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Abstract
In this work, the growth and stability towards O2 exposure of two dimensional (2D) TaS2 on a Cu
(111) substrate is investigated. Large area (∼1 cm2) crystalline 2D-TaS2 films with a metallic
character are prepared on a single crystal Cu(111) substrate via a multistep approach based on
physical vapor deposition. Analytical techniques such as Auger electron spectroscopy, low energy
electron diffraction, and photoemission spectroscopy are used to characterize the composition,
crystallinity, and electronic structure of the surface. At coverages below one monolayer equivalent
(ML), misoriented TaS2 domains are formed, which are rotated up to13o relative to the Cu(111)
crystallographic directions. The TaS2 domains misorientation decreases as the film thickness
approaches 1 ML, at which the crystallographic directions of TaS2 and Cu(111) are aligned. The
TaS2 film is found to grow epitaxially on Cu(111). As revealed by low energy electron diffraction in
conjunction with an atomic model simulation, the (3×3) unit cells of TaS2 match the (4×4)
supercell of Cu(111). Furthermore, the exposure of TaS2 to O2, does not lead to the formation of a
robust tantalum oxide film, only minor amounts of stable oxides being detected on the surface.
Instead, the exposure of TaS2 films to O2 leads predominantly to a reduction of the film thickness,
evidenced by a decrease in the content of both Ta and S atoms of the film. This is attributed to the
formation of oxide species that are unstable and mainly desorb from the surface below room
temperature. Temperature programmed desorption spectroscopy confirms the formation of SO2,
which desorbs from the surface between 100 and 500 K. These results provide new insights into the
oxidative degradation of 2D-TaS2 on Cu(111).

Supplementary material for this article is available online
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Introduction

After the discovery of grapheme [1], graphene-like materials,
especially 2D transition metal dichalcogenides (TMDs), have
been extensively studied for their unique thickness-dependent
electronic and optical properties, as well as large surface to
volume ratio [2]. Due to their tunable properties, these mate-
rials are excellent candidates for a wide variety of applications
such as electronic and optoelectronic devices [3], photo-
detectors [4], chemical and gas sensors [5], catalysis [6],
electrocatalysis [7], and photocatalysis [8]. Recently, studies of

2D materials have been extended to medical applications [9],
wearable technology [10], energy storage applications [11],
and artificial intelligence [12].

2D-TMDs can be divided into two groups based on their
electronic properties: semiconducting and metallic [13–16].
Metallic TMDs have drawn attention for their unique exotic
properties, such as charge density wave (CDW), super-
conductivity, magnetism, Mott insulating phase, metal-insulator
phase transition [16–21]. Exploring 2D Weyl semimetals, phase
engineering for making topological quantum devices are some
of the most recent exciting research areas of metallic TMDs
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[22–24]. In particular, 2D-TaS2 has been recently studied for its
rich physical properties that lead to CDW and transitions among
different phases such as metallic, Mott insulating, and super-
conducting [25–33]. Depending on the atomic structure and
orientation, 2D-TaS2 has three crystal phases, trigonal prismatic
H, octahedral T, and rhombohedral R phases. Different
stacking sequences categorizes TaS2 into 1T, 2H, 3R, 4H, etc,
structures where the number in front of the phase nomenclature
represents the number of stacked layers [34, 35]. The most
common polymorphs of TaS2 are 1T and 2H, both having a
metallic character [16]. The possibility of engineering the
electronic and structural phases as well as controlling their
transition by tuning parameters such as temperature, dopants,
and pressure, enriches the potential application of TaS2 in
electronic and optoelectronic devices [36–39], super-
conductivity [17, 31], and catalysis [40, 41]. However, the
applications of TaS2 are restricted due to the limitations in
growth of uniform large-area crystalline films and the stability
of this material. Several studies focused on synthesis of TaS2
have been reported so far. Various techniques such as exfo-
liation [26, 36], chemical vapor deposition (CVD) [28, 41],
chemical vapor transport (CVT) [42–44], arc discharge (AD)
[45], powder vapor (PV) [46], and physical vapor deposition
(PVD) [47] have been used for TaS2 synthesis. The growth of
TaS2 via some of the approaches mentioned above have
drawbacks. For instance, TaS2 synthesis via exfoliation is low
yield and not well controlled, which could lead to films with
nonreproducible sizes and thicknesses. Therefore, it is difficult
to synthesize large area single layer films via exfoliation. CVD,
CVT, AD, and PV, on the other hand, are more controlled and
time-efficient processes to grow 2D materials than exfoliation.
However, some of these techniques do not lead automatically
to large area crystalline, single layer materials. The PVD
method, on the other hand, is a scalable process that allows the
synthesis of 2D-TaS2 over large areas (>1 cm2) on various
substrates. As PVD can be carried out in ultrahigh vacuum
(UHV) setups, the films grown employing this method could
have the highest possible purity.

Regardless of the synthesis method, a major drawback of
TaS2 is its rapid degradation when exposed to air or oxygen, as
reported in literature. Luican-Mayer et al reported degradation
of the surface of 1T-TaS2 film after exposure to air for more
than 30min [48]. Yu et al correlated the deterioration of TaS2
with changes in the contrast of optical microscopy images
recorded from these films after exposure to air for different
time intervals [26]. Several other studies reported the presence
of oxides in TaS2 nanoplatelets [49], nanoflakes [46, 50], and
nanosheets [51] after exposure to air. Despite of the available
evidences presented in literature demonstrating the ambient
oxidative degradation of TaS2, no detailed experimental
investigations have been performed to understand the exact
oxidation mechanism. Only theoretical studies have provided
insights into the oxidation mechanism of TaS2 [52, 53].

In this work, a multistep approach based on PVD is
employed to synthesize large area crystalline 2D-TaS2 films on
Cu(111) under UHV condition. The TaS2 surface composition,
morphology, and electronic structure, are studied using various

surface analytical techniques. Moreover, new insights into the
TaS2 degradation after O2 exposure are provided.

Experimental setup

All experiments presented in this work were performed in a UHV
surface science chamber, with a base pressure of < ´ -2 10 10

Torr, which is schematically represented in figure 1. The UHV
chamber contains various tools for surface preparation and
characterization. An Ar-ion sputtering gun is used for surface
cleaning, while an electron beam evaporator is used for Ta
evaporation and synthesis of 2D-TaS2. Gases such as H2S
(99.50% purity) and O2 (99.999% purity) are introduced in the
UHV chamber through specialized inlets and used for TaS2
synthesis and to study the stability of TaS2 after O2 exposure.
Surface characterization tools such as low energy electron dif-
fraction (LEED) and Auger electron spectroscopy (AES) are
employed to investigate the surface crystallinity and composition,
respectively. A time-of-flight photoelectron spectrometer (TOF-
PES) in conjunction with femtosecond (fs) extreme ultraviolet
(XUV) laser pulses generated via high order harmonic generation
in rare gases are used to investigate the electronic structure of the
surface. The experimental setup also contains a quadrupole mass
spectrometer (QMS) that is used for residual gas analysis and
temperature-programmed desorption (TPD) measurements.

A Cu(111) single crystal employed as a substrate for the
TaS2 films is attached to a liquid nitrogen cryostat, and it is
mounted in the center of the UHV chamber. The surface sample-
cryostat assembly can be translated vertically and horizontally as
well as rotated 360° by a mechanical manipulator. The
mechanical manipulator allows for a precise position of the
sample in front of all preparation and characterization tools.

Synthesis and characterization of 2D-TaS2 on
Cu(111)

2D-TaS2 is synthesized on Cu(111) via a multistep procedure
based on PVD, which is schematically represented in figure 2.

Figure 1. Schematic representation of the UHV surface science
chamber employed for the preparation and characterization of the
TaS2 films.
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Before the TaS2 preparation, the Cu(111) substrate is cleaned
via subsequent cycles of Ar-ion sputtering (0.6 KV, 3 mA) for
30 min followed by flash heating at 850 K. After each cycle of
sputtering and annealing, Auger electron spectra and LEED
images are recorded to investigate the cleanliness and crys-
tallinity of the substrate. The sputtering-annealing cycles are
performed until no carbon, oxygen, sulfur, or any other
contaminants are detected by AES.

In the first step of TaS2 preparation, the clean Cu(111)
surface is sulfurized for 15 min in a H2S atmosphere of
´ -5 10 7 Torr at 850 K, which leads to the formation of a

sulfurized Cu surface. In the second step, Ta is evaporated on
the sulfurized Cu surface in an H2S atmosphere of ´ -5 10 7

Torr. During the Ta evaporation, the surface temperature is
maintained at 330 K. In the last preparation step, the surface is
annealed at 850 K for 5 min in ´ -5 10 7 Torr of H2S.

Figure 3(a) displays AES spectra recorded from a clean
Cu(111) surface, a sulfurized Cu(111) surface, and 1.1 ML
sulfurized tantalum film grown on Cu(111). The Auger
spectrum recorded from the clean Cu(111) substrate shows
only a single peak centered at 62 eV corresponding to the
MVV Auger transition of Cu (CuMVV) [54]. No peak at
273 eV corresponding to the Auger transition of carbon
(CKLL) [55] is detected, which indicates that the substrate is
clean. The annealing of Cu(111) at 850 K in H2S atmosphere
leads to a decrease of the CuMVV peak intensity and the
appearance of a new peak at 150 eV corresponding to the
LMM Auger transition of sulfur (SLMM) [55]. The SLMM peak
intensity does not increase if the H2S partial pressure is
increased above 5×10−7 Torr or if the exposure time is
longer than 15 min, indicating that a saturated sulfurized
copper layer is formed. After Ta evaporation on the sulfurized
Cu, a further decrease of the CuMVV peak intensity, an
increase of the SLMM peak intensity, and the appearance of a
new peak at 177 eV that corresponds to TaNNN Auger
transition [55] are observed. These changes indicate the for-
mation of a sulfurized tantalum layer on Cu(111), which
corresponds to TaS2, as demonstrated below.

AES is also employed to calibrate the Ta e-beam eva-
porator and determine the TaS2 growth rate, which is subse-
quently used to control the thickness of the TaS2 films.
Figure 3(b) displays the ratio of intensities of TaNNN and
CuMVV Auger peaks as a function of the Ta evaporation time
for multiple preparations in which Ta is evaporated in H2S
atmosphere on the sulfurized Cu(111) substrate. A gradual
increase of the Ta evaporation leads to a linear increase of the
TaNNN/CuMVV ratio intensity until an evaporation time of
30 min. As the Ta evaporation time is increased beyond
30 min, the TaNNN/CuMVV ratio still grows linearly as a
function of evaporation time, but with a higher slope. The
change in slope is attributed to a change in the coefficient of
attenuation of the substrate Auger signal due to the comple-
tion of the first monolayer of adsorbate [56]. Therefore, the

Figure 2. Schematic illustration of the multistep procedure employed
to synthesize 2D-TaS2 on Cu(111).

Figure 3. (a) Auger electron spectra recorded from a clean Cu(111)
substrate (black curve), a sulfurized Cu(111) surface (blue curve),
and a 1.1 ML TaS2 film grown on Cu(111) (red curve). The inset
displays a zoom in the 170–185 eV spectral region. (b) Auger
electron intensity ratio of TaNNN to CuMVV transitions as a function
of Ta evaporation time on a sulfurized Cu(111) in H2S atmosphere.
The open circles are the measured data, while the solid red lines
represent linear fits to the measured data. The vertical dashed line
indicates the change in the slope of the linear fit, which corresponds
to the completion of the first TaS2 layer.
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change in slope in figure 3(b) at 30 min evaporation time
corresponds to the completion of the first TaS2 layer on the
sulfurized Cu(111) surface. The rate of TaS2 growth deter-
mined from the calibration is 0.033 MLmin−1.

Photoemission spectroscopy employing fs-XUV laser
pulse is used to study the electronic structure of the TaS2 film.
Figure 4 displays static photoemission spectra recorded from
the bare Cu(111) substrate, sulfurized Cu, and 1.1 ML TaS2
film grown on Cu(111). The spectra are obtained using fs
laser pulses with a photon energy of 26.35 eV and a band-
width of 0.68 eV full width at half maximum (FWHM), i.e.
the 17th harmonic of a Ti:Sapphire laser.

All three spectra in figure 4 are displayed in the binding
energy region from 0.5 to −5 eV (higher negative value
corresponds to higher binding energy), where the binding
energy is referenced to the Fermi level (EF=0 eV). The
photoemission spectrum of Cu(111) displays occupied elec-
tronic states at EF and a peak between −2 and −4.5 eV with a
maximum at a binding energy of −3.25 eV, attributed to Cu
3d states. This spectrum resembles the features previously
observed in photoemission investigations of the Cu valence
band using synchrotron [57, 58] and Al Kα radiation [59].

The main effect observed after the sulfurization of the
Cu(111) surface consists in a reduction of the intensity as well
as an increase of the FWHM of the Cu 3d peak. Furthermore,
an increase in the photoemission intensity just below −1 eV
is also observed and attributed to the appearance of S 3p
states. After preparation of 1.1 ML TaS2, an increased density
of states just below EF is observed, indicating the formation of
a TaS2 film that has a metallic character, which is char-
acteristic for both 1T and 2H phases of TaS2. Moreover, a
peak at −0.6 eV and a broadening of the photoemission
feature centered at −3.25 eV through a distinct shoulder
between −2 and −3 eV are also observed. The photoemission

peak at −0.60 eV is attributed to the Ta 5d states, while the
states at binding energy greater than −2 eV, which induced
the broadening of the photoemission peak at −3.25 eV are
attributed to the S 3p of TaS2. These results are in a good
agreement with the previously reported photoemission spectra
of TaS2, in which the Ta 5d states are between −0 and −1 eV
and the S 3p states are between −1 and −8 eV with a peak
maximum at 3.5 eV [60–62]. Therefore, the broadening of the
peak at −3.25 eV and the dramatic increase of occupied
electronic states just below EF, i.e. Ta 5d states, after the
evaporation of Ta in H2S atmosphere on the Cu(111) sub-
strate are a clear indication that TaS2 is formed on Cu(111).

To gain insights into the structure of the TaS2, LEED
investigations are performed. Figures 5(a)–(d) displays LEED
patterns recorded from a clean and a sulfurized Cu(111)
substrate, as well as from 0.4 ML and 1.1 ML TaS2 grown on
the Cu(111) substrate. The diffraction image recorded from
the bare substrate displays a hexagonal pattern, which is
typical for the 111-crystal orientation (see red circles in
figure 5). After sulfurization of the Cu(111) substrate, addi-
tional diffraction spots are visible, which correspond to a
(√7 × √7) R19° pattern (see yellow circles in figure 5). The
(√7×√7) R19° structure was previously observed after
Cu(111) sulfurization using H2S [63] or benzenethiol [64].

Figure 4. (a) Photoemission spectra recorded from the clean Cu(111)
substrate (red curve), sulfurized Cu (blue curve) and 1.1 ML TaS2
grown on the Cu(111) surface (shaded gray curve). The vertical dash
line at 0 eV indicates the Fermi level. The photoemission spectra are
recorded using XUV photons with an energy of 26.35 eV.

Figure 5. lEED images of (a) Cu(111), (b) sulfurized Cu(111), (c)
0.4 ML TaS2/Cu(111), and (d) 1.1 ML TaS2 on Cu(111). The LEED
images are recorded with an electron beam energy of 79 eV. The red,
yellow, and green circles mark the diffraction spots originating from
Cu(111), sulfurized Cu(111), and TaS2, respectively. The blue
circles mark the diffraction spots of a Moiré pattern formed due to
the epitaxial growth of TaS2 on Cu(111). The red and green arrows
in (c) indicate the distance between zero-order diffraction spot (00)
and diffraction spots of Cu(111) and TaS2, respectively. The cyan
arrow in (d) indicates the distance between a TaS2 diffraction spot
and one of the Moiré spots, representing the reciprocal lattice vector
of the Moiré structure.
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After the growth of 0.4 ML TaS2 on Cu(111), a new
hexagonal diffraction pattern, centered around the (00) reflex
and aligned with the diffraction pattern of Cu(111) is obtained
(see green circles in figure 5). Interestingly, each new dif-
fraction spot is composed of a sharp circular reflex (see green
circles in figure 5) that overlaps an arc-shape reflex (see gold
arches in figure 5(c)). The visibility of the diffraction spots
from sulfurized Cu(111) clearly indicates that the surface is
not fully covered by TaS2 in the case of 0.4 ML TaS2. The
ratio of the distances from the (00) diffraction spot to a dif-
fraction spot of Cu(111) (see red arrows in figure 5(c)) and
from the (00) diffraction spot to a diffraction spot of TaS2 (see
green arrow in figure 5(c)), ( ) ( )/R RCu 111 TaS 1T2

is 1.305. This
value is very close to the ratio between the lattice constant
of 1T-TaS2 ( )( ) =a 0.336 nmTaS 1T2

[65] and the surface
lattice parameter of Cu(111), ·( ) = =a a 2 0.255 nm,Cu 111 Cu
where aCu=0.3597 nm is the lattice constant of Cu [66],

( ) ( )/ =a a 1.317.TaS 1T Cu 1112
A similar value is also obtained if

the lattice constant of 2H-TaS2 ( )( ) =a 0.331 nmTaS 2H2
[67] is

used ( ) ( )/ =a a 1.298.TaS 2H Cu 1112
This clearly demonstrates that

the new diffraction spots in figure 5(c) obtained after evaporation
of Ta in H2S atmosphere are originating from TaS2.

When 1.1 ML of TaS2 is grown on Cu(111), a few
changes are visible in the LEED pattern (see figure 5(d)): (i)
the diffraction pattern of sulfurized Cu(111) vanishes indi-
cating that the substrate is totally covered with TaS2, which is
in agreement with the AES analysis of the TaS2 growth rate
displayed in figure 3(b). (ii) The arc-shape diffraction spots
disappear and the circular spots become larger in size with
respect to the size of the circular diffraction spots obtained
from 0.4 ML TaS2. (iii) New smaller hexagonal diffraction
patterns centered around each TaS2 diffraction spot become
visible (cyan circles in figure 5(d)), which is attributed to a
Moiré pattern due to the growth of crystalline TaS2 thin film
on the Cu(111) substrate. Similar types of Moiré patterns
were reported for the epitaxial growth of MoS2 on Cu(111)
[63], MoS2 on Au(111) [68], and TaS2 on Au(111) [47].

Note that similar AES and LEED data are recorded on
various places on the sample, revealing that the composition,
thickness, and crystalline structure of the obtained TaS2 films

are similar on the whole Cu(111) substrate. This indicates that
the TaS2 films obtained in this work have the same surface
area as the Cu(111) surface, i.e. 1 cm2.

Figure 6 shows the coverage dependent evolution of the
TaS2 diffraction reflexes. The angle measured between two
straight lines that connect the (00) diffraction spot with the
ends of the arc-shape diffraction spot (see figures 6(a) and (b))
is 26° for 0.2 ML TaS2/Cu(111) and 21° for 0.4 ML
TaS2/Cu(111). Because the centers of the arc-shape spots are
located on a straight line that connects the (00) diffraction
spot with the diffraction spot of Cu(111) (dashed lines in
figures 6(a) and (b)), the arc shapes in figures 6(a) and (b)
have an angle ±13 deg and ±10.5 deg relative to the Cu(111)
crystallographic directions. As mentioned above, the circular
diffraction spot of TaS2 grows in size as the TaS2 amount is
increased from 0.2 ML to 1.1 ML.

The arc-shape LEED reflexes observed in figures 5 and 6
are attributed to misorientation of 2D-TaS2 domains crystal-
lographic directions relative to the crystallographic directions
of Cu(111) substrate. Misorientation of the overlayer domains
with respect to the crystallographic axis of the substrate that
resulted in arc-shape LEED reflexes have been reported for
various 2D materials and thin films grown on single crystal
metal substrates [69–73] and were attributed to the weak
interaction between the substrate and overlayer.

The decrease of the angle of the arc-shape reflexes as the
amount of TaS2 is increased is attributed to a reorientation of the
TaS2 crystallographic directions with the crystallographic direc-
tions of Cu(111) substrate. This is likely due to the increased
interactions between the neighboring domains, since the distance
between the domains decreases as the TaS2 coverage is increased.
When the substrate is fully covered with TaS2, all domains are
oriented along crystallographic directions of Cu(111). The gradual
increase in the circular spot size of TaS2, as the TaS2 coverage is
increased from submonolayer to 1.1 ML in figure 6, is attributed
to lattice mismatch that slightly grows as the TaS2 domains
reorient with the crystallographic directions of Cu(111).

Despite the large difference between the TaS2 overlayer
and substrate lattice parameters, thin films can grow
epitaxially on crystalline substrates. For instance, recent

Figure 6. Thickness dependent evolution of the diffraction spots of TaS2: (a) 0.2 ML TaS2/Cu(111), (b) 0.4 ML TaS2/Cu(111, and
(c) 1.1 ML TaS2/Cu(111). All images are recorded at an electron beam energy of 79 eV. For the sake of simplicity only the upper right
quarter of the LEED images is shown.
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investigations reported the epitaxial growth of MoS2, which
has a lattice constant of 0.316 nm [66], on Cu(111), which has
a surface lattice parameter of 0.255 nm [63, 74]. In this case,
the epitaxial growth is possible, because the size of (4×4)
MoS2 unit cells coincide with the size of a (5×5) Cu(111)
surface supercell. Therefore, to better understand the epitaxial
relationship between the 2D-TaS2 and the Cu(111) substrate,
an atomic model is employed. The focus of this modeling lies
on reproducing the Moiré periodicity observed in the LEED
investigation shown in figures 5 and 6.

The epitaxial growth of ( ´m m1 1) TaS2 unit cells on a
( ´m m2 2) Cu(111) superstructure is favorable if the peri-
odicity mismatch between the substrate and the overlayer is
minimal. The mismatch in percent between the TaS2 over-
layer and the Cu(111) substrate can be calculated using the
following relation ( )

( )
´

-
100%

m a m a

m a
1 TaS2 2 Cu 111

2 Cu 111
[74]. Limiting m1

and m2 to 10, the smallest mismatch values are obtained for
( ´3 3) TaS2 on (4×4) Cu(111) and for ( ´7 7) TaS2 on
(9×9) Cu(111), as summarized in table 1. The negative
mismatch values in table 1 indicate that the (m1 × m1) TaS2
supercell is smaller than the (m2 × m2) Cu(111) supercell, i.e.
TaS2 supercell needs to stretch to perfectly fit the Cu(111)
supercell, while the positive mismatch values indicate the
opposite, i.e. TaS2 supercell has to compress or corrugate to
perfectly fit the Cu(111) supercell.

Figure 7 displays a ball-and-stick atomic model of (3´ 3)
1T-TaS2 on (4 ´ 4) Cu(111) structure. A stretch of the
1T-TaS2 lattice constant from 0.336 nm to 0.340 nm (1.18%)
leads to a perfect superposition of S and Cu atoms on a hex-
agonal pattern with a periodicity of 1.02 nm. The experimental
Moiré periodicity is obtained by calculating the ratio of the

distances from the (00) diffraction spot to a diffraction spot of
Cu(111) (see RCu, red arrows in figure 5(c)) and from a TaS2
diffraction spot to a Moiré diffraction spot (see Rm, cyan arrow
in figure 5(d)). The value of ( )/R R ,mCu 111 which is 4.053,
should be equal to the ratio ( )/a a ,m Cu 111 where am is the real
space Moiré periodicity and aCu(111) is the real space surface
lattice parameter of Cu(111). Accordingly, the experimental

Moiré periodicity am is1.034 nm ( )( )
( )= ´a a .m

R

R Cu 111
m

Cu 111 A

Moiré periodicity of 1.32 nm is obtained by modeling (7´ 7)
TaS2 on (9 ´ 9) Cu(111) (see figure S1 (available online at
stacks.iop.org/NANO/32/505605/mmedia) and discussion in
the Supplementary Information).

As described above, the experimental Moiré periodicity,
am=1.034 nm, is very close to the Moiré periodicity of
1.02 nm obtained by modeling a (3´ 3) 1T-TaS2 on (4´ 4)
Cu(111) structure (see figure 7) and very different than the
Moiré periodicity of a (7´ 7) TaS2/(9´ 9) Cu(111) struc-
ture. Therefore, the crystalline TaS2 structure observed in
LEED (see figures 5 and 6) is attributed to an epitaxial growth
of (3´ 3) TaS2 unit cells on (4´ 4) super cells of Cu(111).
Since both 1T-TaS2 and 2H-TaS2 have metallic characters
and very close lattice constants, it is not possible to determine
from LEED and XUV-PES the phase of TaS2 on Cu(111).

Stability of TaS2/Cu(111) towards O2 exposure

As mentioned above, previous studies demonstrated that TaS2
films are unstable in air, presumably due to the reaction of the
film with the oxygen available in air. To obtain further
insights into the stability of 2D-TaS2 after O2 exposure, well
defined oxidation experiments are performed while the film
composition, thickness, and structure are monitored.

Figure 8(a) displays Auger spectra recorded from the
3.75 ML TaS2 film before and after exposure to ´1
-10 5 Torr O2 for 70 min During the O2 exposure, the surface

temperature is kept at 700 K in order to enhance the expected
oxidation reaction. The Auger spectrum recorded from
3.75 ML TaS2 before oxidation displays just the SLMM

transition at 150 eV and TaNNN transition at 177 eV, but not
the CuMVV transition at 62 eV, due to the large thickness of
the film, i.e. more than 10 atomic layers, which exceeds the
mean free path of the electrons originating from the substrate

Table 1. Calculated mismatch for (m1 × m1) TaS2 unit cells on a
(m2 × m2) Cu(111) supercell using the lattice parameters obtained
from literature [65–67].

TaS2 supercell and phase Cu(111) supercell Mismatch

(3×3) 1T (4×4) −1.18%
(3×3) 2H (4×4) −2.64%
(7×7) 1T (9×9) 2.48%
(7×7) 2H (9×9) 0.95%

Figure 7. Ball and stick model of a single layer (3´ 3) 1T-TaS2 on (4´ 4) Cu(111). Yellow, black, and orange circles represent S, Ta, Cu
surface atoms, respectively. The blue hexagon highlights the Moiré structure.
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in that energy range [75]. Surprisingly, the Auger electron
spectrum recorded after exposure to oxygen shows a dramatic
decrease in the intensities of both S and T peaks as well as the
appearance of Cu transition, but not the appearance of pre-
dominant oxide species. Contrary, a very small intensity peak
at 510 eV corresponding to the KLL Auger transition of
oxygen [55] is detected only after the AES device amplifi-
cation is increased by a factor 5 and the spectrum is magnified
by a factor 20, i.e. a total enhancement that is 100 (5×20)
higher than the portion of the spectrum below 160 eV.

The decrease in intensity of the Ta and S Auger peaks
and the appearance of Cu peak after exposure to O2 (see
figure 8(a)) is attributed to the formation of oxides that are
mostly unstable at 700 K, which desorb and subsequently

lead to a thinning of the TaS2 film. The very small amount of
oxygen detected in the AES displayed in figure 8(a) indicates
that only a small fraction of the oxides formed remain on the
surface at 700 K. This can be attributed to the formation of a
small amount of Ta2O5, which is the most stable oxide of
tantalum [76]. Ta2O5 was previously detected in XPS when
TaS2 films were grown via CVD, in which small amounts of
O2 could be present [28] or when TaS2 was exposed to
air [77].

To obtain insights into the TaS2 thickness reduction after
exposure to oxygen, a 3.75 ML TaS2 film has been synthe-
sized and exposed to successively increasing doses of O2,
while the thickness of the film was monitored. Figure 8(b)
displays the intensity of the Ta and S Auger peaks recorded
from a 3.75 ML TaS2 film after successive cycles of exposure
to O2. For each oxidation cycle, with a duration of 10 min, the
O2 partial pressure is kept at ´ -1 10 5 Torr, while the surface
temperature is kept at 700 K. The intensities of Ta and S
peaks in figure 8(b) are converted in monolayer equivalent of
TaS2. As can be seen in figure 8(b), a gradual decrease of the
TaS2 thickness is obtained after successive exposures of the
film to oxygen.

The thickness reduction of the TaS2 film is also con-
firmed by photoemission spectroscopy. A photoemission
spectrum is also recorded from a 1.1 ML TaS2 after the sur-
face, kept at 700 K is exposed to ´ -1 10 5 Torr O2 for 10 min
(see figure S2 in the Supplementary Information). The pho-
toemission spectrum clearly displays a decreased intensity of
the Ta 5d and S 3p states, supporting the results obtained
by AES.

It needs to be mentioned that no notable changes are
observed when a TaS2 film is exposed to 1´ 10−5 torr O2 for
10–20 min, while the sample is kept between 100 and 300 K.
Therefore, in order to determine if the oxidation at room
temperature also leads to a thinning of the TaS2 film, a similar
oxidation experiment is performed by keeping the sample
temperature at 300 K. In this case, to accelerate the oxidation
process, the UHV chamber is filled with about 100 Torr of O2

for 60 min. Figure 9 displays Auger electron spectra and
LEED images recorded from a 2.35 ML TaS2 film before and
after oxidation in 100 Torr of O2 for 60 min as well as after
annealing the oxidized sample at 800 K for 1 min.

The Auger electron spectrum recorded from the 2.35 ML
TaS2/Cu(111) (see figure 9) displays only the S and Ta
transition peaks, but not the Cu peak due to the large thick-
ness of the TaS2 film. The corresponding LEED image dis-
plays the hexagonal pattern of TaS2, however the Moiré
reflexes are not observed due to the large thickness of the
TaS2 film, which hinders the detection of the diffracted
electrons from the Cu(111) substrate. After exposure of the
2.35 ML TaS2/Cu(111) to 100 Torr O2 for 60 min at room
temperature (see figure 9), the Auger peak corresponding to S
significantly diminishes, the Ta transition vanishes, while the
Cu peak at 62 eV reappears. Moreover, a very small peak at
510 eV corresponding to oxygen is visible only after the
intensity is increased by a factor of 100, i.e. AES device

Figure 8. (a) Auger electron spectra recorded from a 3.75 ML TaS2
film before (black curve) and after exposure to oxygen for 70 min
(red curve). The gray area displays the Ta transition magnified by a
factor of 5. The intensity of the spectrum in the yellow marked area
is enhanced by a factor of 100 (see text for details). (b) Reduction of
the TaS2 film thickness as a function of oxygen exposure. The
intensities of Ta and S peaks are converted in monolayer equivalent,
to obtain insights into the thickness reduction of the TaS2 film as a
function of oxygen exposure. The O2 partial pressure and surface
temperature used to obtain the results in (a) and (b) are ´ -1 10 5

Torr and 700 K, respectively.

7

Nanotechnology 32 (2021) 505605 Md A K Pathan et al



amplification is increased by a factor 5 and the spectrum is
magnified by a factor 20 in the 495–525 eV spectral range
(see inset in figure 9). The corresponding LEED image does
not display any diffraction pattern, which indicates the for-
mation of an amorphous layer at the surface.

After annealing the oxidized TaS2 layer for 1 min at
800 K, no dramatic changes are observed in AES. Only a
narrowing of the O peak, which can be attributed to the
desorption of a very small amount of oxide species from the
surface during the annealing process. A diffraction pattern
corresponding to (√7 × √7) R19° sulfurized copper is
obtained after annealing the oxidized sample for 1 min at
800 K, indicating that most of the TaS2 was oxidized and
desorbed from surface, which is in agreement with the AES
investigation. The structure and composition of the sulfurized
copper layer does not change when it is exposed to oxygen or
air at atmospheric pressure and room temperature for several
hours (not shown here).

It needs to be mentioned that during the AES and LEED
investigations, the sample temperature is kept at 100 K. There-
fore, sample heating, due to the AES or LEED electron beam
irradiation of the surface in figure 9 should be negligible and
could not be responsible for the desorption of the oxides from
surface. Furthermore, Auger electron spectra recorded using the
same AES device and parameters from methyl halides molecules
physiosorbed on oxide surfaces at 100 K did not indicated a
noticeable removal of the molecules from the surface due to
heating effects or electron irradiation. Consequently, most of the
oxides formed during the TaS2 exposure to 100 Torr O2 at 300
K (see figure 9) should leave the sample during the oxidation
process, but not during the AES and LEED analysis.

A recent theoretical investigation predicted that the oxi-
dation of 1T-TaS2 proceeds spontaneously, because there is a

negligible barrier for the dissociation of physisorbed mole-
cular oxygen at the surface of 1T-TaS2 [53]. The physisorbed
O2 molecule is expected to dissociate within picoseconds and
lead to the formation of SO2 molecules. The calculated
binding energy of the SO2 group at the edge of 1T-TaS2 is
1.20 eV [53].

To confirm the SO2 formation at the surface of TaS2 after
exposure to O2, TPD investigations have been performed.
Indeed, in our experiment a very small signal at 64 amu
corresponding to SO2 is detected in TPD only if the
TaS2/Cu(111) sample is dosed with O2 at 100 K (see figure
S3 in the Supplementary Information). The thermal deso-
rption of SO2 extends from 100 to 500 K and has a maximum
desorption at 185 K. TaO at 197 amu is not detected in the
TPD experiment. Other compounds containing Ta and O
could not be probed, because their mass is beyond the
detection limit of the QMS, i.e. 200 amu, employed in this
experiment.

The high temperature edge of the TPD spectrum obtained
in this work matches the predicted binding energy of the SO2

group at the edge of 1T-TaS2 [53]. Moreover, the TPD
investigation is in a good agreement with the results displayed
in figures 8 and 9, which indicate that the exposure of TaS2 to
O2 at a temperature equal or higher than 300 K led mostly to
the formation of oxides that are unstable at room temperature
and desorb. Only a small amount of oxide species obtained by
the exposure of TaS2 to O2 are stable, which can be attributed
to the formation of Ta2O5, as mentioned above. Therefore, we
can hypostasize that in order to passivate the surface of a bulk
TaS2 material to be stable under ambient conditions, i.e. room
temperature in air, multiple layers of TaS2 need to be lost to
form an oxide layer that is stable at room temperature.

Conclusions

The growth and oxidation of 2D-TaS2 on Cu(111) is inves-
tigated using various surface science techniques. 2D-TaS2
with an area of 1 cm2 is grown on a Cu(111) substrate via a
multistep approach based on PVD. As revealed by LEED
analysis in conjunction with atomic modeling, TaS2 grows
epitaxial on Cu(111) with the (3×3) unit cells of TaS2
matching the (4×4) supercell of Cu(111). At submonolayer
coverages, a misorientation of the TaS2 domains is detected
via LEED The highest rotation angle of the TaS2 domains is
up to 13o with respect to the Cu(111) crystallographic
directions. The domains misorientation decreases by
increasing the TaS2 coverage. As the TaS2 coverage reaches
1, the crystallographic directions of TaS2 and Cu(111) are
aligned. As revealed by various analytical techniques such as
AES, LEED, PES, and TPD, exposure of TaS2 to oxygen
leads mainly to the formation of unstable oxide species that
desorb from the surface at temperatures below 300 K. Only a
very small amount of oxide species is found to be stable
above room temperature, which are attributed to traces of
Ta2O5 formed during the oxidation process. Consequently,
the exposure to O2 of ultrathin TaS2 films grown on Cu(111)
leads to a reduction of the films thickness.

Figure 9. Auger electron spectra and LEED images recorded from a
2.35 ML TaS2 film before (black curve) and after exposure to 100
Torr of O2 for 60 min (red curve) as well as after annealing at 800 K
the oxidized sample for 1 min (green curve). During TaS2 exposure
to O2 the surface temperature is kept at 300 K, while during the AES
and LEED analysis the sample is kept to 100 K.
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