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The unitary group acting on the Hilbert space H := (C2)⊗3 of three quantum bits
admits a Lie subgroup, US3 (8), of elements which permute with the symmetric group

of permutations of three objects. Under the action of such a Lie subgroup, the Hilbert

space H splits into three invariant subspaces of dimensions 4, 2 and 2 respectively, each
corresponding to an irreducible representation of su(2). The subspace of dimension 4 is

uniquely determined and corresponds to states that are themselves invariant under the

action of the symmetric group. This is the so called symmetric sector. The subspaces of
dimension two are not uniquely determined and we parametrize them all. We provide an

analysis of pure states that are in the subspaces invariant under US3 (8). This concerns

their entanglement properties, separability criteria and dynamics under the Lie subgroup
US3 (8). As a physical motivation for the states and dynamics we study, we propose a

physical set-up which consists of a symmetric network of three spin 1
2

particles under a
common driving electro-magnetic field. For such system, we solve the control theoretic

problem of driving a separable state to a state with maximal distributed entanglement.

Keywords: Quantum entanglement, symmetric states, quantum symmetric evolution,

spin networks, quantum control.

1 Introduction

The study of quantum states is a current line of research in quantum physics (see, e.g., [3]),

in particular for what concerns their entanglement properties. Entanglement is considered a

resource in quantum information processing, and classifying states according to the amount

and type of entanglement is a problem of both fundamental and practical importance. A

related problem is to study how quantum dynamical evolution changes the entanglement

of states (see,e.g., [22] for the two qubits case) and, in the quantum control setting [5],

how to induce such dynamics for a specific physical setup. The two qubits case is fairly

well understood, while the case of three qubits requires further exploration. In particular,

three qubits are the simplest type of system which displays two types of entanglement: a

pairwise entanglement quantifying the entanglement between pairs of qubits and a distributed
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542 Symmetric states and dynamics of three quantum bits

entanglement [4]. These types of entanglement are constrained by inequalities often referred

to as monogamy relations [23].

In this paper we are concerned with systems of three qubits whose dynamics are subject

to a permutation symmetry among the three qubits. The possible unitary evolutions on

the Hilbert space H := (C2)⊗3 of the system consists of unitaries which commute with

the permutation group S3.a Such a Lie subgroup of U(8), which we denote by US3(8), has

dimension 20 [1]. Its Lie algebra, uS3(8), is spanned by the matrices

iΠ(σ1 ⊗ σ2 ⊗ σ3). (1)

where Π denotes the symmetrization operator, Π := 1
3!

∑
P∈S3

P , and σ1,2,3 are chosen to be

the 2× 2 identity or one of the Pauli matrices,

σx :=

(
0 1
1 0

)
, σy :=

(
0 −i
i 0

)
, σz :=

(
1 0
0 −1

)
. (2)

The number of the matrices (1) is equal to the way of choosing the number of occurrences of

the identity and σx,y,z out of three positions, which is equal to 20.b

The three qubit space H under the action of the Lie algebra uS3(8), or of the Lie group

US3(8), splits into three invariant subspaces two of which have dimension 2 and one of which

has dimension 4. These correspond to irreducible representations of su(2) [1], [6]. The

subspace of dimension 4 is uniquely determined. It is the so-called symmetric sector [17],

that is, the space of the states that do not change under permutation of the qubits. For the

symmetric sector, we shall use the orthogonal basis, (not normalized)

φ0 := |000〉, (3)

φ1 := |100〉+ |010〉+ |001〉,

φ2 := |011〉+ |101〉+ |110〉,

φ3 := |111〉.

This notation follows the number of 1’s that appear in each state, in the sense that φj is the

sum of the states in the computational basis which have j 1’s. States in the symmetric sector

where studied in [17] and a complete list of invariants under local unitary and symmetric

transformations was given there.

We will write a general state in the symmetric sector as

ψ := c0φ0 + c1φ1 + c2φ2 + c3φ3, (4)

for complex coefficients c0, c1, c2, c3, with |c0|2 + 3|c1|2 + 3|c2|2 + |c3|2 = 1. This can also be

seen as a four level system which can be used to implement two qubits.

The subspaces of dimension 2, which represent isomorphic representations of su(2), are

not uniquely determined.

The results presented in this paper and a plan for the following sections is as follows.

In section 2 we perform the decomposition of the Hilbert space H := (C2)⊗3 into invariant

aThe group of permutation of n objects, also called the symmetric group, is denoted by Sn.
bThe general argument for n qubit is presented in [1].
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subspaces for uS3(8). We see that while the four dimensional invariant subspace is uniquely

determined (it is the symmetric sector) the pair of 2-dimensional invariant subspaces is not.

We obtain a parametrization of all the possible decompositions and therefore of all the possible

2-dimensional invariant subspaces. In section 3 we recall the general measures of entanglement

for three qubits introduced in [4], in particular the pairwise entanglement (concurrence),

quantifying the entanglement between two qubits when the third one is traced out and the

distributed entanglement. These measures are invariant under local unitary transformations.

In section 4, we calculate the entanglement measures for states in the symmetric sector and

give conditions of separability. The expressions we find complement the ones found in [17]

which are based on the Majorana polynomial representations of states [14]. We also briefly

recall such a representation which has an elegant geometric interpretation and provide a

complete set of local invariants for these states. In section 5 we analyze the entanglement

of the states in the two dimensional invariant subspaces. We find that the distributed

entanglement is zero on each of these invariant subspaces and it is at most 1
3 for states in the

direct sum of these subspaces, that is, states in the orthogonal complement of the symmetric

sector. We then turn our attention to the dynamics, in particular the ones given by the Lie

subgroup of the unitary group U(8) which permutes with the symmetric group, i.e., US3(8). In

section 6, we study such dynamics on the invariant subspaces. In particular, for the symmetric

sector, we prove that the group of local (symmetric) unitary transformations is a maximal

Lie subgroup of US3(8) which leaves the adopted measures of entanglement unchanged. We

then study in general how the elements of the group US3(8) change the entanglement in this

subspace. We give a factorization of possible unitary evolutions on the symmetric sector

in evolutions that modify the entanglement and evolutions that do not. In section 7, we

give a physical application of the analysis described in the previous sections. We consider a

symmetric network of three spin 1
2 particles coupled via identical Ising interaction and driven

by a common electro-magnetic field. The dynamics of this model satisfies the symmetry

assumptions considered in this paper. We propose an algorithm to drive such a system from a

separable state (with zero entanglement) to a state with maximum distributed entanglement.

A summary of the results is given in section 8.

As we have mentioned, the three qubit case is of interest because it is the simplest case

where one can define distributed entanglement. It is also the simplest case where the de-

composition in invariant subspacescis not unique. In the two qubit case, the decomposition

into invariant subspaces is H = S ⊕ A where S is the two qubits symmetric sector spanned

by (cf. (3))
{
|00〉, |11〉, 1√

2
(|01〉+ |10〉)

}
, and A is the one dimensional subspace spanned

by the antisymmetric state, 1√
2

(|01〉 − |10〉). States with maximum entanglement occur (in

particular the Bell states) in both invariant subspaces. We shall see that for the three qubit

case the distributed entanglement is zero in the two dimensional invariant subspaces and can

take any value in [0, 1] in the four dimensional symmetric sector.

We envision a possible extension of the results presented here to n qubits at the price of

higher computational complexity in the calculations and resulting formulas. In particular,

the method to obtain all possible decompositions we will describe in the next section extends

in principle to more than three qubits. The extension of the entanglement analysis we will

cWe mean here invariant subspaces of USn (2n), that is, the subgroup of U(2n) invariant under the permutation
group of n objects.
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present will require the use of generalizations of measures of distributed entanglement such

as the one obtained in [16].

2 Decomposition into Invariant Subspaces

Consider the Lie algebra suS3(8), that is, the subalgebra of su(8) of matrices which commute

with the permutation matrices in S3. For su(8), we consider the standard representation on

C8 ' H and therefore the matrices in suS3(8) are also 8 × 8. In appropriate coordinates,

such matrices take a block diagonal form with blocks of dimension 4 × 4, 2 × 2 and 2 × 2,

which correspond to invariant subspaces of H of dimensions 4, 2 and 2, respectively [1].

Such subspaces correspond to irreducible representations of su(2) of dimensions 4, 2 and 2

respectively (the ones of dimension 2 being isomorphic representations). To obtain a basis

for such subspaces, in terms of the computational basis {|jkl〉 , j, k, l = 0, 1} one may apply

standard methods of the quantum theory of angular momentum (see, e.g., [9], [18]) which

overlap with representation theory and the theory of Young tableau and representations of

the symmetric group (see, e.g., [8]). For instance, the Clebsch-Gordan coefficients described

in [9] (in the table on pg. 375), give one possible change of coordinates to obtain the bases

of such invariant subspaces. Another method is given by the use of Young symmetrizers

which was reviewed in [6] in the form that uses Hermitian Young symmetrizers as described

in [2]. Such a method is based on the Schur-Weyl duality, a decomposition of the space V ⊗n

into the direct sum of spaces Ŝλ ⊗ Vλ where the Vλ’s are irreducible modules of the general

linear group Gl(dim(V )) and Ŝλ are irreducible modules of the (finite) symmetric group Sn.

The Young symmetrizers are a set of projections onto the various invariant subspaces which

satisfy certain requirements (completeness, orthogonality (cf., e.g., [6])) but are not uniquely

determined. Therefore, the resulting decomposition in invariant subspaces is not unique and

it is of interest to find all the possible decompositions.

In order to achieve all the possible decompositions, we will use in this section a technique

that was described in [5] (see Chapter 4 section 4.3.4). One considers the commutant C of

suS3(8) in u(8) which is a reductive Lie algebra and therefore it admits Cartan subalgebras,

i.e., a maximal Abelian subalgebra. The main observation is that, if W ⊕ V1 ⊕ V2 (with

dim(W ) = 4 and dim(V1) = dim(V2) = 2) is a decomposition in invariant subspaces for

suS3(8), then C admits a Cartan subalgebra which, in the appropriate coordinates, has a basis

given by A1 := diag(i14,02,02), A2 := diag(04, i12,02), A3 := diag(04,02, i12), where 1r
(0r) is the r × r identity (zero) matrix, and diag refers to block diagonal matrices.dPossible

decompositions are therefore in correspondence with Cartan subalgebras of the commutant

C. Thus, a method to obtain all the possible decompositions is the following algorithm.

1. Compute the commutant C of suS3(8) in u(8).

2. Find all possible Cartan subalgebras of C which (in this case) all have dimension 3. The

following steps refers to the a Cartan subalgebra A. In order to deal with Hermitian

matrices rather than skew-Hermitian ones, we consider iA.

3. Take a basis of iA and (orthogonally) diagonalize its elements simultaneously (this is

possible since these are mutually commuting Hermitian matrices).

dSometime we omit the index r, in 1r or 0r when the dimension is obvious from the context.
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4. Place the elements on the diagonal in three row vectors so as to form a 3 × 8 matrix,

which we shall denote by M .

5. Perform a Gaussian row reduction algorithm to place the matrix in a Reduced Row

Echelon Form (see, e.g., [13]). This corresponds to taking linear combinations of the

matrices in the basis of iA so as to obtain a new basis of elements which only have eigen-

values 1 and 0. Call these elements (in the original coordinates) (Ã1, Ã2, Ã3) with Ã1

having eigenvalue 1 with multiplicity 4, Ã2 and Ã3 having eigenvalue 1 with multiplicity

2

6. W is the eigenspace of Ã1 corresponding to eigenvalue 1. V1 and V2 are the eigenspaces

of Ã2 and Ã3, respectively, corresponding to eigenvalue 1. Notice that once we know W

and V1, the subspace V2 is simply the orthogonal complement of W ⊕ V1.

Let us carry out the above program for our example. The commutant C is found by solving

the linear system of equations [C, Bj ] = 0, where {Bj} is a basis of suS3(8). In fact, since the

matrices iHx, iHy and iHzz, with (cf. (2))

Hx,y,z := σx,y,z ⊗ 1⊗ 1 + 1⊗ σx,y,z ⊗ 1 + 1⊗ 1⊗ σx,y,z, (5)

Hzz := σz ⊗ σz ⊗ 1 + 1⊗ σz ⊗ σz + σz ⊗ 1⊗ σz, (6)

generate all of suS3(8) [1], it is enough to solve

[C, Hx] = 0, [C, Hy] = 0, [C, Hzz] = 0.

This computation, which was done in [5], leads to the basis {E1, E2, E3, E4, E5} for C, with

iE1 := 1⊗ 1⊗ 1,

iE2 := σx ⊗ 1⊗ σx + σy ⊗ 1⊗ σy + σz ⊗ 1⊗ σz,

iE3 = σx ⊗ σx ⊗ 1 + σy ⊗ σy ⊗ 1 + σz ⊗ σz ⊗ 1,

iE4 = 1⊗ σx ⊗ σx + 1⊗ σy ⊗ σy + 1⊗ σz ⊗ σz,

iE5 = σx ⊗ (σy ⊗ σz − σz ⊗ σy) + σy ⊗ (σz ⊗ σx − σx ⊗ σz) + σz ⊗ (σx ⊗ σy − σy ⊗ σx).

An analysis of the Lie algebra C shows that it is the direct sum of one two dimensional

Abelian Lie algebra spanned by E1 and E1 + E2 + E3 and a three dimensional Lie algebra

isomorphic to su(2) and spanned by {E5, (E2 − E3), (E2 − E4)}. The Lie algebra su(2)

has a one dimensional Cartan subalgebra which may be spanned by any non zero element.

Therefore a general Cartan subalgebra A of C is such that an orthogonal basis of iA is given

by {F1, F2, F3}, with

F1 := iE1, F2 := i(E2 + E3 + E4), F3 := iaE5 + ib(E2 − E3) + ic(E2 − E4), (7)

for any, not simultaneously zero, real parameters (a, b, c).

We now proceed to step 3 of the above algorithm. Here and in the following we shall use

the standard notation, ~ej , j = 1, ..., 8, for the elements of the standard basis in C8, ~ej being

the vector of all zeros except in the j-th position occupied by 1. The matrix F1 is just the
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identity matrix which is diagonal in every basis. The matrix F2 has eigenvalue λ1 = 3 with

eigenspace Q3 spanned by {~e1, ~e2 + ~e3 + ~e5, ~e4 + ~e6 + ~e7, ~e8} and eigenvalue λ2 = −3 with

eigenspace Q−3 spanned by {~f1, ~f2, ~f3, ~f4} , with ~f1 := ~e3−~e2, ~f2 := ~e2+~e3−2~e5, ~f3 := ~e6−~e4,
~f4 := −2~e7 +~e6 +~e4. Consider now F3 acting on Q3 and Q−3. Direct verification shows that

F3 is zero on Q3. On Q−3 we have

F3
~f1 = 3c~f1 + (2ia+ 2b+ c)~f2,

F3
~f2 = (3c+ 6b+ 6ia)~f1 − 3c~f2,

F3
~f3 = 3b~f3 + (b+ 2c+ 2ia)~f4,

F3
~f4 = (3b+ 6c− 6ia)~f3 − 3b~f4.

This shows that the subspace Q−3 splits into two invariant subspaces for F3 spanned by

{~f1, ~f2} and {~f3, ~f4} respectively. Calculating the spectrum of F3 on such subspaces we find

that F3 has eigenvalues ±λ on both subspaces where

λ := 2
√

3c2 + 3cb+ 3b2 + 3a2. (8)

Notice that λ is never zero otherwise we would have a = b = c = 0 which we have excluded.

Listing the eigenvalues of F1, F2 and F3 and constructing the matrix M of the above algorithm,

we have

M =

 1 1 1 1 1 1 1 1
3 3 3 3 −3 −3 −3 −3
0 0 0 0 λ λ −λ −λ

 .

Row reduction to transform this matrix in its Reduced Row Echelon Form, which is

RREF (M) =

 1 1 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1

 ,

corresponds to multiplication of M on the left by the matrix

R :=
1

2

 1 1
3 0

1
2 − 1

6
1
λ

1
2 − 1

6 − 1
λ

 .

The rows of the matrix R give the coefficients for the linear combinations of {F1, F2, F3}
whose eigenspaces are the sought vector spaces. In particular consider

Π1 :=
1

2

(
F1 +

1

3
F2

)
, (9)

Π2 :=
1

2

(
1

2
F1 −

1

6
F2 +

1

λ
F3

)
, (10)

Π3 :=
1

2

(
1

2
F1 −

1

6
F2 −

1

λ
F3

)
. (11)
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Independently of the values of a, b, and c, these projections form a complete set of, symmetric,

mutually orthogonal idempotents, (which are also called generalized Young symmetrizers [6]).

In fact, one can verify directly that

Π1 + Π2 + Π3 = 1, (12)

ΠjΠk = δj,kΠj . (13)

Here δj,k = 0 if j 6= k and δj,j = 1.The eigenspaces corresponding to the eigenvalue 1 of these

matrices are the spaces W (for Π1), V1 (for Π2), V2 (for Π3). They coincide with the images

of these matrices. The result is formally given in the following theorem.

Theorem 1 Every decomposition of H := (C2)⊗3 = W ⊕ V1 ⊕ V2 in invariant subspaces

for suS3(8) (SUS3(8)) or uS3(8) (US3(8)) corresponds to a triple (a, b, c) 6= (0, 0, 0). An

orthogonal basis of W is given by

W := {~e1, ~e2 + ~e3 + ~e5, ~e4 + ~e6 + ~e7, ~e8}, (14)

which coincides with the basis {φ0, φ1, φ2, φ3} in (3) and uniquely determines W, the symmet-

ric sector. An orthogonal basis of V1 is given by {|v1〉, |w1〉} with

|v1〉 = x2|001〉+ x3|010〉+ x5|100〉
|w1〉 = x4|011〉+ x6|101〉+ x7|110〉 (15)

with x2 = x7 = 1√
2
, x3 = x6 = − 1√

2
, and x5 = x4 = 0 if a = 0, c = −2b and b < 0, with

x2 = x7 = −λ+ 6ia+ 6b+ 6c, x3 = x6 := −λ− 6ia− 6b, x5 = x4 = 2λ− 6c, in all the other

cases. An orthogonal basis of V2 is given by

|v2〉 = y2|001〉+ y3|010〉+ y5|100〉
|w2〉 = y4|011〉+ y6|101〉+ y7|110〉 (16)

with y2 = y7 = 1√
2
, y3 = y6 = − 1√

2
, and y5 = y4 = 0 if a = 0, c = −2b and b > 0, with

y2 = y7 = −λ− 6ia− 6b− 6c, y3 = y6 := −λ+ 6ia+ 6b, y5 = y4 = 2λ+ 6c, in all the other

cases.

A direct computation using (8) shows that the decomposition is orthogonal. Furthermore

we also have

x2 + x3 + x5 = 0, x4 + x6 + x7 = 0; (17)

y2 + y3 + y5 = 0, y4 + y6 + y7 = 0. (18)

Proof. The theorem follows by explicitly writing the matrices Π1, Π2 and Π3 in (9), (10)

(11).

The matrix Π1 is the following:

Π1 :=



1 0 0 0 0 0 0 0
0 1

3
1
3 0 1

3 0 0 0
0 1

3
1
3 0 1

3 0 0 0
0 0 0 1

3 0 1
3

1
3 0

0 1
3

1
3 0 1

3 0 0 0
0 0 0 1

3 0 1
3

1
3 0

0 0 0 1
3 0 1

3
1
3 0

0 0 0 0 0 0 0 1


.
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Thus the orthogonal basis for the subspace W , is the one given by equation (14).
The work for the matrices Π2 and Π3 which depend on the parameters a, b, and c, requires

some extra considerations. Let us consider the discussion for Π2 and V1. The matrix Π2 in
(10) is Π2 := 1

12λ (Π2,1,Π2,2) with

Π2,1 :=



0 0 0 0
0 4λ− 12b −2λ− 12ia− 12c 0
0 −2λ+ 12ia− 12c 4λ+ 12b+ 12c 0
0 0 0 4λ− 12c
0 −2λ− 12ia+ 12b+ 12c −2λ+ 12ia− 12b 0
0 0 0 −2λ− 12ia− 12b
0 0 0 −2λ+ 12ia+ 12b+ 12c
0 0 0 0

 ,

Π2,2 :=



0 0 0 0
−2λ+ 12ia+ 12b+ 12c 0 0 0
−2λ− 12ia− 12b 0 0 0

0 −2λ+ 12ia− 12b −2λ− 12ia+ 12b+ 12c 0
4λ− 12c 0 0 0

0 4λ+ 12b+ 12c −2λ+ 12ia− 12c 0
0 −2λ− 12ia− 12c 4λ− 12b 0
0 0 0 0


Considering the columns 2, 3, and 5 of Π2, one sees that the sum of second, third and fifth

row is zero. Therefore at the most two of these columns are linearly independent. In fact,

using the definition of λ in (8), it follows that only one column is linearly independent.

Taking the 5th column divided by two, one obtains the first element in the (orthogonal)

basis of V1, when a 6= 0 or c 6= −2b, or b ≥ 0. If a = 0, c = −2b and b < 0, then the 5th

column is zero, but the second column is proportional to the vector 1√
2
|001〉 − 1√

2
|010〉.

Analogously one obtains the second vector of the basis, considering the 4th, 6th and 7th

column of Π2.

The discussion of Π3 and V2 is analogous. In fact, an explicit calculation shows that Π3

can be obtained from Π2 with the exchanges a ↔ −a, b ↔ −b, c ↔ −c. Alternatively one

obtains V2 as the orthogonal complement of the direct sum of W and V1.

The above decomposition includes, as special cases, decompositions found in the standard

quantum physics literature. For example, the two dimensional space obtained with the Young

symmetrizers in [6], which can also be obtained with the recursive use of the Clebsch-Gordan

coefficients [9], is spanned by

ψ̂1 :=
1√
2
|010〉 − 1√

2
|100〉 :=

1√
2
~e3 −

1√
2
~e5

ψ̂2 := − 1√
2
|011〉+

1√
2
|101〉 = − 1√

2
~e4 +

1√
2
~e6,

and it is obtained as a special case of V1. In fact by choosing a = 0, b = 1
9
√

2
, and c = − 1

18
√

2
,

which give λ = 1
3
√

2
, we have that |v1〉 = −ψ̂1 and |w1〉 = −ψ̂2

We remark that all the triple (a, b, c) 6= (0, 0, 0) are possible although the decompositions

are not in one to one correspondence with the set of triples. Different triples can give the

same decomposition (for instance all the ones with a = 0, c = −2b, b < 0).
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3 Measures of Entanglement for General Three Qubits States

For a general multi-partite quantum system, a measure of entanglement is a nonnegative

real function on the space of density matrices which satisfies certain axioms. In particular

it does not increase under local operations and classical communication (LOCC), it is zero

on separable states (that is, statistical mixtures of product states), it is unchanged by local

unitary operations, and it is usually normalized to one (cf., e.g., [3] and [11] for a detailed

introduction to entanglement measures). For the case of two qubits A and B, a very common

measure is the concurrence [20] whose square is called the 2-tangle, τAB . This can be defined

from the density matrix ρAB , by calculating the spectrum of ρABσy ⊗ σyρ∗ABσy ⊗ σy,ewhich

can be shown to be made of real and nonnegative values λ2
1 ≥ λ2

2 ≥ λ2
3 ≥ λ2

4, and τAB is

defined as

τAB = [max{λ1 − λ2 − λ3 − λ4, 0}]2 . (19)

Consider now a pure state for a system of three qubits, A, B, and C. One can consider, after

tracing out C, the entanglement between A and B, τAB , and analogously τAC and τBC . In

this case a monogamy relation holds [19] [21]: If A is fully entangled with B, that is, τAB = 1,

then we must have τAC = 0, that is, the state ρAC is separable (where ρAC is the partial

trace with respect to subsystem B). In fact, a more refined inequality holds [4]. Consider a

pure state ρ and consider the system as a bipartite system A − (BC). Even though BC is

four dimensional, it follows from the Schmidt decomposition (see, e.g., [15] pg. 109) that only

two (orthogonal) directions are necessary to express the full state. Therefore, we can treat

effectively (BC) as a two level system and define the entanglement τA(BC) between A and

(BC). Then one has the following inequality which was one of the main results of [4]

τAB + τAC ≤ τA(BC). (20)

The difference between τA(BC) and τAB + τAC is by definition, the distributed entanglement

or 3−tangle, which we denote simply by τ , that is, the amount of entanglement not due

to pairwise entanglement between the quantum bits. Explicit formulas were given in [4] for

τA(BC) and τ . We report them below because we shall use them in our analysis. Let ρA be

the partial trace with respect to the subsystem (BC).

τA(BC) = 4 det(ρA); (21)

τ = τA(BC) − τAB − τAC = 4
∣∣t2000t

2
111 + t2001t

2
110 + t2010t

2
101 + t2100t

2
011 − 2d1 + 4d2

∣∣ , (22)

with

d1 := t000t111t011t100 + t000t111t101t010 + t000t111t110t001+

t011t100t101t010 + t011t100t110t001 + t101t010t110t001,

d2 := t000t110t101t011 + t111t001t010t100,

for a state

|ψ〉 =
∑
ijk

tijk|ijk〉,

with i, j, k = 0, 1.

eGiven a matrix ρ or a complex constant c, we always denote by ρ∗ and by c∗ the complex conjugate.
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Relations such as (20) are known as monogamy relations in quantum information theory

and they are valid also for others, but not all, measures of entanglement [23], thus allowing to

define a distributed entanglement. We have chosen the (distributed) tangle as our reference

measure of entanglement not only because it satisfies the monogamy inequality (20) but also

because explicit, relatively simple, expressions exist for its calculation, expressions we will

elaborate upon in the following sections.

4 States in the Symmetric Sector and their Entanglement

For any state in the symmetric sector, because of symmetry, we have ρA = ρB = ρC , so for

these states, τAB = τAC = τBC and therefore we have, using (21) (22),

τAB = τAC = τBC =
4 det(ρA)− τ

2
. (23)

In order to express the entanglement measures τ and τAB = τAC = τBC in a compact

fashion, we introduce an extra piece of notation. Define

X2 := c0c2 − c21, X3 := c0c3 − c1c2, X4 := c1c3 − c22. (24)

The quantities X2, X3 and X4 give a quick test of separability for states in the symmetric

sector as described in the following proposition.

Proposition 4.1 A state ψ (4) in the symmetric sector is separable if and only if

X2 = X3 = X4 = 0. (25)

In this case, ψ is a symmetric product state of the form

ψ = φ⊗ φ⊗ φ, (26)

with φ a one qubit state.

Proof. Assume that ψ in (4) is a product state, i.e.,

ψ = (α0|0〉+ α1|1〉)⊗ (β0|0〉+ β1|1〉)⊗ (γ0|0〉+ γ1|1〉).

Expanding and comparing with (4), we have

c0 = α0β0γ0,

c1 = α1β0γ0 = α0β1γ0 = α0β0γ1,

c2 = α1β1γ0 = α1β0γ1 = α0β1γ1,

c3 = α1β1γ1.

Using these in (24) one verifies (25). For example, for X2 we have

c0c2 = α0β0γ0α1β1γ0 = (α1β0γ0)(α0β1γ0) = c21.

Viceversa, assume (25) is verified and consider the state (4). If c0 = 0, then, from (25), (24),

it follows that c1 = 0 and c2 = 0. Therefore the state coincides with |111〉 which is separable

and of the symmetric form (26). If c0 6= 0 we can assume c0 = 1, without loss of generality
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keeping the state not normalized. Conditions (24) (25) give c2 = c21, c3 = c31. Therefore, the

state ψ in (4) is of the form (26) with φ = |0〉+ c1|1〉.
With the notation (24), the entanglement measures τ and τAB = τAC = τBC take a

compact form as described in the following two propositions.

Proposition 4.2 The distributed entanglement τ on the symmetric sector is given by

τ = 4|X2
3 − 4X2X4|. (27)

Proof. Applying formula (22) we obtain

τ = 4|c20c23 − 3c21c
2
2 − 6c0c1c2c3 + 4c0c

3
2 + 4c3c

3
1|. (28)

Direct verification using formulas (24) in (27) shows that τ in (27) coincides with (28).

Proposition 4.3 The pairwise entanglement τAB = τAC = τBC is given by

τAB = τAC = τBC = 2
(
det(ρA)− |X2

3 − 4X2X4|
)
, (29)

where

det(ρA) = |X3|2 + 2|X2|2 + 2|X4|2. (30)

Therefore the expression for the pairwise entanglement is

τAB = τAC = τBC = 2
(
|X3|2 + 2|X2|2 + 2|X4|2 − |X2

3 − 4X2X4|
)
. (31)

Proof. We explicitly write the state ψ in (4) as ψ = (c0, c1, c1, c2, c1, c2, c2, c3)T and the

associated density matrix ρ = ψψ†. By taking the partial trace with respect to B and C, we

obtain,

ρA :=

(
|c0|2 + 2|c1|2 + |c2|2 c0c

∗
1 + 2c1c

∗
2 + c2c

∗
3

c∗0c1 + 2c∗1c2 + c∗2c3 |c1|2 + 2|c2|2 + |c3|2
)
, (32)

and, after simplifications,

det(ρA) = 2|c0|2|c2|2 + |c0|2|c3|2 + 2|c1|4 + 2|c1|2|c3|2 + |c2|2|c1|2 + 2|c2|4

−2c∗0c
∗
2c

2
1 − c∗0c1c2c∗3 − 2(c∗1)2c0c2 − 2c∗1c

2
2c
∗
3 − c0c∗1c∗2c3 − 2c1c3(c∗2)2.

By replacing the expressions of X2, X3, X4 in (24) in the right hand side of (30) one verifies

that it coincides with the above expression of det(ρA).

From (31) we obtain

τAB
2
≥ 2|X2|2 + 2|X4|2 − 4|X2X4| = 2 (|X2| − |X4|)2 ≥ 0.

To have equality, that is, the pairwise entanglement equal to zero, both inequalities have to

hold with the equal sign. We must have

|X2| = |X4|, |X2
3 − 4X2X4| = |X3|2 + 4|X2||X4| = |X3|2 + 4|X2|2 = |X3|2 + 4|X4|2.

The following also follows from Proposition 4.1.

Proposition 4.4 The only states in the symmetric sector that have both distributed and

pairwise entanglements equal to zero are the separable states.
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Pairwise entanglement τAB and distributed entanglement τ are local invariants, that is,

they are functions invariant under local unitary transformations, which, in the symmetric

case, are taken symmetric, i.e., of the form X ⊗X ⊗X, with X ∈ U(2). A complete set of

local invariants for general three qubits states and general local unitary transformations, is

known. For symmetric qubit states a complete set of invariants can be obtained using the

Majorana polynomial representation of symmetric states [17]. We briefly review this.fGiven

a general (not necessarily symmetric) product state ψ1 ⊗ ψ2 ⊗ ψ3, with ψj := αj |0〉 + βj |1〉,
j = 1, 2, 3, one can obtain a symmetric state of the form (4) as AΠψ1 ⊗ ψ2 ⊗ ψ3, where

Π :=
1

3!

∑
P∈S3

P (33)

is the total symmetrizer, and A is a normalization factor. In particular, direct calculation

shows, with the definitions (3),

Π(ψ1 ⊗ ψ2 ⊗ ψ3) = α1α2α3φ0 +

(
α1α2β3 + α1β2α3 + β1α2α3

3

)
φ1 (34)

+

(
α1β2β3 + β1α2β3 + β1β2β3

3

)
φ2 + β1β2β3φ3.

Viceversa, given a symmetric state (4), one considers the associated Majorana polynomial,

pM (x) = c0x
3 + 3c1x

2 + 3c2x+ c3,

which, by calculating the zeros, and up to a common factor, can be written as

pM (x) = (α1x+ β1)(α2x+ β2)(α3x+ β3).

By choosing ψj := αj |0〉 + βj |1〉 and using (34), we see that the resulting symmetric state

Πψ1 ⊗ ψ2 ⊗ ψ3 is given by (4). Therefore every symmetric state is in correspondence with a

not ordered triple of one qubit states ψ1, ψ2, ψ3. Since each qubit state is in correspondence

with a point on the Bloch sphere (see, e.g., [15]) a symmetric state is in correspondence with

three not ordered vectors from the origin to the Bloch sphere in R3. Furthermore, since for

X ∈ U(2), we have

X ⊗X ⊗XΠ(ψ1 ⊗ ψ2 ⊗ ψ3) = Π(Xψ1 ⊗Xψ2 ⊗Xψ3),

applying a symmetric local unitary operation corresponds to a simultaneous rotation of the

three Bloch vectors of the three one qubit states ψ1, ψ2 and ψ3. Therefore the angles between

the Bloch vectors give a complete set of invariants under local symmetric unitary operations.

We remark here that, using this representation of symmetric states, it is possible to assume

that the states (4) can be written, after local symmetric unitary operations, in special forms.

In particular, after a common rotation, it is possible to assume that one of the Bloch vectors

corresponding to {ψ1, ψ2, ψ3} is in a special position, for example along the z-axis, while the

remaining two can be rotated arbitrarily around the the first one. One possible special form

fWe only discuss the Majorana polynomial representation in the three qubits case. For a general treatment,
we refer to [14] and references therein.
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to write the state (4) after a local unitary transformation is the one with c3 = 0 and c0 and

c2 real (or having the same phase, recall that states are defined up to a phase factor). In

order to achieve this, take ψ1 ⊗ ψ2 ⊗ ψ3 and choose X ∈ U(2) so that Xψ1 = |0〉 (up to a

phase factor). Therefore we have

X ⊗X ⊗Xψ1 ⊗ ψ2 ⊗ ψ3 = |0〉 ⊗
(
cos(θ1)|0〉+ sin(θ1)eiχ1 |1〉

)
⊗
(
cos(θ2)|0〉+ sin(θ2)eiχ2 |1〉

)
,

for real parameters θ1, θ2, χ1, χ2. Now we can apply Y ⊗ Y ⊗ Y , with Y =

(
eiχ 0
0 e−iχ

)
.

We obtain

(Y ⊗ Y ⊗ Y )X ⊗X ⊗Xψ1 ⊗ ψ2 ⊗ ψ3

= eiχ|0〉 ⊗
(

cos(θ1)eiχ|0〉+ sin(θ1)ei(χ1−χ)|1〉
)
⊗
(

cos(θ2)eiχ|0〉+ sin(θ2)ei(χ2−χ)|1〉
)

= |0〉 ⊗
(

cos(θ1)|0〉+ sin(θ1)ei(χ1−2χ)|1〉
)
⊗
(

cos(θ2)|0〉+ sin(θ2)ei(χ2−2χ)|1〉
)
.

The choice χ := χ1+χ2

4 , gives, with η = χ1−χ2

2 , the form

ψprodcan := |0〉 ⊗
(
cos(θ1)|0〉+ sin(θ1)eiη|1〉

)
⊗
(
cos(θ2)|0〉+ sin(θ2)e−iη|1〉

)
. (35)

Applying the total symmetrizer Π in (33) to ψprodcan in (35), one obtains a symmetric state

(4) with c3 = 0 and c0 and c2 real. We remark that 3 is the minimum number of parameters

necessary to identify equivalence classes of (unitary) locally equivalent states since states can

be normalized and identified up to a common phase factor and therefore (in the symmetric

sector) by 6 parameters and SU(2) has dimension 3.

5 States in the Two Dimensional Invariant Subspaces and their Entanglement

We now consider the invariant subspaces of dimension two: V1 and V2 described in section 2.

Since the orthogonal basis of V2, given in equation (16), can be obtained from the orthogonal

basis of V1, given in equation (15), exchanging a ↔ −a, b ↔ −b, c ↔ −c, and (a, b, c) are

free parameters (not all zero) we can consider without loss of generality only the subspace V1.

We shall calculate the pairwise entanglements and the distributed entanglement. We remark

that since these states are in general not invariant under permutation (as opposed to states

in the symmetric sector treated in the previous section) there is no a priori reason why τAB
should be equal to τAC .

In what follows we assume that we have normalized the basis vectors |vi〉, and |wi〉 in

equations (15) and (16). We denote by x̂i and ŷi the normalized coordinates corresponding to

xj and yj , and, we still denote by |vi〉, and |wi〉 the basis vectors. Notice that in the special

case, when a = 0, c = −2b and b < 0, the two vectors |v1〉, and |w1〉 are already normalized

(as well as the vectors |v2〉, and |w2〉, when a = 0, c = −2b and b > 0). In the other cases,

using the definitions of xi and yi, in terms of the constants a, b, c, and λ, given in Theorem

1, and the definition of λ given in equation (8), we have:

x2x
∗
2 + x3x

∗
3 + x5x

∗
5 = (−λ+ 6b+ 6c)2 + 36a2 + (λ+ 6b)2 + 36a2 + (2λ− 6c)2

= 6λ2 + 72b2 + 72a2 + 72c2 + 72bc− 36λc = 12λ2 − 36λc = 12λ(λ− 3c)
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Thus, we have:

x̂i =
xi√

12λ(λ− 3c)
. (36)

Analogously, it holds:

ŷi =
yi√

12λ(λ+ 3c)
. (37)

In order to simplify the calculation of the entanglement measures, it is convenient to

anticipate a result on dynamics (treatment of dynamics will be done in the next section).

We recall that we call local (special) unitary symmetric operations operations of the type

X ⊗X ⊗X with X ∈ U(2) (X ∈ SU(2)).

Proposition 5.1 Given two states |ψ1〉, |ψ2〉 in the subspace V1 (same for V2) it is always

possible to go from |ψ1〉 to |ψ2〉, using local operations.

This result is a direct consequence of Schur-Weyl duality and the Lie theoretic controlla-

bility criteria for quantum systems, in particular it is a consequence of the fact that suS3(8)

acts as u(m) on each invariant subspace of dimension m (cf. [6]). We give a direct proof.

Proof. The Lie algebra corresponding to the Lie group of local symmetric special unitary

matrices is spanned by the matrices iHx,y,z defined in (5). This Lie algebra leaves V1 invariant.

It is in fact the standard representation of su(2). This can be verified directly. Explicit

computation using (15) shows that Hz|v1〉 = |v1〉, Hz|w1〉 = −|w1〉.
Calculating iHx|v1〉 we get

iHx|v1〉 = −ix̂3|101〉 − ix̂2|110〉 − ix̂5|011〉 = −i|w1〉

Similarly, we get that iHx|w1〉 = −i|v1〉. Thus on the orthonormal basis {|v1〉, |w1〉} Hz and

−Hx act as σz and σx on the basis {|0〉, |1〉} and therefore iHz and −iHx generate the Lie

algebra su(2). Since the corresponding Lie group, SU(2), is transitive on the complex sphere,

the symmetric local transformations X ⊗X ⊗X, X ∈ SU(2), are able to transfer any state

to any other state (cf. [12]).

We will now compute the entanglement measures for the states in the invariant subspaces

of dimension 2. Since these quantities remain unchanged by using local operations, and all

the states in V1 (or V2) can be reached using local operations starting from an arbitrary state,

as proved in the previous proposition, it is enough to compute the measures for a particular

state.

First we will see that the distributed entanglement τ is always zero.

Proposition 5.2 Let |ψ〉 ∈ V1 (or |ψ〉 ∈ V2) then τ = 0

Proof. Direct calculation using (22) shows that τ = 0 for the first basis vector |v1〉 =

x̂2|001〉+x̂3|010〉+x̂5|100〉 in the definition (15). Therefore the result follows using Proposition

5.1.

To calculate τA(BC), τAB and τAC , we recall that since τ = 0 from (20)

τA(BC) = τAB + τAC . (38)

Since these quantities are constant on V1, let us calculate them at |v1〉 in (15). We only need

to compute τA(BC) and τAB since τAC will follow from (38). Computation of ρA and ρAB for

the state |v1〉 gives
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ρA =

(
|x̂2|2 + |x̂3|2 0

0 |x̂5|2
)
, (39)

ρAB =


|x̂2|2 0 0 0

0 |x̂3|2 x̂3x̂
∗
5 0

0 x̂5x̂
∗
3 |x̂5|2 0

0 0 0 0

 . (40)

Using (21), we obtain

τA(BC) = 4
(
|x̂2|2 + |x̂3|2

)
|x̂5|2 = 4(|x̂2|2 + |x̂3|2)|x̂2 + x̂3|2. (41)

To compute τAB one has to calculate the eigenvalues of ρABσy ⊗ σyρ∗ABσy ⊗ σy which

using formula (40) can be seen to be: zero with multiplicity two and the eigenvalues of the

2× 2 matrix (
2|x̂3|2|x̂5|2 2|x̂3|2Re(x̂5x̂

∗
3)

2|x̂5|2Re(x̂5x̂
∗
3) 2|x̂5|2|x̂3|2

)
,

which are λ2
1 = 2|µ|(|µ| + |Re(µ)|), λ2

2 = 2|µ|(|µ| − |Re(µ)|), with µ := x̂5x̂
∗
3. Using formula

(19) we have since λ3 = λ4 = 0,

τAB = (λ1 − λ2)2 = 2|µ|
(√
|µ|+ |Re(µ)| −

√
|µ| − |Re(µ)|

)2

= 4|µ| (|µ| − |Im(µ)|) . (42)

We also have τAC = τA(BC) − τAB .

Remark 5.3 From formula (41) it follows that τA(BC) is zero if and only if x̂5 = 0 (x̂2 and x̂3

cannot be simultaneously zero because this would imply the vector |v1〉 to be zero). In this

case, |v1〉 would be a product state (of the form |0〉 ⊗ ψ̃BC for a state ψ̃BC on the subsystem

(BC)). Since the local symmetric unitary group is transitive on the subspace V1, every state

in this subspace is a product state as expected when the entanglement is zero. The condition

on the entanglement τAB is less intuitive. It can be stated by saying that µ := x̂5x̂
∗
3 is purely

imaginary.

We finish this section by observing (see next proposition) that, if we take a state restricted

to the direct sum of V1 and V2, then the distributed entanglement τ can be strictly positive,

but it is always less than or equal to 1/3.

Proposition 5.4 Let |ψ〉 ∈ V1

⊕
V2 then τ ≤ 1

3 , with the bound being sharp.

Proof. A general state |ψ〉 ∈ V1

⊕
V2, can be written as

|ψ〉 = α|v1〉+ β|w1〉+ γ|v2〉+ δ|w2〉,

with |α|2 + |β|2 + |γ|2 + |δ|2 = 1, and where the vectors |vi〉, and |wi〉 are the basis vectors

defined in equations (15) and (16), after normalization. Writing explicitly |ψ〉, we have:

|ψ〉 = (αx̂2 + γŷ2) |001〉+ (αx̂3 + γŷ3) |010〉+ (αx̂5 + γŷ5) |100〉

+ (βx̂2 + δŷ2) |110〉+ (βx̂3 + δŷ3) |101〉+ (βx̂5 + δŷ5) |011〉.

Now we compute the distributed entanglement.
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Denoting by Ai = αx̂i + γŷi and Bi = βx̂i + δŷi, i = 2, 3, 5, we have, using equation (22),

τ = 4
∣∣A2

2B
2
2 +A2

3B
2
3 +A2

5B
2
5 − 2(A2B2A3B3 +A2B2A5B5 +A3B3A5B5)

∣∣
Using the fact that A5 = −A2 −A3 and B5 = −B2 −B3 from (17) (18), we have:

τ = 4
∣∣∣(A2

2B
2
2 −A2

3B
2
3

)2
+ (A2 +A3)2(B2 +B3)2 − 2(A2 +A3)(B2 +B3)(A2B2 +A3B3)

∣∣∣
= 4

∣∣(A2
2B

2
2 −A2

3B
2
3)2 + (A2 +A3)(B2 +B3)(A3B2 +A2B3 −A2B2 −A3B3)

∣∣
= 4

∣∣∣(A2
2B

2
2 −A2

3B
2
3

)2
+
(
A2

2B
2
3 +A2

3B
2
2

)2 − (A2
2B

2
2 +A2

3B
2
3

)2∣∣∣
= 4

∣∣∣(A2
2B

2
3 −A2

3B
2
2

)2∣∣∣ .
Using the definitions of Ai and Bi, we get:

τ = 4
∣∣(x̂2ŷ3 − x̂3ŷ2)2(αδ − βγ)2

∣∣ . (43)

Now by using the definitions of xi and yi, in terms of the constants a, b, c, and λ, given in

Theorem 1, and equations (36) and (37), we have:g

(x̂2ŷ3− x̂3ŷ2) =
(−λ+ 6b+ 6c+ 6ia)(−λ+ 6b+ 6ia)− (−λ− 6b− 6ia)(−λ− 6b− 6c− 6ia)

12λ
√

(λ+ 3c)(λ− 3c)

=
−24λb− 24iλa− 12λc

12λ
√

(λ+ 3c)(λ− 3c)
= −c+ 2b+ 2ia√

λ2 − 9c2

which gives:

|(x̂2ŷ3 − x̂3ŷ2)2| = (c+ 2b)2 + 4a2

λ2 − 9c2
=

1

3
(44)

Thus using this equality in (43), we have:

τ =
4

3

∣∣(αδ − βγ)2
∣∣ ≤ 1

3
. (45)

In the previous equation, the last inequality, is obtained, by observing that:

|αδ − βγ| ≤ |αδ|+ |βγ| ≤ 1

2
(|α|2 + |δ|2) +

1

2
(|β|2 + |γ|2) =

1

2
.

Equality in (45) can be obtained by choosing α = β = δ = 1
2 , γ = − 1

2 .

Notice that Proposition 5.2 is obtained as a corollary in the case α = β = 0 or γ = δ = 0.

gIn the definition of the basis vectors |v1〉, and |w1〉 there is also the special case, when a = 0, c = −2b and
b < 0. However in this case we have x̂2 = 1√

2
= −x̂3 and ŷ2 = ŷ3 = 1√

6
, thus equation (44) below, which is

our target, still holds. Similarly for the case a = 0, c = −2b and b > 0.
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6 Symmetric Dynamics on the Invariant Subspaces

We now study how the Lie group US3(8) of symmetric dynamics acts on its invariant sub-

spaces. On the two dimensional invariant subspaces V1 and V2 this group acts as U(2) and

its induced dynamics is not more rich than the one of the group of symmetric local transfor-

mations X ⊗X ⊗X. These transformations do not modify the entanglement measures and

in particular the distributed entanglement which is zero for each of the two subspaces, as we

have seen in the previous section.

More interesting is the dynamics of US3(8) on the four dimensional symmetric sector

which can be proven by Schur-Weyl duality (see, e.g., [1]) to be given by all possible unitary

4 × 4 matrices. The local symmetric unitary transformations are a Lie subgroup of US3(8)

whose Lie algebra is spanned by iHx,y,z in (5) and multiples of the identity. If we consider

the orthonormal basis obtained from (3) {φ0,
φ1√

3
, φ2√

3
, φ3}, the matrices i

2Hx,y,z give the four

dimensional irreducible representation of su(2). The corresponding matrices can be computed

using the Clebsch-Gordan coefficients [9] (or directly by computing their action on the given

basis). They are

Sx :=
1

2


0

√
3i 0 0√

3i 0 2i 0
0 2i 0

√
3i

0 0
√

3i 0

 , (46)

Sy :=
1

2


0 −

√
3 0 0√

3 0 −2 0
0 2 0 −

√
3

0 0
√

3 0

 , (47)

Sz :=
1

2


3i 0 0 0
0 i 0 0
0 0 −i 0
0 0 0 −3i

 , (48)

and satisfy the standard commutation relations for su(2),

[Sx, Sy] = Sz, [Sy, Sz] = Sx, [Sz, Sx] = Sy. (49)

The Lie subgroup of SU(4) corresponding to the Lie algebra spanned by Sx,y,z (correspond-

ing to local symmetric transformations) leaves the measures of entanglement unchanged. In

fact, it is a maximal Lie subgroup having this property as shown in the following two propo-

sitions whose proofs are postponed to the Appendix.

Proposition 6.1 The local Lie group corresponding to the Lie algebra spanned by (i×) the

4 × 4 identity and Sx,y,z is maximal among the Lie groups leaving the distributed tangle τ

unchanged on the 4-dimensional symmetric sector. That is, there is no Lie group leaving such

measure invariant which is larger than the local Lie group.

Proposition 6.2 The local Lie group corresponding to the Lie algebra spanned by (i×) the

4×4 identity and Sx,y,z is a maximal Lie group leaving the pairwise tangle τAB = τAC = τBC
unchanged on the 4-dimensional symmetric sector.

The symmetric Lie group US3(8) acts on the symmetric sector spanned by the vectors

{φ0, φ1, φ2, φ3} as the unitary group U(4) and the associated Lie algebra acts like u(4) (see,

e.g., [1]). The Lie algebra spanned by Sx,y,z, in (46), (47), (48), is a subalgebra of u(4)
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corresponding to local symmetric operations and isomorphic to su(2), the symmetric sector

giving an irreducible representation of su(2). Since U(4) is transitive on the complex unit

sphere, it is possible, using elements of the Lie group US3(8), to transfer the state from a

product state φ ⊗ φ ⊗ φ to any arbitrary state in the symmetric sector, independently of

the entanglement value of the target state. In order to analyze how the elements of US3(8)

modify the entanglement on the symmetric sector, we analyze the structure of the Lie algebra

u(4) starting with describing how the Lie algebra spanned by {Sx, Sy, Sz}, which leaves such

measures unchanged, ‘sits’ in u(4). Our goal is to arrive at a factorization of elements of U(4)

which separates factors which modify the entanglement measures from the symmetric local

transformations that do not, trying to use as many as possible of the latter ones.

The Lie algebra u(4) admits, up to conjugacy, a Cartan decomposition (see, e.g., [10])

u(4) = sp(2)⊕ sp⊥(2), (50)

where sp(2) is the symplectic Lie algebra and sp⊥(2) is its orthogonal complement.h They

satisfy the basic (Cartan-like) commutation relations

[sp(2), sp(2)] ⊆ sp(2),
[
sp⊥(2), sp(2)

]
⊆ sp⊥(2),

[
sp⊥(2), sp⊥(2)

]
⊆ sp(2). (51)

As it is customary, we denote by Sp(n) the connected Lie group associated with sp(n). Ac-

cording to Cartan decomposition theorem, every unitary 4 × 4 matrix U can be written as

U := K1AK2, (52)

where K1,2 are in Sp(2) and A is the exponential of an element in a maximal Abelian subal-

gebra in sp⊥(2) which, in this case, has dimension 2, since we are including multiples of the

identity as well in sp⊥(2).i

The symplectic Lie algebra sp(n) (which has dimension n(2n+ 1)) and its associated Lie

group Sp(n) have several important properties that are of interest for the study of quantum

dynamics. In particular, sp(n) is a maximal Lie subalgebra of su(2n) which means that

sp(n) along with any nonzero element X /∈ sp(n) of su(2n) generates all of su(2n). Every Lie

subalgebra of su(2n) which is isomorphic to sp(n) is actually conjugate to sp(n). Furthermore,

Sp(n) is transitive on the complex unit sphere S2n−1 representing quantum states. This means

that, for any two (normalized) quantum states |ψ1〉 and |ψ2〉, there exists a matrix in Sp(n)

such that |ψ2〉 = X|ψ1〉. This means, in particular, that any possible value of the entanglement

in the symmetric sector can be achieved by only using the transformations K1 and K2 in (52).

For our purposes we consider a Lie subalgebra S conjugate to sp(2) in u(4). We consider

the Lie algebra of 4× 4 matrices of the form

F :=


ir α β γ
−α∗ is δ −β
−β∗ −δ∗ −is α
−γ∗ β∗ −α∗ −ir

 ,

hThe inner product considered is the inner product 〈A,B〉 = kTr(AB†), for an appropriate positive constant
k.
i In general the maximal Abelian subalgebra for the Cartan decomposition su(n) = sp(n

2
) ⊕ sp⊥(n

2
) has

dimension n
2
− 1 which would give 1 in this case. However, we have included multiples of the identity since

we looked at the decomposition for u(4). A full treatment of the decompositions for u(n) can be found in [10]
and a summary with applications for quantum systems can be found in [5].
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with r and s arbitrary real numbers and α, β, γ, δ arbitrary complex numbers. Matrices in

the Lie algebra S satisfy,

FJ + JFT = 0,

where J is the matrix

J :=


0 0 0 1
0 0 −1 0
0 1 0 0
−1 0 0 0

 , (53)

and formulas (50)-(52) hold with sp(2) replaced by S. The reason for this choice is that the

matrices Sx,y,z, (46), (47), (48), giving the 4-dimensional irreducible representation of su(2),

belong to S (see, e.g., [7] for a treatment of how irreducible representations of su(2) fit in

the corresponding unitary Lie algebra). The decomposition (52) therefore holds with K1 and

K2 belonging to the connected Lie group eS conjugate to Sp(2) and associated with the Lie

algebra S.jOn the other hand, for the matrix A in (52), we can take the product of the

exponentials of two elements in a Cartan subalgebra in S⊥. For such a Cartan subalgebra,

we take span{i14, iHzz} where on (C2)⊗3, Hzz is defined as Hzz in (6). In the symmetric

sector, in the basis {φ0, φ1, φ2, φ3} it is given by the matrix

iHzz =


3i 0 0 0
0 −i 0 0
0 0 −i 0
0 0 0 3i

 . (54)

With this choice, formula (52) can be written as

U = K1e
i14zeiHzzwK2, (55)

for real parameters z and w, with K1 and K2 in eS (isomorphic to Sp(2)). We now turn to

the factorization of K1 and K2 in (55).

The Lie algebra sp(2) has a Cartan decomposition sp(2) = L ⊕ L⊥ that can be chosen

(up to conjugacy) between two possibilities denoted by CI and CII (cf. Chapter X in [10]).

Given such a decomposition, the matrices K1 and K2 in (52) can be written as K in the

following formula

K = L1ÂL2, (56)

where Â is the exponential of a matrix in a maximal Abelian subalgebra inside L⊥. We

choose the decomposition CI because this allows us to separate Sx, Sy and Sz in L and L⊥.

In particular, we have L = S ∩ so(4) which is given by the matrices of the form

L̂ :=


0 a k r
−a 0 f −k
−k −f 0 a
−r k −a 0

 , (57)

jHere and in the following we use the convention of denoting by eS the connected Lie group associated with
a Lie algebra S.
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for four real parameter a, k, r, f .k The matrix Sy in (47) belongs to the Lie subalgebra L
(choose a = −

√
3

2 , f = −1 and the other parameters equal to zero) while Sx and Sz belong

to L⊥. The dimension of the Cartan subalgebra associated to this decomposition (the rank

of the decomposition) is 2. We choose as Cartan subalgebra the one spanned by Sz and H,

where H := diag(0, i2 ,−
i
2 , 0). Therefore Â in formula (56) can be written as

Â = eSzxeHy, (58)

for real values x and y. The Lie algebra L is isomorphic to u(2) with the isomorphism given

by

i12 ↔ J, (59)

with J in (53),

i

2

(
0 1
1 0

)
↔ 1

2


0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0

 (60)

1

2

(
0 1
−1 0

)
↔ 1

2


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

 , (61)

i

2

(
1 0
0 −1

)
↔ 1

2


0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0

 . (62)

Consider the matrix in L

R :=


0 1 0 0
−1 0 −

√
3 0

0
√

3 0 1
0 0 −1 0

 , (63)

which is orthogonal to Sy. Performing an Euler-like decomposition on eL, we can write any

element L in eL, such as L1 and L2 in (56), as L := eSyt1eRt2eSyt3eJt4 . Combining this with

Â in (58) we obtain that every element K in eS can be written as

K := eSyt1eRt2eSyt3eJt4eSzt5eHt6eJt7eSyt8eRt9eSyt10 . (64)

In this decomposition, the only elements that change the entanglement measures are factors

of the type eRt, eJt, and eHt. In the resulting decomposition for U ∈ U(4) (55), to these

needs to be added the evolution eiHzzw in (55).

The full decomposition of unitary transformations which combines (55) with (64) separates

factors which do not change the entanglement on the symmetric sector from factors that do.

In particular the factors of the type eSyt and eSzt correspond to local transformations which

leave the measures of entanglement unchanged, while the other factors change them. In this

context, the decomposition is similar in spirit to the one found in [22] for the two qubits case.

kThe Lie algebra S is only conjugate to sp(2), therefore, the Lie algebra characterizing the decomposition
CI is different but conjugate with respect to the one for sp(2). The matrix M which gives the conjugacy is

M :=

(
U1 0
0 UT

1

)
with U1 = 1√

2

(
1 1
−1 1

)
. We have Msp(2)MT = S.
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7 Control of a Three Spin Symmetric Network

In this section, we briefly consider a possible physical scenario where the analysis carried out

in the previous sections applies. We consider in particular a network of three identical spin
1
2 particles subject to a controlling electromagnetic field which simultaneously interacts with

the three spins. The three spins interact with each other via Ising interaction. The time

varying Hamiltonian for this system is

HS := HS(t) = Hzz +Hxux(t) +Hyuy(t) +Hzuz(t), (65)

with Hzz defined in (6) and Hx,y,z defined in (5). The functions ux,y,z = ux,y,z(t) repre-

sent (spatially uniform) components of an electromagnetic field in the x, y, z direction. The

dynamics of the state is given by the Schrödinger equation

ψ̇ = −iHS(t)ψ, ψ(0) = ψ0. (66)

The controllability analysis of a quantum system (see, e.g., [5]) describes the set of states that

can be reached starting from ψ0. In this case, such a set is [1]

Rψ0 := {Xψ0 |X ∈ US3(8)}. (67)

In particular, if ψ0 belongs to one of the invariant subspaces of US3(8) (or uS3(8)), then, for

every control function, the state will remain in that subspace. However, within each invariant

subspace every state transfer is possible [1]. The invariant subspaces for the group US3(8)

were described in section 2.

Let us restrict ourselves to the symmetric sector where the dynamics was described in

section 6 and let us pose the problem of reaching, starting from a symmetric product state, a

state with maximum distributed entanglement τ = 1, using an appropriate control function.

The problem will be solved if we prove that there exists a symmetric local state ψ̂0 := φ⊗φ⊗φ
and a time t̄ such that e−iHzz t̄ψ̂0 has maximum distributed entanglement. This property is

referred to, in the case of (pairwise) entanglement of two qubits, as e−iHzz t̄ being a perfect

entangler [22] and we shall adopt this terminology here, mutatis mutandis. If there exists such

a product state ψ̂0, we can use in (66) high amplitude short time pulses (so that we can neglect

in the dynamics the effect of Hzz) which will produce a local symmetric transformation from

ψ0 to the state ψ̂0. Then we can set the controls equal to zero and allow the evolution go as

ψ̂0 → e−iHzztψ̂0 for time t̄. We are left with proving that e−iHzz t̄ is a perfect entangler.

Proposition 7.1 There exists a t̄ such that e−iHzz t̄ is a perfect entangler transferring the

local symmetric state

ψ̂0 =

(
1√
2
|0〉+

1√
2
|1〉
)⊗3

, (68)

to a state of maximum distributed entanglement τ = 1.

Proof. The state ψ̂0 in (68) can be written in the form (4) with c0 = c1 = c2 = c3 = 1
2
√

2
.

Using the explicit expression of Hzz in (54) we have that c0,1,2,3 vary with time as

c0(t) = c3(t) =
e3it

2
√

2
, c1(t) = c2(t) =

e−it

2
√

2
. (69)
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Using the formula for the distributed entanglement τ in (27) together with the expressions of

X2, X3, X4 in (24) we get X2 = X4 = 1
8 (e2it − e−2it), X3 = 1

8 (e6it − e−2it), and

τ(t) = 4
∣∣X2

3 − 4X2X4

∣∣ =
1

16

∣∣(e6it − e−2it)2 − 4(e2it − e−2it)2
∣∣ =

1

16

∣∣(e6it − e−2it)2 + 16 sin2(2t)
∣∣ .

The function on the right hand side has a maximum equal to 1 at t = π
4 . Therefore the

proposition holds with t̄ = π
4 .

8 Conclusions

In this paper, we have given an analysis of the states of a three qubit quantum system under

the action of the Lie group US3(8) of unitary matrices which commute with the symmet-

ric group of three objects. This is motivated by the controlled dynamics of symmetric spin

networks with three spin 1
2 particles, as described in section 7. The Hilbert space of three

qubits splits into subspaces of dimension 4, 2 and 2, which are invariant under the action of

the Lie group US3(8). The subspace of dimension 4 is uniquely determined and corresponds

to the so called symmetric sector W of states which are invariant under permutation (sym-

metric states). The subspaces of dimension 2 are not uniquely determined although they are

orthogonal to W and orthogonal to each other. We have provided the following results:

We have parametrized all the possible decompositions of the state space in invariant

subspaces under the Lie group US3(8) (Theorem 1).

For states in the symmetric sector W , we have introduced three quantities X2, X3, X4

in (24) which are easily calculated from the expression of the state and have given a

simple criterion of separability (Proposition 4.1).

We have calculated expressions of the distributed entanglement and the pairwise entan-

glement in terms of the quantities X2, X3, X4 (Propositions 4.2, 4.3) and concluded

that the only states on the symmetric sector which have both entanglements equal to

zero are the separable states (Proposition 4.4).

For states in the two dimensional invariant subspaces, we have proven that the dis-

tributed entanglement is always equal to zero (Proposition 5.2) while the pairwise en-

tanglement depends on the subspace considered. We provided a simple formula for it

(formula (42)). States that are in the direct sum of the two, two dimensional, invariant

subspaces, may have distributed entanglement different from zero but always bounded

by 1
3 (Proposition 5.4).

We have proven that there is no connected Lie subgroup of US3(8) which properly

contains the Lie subgroup of local symmetric transformations and leaves unchanged the

distributed entanglement (Proposition 6.1) or the pairwise entanglement (Proposition

6.2) on the symmetric sector.

We have given a decomposition of any evolution in US3(8) on the symmetric sector into

(local) elements which do not modify the entanglement and factors which modify it

(formulas (55) and (64)).
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We have proven that the free evolution given by a pairwise Ising interaction is a perfect

entangler for distributed entanglement on a symmetric network of three spin (Proposi-

tion 7.1) and used this to prescribe a control law to drive a separable symmetric state

to a state of maximal distributed entanglement.

In future research, it will be of interest to extend the results presented here to states for more

than three qubits. Such extensions depend on and will lead to a better understanding of

multipartite entanglement beyond the three qubits case.
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Appendix A Proofs of Propositions 6.1 and 6.2

We consider a general vector in the symmetric sector

ψ = c0φ0 + ĉ1
1√
3
φ1 + ĉ2

1√
3
φ2 + c3φ3,

where, comparing with (4), we have ĉ1 =
√

3c1, ĉ2 =
√

3c2.

Given either a constant c or avector y or a matrix M , we follow the convention of denoting

by cR and cI , yR and yI , MR and MI , their real and imaginary parts respectively. Moreover

given a matrix M , we denote by Mi,j , its i, j element.

Proof of Proposition 6.1

Proof. Recall, see (27), that the distributed tangle τ is given by τ = 4|X2
3−4X2X4|. Consider

the quantity X2
3 − 4X2X4 written separating its real and imaginary parts as X2

3 − 4X2X4 :=

R+ iI

Then invariance of τ is equivalent to invariance of the function f := 1
2 (R2 + I2). R and I

are functions of the complex vector ~v := (c0, ĉ1, ĉ2, c3)T := ~vR + i~vI , for real vectors ~vR and

~vI , where ~vR := (c0,R, ĉ1,R, ĉ2,R, c3,R)T , ~vI := (c0,I , ĉ1,I , ĉ2,I , c3,I)
T . If F is an element of the

Lie algebra associated to a given Lie subgroup of U(4), under the action of eFt, ~v changes as

~v → eFt~v and therefore f(t) varies as

f(t) =
1

2

(
R2(eFt~v) + I2(eFt~v)

)
. (A.1)

Since F is skew-Hermitian, it can be written as F = A + iB with A skew symmetric and B

symmetric (with both of them real). Invariance of f = f(t) implies

0 =
df

dt
|t=0 = (R∇R+ I∇I)

(
A~vR −B~vI
A~vI +B~vR

)
. (A.2)

The idea of the proof is to show that if the matrix F := A + iB satisfies (A.2) for all

possible vectors ~v, then it must be in the Lie algebra spanned by Sx,y,z, plus the i× identity.

To show this, we will first compute (A.2) for special vectors.

Let us consider the case of vectors for which ~vI = 0. A direct calculation using the

definitions (24) shows that I = 0 so that (A.2) simplifies as

ḟ(0) = R∇R
(
A~vR
B~vR

)
= 0. (A.3)
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Using the definitions (24) we get

R = X2
3R −X2

3I − 4 (X2RX4R −X2IX4I) , (A.4)

and an explicit calculation, using the constraint that ~vI = 0, gives X2I = X3I = X4I = 0, so

that we have

∇R(~vR, 0) = 2X3R∇X3R − 4X4R∇X2R − 4X2R∇X4R. (A.5)

Now we specialize further the vector ~v in (A.3).

1. Set ĉ2 = c2 = ĉ1 = c1 = 0. We have X2 = X4 = 0 and X3R = c0Rc3R. A direct

calculation gives

∇X3R = ∇
(
c0Rc3R − c0Ic3I +

ĉ1I ĉ2I
3
− ĉ1Rĉ2R

3

)

=

(
c3R, −

ĉ2R
3
, − ĉ1R

3
, c0R − c3I ,

ĉ2I
3
,
ĉ1I
3
, −c0I

)
,

which, using ĉ1 = ĉ2 = 0 along with c0I = c3I = 0, gives

∇X3R = (c3R, 0, 0, c0R, 0, 0, 0, 0). (A.6)

Placing this and X3R = c0Rc3R in (A.3), we have

ḟ(0) = c0Rc3R ( c3R 0 0 c0R )A


c0R
0
0
c3R

 = 0. (A.7)

Assume c0Rc3R 6= 0. Using the fact that A is skew-symmetric, and using c20R 6= c23R,

this relation implies A1,4 = A4,1 = 0.

2. Set c0 = c2 = 0. A direct calculation using (24) gives X3 = 0 and (A.4) gives R =

4c31Rc3R. We have, using (A.5) and X3 = 0,

∇R = −4X4R∇X2R − 4X2R∇X4R = −4c1Rc3R∇X2R + 4c21R∇X4R. (A.8)

Now use

∇X2R = ∇
(
c0R

ĉ2R√
3
− c0I

ĉ2I√
3
− ĉ21R

3
+
ĉ1I
3

)
(A.9)

=

(
ĉ2R√

3
, −2

3
ĉ1R,

c0R√
3
, 0, − ĉ2I√

3
,

2ĉ1I
3
, − c0I√

3
, 0

)
,

and

∇X4R = ∇
(
ĉ1R√

3
c3R −

ĉ1I√
3
c3I −

ĉ22R
3

+
ĉ22I
3

)
(A.10)

=

(
0,
c3R√

3
, −2

3
ĉ2R,

ĉ1R√
3
, 0, − c3I√

3
,

2

3
ĉ2I , −

ĉ1I√
3

)
,
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with c0 = ĉ2 = 0 and ĉ1I = c3I = 0, in (A.8). We get

∇R =
4√
3
ĉ21R

(
0, c3R, 0,

ĉ1R
3
, 0, 0, 0, 0

)
.

Placing this in (A.3) , we get

ḟ(0) =
16

9
ĉ51Rc3R ( 0 c3R 0 ĉ1R

3 )A


0
ĉ1R
0
c3R

 = 0. (A.11)

This gives using A1,4 = A4,1 = 0, (c23R −
ĉ21R
3 )A2,4 = 0 which implies A2,4 = 0, if we

choose ĉ1R and c3R different from zero.

This shows that every matrix F = A+iB in the Lie algebra corresponding to the Lie group

which leaves τ unchanged has to be such that A2,4 = A1,4 = A4,2 = A4,1 = 0. Since we assume

that Sy in (47) also belongs to such Lie algebra and [Sy, A] is real (and skew-symmetric) while

[Sy, B] is purely imaginary (and symmetric), imposing this condition on [Sy, A], shows that

we must have also A1,3 = A3,1 = 0 and A3,4 = −A4,3 =
√

3
2 A2,3. Furthermore, imposing the

condition that the (1, 3) component is zero to [Sy, A], we also get A1,2 = A3,4. This shows

that the real part of A+ iB must be a multiple of Sy in (47).

Now consider the restrictions on the symmetric matrix B. Since, with Sz in (48), [Sz, iB]

is real, it must be proportional to Sy. From this restriction, it follows that B must be the

sum of a diagonal matrix and a matrix proportional to Sx in (46). Then, considering the Lie

bracket [Sx, iB] which must also be proportional to Sy it follows that the diagonal part of B

must be a linear combination of the identity and Sz. This concludes the proof.

Proof of Proposition 6.2

Proof. We use the notations of the proof of Proposition 6.1. Let us first consider the function

det(ρA) in (30) as we act on the vector ~v as defined in the previous proof of Proposition 6.1

with eFt. That is, similarly to (A.1), we define a function

g(t) = det(ρA)
(
eFt~v

)
=
∣∣X3(eFt~v)

∣∣2 + 2
∣∣X2(eFt~v)

∣∣2 + 2
∣∣X4(eFt~v)

∣∣2 , (A.12)

and we calculate d
dt |t=0g(t). Notice that this is not set to zero yet. Similarly to what was

done in (A.2), we have

d

dt
|t=0g(t) = (∇|X3|2 + 2∇|X2|2 + 2∇|X4|2)

(
A~vR −B~vI
A~vI +B~vR

)
. (A.13)

Choose now an initial point so that ~vI = 0 which implies that the imaginary parts of X2, X3

and X4 are also zero. Therefore (A.13) gives

d

dt
|t=0g(t) = (2X3R∇X3R + 4X2R∇X2R + 4X4R∇X4R)

(
A~vR
B~vR

)
. (A.14)

We now proceed considering subcases as in Proposition 6.1, in fact, the same subcases.
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1. Set ĉ1 = ĉ2 = 0. In this case X2 = X4 = 0 and ∇X3R was already computed in (A.6).

Using this expression and the expression of X3R, which in this case is X3R = c0Rc3R,

we obtain
d

dt
|t=0g(t) = 2c0Rc3RK, (A.15)

where (cf. (A.7))

K := ( c3R 0 0 c0R )A


c0R
0
0
c3R

 .

With the given definitions, the expression of the pairwise entanglement (31) as a function

of t is

τAB(t) = 2
(
g(t)−

√
2f(t)

)
.

The condition dτAB

dt |t=0 = 0 gives

ġ(0)− ḟ(0)√
2f(0)

= 0, (A.16)

which, using (A.15), (A.2), (A.7) and the expression of f(0) = 1
2c

2
0Rc

2
3R, gives

2c0Rc3R|c0Rc3R|K − c0Rc3RK = 0.

The quantity c0Rc3R can be chosen so that this implies K = 0 and, as in the proof of

Proposition 6.1, this gives A14 = A4,1 = 0.

2. Set c0 = c2 = 0.

This gives X3 = 0. We also have X2R = −c21R = − ĉ
2
1R

3 , X4R = c1Rc3R = ĉ1R√
3
c3R. The

quantities ∇X2R and ∇X4R in this case were calculated in (A.9) (A.10). These formulas

give, with c0 = c2 = 0,

∇X2R =

(
0,−2

3
ĉ1R, 0, 0, 0, 0, 0, 0

)
, (A.17)

∇X4R =

(
0,
c3R√

3
, 0,

ĉ1R√
3
, 0, 0, 0, 0

)
. (A.18)

Using these formulas in (A.14), we obtain

d

dt
|t=0g(t) =

4

3
ĉ1R

(
0, c23R +

2

3
ĉ21R, 0, ĉ1Rc3R, 0, 0, 0, 0

)(
A~vR
B~vR

)
. (A.19)

In this case, X3−4X2X4 = 4c31Rc3R = 4
3
ĉ31R√

3
c3R, and therefore f(0) = 1

2 |X3−4X2X4|2 =
8
27 ĉ

6
1Rc

2
3R. Replacing this in (A.16), together with the expression of ḟ(0) calculated in

(A.11), we get

4

3
ĉ1R

(
0, c23R +

2

3
ĉ21R, 0, ĉ1Rc3R

)
A


0
ĉ1R
0
c3R

−4

3

√
3
ĉ51Rc3R
|c31Rc3R|

(0, c3R, 0,
ĉ1R
3

)A


0
ĉ1R
0
c3R

 = 0.

(A.20)
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Now choose c3R = ĉ1R. Using this in (A.20), we obtain, after simplifications,

( 0 5− 3
√

3 0 3−
√

3 )A


0
1
0
1

 = 0

This, using A1,4 = A4,1 = 0, implies A2,4 = A4,2 = 0.

The rest of the proof proceeds as the proof of Proposition 6.1.


