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ABSTRACT. We prove the inviscid limit for the incompressible Navier-Stokes
equations for data that are analytic only near the boundary in a general two-
dimensional bounded domain. Our proof is direct, using the vorticity formula-
tion with a nonlocal boundary condition, the explicit semigroup of the linear
Stokes problem near the flatten boundary, and the standard wellposedness
theory of Navier-Stokes equations in Sobolev spaces away from the boundary.
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1. Introduction. We are interested in the inviscid limit of solutions to the incom-
pressible Navier-Stokes equations

Owu+u-Vu+ Vp = vAu, L1
V-u=0, (1.1)

in a bounded domain  C R?, with initial data w|,_, = uo(z) and with the no-slip
boundary condition

u|39 =0. (1.2)
In the inviscid limit: ¥ — 0, one would intuitively expect that the solutions u,,, of
problem (1.1)-(1.2), converge to the corresponding solutions of the Euler equations
of ideal incompressible fluids

Ju+u-Vu+Vp=0, in €,
V-u=0, in €, (1.3)
u-n=0, on 01,

where n denotes the unit normal vector to the boundary pointing inward. However,
the inviscid limit for problem (1.1)-(1.2) is strenuous and remains open due to the
appearance of boundary layers and strong shear near the boundary that triggers
the shedding of unbounded vorticity by the boundary. In their celebrated work [22],
Caflisch and Sammartino establish the boundary layer expansion and the inviscid
limit for analytic data on the half-plane. Maekawa [20] proved a similar result that
allows Sobolev data whose vorticity is supported away from the boundary. The
result and its proof was recently simplified [21] and extended in [18, 16], which
allow data that are only analytic near the boundary.

In this paper, we prove the inviscid limit of (1.1)-(1.2) for data that are only
analytic near the boundary of a general bounded analytic domain in R?, thus further
extending [22, 20, 21, 18] from the case of half-plane to bounded domains with
analytic boundaries. Precisely, we assume that

e () is a simply-connected bounded domain in R? whose boundary 95 is an
analytic curve, defined by an analytic map: 6§ € T = R/(ZL) — z(0) =
(1‘1(9)7 &CQ(H)) € 00.

The analyticity of the boundary naturally extends to an analytic map which maps
the near-boundary part of the domain {x € Q: d(z,0Q) < ¢} to the case of half-
plane (0,z) € T x (0,6), where z is the distance function from the boundary. Here,
for sake of presentation, we have chosen to consider the case of simply-connected
domain 2. The results of this paper apply to the general setting of multi-connected
bounded domains whose boundaries consist of closed analytic curves, i.e., including
domains with holes. Our analysis near each of the boundaries is close to that on
the half-plane. A crucial assumption, however, lies on the analyticity of initial data
near the boundary, which appears to be sharp.

The work is dedicated to the memory of Professor Robert T. Glassey, who was a
great mathematician, a close friend, and an inspiring teacher.

1.1. Boundary vorticity formulation. We shall work with the boundary vor-
ticity formulation [1, 20, 21]. Precisely, let w = (u1,us) be the velocity vector field
and w = V* - u = 0,,u1 — 0,,us be the corresponding vorticity. Then, the vorticity
equation reads

Ow + u - Vw = vAw,

1.4
u=V+ATlw, (the Biot-Savart law). (14)
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Here and throughout the paper, A~! denotes the inverse of the Laplacian operator
in Q subject to the zero Dirichlet boundary condition. Evidently, this, together with
the Biot-Savart law, imply the impermeability boundary condition «-n = 0 on 0f2.
To ensure the full no-slip boundary condition, i.e., that v -7 = 0 on the boundary
0f), where 7 in the unit tangent vector to the boundary, we first require that the
initial data satisfy the no-slip boundary condition (1.2), and then we impose in
addition that O;u - 7 = 0 on the boundary, 912, for all positive time. This leads to
the boundary condition

0=7-0u=1-V*A 0w = 0,[A  (vAw — u - Vw)] (1.5)

on the boundary. Introduce w* to be the solution of the nonhomogeneous Dirichlet
boundary-value problem

1.
w* = w, on  Jf). (16)

{Aw* =0, in Q

and define the Dirichlet-Neumann operator by
DNw = —0pw", on 09, (1.7)

where w* solves (1.6). Observe that 9,[A 1 Aw] = 9,[ATA(w—w*)] = (0, +DN)w.
Thus, by virtue of the boundary condition (1.5) the boundary condition on vorticity
reads

V(On + DN)w),, = [0, A7 (u - Vw)]
together with the Biot-Savart law (1.4).

Throughout this paper, we shall deal with the Navier-Stokes solutions that solve
(1.4)-(1.7), or equivalently (1.4) and (1.8). Such a solution will be constructed via
the Duhamel’s integral representation, treating the nonlinearity as a source term.
As we observed earlier the boundary condition u-n = 0 on 952 follows from the Biot-
Savart law and the definition of A~! with the zero Dirichlet boundary condition.

(1.8)

loq?

1.2. Main results. Our main result reads as follows.

Theorem 1.1. Let ug € H5(Q) be an initial data that vanishes on the boundary.
We assume that the initial vorticity wg is analytic near the boundary 0S) (see Section
3). Then, there is a positive time T, independent of v, so that the unique solution
u, (t) to the Navier-Stokes problem (1.1)-(1.2), for every v > 0, with initial data
ug, exists on [0,T] and has vorticity w, = V+ - u, that remains analytic near the
boundary, and satisfies

P_I}r%)ﬁ”wvHLm([O,T]XBQ)) < Q. (19)

Moreover, in the inviscid limit as v — 0, u,, converges strongly in L>°([0,T]; LP(Q)),
for any 2 < p < oo, to the corresponding solution u of the Euler equations (1.3)
with the same initial data ug.

The fact that Euler solutions remain analytic near the boundary is a classical
result [3, 17], which is a direct consequence of the main theorem. The main difficulty
in establishing the inviscid limit is to control the vorticity on the boundary and
derive uniform estimates such as (1.9), which is the main contribution of this paper.
The inviscid limit then follows easily. In fact, a much weaker bound than (1.9)
is sufficient to guarantee the convergence of solutions to the Navier-Stokes to a
corresponding solution of the Euler equations. Precisely, we have the following
simple Kato’s type theorem.
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Theorem 1.2. Let T > 0 and u be a weak solution to the Euler equations (1.3)
in [0,T] x Q satisfying || Vul|Le(jo,11xq) < 00. Suppose that, for every v > 0, u,
are Leray weak solutions to the Navier-Stokes problem (1.1)-(1.2) on [0,T] x €,
satisfying

T
sup ||uu(t)|\2L2(Q>+V/ IV, (8] L2 dt < Co, (1.10)
0<t<T 0

uniformly in v — 0. Assume that the vorticity w, = V= - u, satisfies

lim sup ( - /OT /89 vw, (t, o)u(t, o) -T(U)dadt) =0, (1.11)

v—0

then any ,, which is a weak—x limit in L>([0,T]; L*(Q)) of a subsequence u,,
of the Leray weak solutions, as v; — 0, satisfies the stability estimate:

s (8) = u(®) 220y < XNV IE= 02020 [l (0) — u(0) 1220 (1.12)

In particular, if u, (0) — uw(0) in L?(Q2), as v — 0, then u, converges strongly to u
in 1(0, 7], 12(92).

Proof. An elementary manipulation (e.g., [5]) yields the following energy inequality
t

[l (8) = u()|[Z2 () + V/O 1V (5)| 72 () ds
t t

< N 0) = wO ey + [ V0 s = [ [ v@uunls ) uls.o) dods

o9
. 0 0
+/ / [((Vu+ ) (s —w) - — w))dds
0 Q

t t

< Jus(0) = uO)acoy +v | IV aords = [ [ vt o)utsn o) (o)) dods

t
2Vl oy | (o) — )l Eacay ds

’ (1.13)
where in the third term in the right-hand side of the last inequality we used the
fact that (0,u,) - v = wy,(u - 7) on the boundary. Let u,, be a subsequence which
converges weak—x in L>([0,77; L*(2)), as v; — 0. We apply the above energy
inequality to u,,; and invoke Gronwall’s Lemma. Observe that since the Leray weak
solutions belong to C([0, T]; L*()) then [ju,(0)[|72(qy < Co by virtue of (1.10).
Thanks to the Banach-Alaoglu Theorem and assumption (1.11) we conclude (1.12).
The last part of the theorem is an immediate consquence of (1.12). O

1.3. Remarks. As mentioned in the introduction, our main results extend the pre-
vious works [22, 20, 21, 18] from the case of the half-plane to bounded domains. The
analyticity near the boundary is required to control the unbounded vorticity in the
inviscid limit. It may be possible to extend the present analysis to include the prop-
agation of boundary layers and the classical Prandtl’s boundary layer expansions,
whose validity near general boundary layers again requires analyticity.

The first such a result was due to the celebrated work by Asano [2] and
Sammartino-Caflisch [22], where the boundary layer expansion was established for
data on the half-plane that are analytic in both horizontal and vertical variables.
When constructing solutions to the Prandtl equation, the analyticity in the verti-
cal variable can be dropped [19]. It is not known however if such an assumption
can be dropped at the level of Navier-Stokes equations. Maekawa [20] established
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the Prandtl’s expansion for data whose vorticity is compactly supported away from
the boundary, while recently Kukavica, Nguyen, Vicol and Wang [16] extended the
result to include data that are analytic only near the boundary, building upon the
vorticity formulation revived by Maekawa [20], the direct proof of the inviscid limit
for analytic data developed in Nguyen and Nguyen [21], and the Sobolev-analytic
norm developed in Kukavica, Vicol and Wang [18]. All these aforementioned works
are on the half-plane. We mention a recent result [23], which to the best of our
knowledge was the first to establish a Prandtl asymptotic expansion in a curved
domain.

When background boundary layers have no inflection point, the analyticity can
be relaxed to include perturbations in Gevrey-2 spaces [7, 8], which is sharp in
view of the Kelvin-Helmholtz type of instability of generic boundary layers and
shear flows [10, 11]. When Sobolev data is allowed, the Prandtl’s asymptotic ex-
pansion is false due to counter-examples given in [9, 12, 13], where the failure of the
convergence from Navier-Stokes to Euler solutions, plus a Prandtl corrector, is due
to an emergence of viscous boundary sublayers that reach to order one, independent
of viscosity, in L norm for velocity [12].

2. Navier-Stokes equations near the boundary.

2.1. Global geodesic coordinates. Following a construction done in [4] we in-
troduce a well adapted representation of 92,

0 €T =R/(ZL) — 2(0) = (x1(6), z2(0)) € I

which, being global, preserves the analyticity hypothesis. Let 7(6) and 7(6) be the
unit tangent and interior normal vectors at the boundary:

7(6) = 7(@(0) = (¢1(0), 25(9)), and  7(6) = A(x(6)) = (—ah(6), 4 (9))
with [2/(9) = (2} (6))” + (a5(6))* = L.

Let d(x,09) denotes the distance of any point € R? to dQ . Then we have the
following classical result.

(2.1)

Proposition 2.1. There exists a 6 > 0 such that for each x on the open set
Vs ={z € R? with d(x,00) < §} (2.2)

there is a unique point &(6) € OQ with d(x, ) = |x—1(0)|. The mapping x — &(6)
is an analytic map from Vs with value in 0. In addition, for x € Vy, one has the
formula

Vad(z,00Q) = i(x(0)). (2.3)

When no confusion is possible, for € Vs the notations 7i(x) and 7(x) will be
used for 7i(x(0)) and 7(x(0)) respectively. Observe that

" d

7(0) A7i(0) = 4 (0)2Y(0) + 25(0)25(0) = @Ifﬂ'(g)l2 =0, (2.4)
which implies the relation
'(0) =y(0)7(0) and 7(0) =~(0)7i(0), (2.5)
with
V(0) = 2Y(0)5(0) — =1 (0)25(0), (2.6)

being the curvature of the boundary 0€2. Therefore the mapping:
0,2) = X(0,z) = x(0) + zri(x(0)), (2.7)
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defines au global C* diffeomorphisme of (R/(LZ)) x [~d,4] on Vs . Moreover, for
any vector field x € Q — v(x), as soon as x € V5, using the above notations, one
has:
v(x) = (v(z) - 7(2))7(x) + (v(z) - 7i(2))ni(z) (2.8)
Below, for sake of clarity, the symbol X is used for any x = X (6, z). There hold
0.X(0,2) =1(0), 0sX(0,2)=J(0,2)7(0), 50
and J(0,2)=1+2v0) >0 for |z] <4, (2.9)

provided § > 0 is chosen to be small enough. From the relation
@Xl 89X1 8X1Z 8)(22 . 1 0 (2 10)
0.Xs 09Xo ) \0x,0 9x,0) \0 1)~ ’

one deduces the formula:

Vx0 = and Vxz=r1(0). (2.11)

We collect the following useful relations whose derivations are classical. For any
vector field u, we have

1 1
Vew= < (0 (- 7) + Dplu- 7)) = Ou(u- 1) + S 0(u- 7)) + %u .,
1 1 (2.12)
VAu=(0:.(Ju-7) = 0pu- 7)) = .(u-7) = S0p(u- 7)) + }(u 7).
For any scalar function ¥, we have
0,¥ Y
1(0:(J¥) & A
VAU =— = 1 +1|J , 2.13
J
and ) ) )
in which we denote
Ng ., = 03 + 0?
_ > P2 4 22+ ()?
Ra =m(0,2)05 + T maz e 0y and m(6,z) = T

2.2. Scaled coordinates. In view of (2.14), we observe that the Laplacian A is
nearly the flat Laplacian Ay, in the (0, z) coordinates, near the boundary. To
make use of this fact, we introduce the following scaled variables

(6,2) = (A0, A2) (2.15)

for sufficiently small A € (0,1). By construction, we compute
A=2(8g:+NRa), (2.16)

in which Ag - = (02 + 85») and

~ oYl
B~ 02 P Y
Ra =m0, 205+ 15 ~ e ammp
229 + N*(29)*

(RS

R (2.17)
m(6,%) = —
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where v = A35(6). In the analysis, A\ will be taken sufficiently small, and so A is
indeed approximated by A2Aj -, treating A>Ra as a perturbation.

2.3. Vorticity equations near the boundary. In this section, we derive vortic-
ity equations in the geodesic coordinates near the boundary in the region Vy defined
as in Proposition 2.1. Introduce a smooth cutoff function ¢°(z) so that

1, if Ad(z,09) < 6 +
d)b(.’li):{ ( ) 0 o

2.18
0, if Ad(z,99Q) > o + 2p0 (2.18)

for small positive constants dg, po so that dg+2py < Aé to guarantee that supp(¢®) C
Vs as in Proposition 2.1. Define

W’ = P (z)w(t, ). (2.19)
It follows from (1.4) that
O’ — vAwWb = N?, (2.20)
where
N := —u- Vb + (u- Vo¥)w — v(Ad")w — 20V - Vw.
Observe that N°(u,w) = 0 on {\d(x, ) > &y + 2po} where the cutoff function ¢°
vanishes. We then introduce the following scaled vorticity
Wt x) =D\ M0,A2),  (1,0,%) = (A, 00, \2), (2.21)

for small A > 0. Using (2.16), we rewrite the vorticity equation as
(07— v255) & = VX2 Ral + AN, (2.22)

Equation (2.22) is defined on (6,%) € T x Ry (in fact, the equation vanishes for
Z > 0o + 2pp). We shall solve (2.22) together with the boundary condition (1.8),
which now reads

V(s + DN)F|._, = A0, A7 (u - Vw)] (2.23)

System (2.22)-(2.23) will be our main equation for the scaled vorticity near the
boundary. Away from the boundary, we construct vorticity using the original system
as derived in Section 1.1.

loc

2.4. Dirichlet-Neumann operator. Let us precise the Dirichlet-Neumann oper-
ator defined as in (1.6)-(1.7).

Lemma 2.2. For w € HY?(9Q), let DNw be the Dirichlet-Neumann operator
defined as in (1.6)-(1.7). In the scaled variables, there holds

DNG = |95/ + B& (2.24)
for some linear bounded operator B from L2(0Q) to itself: namely,
IB& | L2(a0) < Coll@llz2(00)
for some positive constant Cy.

Proof. Let ¢° be the cutoff function defined as in (2.18), and set w*® = ¢°w*, where
¢* solves (1.6). It follows that

Aw*® = (AP w* —2V¢P - Vw*, in Q
{ (A¢”) ¢ (2.25)

w* = w, on ONQ.
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Since ¢ vanishes away from the boundary, we can work in the scaled varNiables,
which reads DNw = —0zw/"_ . Recalling (2.16), the scaled function @*(t,0,%) of

w*? solves

A& = =N Ra@" + A [(A@")w* = 2Ve" - Vw*],  &*[z=0 = Dz,

on T x R, , which can be solved explicitly. Indeed, let w,, be the Fourier coefficient

of G(g, Z) in variable 0. Note that &, vanishes for a = 0, and thus we focus on the
case when a # 0. Let K, (y,2) = ﬁ(efla@*al — e~ 12+ be the Green function
of the Laplacian 02 — o with the Dirichlet boundary condition. It follows that

GE) = B0 0) + X [ K@ 2 (RaB")a) 0
0 (2.26)

02 [ K@ @60 - 296 V| (@) 7
0 «
for z > 0. The Dirichlet-Neumann operator is thus computed by
(DNG)a = —0:35(0)

= |a|@a (0) + / T X (Ba ) + AH(A)" 296" V)] 3) i

The decomposition (2.24) thus follows, upon defining B as the integral term
oo
(Bo)ai= [ [ (Rad o + A2 (AF )" — 290" V)] 3) a7, (227
0

for each Fourier variable a € Z. It remains to prove the boundedness of B. Note
that by definition, the last two terms are defined on the region y > dp + po where
the cutoff function ¢” = 1. Therefore,

[ e (a6 ~ 296" 9 )a(@) di] £ 1" s a0y
0

It remains to bound the first integral term in (2.27). In view of (2.17), we write
_a
(1+A227)?3
x i
PR 0 PO
+ [( i) 14+ 2229 +% (1+A2z7)3 v

noting the coefficients are analytic near the boundary. We note in particular that

Rair* = 02[inia"] - 0| 205" + o] + ag(HZQ,ﬁa*)

there is no growth in large z: for instance, m(a,i) < A2 uniformly in large Z.
In addition, we note that m = zm; for some bounded function m;. Thus, using
the fact that |a|ge~ 217 < 1, the second-order derivative term (’“)%[ﬁl@*] thus can be
treated as the first order derivative term. Precisely, we can treat the first integral in
(2.27) systematically as follows: for some smooth and bounded coefficients b(, %),

z2 / e 3190 (0, 85) (457l (@) dF S N2l ™/2]| (0, B5) (6T ) 2.

This yields

|(B)al S Alal™2|I(a, 05) (58" )all 2 + 10”1 (d(w,00) 250-+00) -
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Taking L2, we thus obtain

ST IBB)al? £ 223 Jaf ™ )4 B (2.28)

64

upon noting that the coefficients b(6, Z), which in particular have ||ba(Z) 23 Lo < o0
It remains to bound the right-hand side of (2.28). Directly from (2.26), we compute

(0, 2)@(3)] S lale™ (@0 (0)] + A2 /Ome'“”)<Pl@*>a<z’>|dz/

-1/2
+ a7V lw™ | &1 (Ad(z,69)> 60 +p0) -
Therefore, together with the standard Hausdorff-Young’s inequality, we bound
(e, 02)@ll2 S el *1@a (0)] + X[l M [(Rad )allzz + lal ™2 1w 11 (rde,00)>60-+00)

which yields
ZW\AH(O‘ 35)07a||%?£
S Z |Ga(0)]* 4+ A? Z | B([(Ra® )a”ig + ||W*||2H1(/\d(w,89)250+p0)
S Z |@a (0] +>\2Z|04\_1|| o, 02)i; 172

+Z|04| (e, 02) ~o¢HL% - }+ o™ | 211 (A (2,092 >80+ po)
Taking A sufficiently small so that the second term on the right can be absorbed
into the left. On the other hand, using the standard elliptic theory, the last term is
bounded by

~ 2 2
Z|a| 1|| (v, 07) a”L% PR S ”("J*HHI()\d(m,BQ)Z&o) S ||W||L2(aﬂ)-

Putting these back into (2.28), we obtain the lemma. O

3. Near boundary analytic spaces. In this section, we introduce the near bound-
ary analytic norm used to control the vorticity that is analytic near the boundary,
but however only has Sobolev regularity away from the boundary. We then derive
sufficient elliptic estimates, bilinear estimates, as well as the semigroup estimates
in these analytic spaces.

3.1. Analytic norms. Let § > 0 be small and so that Proposition 2.1 applies for
Vs = {d(z,09) < §}. In particular, § is small so that the statement of 2.1 still holds
for Vas. Now for any constant A € (0,1), we have

Ad(z,00) < A

for all x € Vs. Let 6y = Ad, which will the size of the analytic domain for our
solution near the boundary. We fix pg € (0,1/10), and assume that p € (0, po).
Then

Q,={Ze€C:0<RZ < d, SZ] < pRZ}

3.1
U{ZEC:50§%5§50+P7|3§|§5O—|—p—§RE} (3.1)
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denotes the complex domain for functions of the z variable. We note that the
domain €, only contains z with 0 < Rz < §g + p. For a complex valued function f
defined on Q,,, let

[fllzy = sup [[fllzroe,),  [flee = sap |IfllL=on,)
0<n<p 0<n<p

where the integration is taken over the two directed paths along the boundary of
the domain ©,. Now for an analytic function f(6,2) defined on (0,2) € T x Q,, we

define
1Flles = 3 lesotro-RDlal
a€Z S . (32)
Hf”ﬁﬁo _ Z ”eso( o+tp— a‘alfaIIL;o,
a€Z

where f, denotes the Fourier transform of f with respect to variable 0. The function
spaces L}) and L7 are to control the scaled vorticity and velocity, respectively. We
stress that the analyticity weight vanishes on Rz > g + p. For convenience, we also
introduce the following analytic norms

£ llyer = D 105202 fll s (3.3)
i+j<k
for k£ > 0 and p = 1,00. We observe the following simple algebra.

Lemma 3.1. There hold
Ifallcy < [1fllzsellglles (3.4)
and for any 0 < p’ < p,
- 1
195 flLcs, + 0= s, <

p—r

111 (3.5)
Proof. By definition, we compute

0@t (Ta @ < D [famar (B)gar ()]0t

< Z ‘eeo(éo+pf§ff5ﬂ0‘*a/‘fa—a/(@650(50+p7%a|a/‘9a'(a‘
a/

which gives

_ps P O
Heeo(éo-‘rp %z)la\(fg)a(g)HL}) < Z Heeo(éo-‘rﬁ RZ)[o—a |f04704’||£;° ||eao(50+p RZ) | ‘g&/ ||L})~
a/

The estimate (3.4) follows from taking the summation in « over Z. The stated
bounds on derivatives are classical (e.g., [22, 21]), making use of the fact that
(p — p')|ale? =Pl is bounded. O

3.2. Elliptic estimates in the half-plane. In this section, we derive some basic
elliptic estimates in the analytic spaces Wllf’p . Precisely, we consider

{Ag’z(b =7, in TxR,
¢|z:0 = 0
in which we drop titles for sake of presentation. The Wf’f’p analytic norm is defined

on Rz < &g + p as introduced in the previous section. We obtain the following
proposition.

(3.6)
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Proposition 3.2. Let ¢ be the solution of (3.6). Then, the velocity field u = V+¢
satisfies

lullyyrce SAFIpes + 1 mee (2260403
P P

1
1G5 Bed)llwre S Il + 1100 fllype + 1 st (gz250+01) (3.7)
Vo zullyyroe S IFllyyrce + [1f Lz (2260401
for k> 0.

Proof. The elliptic problem (3.6) can be solved explicitly in Fourier space. Indeed,
taking the Fourier transform in 6, we get the elliptic equation

(8,3 - a2)¢a = fa

for the Fourier transform ¢,. We focus on the case a > 0; the other case is similar.
The solution is given by

0ule) = [ K- falw)dy+ [ Kelr2)fal0)dy
0 z
with the Green function defined by

1
Kx(y,2) = — 5~ (eia(z—y) _ e—a(y-i-z))’

This expression may be extended to complex values of z. Indeed, for z € €),, there
is a positive 6 so that z € 9Qy. We then write 9Qp = v_(2) U v+ (), consisting of
complex numbers y € 9y so that Ry < Rz and Ry > RNz, respectively. Then, the
integral is taken over y_(z) and 74 (z), respectively. We note in particular that for
y € 7+(2), there hold the same bounds on the Green function

Ki(y,2)] < a~lemolv—=]
This proves that
6a(2)] < / a2l £ () 1y (3.8)
0Qy

By definition of [l/l) norm, we only need to consider the case when 0 < Rz < dg + p.
Now, for 0 < Ry < dg + p, we bound

e—a\?ﬁy—ﬁﬁz\e—so(éo—i—p—éﬁy)a < e—so(60+p—ERz)ae—(l—eo)a|§FEy—§FEz|

noting ¢y < 1/2. On the other hand, for Ry > dg + p (recalling g + p > RNz), we
bound
efa|§Ry7§Rz| < efeo(50+p78“€z)aef(1feg)o¢|ﬂ?yfﬂ?z|.

Therefore, we bound

/ o lem W fo () ldy| S o tem 0 CGote R e Cuto R g )
Ry<do+p

[ et wlidy] S e eI £ gy,
Ry>d0+p
Similarly, we also have

[ et )y 5 antes R esosore e
Ry<do+p
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which gains an extra factor of a. This proves
le=o@t2=RI% (0, 9, )da | pge < [l @HP T f |1 4+ a7 fall L2y 50+)
le=e @ (0, 0,)2 Pl e < (eI S 1w + @2 fall L2 (20 40)-

Taking the summation in a € Z yields the first and last estimates in (3.7) for k = 0.
For k£ > 0, the estimates follow similarly. For the estimates involving the weight

27!, we use the fact that the Green function vanishes on the boundary z = 0, and

50 |Gi(y,2)| < ze—elv=2l, O

3.3. Biot-Savart law in ). In this section, we bound the velocity through the
Biot-Savart law: namely, u = V'¢, where

{Ad)—w, in

¢ =0, on 0f. (3.9)

Without loss of generality, we will work with the cut-off vorticity w® (see Section
4.1) near the boundary where the rescaled coordinates introduced in Section 2.3
apply. We obtain the following proposition.

Proposition 3.3. Let ¢ be the solution of (3.9). Then, the velocity field u = V+¢
satisfies

||U||W};)°° S ||w||W§,1 + Hw||Hk+1({Ad(x,aQ)250/2})
1 (3.10)
H(gaﬁ)nwjm S ”w”W,’jvl + HaawHW;jJ + [|wll mr+1 (frd(z,00) =60 /2})

for k> 0.
Proof. Using (2.16) and (3.9), the scaled stream function ¢(Z,6, %) solves
Aj:6=A"*5—NRap, ¢, =0
on T x R, and so the elliptic theory, Proposition 3.2, developed in the previous
section can be applied, yielding
HUHW}:m S HWHW;;'J + [l 541 ({rd(2,00) >80+ 0}) (3.11)
+ A2[105 Radll e e + A2 Radll s ((z5d040p) '

It thus remains to bound Ra¢. Recall from (2.17) that

S 3 cal PN b cols
Ra = m(0,2)02 7 — 05 — SN 0,2) = ———————.
a = m(6,2)% + 1+ A2z5 (14 A\2z7)3 7% m(6:2) (1+ A2z7)2
Thanks to the analyticity of the boundary, the coefficients are clearly bounded in

W Therefore, using a similar algebra as in (3.4), we bound

N[0 Radllyyree S A 056llyyi.oo + A2[026lypm.o0 (3.12)
That is, this term can be absorbed into the left hand side of (3.11), upon taking A
sufficiently small. As for the last term in (3.11), we note that for large Z, [m(6, )| <
A~2, which in particular proves that there is no growth in z. This gives

NRad || et (12350 +p1) S N0l mress (ra(e,00)>50+01) (3.13)

S >\2H¢||W;;'m + lwll mr+1 (frd(,092) >80 /2}) 5

in which the last estimate follows from the standard elliptic theory in Sobolev spaces.
The proposition follows. O
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3.4. Bilinear estimates. In this section, we show that the Sobolev-analytic norm
is well adapted to treat the nonlinear u - Vw. We have the following lemma.

Lemma 3.4. For any w and «’, denoting by u the velocity related to w, we have
- Velley < CIwlles + lollars graomyzsm ) 10547 ey
+ C(HWHL}J + [|05wllcy + ||w||H1({Ad(z,aQ)zdo})) 120z 23 -

Proof. By definition, the £} norm is defined near the boundary {A\d(z, 9Q) < do+p},
on which we can write

1 1

w-Vw' = W&gqf)@zw’ — W@qf)@gw’
with A¢ = w. In the rescaled variable (5, Z), we get
WV = (0)05) — 2 (0:0)(5;7)
14+ A2z9(6) (14 A227(0))?

Note that thanks to the analyticity of 9, the coefficient (1+\2275(#))~! is bounded
in £3°. Using (3.4) and Proposition 3.3, we bound

10:8) (032 llc3 < 106 22211058 | 3

< (Iwlley + Il it 00yz501) ) 10571y

~ 1. ~ e
1956) (0553 S 13050 c52 1205 .
S (Iwlley + 195ley + Il (rae.om)z501 ) 17057 Ly
giving the lemma. O

3.5. Semigroup estimates in the half-plane. In this section, we give bounds
on the Stokes semigroup e”** in the analytic spaces W§’1 on the half-plane T x R .
We also denote by T'(vt) = e”tS(’qurX{gzo}) the trace of the semigroup on the
boundary, with ’qurx (z=0} being the one-dimensional Hausdorff measure restricted
on the boundary. The results in this section are an easy adaptation from those
obtained in [21], where the analytic spaces contained no cutoff in z. Precisely, we
consider
(O —vAg)w=0
v(0z +9p))w)._, =0

on T x R} (where we drop titles for sake of presentation). We obtain the following
proposition.

(3.14)

Proposition 3.5. Let ¢’*® be the semigroup of the linear Stokes problem (3.14),
and let T'(vt)g be its trace on the boundary. Then, for anyt >0, p >0, and k > 0,
there hold

e Fllyyra < Collfllyypn + 12F L ress z280-1)
IT@t)gllper < Co Y ¥ galecoCotellel (3.15)
N/
uniformly in the inviscid limit.
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Proof. The proof follows closely from that in [21]. Indeed, taking the Fourier trans-
form of the semigroup e*** in variable @, we obtain

(€5 f)a / Golty: ) faly) dy,  (C(W1)g)a(2) = Galt.0:2)ga,  (3.16)

for each Fourier variable o € Z, where G (t,y; z) is the corresponding Green func-
tion. We recall the following result of Proposition 3.3 from [21] that

Ga(t,y; 2) = Ho(t, 4 2) + Ra(t, y: 2), (3.17)
where
1 ly—=z|? ly+=|2 2
H,(t,y;2) = 7(6’W +6’W)6’“ vt
=
05 R (1,3 2)| S e 0ol t=] 4 () =55 o0 o poe,

for y,z > 0, k > 0, and for some 6y > 0 and for p; = |a| + % In particular,
[Galt,y; )Ly S 1, for each fixed y, 1.
Now, for z,y < &g + p, we note that

e—alytzl,—eo(dot+p—y)lal — —alyEzlteolal(y—2) ,—eo(So+p—2)|a|

1
< e~ (a—eolal)|ytz|,—eo(bo+p—2)|] (3 8)

for any real number a and for ¢y sufficiently small. Taking a = %GONJH we have
a > €plal and so

e~ bonsly+zlg=co(otr—yllal < g=co(bo+p—2)lal,—300usly+z|
On the other hand, taking a = %00% in (3.18), we have either a > ¢p|af or
10002t > €olally + z|. Therefore, we have

lytz]?
e 6 vt

—0pa’vt —50(60+p )|l <e 60‘y+z| —e€0(do+p— 2)\(1|

This proves that for z < §y + p,

So+p
coliotp=2)lal / Gt y: =) fa(y) dy
0

do+p 1 1g, 1y izl2
S/ [(yt)—ie—aao + e 290Hf\y+2|}|e€0 Sotp=y)lal £ ()| dy.
0
Since the term in the bracket is bounded in L! norm, we have

So+p
‘ ecoGotp—2)lal / Ga(t,y;2) fa(y)
0

Taking the summation in « yields the stated bounds for this term.
Next, consider the case when y > dg 4+ p > z. In this case, we simply use

< || p€o(do+p—y)|a
S e falles-

e—colally—z| < 6—60|0¢|(50+P—Z),

giving the right analyticity weight in z. The control of the weight ec!*!l¥=2I is done
exactly as above, yielding

ecoliotp=2)lal / Gt y: =) fa(y)] dy
do+p

oo
< [ [rden it e sl )]
do+p
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Therefore,

3 ||e€0(50+0—2)\04|/
s 1

o+p

o

‘Ga(t7y§ Z)foz(y)l dy”[l}) N Z ||fa||L1(225o+p)
o

SN2 fllar (z260+0)-

Similarly, from (3.16), the Fourier transform of the trace operator I'(vt)g is esti-
mated by

[(T(¥)g)a(2)| < |Galt,0;2)gal
1212

< el 4 (ut) bt 2 bt g |

12]2

< {Meféeomz\ F ()"t 300k }efeo(awfzna\‘ga|eeo<ao+p>\a|

in which the last inequality is a special case of the previous calculations for y = 0 and
z < 0o + p. The bounds T'(vt)g are thus direct. Finally, the bounds on derivatives
follow from the similar adaptation of derivatives bounds provided in [21]. We skip
repeating the details. O

3.6. Semigroup estimates near 9f). In this section, we provide bounds on the
Stokes semigroup e”*¥, which will be used to estimate the vorticity w” (see Section
4.1) near the boundary in the analytic spaces Wﬁ’l. Precisely, we consider

{&w —vAw =0

V(On + DN)w),, =0 (3:.19)

in 2. We obtain the following proposition.

Proposition 3.6. Let et be the semigroup of the linear Stokes problem (3.19), and
let T'(vt) be its trace on the boundary. Fiz any finite time T'. Then, for sufficiently
small X\, and for any 0 <t < T, p>0, and k > 0, there hold

||€Vtsf||wgﬁl < Coll Il + If llmser(rde,00)>50/2)

HI (z/t)g||wk,1 < Cy E | kga|€eo(5o+f’)|a\
P @
Q€L

(3.20)

uniformly in the inviscid limit.

Proof. In the scaled variables, the Stokes problem for near boundary vorticity w
becomes
z

(6[7 VA@ )w = *AQVR'A@
V(95 + |05]) @50 = —vB&

where Ra and B are defined as in (2.17) and (2.27). Using the Duhamel, the
solution with initial data wg can be written as

_ o o
o(t) = 5%y — V)\2/ e?EOSRAG(H) dt’ — y/ D(v(t—t))Bo(t') df’. (3.21)
0 0
We shall bound the integral terms on the right in term of the initial data. Recall
from (2.17) that

— . ~ =~
Ra = m(0,2)02 + ——0- a2l

B . 229 + N*(29)?
1+2227 ° (1+A227)3

A+ X7

m(0,2) = —
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We rewrite the operator in the following form
B R (e )
et o —1
TES L ER RGNS
v v
o2 - 0x( o) + 05 ()|

+ {( ™) 1+ A2z5 +% (14 22z7)3 “

We now bound each term appearing in the Duhamel formula (3.21). Thanks to the

analyticity of the boundary, the coefficients are bounded in W}jv‘x’. Now, recall from
(3.17) that the Green function has two components:

R = 02(is) — 05| 205 +

eV?S — eV?SH + eu?SR
which corresponds to the Green kernel H,, (i.e., the heat kernel) and the other from
the stationary Stokes kernel R,,.

We first claim that

. <N sup [[wllyyer + lwll a1 (rae,00)>50+6)-
) 0<T<i
(3.22)

For the heat semigroup, we may integrate by parts in 0 or z. It follows directly
from the representation of the Green function that derivatives of the semigroup
Vj2e”"5# are of order (vt)~1/2 of the semigroup itself. Therefore, the first-order

t ~ ~ ~ ~
HVAQ / TS R\ &5(7) dif
0

derivative term in EA can be treated systematically as follows:

t o T - -
V)\QH‘/O eV (t—t )Sva,Eh(t/) dr : < V)\Z/O (V(t_t/))_1/2Hh(t/)||Wi’fvl A7

SVEA? sup [|A] e
0<t <t ’

wh

The zero-order term is treated similarly. The analysis doesn’t apply directly to
the second-order derivative term 83[171&] due to the singularity in time (vt)~!, if
integration by parts was to perform twice. However, in the Fourier variable «, we
compute

T o t oo _ .
VA2 /0 (e FT151 Q2(753)) o (7) T = va\2 /0 /O Halt, 5 )] (@) djdt.

Observe that the Green kernel H, has the diffusion term e*”a2t~, for which we use

t ~
Va2)\2/ e~ve’ =) gt < A2
0

yielding the claim (3.22).
Next, we claim that

? > 77 ~ ~ ~
Hu)\2 / SRR (7 dF
0

Wk,l

; ? (3.23)
N V)\Q/ ||35W(;5V)HW§J dt + ||WHH’€+1(>\d(a:,8Q)260+6)'
0
It suffices to check for the stationary Green kernel p fe_‘%“f (5+2) and for the second-

order derivative term 85[7’73&] appearing in Ra&(#'). For this term, we make use
of the fact that m vanishes at z = 0; namely, we can write m = zm and use
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pre~%rsZZ < 1, which controls one spatial derivative, since y; = |a| +v~1/2. This
proves the claim (3.23).

Finally, putting the previous bounds together into the Duhamel representation
(3.21), we have obtained

Hw(t)||w5,1 s ||onW;§>1 + [|woll f5+1 (Ad(z,00) >60+5)
t
+22 sup w(@)]l e + VAZ/ 1050 (@) | pyer dE (3.24)
0<T <t i 0 °
+ [|wll gr+1 (Ad(z,00) > 50+6)

for any k > 0. The standard energy estimates for the heat equation (away from the
boundary) yield

HWHH"‘“()\d(x,aQ)z&oJré) S Hwo||Hk+1(Ad(x,8ﬂ)260/2)~ (3.25)

It remains to treat the third and forth terms on the right hand side of (3.24). We
bound these terms by iteration, introducing

A0 = sw (s sup {Jw@lyes + 10w Dlhyea (00 = o~ 5))
0<k<4  0<BE<po 0<p<po—BE i ?

for some ¢ € (0,1). We bound

t _ _ t
o [ 105l dF < Corx*aol®) [ (oo~ p— 5% d5
0 0
< CovA?B~1 Ag(B).

Next, we check the bound on [|95w(t)],,x1. We focus only the worst term as in
(3.23). Note that p < py — 5t < pg — 3. Thus, we take p' = %_ﬂs and bound

t - - N .
HU)\Zag/ ev(t—t )SRRAON.)(t/) dr’
0

1
wh

t
1 ~ _
S V)\Q/O = pHagw(ﬂHWg;l dt + ||| zre+1 (rd(z,00)>50+6)

t
< COV)\Q/ (po—p—Bs) ' "Cds+ lwo ll rx+1 (Ad(,00) >0 /2)
0
< CovA?B7 Ao(B)(po — p — BE) ¢ + llwoll i1 (ra,00) >0 /2)

This proves that

Ao(B) S llwollyyr + llwoll s (xage,00)>60/2) + <A2 + V)\Zﬁ_l)Ao(ﬁ)~

Taking A and v small, the last term can be absorbed into the left hand side, com-
pleting the bounds on Ay () or the Wg’l norm for the vorticity. Note that we do not
require § to be sufficiently large (compared with the nonlinear iteration provided
in the next section). As a consequence, the proposition holds for any given finite
time. O
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4. Nonlinear analysis. As already mentioned in the introduction, we construct
the solutions to the Navier-Stokes equation via the vorticity formulation

Ow +u - Vw = vAw (4.1)
together with the nonlocal boundary condition (1.8) and with initial data wj,_, = wo
satisfying

llwollyyz1 + llwoll 4 ((rd(z,00) >80 /23) < 00 (4.2)
Introduce the smooth cutoff function ¢’ as in (2.18), and write
w=w’+uw, Wl = ¢bw, w' = (1 - ¢")w. (4.3)
We also define the corresponding velocity field through the Biot-Savart law
u = u’ + u', u’ = VAT, u' = VAT (4.4)
This yields

9w’ +u- Vol = vAL®
{v@n DN, = 0,07 - V), )
for the vorticity near the boundary, and
{&wi +u- Vwi = VAW’ (46)
wigo =0

for the vorticity away from the boundary. Here, we note that the boundary condition
on w' follows directly from the definition (4.3), while the boundary condition on w”
was due to the fact that DNw’ = 0 by Lemma 2.2. We also note that the velocity
field u that appears in both the systems is the full velocity, which is the summation
of u® and u* generated by w® and w?, respectively.

We shall construct the near boundary vorticity solving (4.5) through the semi-
group of the Stokes problem. Indeed, we have the following standard Duhamel’s
integral representation, written in the scaled variables,

oD = BV?S(; ?eu(;f?)s N 77 ¢ T ~\ 1y '
(t) o+/0 f(t') dt +/O D(v(t—))g() dt (4.7)

where

f) = -2"2u-vub, gt) = X0 AT (u - Vw)] (4.8)

lon*

Here, et denotes the semigroup of the corresponding Stokes problem and F(VN)
being its trace on the boundary; see Section 3.6.

4.1. Global Sobolev-analytic norm. We now introduce Sobolev-analytic norms
to control global vorticity. Let us fix positive numbers pg, dg, and ¢ € (0,1). Intro-
duce the following family of nonlinear iterative norms for vorticity:

AB):=  sup sup L@l + w(®)lyza (o0 = p = A28}
0<A2Bt<po “0<p<po—PBA2t
+ ”W(t)HH‘%{Ad(z,BQ)ZJO/Q})}
(4.9)
for a parameter 8 > 0, with recalling

lo@)llyer = D 185(z05) w(®)ll -
jHe<k
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Note that by definition the norm || - [|,,x.1 controls the analyticity of the vorticity
P

near the boundary, precisely in the region \d(z, ) < o + p, while the H* norm is
to control the Sobolev regularity away from the boundary. We shall show that the
vorticity norm remains finite for sufficiently large 3. The weight (pg — p — A2t)S,
with a small ¢ > 0, is standard in the literature to avoid time singularity when
recovering the loss of derivatives (]2, 6]). See also [14] for an alternative framework
to construct analytic solutions through generator functions.

Our goal is to prove the following key proposition.

Proposition 4.1. For > 0, there holds
A(B) < Collwollyyzr + Collwoll s (paae,00)250/23) + CoB ™ A(B)?.

In Section 4.4, we will show that our main theorem, Theorem 1.1, follows straight-
forwardly from Proposition 4.1.

4.2. Analytic bounds near the boundary. In this section, we bound the vor-
ticity near the boundary A\d(z,9) < 8 + po, on which by definition w = w® and
therefore the Duhamel representation (4.7) holds. Let p < py — A?t. Recalling the
notation t = A%t and using (4.7), we bound

_ & _

@@ |yper < Nl @o]lypen +/ e S F(@) || e dE’
P P P

0 (4.10)

+ [ @@= 0a@lg o

for 0 < k <4 and for f, g defined as in (4.8). Let us bound each term on the right.
Using the semigroup estimates, Proposition 3.5, we have
17580 llygpr < Coll@ollyysn + [15Boll v s (zs049)
< Co||f:’0|\wgvl + llwoll &r+1 (Ad(w,092)>50+0) -

While for the second integral term in (4.10), we have

? > 77 ~ ~ ‘tv ~ ~ ~;
L 0T @ g 5 [ {15 @ g + 1@ ireor i) -

Then, we use (4.8), in the above formula with f(t) replaced by —A\~2u - Vw®. First,
using the standard elliptic theory for &k = 0,1, 2, we bound

[[2(u - vwb>(?>”H’€+1(526o+p) S ||w||%14({)\d(:1:,8§2)260/2}) S A(5)2~
Next, for the analytic norm, with the bilinear estimates from Lemma 3.4, we have:
- Velley < C(Iwlley + Il rae.omzs0 ) 195 ey
+C(Iwlley + 195ley + Il (praomyzs0 ) 1705 Ly
S HWHIQ/V;,I + ||w|ﬁ11({,\d(x,aﬂ)zéo})
S AB)?
Jw- VwbHW;vl S HWHWI}J Hwngﬂ + HWH?JZ’({M(;C,aQ)z%})
S AB)*(po — p— ).
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Therefore,

t t
[ w9ty 5 < o) [ (oo p - 59)¢ 5
0 0
< CoB~HA(B)?.

Similarly, we consider the case when k = 2. Noting p < pg — 5t < py — s, we take
o= %_BS and compute

t t
1
/ [u- Vw2 ds < Co/ - [ V|| ds
0 ? o P—P o

t
< CoA(B)? / (po —p— Bs) 1€ ds
0
< CoB~tA(B)*(po — p — Bt) .

Finally, we treat the last integral term in (4.10). Precisely, we will show that,
for k < 2:

IT@E = )g@) e < Collu- Ve @)y + Collw @) 17 (xaga.00)250/2)

+ CO||W(?)||W;;)1 () 4 (Ad(z,00)= 60 /2)
(4.11)
which would then imply

/0 ID0E = 7))g @)z df < Co (AB) + 5~ A(B)(po — p — 1)) .

Here the constant Cp may change from line to line. It remains to give the proof for
the inequality (4.11). First, by Proposition 3.5, we have

IT@ (&= )g@)llyr1 < Co 3 lafF|galese@orelal,
«
where g, is given by

Jo = A 10 AT (U Vw)alog.
Let ® = A~ (u - Vw). By definition, ® solves

AP =u-Vw, x €N
‘I)laQZO.

In the rescaled geodesic coordinates, we have g, = 9:®,(0). Let ®* = &(z)¢"(x),
we have

AP =2V, ¢ - V, B0 + AgP® + ¢bu - Vw
Pb|,_o = 0.

By a direct calculation, we have

eso(5o+p)\ﬂlga(’t‘7) — az¢'2|5:0

_ / elalco@o+p)=2) {,\2 (EAiab) (3) — A2 (zvmb Ve ® — BAS — ¢l - Vw) } dz
0 « «@

=hao+ 2o+ 130+ l4a.
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Treating I; . As in the proof of Proposition 3.20 for EA, we have
] SColaf?x? [ eleleotine Dz 3)(d
0
+ COAQ/ I+ (|10, (3)] + [9:8Y) dF.
0
First, we use the inequality Z|a|e~|* < e 21alZ o get
Bl < Cox [ lellcoon=£) (o 3)] + jo:%]) @z
0
do+p
< Cox [ ettt 3 (jal ol 3)| -+ 0504 ) 4
0

£ [ (ot @] + oz0])
o+p

For the first term, we use the L,ﬂ elliptic estimate for the velocity (since the kernel
K, € LY), to get

Slal T oleo o3 (o 1@ (2)] + 0501 ) dZ
" 0 (4.12)
< Cll¢"u- Vwllyyer + Cll@l a2 (rd(w,00)>50+p0) -
Now we have
16°u - Vwllyyea = llu- Vo' — (u- Ve )wlyra
< O (Il Vol + el e rage,om a0 )

< Cllu- Ve[| e

+ Cllwll z1(xd(z,09)>50/2) (||WHH4(,\d(m,aQ)250/2) + ||w||W§,1) .

(4.13)
By standard elliptic estimate, we have
@] Err2 (nd(2,09) 560 +.po) <Cllu - Vwllyyrr + Cllu - Vel gx(aa(,00)>60)
<Cllu- Vwb||wgv1 + Wl s rd(z,00)260/2) (4.14)

+ Wl s (rd(a.00)260/2) Wyt

Combining (4.12),(4.14) and (4.13), we have
Z |a|k|117a| S - Vwb(%vl)ﬂwgvl + HWH%I“(Ad(w,aQ)Zéo/Q)

+ @l zs (rde.00)2 60 /2) @yt

as claimed in (4.11). The proof for I , is complete.

Treating I3 .. For I3 ., we note that the domain of integration is Z > 6o + po >
do + p, we have

|a|k€|a|(ao(6o+p)—5) <C.
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Thus we have
D lalf L6l € CY IVe®hl Lt 280400 < Clld(@, 02)Va|| 11 (rd(,09) > 50+ p0)

< Clld(z, 0) @ 72 (rd(2,092)>60+po)
< C||¢"u- Vwllyyra + Cllu - Vel L2 (ad(z.00)260)
which is bounded by the right hand side of (4.11). The proof for I , is complete.
Treating I3 . Similarly, for I3 o, we get

Z ¥ 13,0 < Clld(z, 00 @ 111 (na(z,00)> 50+ po)

< Cll¢"u- Vel yra + Cllu- Vol z2 (g 00)250)-
This is also bounded by the right hand side of (4.11). The proof for I3 , is complete.

Treating I, . For I, , we have

S lof* Taal < 670 Veollya.

(o3

We rewrite ¢’u - Vw = u - V(¢*w) — u - Volw = u - Vwb — (u - V¢b)w. Hence we
obtain

>~ lal* aal < € (Il Vel + ul s ae.o0)250+0) )
[e3%

< Cllu- VWbHWgJ + OllwlFa (rage,00)260/2)
+ C||W||W511 ||W||H4()\d(z,8§2)250/2)~

This completes the bound for I 4.
Combining all of the above, we obtain bounds on A(8) in the analytic norm.

4.3. Sobolev bounds away from the boundary. Finally, we bound the vorticity

away from the boundary. Recall that
Ow' +u - Vw' = vAw'
; (4.15)
w‘aQ =0

Note that by definition, w? vanishes in the region when A\d(z,99) < &,. We perform
the standard energy estimates, for £ > 3 so that the standard Sobolev embedding
applies, yielding

— w1 + vV 3 S Nl el

dt Hk HE ~S Hk HF

S w3 + Hub||§1k(,\d(x,a§z)zéo)~

Using the elliptic theory for the Biot-Savart law u® = V+-A71w?, we have

Hub||Hk(>\d(z;,BQ)260) S HwbHW;f»l + ||Wb||Hk(>\d(z;,BQ)260)~

This proves that
d )
a”le?{k S Hwb||f’/v§,1 + ”Wb”ilk(/\d(;c,aﬂ)zéo)'

Integrating in time and recalling the iterative norm A(8), we arrive at

'l s < lwollZs + TA(B)*.
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This bounds the Sobolev norm in A(8), completing the proof of Proposition 4.1.

4.4. Proof of Theorem 1.1. Finally, we show that our main theorem, Theorem
1.1, follows from Proposition 4.1. Indeed, taking /3 sufficiently large in Proposition
4.1, we obtain uniform bounds on the iterative norm (4.9) in term of initial data,
which gives the local solution in Wi-' + H*({\d(z, 0Q) > 6o/2}) for t € [0, T, with
T = B7'A\72pg. In particular, by definition of the iterative norm A(f), we have

lw(®) [yt + Wl (rd(z.00)260/21) < Co
for t € [0,T]. To prove the stated bound (1.9) on vorticity, we note that
[wllze(a0) S 10zwll 2y + (W)l mr2((rd(z,00)>60/2})-

It thus suffices to prove that [|0zwl|z1 < v~1/2, Indeed, similar to (4.10), we bound

g ? T3 ’t' ~
J0(F)ley < 10 wallcy + [ oz D@l ey P + [ 00 wE~ Ty F
0 0

for the same f, g defined as in (4.8). It follows directly from the construction, see
Section 3.6, that the z-derivative of the semigroup Oze¥'S satisfies the same bounds
as does €9, up to an extra factor of (v£)~/2 or |95| +v~1/2. Therefore, using the

previous bounds on f(t), we have
7 . P B N
[ 10T @y 5 [ @@= WOl + 1@ 010

{V"’_"? —1/2 537
s/out 7)V2 di

< V_I/Q.
Other terms are estimated similarly, giving ||8gw||£/13 < v~1/2 as claimed.
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