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1. Introduction. We are interested in the inviscid limit of solutions to the incom-
pressible Navier-Stokes equations

∂tu+ u · ∇u+∇p = ν∆u,

∇ · u = 0,
(1.1)

in a bounded domain Ω ⊂ R2, with initial data u|t=0
= u0(x) and with the no-slip

boundary condition
u|∂Ω = 0. (1.2)

In the inviscid limit: ν → 0, one would intuitively expect that the solutions uν , of
problem (1.1)-(1.2), converge to the corresponding solutions of the Euler equations
of ideal incompressible fluids

∂tu+ u · ∇u+∇p = 0, in Ω,

∇ · u = 0, in Ω,

u · n = 0, on ∂Ω,

(1.3)

where n denotes the unit normal vector to the boundary pointing inward. However,
the inviscid limit for problem (1.1)-(1.2) is strenuous and remains open due to the
appearance of boundary layers and strong shear near the boundary that triggers
the shedding of unbounded vorticity by the boundary. In their celebrated work [22],
Caflisch and Sammartino establish the boundary layer expansion and the inviscid
limit for analytic data on the half-plane. Maekawa [20] proved a similar result that
allows Sobolev data whose vorticity is supported away from the boundary. The
result and its proof was recently simplified [21] and extended in [18, 16], which
allow data that are only analytic near the boundary.

In this paper, we prove the inviscid limit of (1.1)-(1.2) for data that are only
analytic near the boundary of a general bounded analytic domain in R2, thus further
extending [22, 20, 21, 18] from the case of half-plane to bounded domains with
analytic boundaries. Precisely, we assume that

• Ω is a simply-connected bounded domain in R2 whose boundary ∂Ω is an
analytic curve, defined by an analytic map: θ ∈ T = R/(ZL) 7→ x(θ) =
(x1(θ), x2(θ)) ∈ ∂Ω .

The analyticity of the boundary naturally extends to an analytic map which maps
the near-boundary part of the domain {x ∈ Ω : d(x, ∂Ω) < δ} to the case of half-
plane (θ, z) ∈ T× (0, δ), where z is the distance function from the boundary. Here,
for sake of presentation, we have chosen to consider the case of simply-connected
domain Ω. The results of this paper apply to the general setting of multi-connected
bounded domains whose boundaries consist of closed analytic curves, i.e., including
domains with holes. Our analysis near each of the boundaries is close to that on
the half-plane. A crucial assumption, however, lies on the analyticity of initial data
near the boundary, which appears to be sharp.

The work is dedicated to the memory of Professor Robert T. Glassey, who was a
great mathematician, a close friend, and an inspiring teacher.

1.1. Boundary vorticity formulation. We shall work with the boundary vor-
ticity formulation [1, 20, 21]. Precisely, let u = (u1, u2) be the velocity vector field
and ω = ∇⊥ ·u = ∂x2

u1−∂x1
u2 be the corresponding vorticity. Then, the vorticity

equation reads

∂tω + u · ∇ω = ν∆ω,

u = ∇⊥∆−1ω, (the Biot-Savart law).
(1.4)
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Here and throughout the paper, ∆−1 denotes the inverse of the Laplacian operator
in Ω subject to the zero Dirichlet boundary condition. Evidently, this, together with
the Biot-Savart law, imply the impermeability boundary condition u ·n = 0 on ∂Ω.
To ensure the full no-slip boundary condition, i.e., that u · τ = 0 on the boundary
∂Ω, where τ in the unit tangent vector to the boundary, we first require that the
initial data satisfy the no-slip boundary condition (1.2), and then we impose in
addition that ∂tu · τ = 0 on the boundary, ∂Ω, for all positive time. This leads to
the boundary condition

0 = τ · ∂tu = τ · ∇⊥∆−1∂tω = ∂n[∆
−1(ν∆ω − u · ∇ω)] (1.5)

on the boundary. Introduce ω∗ to be the solution of the nonhomogeneous Dirichlet
boundary-value problem {

∆ω∗ = 0, in Ω

ω∗ = ω, on ∂Ω.
(1.6)

and define the Dirichlet-Neumann operator by

DNω = −∂nω
∗, on ∂Ω, (1.7)

where ω∗ solves (1.6). Observe that ∂n[∆
−1∆ω] = ∂n[∆

−1∆(ω−ω∗)] = (∂n+DN)ω.
Thus, by virtue of the boundary condition (1.5) the boundary condition on vorticity
reads

ν(∂n +DN)ω|∂Ω
= [∂n∆

−1(u · ∇ω)]|∂Ω
, (1.8)

together with the Biot-Savart law (1.4).
Throughout this paper, we shall deal with the Navier-Stokes solutions that solve

(1.4)-(1.7), or equivalently (1.4) and (1.8). Such a solution will be constructed via
the Duhamel’s integral representation, treating the nonlinearity as a source term.
As we observed earlier the boundary condition u·n = 0 on ∂Ω follows from the Biot-
Savart law and the definition of ∆−1 with the zero Dirichlet boundary condition.

1.2. Main results. Our main result reads as follows.

Theorem 1.1. Let u0 ∈ H5(Ω) be an initial data that vanishes on the boundary.
We assume that the initial vorticity ω0 is analytic near the boundary ∂Ω (see Section
3). Then, there is a positive time T , independent of ν, so that the unique solution
uν(t) to the Navier-Stokes problem (1.1)-(1.2), for every ν > 0, with initial data
u0, exists on [0, T ] and has vorticity ων = ∇⊥ · uν that remains analytic near the
boundary, and satisfies

lim
ν→0

√
ν∥ων∥L∞([0,T ]×∂Ω)) < ∞. (1.9)

Moreover, in the inviscid limit as ν → 0, uν converges strongly in L∞([0, T ];Lp(Ω)),
for any 2 ≤ p < ∞, to the corresponding solution u of the Euler equations (1.3)
with the same initial data u0.

The fact that Euler solutions remain analytic near the boundary is a classical
result [3, 17], which is a direct consequence of the main theorem. The main difficulty
in establishing the inviscid limit is to control the vorticity on the boundary and
derive uniform estimates such as (1.9), which is the main contribution of this paper.
The inviscid limit then follows easily. In fact, a much weaker bound than (1.9)
is sufficient to guarantee the convergence of solutions to the Navier-Stokes to a
corresponding solution of the Euler equations. Precisely, we have the following
simple Kato’s type theorem.
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Theorem 1.2. Let T > 0 and u be a weak solution to the Euler equations (1.3)
in [0, T ] × Ω satisfying ∥∇u∥L∞([0,T ]×Ω) < ∞. Suppose that, for every ν > 0, uν

are Leray weak solutions to the Navier-Stokes problem (1.1)-(1.2) on [0, T ] × Ω,
satisfying

sup
0<t<T

∥uν(t)∥2L2(Ω) + ν

∫ T

0

∥∇xuν(t)∥L2(Ω)dt ≤ C0, (1.10)

uniformly in ν → 0. Assume that the vorticity ων = ∇⊥ · uν satisfies

lim sup
ν→0

(
−
∫ T

0

∫
∂Ω

νων(t, σ)u(t, σ) · τ(σ)dσdt
)
= 0, (1.11)

then any uν , which is a weak−∗ limit in L∞([0, T ];L2(Ω)) of a subsequence uνj

of the Leray weak solutions, as νj → 0, satisfies the stability estimate:

∥uν(t)− u(t)∥2L2(Ω) ≤ e2t∥∇u∥L∞([0,T ]×Ω)∥uν(0)− u(0)∥2L2(Ω). (1.12)

In particular, if uν(0) → u(0) in L2(Ω), as ν → 0, then uν converges strongly to u
in L∞([0, T ];L2(Ω)).

Proof. An elementary manipulation (e.g., [5]) yields the following energy inequality

∥uν(t)− u(t)∥2L2(Ω) + ν

∫ t

0

∥∇uν(s)∥2L2(Ω)ds

≤ ∥uν(0)− u(0)∥2L2(Ω) + ν

∫ t

0

∥∇u(s)∥2L2(Ω)ds−
∫ t

0

∫
∂Ω

ν(∂nuν(s, σ)) · u(s, σ) dσds

+

∫ t

0

∫
Ω

|
(
(∇u+∇⊥u)(uν − u)

)
· (uν − u))|dxds

≤ ∥uν(0)− u(0)∥2L2(Ω) + ν

∫ t

0

∥∇u(s)∥2L2(Ω)ds−
∫ t

0

∫
∂Ω

νων(s, σ)(u(s, σ) · τ(σ)) dσds

+ 2∥∇u∥L∞([0,T ]×Ω)

∫ t

0

∥uν(s)− u(s)∥2L2(Ω) ds,

(1.13)

where in the third term in the right-hand side of the last inequality we used the
fact that (∂nuν) · u = ων(u · τ) on the boundary. Let uνj

be a subsequence which

converges weak−∗ in L∞([0, T ];L2(Ω)), as νj → 0. We apply the above energy
inequality to uνj

and invoke Gronwall’s Lemma. Observe that since the Leray weak

solutions belong to C([0, T ];L2(Ω)) then ∥uν(0)∥2L2(Ω) ≤ C0 by virtue of (1.10).

Thanks to the Banach-Alaoglu Theorem and assumption (1.11) we conclude (1.12).
The last part of the theorem is an immediate consquence of (1.12).

1.3. Remarks. As mentioned in the introduction, our main results extend the pre-
vious works [22, 20, 21, 18] from the case of the half-plane to bounded domains. The
analyticity near the boundary is required to control the unbounded vorticity in the
inviscid limit. It may be possible to extend the present analysis to include the prop-
agation of boundary layers and the classical Prandtl’s boundary layer expansions,
whose validity near general boundary layers again requires analyticity.

The first such a result was due to the celebrated work by Asano [2] and
Sammartino-Caflisch [22], where the boundary layer expansion was established for
data on the half-plane that are analytic in both horizontal and vertical variables.
When constructing solutions to the Prandtl equation, the analyticity in the verti-
cal variable can be dropped [19]. It is not known however if such an assumption
can be dropped at the level of Navier-Stokes equations. Maekawa [20] established
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the Prandtl’s expansion for data whose vorticity is compactly supported away from
the boundary, while recently Kukavica, Nguyen, Vicol and Wang [16] extended the
result to include data that are analytic only near the boundary, building upon the
vorticity formulation revived by Maekawa [20], the direct proof of the inviscid limit
for analytic data developed in Nguyen and Nguyen [21], and the Sobolev-analytic
norm developed in Kukavica, Vicol and Wang [18]. All these aforementioned works
are on the half-plane. We mention a recent result [23], which to the best of our
knowledge was the first to establish a Prandtl asymptotic expansion in a curved
domain.

When background boundary layers have no inflection point, the analyticity can
be relaxed to include perturbations in Gevrey- 32 spaces [7, 8], which is sharp in
view of the Kelvin-Helmholtz type of instability of generic boundary layers and
shear flows [10, 11]. When Sobolev data is allowed, the Prandtl’s asymptotic ex-
pansion is false due to counter-examples given in [9, 12, 13], where the failure of the
convergence from Navier-Stokes to Euler solutions, plus a Prandtl corrector, is due
to an emergence of viscous boundary sublayers that reach to order one, independent
of viscosity, in L∞ norm for velocity [12].

2. Navier-Stokes equations near the boundary.

2.1. Global geodesic coordinates. Following a construction done in [4] we in-
troduce a well adapted representation of ∂Ω ,

θ ∈ T = R/(ZL) 7→ x(θ) = (x1(θ), x2(θ)) ∈ ∂Ω

which, being global, preserves the analyticity hypothesis. Let τ⃗(θ) and n⃗(θ) be the
unit tangent and interior normal vectors at the boundary:

τ⃗(θ) = τ⃗(x(θ) = (x′
1(θ), x

′
2(θ)), and n⃗(θ) = n⃗(x(θ)) = (−x′

2(θ), x
′
1(θ))

with |x′(θ)|2 = (x′
1(θ))

2 + (x′
1(θ))

2 = 1.
(2.1)

Let d(x, ∂Ω) denotes the distance of any point x ∈ R2 to ∂Ω . Then we have the
following classical result.

Proposition 2.1. There exists a δ > 0 such that for each x on the open set

Vδ = {x ∈ R2 with d(x, ∂Ω) < δ} (2.2)

there is a unique point x̂(θ) ∈ ∂Ω with d(x, ∂Ω) = |x− x̂(θ)|. The mapping x 7→ x̂(θ)
is an analytic map from Vδ with value in ∂Ω. In addition, for x ∈ Vδ , one has the
formula

∇xd(x, ∂Ω) = n⃗(x(θ)). (2.3)

When no confusion is possible, for x ∈ Vδ the notations n⃗(x) and τ⃗(x) will be
used for n⃗(x(θ)) and τ⃗(x(θ)) respectively. Observe that

τ⃗ ′(θ) ∧ n⃗(θ) = x′
1(θ)x

′′
1(θ) + x′

2(θ)x
′′
2(θ) =

d

dθ
|x′(θ)|2 = 0 , (2.4)

which implies the relation

n⃗′(θ) = γ(θ)τ⃗(θ) and τ⃗ ′(θ) = γ(θ)n⃗(θ) , (2.5)

with
γ(θ) = x′′

1(θ)x
′
2(θ)− x′

1(θ)x
′′
2(θ), (2.6)

being the curvature of the boundary ∂Ω . Therefore the mapping:

(θ, z) 7→ X(θ, z) = x(θ) + zn⃗(x(θ)), (2.7)
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defines au global C2 diffeomorphisme of (R/(LZ)) × [−δ, δ] on Vδ . Moreover, for
any vector field x ∈ Ω 7→ v(x) , as soon as x ∈ V δ , using the above notations, one
has:

v(x) = (v(x) · τ⃗(x))τ⃗(x) + (v(x) · n⃗(x))n⃗(x) . (2.8)

Below, for sake of clarity, the symbol X is used for any x = X(θ, z). There hold

∂zX(θ, z) = n⃗(θ) , ∂θX(θ, z) = J(θ, z)τ⃗(θ) ,

and J(θ, z) = 1 + zγ(θ) > 0 for |z| < δ ,
(2.9)

provided δ > 0 is chosen to be small enough. From the relation(
∂zX1 ∂θX1

∂zX2 ∂θX2

)(
∂X1

z ∂X2
z

∂X1
θ ∂X2

θ

)
=

(
1 0
0 1

)
, (2.10)

one deduces the formula:

∇Xθ =
τ⃗(θ, z))

J(θ, z)
and ∇Xz = n⃗(θ) . (2.11)

We collect the following useful relations whose derivations are classical. For any
vector field u, we have

∇ · u =
1

J
(∂z(J(u · n⃗)) + ∂θ(u · τ⃗)) = ∂z(u · n⃗) + 1

J
∂θ(u · τ⃗)) + γ

J
u · n⃗ ,

∇∧ u =
1

J
(∂z(Ju · τ⃗)− ∂θ(u · τ⃗)) = ∂z(u · τ⃗)− 1

J
∂θ(u · τ⃗)) + γ

J
(u · τ⃗) .

(2.12)

For any scalar function Ψ, we have

∇∧Ψ =
1

J

(
∂z(JΨ)

− ∂θΨ

)
=

(∂zΨ
− 1

J
∂θΨ

)
+

( γ

J
Ψ

0

)
, (2.13)

and

∆Ψ =
1

J
∂z(J∂zΨ) +

1

J
∂θ(

1

J
∂θΨ) = ∆θ,zΨ+R∆Ψ , (2.14)

in which we denote

∆θ,z = ∂2
θ + ∂2

z

R∆ = m(θ, z)∂2
θ +

γ

1 + zγ
∂z −

zγ′

(1 + zγ)3
∂θ and m(θ, z) = −2zγ + (zγ)2

(1 + zγ)2
.

2.2. Scaled coordinates. In view of (2.14), we observe that the Laplacian ∆ is
nearly the flat Laplacian ∆θ,z, in the (θ, z) coordinates, near the boundary. To
make use of this fact, we introduce the following scaled variables

(θ̃, z̃) = (λθ, λz) (2.15)

for sufficiently small λ ∈ (0, 1). By construction, we compute

∆ = λ2
(
∆θ̃,z̃ + λ2R̃∆

)
, (2.16)

in which ∆θ̃,z̃ = (∂2
z̃ + ∂2

θ̃
) and

R̃∆ = m̃(θ̃, z̃)∂2
θ̃
+

γ̃

1 + λ2z̃γ̃
∂z̃ −

z̃γ̃′

(1 + λ2z̃γ̃)3
∂θ̃

m̃(θ̃, z̃) = −2z̃γ̃ + λ2(z̃γ̃)2

(1 + λ2z̃γ̃)2
,

(2.17)
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where γ = λ3γ̃(θ̃). In the analysis, λ will be taken sufficiently small, and so ∆ is

indeed approximated by λ2∆θ̃,z̃, treating λ2R̃∆ as a perturbation.

2.3. Vorticity equations near the boundary. In this section, we derive vortic-
ity equations in the geodesic coordinates near the boundary in the region Vδ defined
as in Proposition 2.1. Introduce a smooth cutoff function ϕb(x) so that

ϕb(x) =

{
1, if λd(x, ∂Ω) ≤ δ0 + ρ0

0, if λd(x, ∂Ω) ≥ δ0 + 2ρ0
(2.18)

for small positive constants δ0, ρ0 so that δ0+2ρ0 < λδ to guarantee that supp(ϕb) ⊂
Vδ as in Proposition 2.1. Define

ωb = ϕb(x)ω(t, x). (2.19)

It follows from (1.4) that

∂tω
b − ν∆ωb = N b, (2.20)

where

N b := −u · ∇ωb + (u · ∇ϕb)ω − ν(∆ϕb)ω − 2ν∇ϕb · ∇ω.

Observe that N b(u, ω) = 0 on {λd(x, ∂Ω) ≥ δ0 + 2ρ0} where the cutoff function ϕb

vanishes. We then introduce the following scaled vorticity

ωb(t, x) = ω̃(λ2t, λθ, λz), (t̃, θ̃, z̃) = (λ2t, λθ, λz), (2.21)

for small λ > 0. Using (2.16), we rewrite the vorticity equation as(
∂t̃ − ν∆θ̃,z̃

)
ω̃ = −νλ2R̃∆ω̃ + λ−2N b. (2.22)

Equation (2.22) is defined on (θ̃, z̃) ∈ T × R+ (in fact, the equation vanishes for
z̃ ≥ δ0 + 2ρ0). We shall solve (2.22) together with the boundary condition (1.8),
which now reads

ν(∂z̃ + D̃N)ω̃|z̃=0
= λ−1[∂n∆

−1(u · ∇ω)]|∂Ω
. (2.23)

System (2.22)-(2.23) will be our main equation for the scaled vorticity near the
boundary. Away from the boundary, we construct vorticity using the original system
as derived in Section 1.1.

2.4. Dirichlet-Neumann operator. Let us precise the Dirichlet-Neumann oper-
ator defined as in (1.6)-(1.7).

Lemma 2.2. For ω ∈ H1/2(∂Ω), let DNω be the Dirichlet-Neumann operator
defined as in (1.6)-(1.7). In the scaled variables, there holds

D̃Nω̃ = |∂θ̃|ω̃ + B̃ω̃ (2.24)

for some linear bounded operator B̃ from L2(∂Ω) to itself: namely,

∥B̃ω̃∥L2(∂Ω) ≤ C0∥ω̃∥L2(∂Ω)

for some positive constant C0.

Proof. Let ϕb be the cutoff function defined as in (2.18), and set ω∗b = ϕbω∗, where
ϕ∗ solves (1.6). It follows that{

∆ω∗b = (∆ϕb)ω∗ − 2∇ϕb · ∇ω∗, in Ω

ω∗b = ω, on ∂Ω.
(2.25)
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Since ϕp vanishes away from the boundary, we can work in the scaled variables,

which reads D̃Nω̃ = −∂z̃ω̃
∗
|z̃=0

. Recalling (2.16), the scaled function ω̃∗(t̃, θ̃, z̃) of

ω∗b solves

∆θ̃,z̃ω̃
∗ = −λ2R̃∆ω̃

∗ + λ−2[(∆ϕb)ω∗ − 2∇ϕb · ∇ω∗], ω̃∗|z̃=0 = ω̃|z̃=0 ,

on T×R+, which can be solved explicitly. Indeed, let ω̃α be the Fourier coefficient

of ω̃(θ̃, z̃) in variable θ̃. Note that ω̃α vanishes for α = 0, and thus we focus on the
case when α ̸= 0. Let Kα(ỹ, z̃) =

1
2|α| (e

−|α(ỹ−z̃)|−e−|α(ỹ+z̃)|) be the Green function

of the Laplacian ∂2
z̃ − α2 with the Dirichlet boundary condition. It follows that

ω̃∗
α(z̃) = e−|α|z̃ω̃α(0) + λ2

∫ ∞

0

Kα(ỹ, z̃)(R̃∆ω̃
∗)α(ỹ) dỹ

+λ−2

∫ ∞

0

Kα(ỹ, z̃)
[
(∆ϕb)ω∗ − 2∇ϕb · ∇ω∗

]
α
(ỹ) dỹ

(2.26)

for z̃ ≥ 0. The Dirichlet-Neumann operator is thus computed by

(D̃Nω̃)α = −∂z̃ω̃
∗
α(0)

= |α|ω̃α(0) +

∫ ∞

0

e−|α|ỹ
[
λ2(R̃∆ω̃∗)α + λ−2((∆ϕb)ω∗ − 2∇ϕb · ∇ω∗)α

]
(ỹ) dỹ.

The decomposition (2.24) thus follows, upon defining B̃ as the integral term

(B̃ω̃)α :=

∫ ∞

0

e−|α|ỹ
[
λ2(R̃∆ω̃

∗)α + λ−2((∆ϕb)ω∗ − 2∇ϕb · ∇ω∗)α

]
(ỹ) dỹ , (2.27)

for each Fourier variable α ∈ Z. It remains to prove the boundedness of B̃. Note
that by definition, the last two terms are defined on the region ỹ ≥ δ0 + ρ0 where
the cutoff function ϕb = 1. Therefore,∣∣∣ ∫ ∞

0

e−|α|ỹ((∆ϕb)ω∗ − 2∇ϕb · ∇ω∗)α(ỹ) dỹ
∣∣∣ ≲ ∥ω⋆∥H1(λd(x,∂Ω)≥δ0+ρ0).

It remains to bound the first integral term in (2.27). In view of (2.17), we write

R̃∆ω̃
∗ = ∂2

θ̃
[m̃ω̃∗]− ∂θ̃

[
2∂θ̃m̃ω̃∗ +

z̃γ̃′

(1 + λ2z̃γ̃)3
ω̃∗
]
+ ∂z̃

( γ̃

1 + λ2z̃γ̃
ω̃∗
)

+
[
(∂2

θ̃
m̃)− ∂z̃

( γ̃

1 + λ2z̃γ̃

)
+ ∂θ̃

( z̃γ̃′

(1 + λ2z̃γ̃)3

)]
ω̃∗,

noting the coefficients are analytic near the boundary. We note in particular that

there is no growth in large z̃: for instance, m(θ̃, z̃) ≲ λ−2 uniformly in large z̃.
In addition, we note that m̃ = z̃m̃1 for some bounded function m̃1. Thus, using
the fact that |α|ỹe− 1

2 |α|ỹ ≲ 1, the second-order derivative term ∂2
θ̃
[m̃ω̃∗] thus can be

treated as the first order derivative term. Precisely, we can treat the first integral in

(2.27) systematically as follows: for some smooth and bounded coefficients b(θ̃, z̃),

λ2

∫ ∞

0

e−
1
2 |α|ỹ|(α, ∂ỹ)(bω̃∗)α|(ỹ) dỹ ≲ λ2|α|−1/2∥(α, ∂ỹ)(bω̃∗)α∥L2

ỹ
.

This yields

|(B̃ω̃)α| ≲ λ2|α|−1/2∥(α, ∂ỹ)(bω̃∗)α∥L2
ỹ
+ ∥ω⋆∥H1(λd(x,∂Ω)≥δ0+ρ0) .
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Taking L2
α, we thus obtain∑

α

|(B̃ω̃)α|2 ≲ λ2
∑
α

|α|−1∥(α, ∂ỹ)ω̃∗
α∥2L2

ỹ
, (2.28)

upon noting that the coefficients b(θ̃, z̃), which in particular have ∥bα(z̃)∥L1
αL∞

z̃
< ∞.

It remains to bound the right-hand side of (2.28). Directly from (2.26), we compute

|(α, ∂z̃)ω̃∗
α(z̃)| ≲ |α|e−|α|z̃|ω̃α(0)|+ λ2

∫ ∞

0

e−|α(z̃−z̃′)||(R̃∆ω̃
∗)α(z̃

′)| dz̃′

+ |α|−1/2∥ω⋆∥H1(λd(x,∂Ω)≥δ0+ρ0).

Therefore, together with the standard Hausdorff-Young’s inequality, we bound

∥(α, ∂z̃)ω̃
∗
α∥L2

z̃
≲ |α|1/2|ω̃α(0)|+ λ2|α|−1∥(R̃∆ω̃∗)α∥L2

z̃
+ |α|−1/2∥ω⋆∥H1(λd(x,∂Ω)≥δ0+ρ0)

which yields∑
α

|α|−1∥(α, ∂z̃)ω̃∗
α∥2L2

z̃

≲
∑
α

|ω̃α(0)|2 + λ2
∑
α

|α|−3∥(R̃∆ω̃
∗)α∥2L2

z̃
+ ∥ω⋆∥2H1(λd(x,∂Ω)≥δ0+ρ0)

≲
∑
α

|ω̃α(0)|2 + λ2
∑
α

|α|−1∥(α, ∂z̃)ω̃∗
α∥2L2

z̃

+
∑
α

|α|−1∥(α, ∂z̃)ω̃∗
α∥2L2

{z̃≥δ0+ρ0}
+ ∥ω⋆∥H1(λd(x,∂Ω)≥δ0+ρ0).

Taking λ sufficiently small so that the second term on the right can be absorbed
into the left. On the other hand, using the standard elliptic theory, the last term is
bounded by∑

α

|α|−1∥(α, ∂z̃)ω̃⋆
α∥2L2

{z̃≥δ0+ρ0}
≲ ∥ω⋆∥2H1(λd(x,∂Ω)≥δ0)

≲ ∥ω∥2L2(∂Ω).

Putting these back into (2.28), we obtain the lemma.

3. Near boundary analytic spaces. In this section, we introduce the near bound-
ary analytic norm used to control the vorticity that is analytic near the boundary,
but however only has Sobolev regularity away from the boundary. We then derive
sufficient elliptic estimates, bilinear estimates, as well as the semigroup estimates
in these analytic spaces.

3.1. Analytic norms. Let δ > 0 be small and so that Proposition 2.1 applies for
V̄δ = {d(x, ∂Ω) ≤ δ}. In particular, δ is small so that the statement of 2.1 still holds
for V2δ. Now for any constant λ ∈ (0, 1), we have

λd(x, ∂Ω) ≤ λδ

for all x ∈ V̄δ. Let δ0 = λδ, which will the size of the analytic domain for our
solution near the boundary. We fix ρ0 ∈ (0, 1/10), and assume that ρ ∈ (0, ρ0).
Then

Ωρ = {z̃ ∈ C : 0 ≤ ℜz̃ ≤ δ0, |ℑz̃| ≤ ρℜz̃}⋃
{z̃ ∈ C : δ0 ≤ ℜz̃ ≤ δ0 + ρ, |ℑz̃| ≤ δ0 + ρ−ℜz̃}

(3.1)
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denotes the complex domain for functions of the z̃ variable. We note that the
domain Ωρ only contains z̃ with 0 ≤ ℜz̃ ≤ δ0 + ρ. For a complex valued function f
defined on Ωρ, let

∥f∥L1
ρ
= sup

0≤η<ρ
∥f∥L1(∂Ωη), ∥f∥L∞

ρ
= sup

0≤η<ρ
∥f∥L∞(∂Ωη)

where the integration is taken over the two directed paths along the boundary of

the domain Ωη. Now for an analytic function f(θ̃, z̃) defined on (θ̃, z̃) ∈ T×Ωρ, we
define

∥f∥L1
ρ
=
∑
α∈Z

∥eε0(δ0+ρ−ℜz̃)|α|fα∥L1
ρ
,

∥f∥L∞
ρ

=
∑
α∈Z

∥eε0(δ0+ρ−ℜz̃)|α|fα∥L∞
ρ
,

(3.2)

where fα denotes the Fourier transform of f with respect to variable θ̃. The function
spaces L1

ρ and L∞
ρ are to control the scaled vorticity and velocity, respectively. We

stress that the analyticity weight vanishes on ℜz̃ ≥ δ0+ρ. For convenience, we also
introduce the following analytic norms

∥f∥Wk,p
ρ

=
∑

i+j≤k

∥∂i
θ̃
(z̃∂z̃)

jf∥Lp
ρ

(3.3)

for k ≥ 0 and p = 1,∞. We observe the following simple algebra.

Lemma 3.1. There hold

∥fg∥L1
ρ
≤ ∥f∥L∞

ρ
∥g∥L1

ρ
(3.4)

and for any 0 < ρ′ < ρ,

∥∂θ̃f∥L1
ρ′
+ ∥z̃∂z̃f∥L1

ρ′
≲

1

ρ− ρ′
∥f∥L1

ρ
. (3.5)

Proof. By definition, we compute

eε0(δ0+ρ−ℜz̃)|α||(fg)α(z̃)| ≤
∑
α′

|fα−α′(z̃)gα′(z̃)|eε0(δ0+ρ−ℜz̃)|α|

≤
∑
α′

|eε0(δ0+ρ−ℜz̃)|α−α′|fα−α′(z̃)eε0(δ0+ρ−ℜz̃)|α′|gα′(z̃)|

which gives

∥eε0(δ0+ρ−ℜz̃)|α|(fg)α(z̃)∥L1
ρ
≤

∑
α′

∥eε0(δ0+ρ−ℜz̃)|α−α′|fα−α′∥L∞
ρ
∥eε0(δ0+ρ−ℜz̃)|α′|gα′∥L1

ρ
.

The estimate (3.4) follows from taking the summation in α over Z. The stated
bounds on derivatives are classical (e.g., [22, 21]), making use of the fact that

(ρ− ρ′)|α|e(ρ′−ρ)|α| is bounded.

3.2. Elliptic estimates in the half-plane. In this section, we derive some basic
elliptic estimates in the analytic spaces Wk,p

ρ . Precisely, we consider{
∆θ,zϕ = f, in T× R+

ϕ|z=0
= 0

(3.6)

in which we drop titles for sake of presentation. The Wk,p
ρ analytic norm is defined

on ℜz ≤ δ0 + ρ as introduced in the previous section. We obtain the following
proposition.
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Proposition 3.2. Let ϕ be the solution of (3.6). Then, the velocity field u = ∇⊥ϕ
satisfies

∥u∥Wk,∞
ρ

≲ ∥f∥Wk,1
ρ

+ ∥f∥Hk+1({z≥δ0+ρ})

∥(1
z
∂θϕ)∥Wk,∞

ρ
≲ ∥f∥Wk,1

ρ
+ ∥∂θf∥Wk,1

ρ
+ ∥f∥Hk+1({z≥δ0+ρ})

∥∇θ,zu∥Wk,∞
ρ

≲ ∥f∥Wk,∞
ρ

+ ∥f∥Hk+2({z≥δ0+ρ})

(3.7)

for k ≥ 0.

Proof. The elliptic problem (3.6) can be solved explicitly in Fourier space. Indeed,
taking the Fourier transform in θ, we get the elliptic equation

(∂2
z − α2)ϕα = fα

for the Fourier transform ϕα. We focus on the case α > 0; the other case is similar.
The solution is given by

ϕα(z) =

∫ z

0

K−(y, z)fα(y)dy +

∫ ∞

z

K+(y, z)fα(y)dy

with the Green function defined by

K±(y, z) = − 1

2α

(
e±α(z−y) − e−α(y+z)

)
.

This expression may be extended to complex values of z. Indeed, for z ∈ Ωσ, there
is a positive θ so that z ∈ ∂Ωθ. We then write ∂Ωθ = γ−(z) ∪ γ+(z), consisting of
complex numbers y ∈ ∂Ωθ so that ℜy < ℜz and ℜy > ℜz, respectively. Then, the
integral is taken over γ−(z) and γ+(z), respectively. We note in particular that for
y ∈ γ±(z), there hold the same bounds on the Green function

|K±(y, z)| ≤ α−1e−α|y−z|.

This proves that

|ϕα(z)| ≤
∫
∂Ωθ

α−1e−α|y−z||fα(y)||dy|. (3.8)

By definition of L1
ρ norm, we only need to consider the case when 0 ≤ ℜz ≤ δ0 + ρ.

Now, for 0 ≤ ℜy ≤ δ0 + ρ, we bound

e−α|ℜy−ℜz|e−ε0(δ0+ρ−ℜy)α ≤ e−ε0(δ0+ρ−ℜz)αe−(1−ϵ0)α|ℜy−ℜz|

noting ϵ0 ≤ 1/2. On the other hand, for ℜy ≥ δ0 + ρ (recalling δ0 + ρ ≥ ℜz), we
bound

e−α|ℜy−ℜz| ≤ e−ϵ0(δ0+ρ−ℜz)αe−(1−ϵ0)α|ℜy−ℜz|.

Therefore, we bound∫
ℜy≤δ0+ρ

α−1e−α|y−z||fα(y)||dy| ≲ α−1e−ε0(δ0+ρ−ℜz)α∥eε0(δ0+ρ−ℜy)αfα∥L1
ρ
,∫

ℜy≥δ0+ρ

α−1e−α|y−z||fα(y)||dy| ≲ α−3/2e−ε0(δ0+ρ−ℜz)α∥fα∥L2(y≥δ0+ρ).

Similarly, we also have∫
ℜy≤δ0+ρ

α−1e−α|y−z||fα(y)||dy| ≲ α−2e−ε0(δ0+ρ−ℜz)α∥eε0(δ0+ρ−ℜy)αfα∥L∞
ρ
,
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which gains an extra factor of α. This proves

∥eε0(δ0+ρ−ℜz)α(α, ∂z)ϕα∥L∞
ρ

≤ ∥eε0(δ0+ρ−ℜy)αfα∥L1
ρ
+ α−1/2∥fα∥L2(y≥δ0+ρ)

∥eε0(δ0+ρ−ℜz)α(α, ∂z)
2ϕα∥L∞

ρ
≤ ∥eε0(δ0+ρ−ℜy)αfα∥L∞

ρ
+ α1/2∥fα∥L2(y≥δ0+ρ).

Taking the summation in α ∈ Z yields the first and last estimates in (3.7) for k = 0.
For k ≥ 0, the estimates follow similarly. For the estimates involving the weight
z−1, we use the fact that the Green function vanishes on the boundary z = 0, and
so |G±(y, z)| ≤ ze−α|y−z|.

3.3. Biot-Savart law in Ω. In this section, we bound the velocity through the
Biot-Savart law: namely, u = ∇⊥ϕ, where{

∆ϕ = ω, in Ω

ϕ = 0, on ∂Ω.
(3.9)

Without loss of generality, we will work with the cut-off vorticity ωb (see Section
4.1) near the boundary where the rescaled coordinates introduced in Section 2.3
apply. We obtain the following proposition.

Proposition 3.3. Let ϕ be the solution of (3.9). Then, the velocity field u = ∇⊥ϕ
satisfies

∥u∥Wk,∞
ρ

≲ ∥ω∥Wk,1
ρ

+ ∥ω∥Hk+1({λd(x,∂Ω)≥δ0/2})

∥(1
z̃
∂θ̃ϕ)∥Wk,∞

ρ
≲ ∥ω∥Wk,1

ρ
+ ∥∂θ̃ω∥Wk,1

ρ
+ ∥ω∥Hk+1({λd(x,∂Ω)≥δ0/2})

(3.10)

for k ≥ 0.

Proof. Using (2.16) and (3.9), the scaled stream function ϕ̃(t̃, θ̃, z̃) solves

∆θ̃,z̃ϕ̃ = λ−2ω̃ − λ2R̃∆ϕ̃, ϕ̃|z̃=0
= 0

on T × R+, and so the elliptic theory, Proposition 3.2, developed in the previous
section can be applied, yielding

∥u∥Wk,∞
ρ

≲ ∥ω∥Wk,1
ρ

+ ∥ω∥Hk+1({λd(x,∂Ω)≥δ0+ρ})

+ λ2∥∂−1

θ̃
R̃∆ϕ̃∥Wk,∞

ρ
+ λ2∥R̃∆ϕ̃∥Hk+1({z̃≥δ0+ρ}).

(3.11)

It thus remains to bound R̃∆ϕ̃. Recall from (2.17) that

R̃∆ = m̃(θ̃, z̃)∂2
θ̃
+

γ̃

1 + λ2z̃γ̃
∂z̃ −

z̃γ̃′

(1 + λ2z̃γ̃)3
∂θ̃, m̃(θ̃, z̃) = −2z̃γ̃ + λ2(z̃γ̃)2

(1 + λ2z̃γ̃)2
.

Thanks to the analyticity of the boundary, the coefficients are clearly bounded in
Wk,∞

ρ . Therefore, using a similar algebra as in (3.4), we bound

λ2∥∂−1

θ̃
R̃∆ϕ̃∥Wk,∞

ρ
≲ λ2∥∂θ̃ϕ̃∥Wk,∞

ρ
+ λ2∥∂z̃ϕ̃∥Wk,∞

ρ
(3.12)

That is, this term can be absorbed into the left hand side of (3.11), upon taking λ

sufficiently small. As for the last term in (3.11), we note that for large z̃, |m̃(θ̃, z̃)| ≲
λ−2, which in particular proves that there is no growth in z̃. This gives

λ2∥R̃∆ϕ̃∥Hk+1({z̃≥δ0+ρ}) ≲ ∥ϕ∥Hk+3({λd(x,∂Ω)≥δ0+ρ})

≲ λ2∥ϕ̃∥Wk,∞
ρ

+ ∥ω∥Hk+1({λd(x,∂Ω)≥δ0/2}),
(3.13)

in which the last estimate follows from the standard elliptic theory in Sobolev spaces.
The proposition follows.
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3.4. Bilinear estimates. In this section, we show that the Sobolev-analytic norm
is well adapted to treat the nonlinear u · ∇ω. We have the following lemma.

Lemma 3.4. For any ω and ω′, denoting by u the velocity related to ω, we have

∥u · ∇ω′∥L1
ρ
≤ C

(
∥ω∥L1

ρ
+ ∥ω∥H1({λd(x,∂Ω)≥δ0})

)
∥∂θ̃ω

′∥L1
ρ

+ C
(
∥ω∥L1

ρ
+ ∥∂θ̃ω∥L1

ρ
+ ∥ω∥H1({λd(x,∂Ω)≥δ0})

)
∥z̃∂z̃ω′∥L1

ρ
.

Proof. By definition, the L1
ρ norm is defined near the boundary {λd(x, ∂Ω) ≤ δ0+ρ},

on which we can write

u · ∇ω′ =
1

1 + zγ(θ)
∂θϕ∂zω

′ − 1

(1 + zγ(θ))2
∂zϕ∂θω

′

with ∆ϕ = ω. In the rescaled variable (θ̃, z̃), we get

u · ∇ω′ =
λ2

1 + λ2z̃γ̃(θ̃)
(∂θ̃ϕ̃)(∂z̃ω̃

′)− λ2

(1 + λ2z̃γ̃(θ̃))2
(∂z̃ϕ̃)(∂θ̃ω̃

′)

Note that thanks to the analyticity of ∂Ω, the coefficient (1+λ2z̃γ̃(θ̃))−1 is bounded
in L∞

ρ . Using (3.4) and Proposition 3.3, we bound

∥(∂z̃ϕ̃)(∂θ̃ω̃
′)∥L1

ρ
≲ ∥∂z̃ϕ̃∥L∞

ρ
∥∂θ̃ω̃

′∥L1
ρ

≲
(
∥ω∥L1

ρ
+ ∥ω∥H1({λd(x,∂Ω)≥δ0})

)
∥∂θ̃ω

′∥L1
ρ

∥(∂θ̃ϕ̃)(∂z̃ω̃
′)∥L1

ρ
≲ ∥1

z̃
∂θ̃ϕ̃∥L∞

ρ
∥z̃∂z̃ω̃′∥L1

ρ

≲
(
∥ω∥L1

ρ
+ ∥∂θ̃ω∥L1

ρ
+ ∥ω∥H1({λd(x,∂Ω)≥δ0})

)
∥z̃∂z̃ω′∥L1

ρ

giving the lemma.

3.5. Semigroup estimates in the half-plane. In this section, we give bounds
on the Stokes semigroup eνtS in the analytic spaces Wk,1

ρ on the half-plane T×R+.

We also denote by Γ(νt) = eνtS(H1
T×{z̃=0}) the trace of the semigroup on the

boundary, with H1
T×{z̃=0} being the one-dimensional Hausdorff measure restricted

on the boundary. The results in this section are an easy adaptation from those
obtained in [21], where the analytic spaces contained no cutoff in z. Precisely, we
consider

(∂t − ν∆θ,z)ω = 0

ν(∂z + |∂θ|)ω|z=0
= 0

(3.14)

on T×R+ (where we drop titles for sake of presentation). We obtain the following
proposition.

Proposition 3.5. Let eνtS be the semigroup of the linear Stokes problem (3.14),
and let Γ(νt)g be its trace on the boundary. Then, for any t ≥ 0, ρ > 0, and k ≥ 0,
there hold

∥eνtSf∥Wk,1
ρ

≤ C0∥f∥Wk,1
ρ

+ ∥zf∥Hk+1(z≥δ0+ρ)

∥Γ(νt)g∥Wk,1
ρ

≤ C0

∑
α∈Z

|αkgα|eϵ0(δ0+ρ)|α| (3.15)

uniformly in the inviscid limit.
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Proof. The proof follows closely from that in [21]. Indeed, taking the Fourier trans-
form of the semigroup eνtS in variable θ, we obtain

(eνtSf)α(z) =

∫ ∞

0

Gα(t, y; z)fα(y) dy, (Γ(νt)g)α(z) = Gα(t, 0; z)gα, (3.16)

for each Fourier variable α ∈ Z, where Gα(t, y; z) is the corresponding Green func-
tion. We recall the following result of Proposition 3.3 from [21] that

Gα(t, y; z) = Hα(t, y; z) +Rα(t, y; z), (3.17)

where

Hα(t, y; z) =
1√
νt

(
e−

|y−z|2
4νt + e−

|y+z|2
4νt

)
e−α2νt,

|∂k
zRα(t, y; z)| ≲ µk+1

f e−θ0µf |y+z| + (νt)−
k+1
2 e−θ0

|y+z|2
νt e−

1
8α

2νt,

for y, z ≥ 0, k ≥ 0, and for some θ0 > 0 and for µf = |α| + 1√
ν
. In particular,

∥Gα(t, y; ·)∥L1
ρ
≲ 1, for each fixed y, t.

Now, for z, y ≤ δ0 + ρ, we note that

e−a|y±z|e−ϵ0(δ0+ρ−y)|α| = e−a|y±z|+ϵ0|α|(y−z)e−ϵ0(δ0+ρ−z)|α|

≤ e−(a−ϵ0|α|)|y±z|e−ϵ0(δ0+ρ−z)|α| (3.18)

for any real number a and for ϵ0 sufficiently small. Taking a = 1
2θ0µf , we have

a ≥ ϵ0|α| and so

e−θ0µf |y+z|e−ϵ0(δ0+ρ−y)|α| ≤ e−ϵ0(δ0+ρ−z)|α|e−
1
2 θ0µf |y+z|

On the other hand, taking a = 1
2θ0

|y±z|
νt in (3.18), we have either a ≥ ϵ0|α| or

1
2θ0α

2νt ≥ ϵ0|α||y ± z|. Therefore, we have

e−θ0
|y+z|2

νt e−θ0α
2νte−ϵ0(δ0+ρ−y)|α| ≤ e−

1
2 θ0

|y+z|2
νt e−ϵ0(δ0+ρ−z)|α|.

This proves that for z ≤ δ0 + ρ,

eϵ0(δ0+ρ−z)|α|
∫ δ0+ρ

0

|Gα(t, y; z)fα(y)| dy

≤
∫ δ0+ρ

0

[
(νt)−

1
2 e−

1
2 θ0

|y±z|2
νt + µfe

− 1
2 θ0µf |y+z|

]
|eϵ0(δ0+ρ−y)|α|fα(y)| dy.

Since the term in the bracket is bounded in L1
z norm, we have∥∥∥eϵ0(δ0+ρ−z)|α|

∫ δ0+ρ

0

Gα(t, y; z)fα(y) dy
∥∥∥
L1

ρ

≲ ∥eϵ0(δ0+ρ−y)|α|fα∥L1
ρ
.

Taking the summation in α yields the stated bounds for this term.
Next, consider the case when y ≥ δ0 + ρ ≥ z. In this case, we simply use

e−ϵ0|α||y−z| ≤ e−ϵ0|α|(δ0+ρ−z),

giving the right analyticity weight in z. The control of the weight eϵ0|α||y−z| is done
exactly as above, yielding

eϵ0(δ0+ρ−z)|α|
∫ ∞

δ0+ρ

|Gα(t, y; z)fα(y)| dy

≤
∫ ∞

δ0+ρ

[
(νt)−

1
2 e−

1
2 θ0

|y±z|2
νt + µfe

− 1
2 θ0µf |y+z|

]
|fα(y)| dy.
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Therefore,∑
α

∥eϵ0(δ0+ρ−z)|α|
∫ ∞

δ0+ρ

|Gα(t, y; z)fα(y)| dy∥L1
ρ
≲
∑
α

∥fα∥L1(z≥δ0+ρ)

≲ ∥zf∥H1(z≥δ0+ρ).

Similarly, from (3.16), the Fourier transform of the trace operator Γ(νt)g is esti-
mated by

|(Γ(νt)g)α(z)| ≤ |Gα(t, 0; z)gα|

≤
[
µfe

−θ0µf |z| + (νt)−
1
2 e−θ0

|z|2
νt e−

1
8α

2νt
]
|gα|

≤
[
µfe

− 1
2 θ0µf |z| + (νt)−

1
2 e−

1
2 θ0

|z|2
νt

]
e−ϵ0(δ0+ρ−z)|α||gα|eϵ0(δ0+ρ)|α|

in which the last inequality is a special case of the previous calculations for y = 0 and
z ≤ δ0 + ρ. The bounds Γ(νt)g are thus direct. Finally, the bounds on derivatives
follow from the similar adaptation of derivatives bounds provided in [21]. We skip
repeating the details.

3.6. Semigroup estimates near ∂Ω. In this section, we provide bounds on the
Stokes semigroup eνtS , which will be used to estimate the vorticity ωb (see Section
4.1) near the boundary in the analytic spaces Wk,1

ρ . Precisely, we consider{
∂tω − ν∆ω = 0

ν(∂n +DN)ω|∂Ω
= 0

(3.19)

in Ω. We obtain the following proposition.

Proposition 3.6. Let eνtS be the semigroup of the linear Stokes problem (3.19), and
let Γ(νt) be its trace on the boundary. Fix any finite time T . Then, for sufficiently
small λ, and for any 0 ≤ t ≤ T , ρ > 0, and k ≥ 0, there hold

∥eνtSf∥Wk,1
ρ

≤ C0∥f∥Wk,1
ρ

+ ∥f∥Hk+1(λd(x,∂Ω)≥δ0/2)

∥Γ(νt)g∥Wk,1
ρ

≤ C0

∑
α∈Z

|αkgα|eϵ0(δ0+ρ)|α| (3.20)

uniformly in the inviscid limit.

Proof. In the scaled variables, the Stokes problem for near boundary vorticity ω
becomes {

(∂t̃ − ν∆θ̃,z̃)ω̃ = −λ2νR̃∆ω̃

ν(∂z̃ + |∂θ̃|)ω̃|s̃=0 = −νB̃ω̃

where R̃∆ and B̃ are defined as in (2.17) and (2.27). Using the Duhamel, the
solution with initial data ω0 can be written as

ω̃(t̃) = eνt̃Sω̃0 − νλ2

∫ t̃

0

eν(t̃−t̃′)SR̃∆ω̃(t̃
′) dt̃′ − ν

∫ t̃

0

Γ(ν(t̃− t̃′))B̃ω̃(t̃′) dt̃′. (3.21)

We shall bound the integral terms on the right in term of the initial data. Recall
from (2.17) that

R̃∆ = m̃(θ̃, z̃)∂2
θ̃
+

γ̃

1 + λ2z̃γ̃
∂z̃ −

z̃γ̃′

(1 + λ2z̃γ̃)3
∂θ̃, m̃(θ̃, z̃) = −2z̃γ̃ + λ2(z̃γ̃)2

(1 + λ2z̃γ̃)2
.
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We rewrite the operator in the following form

R̃∆ω̃ = ∂2
θ̃
[m̃ω̃]− ∂θ̃

[
2∂θ̃m̃ω̃ +

z̃γ̃′

(1 + λ2z̃γ̃)3
ω̃
]
+ ∂z̃

( γ̃

1 + λ2z̃γ̃
ω̃
)

+
[
(∂2

θ̃
m̃)− ∂z̃

( γ̃

1 + λ2z̃γ̃

)
+ ∂θ̃

( z̃γ̃′

(1 + λ2z̃γ̃)3

)]
ω̃.

We now bound each term appearing in the Duhamel formula (3.21). Thanks to the
analyticity of the boundary, the coefficients are bounded in Wk,∞

ρ . Now, recall from
(3.17) that the Green function has two components:

eνt̃S = eνt̃SH + eνt̃SR

which corresponds to the Green kernel Hα (i.e., the heat kernel) and the other from
the stationary Stokes kernel Rα.

We first claim that∥∥∥νλ2

∫ t̃

0

eν(t̃−t̃′)SH R̃∆ω̃(t̃
′) dt̃′

∥∥∥
Wk,1

ρ

≲ λ2 sup
0≤t̃′≤t̃

∥ω∥Wk,1
ρ

+ ∥ω∥Hk+1(λd(x,∂Ω)≥δ0+δ).

(3.22)

For the heat semigroup, we may integrate by parts in θ̃ or z̃. It follows directly
from the representation of the Green function that derivatives of the semigroup

∇θ̃,z̃e
νt̃SH are of order (νt̃)−1/2 of the semigroup itself. Therefore, the first-order

derivative term in R̃∆ can be treated systematically as follows:

νλ2
∥∥∥∫ t̃

0

eν(t̃−t̃′)SH∇θ̃,z̃h(t̃
′) dt̃′

∥∥∥
Wk,1

ρ

≲ νλ2

∫ t̃

0

(ν(t̃− t̃′))−1/2∥h(t̃′)∥Wk,1
ρ

dt̃′

≲
√
νλ2 sup

0≤t̃′≤t̃

∥h∥Wk,1
ρ

.

The zero-order term is treated similarly. The analysis doesn’t apply directly to
the second-order derivative term ∂2

θ̃
[m̃ω̃] due to the singularity in time (νt)−1, if

integration by parts was to perform twice. However, in the Fourier variable α, we
compute

νλ2

∫ t̃

0

(eν(t̃−t̃′)SH∂2
θ̃
[m̃ω̃])α(t̃

′) dt̃′ = να2λ2

∫ t̃

0

∫ ∞

0

Hα(t, ỹ; z̃)[m̃ω̃]α(t̃
′) dỹdt̃′.

Observe that the Green kernel Hα has the diffusion term e−να2 t̃, for which we use

να2λ2

∫ t̃

0

e−να2(t̃−t̃′)dt̃′ ≲ λ2

yielding the claim (3.22).
Next, we claim that∥∥∥νλ2

∫ t̃

0

eν(t̃−t̃′)SRR̃∆ω̃(t̃
′) dt̃′

∥∥∥
Wk,1

ρ

≲ νλ2

∫ t̃

0

∥∂θ̃ω(t̃)∥Wk,1
ρ

dt̃+ ∥ω∥Hk+1(λd(x,∂Ω)≥δ0+δ).

(3.23)

It suffices to check for the stationary Green kernel µfe
−θ0µf (ỹ+z̃) and for the second-

order derivative term ∂2
θ̃
[m̃ω̃] appearing in R̃∆ω̃(t̃

′). For this term, we make use

of the fact that m̃ vanishes at z̃ = 0; namely, we can write m̃ = z̃m̃1 and use
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µfe
−θ0µf z̃ z̃ ≲ 1, which controls one spatial derivative, since µf = |α|+ ν−1/2. This

proves the claim (3.23).
Finally, putting the previous bounds together into the Duhamel representation

(3.21), we have obtained

∥ω(t̃)∥Wk,1
ρ

≲ ∥ω0∥Wk,1
ρ

+ ∥ω0∥Hk+1(λd(x,∂Ω)≥δ0+δ)

+ λ2 sup
0≤t̃′≤t̃

∥ω(t̃′)∥Wk,1
ρ

+ νλ2

∫ t̃

0

∥∂θ̃ω(t̃)∥Wk,1
ρ

dt̃

+ ∥ω∥Hk+1(λd(x,∂Ω)≥δ0+δ)

(3.24)

for any k ≥ 0. The standard energy estimates for the heat equation (away from the
boundary) yield

∥ω∥Hk+1(λd(x,∂Ω)≥δ0+δ) ≲ ∥ω0∥Hk+1(λd(x,∂Ω)≥δ0/2). (3.25)

It remains to treat the third and forth terms on the right hand side of (3.24). We
bound these terms by iteration, introducing

A0(β) := sup
0≤k≤4

(
sup

0<βt̃<ρ0

sup
0<ρ<ρ0−βt̃

{
∥ω(t̃)∥Wk,1

ρ
+ ∥∂θ̃ω(t̃)∥Wk,1

ρ
(ρ0 − ρ− βt̃)ζ

})
for some ζ ∈ (0, 1). We bound

νλ2

∫ t̃

0

∥∂θ̃ω(t̃)∥Wk,1
ρ

dt̃ ≤ C0νλ
2A0(β)

∫ t̃

0

(ρ0 − ρ− βs̃)−ζ ds̃

≤ C0νλ
2β−1A0(β).

Next, we check the bound on ∥∂θ̃ω(t̃)∥Wk,1
ρ

. We focus only the worst term as in

(3.23). Note that ρ < ρ0 − βt̃ ≤ ρ0 − βs̃. Thus, we take ρ′ = ρ+ρ0−βs
2 and bound

∥∥∥νλ2∂θ̃

∫ t̃

0

eν(t̃−t̃′)SRR̃∆ω̃(t̃
′) dt̃′

∥∥∥
Wk,1

ρ

≲ νλ2

∫ t̃

0

1

ρ′ − ρ
∥∂θ̃ω(t̃)∥Wk,1

ρ′
dt̃+ ∥ω∥Hk+1(λd(x,∂Ω)≥δ0+δ)

≤ C0νλ
2

∫ t̃

0

(ρ0 − ρ− βs)−1−ζ ds+ ∥ω0∥Hk+1(λd(x,∂Ω)≥δ0/2)

≤ C0νλ
2β−1A0(β)(ρ0 − ρ− βt̃)−ζ + ∥ω0∥Hk+1(λd(x,∂Ω)≥δ0/2).

This proves that

A0(β) ≲ ∥ω0∥Wk,1
ρ

+ ∥ω0∥Hk+1(λd(x,∂Ω)≥δ0/2) +
(
λ2 + νλ2β−1

)
A0(β).

Taking λ and ν small, the last term can be absorbed into the left hand side, com-
pleting the bounds on A0(β) or the Wk,1

ρ norm for the vorticity. Note that we do not
require β to be sufficiently large (compared with the nonlinear iteration provided
in the next section). As a consequence, the proposition holds for any given finite
time.
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4. Nonlinear analysis. As already mentioned in the introduction, we construct
the solutions to the Navier-Stokes equation via the vorticity formulation

∂tω + u · ∇ω = ν∆ω (4.1)

together with the nonlocal boundary condition (1.8) and with initial data ω|t=0
= ω0

satisfying

∥ω0∥W2,1
ρ

+ ∥ω0∥H4({λd(x,∂Ω)≥δ0/2}) < ∞. (4.2)

Introduce the smooth cutoff function ϕb as in (2.18), and write

ω = ωb + ωi, ωb = ϕbω, ωi = (1− ϕb)ω. (4.3)

We also define the corresponding velocity field through the Biot-Savart law

u = ub + ui, ub = ∇⊥∆−1ωb, ui = ∇⊥∆−1ωi. (4.4)

This yields {
∂tω

b + u · ∇ωb = ν∆ωb

ν(∂n +DN)ωb
|∂Ω

= [∂n∆
−1(u · ∇ω)]|∂Ω

(4.5)

for the vorticity near the boundary, and{
∂tω

i + u · ∇ωi = ν∆ωi

ωi
|∂Ω = 0

(4.6)

for the vorticity away from the boundary. Here, we note that the boundary condition
on ωi follows directly from the definition (4.3), while the boundary condition on ωb

was due to the fact that DNωi = 0 by Lemma 2.2. We also note that the velocity
field u that appears in both the systems is the full velocity, which is the summation
of ub and ui generated by ωb and ωi, respectively.

We shall construct the near boundary vorticity solving (4.5) through the semi-
group of the Stokes problem. Indeed, we have the following standard Duhamel’s
integral representation, written in the scaled variables,

ω̃(t̃) = eνt̃Sω̃0 +

∫ t̃

0

eν(t̃−t̃′)Sf(t̃′) dt̃′ +

∫ t̃

0

Γ(ν(t̃− t̃′))g(t̃′) dt̃′ (4.7)

where

f(t̃) = −λ−2u · ∇ωb, g(t̃) = λ−1[∂n∆
−1(u · ∇ω)]|∂Ω

. (4.8)

Here, eνt̃S denotes the semigroup of the corresponding Stokes problem and Γ(νt̃)
being its trace on the boundary; see Section 3.6.

4.1. Global Sobolev-analytic norm. We now introduce Sobolev-analytic norms
to control global vorticity. Let us fix positive numbers ρ0, δ0, and ζ ∈ (0, 1). Intro-
duce the following family of nonlinear iterative norms for vorticity:

A(β) := sup
0<λ2βt<ρ0

[
sup

0<ρ<ρ0−βλ2t

{
∥ω(t)∥W1,1

ρ
+ ∥ω(t)∥W2,1

ρ
(ρ0 − ρ− λ2βt)ζ

}
+ ∥ω(t)∥H4({λd(x,∂Ω)≥δ0/2})

]
(4.9)

for a parameter β > 0, with recalling

∥ω(t)∥Wk,1
ρ

=
∑

j+ℓ≤k

∥∂j

θ̃
(z̃∂z̃)

ℓω(t)∥L1
ρ
.
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Note that by definition the norm ∥ · ∥Wk,1
ρ

controls the analyticity of the vorticity

near the boundary, precisely in the region λd(x, ∂Ω) ≤ δ0+ρ, while the H4 norm is
to control the Sobolev regularity away from the boundary. We shall show that the
vorticity norm remains finite for sufficiently large β. The weight (ρ0 − ρ− λ2βt)ζ ,
with a small ζ > 0, is standard in the literature to avoid time singularity when
recovering the loss of derivatives ([2, 6]). See also [14] for an alternative framework
to construct analytic solutions through generator functions.

Our goal is to prove the following key proposition.

Proposition 4.1. For β > 0, there holds

A(β) ≤ C0∥ω0∥W2,1
ρ

+ C0∥ω0∥H4({λd(x,∂Ω)≥δ0/2}) + C0β
−1A(β)2.

In Section 4.4, we will show that our main theorem, Theorem 1.1, follows straight-
forwardly from Proposition 4.1.

4.2. Analytic bounds near the boundary. In this section, we bound the vor-
ticity near the boundary λd(x, ∂Ω) ≤ δ0 + ρ0, on which by definition ω = ωb and
therefore the Duhamel representation (4.7) holds. Let ρ < ρ0 −λ2βt. Recalling the

notation t̃ = λ2t and using (4.7), we bound

∥ω̃(t̃)∥Wk,1
ρ

≤ ∥eνt̃Sω̃0∥Wk,1
ρ

+

∫ t̃

0

∥eν(t̃−t̃′)Sf(t̃′)∥Wk,1
ρ

dt̃′

+

∫ t̃

0

∥Γ(ν(t̃− t̃′))g(t̃′)∥Wk,1
ρ

dt̃′

(4.10)

for 0 < k ≤ 4 and for f, g defined as in (4.8). Let us bound each term on the right.
Using the semigroup estimates, Proposition 3.5, we have

∥eνt̃Sω̃0∥Wk,1
ρ

≤ C0∥ω̃0∥Wk,1
ρ

+ ∥z̃ω̃0∥Hk+1(z̃≥δ0+ρ)

≤ C0∥ω̃0∥Wk,1
ρ

+ ∥ω0∥Hk+1(λd(x,∂Ω)≥δ0+ρ).

While for the second integral term in (4.10), we have∫ t̃

0

∥eν(t̃−t̃′)Sf(t̃′)∥Wk,1
ρ

dt̃′ ≲
∫ t̃

0

[
∥f(t̃′)∥Wk,1

ρ
+ ∥z̃f(t̃′)∥Hk+1(z̃≥δ0+ρ)

]
dt̃′.

Then, we use (4.8), in the above formula with f(t̃) replaced by −λ−2u · ∇ωb. First,
using the standard elliptic theory for k = 0, 1, 2, we bound

∥z̃(u · ∇ωb)(t̃′)∥Hk+1(z̃≥δ0+ρ) ≲ ∥ω∥2H4({λd(x,∂Ω)≥δ0/2}) ≲ A(β)2.

Next, for the analytic norm, with the bilinear estimates from Lemma 3.4, we have:

∥u · ∇ωb∥L1
ρ
≤ C

(
∥ω∥L1

ρ
+ ∥ω∥H1({λd(x,∂Ω)≥δ0})

)
∥∂θ̃ω

b∥L1
ρ

+ C
(
∥ω∥L1

ρ
+ ∥∂θ̃ω∥L1

ρ
+ ∥ω∥H1({λd(x,∂Ω)≥δ0})

)
∥z̃∂z̃ωb∥L1

ρ

≲ ∥ω∥2W1,1
ρ

+ ∥ω∥2H1({λd(x,∂Ω)≥δ0})

≲ A(β)2

∥u · ∇ωb∥W1,1
ρ

≲ ∥ω∥W1,1
ρ

∥ω∥W1,2
ρ

+ ∥ω∥2H2({λd(x,∂Ω)≥δ0})

≲ A(β)2(ρ0 − ρ− βt̃)−ζ .
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Therefore, ∫ t̃

0

∥u · ∇ωb∥W1,1
ρ

ds̃ ≤ C0A(β)2
∫ t̃

0

(ρ0 − ρ− βs̃)−ζ ds̃

≤ C0β
−1A(β)2.

Similarly, we consider the case when k = 2. Noting ρ < ρ0 − βt ≤ ρ0 − βs, we take
ρ′ = ρ+ρ0−βs

2 and compute∫ t

0

∥u · ∇ωb∥W2,1
ρ

ds ≤ C0

∫ t

0

1

ρ′ − ρ
∥u · ∇ωb∥W1,1

ρ′
ds

≤ C0A(β)2
∫ t

0

(ρ0 − ρ− βs)−1−ζ ds

≤ C0β
−1A(β)2(ρ0 − ρ− βt)−ζ .

Finally, we treat the last integral term in (4.10). Precisely, we will show that,
for k ≤ 2:

∥Γ(ν(t̃− t̃′))g(t̃′)∥Wk,1
ρ

≤ C0∥u · ∇ωb(t̃′)∥Wk,1
ρ

+ C0∥ω(t̃′)∥2H4(λd(x,∂Ω)≥δ0/2)

+ C0∥ω(t̃′)∥Wk,1
ρ

∥ω(t̃′)∥H4(λd(x,∂Ω)≥δ0/2)

(4.11)
which would then imply∫ t̃

0

∥Γ(ν(t̃− t̃′))g(t̃′)∥W2,1
ρ

dt̃′ ≤ C0

(
A(β)2 + β−1A(β)2(ρ0 − ρ− βt)−ζ

)
.

Here the constant C0 may change from line to line. It remains to give the proof for
the inequality (4.11). First, by Proposition 3.5, we have

∥Γ(ν(t̃− t̃′))g(t̃′)∥Wk,1
ρ

≤ C0

∑
α

|α|k|gα|eε0(δ0+ρ)|α|,

where gα is given by

gα = λ−1∂n∆
−1(u · ∇ω)α|∂Ω.

Let Φ = ∆−1(u · ∇ω). By definition, Φ solves{
∆Φ = u · ∇ω, x ∈ Ω

Φ|∂Ω = 0.

In the rescaled geodesic coordinates, we have gα = ∂z̃Φα(0). Let Φb = Φ(x)ϕb(x),
we have {

∆Φb = 2∇xϕ
b · ∇xΦ

b +∆ϕbΦ+ ϕbu · ∇ω

Φb|z=0 = 0.

By a direct calculation, we have

eε0(δ0+ρ)|α|gα(t̃
′) = ∂zΦ

b
α|z̃=0

=

∫ ∞

0

e|α|(ε0(δ0+ρ)−z̃)
{
λ2

(
R̃∆Φ̃b

)
α
(z̃)− λ−2

(
2∇xϕ

b · ∇xΦ
b − Φ∆ϕb − ϕbu · ∇ω

)
α

}
dz̃

= I1,α + I2,α + I3,α + I4,α.
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Treating I1,α. As in the proof of Proposition 3.20 for R̃∆, we have

|I1,α| ≤C0|α|2λ2

∫ ∞

0

e|α|(ε0(δ0+ρ)−z̃)|z̃Φb
α(z̃)|dz̃

+ C0λ
2

∫ ∞

0

e|α|(ε0(δ0+ρ)−z̃)
(
|α||Φb

α(z̃)|+ |∂z̃Φb
α|
)
dz̃.

First, we use the inequality z̃|α|e−|α|z̃ ≤ e−
1
2 |α|z̃ to get

|I1,α| ≤ C0λ
2

∫ ∞

0

e|α|(ε0(δ0+ρ)− 1
2 z̃)
(
|α||Φb

α(z̃)|+ |∂z̃Φb
α|
)
dz̃

≤ C0λ
2

∫ δ0+ρ

0

e|α|ε0(δ0+ρ−z̃)
(
|α||Φb

α(z̃)|+ |∂z̃Φb
α|
)
dz̃

+ C0λ
2

∫ ∞

δ0+ρ

(
|α||Φb

α(z̃)|+ |∂z̃Φb
α|
)
dz̃.

For the first term, we use the L1
µ elliptic estimate for the velocity (since the kernel

Kα ∈ L1), to get

∑
α

|α|k
∫ δ0+ρ

0

e|α|ε0(δ0+ρ−z̃)
(
|α||Φb

α(z̃)|+ |∂z̃Φb
α|
)
dz̃

≤ C∥ϕbu · ∇ω∥Wk,1
ρ

+ C∥Φ∥Hk+2(λd(x,∂Ω)≥δ0+ρ0).

(4.12)

Now we have

∥ϕbu · ∇ω∥Wk,1
ρ

= ∥u · ∇ωb − (u · ∇ϕb)ω∥Wk,1
ρ

≤ C
(
∥u · ∇ωb∥Wk,1

ρ
+ ∥uω∥Hk(λd(x,∂Ω)≥δ0)

)
≤ C∥u · ∇ωb∥Wk,1

ρ

+ C∥ω∥H4(λd(x,∂Ω)≥δ0/2)

(
∥ω∥H4(λd(x,∂Ω)≥δ0/2) + ∥ω∥Wk,1

ρ

)
.

(4.13)
By standard elliptic estimate, we have

∥Φ∥Hk+2(λd(x,∂Ω)≥δ0+ρ0) ≤C∥ϕbu · ∇ω∥Wk,1
ρ

+ C∥u · ∇ω∥Hk(λd(x,∂Ω)≥δ0)

≤C∥u · ∇ωb∥Wk,1
ρ

+ ∥ω∥2H4(λd(x,∂Ω)≥δ0/2)

+ ∥ω∥H4(λd(x,∂Ω)≥δ0/2)∥ω∥Wk,1
ρ

.

(4.14)

Combining (4.12),(4.14) and (4.13), we have∑
α

|α|k|I1,α| ≲ ∥u · ∇ωb(t̃′)∥Wk,1
ρ

+ ∥ω∥2H4(λd(x,∂Ω)≥δ0/2)

+ ∥ω∥H4(λd(x,∂Ω)≥δ0/2)∥ω∥Wk,1
ρ

as claimed in (4.11). The proof for I1,α is complete.

Treating I2,α. For I2,α, we note that the domain of integration is z̃ ≥ δ0 + ρ0 >
δ0 + ρ, we have

|α|ke|α|(ε0(δ0+ρ)−z̃) ≤ C.
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Thus we have∑
α

|α|k|I2,α| ≤ C
∑
α

∥∇xΦ
b
α∥L1(z̃≥δ0+ρ0) ≤ C∥d(x, ∂Ω)∇xΦ∥H1(λd(x,∂Ω)≥δ0+ρ0)

≤ C∥d(x, ∂Ω)Φ∥H2(λd(x,∂Ω)≥δ0+ρ0)

≤ C∥ϕbu · ∇ω∥Wk,1
ρ

+ C∥u · ∇ω∥L2(λd(x,∂Ω)≥δ0),

which is bounded by the right hand side of (4.11). The proof for I2,α is complete.

Treating I3,α. Similarly, for I3,α, we get∑
α

|α|k|I3,α| ≤ C∥d(x, ∂Ω)Φ∥H1(λd(x,∂Ω)≥δ0+ρ0)

≤ C∥ϕbu · ∇ω∥Wk,1
ρ

+ C∥u · ∇ω∥L2(λd(x,∂Ω)≥δ0).

This is also bounded by the right hand side of (4.11). The proof for I3,α is complete.

Treating I4,α. For I4,α we have∑
α

|α|k|I4,α| ≤ ∥ϕbu · ∇ω∥Wk,1
ρ

.

We rewrite ϕbu · ∇ω = u · ∇(ϕbω) − u · ∇ϕbω = u · ∇ωb − (u · ∇ϕb)ω. Hence we
obtain ∑

α

|α|k|I4,α| ≤ C
(
∥u · ∇ωb∥Wk,1

ρ
+ ∥uω∥Hk+1(λd(x,∂Ω)≥δ0+ρ0)

)
≤ C∥u · ∇ωb∥Wk,1

ρ
+ C∥ω∥2H4(λd(x,∂Ω)≥δ0/2)

+ C∥ω∥Wk,1
ρ

∥ω∥H4(λd(x,∂Ω)≥δ0/2).

This completes the bound for I4,α.
Combining all of the above, we obtain bounds on A(β) in the analytic norm.

4.3. Sobolev bounds away from the boundary. Finally, we bound the vorticity
away from the boundary. Recall that{

∂tω
i + u · ∇ωi = ν∆ωi

ωi
|∂Ω = 0

(4.15)

Note that by definition, ωi vanishes in the region when λd(x, ∂Ω) ≤ δ0. We perform
the standard energy estimates, for k ≥ 3 so that the standard Sobolev embedding
applies, yielding

d

dt
∥ωi∥2Hk + ν∥∇ωi∥2Hk ≲ ∥u∥Hk∥ωi∥2Hk

≲ ∥ωi∥3Hk + ∥ub∥3Hk(λd(x,∂Ω)≥δ0)
.

Using the elliptic theory for the Biot-Savart law ub = ∇⊥∆−1ωb, we have

∥ub∥Hk(λd(x,∂Ω)≥δ0) ≲ ∥ωb∥Wk,1
ρ

+ ∥ωb∥Hk(λd(x,∂Ω)≥δ0).

This proves that

d

dt
∥ωi∥2Hk ≲ ∥ωb∥3Wk,1

ρ
+ ∥ωb∥3Hk(λd(x,∂Ω)≥δ0)

.

Integrating in time and recalling the iterative norm A(β), we arrive at

∥ωi∥2H4 ≲ ∥ω0∥2H4 + TA(β)2.
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This bounds the Sobolev norm in A(β), completing the proof of Proposition 4.1.

4.4. Proof of Theorem 1.1. Finally, we show that our main theorem, Theorem
1.1, follows from Proposition 4.1. Indeed, taking β sufficiently large in Proposition
4.1, we obtain uniform bounds on the iterative norm (4.9) in term of initial data,
which gives the local solution in W1,1

ρ +H4({λd(x, ∂Ω) ≥ δ0/2}) for t ∈ [0, T ], with

T = β−1λ−2ρ0. In particular, by definition of the iterative norm A(β), we have

∥ω(t)∥W1,1
ρ

+ ∥ω(t)∥H4({λd(x,∂Ω)≥δ0/2}) ≤ C0

for t ∈ [0, T ]. To prove the stated bound (1.9) on vorticity, we note that

∥ω∥L∞(∂Ω) ≲ ∥∂z̃ω∥L1
ρ
+ ∥ω(t)∥H2({λd(x,∂Ω)≥δ0/2}).

It thus suffices to prove that ∥∂z̃ω∥L1
ρ
≲ ν−1/2. Indeed, similar to (4.10), we bound

∥∂z̃ω(t̃)∥L1
ρ
≤ ∥∂z̃e

νt̃Sω0∥L1
ρ
+

∫ t̃

0

∥∂z̃e
ν(t̃−t̃′)Sf(t̃′)∥L1

ρ
dt̃′ +

∫ t̃

0

∥∂z̃Γ(ν(t̃− t̃′))g(t̃′)∥L1
ρ
dt̃′

for the same f, g defined as in (4.8). It follows directly from the construction, see

Section 3.6, that the z̃-derivative of the semigroup ∂z̃e
νt̃S satisfies the same bounds

as does eνt̃S , up to an extra factor of (νt̃)−1/2 or |∂θ̃|+ ν−1/2. Therefore, using the

previous bounds on f(t̃), we have∫ t̃

0

∥∂z̃e
ν(t̃−t̃′)Sf(t̃′)∥L1

ρ
dt̃′ ≲

∫ t̃

0

(ν(t̃− t̃′))−1/2
[
∥f(t̃′)∥W1,1

ρ
+ ∥z̃f(t̃′)∥H1(z̃≥δ0+ρ)

]
dt̃′

≲
∫ t̃

0

(ν(t̃− t̃′))−1/2 dt̃′

≲ ν−1/2.

Other terms are estimated similarly, giving ∥∂z̃ω∥L1
ρ
≲ ν−1/2 as claimed.
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