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Summary

Factorial designs are widely used because of their ability to accommodate multiple factors
simultaneously. Factor-based regression with main effects and some interactions is the dominant
strategy for downstream analysis, delivering point estimators and standard errors simultaneously
via one least-squares fit. Justification of these convenient estimators from the design-based per-
spective requires quantifying their sampling properties under the assignment mechanism while
conditioning on the potential outcomes. To this end, we derive the sampling properties of the
regression estimators under a wide range of specifications, and establish the appropriateness of
the corresponding robust standard errors for Wald-type inference. The results help to clarify the
causal interpretation of the coefficients in these factor-based regressions, and motivate the defi-
nition of general factorial effects to unify the definitions of factorial effects in various fields. We
also quantify the bias-variance trade-off between the saturated and unsaturated regressions from
the design-based perspective.

Some key words: Factorial effect; Potential outcome; Randomization inference; Robust standard error.

1. Introduction

Factorial designs have become increasingly popular in field experiments in the social sciences
(e.g., Duflo et al., 2007; Dasgupta et al., 2015; Branson et al., 2016; Egami & Imai, 2019) as well
as in traditional agricultural, industrial and biomedical applications (e.g., Wu & Hamada, 2009).
Factor-based regression remains the dominant strategy for downstream analysis (e.g., Karlan &
List, 2007; Eriksson & Rooth, 2014; Torres et al., 2021), enabling not only direct estimation of the
factorial effects as regression coefficients, but also flexible unsaturated specifications to reduce
model complexity. A formal justification of its role in causal inference, however, requires both
clearly defining the estimands of interest and deriving the sampling properties of the resulting
estimators under the potential outcomes framework.

This article makes several contributions. First, we clarify the causal interpretation of the coeffi-
cients in factor-based linear regressions, and propose a location-shift strategy for reproducing the
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design-based inference of various factorial effects via least squares. Importantly, we show that the
robust covariance, also known as the Eicker–Huber–White covariance, affords an asymptotically
conservative estimator of the true sampling covariance from the design-based perspective, justi-
fying its use for large-sample Wald-type inference. Second, we review and clarify the definitions
of factorial effects in the causal inference, experimental design, epidemiology and social sciences
literature, and extend them to allow for arbitrary weighting schemes to accommodate external
validity concerns. Third, we derive for the first time the design-based properties of estimators
from unsaturated factor-based regressions, and quantify the bias-variance trade-off between the
saturated and unsaturated regressions from the design-based perspective.

We use Yi ∼ xi to denote the least-squares regression of Yi on xi and focus on, not only the
causal interpretation of the regression coefficients for estimating the general factorial effects, but
also the design-based properties of the robust covariance, for large-sample Wald-type inference.
The terms regression, coefficients and robust covariance refer to the numeric outputs of least
squares free of any modelling assumptions; we evaluate their sampling properties from the design-
based perspective. We omit discussion of the ordinary covariance derived under homoskedasticity
owing to its lack of design-based guarantees even with the simple treatment-control experiment
(Freedman, 2008).

Let 1N and 1Q denote the N × 1 and Q × 1 vectors of ones, respectively. Let I(·) be the
indicator function. Let [m] = {1, . . . , m} be the set of positive integers from 1 to m. For two
symmetric matrices M1 and M2, write M1 � 0 if M1 is positive semidefinite and write M1 � M2
or M1 � M2 if M2 − M1 is positive or negative semidefinite, respectively.

2. Framework, causal effects and treatment-based regression

Consider an experiment with N units indexed by i = 1, . . . , N and Q treatment levels indexed
by z ∈ T = {1, . . . , Q}. Let Yi(z) be the potential outcome of unit i if assigned to level z, and let
Ȳ (z) = N−1∑N

i=1 Yi(z) be the finite-population average, vectorized as Ȳ = {Ȳ (1), . . . , Ȳ (Q)}T.
Let S = {S(z, z′)}z,z′∈T be the finite-population covariance matrix of the potential outcomes with
S(z, z′) = (N −1)−1∑N

i=1{Yi(z)−Ȳ (z)}{Yi(z′)−Ȳ (z′)}. The goal is to estimate τ = GȲ for some
contrast matrix G with rows orthogonal to 1Q. Complete randomization assigns completely at
random Nz � 2 units to level z with

∑
z∈T Nz = N and ez = Nz/N . For unit i, let Zi ∈ T denote the

treatment level and Yi = ∑
z∈T I(Zi = z)Yi(z) the observed outcome. Let Ŷ (z) = N−1

z
∑

i:Zi=z Yi

be the average observed outcome under treatment level z, vectorized as Ŷ = {Ŷ (1), . . . , Ŷ (Q)}T.
Then τ̂ = GŶ is an intuitive choice for estimating τ .

Design-based inference, also known as randomization inference, concerns the sampling
properties of estimators over the distribution of the treatment indicators, conditioning on the
potential outcomes (Neyman 1923; Imbens and Rubin 2015). In this paper we focus on complete
randomization and assume the following condition for asymptotic properties (Li & Ding, 2017).

Condition 1. As N goes to infinity, for all z ∈ T we have that (i) Nz � 2 and ez has a limit
between (0, 1); (ii) Ȳ and S have finite limits; and (iii) max1�i�N {Yi(z) − Ȳ (z)}2/N → 0.

Under complete randomization, Ŷ is unbiased for Ȳ with covariance cov(Ŷ ) =
diag{S(z, z)/Nz}z∈T − N−1S. Define V̂ = diag{Ŝ(z, z)/Nz}z∈T , where Ŝ(z, z) = (Nz −
1)−1∑

i:Zi=z{Yi − Ŷ (z)}2, as a moment estimator of cov(Ŷ ). It is conservative in the sense

that E(V̂ ) − cov(Ŷ ) = N−1S � 0. Condition 1 further ensures that Ŷ is asymptotically normal
with N {V̂ − cov(Ŷ )} = S + op(1) (Li & Ding, 2017). The Wald-type inference of τ can thus be
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conducted using τ̂ = GŶ and ˆcov(τ̂ ) = GV̂ GT as the point estimator and estimated covariance,
respectively. It is in general conservative because of the overestimation of the covariance; one
exception is when the treatment effects are constant across all units, as specified in the following.

Condition 2. For all z, z′ ∈ T , the Yi(z) − Yi(z′) = c(z, z′) are constant across i = 1, . . . , N .
This ensures that the S(z, z′) are identical for all z, z′ ∈ T , denoted by S(z, z′) = s0.

Treatment-based regression is a convenient tool for computing Ŷ and V̂ from least squares.
The regression Yi ∼ I(Zi = 1)+· · ·+I(Zi = Q) without an intercept yields a coefficient vector
β̂ and a robust covariance V̂0 that satisfy β̂ = Ŷ and V̂0 = diag(1 − N−1

z )z∈T V̂ = V̂ + op(1)

(Wu & Ding, 2021, § 3.3). The Wald-type inference of τ can therefore also be conducted using
Gβ̂ and GV̂0GT as the point estimator and estimated covariance, respectively.

This set-up encompasses as a special case the Q1 × · · · × QK factorial experiment, which
involves Q = ∏K

k=1 Qk treatment levels as the combinations of K � 2 factors with Qk (k =
1, . . . , K) levels. Treatment-based regression accordingly provides a principled way of studying
general factorial experiments. It is nevertheless not the dominant strategy in practice when the
estimands of interest take certain special forms. When the goal is to estimate the main effects or
interactions of the factors under study, a more prevalent practice is to regress the outcome on the
factors themselves, and interpret the coefficients as the corresponding factorial effects of interest.
This seemingly straightforward approach has several variants used in different fields, which turn
out to target factorial effects under distinct weighting schemes. The first contribution of this work
is to unify these variants within a class of location-shifted factor-based regressions, and establish
the design-based properties of the resulting coefficients and robust covariances.

More importantly, treatment-based regression is saturated and requires the estimation of
Q = ∏K

k=1 Qk � 2K parameters. This can be demanding in terms of sample size even with
a moderate number of factors. Factor-based regression, on the other hand, enables the use of flex-
ible unsaturated specifications that include only the main effects and possibly some lower-order
interactions corresponding to the factorial effects of interest. Despite the intuitiveness of such an
approach and its dominance in practice, the existing literature on the design-based properties of
factor-based regression focuses on saturated specifications (Dasgupta et al., 2015; Lu, 2016), and
the theory of their unsaturated counterparts remains an open question. Our second contribution is
to fill this gap and establish the design-based properties of unsaturated factor-based regressions.

Because of the notational burden involved in the general setting, we start with the 22 and 23

experiments to illustrate the main ideas and then unify the results under the 2K experiment. The
results convey all key points for the theory of the general Q1 × · · · × QK experiment. We present
the formal theory of the general case in the Supplementary Material.

3. The 22
factorial experiment

3.1. A review of existing strategies

The 22 factorial experiment is the simplest factorial experiment with two binary factors,
which we denote by A and B. The Q = 22 = 4 treatment combinations consist of T =
{(00), (01), (10), (11)}, indexed by z = (ab) for a, b = 0, 1. Let Ai, Bi ∈ {0, 1} indicate the
levels of factors A and B received by unit i. We first review five factor-based regression strategies
commonly used to analyse 22 experiments, and then clarify their respective causal interpretations.

The canonical factor-based regression takes the form Yi ∼ 1 + Ai + Bi + AiBi. Strat-
egy (i) directly uses the coefficients of (Ai, Bi, AiBi), denoted by γ̂0 = (γ̂0,a, γ̂0,b, γ̂0,ab)

T,
to estimate the main effects of factors A and B, and their interaction. Strategy (ii) uses
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4 A. Zhao and P. Ding

(γ̂0,a + Biγ̂0,ab, γ̂0,b + Aiγ̂0,ab, γ̂0,ab) to estimate the main effects and interaction at the unit level,
and then takes their respective averages to estimate the factorial effects at the population level.
Define ea=1 = N−1∑N

i=1 Ai and eb=1 = N−1∑N
i=1 Bi as the empirical probabilities of factors A

and B, respectively. The final estimators are γ̂e = (γ̂e,a, γ̂e,b, γ̂e,ab)
T, where γ̂e,a = γ̂0,a+eb=1γ̂0,ab,

γ̂e,b = γ̂0,b + ea=1γ̂0,ab and γ̂e,ab = γ̂0,ab. Strategy (ii) is popular in econometrics, where the
estimators of the main effects, namely γ̂e,a and γ̂e,b, are also known as the average partial or
marginal effects (Greene, 2018). Strategy (iii) codes the factors by their signs as As

i = 2Ai − 1
and Bs

i = 2Bi − 1 ∈ {+1, −1}, and uses the coefficients from Yi ∼ 1 + As
i + Bs

i + As
i B

s
i , after

multiplication by 2, to estimate the main effects and the interaction, respectively (Wu & Hamada,
2009; Lu, 2016). Let γ̂s = (γ̂s,a, γ̂s,b, γ̂s,ab)

T denote the estimators under strategy (iii). These three
strategies can simultaneously estimate the main effects and interaction via one least-squares fit.

Strategies (iv) and (v), on the other hand, focus on only the two main effects. Strategy (iv)
considers two separate regressions, Yi ∼ 1 + Ai and Yi ∼ 1 + Bi, and estimates the two main
effects by the coefficients of Ai and Bi (e.g., Bertrand & Mullainathan, 2004; Eriksson & Rooth,
2014). Strategy (v) considers the additive regression Yi ∼ 1 + Ai + Bi and estimates the two
effects via one least-squares fit.

A factor-based regression is said to be saturated if it contains all possible interactions between
the factors in addition to the constant term and main effects. The regressions under strategies
(i)–(iii) are saturated, whereas those under strategies (iv) and (v) are unsaturated.

3.2. Unifying the saturated regressions and introducing the general factorial effects

We now unify strategies (i)–(iii) within a class of location-shifted factor-based regressions that
turn out to target factorial effects under different weighting schemes. The result highlights the
correspondence between the location shifts in specifying the models and the weighting schemes
in defining the factorial effects.

To this end, we first formalize the notion of general factorial effects, which are central to
clarifying the effective estimands under strategies (i)–(iii). Define τa|b = τa|b=b = Ȳ (1b)−Ȳ (0b)

and τb|a = τb|a=a = Ȳ (a1) − Ȳ (a0) as the conditional effects of factors A and B when the level
of the other factor is fixed at b ∈ {0, 1} and at a ∈ {0, 1}, respectively. As a convention, we
abbreviate the a = a and b = b in the subscripts to simply a and b when confusion is unlikely to
arise. Define

τa(πb) = πb=0 τa|b=0 + πb=1 τa|b=1, τb(πa) = πa=0 τb|a=0 + πa=1 τb|a=1

as the main effects of factors A and B under weighting schemes πb = (πb=0, πb=1) and πa =
(πa=0, πa=1), respectively, with 0 � πa=a, πb=b � 1 for a, b = 0, 1 and πa=0 + πa=1 =
πb=0 + πb=1 = 1. As a convention, the subscript of the weighting scheme indicates the factor
that is being marginalized out. The standard main effects correspond to πa = πb = (1/2, 1/2),
weighting all conditional effects equally (Dasgupta et al., 2015).

Define τab = Ȳ (11) − Ȳ (10) − Ȳ (01) + Ȳ (00) as the interaction between A and B. It satisfies
τab = τa|b=1−τa|b=0 = τb|a=1−τb|a=0 and characterizes the difference in the conditional effects
of one factor at the two levels of the other factor. Observe that τa(π

′
b
)−τa(πb) = (π ′

b=1−πb=1)τab

and τb(π
′
a
) − τb(πa) = (π ′

a=1 − πa=1)τab, such that τab also quantifies the difference in causal
estimands between different weighting schemes. The absence of interaction, i.e., τab = 0, ensures
that τa(πb) = τa|b=0 and τb(πa) = τb|a=0 are constant across all possible weighting schemes.

Recall that Ȳ = {Ȳ (00), Ȳ (01), Ȳ (10), Ȳ (11)}T. We vectorize the main effects and the
interaction as τπ = {τa(πb), τb(πa), τab}T = Gπ Ȳ , where π = (πa, πb) and the contrast
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matrix Gπ consists of row vectors (−πb=0, −πb=1, πb=0, πb=1), (−πa=0, πa=0, −πa=1, πa=1)

and (1, −1, −1, 1). An unbiased estimator for τπ is τ̂π = Gπ Ŷ = {τ̂a(πb), τ̂b(πa), τ̂ab}T.
Let ea=0 = 1−ea=1 and eb=0 = 1−eb=1 be, respectively, the proportions of units that receive

level 0 of factors A and B in the experiment. The following proposition is a numeric result and
clarifies the causal interpretations of the regression estimators from strategies (i)–(iii).

Proposition 1. Under the 22 experiment, the coefficients from strategies (i)–(iii) satisfy:

(i) γ̂0 = {τ̂a(1, 0), τ̂b(1, 0), τ̂ab}T with πa = πb = (1, 0);
(ii) γ̂e = {τ̂a(eb=0, eb=1), τ̂b(ea=0, ea=1), τ̂ab}T with πf = (ef =0, ef =1) for factors f = a, b;

(iii) γ̂s = {τ̂a(1/2, 1/2), τ̂b(1/2, 1/2), τ̂ab/2}T with πa = πb = (1/2, 1/2).

Strategies (i)–(iii) thus yield identical estimators of τab up to a scaling factor and yet target
distinct main effects under different weighting schemes. Strategy (i) is unbiased for estimating
τa(1, 0) = τa|b=0 and τb(1, 0) = τb|a=0 as the conditional effects when the other factor is at the
baseline level. Strategy (ii) is unbiased for estimating τa(eb=0, eb=1) and τb(ea=0, ea=1); the aver-
age partial effects in econometrics thus weight the conditional effects by the empirical treatment
probabilities. Strategy (iii) is unbiased for estimating the standard effects τa = τa(1/2, 1/2) and
τb = τb(1/2, 1/2) that weight all conditional effects equally. This clarifies the causal interpre-
tations of γ̂0, γ̂e and γ̂s from strategies (i), (ii) and (iii), respectively. In particular, γ̂s targets the
standard factorial effects regardless of whether the experiment is balanced or not.

Inspired by how transformation applied to factors allows one to obtain the moment estimators
of the standard main effects directly as regression coefficients under strategy (iii), we now propose
a location-shift strategy to generalize strategies (i)–(iii) and estimate τπ with arbitrary weights
π = (πa, πb) via least squares. For A′

i = Ai−δa and B′
i = Bi−δb with prespecified 0 � δa, δb � 1,

define the location-shifted regression

Yi ∼ 1 + A′
i + B′

i + A′
iB

′
i (1)

with coefficients γ̂ = (γ̂a, γ̂b, γ̂ab)
T and robust covariance �̂ for the three nonintercept terms.

Strategies (i)–(iii) are special cases: setting (δa, δb) = (0, 0) gives strategy (i); setting (δa, δb) =
(ea=1, eb=1) is equivalent to strategy (ii) in the sense of γ̂ = γ̂e by Proposition 2 below; and
setting (δa, δb) = (1/2, 1/2) yields strategy (iii) up to scaling factors of 2 or 4.

Recall the unbiased estimator τ̂π = Gπ Ŷ of τπ = Gπ Ȳ . Let ˆcov(τ̂π ) = Gπ V̂ GT
π be the

corresponding estimated covariance, where V̂ is a conservative estimator of cov(Ŷ ). The next
proposition states the numeric correspondence between {γ̂ , �̂} and {τ̂π , ˆcov(τ̂π )}, elucidating the
design-based properties of γ̂ and �̂ for general (δa, δb).

Proposition 2. Under the 22 experiment, the outputs of (1) satisfy γ̂ = τ̂π and �̂ = ˆcov(τ̂π )−
Gπ diag(N−1

z )V̂ GT
π for π = (πa, πb) with πa = (1 − δa, δa) and πb = (1 − δb, δb).

Proposition 2 ensures that γ̂ from (1) is unbiased for estimating τπ with πa = (1 − δa, δa)

and πb = (1 − δb, δb). Location shifts of Ai and Bi by (δa, δb) = (πa=1, πb=1) thus enable
direct estimation of τπ from (1) for arbitrary π . This provides the intuition behind the condition
0 � δa, δb � 1 introduced earlier. Moreover, the difference between �̂ and ˆcov(τ̂π ) diminishes
as N goes to infinity. This enables the large-sample Wald-type inference of τπ by using γ̂ and �̂

as the point estimator and estimated covariance, respectively.

Remark 1. The classical experimental design literature focuses mostly on the standard
main effects (Wu & Hamada, 2009), with equal weights on all conditional effects: τa =
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2−1(τa|b=0+τa|b=1) and τb = 2−1(τb|a=0+τb|a=1). The standard main effects, together with bal-
anced experiments with Nz = N/Q for all z ∈ T , have many advantages in practice. Corollary 1
later states a result for the 2K experiment with a general K .

In practice, however, applications may not always value τa|b=0 and τa|b=1, and likewise τb|a=0
and τb|a=1, equally. Alternative weighting schemes based on perceived importance therefore also
merit attention, and could provide more relevant summaries of the marginal effects (Finney,
1948). We give an example based on the consideration of external validity of the experimental
results.

Assume that the experiment in question is a pilot study for a large-scale implementation in
which one-third of the population is intended to receive level 1 of factor B marginally. Since we
know that two-thirds of the population will be experiencing the effect of factor A at the baseline
level of factor B, the general effect τa(2/3, 1/3) = (2/3)τa|b=0 + (1/3)τa|b=1 may be a better
summary of the effect of factor A compared with the standard effect with equal weights. This
illustrates the connection between the general weighting schemes and external validity.

When τab |= 0, we are also interested in finding the optimal level of factor B to maximize the
effect of factor A. This requires us to compare τa|b=1 and τa|b=0, which correspond to two special
estimands τa(0, 1) and τa(1, 0).

In summary, the choice of estimand depends on the scientific question of interest. We provide
the theory for the general estimand, which includes the above examples as special cases.

3.3. Factor-based regression with unsaturated models

Strategies (iv) and (v) concern only the main effects of factors A and B. Strategy (iv) fits two
separate regressions for estimating the main effects of factors A and B. The resulting estimators
equal the differences in means between {Yi : fi = 1} and {Yi : fi = 0} for f = A, B, and are
biased for estimating factorial effects of the form τa(πb) and τb(πa) in general. We thus exclude
strategy (iv) from the ensuing discussion.

Strategy (v), on the other hand, estimates the two main effects together via one additive
regression. Consider a generalized version, incorporating the location-shift transformation:

Yi ∼ 1 + A′
i + B′

i. (2)

We first derive the effective estimands of (2) as a pair of general factorial effects, and then state
the bias-variance trade-off between (1) and (2). The result establishes the optimality of (2) for
estimating arbitrary τπ when the nuisance effect τab indeed does not exist.

Let γ̃a and γ̃b be the coefficients of A′
i and B′

i, respectively, from (2). Let τ̂a|b=b and τ̂b|a=a be
the moment estimators of τa|b=b and τb|a=a for a, b = 0, 1, respectively.

Proposition 3. Under the 22 experiment, the coefficients from (2) satisfy

γ̃a = π̃b=0 τ̂a|b=0 + π̃b=1 τ̂a|b=1, γ̃b = π̃a=0 τ̂b|a=0 + π̃a=1 τ̂b|a=1

with π̃b = (π̃b=0, π̃b=1) = σ−1(e−1
01 + e−1

11 , e−1
00 + e−1

10 ) and π̃a = (π̃a=0, π̃a=1) = σ−1(e−1
10 +

e−1
11 , e−1

00 + e−1
01 ), where σ = ∑

z∈T e−1
z .

Proposition 3 shows γ̃a and γ̃b to be the moment estimators of τa(π̃b) and τb(π̃a) under
a specific weighting scheme that is fully determined by (ez)z∈T and independent of (δa, δb).
Therefore, the unsaturated regression (2) no longer accommodates flexible weighting schemes
even with location-shifted factors. Under balanced designs with equal treatment sizes Nz = N/4
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for all z ∈ T , γ̃a = τ̂a(1/2, 1/2) and γ̃b = τ̂b(1/2, 1/2) give the moment estimators of the
standard main effects, and thus equal the coefficients of A′

i and B′
i from the saturated regression

(1) with δa = δb = 1/2. This is no coincidence, but arises from the fact that the columns of
the design matrix of (1) with δa = δb = 1/2 are mutually orthogonal, such that the deletion of
A′

iB
′
i has no effect on the estimation of the remaining coefficients. This highlights the connection

between standard effects and balanced designs from a different angle, echoing the classical
principle that recommends the use of balanced designs whenever possible.

In general, γ̃a and γ̃b are biased for τa(πb) and τb(πa) unless (πa, πb) = (π̃a, π̃b) or the
interaction τab does not exist. Nevertheless, under Condition 2, they minimize the sampling
variances of τ̂a(πb) = πb=0 τ̂a|b=0 + πb=1 τ̂a|b=1 and τ̂b(πa) = πa=0 τ̂b|a=0 + πa=1 τ̂b|a=1
over all possible πb and πa, respectively. In particular, the constant treatment effects ensure
var(τ̂a|b=0) = s0(N

−1
00 + N−1

10 ) and var(τ̂a|b=1) = s0(N
−1
01 + N−1

11 ). Minimizing the variance of
τ̂a(πb) is thus equivalent to having the weights proportional to the inverses of var(τ̂a|b=0) and
var(τ̂a|b=1), resulting in (π̃b=0, π̃b=1) as defined in Proposition 3. A similar argument applies to
γ̃b. This demonstrates the bias-variance trade-off between (1) and (2).

This concludes our discussion of the 22 experiment. We next extend the results to the 23 exper-
iment to illustrate one additional point: with more than two factors, the factor-based regression
is capable of estimating only a subset of all causally meaningful factorial effects in general, yet
it regains generality in the absence of three-way interactions.

4. The 23
factorial experiment

4.1. Notation and definition of the general factorial effects

The 23 factorial experiment features Q = 23 = 8 treatment combinations arising from three
binary factors, denoted by A, B and C. Let Ai, Bi and Ci ∈ {0, 1} indicate the levels of the factors
received by unit i. The eight treatment combinations consist of T = {(abc) : a, b, c = 0, 1}. Let
Ȳ (abc) be the average potential outcome under treatment combination (abc) ∈ T . Define the
conditional effects of factors A, B and C as

τa|bc = Ȳ (1bc) − Ȳ (0bc), τb|ac = Ȳ (a1c) − Ȳ (a0c), τc|ab = Ȳ (ab1) − Ȳ (ab0),

respectively, with the other two factors fixed at bc, ac, ab ∈ {0, 1}2. Define the conditional two-
way interactions between factors A and B, factors A and C, and factors B and C as

τab|c = Ȳ (11c) − Ȳ (10c) − Ȳ (01c) + Ȳ (00c),

τac|b = Ȳ (1b1) − Ȳ (1b0) − Ȳ (0b1) + Ȳ (0b0),

τbc|a = Ȳ (a11) − Ȳ (a10) − Ȳ (a01) + Ȳ (a00),

respectively, with the third factor fixed at c, b, a ∈ {0, 1}. When there is possibility of confusion,
we write out a = a, b = b and c = c for a, b and c in the subscripts to emphasize both the factors
and their respective levels; for example, τa|bc = τa|b=b,c=c and τab|c = τab|c=c. These conditional
effects are the building blocks for defining the general factorial effects.

To simplify the presentation, we call a set of W numbers (π1, . . . , πW ) a W -dimensional
weighting vector if

∑W
w=1 πw = 1 and πw � 0; a weighting scheme is then a collection

of weighting vectors with composition that will be clear from the context. Throughout this
section, assume that πab = (πab)a,b=0,1, πac = (πac)a,c=0,1 and πbc = (πbc)b,c=0,1 are some
prespecified four-dimensional weighting vectors, and that πa = (πa)a=0,1, πb = (πb)b=0,1 and
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πc = (πc)c=0,1 are some prespecified two-dimensional weighting vectors. We summarize them
as π = {πab, πac, πbc, πa, πb, πc} = {πab, πac, πbc, πa, πb, πc : a, b, c = 0, 1}.

Definition 1. Under the 23 experiment, define

τa(πbc) =
∑
b,c

πbc τa|bc, τb(πac) =
∑
a,c

πac τb|ac, τc(πab) =
∑
a,b

πab τc|ab

as the main effects of factors A, B and C under weighting vectors πbc, πac and πab, respectively;
define

τab(πc) =
∑

c=0,1

πc τab|c, τac(πb) =
∑

b=0,1

πb τac|b, τbc(πa) =
∑

a=0,1

πa τbc|a

as the two-way interactions between factors A and B, factors A and C, and factors B and C under
weighting vectors πc, πb, and πa, respectively; define

τabc = τab|c=1 − τab|c=0 = τac|b=1 − τac|b=0 = τbc|a=1 − τbc|a=0 =
∑
a,b,c

(−1)a+b+c+1Ȳ (abc)

as the three-way interaction between factors A, B and C.

Definition 1 gives a total of 23 − 1 = 7 general factorial effects, vectorized as

τπ = {τa(πbc), τb(πac), τc(πab), τab(πc), τac(πb), τbc(πa), τabc}T = Gπ Ȳ .

Following the convention from the 22 experiment, the subscripts of the weighting vectors indicate
the factors that are being marginalized out. We refer to π as the equal weighting scheme if
πab = πbc = πac = 1/4 and πa = πb = πc = 1/2 for all a, b, c = 0, 1; and we refer to π as the
empirical weighting scheme if πa = N−1∑N

i=1 I(Ai = a), πab = N−1∑N
i=1 I(Ai = a, Bi = b)

and so on, equal to the empirical treatment proportions in the experiment. Although Definition 1
can be general, we focus on the following coherent weighting scheme throughout the paper.

Definition 2. A weighting scheme π is said to be coherent if there exists a probability dis-
tribution over T , represented by πabc = pr(A = a, B = b, C = c) for a, b, c = 0, 1, such
that

πa = pr(A = a), πb = pr(B = b), πc = pr(C = c),

πab = pr(A = a, B = b), πac = pr(A = a, C = c), πbc = pr(B = b, C = c).

Coherence imposes mild restrictions on the elements in π and, building on the intuition from
Remark 1, provides the causal interpretation of the general factorial effects from a thought exper-
iment perspective. Consider a target thought experiment in which we assign unit i to combination
(abc) ∈ T with probability pr{Zi = (abc)} = pr(Ai = a, Bi = b, Ci = c) = πabc. The weighting
vector πbc = (πbc)b,c=0,1 gives the marginal distribution of (Bi, Ci) and renders the weighted
average τa,i(πbc) = ∑

b,c πbc τa|bc,i, where τa|bc,i = Yi(1bc) − Yi(0bc), an intuitive summary of
the main effect of factor A on unit i, accounting for the target treatment probabilities of factors
B and C (see also Hainmueller et al., 2014; Egami & Imai, 2019; de la Cuesta et al., 2021).
Averaging τa,i(πbc) over i = 1, . . . , N yields N−1∑N

i=1 τa,i(πbc) = τa(πbc) as the average effect
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at the population level. The general weights as such allow for external validity beyond the actual
experiment being conducted. The equal weighting scheme is coherent with πabc = 1/8, implying
balanced design in the thought experiment. The empirical weighting scheme is also coherent with
πabc = eabc = Nabc/N .

4.2. Factor-based regression with the saturated model

Define A′
i = Ai − δa, B′

i = Bi − δb and C ′
i = Ci − δc for prespecified δ = (δa, δb, δc) with

0 � δa, δb, δc � 1, and extend (1) to the 23 experiment to define

Yi ∼ 1 + A′
i + B′

i + C ′
i + A′

iB
′
i + A′

iC
′
i + B′

iC
′
i + A′

iB
′
iC

′
i . (3)

Let γ̂ and �̂ be, respectively, the coefficient vector and robust covariance of the 23 − 1 = 7
nonintercept terms in (3). In this subsection we study their design-based properties, illustrat-
ing two important characteristics of factor-based regressions with more than two factors. First,
saturated regressions like (3) can only recover a subset of the coherent factorial effects with
weighting schemes featuring a product structure as in Definition 3 below. Second, the absence of
the three-way interaction restores the generality of (3) for estimating all coherent factorial effects.

Definition 3. A coherent weighting scheme π is said to be a product weighting scheme if
πabc = πaπbπc for a, b, c = 0, 1.

A product weighting scheme π is fully determined by the values of (πa=1, πb=1, πc=1) and
implies independent factors in the corresponding thought experiment. The equal weighting
scheme satisfies Definition 3 with πa=1 = πb=1 = πc=1 = 1/2; the empirical weighting scheme,
on the other hand, in general does not.

Let δ× be the product weighting scheme with pr(Ai = 1) = δa, pr(Bi = 1) = δb and
pr(Ci = 1) = δc in the corresponding thought experiment. As a convention, we use × in the
subscript to indicate product weighting schemes. Let τδ× = Gδ×Ȳ be the corresponding vector
of general factorial effects, τ̂δ× = Gδ×Ŷ its moment estimator, and ˆcov(τ̂δ×) = Gδ×V̂ GT

δ×
the estimated covariance of τ̂δ×. The following proposition gives the numeric correspondence
between {γ̂ , �̂} and {τ̂δ×, ˆcov(τ̂δ×)}, elucidating the utility of (3) for inferring τδ×.

Proposition 4. Under the 23 experiment, the outputs of (3) satisfy γ̂ = τ̂δ× and �̂ =
ˆcov(τ̂δ×) − Gδ× diag(N−1

z )V̂ GT
δ×.

Proposition 4 highlights the commonality and difference between the 22 and 23 experiments.
On the one hand, it ensures the asymptotic equivalence between {γ̂ , �̂} and {τ̂δ×, ˆcov(τ̂δ×)} as N
goes to infinity, and thereby allows for the large-sample Wald-type inference of τδ× based on (3).
On the other hand, the product structure of δ× constrains the generality of (3), and suggests that
it recovers the full vector of τπ simultaneously if and only if (δa, δb, δc) = (πa=1, πb=1, πc=1)

and π is a product weighting scheme. The standard effects satisfy the product structure with
πa=1 = πb=1 = πc=1 = 1/2 and thus admit direct estimation with δa = δb = δc = 1/2.

The resulting specification is equivalent to that under the {+1, −1} coding system up to a
constant scaling factor on each regressor, suggesting the specificity of the {+1, −1} coding
system to the standard effects (Wu & Hamada, 2009; Lu, 2016). The partial effects, in contrast,
may or may not satisfy the product structure, and are thus not necessarily directly estimable from
(3); see the Supplementary Material. This provides a useful guideline for designing and analysing
factorial experiments.

https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asab051#supplementary-data
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One exception, however, is when the three-way interaction does not exist. The absence of τabc

renders the class of product weighting schemes equivalent to the class of coherent weighting
schemes in defining the general factorial effects. We formalize the idea in Proposition 5 below.
For an arbitrary weighting scheme π , let π× be the product weighting scheme with pr(Ai = 1) =
πa=1, pr(Bi = 1) = πb=1 and pr(Ci = 1) = πc=1 in the corresponding thought experiment. By
definition, π× and π share the same marginal treatment probabilities in the underlying thought
experiments, and satisfy π× = π if π is already a product weighting scheme.

Proposition 5. Under the 23 experiment, if τabc = 0, then τπ = τπ× for all coherent π ,
where τπ = Gπ Ȳ and τπ× = Gπ×Ȳ are the vectors of general factorial effects under weighting
schemes π and π×, respectively.

Propositions 4 and 5 together justify the inference of τπ from (3) with (δa, δb, δc) =
(πa=1, πb=1, πc=1) for all coherent π when τabc = 0. The absence of the three-way interaction
restores the generality of factor-based regressions for all coherent weighting schemes.

4.3. Factor-based regression with an unsaturated model

Consider an extension of (2),

Yi ∼ 1 + A′
i + B′

i + C ′
i + A′

iB
′
i + A′

iC
′
i + B′

iC
′
i , (4)

when only the main effects and two-way interactions are of interest, vectorized as

τπ ,+ = (τa(πbc), τb(πac), τc(πab), τab(πc), τac(πb), τbc(πa))
T = τπ\{τabc}.

Let γ̃+ and �̃+ be the coefficient vector and robust covariance of the six nonintercept terms from
(4). We use ã to signify outputs from unsaturated regressions, and subscript + to signify quantities
associated with the effects of interest throughout the paper. Let γ̂+ and γ̂abc be the coefficients of
(A′

i, B′
i, C ′

i , A′
iB

′
i, A′

iC
′
i , B′

iC
′
i) and A′

iB
′
iC

′
i from (3), respectively, with γ̂ = (γ̂ T+, γ̂abc)

T. Proposition
6 extends Proposition 3 to the 23 experiment, elucidating the design-based properties of γ̃+ via
its link with γ̂ .

Proposition 6. Under the 23 experiment, we have γ̃+ = γ̂+ + Dγ̂abc with

D =
(∑

z∈T
e−1

z

)−1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 δb δc 0

1 I3 δa 0 δc

0 δa δb

03×3 I3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−∑a e−1
a00

−∑b e−1
0b0

−∑c e−1
00c∑

ab e−1
ab0∑

ac e−1
a0c∑

bc e−1
0bc

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

−

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

δbδc

δaδc

δaδb

δc

δb

δa

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Recall that γ̂+ and γ̂abc equal the moment estimators of τδ×,+ and τabc, respectively, denoted
by τ̂δ×,+ and τ̂abc. The coefficients from (4) thus recover the exact moment estimator τ̂δ×,+ if
and only if D = 06 or τ̂abc = 0. The former in general entails ez = 1/8 for all z ∈ T and
δa = δb = δc = 1/2, implying both balanced design and standard effects as the estimands. In
particular, ez = 1/8 (z ∈ T ) and δa = δb = δc = 1/2 ensure that the columns of the design
matrix of the saturated regression (3) are mutually orthogonal, such that deletion of any subset
of the columns has no effect on the estimation of the remaining coefficients, with (4) being a
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special case. This is in line with the intuition from the 22 case and echos the classical principle
advocating the use of balanced designs whenever possible.

On the other hand, Proposition 6 implies E(γ̃+)− τδ×,+ = Dτabc, such that γ̃+ is unbiased for
τδ×,+ as long as the nuisance effect τabc indeed does not exist. This, together with the equivalence
between τπ and τπ× in the absence of τabc, ensures the generality of (4) for estimating τπ ,+. More
precisely, under τabc = 0, the coefficient γ̃+ from (4) with (δa, δb, δc) = (πa=1, πb=1, πc=1) is
unbiased for τπ ,+ for all coherent weighting schemes π .

Violation of the condition of no three-way interaction, on the other hand, subjects γ̃+ to
nondiminishing bias, i.e., Dτabc. The intuition for the bias-variance trade-off from the 22 case
extends here and ensures that γ̃+ is more precise than γ̂+ under Condition 2, regardless of whether
τabc = 0 or not.

5. A general theory for the 2K
factorial experiment

5.1. Overview and notation

The 2K factorial experiment features Q = 2K treatment combinations arising from K binary
factors, indexed by k = 1, . . . , K . Of interest is the utility of the corresponding factor-based
regressions for inferring the factorial effects of interest from the design-based perspective. We
first extend the definitions of general factorial effects, the coherent weighting scheme and the
product weighting scheme to the 2K experiment, and demonstrate the utility of location-shifted
regressions for recovering general effects under product weighting schemes. We then show the
equivalence between the coherent and product weighting schemes under the condition of no
three-way interactions. Finally, we quantify the bias-variance trade-off between the saturated and
unsaturated specifications.

We use the following notation. Let Zik ∈ {0, 1} denote the level of factor k received by unit
i for i = 1, . . . , N and k = 1, . . . , K . Let Fk = {0, 1} = {0k , 1k} be the set of possible levels
of factor k , where the subscript k is used to differentiate the factors. Let T = ∏K

k=1 Fk =
{z = (z1, . . . , zK ) : zk ∈ Fk , k = 1, . . . , K} be the set of the 2K treatment combinations. Let
PK = {K : ∅ |= K ⊆ [K]} be the set of all nonempty subsets of [K]. For K ∈ PK , let
zK = (zk)k∈K and zK = (zk)k �∈K index the combinations of factors in K and K = [K]\K,
respectively, taking values from FK = ∏

k∈K Fk = {0, 1}|K| and FK = ∏
k �∈K Fk = {0, 1}K−|K|.

In particular, z[K] = z ∈ T and F[K] = T .

5.2. Definition of the conditional factorial effects

Consider K types of factorial effects, quantifying the main effect of a factor when applied
alone, and the two- to K-way interactions when multiple factors are applied together. We refer to
them interchangeably as the first- to K th-order factorial effects. Building on the intuition from
the 22 and 23 experiments, we first define the conditional factorial effects in this subsection;
then we define the general factorial effects as their respective weighted averages in the next
subsection.

As a general rule, we define by induction the mth-order conditional factorial effect as the
difference between two (m − 1)th-order conditional effects for m = 2, . . . , K (Wu & Hamada,
2009). For notational simplicity, we illustrate the definition of the mth-order effects using the first
m factors with K = [m], z(m+1):K = (zk)

K
k=m+1 and F(m+1):K = ∏K

k=m+1 Fk = {0, 1}K−m.

Definition 4. Let Ȳ (z1, z2:K ) be the average potential outcome under z = (z1, z2:K ) ∈ T , and
define τ1(z2:K ) = Ȳ (11, z2:K )− Ȳ (01, z2:K ) as the conditional main effect of factor 1 when factors
2 to K are fixed at z2:K ∈ F2:K .
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Given τ[m−1] as the conditional (m − 1)th-order factorial effect of factors 1 to (m − 1) when
the rest of the factors are fixed at zm:K ∈ Fm:K for m = 2, . . . , K − 1, define

τ[m](z(m+1):K ) = τ[m−1](1m, z(m+1):K ) − τ[m−1](0m, z(m+1):K )

as the conditional mth-order factorial effect of factors 1 to m when the rest of the factors are fixed
at z(m+1):K ∈ F(m+1):K .

For m = K, define τ[K] = τ[K−1](1K ) − τ[K−1](0K ) as the K-way interaction of factors
1 to K.

Based on Definition 4, we can obtain the explicit form of τ[m](z(m+1):K ) in terms of the Ȳ (z),
and show that the order in which new factors are added to the combination in the induction
does not matter. Definition 4 extends to general K ∈ PK by symmetry. Denote by τK(zK) the
conditional |K|th-order factorial effect of factors in K when the rest of the factors are fixed at
zK ∈ FK. This gives a total of |FK| = 2K−|K| conditional factorial effects for the |K| factors in
a fixed K. The notation from the 22 case is a special case where τa|b = τa(b) and τb|a = τb(a);
likewise for τa|bc = τa(bc), τab|c = τab(c) and so on from the 23 case.

5.3. Definition of the general factorial effects

We next define the general factorial effects as weighted averages of their respective conditional
counterparts. Consider π(z) = pr(Zi1 = z1, . . . , ZiK = zK ) for z = (z1, . . . , zK ) ∈ T as the
treatment probabilities under some target thought experiment. The marginal distribution of Zi,K =
(Zik)k∈K equals πK = {π(zK) : zK ∈ FK} with π(zK) = pr(Zi,K = zK) = ∑

zK∈FK
π(zK, zK). It

induces an intuitive weighting scheme for averaging over factors in K when defining the general
factorial effect of factors in K. The πa = (πa=0, πa=1) and πab = (πab)a,b=0,1 from the 22 and
23 experiments are special cases of πK with K = {A} and {A, B}, respectively. Building on the
intuition from Definition 2, we call π = {πK : K ∈ PK } the coherent weighting scheme induced
by the joint distribution {π(z) : z ∈ T }.

Definition 5. Given a coherent weighting scheme π and conditional factorial effects τK(zK)

from Definition 4 for all K ∈ PK and zK ∈ FK, define

τK,π =
∑

zK∈FK

π(zK) τK(zK)

as the general factorial effect of factors in K under π , vectorized as

τπ = {τK,π : K ∈ PK } = Gπ Ȳ .

Definitions 4 and 5 together define the 2K − 1 general factorial effects under the coherent
weighting scheme π . We refer to τK,π as the standard effect if π(zK) = |FK|−1 = 2−|K| is the
same for all zK ∈ FK.We refer to τK,π as the empirical effect if π(zK) = N−1∑N

i=1 I(Zi,K = zK)

equals the empirical proportion in the actual experiment.

5.4. Factor-based regression with the saturated model

Motivated by (1) for the 22 experiment and (3) for the 23 experiment, we define Z ′
ik = Zik − δk

and Z ′
i,K = ∏

k∈K Z ′
ik as a location-shifted generalization for some prespecified (δk)

K
k=1 with
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0 � δk � 1, and consider the saturated factor-based regression

Yi ∼ 1 +
K∑

k=1

Z ′
ik +

∑
1�k |=k ′�K

Z ′
ikZ ′

ik ′ + · · · +
K∏

k=1

Z ′
ik ∼ 1 +

∑
K∈PK

Z ′
i,K. (5)

Let γ̂ and �̂ be, respectively, the coefficient vector and robust covariance of the Q−1 nonintercept
terms in (5), with elements arranged in the same order of K as those in τπ . In the following we
derive their utility for the Wald-type inference of τπ .

To begin with, the notion of product weighting scheme extends naturally to the current setting
as π(z) = ∏K

k=1 π(zk) and is fully determined by the values of {π(1k)}K
k=1. The equal weighting

scheme for the standard effects satisfies the product structure with π(1k) = 1/2. The empirical
weighting scheme, on the other hand, may not. Building on the intuition from the 23 experiment,
Definition 6 introduces two product weighting schemes of particular importance, arising from
the estimand of interest and the location-shift parameters.

Definition 6. For an arbitrary coherent weighting scheme π , let π× be the product weighting
scheme with π×(1k) = π(1k) for k = 1, . . . , K.

For arbitrary location-shift parameters (δk)
K
k=1 with 0 � δk � 1, let δ× be the product

weighting scheme with δ×(1k) = δk for k = 1, . . . , K.

The product weighting scheme π× satisfies π× = π if π is already a product weighting scheme.
The product weighting scheme δ× features δ×(z) = ∏K

k=1 δ
zk
k (1 − δk)

1−zk for all z ∈ T . Let
τδ× = Gδ×Ȳ be the corresponding vector of general factorial effects, τ̂δ× = Gδ×Ŷ its moment
estimator, and ˆcov(τ̂δ×) = Gδ×V̂ GT

δ× the estimated covariance. The following theorem gives the

numeric correspondence between {γ̂ , �̂} and {τ̂δ×, ˆcov(τ̂δ×)} for inferring τδ×.

Theorem 1. Under the 2K experiment, the outputs of (5) satisfy γ̂ = τ̂δ× and �̂ = ˆcov(τ̂δ×)−
Gδ× diag(N−1

z )V̂ GT
δ×.

Theorem 1 unifies the results from the 22 and 23 experiments, and justifies the utility of γ̂

and �̂ from (5) for inferring τπ when π is a product weighting scheme with π(1k) = δk for
k = 1, . . . , K . Despite the constrained applicability in general, the intuition from Proposition 5
extends here and ensures the generality of (5) in the absence of three-way interactions.

Condition 3. We have τK(zK) = 0 for all zK with |K| = 3.

Condition 3 rules out the existence of three-way interactions, and hence of all m-way
interactions for 3 < m � K by Definition 4.

Theorem 2. Under the 2K experiment and Condition 3, we have τπ = τπ× for all coherent
π , where τπ and τπ× are the vectors of general factorial effects under π and π×, respectively.

Theorems 1 and 2 together allow us to use (5) with δk = π(1k) for the Wald-type inference of
all τπ with coherent π in the absence of three-way interactions. The proof of Theorem 2 further
shows that the requirement of τK(zK) = 0 for all |K| = 3 is not only sufficient, but also necessary
for τπ = τπ× to hold if π is coherent, but not a product weighting scheme. Thus, for Theorem 2
to hold, we cannot relax the |K| = 3 in Condition 3 to |K| = m for some m > 3.
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5.5. Factor-based regression with unsaturated models

Motivated by (2) for the 22 experiment and (4) for the 23 experiment, we next consider

Yi ∼ 1 +
∑

K∈F+
Z ′

i,K, (6)

where F+ ⊂ PK , as an unsaturated variant of (5) when only a subset of the Q−1 factorial effects
are of interest, vectorized as τπ ,+ = {τK,π : K ∈ F+}. A commonly used special case is Yi ∼ 1+
Z ′

i1 +· · ·+Z ′
iK , with only the first-order terms and F+ = {{k} : k = 1, . . . , K}. The additive form

ensures that the location-shift transformation has no effect on the estimation of the nonintercept
coefficients. Another commonly used special case is Yi ∼ 1 +∑K

k=1 Z ′
ik +∑

1�k |=k ′�K Z ′
ikZ ′

ik ′ ,
with only the main effects and two-way interactions and with F+ = {{k}, {k , k ′} : k , k ′ =
1, . . . , K , k |= k ′}.

Let γ̃+ and �̃+ be, respectively, the coefficient vector and robust covariance of the |F+|
nonintercept terms in (6). In this subsection we establish their utility for inferring τπ ,+. Recall the
coefficient vector γ̂ of the nonintercept terms from (5); partition it into γ̂+ and γ̂−, corresponding
to the coefficients of (Z ′

i,K)K∈F+ and (Z ′
i,K)K �∈F+ , respectively. As a convention, we use + and −

in the subscripts to signify effects included in and omitted from the unsaturated regression (6),
respectively.

Let F be the N × Q design matrix of (5), concatenating columns of 1N and (Z ′
i,K)N

i=1 for all
K ∈ PK . Let F+ be the N × (1 + |F+|) design matrix of (6) and F− = F\F+ the submatrix of
F omitted from (6), concatenating columns of (Z ′

i,K)N
i=1 for K �∈ F+. Assume throughout that

the elements in γ̃+, γ̂+ and γ̂− are arranged in the same relative order of K as those in τπ , and
likewise for the columns in F+ and F−.

Let 	 = (FT+F+)−1FT+F− be the coefficient matrix from the columnwise regression of F− on
F+, which is a deterministic function of (ez)z∈T and (δk)

K
k=1; see the Supplementary Material.

Let R = F− − F+	 be the corresponding residual matrix, D the submatrix of 	 without the first
row, and F+[,−1] the submatrix of F+ without the first column. Let PN be the projection matrix
orthogonal to 1N , and let Y = (Y1, . . . , YN )T be the vector of observed outcomes. The next
theorem states the numeric correspondence between γ̃+ and γ̂ under the 2K factorial experiment,
generalizing Propositions 3 and 6. It is an application of Cochran’s formula (Cox 2007).

Theorem 3. Under the 2K experiment, the coefficients from (5) and (6) satisfy γ̃+ = γ̂++Dγ̂−,
where Dγ̂− = 0 if and only if FT+[,−1]PN F−(RTR)−1RTY = 0. In particular, Dγ̂− = 0 for all Y
if FT+F− = 0 or FT+PN F− = 0.

Recall that γ̂+ and γ̂− coincide with the moment estimators of τδ×,+ = {τK,δ× : K ∈ F+}
and τδ×,− = {τK,δ× : K �∈ F+}, respectively, denoted by τ̂δ×,+ and τ̂δ×,−. Theorem 3 gives two
sufficient conditions for γ̃+ to recover exactly τ̂δ×,+, requiring orthogonality of F+ and F− either
in the original form or after being centred by the column averages. These conditions do not hold
in general unless the design is balanced and the factorial effects are the standard ones under the
equal weighting scheme. This generalizes the intuition from the 22 and 23 cases to general K .

Corollary 1. Under the 2K experiment, γ̃+ = γ̂+ if (i) δk = 1/2 for all k = 1, . . . , K, and
(ii) Nz = N/Q for all z ∈ T .

The balance condition (ii) in Corollary 1 can be dropped if we use the weighted least-squares
fit with weights 1/NZi for i = 1, . . . , N . We relegate the details to the Supplementary Material
and focus on the ordinary least-squares fit here.

https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asab051#supplementary-data
https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asab051#supplementary-data
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Despite the loss of exact recovery of the moment estimator τ̂δ×,+ when Dγ̂− |= 0, the intuition
from the 22 and 23 experiments extends here and ensures the unbiasedness of γ̃+ in the absence
of the nuisance effects.

Condition 4. The nuisance effects are zero; that is, τK,π = 0 for all K �∈ F+.

Theorem 4. Under the completely randomized 2K experiment, the coefficients from (6) satisfy
E(γ̃+) = τδ×,+ + Dτδ×,− and cov(γ̃+) = (I , D)Gδ×cov(Ŷ )GT

δ×(I , D)T. Further assume Condi-
tion 1 and Condition 4 with π = δ×. Then E(γ̃+) = τδ×,+, and γ̃+ is asymptotically normal with
N {�̃+ − cov(γ̃+)} = 
 + op(1), where 
 = (I , D)Gδ×SGT

δ×(I , D)T � 0.

Theorem 4 justifies the Wald-type inference of τδ×,+ from the unsaturated specification (6)
when the nuisance effects omitted indeed do not exist. The resulting γ̃+ is both unbiased and
consistent for estimating τδ×,+, with the robust covariance �̃+ affording an asymptotically con-
servative estimator for the true sampling covariance. The proof of Theorem 1 further shows that
the intercept from (6) is an unbiased estimator of a weighted average of Ȳ (z) instead of a con-
trast, and is thus nonzero in general. This suggests the necessity of including the intercept in
the unsaturated specification for the satisfaction of Condition 4. One limitation of (6) again lies
in its requirement on the product weighting scheme. Juxtaposing Condition 3, Condition 4 and
Theorem 2 ensures that the result of Theorem 4 extends to τπ ,+ for all coherent π in the absence
of three-way interactions.

Remark 2. The condition of constant treatment effects further ensures cov(γ̃+) � cov(γ̂+),
such that the estimator from (6) has smaller sampling covariance than that from (5). This,
together with Theorem 4, illustrates the bias-variance trade-off between the saturated and unsat-
urated regressions from the design-based perspective. The result, however, does not hold without
the assumption of constant treatment effects; a counterexample is given in the Supplementary
Material.

The assumption of no nuisance effects can never be verified exactly in practice. Extra caution
is therefore needed when applying unsaturated specifications to unbalanced designs or estimands
other than the standard effects. The saturated specification is, in this sense, a safer choice when the
sample size permits. When the number of treatment combinations Q = 2K is large relative to the
sample size N , however, the saturated regression is subject to substantial finite-sample variability,
so that the unsaturated regressions are possibly more attractive for finite-sample inference. Even
if the nuisance effects are not exactly zero, depending on one’s belief of the data-generating
process, the gain in finite-sample precision by the unsaturated regressions can still outweigh
the bias as long as the omitted nuisance effects, most likely some higher-order interactions, are
reasonably small, ensuring a smaller mean squared error overall.

Alternatively, lasso and ridge regression may be attractive options when the saturated regression
is not possible. Indeed, the discussion so far holds with a given unsaturated specification (6). It
is desirable to have a data-driven specification with both model selection and post-selection
inference (Chipman et al., 1997; Espinosa et al., 2016; Egami & Imai, 2019). Although these
topics have been discussed extensively under the classic linear model, analogous questions under
the design-based framework remain largely unexplored. We leave such investigations to future
work.

https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asab051#supplementary-data
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6. Discussion and recommendations

We conclude this article with three practical implications of our findings in terms of the
2K experiment. The intuition extends to the general Q1 × · · · × QK experiment with minimal
modification, as shown in the Supplementary Material. First, the definition of general factorial
effects greatly broadens the range of estimands that can be considered under factorial experi-
ments, enabling the use of flexible weighting schemes to accommodate context-specific concerns.
Second, location-shifted factor-based regression affords a convenient way of recovering the
moment estimators of the general factorial effects from least squares, with the corresponding
robust covariance being an asymptotically conservative estimator of the true sampling covari-
ance. This enables large-sample Wald-type inference from least-squares outputs. With more than
two factors, factor-based regression is capable of estimating general factorial effects under prod-
uct weighting schemes, and regains generality in the absence of three-way interactions. Third,
unsaturated regressions reduce sampling variances under the condition of constant treatment
effects, but are subject to nondiminishing biases when the condition of no nuisance effects is
violated. Importantly, our theory is design-based without requiring any stochastic models for the
potential outcomes.

We have focused on complete randomization because of its wide range of applications. Clari-
fying the above important issues in this basic experiment provides a proof of concept for other
more complex experiments. The definitions of the general factorial effects remain unchanged, and
the correspondence between the least-squares outputs and moment estimators is purely numeric,
and thus holds under any randomization mechanism. The appropriateness of the Wald-type infer-
ence, however, is assignment-specific and requires modifications under different randomization
mechanisms. We conjecture that the theory extends to experiments with nonconstant treatment
probabilities (Mukerjee et al., 2018) if the least-squares procedure is weighted by the inverse of
the treatment probability. We leave this to future research.
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