding system up to a
constant scaling factor on each regressor, suggesting the specificity of the {+1,—1} coding
system to the standard effects (Wu & Hamada, 2009; Lu, 2016). The partial effects, in contrast,
may or may not satisfy the product structure, and are thus not necessarily directly estimable from
(3); see the Supplementary Material. This provides a useful guideline for designing and analysing
factorial experiments.
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One exception, however, is when the three-way interaction does not exist. The absence of T5¢
renders the class of product weighting schemes equivalent to the class of coherent weighting
schemes in defining the general factorial effects. We formalize the idea in Proposition 5 below.
For an arbitrary weighting scheme 7, let w« be the product weighting scheme with pr(4; = 1) =
Ta=1, pr(B; = 1) = mz—1 and pr(C; = 1) = ;= in the corresponding thought experiment. By
definition, 7 and 7 share the same marginal treatment probabilities in the underlying thought
experiments, and satisfy 7« = 7 if 7 is already a product weighting scheme.

PROPOSITION 5. Under the 23 experiment, if Tapc = 0, then T, = Ty« for all coherent 7,
where 1, = G Y and 1« = Gr« Y are the vectors of general factorial effects under weighting
schemes m and 7, respectively.

Propositions 4 and 5 together justify the inference of 7, from (3) with (84,68s,8c) =
(Ta=1,Tg=1, Tc=1) for all coherent & when 7,5 = 0. The absence of the three-way interaction
restores the generality of factor-based regressions for all coherent weighting schemes.

4.3. Factor-based regression with an unsaturated model
Consider an extension of (2),

Yi ~1+4;+B;+ C; + 4;B; + 4;C; + BiC; 4)

11

when only the main effects and two-way interactions are of interest, vectorized as
T+ = (Ta(7Tse), T (Tac), Te(Tas), Tas(7c), Tac(7Ts), Tac () = T \{Tasc}-

Let 7, and W be the coefficient vector and robust covariance of the six nonintercept terms from
(4). We use " to signify outputs from unsaturated regressions, and subscript + to signify quantities
associated with the effects of interest throughout the paper. Let p and p,c be the coefficients of
(4}, B;, C},A;B;, A;C}, B;C}) and A;B;C; from (3), respectively, with y = (P, Yapc)". Proposition
6 extends Proposition 3 to the 23 experiment, elucidating the design-based properties of 7, via

its link with 7.

PROPOSITION 6. Under the 23 experiment, we have 7. = P4 4+ DPagc with

8 8¢ 0 —Y e [ Sadc )
» L S, 0 8¢ -3, eo‘b‘{) 38c
b (Z ez‘l) 0 68y & -3 e || Sl
T > ab Capo 8¢
033 I > ac ea_Olc ds
\ 2 be e&fc 8a

Recall that 4 and p.pc equal the moment estimators of 75« + and Tupc, respectively, denoted
by Tsx.+ and Tapc. The coefficients from (4) thus recover the exact moment estimator 75y 4 if
and only if D = 0g or Ty,gc = 0. The former in general entails e, = 1/8 for all z € 7 and
8, = 8 = 8¢ = 1/2, implying both balanced design and standard effects as the estimands. In
particular, e, = 1/8 (z € 7) and §, = 8y = §c = 1/2 ensure that the columns of the design
matrix of the saturated regression (3) are mutually orthogonal, such that deletion of any subset
of the columns has no effect on the estimation of the remaining coefficients, with (4) being a
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special case. This is in line with the intuition from the 22 case and echos the classical principle
advocating the use of balanced designs whenever possible.

On the other hand, Proposition 6 implies £(y4) — Tsx,4+ = DTagc, such that y is unbiased for
Tsx + as long as the nuisance effect 7,5 indeed does not exist. This, together with the equivalence
between 7, and 7 « in the absence of 7,5c, ensures the generality of (4) for estimating 7,; ;.. More
precisely, under T ¢ = 0, the coefficient y; from (4) with (84, 8, 8¢c) = (Ta=1, T=1, Tc=1) 1S
unbiased for 7, 4 for all coherent weighting schemes .

Violation of the condition of no three-way interaction, on the other hand, subjects y; to
nondiminishing bias, i.e., DT,sc. The intuition for the bias-variance trade-off from the 22 case
extends here and ensures that 7. is more precise than y. under Condition 2, regardless of whether
Tagc = 0 or not.

5. A GENERAL THEORY FOR THE 2X FACTORIAL EXPERIMENT
5.1. Overview and notation

The 2% factorial experiment features Q = 2K treatment combinations arising from K binary
factors, indexed by £ = 1,...,K. Of interest is the utility of the corresponding factor-based
regressions for inferring the factorial effects of interest from the design-based perspective. We
first extend the definitions of general factorial effects, the coherent weighting scheme and the
product weighting scheme to the 2X experiment, and demonstrate the utility of location-shifted
regressions for recovering general effects under product weighting schemes. We then show the
equivalence between the coherent and product weighting schemes under the condition of no
three-way interactions. Finally, we quantify the bias-variance trade-off between the saturated and
unsaturated specifications.

We use the following notation. Let Z;; € {0, 1} denote the level of factor £ received by unit
ifori=1,...,Nandk = 1,...,K. Let F = {0,1} = {0, 11} be the set of possible levels
of factor k, where the subscript k is used to differentiate the factors. Let 7 = ]_[Ilfz1 Fr =
(z=(,...,2k) : zx € Fr, k = 1,...,K)} be the set of the 2K treatment combinations. Let
Px = {K : 0 + K C [K]} be the set of all nonempty subsets of [K]. For K € Px, let
zik = (zK)kex and zg = (zx)kgx index the combinations of factors in K and K = [K\K,
respectively, taking values from Fx = [ [;cc Fr = {0, 1}'%l and Fg = ]_[k?z,C Fi = {0, NK-IKL
In particular, zix) =z € 7 and Fig) = 7.

5.2. Definition of the conditional factorial effects

Consider K types of factorial effects, quantifying the main effect of a factor when applied
alone, and the two- to K-way interactions when multiple factors are applied together. We refer to
them interchangeably as the first- to Kth-order factorial effects. Building on the intuition from
the 2% and 23 experiments, we first define the conditional factorial effects in this subsection;
then we define the general factorial effects as their respective weighted averages in the next
subsection.

As a general rule, we define by induction the mth-order conditional factorial effect as the
difference between two (m — 1)th-order conditional effects for m = 2,...,K (Wu & Hamada,
2009). For notational simplicity, we illustrate the definition of the mth-order effects using the first
m factors with K = [m], zgns1:x = @)X, 1 and Fonriyx = [Timmyr Fk = {0, 1K™,

DEFINITION 4. Let Y (Z],ZQ;K)_be the average potential outcome under z = (z1,z2.x) € T, and
define 11(z2.x) = Y (11,22:.x) — Y (01, z2:x) as the conditional main effect of factor 1 when factors
2 to K are fixed at z.x € Fr:k.
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Given t,—1] as the conditional (m — 1)th-order factorial effect of factors 1 to (m — 1) when
the rest of the factors are fixed at z,.x € Fu-x form=2,...,K — 1, define

T (Zm+1):6) = Tm=11Ums Zen+1):6) — Tm—11Oms Zen+1):5)

as the conditional mth-order factorial effect of factors 1 to m when the rest of the factors are fixed
at zZm+1):k € Fm+1)K-

For m = K, define tx; = tx-11(1x) — 1k—11(0k) as the K-way interaction of factors
ltoK.

Based on Definition 4, we can obtain the explicit form of 7(,,,(z(n+1):x) in terms of the Y(z),
and show that the order in which new factors are added to the combination in the induction
does not matter. Definition 4 extends to general K € Pk by symmetry. Denote by tx(z5) the
conditional |K|th-order factorial effect of factors in C when the rest of the factors are fixed at
z € Fg. This gives a total of | Fg| = 2K=IKI conditional factorial effects for the |K| factors in
a fixed K. The notation from the 2° case is a special case where Tolp = Ta(b) and 15, = 13(a);
likewise for 7,5 = Ta(bC), Taplc = Tap(c) and so on from the 23 case.

5.3. Definition of the general factorial effects

We next define the general factorial effects as weighted averages of their respective conditional
counterparts. Consider w(z) = pr(Z; = z1,...,Zix = zg) forz = (z1,...,zxg) € 7T as the
treatment probabilities under some target thought experiment. The marginal distribution of Z; s =
(Zik)keIC equals T = {JT(Z]C) LZ € f}c} with JT(ZK) = pl‘(Z,'JC = Z}c) = ZZEE]:E JT(Z;C,ZE). It
induces an intuitive weighting scheme for averaging over factors in C when defining the general
factorial effect of factors in /C. The 7wy = (7Ta—0, Ta=1) and map = (7Tab)a,p=0,1 from the 2% and
23 experiments are special cases of mx with KL = {A} and {A, B}, respectively. Building on the
intuition from Definition 2, we call # = {7k : K € Px} the coherent weighting scheme induced
by the joint distribution {7 (z) : z € T}.

DEFINITION 5. Given a coherent weighting scheme 7 and conditional factorial effects tic(zx)
from Definition 4 for all K € Pk and ziz € Fi, define

Tex = Y 7(zg) Tk (zg)

ZEE}-K
as the general factorial effect of factors in IC under w, vectorized as
T ={tkr : K ePx}= G,Y.

Definitions 4 and 5 together define the 25 — 1 general factorial effects under the coherent
weighting scheme . We refer to i as the standard effect if 7 (zg) = |-7:E|_1 — 21Kl is the
same forall zg € Fi. Wereferto tic ; as the empirical effectif  (zg) = N -1 va: 1 Z (Zi,f =zy)
equals the empirical proportion in the actual experiment.

5.4. Factor-based regression with the saturated model
Motivated by (1) for the 2% experiment and (3) for the 23 experiment, we define Z = Zij — 8
and Zj . = [[scxc Zj; as a location-shifted generalization for some prespecified (8)k_, with
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0 < 8¢ < 1, and consider the saturated factor-based regression

K K
Vi~ 14> Zh+ > ZiZi++ 2~ 1+ ). Zk. )
k=1 1<k+ <K k=1 KePx

Lety and U be, respectively, the coefficient vector and robust covariance of the O — 1 nonintercept
terms in (5), with elements arranged in the same order of XC as those in 7. In the following we
derive their utility for the Wald-type inference of ;.

To begin with, the notion of product weighting scheme extends naturally to the current setting
asm(z) = 1—[1k<:1 7 (zx) and is fully determined by the values of {J'r(lk)}{f:1 . The equal weighting
scheme for the standard effects satisfies the product structure with 7 (1;) = 1/2. The empirical
weighting scheme, on the other hand, may not. Building on the intuition from the 23 experiment,
Definition 6 introduces two product weighting schemes of particular importance, arising from
the estimand of interest and the location-shift parameters.

DEFINITION 6. For an arbitrary coherent weighting scheme 1, let w« be the product weighting
scheme with (1) = n(ly) fork =1,...,K.

For arbitrary location-shift parameters (8k)f:1 with 0 < 8 < 1, let §« be the product
weighting scheme with §x (1) = & fork =1,...,K.

The product weighting scheme 77 satisfies 7« = 7 if 7 isalready a product weighting scheme.
The product weighting scheme §x features 8y (z) = ]_[Ille 8?‘(1 —8)! "% forall z € T. Let

75 = Gsy Y be the corresponding vector of general factorial effects, Tsx = Gsx Y its moment
estimator, and cOv(Tsx ) = Gsx VG({X the estimated covariance. The following theorem gives the

numeric correspondence between {y, W} and {T5x, cOV(Tsx )} for inferring 5.

THEOREM 1. Under the 2K experiment, the outputs of (5) satisfy p = ts5x and W = cov(Fsx ) —
Gsx diag(N, YV G}

Theorem 1 unifies the results from the 22 and 23 experiments, and justifies the utility of p
and ¥ from (5) for inferring t, when m is a product weighting scheme with w(1;) = §; for
k =1,...,K. Despite the constrained applicability in general, the intuition from Proposition 5
extends here and ensures the generality of (5) in the absence of three-way interactions.

Condition 3. We have tic(z5) = 0 for all zg with || = 3.

Condition 3 rules out the existence of three-way interactions, and hence of all m-way
interactions for 3 < m < K by Definition 4.

THEOREM 2. Under the 2X experiment and Condition 3, we have t; = T for all coherent
7, where t; and T« are the vectors of general factorial effects under w and 7 «, respectively.

Theorems 1 and 2 together allow us to use (5) with 8; = (1) for the Wald-type inference of
all T, with coherent 7 in the absence of three-way interactions. The proof of Theorem 2 further
shows that the requirement of 7x (zg) = 0 for all |[K’| = 3 isnot only sufficient, but also necessary
for 7, = t;« to hold if 7 is coherent, but not a product weighting scheme. Thus, for Theorem 2
to hold, we cannot relax the |XC| = 3 in Condition 3 to || = m for some m > 3.
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5.5. Factor-based regression with unsaturated models

Motivated by (2) for the 2% experiment and (4) for the 2° experiment, we next consider

Yi~ 1+ > Zig, (6)

ICG}—+

where 7 C Pk, as an unsaturated variant of (5) when only a subset of the Q — 1 factorial effects
are of interest, vectorized as 1, + = {tcr : K € F4+}. A commonly used special caseis ¥; ~ 14
Z{| +- - -+ Z, with only the first-order terms and 7, = {{k} : k = 1,...,K}. The additive form
ensures that the location-shift transformation has no effect on the estimation of the nonintercept
coefficients. Another commonly used special case is ¥; ~ 1 + Zle Zh+ D i<k <k ZiZis
with only the main effects and two-way interactions and with 7, = {{k},{k,k'} : kK, k' =
L,....,K, k£ k'}.

Let 7. and W, be, respectively, the coefficient vector and robust covariance of the |F|
nonintercept terms in (6). In this subsection we establish their utility for inferring 7 4. Recall the
coefficient vector y of the nonintercept terms from (5); partition it into 4 and y_, corresponding
to the coefficients of (Zl.” o)cer, and (Zl.’,,C) K¢r, , respectively. As a convention, we use + and —
in the subscripts to signify effects included in and omitted from the unsaturated regression (6),
respectively.

Let F be the N x Q design matrix of (5), concatenating columns of 1 and (Z;,,C)?/: , for all
K € Px.Let Fy bethe N x (1 + |F4|) design matrix of (6) and F_ = F\F the submatrix of
F omitted from (6), concatenating columns of (Zl./’ ,C)?’: | for € & F. Assume throughout that
the elements in 7,4, p+ and p_ are arranged in the same relative order of K as those in t, and
likewise for the columns in £ and F_.

Let & = (FLF My | F_ be the coefficient matrix from the columnwise regression of F_ on
F, which is a deterministic function of (e;);c7 and (8;{)][((:1; see the Supplementary Material.
Let R = F_ — F; ® be the corresponding residual matrix, D the submatrix of ® without the first
row, and F _1) the submatrix of /y without the first column. Let Py be the projection matrix
orthogonal to 1y, and let ¥ = (Yq,...,Yy)" be the vector of observed outcomes. The next
theorem states the numeric correspondence between 7, and p under the 2X factorial experiment,
generalizing Propositions 3 and 6. It is an application of Cochran’s formula (Cox 2007).

THEOREM 3. Under the 2X experiment, the coefficients from (5) and (6) satisfy y4 = p++Dy_,
where Dy_ = O if and only if F| |\ PNF— (R'R)™'R'Y = 0. In particular, Dy_ = 0 for all Y
ifFIF_=0o0rF{PyF_=0.

Recall that y4 and py_ coincide with the moment estimators of 75 + = {Ticsx : K € F4)
and 75— = {tsx : K & F4}, respectively, denoted by Tsx + and T5x —. Theorem 3 gives two
sufficient conditions for . to recover exactly 75« 4, requiring orthogonality of 7 and F_ either
in the original form or after being centred by the column averages. These conditions do not hold
in general unless the design is balanced and the factorial effects are the standard ones under the
equal weighting scheme. This generalizes the intuition from the 22 and 23 cases to general K.

COROLLARY 1. Under the 2K experiment, 4 = p4 if () 8 = 1/2 forallk = 1,...,K, and
()N, =N/Qforallz e T.

The balance condition (ii) in Corollary 1 can be dropped if we use the weighted least-squares
fit with weights 1/Nz, fori = 1,..., N. We relegate the details to the Supplementary Material
and focus on the ordinary least-squares fit here.
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Despite the loss of exact recovery of the moment estimator 75, + when Dy_ = 0, the intuition
from the 22 and 23 experiments extends here and ensures the unbiasedness of 7, in the absence
of the nuisance effects.

Condition 4. The nuisance effects are zero; that is, 7 = 0 forall £ ¢ F..

THEOREM 4. Under the completely randomized 2X experiment, the coefficients from (6) satisfy
E(y4+) = t5x,+ + Dtsx,— and cov(y;) = (I,D) ngcov(f/)GgX (I,D)*. Further assume Condi-
tion 1 and Condition 4 with w = 8. Then E(y4) = Tsx 4, and yy is asymptotically normal with
N{W — cov(74)} = A + op(1), where A = (I,D)GsxSGj, (I,D)" > 0.

Theorem 4 justifies the Wald-type inference of 75, 4 from the unsaturated specification (6)
when the nuisance effects omitted indeed do not exist. The resulting y. is both unbiased and
consistent for estimating 75« -+, with the robust covariance W, affording an asymptotically con-
servative estimator for the true sampling covariance. The proof of Theorem 1 further shows that
the intercept from (6) is an unbiased estimator of a weighted average of Y (z) instead of a con-
trast, and is thus nonzero in general. This suggests the necessity of including the intercept in
the unsaturated specification for the satisfaction of Condition 4. One limitation of (6) again lies
in its requirement on the product weighting scheme. Juxtaposing Condition 3, Condition 4 and
Theorem 2 ensures that the result of Theorem 4 extends to 7,; 4 for all coherent 7 in the absence
of three-way interactions.

Remark 2. The condition of constant treatment effects further ensures cov(yy) < cov(yy),
such that the estimator from (6) has smaller sampling covariance than that from (5). This,
together with Theorem 4, illustrates the bias-variance trade-off between the saturated and unsat-
urated regressions from the design-based perspective. The result, however, does not hold without
the assumption of constant treatment effects; a counterexample is given in the Supplementary
Material.

The assumption of no nuisance effects can never be verified exactly in practice. Extra caution
is therefore needed when applying unsaturated specifications to unbalanced designs or estimands
other than the standard effects. The saturated specification is, in this sense, a safer choice when the
sample size permits. When the number of treatment combinations Q = 2X is large relative to the
sample size N, however, the saturated regression is subject to substantial finite-sample variability,
so that the unsaturated regressions are possibly more attractive for finite-sample inference. Even
if the nuisance effects are not exactly zero, depending on one’s belief of the data-generating
process, the gain in finite-sample precision by the unsaturated regressions can still outweigh
the bias as long as the omitted nuisance effects, most likely some higher-order interactions, are
reasonably small, ensuring a smaller mean squared error overall.

Alternatively, lasso and ridge regression may be attractive options when the saturated regression
is not possible. Indeed, the discussion so far holds with a given unsaturated specification (6). It
is desirable to have a data-driven specification with both model selection and post-selection
inference (Chipman et al., 1997; Espinosa et al., 2016; Egami & Imai, 2019). Although these
topics have been discussed extensively under the classic linear model, analogous questions under
the design-based framework remain largely unexplored. We leave such investigations to future
work.
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6. DISCUSSION AND RECOMMENDATIONS

We conclude this article with three practical implications of our findings in terms of the
2K experiment. The intuition extends to the general Q1 x --- x Qg experiment with minimal
modification, as shown in the Supplementary Material. First, the definition of general factorial
effects greatly broadens the range of estimands that can be considered under factorial experi-
ments, enabling the use of flexible weighting schemes to accommodate context-specific concerns.
Second, location-shifted factor-based regression affords a convenient way of recovering the
moment estimators of the general factorial effects from least squares, with the corresponding
robust covariance being an asymptotically conservative estimator of the true sampling covari-
ance. This enables large-sample Wald-type inference from least-squares outputs. With more than
two factors, factor-based regression is capable of estimating general factorial effects under prod-
uct weighting schemes, and regains generality in the absence of three-way interactions. Third,
unsaturated regressions reduce sampling variances under the condition of constant treatment
effects, but are subject to nondiminishing biases when the condition of no nuisance effects is
violated. Importantly, our theory is design-based without requiring any stochastic models for the
potential outcomes.

We have focused on complete randomization because of its wide range of applications. Clari-
fying the above important issues in this basic experiment provides a proof of concept for other
more complex experiments. The definitions of the general factorial effects remain unchanged, and
the correspondence between the least-squares outputs and moment estimators is purely numeric,
and thus holds under any randomization mechanism. The appropriateness of the Wald-type infer-
ence, however, is assignment-specific and requires modifications under different randomization
mechanisms. We conjecture that the theory extends to experiments with nonconstant treatment
probabilities (Mukerjee et al., 2018) if the least-squares procedure is weighted by the inverse of
the treatment probability. We leave this to future research.
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