
Towards an Optimized GROUP BY Abstraction
for Large-Scale Machine Learning

Side Li
University of California, San Diego

s7li@eng.ucsd.edu

Arun Kumar
University of California, San Diego

arunkk@eng.ucsd.edu

ABSTRACT
Many applications that use large-scale machine learning (ML) in-
creasingly prefer different models for subgroups (e.g., countries) to
improve accuracy, fairness, or other desiderata. We call this emerg-
ing popular practice learning over groups, analogizing to GROUP
BY in SQL, albeit for ML training instead of SQL aggregates. From
the systems standpoint, this practice compounds the already data-
intensive workload of ML model selection (e.g., hyperparameter
tuning). Often, thousands of models may need to be trained, neces-
sitating high-throughput parallel execution. Alas, most ML systems
today focus on training one model at a time or at best, parallelizing
hyperparameter tuning. This status quo leads to resource wastage,
low throughput, and high runtimes. In this work, we take the first
step towards enabling and optimizing learning over groups from
the data systems standpoint for three popular classes of ML: lin-
ear models, neural networks, and gradient-boosted decision trees.
Analytically and empirically, we compare standard approaches to
execute this workload today: task-parallelism and data-parallelism.
We find neither is universally dominant.We put forth a novel hybrid
approach we call grouped learning that avoids redundancy in com-
munications and I/O using a novel form of parallel gradient descent
we call Gradient Accumulation Parallelism (GAP). We prototype
our ideas into a system we call Kingpin built on top of existing ML
tools and the flexible massively-parallel runtime Ray. An extensive
empirical evaluation on large ML benchmark datasets shows that
Kingpin matches or is 4x to 14x faster than state-of-the-art ML
systems, including Ray’s native execution and PyTorch DDP.

PVLDB Reference Format:
Side Li and Arun Kumar. Towards an Optimized GROUP BY Abstraction
for Large-Scale Machine Learning. PVLDB, 14(11): 2327 - 2340, 2021.
doi:10.14778/3476249.3476284

1 INTRODUCTION
Machine Learning (ML) over large-scale data is now common. In-
creasingly, many ML applications seek to train separate models
for separate subgroups based on various attributes, e.g., country or
zipcode. This is a new form of GROUP BY aggregation, albeit for
ML, not SQL aggregates. We call this process learning over groups.
It helps applications for various reasons such as accuracy, fairness,
and/or ease of ML deployment. For instance, some groups’ data
distributions may be simpler than the whole population, helping

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 14, No. 11 ISSN 2150-8097.
doi:10.14778/3476249.3476284

Data Scientist

Ads response

CTR per platform
and country

A

B

A

...

C

BB

AAA

CCCC

A

A

A

B

B

B

C

C

C

A A A

B B B

C C C

Data Parallelism

Task Parallelism

W
or

ke
rs

Materialize Schedule

Unsorted
Raw Data

Partitioned
Data

Time

Time

Communication

Idle Time

W
or

ke
rs

(A)

(B)

W1
W2
W3

W1
W2
W3

Figure 1: (A) Example for learning over groups. (B) Illustra-
tion of existing parallel approaches.

raise accuracy. Emerging non-technical business needs, such as
privacy and regulatory compliance, may also necessitate learning
over groups. For instance, online advertising platforms build disag-
gregated partner-specific models, with each groups’ training data
organized as a separate pipeline [15].

During ML model building,model selection is typically inevitable
to control underfitting vs overfitting, e.g., via hyperparameter tun-
ing [33, 57]. Practitioners often compare tens to hundreds of mod-
els [16, 48]. Learning over groups only amplifies this load many
times, sincemodel selection is needed for each group’smodel. For in-
stance, if one compares 30 models on a group and has 50 groups, this
whole process results in the training of 1500 models. At this scale,
it is impractical to be building models one by one. High-throughput
parallel ML systems are needed to train models en masse.
Example. Consider a data scientist at a Web advertising team
modeling click-through rate. She tries a logistic regression model
on the whole population. She then has a hunch that separate models
per country and mobile platform can raise accuracy, as Figure 1(A)
shows. She materializes each group’s data subset on a distributed
platform such as HDFS and then runs model selection for each
group. After all model configurations of all groups finish, she picks
the best model per group for further analyses.

As the example shows, learning over groups proceeds in two
steps: (1) ETL to create and load groups’ data subsets and (2) sched-
ule ML model selection for all groups. Given the high volume of
models to be trained, parallelism on a cluster is critical. There are
two dominant existing approaches to execute this workload in par-
allel: task parallelism (TP) or data parallelism (DP). We now briefly
explain both of them, contrast their tradeoffs to explain why we
need new approaches, and then present our novel approach. Fig-
ure 2(A) summarizes the key contrasts.

https://doi.org/10.14778/3476249.3476284
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3476249.3476284

Worker

gradients

A

B B

C C

C

Wrap-around
Partitioning

B

C

A A
A

B B

C C

C

W
or

ke
rs

Time

B

C

A A

Task Parallelism

Gradient
Accumulation

ParallelismW
or

ke
rs

Hybrid Execution(A)

Task
Parallelism

Data
Parallelism

Grouped
Learning

Group Size S L S L S L

Compute
Efficiency

+ + - + + +

Storage
Footprint

+ - + + + +

Group
Scalability

+ - - + + +
Distributed

Storage NFS, HDFS, S3, GCS

Models,
Gradients

(B)

Wrap-around Assignment Scheduler

Grouped
Learning

Worker

Models,
Gradients

Worker

Models,
Gradients

GAPGAP

Invoke
API

W1

W2

W3

(C)

Figure 2: (A) Contrasting task-parallelism, data-parallelism, and our approach, grouped learning. S/L stand for small and large.
Group scalability refers to handling large numbers of groups. (B) Illustration of grouped learning’s hybrid executionwithGAP.
(C) Architecture of our system, Kingpin.

Existing Approaches and Drawbacks. ETL for TP needs each
group’s data subset in its entirety. Then, randomly assign each
worker the full dataset of a group. Repeat for each group. TP must
balance data sizes assigned to workers to avoid imbalances. But in
full generality, this becomes an NP-Hard multi-way partitioning
problem [55]. Note that TP can raise the storage footprint substan-
tially, since the dataset is fully copied across workers. In contrast,
ETL for DP is more straightforward: split each group’s data subset
evenly across all workers. DP does not raise the storage footprint.

Scheduling model selection works as follows. TP spawns training
for each group independently on a worker; workers do not talk to
each other. But due to imbalanced task assignments and training
times on workers, TP often results in idle times. This is especially
problematic when group sizes are disproportionately distributed.
In contrast, DP trains each model of each group using the power
of all workers simultaneously. But this can incur enormous com-
munication cost for distributed training on a cluster, especially for
ML workloads based on stochastic gradient descent (SGD) [38, 56].
DP is also overkill for small groups. In general, real-world datasets
typically have a mix of both small and large groups.

Recent work in the DB literature proposed a hybrid of TP and DP
namedModel Hopper Parallelism (MOP) for SGDworkloads [34, 48].
Naturally, one may wonder if MOP can resolve the above TP-DP
dichotomy. Alas, we find that MOP does not directly suit the setting
of learning over groups for two reasons. First, MOP is akin to DP in
sharding datasets across all workers. This is still overkill for small
groups. Second, MOP is tied to SGD’s access patterns. But we seek
to study learning over groups for other key ML access patterns too.
Desiderata. We seek to optimize learning over groups with the
following desiderata. (1) Generality: Benefit multiple kinds of key
ML access patterns. (2) Scalability: Scale along multiple axes, in-
cluding number of groups, group sizes, cluster sizes, and model
selection search space sizes. (3) Efficiency: Avoid the issues of TP,
DP, and MOP, while retaining all their benefits. (4) Non-disruptive
integration: Ideally, achieve all the above without needing to change
the internal code of existing popular ML systems.
Our Approach.We introduce the analogue of GROUP BY for ML
at scale, which allows bulk specifications of model selection for
groups at once. For the underlying physical layer, we perform an
in-depth analysis of the access patterns of learning over groups
for 3 popular classes of ML: generalized linear models (GLMs),
deep learning (DL), and gradient boosted decision trees (GBDT).

We devise analytical cost models to account for multiple aspects–
computation, network, and memory–to compare the efficiency of
alternative approaches. Using our analytical models, we explored
the tradeoff space thoroughly and gleaned insights for designing
our new approach, which we explain next.

We call our approach grouped learning. It has three parts: (1) a
simple and highly general epoch-level scheduling template, (2) a
non-uniform data partitioning strategy for ETL, and (3) a novel form
of parallel ML execution we call Gradient Accumulation Parallelism
(GAP). The first part is inspired by Cerebro [48] and helps us meet
the desiderata of generality and non-disruptive integration. It lets
us unify all 3 of those classes of ML and support multiple forms of
model selection. We support grid/random searches for now.

For the second and third parts, we formalize our optimization
problem from first principles as an MILP. It is NP-Hard. So, we
decompose ETL and scheduling. For ETL, we adopt and adapt an
algorithm called wrap-around from the operations research liter-
ature [31]. It lets us cut communication costs substantially, while
avoiding replication. Scheduling is tied to data placement. Most
small groups are trained in a task-parallel manner. Large groups get
sharded–typically non-uniformly–across workers. For such groups,
we use GAP to reduce communication costs further. GAP is a new
form of “bulk asynchronous” parallelism, a sibling of MOP. Fig-
ure 2(B) illustrates our approach. Put together, wrap-around and
GAP help us meet the desiderata of scalability and efficiency.

We prototype all of our ideas into a system we call Kingpin on
top of the state-of-the-art distributed computation engine, Ray [46].
Figure 2(C) illustrates our system architecture. We evaluate King-
pin empirically on two large ML benchmark datasets: Criteo [14]
and Cityscapes [13]. Kingpin matches or outperforms existing ap-
proaches to learn over groups, with speedups up to 14x for GLMs
and GBDT and 4x for DL. Deeper analysis of resource utilization
logs also validates that Kingpin’s gains come from avoiding unnec-
essary network communications and disk I/O and reducing idle
times on workers, thus affirming the benefits of our new techniques.
In summary, this paper makes the following contributions:

• To the best of our knowledge, this is the first work to enable
and optimize the analogue of GROUP BY for ML at scale, a
process we call learning over groups.
• We perform an in-depth analytical comparison of existing
approaches to learn over groups and their tradeoffs for 3
main classes of ML: GLMs, DL, and GBDT.

• Based on our analyses, we devise a novel approach, grouped
learning, that mitigates the issues of existing approaches,
while still being easy to implement.
• As part of our approach, we adopt and adapt thewrap-around
algorithm for shard placement and devise a novel form of
bulk-asynchronous parallelism, GAP.
• We implement our ideas in a scalable ML system Kingpin,
built on top of Ray and existing ML tools. A thorough em-
pirical evaluation shows that Kingpin matches or surpasses
strong existing baselines.

2 BACKGROUND AND PRELIMINARIES
2.1 Gradient-Based Optimization in ML
Gradient-based optimization is a highly popular mathematical sub-
strate in ML. Many popular ML models are defined asminimization
problems over model parameters and training data [26]. Given train-
ing data 𝐷 = {(𝑥𝑖 , 𝑦𝑖)}𝑛𝑖=1, 𝑥𝑖 , 𝑦𝑖 denote features and targets; 𝑛 is
the number of examples. Many ML models compute argmin𝑤𝐿(𝑤),
where 𝐿 is their loss function and𝑤 are model parameters, using
optimization procedures such as gradient descent. We now explain
them briefly; for more mathematical details, please see [18, 50].

The simplest optimization procedure is batch gradient descent
(BGD). It does a full pass over s𝐷 to compute the gradient of 𝐿 at
an initial 𝑤 (0) , given by: ∇𝐿(𝑤) = 𝑛

𝑖=1 ∇𝑙 (𝑤𝑇 𝑥𝑖 , 𝑦𝑖). The update
step follows: 𝑤 (1) ← 𝑤 (1) − 𝛼∇𝐿(𝑤 = 𝑤 (0)); this is the “descent.”
BGD repeats this process multiple times, each called an epoch, until
convergence to an optimal. Second-order batch methods are more
popular than BGD for convex losses, like in GLMs [39]. They com-
pute the second derivative of 𝐿, the Hessian, too. A popular second-
order method is limited-memory BFGS (LBFGS). It approximates
the Hessian with a fixed-size history of the last 𝑘 gradients.

Stochastic Gradient Descent (SGD) is more popular than BGD
for non-convex losses, like in DL, especially over unstructured data.
One takes a random sample of 𝐷 , called a mini-batch, to estimate
∇𝐿. Sampling is typically done without replacement, which can be
done at scale using a random shuffle of 𝐷 followed by a sequential
pass. SGD typically converges much faster than BGD on large-scale
data because it performs many updates to𝑤 within a single epoch.
Optionally, the dataset is reshuffled between epochs [18].

Finally, GBDTs are a popular form of ML over structured data
that also use gradients. They build an ensemble of weakmodels (typ-
ically short decision trees) to minimize 𝐿. A difference to BGD/SGD
is that while GD descends along the gradient to update model pa-
rameters, gradient-boosting in GBDT performs descent against the
gradient by adding new models. Thus, GBDT needs a full pass over
𝐷 to run inference using all existing models.

2.2 Distributed Data Access Patterns in ML
Looking across the 3 common forms of optimization in ML, we can
organize them into 3 main kinds of data access patterns based on
amenability to distributed execution:
1) Algebraic: BGD and LBFGS compute algebraic aggregates, akin
to SQL SUM [23]. Thus, an epoch is easily parallelized on a cluster
with independent shards and workers; partial gradients are added

by an aggregator in the end. This is logically equivalent to single-
worker execution.
2) Sequential: An SGD epoch needs sequential access to the shuf-
fled dataset. During a pass, each mini-batch gradient update de-
pends on the previous, making SGD inherently hard to parallelize at
the full-dataset scale. We call this pattern sequential-parallelizable.
Techniques such as Parameter Server [38] and Horovod [56] are
sometimes used for data-parallel SGD.
3) Sampling: In this pattern, gradients used for updates are down-
sampled from the full dataset. This is typical in distributed GBDT
tools such as LightGBM [30]. The histogram-based GBDT performs
parallel gradient computations as with LBFGS and constructs mul-
tiple histograms from local gradients [19]. Then it finds the best
splits on the combined global histogram.

2.3 Assumptions and Notation
Unless otherwise mentioned, we assume that 𝐷 fits in the cluster’s
total memory. We do allow data spills to disk; this is treated as an
extension, explained later. We assume the ETL step materializes
group data subsets and stores them in cheap (possibly ephemeral)
networked storage. We fetch data during training by reading over
the network; we cache data on workers if possible and necessary.
For model selection, we focus on grid/random searches with a fixed
number of hyperparameter configurations (configs). Grid/random
searchers are the most popular forms of models selection in prac-
tice [11] but as we will explain later, Kingpin’s design is amenable
to easily plugging in AutoML procedures in future work.

Table 1 lists our notation. For simplicity sake, we assume all
groups reuse the same 𝑠 ; this is also standard inML practice. For sim-
plicity of exposition in the next section, ℎ denotes number of train-
ing epochs with one variable but Kingpin supports convergence-
based criteria as well and does not need a fixed number of epochs up
front. Likewise, the single𝑚 is for simplicity of exposition; different
configs/groups can have different model sizes.

Symbol Meaning
𝐺 Set of groups; 𝐺𝑖 is the 𝑖th group
𝑔 Number of groups (|𝐺 |)

𝑛
Number of examples in 𝐷 ; 𝑛𝑖 is number of

examples in 𝐺𝑖 .
𝑝 Number of workers
𝑠 Number of hyperparameter configurations.
ℎ Number of training epochs/iterations
𝑏 Mini-batch size used in SGD
𝑚 Model size

Table 1: Notation used in this paper.

2.4 Problem Statement
The problem of learning over groups is the following: orchestrate
the given model selection workloads for all given groups on a given
provisioned cluster. The goal is to minimize completion time, also
calledmakespan. We want to satisfy all 4 desiderata listed in Section
1. This is challenging from a formal standpoint because we need to
kill two birds with one stone: ETL for non-uniform partitioning and
scheduling of model selection. It is challenging from the systems

standpoint because we seek to build a unified system for 3 key
access patterns in ML across GLMs, DL, and GBDT.

3 LEARNING OVER GROUPS
We first explain the existing approaches for the 3 classes of ML in
terms of access patterns. We distill them into analytical cost models
to offer amore in-depth understanding. Our goal is not to build some
sort of cost-based optimizer but to study and explore the tradeoff
space analytically to derive insights that help us devise our new
approach. Section 4 will present our approach, which dominates
these existing approaches due to formally grounded reasons.

3.1 Task Parallelism (TP)
In the ML world, the most common way to train models of groups
in task parallelism (TP). A group’s dataset is copied to each worker.
A scheduler gets each worker to train some groups and/or configs.
Each worker trains its assigned config(s) until convergence.

We identify two flavors: group task parallelism (GTP) and model
task parallelism (MTP), based on the granularity of tasks. The former
defines tasks around groups; the latter, around configs. GTP places
entire model selection of a given group on one worker to finish end
to end. MTP breaks apart the model selection of a group to place
one config on a worker at a time. MTP is more prevalent when
compute resources are abundant.

Both flavors load a group’s data over the network once. But MTP
caches data on local disk so that it is not read again for a different
config of the same group. Note that if there are more configs than
workers (𝑠 > 𝑝), a worker may train more than one config per group
even in MTP.
Compute Cost. Gradient computations would account for most of
the compute time, while some cycles would also be used to update
models. Therefore, we model the total compute cost as:

𝐶𝑜𝑠𝑡Comp =

𝑔
𝑖=1

𝑠 · ℎ · [𝑓grad (𝑛𝑖) + 𝑓update · []

= 𝑠 · ℎ · [𝑓grad (𝑛) + 𝑓update · 𝑔 · []
where 𝑓grad (1) is the time to compute the gradient for one example,
𝑓𝑢𝑝𝑑𝑎𝑡𝑒 is the time to perform update to models, and [is the number
of updates to models per iteration. [= 𝑛

𝑏
for 𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙 workloads,

and [= 1 for 𝑎𝑙𝑔𝑒𝑏𝑟𝑎𝑖𝑐 and 𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 workloads.
I/O andMemoryCost. IterativeML computations result in rounds
of scans over the whole dataset. Training on one group requires a
full scan of the dataset’s corresponding subset. For GTP, we cache
each group’s data in memory for training all configs. For MTP, if
𝑠 > 𝑝 , we cache data on disk and load them 𝑠 − 𝑝 times to train
additional configurations. Thus, I/O and memory cost is:

𝐶𝑜𝑠𝑡IO = 𝑓mem (𝑠 · ℎ ·
𝑔
𝑖=1

𝑛𝑖) + 𝑓disk [max(0, 𝑠 − 𝑝) · 𝑠 ·
𝑔
𝑖=1

𝑛𝑖]

= 𝑓mem (𝑠 · ℎ · 𝑛) + 𝑓disk [max(0, 𝑠 − 𝑝) · 𝑠 · 𝑛]
where 𝑓mem is the cost of reading one example in memory, 𝑓disk is
the cost of loading one example from disk and 𝑓disk gives non-zero
only in MTP.
Network Cost. Training models in TP requires little to no network
communication except fetching data from storage before training.

So the network cost is a lump-sum cost of loading data to workers.
For MTP, we copy the full dataset 𝐷 to each worker.

𝐶𝑜𝑠𝑡GTPNetwork = 𝑓network (𝑛)

𝐶𝑜𝑠𝑡MTP
Network = 𝑓network (𝑛 · 𝑝)

where 𝑓network is the cost of fetching one example over network.
Idle Cost.Workers may go idle in GTP when too few groups and
configs (or too many workers) are present, or groups are highly
skewed. For MTP, skew is less of a concern if we have enough tasks
to parallelize (𝑠 · 𝑔 > 𝑝). Random placement of tasks on workers
will amortize such idle times. The max idle time MTP can have is
when training the largest group for one config on one worker.

𝐶𝑜𝑠𝑡GTPIdle =𝑓network (𝑛max) + 𝑓mem (𝑠 · ℎ · 𝑛max)
+ 𝑠 · ℎ · [𝑓grad (𝑛max) + 𝑓update · []

𝐶𝑜𝑠𝑡MTP
Idle =𝑓disk (𝑛max) + 𝑓mem (ℎ · 𝑛max)

+ ℎ · [𝑓grad (𝑛max) + 𝑓update · []
where 𝑛max is the number of examples in the largest group 𝐺max .
Total Runtime. We cannot merely add the three costs directly
because the actual runtime depends on the underlying hardware.
For example, in a memory-optimized cluster, the I/O cost will con-
tribute less to the total runtime. Thus, we model total runtime with
some cost parameters:

𝑇𝑜𝑡𝑎𝑙𝑇𝑖𝑚𝑒 = (𝛼𝐶𝑜𝑠𝑡Comp + 𝛽𝐶𝑜𝑠𝑡IO + 𝛾𝐶𝑜𝑠𝑡Network)/𝑝 + 𝛿𝐶𝑜𝑠𝑡Idle
We tune the cost parameters 𝛼 , 𝛽 ,𝛾 and 𝛿 using offline calibration

runs, akin to RDBMSs. In particular, 𝛽 may dominate when 𝐷 does
not fit in memory. For the rest of this section, we reuse this template
of analytical cost models and cost parameters.

3.2 Data Parallellism (DP)
This approach shards the dataset of each group on each worker.
Thus, it improves upon TP by exploiting all workers for each config,
which can reduce worker idling for contiguous periods. But this
also means DP needs communication among workers to aggregate
partial gradients across workers. So, DP’s cost model differs from
TP primarily in the network and idle costs.

Compute and I/O costs of DP are similar to GTP. Due to space
constraints, we provide the details in the technical report [40].

3.3 Contrasting Task- and Data-Parallelism
Why are TP and DP not “good enough” for learning over groups?
In short, each bakes in some tradeoffs on key scalability axes that
make it substantially suboptimal in many realistic scenarios. Using
our analytical cost models, we contrast them to expose such trade-
offs in Figure 3. Note that compute cost does not differ much across
them; I/O costs do differ but can be optimized by faster storage
and network. The key differentiating factors that make this trade-
off space non-trivial are inherent differences in communication
cost/complexity and varying chances of worker idle times. The
plots use cost parameters calibrated based on real empirical runs
on Criteo dataset (Section 5); due to space constraints we provide
their details in the technical report [40].

The overall takeaway is neither TP nor DP dominates the other
on all axes. MTP is worse than both GTP and DP mainly due to its

4 6 8 10 12
20

50

100

200

500

1000

2000

0 50 100 150 200 100 200 300 400 500 0.1 0.2 0.3 0.4 0.5

MTP (Model
Task Parallelism)
GTP (Group
Task Parallelism)
DP (Data Parallelism)
Kingpin (ours)

Number of workers Number of groups Size of data (GB) Ratio of the largest group

Ru
nt

im
e

(m
in

ut
e)

Figure 3: Analytical cost model-based plots for key scalability axes. Cost parameters are calibrated from real empirical runs
presented later (Section 5) on Algebraic/LBFGS on Criteo dataset with grouping attribute Country. The dataset size is 488GB;
Country has 18 groups; ratio of largest group, 𝑛max/𝑛, is 0.26. We set 𝑝 = 4 workers. For each plot here, we vary one variable,
while fixing all other workload properties.

repeated calls to reload data. GTP and DP are often comparable but
have many crossovers. When the dataset size goes down or number
of groups goes up, GTP dominates; but with more workers or more
skew in group sizes, DP dominates. As a teaser for comparison,
our approach in Kingpin (Section 4) is shown too–it matches or
dominates all these alternatives on all these scalability axes. We
summarize key systems design issues with both TP and DP:
(1) TP Suffers from Imbalances. GTP faces idle times due to im-
balances in groups across workers. Its optimal scheduling problem is
NP-Hard via a reduction from multi-way number partitioning [55].
But even with a near-optimal scheduling heuristic, group size skews
will still cause idle times due to the fundamental indivisibility of a
task. As an extreme example, if a dataset has one very large group,
the time to train that group on a worker will utterly bottleneck the
cluster. Thus, TP as practiced today has inherent efficiency limits.
(2) TP Wastes Storage/Network. MTP mitigates GTP’s issues
with imbalances by placing different configs of a group on different
workers. But this requires a full copy of that group’s data to each
worker. While storage is relatively cheaper, it is still a concern at
scale, e.g., 1TB blows up to 10TB on a 10-node cluster! Of course,
reading from remote storage (e.g., S3) can avoid such blowups. But
due to the iterative nature of gradient-based ML this ends up being
highly wasteful of the network instead! Recent work showed that
this approach can have even 100x higher network costs [48]. Thus,
TP as practiced today has inherent scalability limits as well.
(3) DPhas InherentCommunicationCosts.DP avoids the above
issues of TP by splitting each config across all workers. Alas, this
leads to new bottleneck: inevitable communication rounds and syn-
chronization to aggregate gradients. Our analytical cost models
show that this cost grows linearly with many key factors: number
of configurations 𝑠 , number of epochs ℎ, number of batches (for
SGD) and number of groups 𝑔. In fact, regardless of the class of ML,
DP gets significantly slower as 𝑔 increases. Thus, DP as practiced
today also has inherent efficiency limits.

4 OUR APPROACH: GROUPED LEARNING
We now dive into our approach, grouped learning (GL), a novel
hybrid of TP and DP. We start with some intuition and an overview,
then formalize our problem, present our algorithms, and finally
present its analytical cost model and a key extension.

4.1 Intuition, Overview, and Technical Novelty
Our intuition is as follows: DP is too fine-grained, while TP is too
coarse-grained. This leads to their fundamental issues laid out in
Section 3.3. Philosophically, with GL we “take things apart” to go
down from TP’s level to avoid its issues (imbalances, resource bloat)
and “put things back better” to go up from DP’s level to avoid its
issues (high communication costs). Concretely, GL reduces idle
times from imbalances (vs TP), avoids data copying bloat (vs TP),
and avoid needless communication/synchronization (vs DP). We
achieve all this by assembling three things:

(1) A simple and general two-level scheduling template, in-
spired in part by Cerebro [48]. By decoupling per-epoch and across-
epoch scheduling, we can support many kinds of iterative gradient-
based ML (GLMs, DL, and GDBT) and many model selection heuris-
tics in a unified way, including with varying numbers of epochs per
config. The template itself is not novel but our application of it to
the problem of learning over groups is novel.

(2) A non-uniform data partitioning strategy for ETL based
on a suitable algorithm from the operations research world: wrap-
around. It enables GL to holistically optimize data and computation
placement across groups and configs at every epoch boundary. The
wrap-around algorithm itself is not novel but our application of it
to this large-scale ML systems setting is novel.

(3) A novel form of parallel ML execution per epoch: Gradi-
ent Accumulation Parallelism (GAP). To the best of our knowledge,
GAP is only the second-known form of “bulk asynchronous” par-
allelism, inspired by its (complementary) sibling MOP [48]. GAP
works for all 3 major ML access patterns laid out in Section 2.2.

The precise workflow of GL is as follows, given the cluster, full
dataset, groups, and model selection workloads. First, partition the
dataset to favor TP using wrap-around. A group’s data is not split
across workers unless really needed. If a group’s data is “too” large,
it is sharded across workers. Second, place the epochs of the current
set of configs on the workers and shards based on the scheduler’s
decision. Third, execute the training of configs in a hybrid-parallel
manner, using TP for those that can and GAP for those that cannot.
Next, we explain the mechanics of GAP first and then formalize
our scheduling and partitioning problems.

4.2 Gradient Accumulation Parallelism (GAP)
GAP does the following: given a large set of configs and potentially
sharded data per group, execute gradient-based ML using a hybrid

(A)

A

B B

C C

C

Wrap-around Partitioning

B

C

A A

A

B B

C C

B

A A

C

Setup

W1
W2
W3

2. Accumulate gradients and send them to peers

3. Aggregate gradients, update models and send them back if needed

3 workers:
W1, W2, W3

(B) (C)

2 hyperparameter Configs:
𝛼, 𝛽

1. Initialize models

Gradient Accumulation Parallelism (GAP) in One Iteration on Algebraic

6 models to be trained:
A⨯(𝛼, 𝛽), B⨯(𝛼, 𝛽),

C⨯(𝛼, 𝛽)

W1
W2
W3

𝐌𝐨𝐝𝐞𝐥𝐀,𝛂
𝟎 𝐌𝐨𝐝𝐞𝐥𝐀,𝛃

𝟎

𝐌𝐨𝐝𝐞𝐥𝐁,𝛂
𝟎 𝐌𝐨𝐝𝐞𝐥𝐁,𝛃

𝟎 𝐌𝐨𝐝𝐞𝐥𝐂,𝛃
𝟎

𝐌𝐨𝐝𝐞𝐥𝐂,𝛃
𝟎

𝐌𝐨𝐝𝐞𝐥𝐂,𝛂
𝟎

𝐌𝐨𝐝𝐞𝐥𝐂,𝛂
𝟎

𝐆𝐫𝐚𝐝𝐀,𝛂
𝐖𝟏 𝐆𝐫𝐚𝐝𝐀,𝛃

𝐖𝟏

𝐆𝐫𝐚𝐝𝐁,𝛂
𝐖𝟐 𝐆𝐫𝐚𝐝𝐂,𝛂

𝐖𝟐

𝐆𝐫𝐚𝐝𝐂,𝛂
𝐖𝟑

𝐆𝐫𝐚𝐝𝐁,𝛃
𝐖𝟐 𝐆𝐫𝐚𝐝𝐂,𝛃

𝐖𝟐

𝐆𝐫𝐚𝐝𝐂,𝛃
𝐖𝟑

𝐆𝐫𝐚𝐝𝐂,𝛂
𝐖𝟐

𝐆𝐫𝐚𝐝𝐂,𝛃
𝐖𝟐

𝐌𝐨𝐝𝐞𝐥𝐀,𝛂
𝟎 𝐆𝐫𝐚𝐝𝐀,𝛂

𝐖𝟏+ 𝐮𝐩𝐝𝐚𝐭𝐞 𝐌𝐨𝐝𝐞𝐥𝐀,𝛂
𝟏 𝐌𝐨𝐝𝐞𝐥𝐀,𝛃

𝟎 + 𝐆𝐫𝐚𝐝𝐀,𝛃
𝐖𝟏𝐮𝐩𝐝𝐚𝐭𝐞 𝐌𝐨𝐝𝐞𝐥𝐀,𝛃

𝟏

𝐌𝐨𝐝𝐞𝐥𝐁,𝛂
𝟎 𝐆𝐫𝐚𝐝𝐁,𝛂

𝐖𝟐+ 𝐮𝐩𝐝𝐚𝐭𝐞 𝐌𝐨𝐝𝐞𝐥𝐁,𝛂
𝟏 𝐌𝐨𝐝𝐞𝐥𝐁,𝛃

𝟎 + 𝐆𝐫𝐚𝐝𝐁,𝛃
𝐖𝟐𝐮𝐩𝐝𝐚𝐭𝐞 𝐌𝐨𝐝𝐞𝐥𝐁,𝛃

𝟏

𝐌𝐨𝐝𝐞𝐥𝐂,𝛂
𝟎 𝐆𝐫𝐚𝐝𝐂,𝛂

𝐖𝟐+ 𝐆𝐫𝐚𝐝𝐂,𝛂
𝐖𝟑+ 𝐮𝐩𝐝𝐚𝐭𝐞 𝐌𝐨𝐝𝐞𝐥𝐂,𝛂

𝟏 𝐌𝐨𝐝𝐞𝐥𝐂,𝛃
𝟎 𝐆𝐫𝐚𝐝𝐂,𝛃

𝐖𝟐+ 𝐆𝐫𝐚𝐝𝐂,𝛃
𝐖𝟑+ 𝐮𝐩𝐝𝐚𝐭𝐞 𝐌𝐨𝐝𝐞𝐥𝐂,𝛃

𝟏

𝐌𝐨𝐝𝐞𝐥𝐂,𝛂
𝟏

𝐌𝐨𝐝𝐞𝐥𝐂,𝛃
𝟏

W1
W2
W3

W1
W2
W3

(D)

1. Initialize models

𝐌𝐨𝐝𝐞𝐥𝐀,𝛂
𝟎 𝐌𝐨𝐝𝐞𝐥𝐀,𝛃

𝟎

𝐌𝐨𝐝𝐞𝐥𝐁,𝛂
𝟎 𝐌𝐨𝐝𝐞𝐥𝐁,𝛃

𝟎

𝐌𝐨𝐝𝐞𝐥𝐂,𝛃
𝟎

𝐌𝐨𝐝𝐞𝐥𝐂,𝛂
𝟎

2. Accumulate models for one config

𝐌𝐨𝐝𝐞𝐥𝐀,𝛂
𝟎 𝐆𝐫𝐚𝐝𝐀,𝛂

𝐖𝟏+ 𝐮𝐩𝐝𝐚𝐭𝐞 𝐌𝐨𝐝𝐞𝐥𝐀,𝛂
𝟏

𝐌𝐨𝐝𝐞𝐥𝐁,𝛂
𝟎 𝐆𝐫𝐚𝐝𝐁,𝛂

𝐖𝟐+ 𝐮𝐩𝐝𝐚𝐭𝐞 𝐌𝐨𝐝𝐞𝐥𝐁,𝛂
𝟏 𝐌𝐨𝐝𝐞𝐥𝐂,𝛂

𝟎 𝐆𝐫𝐚𝐝𝐂,𝛂
𝐖𝟐+ 𝐮𝐩𝐝𝐚𝐭𝐞 𝐌𝐨𝐝𝐞𝐥𝐂,𝛂

𝟎.𝟓

𝐌𝐨𝐝𝐞𝐥𝐂,𝛃
𝟎 𝐆𝐫𝐚𝐝𝐂,𝛃

𝐖𝟑+ 𝐮𝐩𝐝𝐚𝐭𝐞 𝐌𝐨𝐝𝐞𝐥𝐂,𝛃
𝟎.𝟓

4. Train another config and send them back if needed

𝐌𝐨𝐝𝐞𝐥𝐀,𝛃
𝟎 + 𝐆𝐫𝐚𝐝𝐀,𝛃

𝐖𝟏 𝐮𝐩𝐝𝐚𝐭𝐞 𝐌𝐨𝐝𝐞𝐥𝐀,𝛃
𝟏

𝐌𝐨𝐝𝐞𝐥𝐁,𝛃
𝟎 + 𝐆𝐫𝐚𝐝𝐁,𝛃

𝐖𝟐𝐮𝐩𝐝𝐚𝐭𝐞 𝐌𝐨𝐝𝐞𝐥𝐁,𝛃
𝟏

𝐌𝐨𝐝𝐞𝐥𝐂,𝛃
𝟎.𝟓 𝐆𝐫𝐚𝐝𝐂,𝛃

𝐖𝟐+ 𝐮𝐩𝐝𝐚𝐭𝐞 𝐌𝐨𝐝𝐞𝐥𝐂,𝛃
𝟏

𝐌𝐨𝐝𝐞𝐥𝐂,𝛂
𝟎.𝟓 𝐆𝐫𝐚𝐝𝐂,𝛂

𝐖𝟑+ 𝐮𝐩𝐝𝐚𝐭𝐞 𝐌𝐨𝐝𝐞𝐥𝐂,𝛂
𝟏

𝐌𝐨𝐝𝐞𝐥𝐂,𝛂
𝟏

𝐌𝐨𝐝𝐞𝐥𝐂,𝛃
𝟏

Gradient
Accumulation

Parallelism
(GAP) in One
Iteration on
Sequential

𝐌𝐨𝐝𝐞𝐥𝐂,𝛃
𝟎.𝟓

𝐌𝐨𝐝𝐞𝐥𝐂,𝛂
𝟎.𝟓

𝐌𝐨𝐝𝐞𝐥𝐀,𝛂
𝟏

𝐌𝐨𝐝𝐞𝐥𝐂,𝛂
𝟎.𝟓

𝐌𝐨𝐝𝐞𝐥𝐂,𝛃
𝟎.𝟓

𝐌𝐨𝐝𝐞𝐥𝐁,𝛂
𝟏

3. Send models to peers

W1
W2
W3

Figure 4: Illustration of our entire approach for an epoch/iteration. 𝑀𝑜𝑑𝑒𝑙𝑘
𝑖,𝑗

is the model of group 𝑖 and config 𝑗 after 𝑘-th
iteration. 𝐺𝑟𝑎𝑑𝑤

𝑖,𝑗
is the gradient of group 𝑖 and config 𝑗 obtained at 𝑤 worker. Items underlined are sent from other workers

asynchronously. A) Setup of workload inputs. (B) Wrap-around partitioning on the dataset. (C) GAP execution for Algebraic
(LBFGS). (D) GAP execution for Sequential (SGD).

of TP and DP. The novelty of GAP lies in its operation on sharded
data of one group. Basically, it accumulates gradients-related arti-
facts and ships them across workers asynchronously and in parallel.
The degree of parallelism is determined by the number of configs
and shards. We dive into how GAP works for each class of ML.
Figure 4(C–D) illustrate the workflow on Algebraic and Sequential.
Due to space constraints, we present the illustration of Sampling
(GBDT) in the technical report [40].
(1) Algebraic (LBFGS): Split gradient computation algebraically
as usual; multiple workers simultaneously train the same config to
obtain local partial gradients. DP would aggregate partial gradients
eagerly in one go, but GAP has this twist: aggregate partial gradients
lazily and asynchronously over time, as dictated by our scheduler.
(2) Sequential (SGD): Parallelize at the granularity of a group; two
workers can not simultaneously train the same config. This ensures
logical equivalence to sequential SGD, helping accuracy. When a
worker finishes training a group’s config, it moves on to another
config of that group while asynchronously shipping the previous
config to another worker. In this sense, GAP is inspired by MOP.
(3) Sampling (GBDT): Parallelize the sampled statistics on work-
ers as usual. We repeat swapping of parallelizable artifacts asyn-
chronously among workers until GAP finishes one iteration of all
configs of all groups, akin to shipping partial gradients in Algebraic.

Overall, GAP has the following invariants based on the ML ac-
cess patterns, with the last 2 being potentially relaxed for Algebraic
and Sampling workloads: (1) Data sharding: 𝐷 is sharded across
workers, not fully copied. (2) Worker exclusivity: A worker han-
dles only one config at a time. (3) Config isolation: A config is
handled by at most one worker at a time. (4) Group isolation:
Configs of a group do not run concurrently across workers.

4.3 Formal Scheduling Problem
Our scheduler tackles the two-fold problem of ETL/partitioning and
scheduling of configs. We now state it formally as a mixed-integer

linear program (MILP). Table 2 summarizes the extra notation. The
objective is to minimize makespan𝐶 to train all configs of all groups
for one epoch. We do a pilot run to get the runtime of a config on a
group’s dataset to set 𝑉 .

Obj. min
𝐶,𝑁,𝑋,𝑂,𝑃,𝑄

𝐶 (1)

∀𝑖, 𝑖 ′ ∈ [1, .., 𝑔],∀𝑗, 𝑗 ′ ∈ [1, ..., 𝑠],∀𝑘, 𝑘 ′ ∈ [1, ..., 𝑝]
s.t. 𝐶 ≥ 𝑋𝑖, 𝑗 +𝑇𝑖, 𝑗 (1a)

𝑋𝑖, 𝑗 ≥ 0 (1b)
𝑝
𝑗=1

𝑁𝑖, 𝑗 =
𝑛𝑖

𝑛
(1c)

𝑋𝑖, 𝑗,𝑘 ≥ 𝑋𝑖′, 𝑗,𝑘 +𝑇𝑖′, 𝑗,𝑘 −𝑉 · 𝑁𝑖′,𝑘 ·𝑂𝑖,𝑖′, 𝑗,𝑘 (1d)
𝑋𝑖′, 𝑗,𝑘 ≥ 𝑋𝑖, 𝑗,𝑘 +𝑇𝑖, 𝑗,𝑘 −𝑉 · 𝑁𝑖,𝑘 · (1 −𝑂𝑖′,𝑖, 𝑗,𝑘) (1e)
𝑋𝑖, 𝑗,𝑘 ≥ 𝑋𝑖, 𝑗,𝑘′ +𝑇𝑖, 𝑗,𝑘′ −𝑉 · 𝑁𝑖,𝑘′ · 𝑃𝑖, 𝑗,𝑘,𝑘′ (1f)
𝑋𝑖, 𝑗,𝑘′ ≥ 𝑋𝑖, 𝑗,𝑘 +𝑇𝑖, 𝑗,𝑘 −𝑉 · 𝑁𝑖,𝑘 · (1 − 𝑃𝑖, 𝑗,𝑘′,𝑘) (1g)
𝑋𝑖, 𝑗,𝑘 ≥ 𝑋𝑖, 𝑗 ′,𝑘 +𝑇𝑖, 𝑗 ′,𝑘 −𝑉 · 𝑁𝑖,𝑘 ·𝑄𝑖, 𝑗, 𝑗 ′,𝑘 (1h)
𝑋𝑖, 𝑗 ′,𝑘 ≥ 𝑋𝑖, 𝑗,𝑘 +𝑇𝑖, 𝑗,𝑘 −𝑉 · 𝑁𝑖,𝑘 · (1 −𝑄𝑖, 𝑗 ′, 𝑗,𝑘) (1i)

The variables to optimize over are the start times 𝑋 , group iso-
lation assignments 𝑂 , worker exclusivity assignments 𝑃 , config
isolation assignments 𝑄 , and data partitioning 𝑁 . The constraints
enforce the four invariants of GAP as listed above: (1c) ensures
data sharding; (1d) and (1e) ensure group isolation; (1f) and (1g)
ensure worker exclusivity; (1h) and (1i) ensure config isolation; (1a)
and (1b) define makespan and sanity of start times.

One might now wonder if we can use an MILP solver such as
Gurobi. But our problem turns out to be a fusion of two classic NP-
Hard problems: multi-way number partitioning [55] and open-shop
scheduling [22]. Since the total number of configs across groups
can even be in the thousands, MILP solvers may be too slow.

Due to the above, we adopt the following two-step heuristic
approach that is both efficient and offers near-ideal makespans in

Table 2: Additional notation used in MILP.

Symbol Description
𝐶 Makespan (per epoch)

𝑁 ∈ |𝑅 |𝑔×𝑝 𝑁𝑖,𝑘 indicates the proportion of data of
group 𝐺𝑖 on 𝑘𝑡ℎ worker

𝑇 ∈ |𝑅 |𝑔×𝑠×𝑝
𝑇𝑖, 𝑗,𝑘 is the runtime of training group
𝐺𝑖 and 𝑗𝑡ℎ configuration on 𝑘𝑡ℎ worker

𝑋 ∈ |𝑅 |𝑔×𝑠×𝑝
𝑋𝑖, 𝑗,𝑘 is the start time of the execution
of group 𝐺𝑖 and 𝑗𝑡ℎ configuration on

𝑘𝑡ℎ worker

𝑂 ∈ {0, 1}𝑔×𝑔×𝑠×𝑝 𝑂𝑖,𝑖′, 𝑗,𝑘 = 1⇐⇒ 𝑋𝑖, 𝑗,𝑘 < 𝑋𝑖′, 𝑗,𝑘 ,
𝑁𝑖,𝑘 > 0, 𝑁𝑖′,𝑘 > 0

𝑃 ∈ {0, 1}𝑔×𝑠×𝑝×𝑝 𝑃𝑖, 𝑗,𝑘,𝑘′ = 1⇐⇒ 𝑋𝑖, 𝑗,𝑘 < 𝑋𝑖, 𝑗,𝑘′ ,
𝑁𝑖,𝑘 > 0, 𝑁𝑖,𝑘′ > 0

𝑄 ∈ {0, 1}𝑔×𝑠×𝑠×𝑝 𝑄𝑖, 𝑗, 𝑗 ′,𝑘 = 1⇐⇒ 𝑋𝑖, 𝑗,𝑘 < 𝑋𝑖, 𝑗 ′,𝑘 ,
𝑁𝑖,𝑘 > 0

𝑉
Very large value. Time to train one

model on the whole dataset

practice, certainly significantly faster than the prior art approaches
(TP and DP). First, partition a set of numbers (in our case, data for
groups) into a collection of subsets so that each collection’s sums
are as equal as possible. Second, find an optimal schedule to execute
these collections/groups to minimize the makespan.

4.4 The Wrap-around Algorithm for ETL
If we relax 𝑁 in the MILP to real space, the ETL part becomes more
manageable. In the operations research literature such a relaxation
is called “pliable shop” scheduling [31]. That prior work proposed
a linear-time algorithm that is a good fit for our (relaxed) scenario:
wrap-around algorithm. The idea is to compute the expected ca-
pacity/makespan and keep adding data for groups onto a worker.
If adding a group would exceed the current worker’s optimal ca-
pacity, we shard the data and continue adding the overflow part to
next worker. The order groups are put onto workers itself entails a
schedule to manage executions. Based on all of our notation so far,
the optimal makespan will now be:

𝐶∗ =𝑚𝑎𝑥{𝑛
𝑝
, max
𝑖∈[1,...,𝑔]

(𝑛𝑖)} ·𝑉 · 𝑠/𝑛 (2)

Prior work [31] also showed that the wrap-around algorithm is
provably optimal; we refer the interested reader to [44] for their
proof. Note thatmax𝑖∈[1,...,𝑔] (𝑛𝑖) comes from the rationale that we
cannot execute a job in parallel but in a strictly sequential manner.
Overall, this algorithm is helpful to ensure sequential execution
order on sharded data. If we end up needing to shard in between
an example (non-integral splits), we round it by rolling over the
extra example to the next worker. Just one example off from the
optimal has virtually no impact on the makespan. Thus, we modify
it slightly and present the pseudocode above. Figure 4(B) illustrates
the algorithm.

4.5 Putting It All Together
Combining wrap-around and GAP, we first evaluate workers’ ex-
pected capacities for at each epoch based on simple statistics on the

Algorithm 1 The Wrap-around Algorithm
1: Input: Group Information: 𝐺 , 𝑔, 𝑛. Number of workers: 𝑝
2: Output: Partitioning schema
3: 𝐶∗ =𝑚𝑎𝑥{𝑛𝑝 ,max𝑖∈[1,...,𝑔] (𝑛𝑖)}
4: Initialize 𝐴 ∈ |𝑅 |𝑔×𝑝 = [[0, ..., 0]]
5: 𝑐𝑢𝑟_𝑓 𝑖𝑙𝑙𝑒𝑑 = 0, 𝑐𝑢𝑟_𝑤𝑜𝑟𝑘𝑒𝑟 = 1
6: for group 𝑖 in 𝐺 do
7: if 𝑛𝑖 + 𝑐𝑢𝑟_𝑓 𝑖𝑙𝑙𝑒𝑑 <= 𝐶∗ then
8: 𝐴𝑖,𝑐𝑢𝑟_𝑤𝑜𝑟𝑘𝑒𝑟 = 𝑛𝑖 ,
9: 𝑐𝑢𝑟_𝑓 𝑖𝑙𝑙𝑒𝑑 += 𝑛𝑖
10: else
11: while 𝑛𝑖 > 0 do
12: if 𝐶∗ − 𝑐𝑢𝑟_𝑓 𝑖𝑙𝑙𝑒𝑑 <= 𝑛𝑖 then
13: 𝐴𝑖,𝑐𝑢𝑟_𝑤𝑜𝑟𝑘𝑒𝑟 = 𝐶∗ - 𝑐𝑢𝑟_𝑓 𝑖𝑙𝑙𝑒𝑑
14: 𝑛𝑖 -= 𝐶∗ - 𝑐𝑢𝑟_𝑓 𝑖𝑙𝑙𝑒𝑑
15: 𝑐𝑢𝑟_𝑤𝑜𝑟𝑘𝑒𝑟 += 1, 𝑐𝑢𝑟_𝑓 𝑖𝑙𝑙𝑒𝑑 = 0
16: else
17: 𝐴𝑖,𝑐𝑢𝑟_𝑤𝑜𝑟𝑘𝑒𝑟 = 𝑛𝑖
18: 𝑐𝑢𝑟_𝑓 𝑖𝑙𝑙𝑒𝑑 += 𝑛𝑖 , 𝑛𝑖 = 0
19: Return 𝐴

data and hyperparameter search space. Workers read their assigned
data over the network. GAP is used for training all configs for that
epoch.We accumulate training artifacts and ship them aroundwork-
ers asynchronously. When a worker finishes training a config on its
(shard of a) group, it propagates gradient-related results to another
worker with the same group data. The last worker will finally add
up all gradients, run the update step for the optimization procedure,
and then broadcast updated models back to relevant workers. Thus,
all workers are kept busy almost always during training instead of
waiting for instructions from a centralized manager.

See Figure 4 again for the end-to-end illustration of how wrap-
around and GAP for all 3 classes of ML workloads. Note that syn-
chronization over the network is only needed when a group’s data
is not entirely on one worker. All in all, grouped learning scales
seamlessly on all axes explained in Section 3: dataset size, cluster
size, number of groups, and group sizes.

4.6 Analytical Cost Model
We now present our approach’s analytical cost models that we used
for Figure 3 in Section 3. The compute and I/O costs are the same
as that of DP; we skip them for brevity.
Network Cost. This is a key advantage of GAP: it does not incur
much network cost, especially for SGD, even if a group’s dataset
is sharded across workers. The actual cost per epoch is as follows.
Note it is is linear in the number of shards of a group, which in the
worst case is only the number of workers 𝑝 (say, for a super large
group). This is in contrast to DP for SGD (e.g., Horovod or PyTorch
DDP), which are orders of magnitude higher.

𝐶𝑜𝑠𝑡Network = 𝑓network (𝑛 + 𝑠 · ℎ ·𝑚 · 𝑝)

Idle Cost. A worker may still be idle when waiting for its peers to
finish their parts. But this synchronization happens only once per
epoch, no matter how many groups or configurations we have.

𝐶𝑜𝑠𝑡Idle = 𝑓sync (ℎ)

B

AAA

C

D

A

B

A A a
A

W1
W2
W3

W1
W2
W3

W1
W2
W3

W1
W2
W3

A A a
A A a

AA a
B B

A A a
AA a

B B C

A A a
AA a

B B C

D

(A) (B)

(C) (D)

Figure 5: Illustration of the constrained wrap-around algo-
rithm.Optimalmakespan is 3. (A) Split A into two partitions,
because 5/3 is rounded to 2. (B) No split on B, and put it on
the worker with least data assigned. (C) and (D) No split.

4.7 General Extension
So far, our approach can be easily layered onto existing ML popular
frameworks for LBFGS and SGD-based ML (e.g., PyTorch) without
modifying their internal code. But for GBDT, an implementation
nuance is that this is not possible with just the pure wrap-around
algorithm. We will explain the implementation part of this nuance
later in Section 4.8. But for nowwe present an algorithmic extension
that will let us support GBDT systems (e.g., LightGBM) seamlessly
as well, preserving the high generality of our approach.

Basically, we decouple gradient computation and its subsequent
use for the ML/optimization procedures. We then modify the MILP
to account for this. There are only so many ways to partition a
group’s dataset: 1, 2, or upto 𝑝 shards. Formally, this is akin to
setting a constraint on 𝑁𝑖, 𝑗 as follows:

∀𝑐 ∈ [1, ..., 𝑝], 𝑁𝑖, 𝑗 = 0 𝑜𝑟 𝑁𝑖, 𝑗 =
𝑛𝑖

𝑛 · 𝑐
It is also equivalent to having the same upper and lower bound

for each type of split. Even if we relax it to linear space, this bound
setting makes the problem a variant of the pliable job scheduling
problem, which is NP-Hard [31]. Thus, we propose a new heuristic.

Algorithm 2 The Constrained Wrap-around Algorithm
1: Input: Group Information: 𝐺 , 𝑔, 𝑛. Number of workers: 𝑝
2: Output: Partitioning schema
3: 𝐶∗ = 𝑛

𝑝 ; Sort 𝐺 by its size in decreasing order
4: Initialize 𝐴 ∈ |𝑅 |𝑔×𝑝 = [[0, ..., 0]]
5: // A priority queue for workers, sorted by assigned data
6: Q = [(0,1),...,(0,p)] // (filled, worker index)
7: for group 𝑖 in 𝐺 do
8: best_num_splits = round 𝑛𝑖

𝐶∗ to nearest integer
9: for each split do
10: 𝑐𝑢𝑟_𝑓 𝑖𝑙𝑙𝑒𝑑 ,𝑤𝑜𝑟𝑘𝑒𝑟 = Q.pop()
11: 𝐴𝑖,𝑐𝑢𝑟_𝑤𝑜𝑟𝑘𝑒𝑟 += 𝑛𝑖 / best_num_splits
12: Q.push((𝑐𝑢𝑟_𝑓 𝑖𝑙𝑙𝑒𝑑 + 𝑛𝑖 / best_num_splits,𝑤𝑜𝑟𝑘𝑒𝑟))
13: Return 𝐴

Constrained Wrap-around Algorithm. Intuitively, we want
to split a group into as few shards as possible because the more

shards there are, the higher the network cost. Ideally we do not
shard a group at all, resembling TP, albeit with no copying. As
a heuristic, we always split a group to its nearest ratio with the
optimal makespan: 𝑟𝑜𝑢𝑛𝑑 (𝑛𝑖 · 𝑝/𝑛). We call this heuristic the con-
strained wrap-around algorithm. Algorithm 2 presents the pseu-
docode. Figure 5 presents an illustration. The key difference now
is that we first sort the groups in 𝐺 in decreasing order of size to
decide whether to split large groups first. Smaller groups usually
have that ratio < 1; so, we need not split them at all. Empirically,
we find that this heuristic achieves near-optimal makespans for re-
alistic workloads; due to space constraints, we present more details
of this comparison in the technical report [40].

4.8 System Implementation
Kingpin is a new ML system that implements our ideas of grouped
learning, including GAP and thewrap-around algorithm. As a strate-
gic decision, we chose to prototype Kingpin on top of Ray, a recent
highly scalable runtime engine for compute-intensive ML/AI work-
loads [46]. We weighed a prototype on Spark too but found Ray
better for 2 reasons. First, Ray has new systems capabilities that
avoid extra I/Os for intermediates relative to Spark, both for base-
lines (TP and DP) and for Kingpin. Second, Spark’s JVM-based data
caching leads to extra overheads for copying and shipping data to
ML tools (we use Pytorch and LightGBM). Due to space constraints,
we leave the detailed specifics in the technical report [40].

4.8.1 Overview. We adopt an extensible architecture that can
talk to multiple ML tools, as in Figure 2(C). Ray helps parallelize
workloads on physical machines. We still use Spark, albeit only for
materializing group data subsets if the full dataset comes in raw.

A user specifies the following in Kingpin APIs: group metadata
(with syntactic sugar), model_creator, optimizer_creator, hyperpa-
rameter search space, and cluster configuration (number of CPUs,
GPUs, etc.). Our scheduler then runs the wrap-around algorithm
and spawns workers to load corresponding data. All workers are
started as native Ray actors connected by PyTorch’s distributed
primitives [41]. Intermediate results (e.g., gradient artifacts) are
saved in Ray’s in-memory object store, with the option to spill to
disk for fault tolerance. In the end, users will get back serialized
copies of all groups’ models, including selected best models.

For ML training, Kingpin essentially acts as an abstraction en-
veloping popular ML tools without modifying their internal code,
e.g., for tensor compilation or hardware optimizations. Currently,
we support the APIs for PyTorch (for LGBFS and SGD) and Light-
GBM (for GBDT). It is relatively straightforward to add support for
their rival tools if needed (e.g., TensorFlow or XGBoost).

As a detail about the LightGBM integration, it ships histograms
during distributed training. But these histogram data structures are
baked deep into its C++ code and are hard to decouple. LightGBM
provides developers an extensibility option to compute gradients
using a custom loss function. But to use this, we need to rewrite ex-
isting loss functions written in C++ (e.g., cross-entropy) in Python,
which may become a backward compatibility issue for our software.
We decided to avoid this deeper dependency with a different ap-
proach: extend the wrap-around algorithm itself in our scheduler–as
explained in Section 4.7–so that we can restrict ourselves to using
only the user-facing APIs of LightGBM.

Table 3: Model selection workloads of all 3 ML access patterns. All configs are run for 10 epochs/iterations.

Workload/Model Dataset Group-By
attribute Optimizer Hyper-parameter search space

Algebraic - LR Criteo Country
Partner LBFGS Learning rate: [1,0.5,0.1], L1 regularization: [1,0.5,0.1,0.05]

Sequential - UNet Cityscapes City Adam Learning rate: [1e-2,1e-3,1e-4,1e-5], L2 regularization: [0,1e-3,1e-2]

Sampling - GBDT Criteo Country
Partner N/A Learning rate: [1,0.5,0.1,0.05], Num of leaves: [10,20,30]

Table 4: Dataset details after preprocessing.

Dataset On-disk
size Format Count Group

attribute # Groups

Criteo 488GB CSV 14M Country 18
Partner 280

Cityscapes 54GB PNG 21146 City 44

5 EXPERIMENTS
We now present an extensive empirical evaluation seeking to an-
swer three questions. (1) How does Kingpin compare with the
existing approaches of MTP, GTP, and DP on runtimes, accuracy,
and resource utilization? (2) Did our analytical cost-model based
discussion correctly predict the trends? (3) Does Kingpin offer good
scalability on key axes?
Datasets. We use two large ML benchmark datasets with different
groups: Criteo Sponsored Search Data [14] and Cityscapes [13].
Criteo is a product ad click binary classification task with numeric
and categorical features. We pick Country and Partner as meaning-
ful groups for 2 datasets. As standard ML practice, we use random
hashing to convert categorical features into feature vectors. It took
about 90 min to featurize each dataset. Cityscapes is a popular
image dataset for semantic understanding of urban street scenes
in German and Swiss cities. Table 4 lists the dataset and group
statistics. Figure 6 provides the group size distributions. We hold
out a random 10% of data in each group as its validation set. We
also partition all data into small files (default: 25MB) to enable the
wrap-around algorithm to virtually split data at "any" point.
Workloads.We run end-to-end test for all threeML access patterns.
(1) Algebraic: Logistic regression with LBFGS (history size 10). (2)
Sequential: A UNet [53] neural network with 8 filters for semantic
segmentation, Adam as the SGD method, and 𝑏 = 32. (3) Sampling:
GBDT. For all 3, we run standard grid search for hyperparameter
tuning. Table 3 lists the grids.
Experimental Setup.Weuse two clusters: CPU-only for Algebraic
and Sampling; GPU-enabled for Sequential. Both clusters have 4
nodes on CloudLab [17]. Each CPU-only node has 2 Intel E5-2660
v2 10-core CPUs, 256GB RAM, 2 1TB HDDs, and 10 Gbps network.
Each GPU node has 2 Intel Xeon Silver 4114 10-core CPUs, 192GB
RAM, 2 1TB HDDs, 1 480GB SSD and an Nvidia P100 GPU. All
nodes run Ubuntu 16.04. We use Ray v1.1.0, PyTorch v1.7, and
LightGBM v3.1.1. All training and validation datasets are stored on
HDFS hosted in the same cluster.

0 2 4 6 8 10 12 14 16
1k

10k

100k

1M

wurzburg

nuremberg

mannheim

wuppertal

freiburg

schweinfurt

dresden

frankfurt

dusseldorf

munster

tubingen

zurich
erfurt

bochum

darmstadt

50

100

200

500

1k

0 9 18 27 34 45 54 62 72 81 89 99 107
117

126
135

144
153

162
171

180
189

198
207

216
225

234
243

252
261

270
279

1k

10k

100k

1M

Group Ids

Criteo (Country) Cityscapes

Criteo (Partner)

Group Ids

Figure 6: Data distributions of groups in Criteo and
Cityscapes datasets. Note that groupnames inCriteo are just
numbers for anonymous reasons.

Baselines. GTP, MTP, DP, and Switching Parallelism (SP) imple-
mented on top of Ray’s native ML infrastructure are our baselines.
Ray offers native and robust TP scheduling, while RaySGD runs
DP using PyTorch’s DDP [41]. For GBDT, DP runs LightGBM in
data-parallel mode on sockets [4]. We make all baselines as strong
as can be with our best-effort engineering. All baselines use the
same data loader we implement for Kingpin. Also, we scale DP to
run more processes when a workload alone cannot saturate com-
pute resources on one worker; the same applies to GTP. We spawn
multiple configs to train in parallel on one worker using shared
memory store in Ray [1]. For MTP, we do not perform this optimiza-
tion because it will lead to training groups simultaneously on one
worker. Loading all their corresponding data to memory at once
is infeasible. SP is a middle ground that switches between DP and
GTP. It runs DP on large groups and GTP on small groups. Large
groups in our narrow definition are those in the 50th percentile.

5.1 End-to-End Results
We load all data shards to workers’ local memory first before train-
ing for all experiments. Different approaches will trigger this pro-
cess multiple times–thus, we must include data loading time from
remote storage in the end-to-end runtimes. For GTP and MTP, we
use a FIFO queue to schedule out groups and configs. For DP, we
train one group at a time on all worker nodes. For GBDT, Kingpin
uses the general extension in Section 4.7.
Total Runtimes. Table 5 shows the results. We see Kingpin is
either significantly faster than the baselines in most cases cases,

Table 5: End-to-end results on Criteo and Cityscapes for all workloads. All of the experiments are conducted on the Ray
infrastructure. GTP andMTP run the native task-parallel executions in Ray. DP runs PyTorch DDP under the hood for Logistic
Regression and UNet. For GBDT, DP runs native LightGBM in data-parallel mode and Kingpin runs the general extension.

Workload Algebraic - Logistic Regression Sampling - GBDT Sequential - UNet
Dataset Criteo (Country) Criteo (Partner) Criteo (Country) Criteo (Partner) Cityscapes

Systems
E2E

runtime
(min)

Avg CPU
(%)

E2E
runtime
(min)

Avg
CPU
(%)

E2E
runtime
(min)

Avg
CPU
(%)

E2E
runtime
(min)

Avg
CPU
(%)

E2E
runtime
(min)

Avg
CPU
(%)

Avg
GPU
(%)

Kingpin (ours) 86 87.6 95 78.6 42 85.0 55 66.5 563 28.1 83.5
Group Task Parallelism 226 81.3 232 79.1 42 87.7 52 66.1 570 13.2 86.0
Model Task Parallelism 1082 35.6 1312 44.7 578 63.2 703 56.0 780 13.9 69.0

Data Parallelism 158 70.0 711 23.5 50 73.1 208 20.8 2414 13.8 95.3
Switching Parallelism 217 51.8 194 65.8 63.8 58.4 63.9 57.0 1377 14.2 95.5

5 10

2.2

2.4

2.6

Iteration

Va
lid

at
io

n
Lo

ss

0.2 0.4 0.6

0

0.5

1 Kingpin (ours)
DP (Data
Parallelism)
GTP (Group
Task Parallelism)
MTP (Model
Task Parallelism)

Validation Accuracy

CD
F

Figure 7: Learning curves of Wurzburg and CDFs of valida-
tion accuracies of all groups in the Cityscapes dataset.

while matching the best baselines in some cases. On Algebraic over
Criteo-Country, Kingpin is 2.7x faster than GTP and 12.6x faster
than MTP. This is expected because logistic regression training is
dominated by I/O and data movement. MTP wastefully reloads data
repeatedly. DP is about 1.8x slower than Kingpin and 1.4x faster
than GTP. SP is slightly faster than GTP but 1.4x slower than DP.
Overall, Kingpin dominates all the existing approaches.

On Algebraic over Criteo-Partner (a much larger group), King-
pin’s runtime is comparable to what it saw for Country, thus show-
ing its ability to scale well with large numbers of groups. In contrast,
DP becomes dramatically slower due to its inherently high commu-
nication costs. GTP is also comparable to what it saw for Country;
MTP, slightly slower than before. SP is surprisingly faster than
before as well as both GTP and DP.

On Sampling (GBDT) over Criteo for both grouping attributes,
Kingpin is comparable to GTP. DP is marginally slower on Country
but sees 4x slowdown on Partner due its larger number of groups.
MTP’s is still very slow, due to its repeated data loading overheads.
SP’s performance over Partner is between GTP’s and DP’s, while
the result over Country is worse than both.

Finally, on Sequential (UNet) over Cityscapes, Kingpin is compa-
rable to GTP; their GPU utilizations are also comparable. MTP is
only 1.4x slower than Kingpin; this gap is lower now because deep
learning is compute-bound and MTP’s data loading disadvantage
is less significant here. DP is 4.3x slower than Kingpin due to its
inherent communication costs even though PyTorch DDP is a state-
of-the-art system for data-parallel SGD. SP’s runtime sits exactly
in the middle of GTP’s and DP’s.
Learning curves. For Algebraic and Sampling, all approaches
(GTP, MTP, DP, and Kingpin) have virtually indistinguishable con-
vergence behaviors. So, we elide them for brevity. For Sequential

(SGD), different approaches go through a group’s dataset in dif-
ferent orders, likely leading to different learning curves. For all of
them, we shuffled each group’s dataset once up front, which often
suffices for SGD [18]. Figure 7 shows the learning curves on the
largest group of in Cityscapes (Wurzburg), as well as a CDF of the
validation accuracies achieved by the best models for all groups
after 10 epochs. The learning curves on the largest group largely
overlap, showing that all approaches are suitable from the accuracy
standpoint–their runtimes and resource efficiency are what differ-
entiate them. Recall that Kingpin, just like GTP and MTP, ensures
sequential-equivalence for SGD. In the CDF, we see that DP leads
to somewhat worse models than the others; this is just an artifact of
the batch size being fixed, since PyTorch DDP raises the “effective”
batch size [48]. Tuning 𝑏 too will mitigate that.
Summary. Kingpin is the most resource-efficient approach for
learning over groups across all 3 major ML access patterns we stud-
ied. It also scales well with many groups and is often significantly
faster than prior art without sacrificing on accuracy.

5.2 Resource Usage Drill-down
5.2.1 Algebraic (LBFGS) on Criteo-Country. Figure 8 shows
the average CPU usage, max memory usage per worker, and net-
work usage for all compared approaches.
Compute (CPU). Kingpin saturates the CPU most of the time
while having about 10 falloffs overall. These falloffs are from the
synchronization among all workers and occur at our epoch-level
scheduling boundaries. Falloffs are more frequent in DP due to its
exchanging of gradients after every group, config, and epoch. GTP
makes the fullest use of CPU but gradually it sees some workers
becoming idle. MTP has the strangest CPU usage with 12 spikes.
After poring over the detailed logs, we find that these spikes corre-
spond to 12 sets of hyperparameter configs. MTP evenly distributes
configs instead of groups to workers. Training one group and config
at a time is not able to saturate all CPU cores in this experiment.
Memory.We see that Kingpin ramps up memory at the beginning
and keeps needed data in memory till the end. DP does the same,
except that it loads one group at a time, leading to less memory
used per worker. GTP loads all data to Ray’s shared memory store
and trains multiple configs by reading data from the store. Thus,
we see its memory usage is also increasing sharply in the beginning

0 20 40 60 80
0

0.5

1

0 50 100 150

0 50 100 150 200
0

0.5

1

0 500 1000

Kingpin (ours) Data Parallelism

Group Task Parallelism Model Task Parallelism

Time (minute)

Av
g.

 C
PU

 P
er

ce
nt

ag
e

Pe
r

W
or

ke
r

0 20 40 60 80
0

50
100
150
200

0 50 100 150

0 50 100 150 200
0

50
100
150
200

0 500 1000

Kingpin (ours) Data Parallelism

Group Task Parallelism Model Task Parallelism

Time (minute)

M
ax

 M
em

 U
sa

ge
 P

er
 W

or
ke

r
(G

B)

0 20 40 60 80
0

500
1000
1500
2000

0 50 100 150

0 50 100 150 200
0

500
1000
1500
2000

0 500 1000

Kingpin (ours) Data Parallelism

Group Task Parallelism Model Task Parallelism

Time (minute)

Ac
cu

m
. N

et
w

or
k

U
sa

ge
 (G

B)

Figure 8: CPU, Memory and Network Usage of Algebraic on Criteo (Country)

0 200 400
0

0.5

1

0 500 1000 1500 2000

0 200 400
0

0.5

1

0 200 400 600

Kingpin (ours) Data Parallelism

Group Task Parallelism Model Task Parallelism

Time (minute)

Av
g.

 G
PU

 P
er

ce
nt

ag
e

Pe
r

W
or

ke
r

0 200 400
0

200
400
600
800

0 500 1000 1500 2000

0 200 400
0

200
400
600
800

0 200 400 600

Kingpin (ours) Data Parallelism

Group Task Parallelism Model Task Parallelism

Time (minute)

Ac
cu

m
. N

et
w

or
k

U
sa

ge
 (G

B)

Figure 9: GPU and Network Usage of Sequential on Cityscapes

Kingpin (ours)

DP (Data Parallelism)MTP (Model Task Parallelism)

GTP (Group Task Parallelism)

4 5 6 7 8
20

50

100

200

500

1000

Number of workers
4 5 6 7 8

1

1.5

2

Number of workers

Sp
ee

du
p

vs
. 4

 w
or

ke
rs

Figure 10: Worker scalability test.

and stays there till the end. MTP loads groups’ data to memory
repeatedly; so, we see 12 spikes on this plot too. Note that GTP
tends to consume more memory due to extra serialization in Ray’s
shared memory store.
Network. These plots concur with our analytical cost models. King-
pin first reads data and then keeps gradients flowing around. DP
also loads data and exchanges gradients after each epoch. GTP
and MTP only load data over the network once; no more network
usage is triggered during training, except MTP copies almost all
groups’ data to each worker. One unexpected observation here is
that Kingpin triggers more network communications than DP but
GAP’s asynchronous nature amortizes them to yield significantly
lower end-to-end runtimes anyway.

5.2.2 Sequential (SGD) on Cityspaces. We compare compute
(GPU) and network usages, and Figure 9 shows the details.
Compute (GPU). Kingpin keeps GPU busy most of the time while
having lots of falloffs in-between. These falloffs come from the
overhead of switching models to train in GAP, leading to Kingpin
makingworse use of GPU than GTP. Alas, GTP leaves someworkers
idle towards the end. More skew in the dataset would magnify the
idleness. MTP also has lots of falloffs when loading data repeatedly
to memory. DP surprisingly saturates the GPU most of the time. We
figure the reason being that NVIDIA’s GPU utility library (NCCL)
is in charge of communicating gradients.
Network. Overall, Kingpin and GTP have the minimum network
usages. Both do not explicitly trigger network traffic except loading
data and hopping models, though we still see about 100GB of addi-
tional network usage started by the underlying Ray infrastructure.
MTP essentially copies the whole dataset to all workers, topping
about 200GB of network usage. DP is the only approach that re-
quires constant network communication within one epoch, as it
uses all-reduce to exchange gradients for each mini-batch.

0 1 2 3 4 5
500

1k
2k
5k

10k
20k
50k

100k
200k
500k

1M
2M
5M

10M

Group Ids

Workload GBDT MLP
E2E

runtime
(min)

Avg
CPU
(%)

E2E
runtime
(min)

Avg
CPU
(%)

Kingpin 54 67.4 832 38.1
GTP OOM N/A OOM N/A
DP 58 64.7 1663 17.6

Figure 11: Criteo (Device) distribution and end-to-end re-
sults on it with GBDT and Multi-Layer Perceptron (MLP).

5.3 Scalability Discussion
Worker Scalability.We now vary the number of workers for Alge-
braic on Criteo-Country to show their speedup behaviors. Figure 10
shows the results. The curves validate our analytical cost model-
based discussion for all approaches, with one difference being DP
does not scale as well as we expected (its curve is flat here). As
the number of workers increases, Kingpin and MTP see speedups,
while MTP benefits the most from more workers. This is because
MTP can easily parallelize any group and config on any worker.
DP’s runtimes do not show any speedup at all mainly due to its
high network communication costs. GTP’s runtimes also barely
change no matter how many workers there are; its total runtime is
bounded by the time spent on the largest group.
Group Scalability. Our analytical cost models showed that the
runtimes of all approaches except DP are agnostic to the number
of groups. DP faces more overhead when training more groups.
Table 5 confirmed this on Criteo, with Partner having 15x as many
groups as Country. The differences in runtimes on these two at-
tributes are marginal for Kingpin, GTP, and MTP, although we do
see minor slowdown on Partner. This minor slowdown comes from
the overhead of managing (create, read, and write) more models

for all groups. DP suffers from a lot due to its communication costs
and idleness as the number of groups went up.
Skew Scalability. We run GBDT (Sampling) and a three-layer
MLP (Sequential) on Criteo-Device, a new dataset highly skewed
to 2 dominant groups. Figure 11 shows the data distribution and
end-to-end runtimes. Kingpin and DP are agnostic to skew, as
they both shard data across workers. GTP and MTP step into out-
of-memory (OOM) errors because the largest group cannot fit in
memory. A backup strategy is to swap data to disk, which can be
slow and error-prone. Even if the data does fit in memory, GTP
cannot match Kingpin in this case. It will only keep 2 workers
saturated, exacerbating the idleness seen in Figure 8 and 9.

6 RELATEDWORK
In-RDBMSML. There is much prior work on integrating ML with
data systems, including RDBMSs (e.g., MADlib [18, 27]), cloud-
native DBMSs [2, 59], and dataflow systems (e.g., MLlib [45]). All
these systems are complementary to our work; none of them opti-
mize learning over groups. Our goal is to study the fundamental
systems tradeoffs of this workload at scale, not to integrate ML with
data systems. The “keyed models” API in Spark Scikit-learn [5] is
the closest to our work in that it trains models in UDFs for each
value of a grouping attribute. But it does not fully support model se-
lection for groups and its execution approach is GTP, which suffers
from the issues we explained in Section 3.3.
Higher-Level ML Systems. Our work is inspired in part from the
recent line of in the DB world on “factorized ML” [12, 32, 35, 51,
52, 54, 61]. They optimize ML over joins of tables. For instance, [12,
39] push linear algebra operators down through joins to avoid
materializing the join output. In contrast, our work enables and
optimizes a GROUP BY abstraction for scalable ML model selection.
Ease.ml [29, 42] and SystemML/SystemDS [7–10] are higher-level
end-to-endML platforms. SystemML also uses some hybrid-parallel
execution schemes [10] but it is aimed at bulk linear algebra. All
of these works are orthogonal to ours. Our goal is not to build a
general high-level ML system from scratch. Instead, we enable and
optimize a GROUP BY abstraction for scalable ML model selection.
Toward that goal, we devise a novel parallel ML execution scheme
and unify the right mix of data partitioning, scheduling, and other
system design decisions in a novel and effective manner.
Model Selection Heuristics and Systems. ASHA [37], Hyper-
band [36], Hyperopt [36] and PBT [28] are recent examples of
methods that scale hyperparameter tuning. They are all orthogonal
to our work; Kingpin can support them on top in the future. Ray
Tune [43], Google Vizier [21], and Dask Hyperband [58] are model
selection systems that implement some of the above heuristics;
they are all task-parallel systems and thus suffer from the issues
we explained in Section 3.3. Horovod [56] and SparkDL [3] offer
some model selection support but they are data-parallel systems
and thus suffer from the issues we explained in Section 3.3. Overall,
none of these systems aim to holistically optimize learning over
groups for model selection at scale. That said, they can adopt our
techniques in the future to improve their efficiency.
Model Hopper Parallelism (MOP).We view GAP as a sibling of
MOP [34, 47, 48] in that both hybridize TP and DP. But they are

fundamentally different and complementary in rationale, generality,
and technique. MOP is aimed at Sequential (SGD) on a single large
dataset that may not fit on one worker. GAP is aimed at learning
over groups, not a single dataset, and supports Algebraic and Sam-
pling access patterns too, not just SGD. MOP-based systems such
as Cerebro [49] can be extended to support learning over groups
via a lazy group-based subselection on the fly during model selec-
tion. However, such an approach will become too slow due to the
overhead caused by the relatively low selectivity of most groups in
practice, e.g., see the distributions in Figure 6.
Multi-Task Scheduling. Gandiva [60], Tiresias [24], OASiS [6]
and SLAQ [62] are cluster scheduling frameworks for deep learning
in multi-user scenarios. They focus on lower-level primitives, such
as intra-server locality, to reduce average task completion time.
Kingpin is complementary because it exists as a higher-level logi-
cal abstraction for learning over groups. In addition, GAP works
with ML algorithms besides deep learning. How to allocate com-
puting resources is beyond our scope. There is much prior work in
operations research and systems literature about such scheduling
algorithms [20, 25]. Our goal in Kingpin is to only apply and adapt
known techniques to new ML system settings.

7 CONCLUSION AND FUTUREWORK
Learning over groups is becoming a common practice among practi-
tioners of large-scaleML. Existing approaches to scale this workload
using task- or data-parallelism fail to view this process holistically
and treat each group as an individual task, which results in poorer
resource efficiency, lower model building throughput, and higher
total runtimes. We compare existing approaches in depth analyt-
ically and empirically and then design a novel approach we call
grouped learning to orchestrate learning over groups for large-scale
ML model selection holistically and efficiently. We devise a novel
parallel ML execution approach we call GAP and support 3 popular
classes of ML models: generalized linear models, neural networks,
and gradient-boosted decision trees. We adopt a new non-uniform
data partitioning scheme suitable for this workload. All of our ideas
are easy to integrate with existing ML tools, as we show by building
our system, Kingpin, on top Ray and popular ML tools. Both ana-
lytically and empirically we find that Kingpin is often substantially
faster than the alternative approaches. We hope our work helps ML
practitioners interested in training ever more numerous models
on group-specific data at scale to achieve more customization for
ML applications. As for future work, we aim to extend Kingpin to
support AutoML search heuristics, integrate it with Cerebro, and
also enable cloud-native scalable execution.

ACKNOWLEDGMENTS
This work was supported in part by an NSF CAREER Award un-
der award number 1942724, the NIDDK of the NIH under award
number R01DK114945, and gifts from VMware. The first author
was supported in part by a Charles Lee Powell Fellowship and a
Halıcıoğlu Data Science Institute Graduate Prize Fellowship. The
content is solely the responsibility of the authors and does not nec-
essarily represent the views of any of these organizations. We thank
the members of UC San Diego’s Database Lab for their feedback on
this work.

REFERENCES
[1] [n.d.]. 10x Faster Parallel Python Without Python Multiprocessing.

https://towardsdatascience.com/10x-faster-parallel-python-without-python-
multiprocessing-e5017c93cce1. Accessed: 2021-1-29.

[2] [n.d.]. Amazon Redshift ML. https://aws.amazon.com/redshift/features/redshift-
ml/. Accessed: 2021-1-29.

[3] [n.d.]. Deep Learning Pipelines for Apache Spark. https://github.com/databricks/
spark-deep-learning. Accessed: 2021-1-29.

[4] [n.d.]. LightGBM Parallel Learning Guide. https://lightgbm.readthedocs.io/en/
latest/Parallel-Learning-Guide.html. Accessed: 2021-1-29.

[5] [n.d.]. Scikit-learn integration package for Apache Spark. https://github.com/
databricks/spark-sklearn. Accessed: 2021-1-29.

[6] Yixin Bao, Yanghua Peng, Chuan Wu, and Zongpeng Li. 2018. Online Job Sched-
uling in Distributed Machine Learning Clusters. In IEEE INFOCOM 2018 - IEEE
Conference on Computer Communications. 495–503. https://doi.org/10.1109/
INFOCOM.2018.8486422

[7] Matthias Boehm, Iulian Antonov, Mark Dokter, Robert Ginthör, Kevin Innerebner,
Florijan Klezin, Stefanie N. Lindstaedt, Arnab Phani, and Benjamin Rath. 2019.
SystemDS: A Declarative Machine Learning System for the End-to-End Data
Science Lifecycle. CoRR abs/1909.02976 (2019). arXiv:1909.02976 http://arxiv.
org/abs/1909.02976

[8] Matthias Boehm, Michael W. Dusenberry, Deron Eriksson, Alexandre V. Ev-
fimievski, Faraz Makari Manshadi, Niketan Pansare, Berthold Reinwald, Fred-
erick R. Reiss, Prithviraj Sen, Arvind C. Surve, and Shirish Tatikonda. 2016.
SystemML: Declarative Machine Learning on Spark. Proc. VLDB Endow. 9, 13
(Sept. 2016), 1425–1436. https://doi.org/10.14778/3007263.3007279

[9] Matthias Boehm, Berthold Reinwald, Dylan Hutchison, Prithviraj Sen, Alexan-
dre V. Evfimievski, and Niketan Pansare. 2018. On Optimizing Operator Fusion
Plans for Large-Scale Machine Learning in SystemML. Proc. VLDB Endow. 11, 12
(Aug. 2018), 1755–1768. https://doi.org/10.14778/3229863.3229865

[10] Matthias Boehm, Shirish Tatikonda, Berthold Reinwald, Prithviraj Sen, Yuanyuan
Tian, Douglas R. Burdick, and Shivakumar Vaithyanathan. 2014. Hybrid Paral-
lelization Strategies for Large-Scale Machine Learning in SystemML. Proc. VLDB
Endow. 7, 7 (March 2014), 553–564. https://doi.org/10.14778/2732286.2732292

[11] Xavier Bouthillier and Gaël Varoquaux. 2020. Survey of machine-learning experi-
mental methods at NeurIPS2019 and ICLR2020. Research Report. Inria Saclay Ile
de France. https://hal.archives-ouvertes.fr/hal-02447823

[12] Lingjiao Chen, Arun Kumar, Jeffrey Naughton, and Jignesh M. Patel. 2017. To-
wards Linear Algebra over Normalized Data. Proc. VLDB Endow. 10, 11 (Aug.
2017), 1214–1225. https://doi.org/10.14778/3137628.3137633

[13] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus En-
zweiler, Rodrigo Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. 2016.
The Cityscapes Dataset for Semantic Urban Scene Understanding. In Proc. of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[14] CriteoLabs. 2018. Criteo Sponsored Search Conversion Log Dataset. Re-
trieved November 20, 2020 from https://ailab.criteo.com/criteo-sponsored-search-
conversion-log-dataset/

[15] CriteoLabs. 2018. Spark Custom Partitioner. Retrieved November 20, 2020 from
https://labs.criteo.com/2018/06/spark-custom-partitioner/

[16] Jeffrey Dunn. 2016. Introducing FBLearner Flow: Facebook’s AI back-
bone. https://engineering.fb.com/2016/05/09/core-data/introducing-fblearner-
flow-facebook-s-ai-backbone/.

[17] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong, Jonathon
Duerig, Eric Eide, Leigh Stoller, Mike Hibler, David Johnson, Kirk Webb, Aditya
Akella, Kuangching Wang, Glenn Ricart, Larry Landweber, Chip Elliott, Michael
Zink, Emmanuel Cecchet, Snigdhaswin Kar, and Prabodh Mishra. 2019. The
Design and Operation of CloudLab. In 2019 USENIX Annual Technical Con-
ference (USENIX ATC 19). USENIX Association, Renton, WA, 1–14. https:
//www.usenix.org/conference/atc19/presentation/duplyakin

[18] Xixuan Feng, Arun Kumar, Benjamin Recht, and Christopher Ré. 2012. Towards
a Unified Architecture for in-RDBMS Analytics. In Proceedings of the 2012 ACM
SIGMOD International Conference on Management of Data (SIGMOD ’12). ACM,
325–336.

[19] Fangeheng Fu, Jiawei Jiang, Yingxia Shao, and Bin Cui. 2019. An Experimental
Evaluation of Large Scale GBDT Systems. Proc. VLDB Endow. 12, 11 (July 2019),
1357–1370. https://doi.org/10.14778/3342263.3342273

[20] Jyoti VGautam, Harshadkumar B Prajapati, Vipul KDabhi, and Sanjay Chaudhary.
2015. A survey on job scheduling algorithms in Big data processing. In 2015 IEEE
International Conference on Electrical, Computer and Communication Technologies
(ICECCT). 1–11. https://doi.org/10.1109/ICECCT.2015.7226035

[21] Daniel Golovin, Benjamin Solnik, SubhodeepMoitra, Greg Kochanski, John Karro,
and D. Sculley. 2017. Google Vizier: A Service for Black-Box Optimization. In
Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (Halifax, NS, Canada) (KDD ’17). Association for
Computing Machinery, New York, NY, USA, 1487–1495. https://doi.org/10.1145/
3097983.3098043

[22] TeofiloGonzalez and Sartaj Sahni. 1976. Open Shop Scheduling toMinimize Finish
Time. J. ACM 23, 4 (Oct. 1976), 665–679. https://doi.org/10.1145/321978.321985

[23] Jim Gray, Surajit Chaudhuri, Adam Bosworth, Andrew Layman, Don Reichart,
Murali Venkatrao, Frank Pellow, and Hamid Pirahesh. 1997. Data Cube: A Rela-
tional Aggregation Operator Generalizing Group-By, Cross-Tab, and Sub-Totals.
Data Min. Knowl. Discov. 1, 1 (Jan. 1997), 29–53. https://doi.org/10.1023/A:
1009726021843

[24] Juncheng Gu, Mosharaf Chowdhury, Kang G. Shin, Yibo Zhu, Myeongjae Jeon,
Junjie Qian, Hongqiang Liu, and Chuanxiong Guo. 2019. Tiresias: A GPU Cluster
Manager for Distributed Deep Learning. In 16th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 19). USENIX Association, Boston, MA,
485–500. https://www.usenix.org/conference/nsdi19/presentation/gu

[25] Trevor Hastie. 1998. Scheduling Algorithms. Springer-Verlag.
[26] Trevor Hastie et al. 2001. The Elements of Statistical Learning: Data mining,

Inference, and Prediction. Springer-Verlag.
[27] Joseph M. Hellerstein, Christoper Ré, Florian Schoppmann, Daisy Zhe Wang,

Eugene Fratkin, Aleksander Gorajek, Kee Siong Ng, Caleb Welton, Xixuan Feng,
Kun Li, and Arun Kumar. 2012. The MADlib Analytics Library: <i>Or MAD
Skills, the SQL</i>. Proc. VLDB Endow. 5, 12 (Aug. 2012), 1700–1711. https:
//doi.org/10.14778/2367502.2367510

[28] Max Jaderberg, Valentin Dalibard, Simon Osindero, Wojciech M. Czarnecki, Jeff
Donahue, Ali Razavi, Oriol Vinyals, Tim Green, Iain Dunning, Karen Simonyan,
Chrisantha Fernando, and Koray Kavukcuoglu. 2017. Population Based Training
of Neural Networks. arXiv:1711.09846 [cs.LG]

[29] Bojan Karlaš, Ji Liu, WentaoWu, and Ce Zhang. 2018. Ease.Ml in Action: Towards
Multi-Tenant Declarative Learning Services. Proc. VLDB Endow. 11, 12 (Aug. 2018),
2054–2057. https://doi.org/10.14778/3229863.3236258

[30] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma,
Qiwei Ye, and Tie-Yan Liu. 2017. LightGBM: A Highly Efficient Gradient Boosting
Decision Tree. In Advances in Neural Information Processing Systems, I. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett
(Eds.), Vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper/
2017/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf

[31] S. Knust, N. Shakhlevich, Stefan Waldherr, and C. Weiß. 2019. Shop Scheduling
Problems with Pliable Jobs. Journal of Scheduling (04 2019). https://doi.org/10.
1007/s10951-019-00607-9

[32] Arun Kumar, Mona Jalal, Boqun Yan, Jeffrey Naughton, and Jignesh M. Patel.
2015. Demonstration of Santoku: Optimizing Machine Learning over Normalized
Data. Proc. VLDB Endow. 8, 12 (Aug. 2015), 1864–1867. https://doi.org/10.14778/
2824032.2824087

[33] Arun Kumar, Robert McCann, Jeffrey Naughton, and Jignesh M. Patel. 2016.
Model Selection Management Systems: The Next Frontier of Advanced Analytics.
SIGMOD Rec. 44, 4 (May 2016), 17–22. https://doi.org/10.1145/2935694.2935698

[34] Arun Kumar, Supun Nakandala, Yuhao Zhang, Side Li, Advitya Gemawat, and
Kabir Nagrecha. 2021. Cerebro: A Layered Data Platform for Scalable Deep
Learning (CIDR’21). http://cidrdb.org/cidr2021/papers/cidr2021_paper25.pdf

[35] Arun Kumar, Jeffrey Naughton, and Jignesh M. Patel. 2015. Learning Gener-
alized Linear Models Over Normalized Data. In Proceedings of the 2015 ACM
SIGMOD International Conference on Management of Data (Melbourne, Victoria,
Australia) (SIGMOD ’15). Association for Computing Machinery, New York, NY,
USA, 1969–1984. https://doi.org/10.1145/2723372.2723713

[36] Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet
Talwalkar. 2018. Hyperband: A Novel Bandit-Based Approach to Hyperparameter
Optimization. Journal of Machine Learning Research 18, 185 (2018), 1–52. http:
//jmlr.org/papers/v18/16-558.html

[37] Liam Li, Kevin Jamieson, Afshin Rostamizadeh, Ekaterina Gonina, Moritz Hardt,
Benjamin Recht, and Ameet Talwalkar. 2020. A System for Massively Parallel
Hyperparameter Tuning. arXiv:1810.05934 [cs.LG]

[38] Mu Li, David G. Andersen, JunWoo Park, Alexander J. Smola, Amr Ahmed, Vanja
Josifovski, James Long, Eugene J. Shekita, and Bor-Yiing Su. 2014. Scaling Dis-
tributedMachine Learning with the Parameter Server. In 11th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 14). USENIX Association,
Broomfield, CO, 583–598. https://www.usenix.org/conference/osdi14/technical-
sessions/presentation/li_mu

[39] Side Li, Lingjiao Chen, and Arun Kumar. 2019. Enabling and Optimizing Non-
Linear Feature Interactions in Factorized Linear Algebra. In Proceedings of the 2019
International Conference on Management of Data (Amsterdam, Netherlands) (SIG-
MOD ’19). Association for Computing Machinery, New York, NY, USA, 1571–1588.
https://doi.org/10.1145/3299869.3319878

[40] Side Li and Arun Kumar. 2021. Optimizing Large-Scale Machine Learning over
Groups. https://adalabucsd.github.io/papers/TR_2021_Kingpin.pdf.

[41] Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar, Pieter Noordhuis, Teng Li,
Adam Paszke, Jeff Smith, Brian Vaughan, Pritam Damania, and Soumith Chintala.
2020. PyTorch Distributed: Experiences on Accelerating Data Parallel Training.
arXiv:2006.15704 [cs.DC]

[42] Tian Li, Jie Zhong, Ji Liu, Wentao Wu, and Ce Zhang. 2018. Ease.Ml: Towards
Multi-Tenant Resource Sharing for Machine Learning Workloads. Proc. VLDB
Endow. 11, 5 (Jan. 2018), 607–620. https://doi.org/10.1145/3187009.3177737

https://towardsdatascience.com/10x-faster-parallel-python-without-python-multiprocessing-e5017c93cce1
https://towardsdatascience.com/10x-faster-parallel-python-without-python-multiprocessing-e5017c93cce1
https://aws.amazon.com/redshift/features/redshift-ml/
https://aws.amazon.com/redshift/features/redshift-ml/
https://github.com/databricks/spark-deep-learning
https://github.com/databricks/spark-deep-learning
https://lightgbm.readthedocs.io/en/latest/Parallel-Learning-Guide.html
https://lightgbm.readthedocs.io/en/latest/Parallel-Learning-Guide.html
https://github.com/databricks/spark-sklearn
https://github.com/databricks/spark-sklearn
https://doi.org/10.1109/INFOCOM.2018.8486422
https://doi.org/10.1109/INFOCOM.2018.8486422
https://arxiv.org/abs/1909.02976
http://arxiv.org/abs/1909.02976
http://arxiv.org/abs/1909.02976
https://doi.org/10.14778/3007263.3007279
https://doi.org/10.14778/3229863.3229865
https://doi.org/10.14778/2732286.2732292
https://hal.archives-ouvertes.fr/hal-02447823
https://doi.org/10.14778/3137628.3137633
https://ailab.criteo.com/criteo-sponsored-search-conversion-log-dataset/
https://ailab.criteo.com/criteo-sponsored-search-conversion-log-dataset/
https://labs.criteo.com/2018/06/spark-custom-partitioner/
https://engineering.fb.com/2016/05/09/core-data/introducing-fblearner-flow-facebook-s-ai-backbone/
https://engineering.fb.com/2016/05/09/core-data/introducing-fblearner-flow-facebook-s-ai-backbone/
https://www.usenix.org/conference/atc19/presentation/duplyakin
https://www.usenix.org/conference/atc19/presentation/duplyakin
https://doi.org/10.14778/3342263.3342273
https://doi.org/10.1109/ICECCT.2015.7226035
https://doi.org/10.1145/3097983.3098043
https://doi.org/10.1145/3097983.3098043
https://doi.org/10.1145/321978.321985
https://doi.org/10.1023/A:1009726021843
https://doi.org/10.1023/A:1009726021843
https://www.usenix.org/conference/nsdi19/presentation/gu
https://doi.org/10.14778/2367502.2367510
https://doi.org/10.14778/2367502.2367510
https://arxiv.org/abs/1711.09846
https://doi.org/10.14778/3229863.3236258
https://proceedings.neurips.cc/paper/2017/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf
https://doi.org/10.1007/s10951-019-00607-9
https://doi.org/10.1007/s10951-019-00607-9
https://doi.org/10.14778/2824032.2824087
https://doi.org/10.14778/2824032.2824087
https://doi.org/10.1145/2935694.2935698
http://cidrdb.org/cidr2021/papers/cidr2021_paper25.pdf
https://doi.org/10.1145/2723372.2723713
http://jmlr.org/papers/v18/16-558.html
http://jmlr.org/papers/v18/16-558.html
https://arxiv.org/abs/1810.05934
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/li_mu
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/li_mu
https://doi.org/10.1145/3299869.3319878
https://adalabucsd.github.io/papers/TR_2021_Kingpin.pdf
https://arxiv.org/abs/2006.15704
https://doi.org/10.1145/3187009.3177737

[43] Richard Liaw, Eric Liang, Robert Nishihara, Philipp Moritz, Joseph E. Gonzalez,
and Ion Stoica. 2018. Tune: A Research Platform for Distributed Model Selection
and Training. arXiv:1807.05118 [cs.LG]

[44] Robert McNaughton. 1959. Scheduling with Deadlines and Loss Functions. Man-
age. Sci. 6, 1 (Oct. 1959), 1–12. https://doi.org/10.1287/mnsc.6.1.1

[45] Xiangrui Meng, Joseph Bradley, Burak Yavuz, Evan Sparks, Shivaram Venkatara-
man, Davies Liu, Jeremy Freeman, DB Tsai, Manish Amde, Sean Owen, Doris
Xin, Reynold Xin, Michael J. Franklin, Reza Zadeh, Matei Zaharia, and Ameet
Talwalkar. 2016. MLlib: Machine Learning in Apache Spark. Journal of Machine
Learning Research 17, 34 (2016), 1–7. http://jmlr.org/papers/v17/15-237.html

[46] Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard
Liaw, Eric Liang, Melih Elibol, Zongheng Yang, William Paul, Michael I. Jordan,
and Ion Stoica. 2018. Ray: A Distributed Framework for Emerging AI Applications.
In 13th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 18). USENIX Association, Carlsbad, CA, 561–577. https://www.usenix.
org/conference/osdi18/presentation/moritz

[47] Supun Nakandala, Yuhao Zhang, and Arun Kumar. 2019. Cerebro: Efficient and
Reproducible Model Selection on Deep Learning Systems. In Proceedings of the
3rd International Workshop on Data Management for End-to-End Machine Learning
(Amsterdam, Netherlands) (DEEM’19). Association for Computing Machinery,
New York, NY, USA, Article 6, 4 pages. https://doi.org/10.1145/3329486.3329496

[48] Supun Nakandala, Yuhao Zhang, and Arun Kumar. 2020. Cerebro: A Data System
for Optimized Deep Learning Model Selection. Proc. VLDB Endow. 13, 12 (July
2020), 2159–2173. https://doi.org/10.14778/3407790.3407816

[49] Supun Nakandala, Yuhao Zhang, and Arun Kumar. 2020. Resource-Efficient Deep
Learning Model Selection on Apache Spark. https://databricks.com/session_
na20/resource-efficient-deep-learning-model-selection-on-apache-spark.

[50] Jorge Nocedal and Stephen J. Wright. 2006. Numerical Optimization. Springer.
[51] Dan Olteanu andMaximilian Schleich. 2016. F: RegressionModels over Factorized

Views. Proc. VLDB Endow. 9, 13 (Sept. 2016), 1573–1576. https://doi.org/10.14778/
3007263.3007312

[52] Steffen Rendle. 2013. Scaling Factorization Machines to Relational Data. Proc.
VLDB Endow. 6, 5 (March 2013), 337–348. https://doi.org/10.14778/2535573.
2488340

[53] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. 2015. U-Net: Convolutional
Networks for Biomedical Image Segmentation. arXiv:1505.04597 [cs.CV]

[54] Maximilian Schleich, Dan Olteanu, and Radu Ciucanu. 2016. Learning Linear
Regression Models over Factorized Joins. In Proceedings of the 2016 International
Conference on Management of Data (San Francisco, California, USA) (SIGMOD
’16). Association for Computing Machinery, New York, NY, USA, 3–18. https:
//doi.org/10.1145/2882903.2882939

[55] Ethan L. Schreiber, Richard E. Korf, and Michael D. Moffitt. 2018. Optimal
Multi-Way Number Partitioning. J. ACM 65, 4, Article 24 (July 2018), 61 pages.
https://doi.org/10.1145/3184400

[56] Alexander Sergeev and Mike Del Balso. 2018. Horovod: fast and easy distributed
deep learning in TensorFlow. CoRR abs/1802.05799 (2018). arXiv:1802.05799
http://arxiv.org/abs/1802.05799

[57] S. Shalev-Shwartz. 2012. . https://doi.org/10.1561/2200000018
[58] S. Sievert, T. Augspurger, and M. Rocklin. 2019. Better and faster hyperparameter

optimization with Dask.
[59] Umar Syed and Sergei Vassilvitskii. 2017. SQML: Large-Scale in-Database Ma-

chine Learning with Pure SQL. In Proceedings of the 2017 Symposium on Cloud
Computing (Santa Clara, California) (SoCC ’17). Association for Computing Ma-
chinery, New York, NY, USA, 659. https://doi.org/10.1145/3127479.3132746

[60] Wencong Xiao, Romil Bhardwaj, Ramachandran Ramjee, Muthian Sivathanu,
Nipun Kwatra, Zhenhua Han, Pratyush Patel, Xuan Peng, Hanyu Zhao, Quanlu
Zhang, Fan Yang, and Lidong Zhou. 2018. Gandiva: Introspective Cluster Sched-
uling for Deep Learning. In 13th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 18). USENIX Association, Carlsbad, CA, 595–610.
https://www.usenix.org/conference/osdi18/presentation/xiao

[61] K. Yang, Y. Gao, L. Liang, B. Yao, S. Wen, and G. Chen. 2020. Towards Factorized
SVMwith Gaussian Kernels over Normalized Data. In 2020 IEEE 36th International
Conference on Data Engineering (ICDE). 1453–1464. https://doi.org/10.1109/
ICDE48307.2020.00129

[62] Haoyu Zhang, Logan Stafman, Andrew Or, and Michael J. Freedman. 2017. SLAQ:
Quality-Driven Scheduling for Distributed Machine Learning. In Proceedings of
the 2017 Symposium on Cloud Computing (Santa Clara, California) (SoCC ’17).
Association for Computing Machinery, New York, NY, USA, 390–404. https:
//doi.org/10.1145/3127479.3127490

https://arxiv.org/abs/1807.05118
https://doi.org/10.1287/mnsc.6.1.1
http://jmlr.org/papers/v17/15-237.html
https://www.usenix.org/conference/osdi18/presentation/moritz
https://www.usenix.org/conference/osdi18/presentation/moritz
https://doi.org/10.1145/3329486.3329496
https://doi.org/10.14778/3407790.3407816
https://databricks.com/session_na20/resource-efficient-deep-learning-model-selection-on-apache-spark
https://databricks.com/session_na20/resource-efficient-deep-learning-model-selection-on-apache-spark
https://doi.org/10.14778/3007263.3007312
https://doi.org/10.14778/3007263.3007312
https://doi.org/10.14778/2535573.2488340
https://doi.org/10.14778/2535573.2488340
https://arxiv.org/abs/1505.04597
https://doi.org/10.1145/2882903.2882939
https://doi.org/10.1145/2882903.2882939
https://doi.org/10.1145/3184400
https://arxiv.org/abs/1802.05799
http://arxiv.org/abs/1802.05799
https://doi.org/10.1561/2200000018
https://doi.org/10.1145/3127479.3132746
https://www.usenix.org/conference/osdi18/presentation/xiao
https://doi.org/10.1109/ICDE48307.2020.00129
https://doi.org/10.1109/ICDE48307.2020.00129
https://doi.org/10.1145/3127479.3127490
https://doi.org/10.1145/3127479.3127490

	Abstract
	1 Introduction
	2 Background and Preliminaries
	2.1 Gradient-Based Optimization in ML
	2.2 Distributed Data Access Patterns in ML
	2.3 Assumptions and Notation
	2.4 Problem Statement

	3 Learning Over Groups
	3.1 Task Parallelism (TP)
	3.2 Data Parallellism (DP)
	3.3 Contrasting Task- and Data-Parallelism

	4 Our Approach: Grouped Learning
	4.1 Intuition, Overview, and Technical Novelty
	4.2 Gradient Accumulation Parallelism (GAP)
	4.3 Formal Scheduling Problem
	4.4 The Wrap-around Algorithm for ETL
	4.5 Putting It All Together
	4.6 Analytical Cost Model
	4.7 General Extension
	4.8 System Implementation

	5 Experiments
	5.1 End-to-End Results
	5.2 Resource Usage Drill-down
	5.3 Scalability Discussion

	6 Related Work
	7 Conclusion and Future work
	Acknowledgments
	References

