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The unitary group acting on the Hilbert space H := (C?)®3 of three quantum bits
admits a Lie subgroup, USs (8), of elements which permute with the symmetric group
of permutations of three objects. Under the action of such a Lie subgroup, the Hilbert
space H splits into three invariant subspaces of dimensions 4, 2 and 2 respectively, each
corresponding to an irreducible representation of su(2). The subspace of dimension 4 is
uniquely determined and corresponds to states that are themselves invariant under the
action of the symmetric group. This is the so called symmetric sector. The subspaces of
dimension two are not uniquely determined and we parametrize them all. We provide an
analysis of pure states that are in the subspaces invariant under US3 (8). This concerns
their entanglement properties, separability criteria and dynamics under the Lie subgroup
USs (8). As a physical motivation for the states and dynamics we study, we propose a
physical set-up which consists of a symmetric network of three spin % particles under a
common driving electro-magnetic field. For such system, we solve the control theoretic
problem of driving a separable state to a state with maximal distributed entanglement.

Keywords: Quantum entanglement, symmetric states, quantum symmetric evolution,
spin networks, quantum control.

1 Introduction

The study of quantum states is a current line of research in quantum physics (see, e.g., [3]),
in particular for what concerns their entanglement properties. Entanglement is considered a
resource in quantum information processing, and classifying states according to the amount
and type of entanglement is a problem of both fundamental and practical importance. A
related problem is to study how quantum dynamical evolution changes the entanglement
of states (see,e.g., [22] for the two qubits case) and, in the quantum control setting [5],
how to induce such dynamics for a specific physical setup. The two qubits case is fairly
well understood, while the case of three qubits requires further exploration. In particular,
three qubits are the simplest type of system which displays two types of entanglement: a
pairwise entanglement quantifying the entanglement between pairs of qubits and a distributed
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542  Symmetric states and dynamics of three quantum bits

entanglement [4]. These types of entanglement are constrained by inequalities often referred
to as monogamy relations [23].

In this paper we are concerned with systems of three qubits whose dynamics are subject
to a permutation symmetry among the three qubits. The possible unitary evolutions on
the Hilbert space H := (C?)®3 of the system consists of unitaries which commute with
the permutation group Ss.% Such a Lie subgroup of U(8), which we denote by U93(8), has
dimension 20 [1]. Its Lie algebra, u3(8), is spanned by the matrices

iH(01®02®O’3). (1)

where II denotes the symmetrization operator, 11 := % ZP€SS P, and 07 2,3 are chosen to be
the 2 x 2 identity or one of the Pauli matrices,

() W) ) e

The number of the matrices (1) is equal to the way of choosing the number of occurrences of
the identity and o, , out of three positions, which is equal to 20.°

The three qubit space H under the action of the Lie algebra u3(8), or of the Lie group
U3 (8), splits into three invariant subspaces two of which have dimension 2 and one of which
has dimension 4. These correspond to irreducible representations of su(2) [1], [6]. The
subspace of dimension 4 is uniquely determined. It is the so-called symmetric sector [17],
that is, the space of the states that do not change under permutation of the qubits. For the
symmetric sector, we shall use the orthogonal basis, (not normalized)

= 1000), (3)
= |100) + |010) + |001),

¢2 == [011) + [101) + |110),

¢3 = [111).

This notation follows the number of 1’s that appear in each state, in the sense that ¢; is the
sum of the states in the computational basis which have j 1’s. States in the symmetric sector
where studied in [17] and a complete list of invariants under local unitary and symmetric
transformations was given there.

We will write a general state in the symmetric sector as

Y = copo + c1¢1 + capa + c3¢3, (4)

for complex coefficients cq, c1, ca, c3, with |cg|? + 3|c1]? + 3|ca|? + |e3|> = 1. This can also be
seen as a four level system which can be used to implement two qubits.

The subspaces of dimension 2, which represent isomorphic representations of su(2), are
not uniquely determined.

The results presented in this paper and a plan for the following sections is as follows.
In section 2 we perform the decomposition of the Hilbert space H := (C?)®3 into invariant

%The group of permutation of n objects, also called the symmetric group, is denoted by Sy,.
bThe general argument for n qubit is presented in [1].
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subspaces for 4% (8). We see that while the four dimensional invariant subspace is uniquely
determined (it is the symmetric sector) the pair of 2-dimensional invariant subspaces is not.
We obtain a parametrization of all the possible decompositions and therefore of all the possible
2-dimensional invariant subspaces. In section 3 we recall the general measures of entanglement
for three qubits introduced in [4], in particular the pairwise entanglement (concurrence),
quantifying the entanglement between two qubits when the third one is traced out and the
distributed entanglement. These measures are invariant under local unitary transformations.
In section 4, we calculate the entanglement measures for states in the symmetric sector and
give conditions of separability. The expressions we find complement the ones found in [17]
which are based on the Majorana polynomial representations of states [14]. We also briefly
recall such a representation which has an elegant geometric interpretation and provide a
complete set of local invariants for these states. In section 5 we analyze the entanglement
of the states in the two dimensional invariant subspaces. We find that the distributed
entanglement is zero on each of these invariant subspaces and it is at most % for states in the
direct sum of these subspaces, that is, states in the orthogonal complement of the symmetric
sector. We then turn our attention to the dynamics, in particular the ones given by the Lie
subgroup of the unitary group U (8) which permutes with the symmetric group, i.e., U%(8). In
section 6, we study such dynamics on the invariant subspaces. In particular, for the symmetric
sector, we prove that the group of local (symmetric) unitary transformations is a maximal
Lie subgroup of U3(8) which leaves the adopted measures of entanglement unchanged. We
then study in general how the elements of the group U3 (8) change the entanglement in this
subspace. We give a factorization of possible unitary evolutions on the symmetric sector
in evolutions that modify the entanglement and evolutions that do not. In section 7, we
give a physical application of the analysis described in the previous sections. We consider a
symmetric network of three spin % particles coupled via identical Ising interaction and driven
by a common electro-magnetic field. The dynamics of this model satisfies the symmetry
assumptions considered in this paper. We propose an algorithm to drive such a system from a
separable state (with zero entanglement) to a state with maximum distributed entanglement.
A summary of the results is given in section 8.

As we have mentioned, the three qubit case is of interest because it is the simplest case
where one can define distributed entanglement. It is also the simplest case where the de-
composition in invariant subspaces®s not unique. In the two qubit case, the decomposition
into invariant subspaces is H = S @& A where S is the two qubits symmetric sector spanned
by (cf. (3)) {|OO>, |11), % (|o1y + |10>)}, and A is the one dimensional subspace spanned
by the antisymmetric state, % (|01) — |10)). States with maximum entanglement occur (in
particular the Bell states) in both invariant subspaces. We shall see that for the three qubit
case the distributed entanglement is zero in the two dimensional invariant subspaces and can
take any value in [0, 1] in the four dimensional symmetric sector.

We envision a possible extension of the results presented here to n qubits at the price of
higher computational complexity in the calculations and resulting formulas. In particular,
the method to obtain all possible decompositions we will describe in the next section extends
in principle to more than three qubits. The extension of the entanglement analysis we will

¢We mean here invariant subspaces of USn (2™), that is, the subgroup of U(2™) invariant under the permutation
p group p
group of n objects.
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present will require the use of generalizations of measures of distributed entanglement such
as the one obtained in [16].

2 Decomposition into Invariant Subspaces

Consider the Lie algebra su(8), that is, the subalgebra of su(8) of matrices which commute
with the permutation matrices in Ss. For su(8), we consider the standard representation on
C® ~ H and therefore the matrices in su®?(8) are also 8 x 8. In appropriate coordinates,
such matrices take a block diagonal form with blocks of dimension 4 x 4, 2 x 2 and 2 x 2,
which correspond to invariant subspaces of H of dimensions 4, 2 and 2, respectively [1].
Such subspaces correspond to irreducible representations of su(2) of dimensions 4, 2 and 2
respectively (the ones of dimension 2 being isomorphic representations). To obtain a basis
for such subspaces, in terms of the computational basis {|jkl) ,j,k,I = 0,1} one may apply
standard methods of the quantum theory of angular momentum (see, e.g., [9], [18]) which
overlap with representation theory and the theory of Young tableau and representations of
the symmetric group (see, e.g., [8]). For instance, the Clebsch-Gordan coefficients described
in [9] (in the table on pg. 375), give one possible change of coordinates to obtain the bases
of such invariant subspaces. Another method is given by the use of Young symmetrizers
which was reviewed in [6] in the form that uses Hermitian Young symmetrizers as described
in [2]. Such a method is based on the Schur-Weyl duality, a decomposition of the space V™
into the direct sum of spaces S \ ® V) where the V)’s are irreducible modules of the general
linear group GI(dim(V)) and Sy are irreducible modules of the (finite) symmetric group Sp,.
The Young symmetrizers are a set of projections onto the various invariant subspaces which
satisfy certain requirements (completeness, orthogonality (cf., e.g., [6])) but are not uniquely
determined. Therefore, the resulting decomposition in invariant subspaces is not unique and
it is of interest to find all the possible decompositions.

In order to achieve all the possible decompositions, we will use in this section a technique
that was described in [5] (see Chapter 4 section 4.3.4). One considers the commutant C of
su¥3(8) in u(8) which is a reductive Lie algebra and therefore it admits Cartan subalgebras,
i.e., a maximal Abelian subalgebra. The main observation is that, if W & V4 @ Vo (with
dim(W) = 4 and dim(V;) = dim(V2) = 2) is a decomposition in invariant subspaces for
su53(8), then C admits a Cartan subalgebra which, in the appropriate coordinates, has a basis
given by A; := diag(ily,02,03), Ay := diag(04,il2,03), A3 := diag(04,02,i15), where 1,
(0,) is the r x r identity (zero) matrix, and diag refers to block diagonal matrices.?Possible
decompositions are therefore in correspondence with Cartan subalgebras of the commutant
C. Thus, a method to obtain all the possible decompositions is the following algorithm.

1. Compute the commutant C of su®*(8) in u(8).

2. Find all possible Cartan subalgebras of C which (in this case) all have dimension 3. The
following steps refers to the a Cartan subalgebra A. In order to deal with Hermitian
matrices rather than skew-Hermitian ones, we consider i.4.

3. Take a basis of i.4 and (orthogonally) diagonalize its elements simultaneously (this is
possible since these are mutually commuting Hermitian matrices).

dSometime we omit the index r,in 1, or 0, when the dimension is obvious from the context.
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4. Place the elements on the diagonal in three row vectors so as to form a 3 x 8 matrix,
which we shall denote by M.

5. Perform a Gaussian row reduction algorithm to place the matrix in a Reduced Row
Echelon Form (see, e.g., [13]). This corresponds to taking linear combinations of the
matrices in the basis of iA so as to obtain a new basis of elements which only have eigen-
values 1 and 0. Call these elements (in the original coordinates) (A;, Ay, A3) with A;
having eigenvalue 1 with multiplicity 4, A, and As having eigenvalue 1 with multiplicity
2

6. W is the eigenspace of A; corresponding to eigenvalue 1. V4 and V5 are the eigenspaces
of As and Az, respectively, corresponding to eigenvalue 1. Notice that once we know W
and Vi, the subspace V5 is simply the orthogonal complement of W & V.

Let us carry out the above program for our example. The commutant C is found by solving
the linear system of equations [C, B;] = 0, where {B;} is a basis of su”(8). In fact, since the
matrices ¢(H,, 1H, and ¢H,,, with (cf. (2))

Hyy, =034:091014+1R0,,,.01+1Q01Q0,,., (5)

H., =0,20.914+1®0.00,+0.01Q0,, (6)

generate all of su”3(8) [1], it is enough to solve
C.H] =0, [CH,)=0, [CH..]=0.
This computation, which was done in [5], leads to the basis {E1, Ea, E5, E4, E5} for C, with
B =1®1®1,

By =0, 1®0, +0,01Q0,+0, 010,
i3 =0,®0,14+0,00,01+0, 00,11,
iB,=1R0, R0, +1®0,®0,+1® 0.0,

iEs =0, ®(0y®0,—0.Q0y) +0y® (0. R0, —0,80:)+0.® (0, ®0y — 0y ® ).

An analysis of the Lie algebra C shows that it is the direct sum of one two dimensional
Abelian Lie algebra spanned by F; and E; + F5 + F5 and a three dimensional Lie algebra
isomorphic to su(2) and spanned by {Fs,(E2 — E3),(E2 — E4)}. The Lie algebra su(2)
has a one dimensional Cartan subalgebra which may be spanned by any non zero element.
Therefore a general Cartan subalgebra A of C is such that an orthogonal basis of i.4 is given
by {Fl, FQ, Fg}, with

F1 = ’iEl, F2 = Z(EQ -+ E3 + E4), F3 = i(LE5 + ’Lb(EQ - Eg) + iC(EQ - E4)7 (7)

for any, not simultaneously zero, real parameters (a, b, c).

We now proceed to step 3 of the above algorithm. Here and in the following we shall use
the standard notation, €, j = 1,...,8, for the elements of the standard basis in C8, €; being
the vector of all zeros except in the j-th position occupied by 1. The matrix F} is just the
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identity matrix which is diagonal in every basis. The matrix F» has eigenvalue A\; = 3 with

eigenspace Q3 spanned by {el, €y + 63 + &,€1 + € + 7,85} and eigenvalue Ay = —3 with
eigenspace ()3 spanned by {fis fos fos fa} , with fi := 83—, fo 1= Eo+83—285, f3 1= &—éu,
f4 = —2é7 + € + €4. Consider now F3 acting on 3 and ()_3. Direct verification shows that

F3 is zero on (3. On () _3 we have
Fsfi = 3cfi + (2ia+ 2b+ ) fa,
Fsfy = (3¢ + 6b+ 6ia) fi — 3¢fa,
Fsfs = 3bfs + (b + 2¢ + 2ia) f1,
Fsfy = (3b+ 6¢ — 6ia) f3 — 3bf4.

This shows that the subspace @Q_3 splits into two invariant subspaces for F3 spanned by
{f1, fo} and {fs, fa} respectively. Calculating the spectrum of F3 on such subspaces we find
that F3 has eigenvalues =\ on both subspaces where

X = 2v/3¢2 + 3cb + 3b2 + 3a2. (8)

Notice that A is never zero otherwise we would have a = b = ¢ = 0 which we have excluded.
Listing the eigenvalues of Fy, Fy and F3 and constructing the matrix M of the above algorithm,

we have

11 11 1 1 1 1
M=13 3 3 3 -3 -3 -3 -3
000 0 XA X =X =X

Row reduction to transform this matrix in its Reduced Row Echelon Form, which is

11110000
RREF(M)=10 0 0 0 1 1 0 0],
0 000 O0O0OT1T1

corresponds to multiplication of M on the left by the matrix

Wl
—
>l= O

> =

R::§

NN =
[N

The rows of the matrix R give the coefficients for the linear combinations of {Fi, Fa, F5}
whose eigenspaces are the sought vector spaces. In particular consider

1 1
Hl Z:2<F1+3F2>7 (9)
1/1 1 1
My == (-F — = _F 1
2 2(21 62+>\3>’ (10)

1/1 1 1
H3 = § (2F1 - *FQ — F3> . (11)
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Independently of the values of a, b, and ¢, these projections form a complete set of, symmetric,
mutually orthogonal idempotents, (which are also called generalized Young symmetrizers [6]).
In fact, one can verify directly that

I + 1, + 113 =1, (12)
I, = 65 1115. (13)

Here 0, = 0if j # k and d;; = 1.The eigenspaces corresponding to the eigenvalue 1 of these
matrices are the spaces W (for II;), V; (for IIy), Va5 (for II3). They coincide with the images
of these matrices. The result is formally given in the following theorem.

Theorem 1 Fvery decomposition of H := (02)®3 =W @ Vi &V, in invariant subspaces
for su®3(8) (SU%(8)) or u%(8) (U%(8)) corresponds to a triple (a,b,c) # (0,0,0). An
orthogonal basis of W s given by

W = {51,52+€3+€57€4+€6+€77€8}7 (14)

which coincides with the basis {Po, 1, P2, P3} in (3) and uniquely determines W, the symmet-
ric sector. An orthogonal basis of V1 is given by {|v1), |w1)} with

|v1) = x2|001) + x3|010) + x5|100) (15)
|w1> = $4‘011> +$6‘101> +$7‘110>
with xo = x7 = %, T3 = Tg :—%, and x5 = x4 =0 ifa =0, c = —2b and b < 0, with

To =x7 = —A+ 6ia+ 6b+ 6¢, x3 = x5 := —A — 6ia — 6b, x5 = x4 = 2\ — 6¢, in all the other
cases. An orthogonal basis of Vs is given by

lv2) = 2|001) + y3|010) + y5|100)

1
lws) = yal011) + ys[101) + g2 [110) (16)

with yo = Y7 = %, Y3 = Yg = —%, and ys = ys =0 ifa =0, c = —2b and b > 0, with
Yo = y7 = —A — b6ia — 6b — 6¢, y3 = yg := —\ + 6ia + 6b, y5 = y4 = 2\ + 6c¢, in all the other
cases.
A direct computation using (8) shows that the decomposition is orthogonal. ~Furthermore
we also have
T2+ x3+ x5 =0, T4+ x6 + 27 =0; (17)
Y2+ys+ys =0,  yatys+yr=0. (18)
Proof. The theorem follows by explicitly writing the matrices IT;, IIs and II3 in (9), (10)

(11).

The matrix II; is the following:

H1 =

SO OO O OO
O O Owlk OwlFwli—= O
O O Owlk OwlFwli= O
OWHWI—= QWO O© O
O O Owlk OwlFwli—= O
OWHWI— QWO © O
OWFWI— QWO © O
— OO o0 o oo
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Thus the orthogonal basis for the subspace W, is the one given by equation (14).

The work for the matrices IT; and II3 which depend on the parameters a, b, and ¢, requires
some extra considerations. Let us consider the discussion for IIs and V;. The matrix 15 in
(10) is H2 = ﬁ(ng’l,[bg) with

0 0 0 0
0 4) —12b —2) — 12ia — 12¢ 0
0 —2) + 12ia — 12¢ AN +12b+ 12¢ 0
. 0 0 4) — 12¢
2171 0 —2)\—12ia+ 12b+ 12¢  —2X + 12ia — 12b 0 '
0 0 0 —2\ — 12ia — 12b
0 0 0 —2X + 12ia + 12b + 12¢
0 0 0 0
0 0 0 0
—2X + 12ia + 12b + 12¢ 0 0 0
—2)\ — 12ia — 12b 0 0 0
—— 0 —2X\+ 12%ia — 12b —2X\ — 12ia + 12b+ 12¢ 0
2,2 = aX — 12¢ 0 0 0
0 AN+ 12b+ 12¢ —2)\ + 12ia — 12¢ 0
0 —2X — 12ia — 12¢ 4) —12b 0
0 0 0 0

Considering the columns 2,3, and 5 of Iy, one sees that the sum of second, third and fifth
row is zero. Therefore at the most two of these columns are linearly independent. In fact,
using the definition of A in (8), it follows that only one column is linearly independent.

Taking the 5" column divided by two, one obtains the first element in the (orthogonal)
basis of Vi, when a # 0 or ¢ # —2b, or b > 0. If a = 0, ¢ = —2b and b < 0, then the 5"
column is zero, but the second column is proportional to the vector %|001> - %\010).

Analogously one obtains the second vector of the basis, considering the 4", 6" and 7"
column of Ils.

The discussion of II3 and V5 is analogous. In fact, an explicit calculation shows that II3
can be obtained from IlIy with the exchanges a <> —a, b <> —b, ¢ > —c. Alternatively one
obtains V5 as the orthogonal complement of the direct sum of W and V.

O

The above decomposition includes, as special cases, decompositions found in the standard
quantum physics literature. For example, the two dimensional space obtained with the Young
symmetrizers in [6], which can also be obtained with the recursive use of the Clebsch-Gordan
coefficients [9], is spanned by

Py = 1 010) 1 100) := Lla_—g
TR V2 VRN
- 1 1 1 1
= ——=|011) + —=|101) = ———¢é4 + —=¢€%,
1/}2 \/i‘ > \/i‘ > \/i 4 5 6
and it is obtained as a special case of V;. In fact by choosing a =0, b = ﬁ, and ¢ = *ﬁﬁv

which give A = 3—\1/5, we have that |v1) = —¢; and |w;) = —)o
We remark that all the triple (a,b,c) # (0,0,0) are possible although the decompositions
are not in one to one correspondence with the set of triples. Different triples can give the

same decomposition (for instance all the ones with a = 0, ¢ = —2b, b < 0).



Francesca Albertini and Domenico D’Alessandro 549

3 Measures of Entanglement for General Three Qubits States

For a general multi-partite quantum system, a measure of entanglement is a nonnegative
real function on the space of density matrices which satisfies certain axioms. In particular
it does not increase under local operations and classical communication (LOCC), it is zero
on separable states (that is, statistical mixtures of product states), it is unchanged by local
unitary operations, and it is usually normalized to one (cf., e.g., [3] and [11] for a detailed
introduction to entanglement measures). For the case of two qubits A and B, a very common
measure is the concurrence [20] whose square is called the 2-tangle, 745. This can be defined
from the density matrix p4p, by calculating the spectrum of papoy ® oy p% goy ® oy,°which
can be shown to be made of real and nonnegative values /\% > )\g > /\§ > /\?17 and T4p I8
defined as

Tap = [max{\; — Ay — As — g, 0}]°. (19)

Consider now a pure state for a system of three qubits, A, B, and C. One can consider, after
tracing out C, the entanglement between A and B, T4p, and analogously 74¢ and 7p¢. In
this case a monogamy relation holds [19] [21]: If A is fully entangled with B, that is, 7ap = 1,
then we must have T4c = 0, that is, the state pac is separable (where pac is the partial
trace with respect to subsystem B). In fact, a more refined inequality holds [4]. Consider a
pure state p and consider the system as a bipartite system A — (BC). Even though BC' is
four dimensional, it follows from the Schmidt decomposition (see, e.g., [15] pg. 109) that only
two (orthogonal) directions are necessary to express the full state. Therefore, we can treat
effectively (BC) as a two level system and define the entanglement 7,(pcy between A and
(BC). Then one has the following inequality which was one of the main results of [4]

TaB + Tac < Ta(BO)- (20)

The difference between 74(pc) and Tap + Tac is by definition, the distributed entanglement
or 3—tangle, which we denote simply by 7, that is, the amount of entanglement not due
to pairwise entanglement between the quantum bits. Explicit formulas were given in [4] for
Tapc) and 7. We report them below because we shall use them in our analysis. Let pa be
the partial trace with respect to the subsystem (BC).

Tae)y = 4det(pa); (21)
T =TABC) — TAB — Tac = 4 ’tgoot%u + toortiio + thiotion + tootors — 2d1 + 4da|,  (22)
with
dy1 = tooot111to11t100 + tooot111t101t010 + Looot111t110t001+
to11ti00t101t010 + to11t100t110t001 + t101t010t110%001,
dz = tooot110t101t011 + t111t001t010% 1005
for a state

W) = tiiligk),

ijk
with 4,5,k = 0, 1.

€Given a matrix p or a complex constant ¢, we always denote by p* and by c¢* the complex conjugate.
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Relations such as (20) are known as monogamy relations in quantum information theory
and they are valid also for others, but not all, measures of entanglement [23], thus allowing to
define a distributed entanglement. We have chosen the (distributed) tangle as our reference
measure of entanglement not only because it satisfies the monogamy inequality (20) but also
because explicit, relatively simple, expressions exist for its calculation, expressions we will
elaborate upon in the following sections.

4 States in the Symmetric Sector and their Entanglement

For any state in the symmetric sector, because of symmetry, we have p4 = pp = p¢, so for
these states, Tap = Tac = Tec and therefore we have, using (21) (22),

ddet(pa) —

: (23)

TAB = TAC = TBC =

In order to express the entanglement measures 7 and T4 = Tac = Tpc in a compact
fashion, we introduce an extra piece of notation. Define

— 2 — o 2
X2 = CpC2 — Cq, X3 = CpC3 — C1C2, X4 = C1€3 — Cy. (24)

The quantities X2, X3 and X4 give a quick test of separability for states in the symmetric
sector as described in the following proposition.
Proposition 4.1 A state ¢ (4) in the symmetric sector is separable if and only if

Xo=X3=X4=0. (25)
In this case, v is a symmetric product state of the form

V=026, (26)

with ¢ a one qubit state.
Proof. Assume that 9 in (4) is a product state, i.e.,

¥ = (@0]0) + a[1)) ® (Bo0) + B1[1)) ® (70[0) +71[1))-
Expanding and comparing with (4), we have
co = @000,
c1 = a1foyo = @By = @Bo1,
c2 = a1P170 = a1fon = @b,
¢z = a1f1m.
Using these in (24) one verifies (25). For example, for X5 we have
coca = aoforoe1Bryo = (1 Bovo)(aoBivo) = .

Viceversa, assume (25) is verified and consider the state (4). If ¢o = 0, then, from (25), (24),
it follows that ¢; = 0 and ¢y = 0. Therefore the state coincides with |111) which is separable
and of the symmetric form (26). If ¢y # 0 we can assume ¢y = 1, without loss of generality
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keeping the state not normalized. Conditions (24) (25) give ca = %, c¢3 = ¢}. Therefore, the
state ¢ in (4) is of the form (26) with ¢ = |0) + ¢1|1). O

With the notation (24), the entanglement measures 7 and Tap = Tac = 7Tpc take a
compact form as described in the following two propositions.
Proposition 4.2 The distributed entanglement 7 on the symmetric sector is given by

T =4|X3 — 4X,Xy|. (27)
Proof. Applying formula (22) we obtain
T = 4|cic: — 3cics — Beoercacs + deoch 4 4escl). (28)

Direct verification using formulas (24) in (27) shows that 7 in (27) coincides with (28). O
Proposition 4.3 The pairwise entanglement 745 = Tac = Tgc is given by

Tap = Tac = e = 2 (det(pa) — | X3 — 4X2X4), (29)
where
det(pa) = | Xsf? +2|X]? + 2| X2 (30)

Therefore the expression for the pairwise entanglement is
Tap = Tac = Tec = 2 (| X3]? + 2| Xa|* + 2| X4 |? — | X3 — 4XX4]) . (31)

Proof.  We explicitly write the state ¢ in (4) as 1 = (co,c1,c1,C2,¢1,C2,¢2,c3)T and the
associated density matrix p = ¢!, By taking the partial trace with respect to B and C, we
obtain,
{leol® +2ler|* + |eal®  coct 4 2¢1¢h + cach
pPA = * 2+ * 2 2 2 ’ (32)
cher +2¢iea +cses Jer|? + 2lea|? + |es]

and, after simplifications,
det(pa) = 2leol[eal® + [col*les]? + 2ler|* + 2|er*les]® + [eaf*|er]? + 2]ea|!

—2chchc — chereach — 2(c)) coca — 2¢ieacy — cociches — 2c1e3(ch)?

By replacing the expressions of X5, X3, X4 in (24) in the right hand side of (30) one verifies
that it coincides with the above expression of det(p4). O
From (31) we obtain

TAB
“5 2 2% 42X - 44X = 2(1X] - X)) 2 0.
To have equality, that is, the pairwise entanglement equal to zero, both inequalities have to

hold with the equal sign. We must have
| Xo| = |Xal, X5 — 4XoXa| = | Xs|* + 41 X0]| Xa] = | Xa]* + 4]X0]% = [X5]” +4]X, .

The following also follows from Proposition 4.1.
Proposition 4.4 The only states in the symmetric sector that have both distributed and
pairwise entanglements equal to zero are the separable states.



552  Symmetric states and dynamics of three quantum bits

Pairwise entanglement 74p and distributed entanglement 7 are local invariants, that is,
they are functions invariant under local unitary transformations, which, in the symmetric
case, are taken symmetric, i.e., of the form X ® X ® X, with X € U(2). A complete set of
local invariants for general three qubits states and general local unitary transformations, is
known. For symmetric qubit states a complete set of invariants can be obtained using the
Majorana polynomial representation of symmetric states [17]. We briefly review this./Given
a general (not necessarily symmetric) product state ¢ ® ¥ ® 13, with 9; = «;]0) + 5;|1),
j =1,2,3, one can obtain a symmetric state of the form (4) as Alli); ® 12 ® 13, where

1
M=o >op (33)
PeSs

is the total symmetrizer, and A is a normalization factor. In particular, direct calculation
shows, with the definitions (3),

(34)

(91 ® 12 ®1P3) = arazazgg + <a1a263 +onfacs 61&2&3) o1

3

<a152ﬂ3 + Branfs + 818283
+ 3

) $2 + 51B28303.

Viceversa, given a symmetric state (4), one considers the associated Majorana polynomial,
pu(z) = cox® + 3c12% + 3caz + 3,

which, by calculating the zeros, and up to a common factor, can be written as

pu(x) = (ax + Bi)(aex + B2)(asz + B3).

By choosing ¢; = «;|0) + 5;|1) and using (34), we see that the resulting symmetric state
Iy ® 1y ® 3 is given by (4). Therefore every symmetric state is in correspondence with a
not ordered triple of one qubit states 1, 12, 13. Since each qubit state is in correspondence
with a point on the Bloch sphere (see, e.g., [15]) a symmetric state is in correspondence with
three not ordered vectors from the origin to the Bloch sphere in R3. Furthermore, since for
X € U(2), we have

X @ X @ XII(1 @ @ 3) = I( X1 @ Xepo @ X1p3),

applying a symmetric local unitary operation corresponds to a simultaneous rotation of the
three Bloch vectors of the three one qubit states 1, 12 and v3. Therefore the angles between
the Bloch vectors give a complete set of invariants under local symmetric unitary operations.

We remark here that, using this representation of symmetric states, it is possible to assume
that the states (4) can be written, after local symmetric unitary operations, in special forms.
In particular, after a common rotation, it is possible to assume that one of the Bloch vectors
corresponding to {11,112, 13} is in a special position, for example along the z-axis, while the
remaining two can be rotated arbitrarily around the the first one. One possible special form

fWe only discuss the Majorana polynomial representation in the three qubits case. For a general treatment,
we refer to [14] and references therein.
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to write the state (4) after a local unitary transformation is the one with ¢z = 0 and ¢y and
¢ real (or having the same phase, recall that states are defined up to a phase factor). In
order to achieve this, take ¥; ® 19 ® 13 and choose X € U(2) so that X1 = |0) (up to a
phase factor). Therefore we have

X ®X® Xt @ @3 = [0) ® (cos(61)]0) + sin(61)e™** 1)) @ (cos(#2)|0) + sin(f2)e™*? (1)),

X
for real parameters 61, 62, X1, x2- Now we can apply ¥ ® Y ® Y, with ¥ = (e 0 )

0 e
We obtain
YRYRY)X®X ® Xt @ ®@;

=e™X|0) ® (cos(Gl)eiX|0> + Sin(el)ei(XI_X)H)) ® (cos(ﬁg)eix|0> + sin(eg)ei(X2_X)|1>)
=0)® (cos(@l)\0> n sin(ﬂl)ei(X“QX)H)) ® (cos(92)|0> n sin(eg)ei<><r2><>|1>) .
The choice y := %, gives, with n = X5X2 the form
Uprodean = |0) ® (cos(61)]0) + sin(61)e|1)) ® (cos(62)|0) + sin(fa)e"|1)) . (35)

Applying the total symmetrizer I in (33) t0 ¥prodean it (35), one obtains a symmetric state
(4) with ¢3 = 0 and ¢g and ¢y real. We remark that 3 is the minimum number of parameters
necessary to identify equivalence classes of (unitary) locally equivalent states since states can
be normalized and identified up to a common phase factor and therefore (in the symmetric
sector) by 6 parameters and SU(2) has dimension 3.

5 States in the Two Dimensional Invariant Subspaces and their Entanglement

We now consider the invariant subspaces of dimension two: V; and V5 described in section 2.
Since the orthogonal basis of V5, given in equation (16), can be obtained from the orthogonal
basis of V7, given in equation (15), exchanging a <+ —a, b <> —b, ¢ <> —c¢, and (a, b, c) are
free parameters (not all zero) we can consider without loss of generality only the subspace V.
We shall calculate the pairwise entanglements and the distributed entanglement. We remark
that since these states are in general not invariant under permutation (as opposed to states
in the symmetric sector treated in the previous section) there is no a priori reason why 745
should be equal to T4¢.

In what follows we assume that we have normalized the basis vectors |v;), and |w;) in
equations (15) and (16). We denote by &; and g; the normalized coordinates corresponding to
x; and y;, and, we still denote by |v;), and |w;) the basis vectors. Notice that in the special
case, when a = 0, ¢ = —2b and b < 0, the two vectors |v1), and |w;) are already normalized
(as well as the vectors |vs), and |wsz), when a = 0, ¢ = —2b and b > 0). In the other cases,
using the definitions of x; and y;, in terms of the constants a, b, ¢, and A, given in Theorem
1, and the definition of A given in equation (8), we have:

Toxh + 2325 + r525 = (—\ 4 6b + 6¢) + 360 + (A + 6b)* + 36a* + (2)\ — 6¢)?

= 6% + 7207 + 72a* + 72¢ + 72bc — 36)c = 120\% — 36)c = 12\(\ — 3¢)
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Thus, we have:

Bi= —— (36)
VI2X(X = 3¢)
Analogously, it holds:
N Yi

e 37)
In order to simplify the calculation of the entanglement measures, it is convenient to

anticipate a result on dynamics (treatment of dynamics will be done in the next section).

We recall that we call local (special) unitary symmetric operations operations of the type

X®X®X with X e U(2) (X € SU(2)).

Proposition 5.1 Given two states |1)1), |12) in the subspace V; (same for V3) it is always

possible to go from [1);) to |1)2), using local operations.

This result is a direct consequence of Schur-Weyl duality and the Lie theoretic controlla-
bility criteria for quantum systems, in particular it is a consequence of the fact that su3(8)
acts as u(m) on each invariant subspace of dimension m (cf. [6]). We give a direct proof.
Proof. The Lie algebra corresponding to the Lie group of local symmetric special unitary
matrices is spanned by the matrices iH, , . defined in (5). This Lie algebra leaves V; invariant.
It is in fact the standard representation of su(2). This can be verified directly. Explicit
computation using (15) shows that H,|v) = |v1), H|w1) = —|wy).

Calculating i H,|v1) we get

iH$|U1> = —Zi?3|101> - Zﬁﬁ2|110> — Z£ﬁ5|011> = —i|w1>

Similarly, we get that iH,|w1) = —é|v1). Thus on the orthonormal basis {|v1), |w1)} H, and
—H, act as 0, and o, on the basis {|0),|1)} and therefore iH, and —iH, generate the Lie
algebra su(2). Since the corresponding Lie group, SU(2), is transitive on the complex sphere,
the symmetric local transformations X ® X ® X, X € SU(2), are able to transfer any state
to any other state (cf. [12]). O

We will now compute the entanglement measures for the states in the invariant subspaces
of dimension 2. Since these quantities remain unchanged by using local operations, and all
the states in V] (or V) can be reached using local operations starting from an arbitrary state,
as proved in the previous proposition, it is enough to compute the measures for a particular
state.

First we will see that the distributed entanglement 7 is always zero.
Proposition 5.2 Let |¢) € V; (or |[¢) € V5) then 7 =0
Proof.  Direct calculation using (22) shows that 7 = 0 for the first basis vector |v1) =
%2|001)+23|010)+25|100) in the definition (15). Therefore the result follows using Proposition
5.1.0

To calculate 74(pc), Tap and T4c, we recall that since 7 = 0 from (20)

TA(BC) = TAB + TAC. (38)

Since these quantities are constant on V1, let us calculate them at |v;) in (15). We only need
to compute 74(pc) and Tap since Tac will follow from (38). Computation of p4 and pap for
the state |v1) gives
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_ (&P +lzsl” 0

pA = < 0 ‘i‘5‘2 ) (39)

@2 0 0 0

- 0 |A3|2 T3zf 0
PAB = 0 !%5.,2,; ‘AS‘Q 0 (40)

0 0 0 0

Using (21), we obtain

Tae)y = 4 (|82 + [23]?) |85 ° = 4(| 22| + |23]%) |22 + 23], (41)

To compute 74p one has to calculate the eigenvalues of papoy ® oyp¥ oy ® o, which
using formula (40) can be seen to be: zero with multiplicity two and the eigenvalues of the
2 x 2 matrix

( 2|23|%|25]? 2|503|QR€(5355€§)>
2|252Re(2523)  20as[?ds> )7
which are A7 = 2|u|(|p| + |Re(w)]), A3 = 2|p|(|u| — |Re(n)]), with p := 2523. Using formula
(19) we have since A3 = Ay =0,

rap = (= %o)? = 20l (VAT + [Re(u)] — VIl ~ [Be()]) = 4lul (il ~ [Im(u))). (42)

We also have Tac = Ta(Bc) — TaB-

Remark 5.3 From formula (41) it follows that 74(p¢) is zero if and only if &5 = 0 (22 and i3
cannot be simultaneously zero because this would imply the vector |v1) to be zero). In this
case, |v1) would be a product state (of the form |0) ® 1)p¢ for a state 1hpe on the subsystem
(BC)). Since the local symmetric unitary group is transitive on the subspace V;, every state
in this subspace is a product state as expected when the entanglement is zero. The condition
on the entanglement 745 is less intuitive. It can be stated by saying that u := 523 is purely
imaginary.

We finish this section by observing (see next proposition) that, if we take a state restricted
to the direct sum of V7 and V5, then the distributed entanglement 7 can be strictly positive,
but it is always less than or equal to 1/3.

Proposition 5.4 Let |¢)) € V; @V, then 7 < %, with the bound being sharp.
Proof. A general state |¢) € V1 @ Vs, can be written as

V) = alvr) + Blwi) + v|v2) + 6|wa),

with |a|? + |B]? + |7|2 + |0]? = 1, and where the vectors |v;), and |w;) are the basis vectors
defined in equations (15) and (16), after normalization. Writing explicitly |¢), we have:

V) = (a2 + v92) |001) + (aZz + vy3) [010) + (a5 + vys) [100)

+ (B2 + 0%2) [110) + (B3 + 0y3) [101) + (85 + dys) [011).

Now we compute the distributed entanglement.
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Denoting by A; = a&; + vy; and B; = B3; + 9, i = 2, 3,5, we have, using equation (22),
T =4|A3B3 + A3B; + AZB2 — 2(A3 By A3Bs + Ay By A5 Bs + A3 B3 AsBs)|
Using the fact that A5 = —As — A3 and By = —By — B3 from (17) (18), we have:

T=4 ‘ (A3B3 — Ang)z + (A2 + A3)* (B2 + Bs)? — 2(A2 + A3) (B2 + B3)(A2 B + A3B3)‘

= 4|(A3B3 — A3B3)* + (Az + A3) (B2 + Bs)(A3Ba + A2 Bs — Ay By — A3 Bs)|
— 4|(A3B3 — A3B3)" + (A3B3 + A3B3)" - (A3B3 + A3B3)°|

— 4|(43B3 - A3B3)"|.
Using the definitions of A; and B;, we get:
T =4 |(£293 — 2302)%(ad — B7)?|. (43)

Now by using the definitions of z; and y;, in terms of the constants a, b, ¢, and A, given in
Theorem 1, and equations (36) and (37), we have:?

(=X +6b+ 6¢ + 6ia)(—A + 6b + 6ia) — (—A — 6b — 6ia)(—\ — 6b — 6¢ — 6ia)

(2203 — £302) = 122/(A + 3¢)(A = 3¢)

—24Xb — 24i)a — 12)c c+2b+ 2ia

T 1A/ 1300A—30  VAE-92

which gives:
(c+2b)?% +4a®> 1

A A Noa N2 _
(2293 — 2392)°| = T2 _92 3 (44)

Thus using this equality in (43), we have:

(45)

4 1
T=3 (a8 — B7)?| < 3

In the previous equation, the last inequality, is obtained, by observing that:

1 1 1
lad — B] < lad] + By] < S (laf* +101) + (187 + hI*) = 5.

Equality in (45) can be obtained by choosing a = =86=1,y=-1. O
Notice that Proposition 5.2 is obtained as a corollary in the case a = f =0or vy =4 = 0.

9In the definition of the basis vectors |v1), and |w1) there is also the special case, when a = 0, ¢ = —2b and

b < 0. However in this case we have Zo = 5= —&3 and g2 = g3 = L thus equation (44) below, which is

\/g?
our target, still holds. Similarly for the case a = 0, ¢ = —2b and b > 0.
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6 Symmetric Dynamics on the Invariant Subspaces

We now study how the Lie group U%3(8) of symmetric dynamics acts on its invariant sub-
spaces. On the two dimensional invariant subspaces V7 and V5 this group acts as U(2) and
its induced dynamics is not more rich than the one of the group of symmetric local transfor-
mations X ® X ® X. These transformations do not modify the entanglement measures and
in particular the distributed entanglement which is zero for each of the two subspaces, as we
have seen in the previous section.

More interesting is the dynamics of U“3(8) on the four dimensional symmetric sector
which can be proven by Schur-Weyl duality (see, e.g., [1]) to be given by all possible unitary
4 x 4 matrices. The local symmetric unitary transformations are a Lie subgroup of U3(8)
whose Lie algebra is spanned by iH,, . in (5) and multiples of the identity. If we consider
the orthonormal basis obtained from (3) {¢o, %, %, ¢3}, the matrices %HH,Z give the four
dimensional irreducible representation of su(2). The corresponding matrices can be computed
using the Clebsch-Gordan coefficients [9] (or directly by computing their action on the given

basis). They are

0 3 0 0
1 3t 0 21 0
0 0 V3B 0
0 —v3 0 0
1(v3 0 -2 o0
Sy = 51 o 9 0 3| (47)
0 0 V3 0
3 0 0 O
110 4 0 0
=510 0 - o0 ) ’ (48)
0 0 0 -3
and satisfy the standard commutation relations for su(2),

[Sxa Sy] = Sz; [Syv Sz] = Saca [SZ7 Sx] = Sy- (49)

The Lie subgroup of SU(4) corresponding to the Lie algebra spanned by S; . (correspond-
ing to local symmetric transformations) leaves the measures of entanglement unchanged. In
fact, it is a maximal Lie subgroup having this property as shown in the following two propo-
sitions whose proofs are postponed to the Appendix.

Proposition 6.1 The local Lie group corresponding to the Lie algebra spanned by (ix) the
4 x 4 identity and S, . is maximal among the Lie groups leaving the distributed tangle 7
unchanged on the 4-dimensional symmetric sector. That is, there is no Lie group leaving such
measure invariant which is larger than the local Lie group.

Proposition 6.2 The local Lie group corresponding to the Lie algebra spanned by (ix) the
4 x 4 identity and S, , . is a maximal Lie group leaving the pairwise tangle Tap = Tac = Trc
unchanged on the 4-dimensional symmetric sector.

The symmetric Lie group U9 (8) acts on the symmetric sector spanned by the vectors
{b0, b1, P2, 3} as the unitary group U(4) and the associated Lie algebra acts like u(4) (see,
e.g., [1]). The Lie algebra spanned by Sg, ., in (46), (47), (48), is a subalgebra of w(4)
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corresponding to local symmetric operations and isomorphic to su(2), the symmetric sector
giving an irreducible representation of su(2). Since U(4) is transitive on the complex unit
sphere, it is possible, using elements of the Lie group U®3(8), to transfer the state from a
product state ¢ ® ¢ ® ¢ to any arbitrary state in the symmetric sector, independently of
the entanglement value of the target state. In order to analyze how the elements of U3 (8)
modify the entanglement on the symmetric sector, we analyze the structure of the Lie algebra
u(4) starting with describing how the Lie algebra spanned by {5, Sy, S, }, which leaves such
measures unchanged, ‘sits’ in u(4). Our goal is to arrive at a factorization of elements of U(4)
which separates factors which modify the entanglement measures from the symmetric local
transformations that do not, trying to use as many as possible of the latter ones.
The Lie algebra u(4) admits, up to conjugacy, a Cartan decomposition (see, e.g., [10])

u(4) = sp(2) @ sp (2), (50)

where sp(2) is the symplectic Lie algebra and sp*(2) is its orthogonal complement.” They
satisfy the basic (Cartan-like) commutation relations

[sp(2),sp(2)] C sp(2),  [sp(2),5p(2)] Ssp™(2),  [sp"(2),sp"(2)] Csp(2). (51)

As it is customary, we denote by Sp(n) the connected Lie group associated with sp(n). Ac-
cording to Cartan decomposition theorem, every unitary 4 x 4 matrix U can be written as

U =K AK>, (52)

where K7 o are in Sp(2) and A is the exponential of an element in a maximal Abelian subal-
gebra in sp*(2) which, in this case, has dimension 2, since we are including multiples of the
identity as well in sp*(2).}

The symplectic Lie algebra sp(n) (which has dimension n(2n + 1)) and its associated Lie
group Sp(n) have several important properties that are of interest for the study of quantum
dynamics. In particular, sp(n) is a maximal Lie subalgebra of su(2n) which means that
sp(n) along with any nonzero element X ¢ sp(n) of su(2n) generates all of su(2n). Every Lie
subalgebra of su(2n) which is isomorphic to sp(n) is actually conjugate to sp(n). Furthermore,
Sp(n) is transitive on the complex unit sphere S?"~! representing quantum states. This means
that, for any two (normalized) quantum states |1);) and [¢2), there exists a matrix in Sp(n)
such that |[¢2) = X|t1). This means, in particular, that any possible value of the entanglement
in the symmetric sector can be achieved by only using the transformations K7 and K5 in (52).

For our purposes we consider a Lie subalgebra S conjugate to sp(2) in u(4). We consider
the Lie algebra of 4 x 4 matrices of the form

ir Q B8 5
—a* s § -8
—p* =6 —is « ’

- B —at —ir

F =

hThe inner product considered is the inner product (A,B) = kTr(ABT), for an appropriate positive constant
k.

In general the maximal Abelian subalgebra for the Cartan decomposition su(n) = sp(%) & spi-(%) has
dimension % — 1 which would give 1 in this case. However, we have included multiples of the identity since

we looked at the decomposition for u(4). A full treatment of the decompositions for u(n) can be found in [10]
and a summary with applications for quantum systems can be found in [5].
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with 7 and s arbitrary real numbers and «, 8, v, ¢ arbitrary complex numbers. Matrices in
the Lie algebra S satisfy,

FJ+JFT =0,
where J is the matrix
0 0 0 1
0 0 -1 0
J = o 1 0 ol (53)
-1 0 0 O

and formulas (50)-(52) hold with sp(2) replaced by S. The reason for this choice is that the
matrices Sy, -, (46), (47), (48), giving the 4-dimensional irreducible representation of su(2),
belong to S (see, e.g., [7] for a treatment of how irreducible representations of su(2) fit in
the corresponding unitary Lie algebra). The decomposition (52) therefore holds with K7 and
K5 belonging to the connected Lie group e® conjugate to Sp(2) and associated with the Lie
algebra S.7On the other hand, for the matrix A in (52), we can take the product of the
exponentials of two elements in a Cartan subalgebra in S*. For such a Cartan subalgebra,
we take span{ily,iH..} where on (C?)®3, H,, is defined as H,, in (6). In the symmetric
sector, in the basis {¢q, @1, 2, d3} it is given by the matrix

3 0 0 0
0 —i 0 0

= 0Z i 0 (54)
0 0 0 3i

With this choice, formula (52) can be written as

U= Kt e=" Ky, (55)

S (isomorphic to Sp(2)). We now turn to

for real parameters z and w, with K7 and K5 in e
the factorization of K; and Ks in (55).

The Lie algebra sp(2) has a Cartan decomposition sp(2) = £ @ L that can be chosen
(up to conjugacy) between two possibilities denoted by CI and CII (cf. Chapter X in [10]).
Given such a decomposition, the matrices K; and K5 in (52) can be written as K in the

following formula
K = LiAL,, (56)

where A is the exponential of a matrix in a maximal Abelian subalgebra inside £+. We
choose the decomposition CI because this allows us to separate S, S, and S, in £ and Lt
In particular, we have £ = & N so(4) which is given by the matrices of the form

0 a k r
s~ | —=a O f -k
L= k o—f 0 a | (57)

-r k —-a 0

JHere and in the following we use the convention of denoting by e the connected Lie group associated with
a Lie algebra S.



560 Symmetric states and dynamics of three quantum bits

for four real parameter a,k,r, f.* The matrix S, in (47) belongs to the Lie subalgebra £
(choose a = —§7 f = —1 and the other parameters equal to zero) while S, and S, belong
to L. The dimension of the Cartan subalgebra associated to this decomposition (the rank
of the decomposition) is 2. We choose as Cartan subalgebra the one spanned by S, and H,

where H := diag(0, &

)5 —%, 0). Therefore A in formula (56) can be written as

A =%ty (58)

for real values = and y. The Lie algebra L is isomorphic to «(2) with the isomorphism given
by

i1y < J, (59)
with .J in (53),

0 0 01

ifo 1\, 1[0 0o 10
2(1 O)HQ 0 —1 0 0 (60)

1 0 0 0

0 1 0 0

1/0 1y, 1[-10 0 0
2(—1 O)HZ 0 0 0 1] (61)

0 -1 0

01 0

i1 0 1{0 00 -1
2(0 —1)<_>2 ~1.0 0 0 (62)

0 10 0

Consider the matrix in £

; (63)

0 0 -1 0

which is orthogonal to Sy. Performing an Euler-like decomposition on et

Syt1 Rtz oSyts pJta

, We can write any

element L in e“, such as Ly and Ly in (56), as L := eSvtie Combining this with

A in (58) we obtain that every element K in 5 can be written as

K o= oSutipRt2 o Syts pJta ,Sats JHte pJtr ,Syts o Rte o Sytio (64)

In this decomposition, the only elements that change the entanglement measures are factors
of the type e, e/t and ef*. In the resulting decomposition for U € U(4) (55), to these
needs to be added the evolution == in (55).

The full decomposition of unitary transformations which combines (55) with (64) separates
factors which do not change the entanglement on the symmetric sector from factors that do.
In particular the factors of the type eSvt and e%:* correspond to local transformations which
leave the measures of entanglement unchanged, while the other factors change them. In this
context, the decomposition is similar in spirit to the one found in [22] for the two qubits case.

kThe Lie algebra S is only conjugate to sp(2), therefore, the Lie algebra characterizing the decomposition
CI is different but conjugate with respect to the one for sp(2). The matrix M which gives the conjugacy is

_ (U1 O . _ 1 (1 1 T _
M = ( 0 U1T> with Uy = 7 (71 1). We have Msp(2)M* = S.
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7 Control of a Three Spin Symmetric Network

In this section, we briefly consider a possible physical scenario where the analysis carried out
in the previous sections applies. We consider in particular a network of three identical spin
% particles subject to a controlling electromagnetic field which simultaneously interacts with
the three spins. The three spins interact with each other via Ising interaction. The time
varying Hamiltonian for this system is

Hg := Hg(t) = H.. + Hyug(t) + Hyuy(t) + Hous(t), (65)

with H,, defined in (6) and H,, . defined in (5). The functions uy, ., = g .(t) repre-
sent (spatially uniform) components of an electromagnetic field in the z,y, z direction. The
dynamics of the state is given by the Schrodinger equation

U= —iHg(t),  P(0) = o. (66)

The controllability analysis of a quantum system (see, e.g., [5]) describes the set of states that
can be reached starting from vg. In this case, such a set is [1]

Ruo = (Xt | X € US(®)). (67)

In particular, if 1o belongs to one of the invariant subspaces of U#(8) (or u”3(8)), then, for
every control function, the state will remain in that subspace. However, within each invariant
subspace every state transfer is possible [1]. The invariant subspaces for the group U%3(8)
were described in section 2.

Let us restrict ourselves to the symmetric sector where the dynamics was described in
section 6 and let us pose the problem of reaching, starting from a symmetric product state, a
state with maximum distributed entanglement 7 = 1, using an appropriate control function.
The problem will be solved if we prove that there exists a symmetric local state 1/}0 = PRPRP
and a time ¢ such that e’iH“Ei[JO has maximum distributed entanglement. This property is
—iH-:t heing a perfect
entangler [22] and we shall adopt this terminology here, mutatis mutandis. If there exists such
a product state z@o, we can use in (66) high amplitude short time pulses (so that we can neglect
in the dynamics the effect of H..) which will produce a local symmetric transformation from

referred to, in the case of (pairwise) entanglement of two qubits, as e

1o to the state 1[)0. Then we can set the controls equal to zero and allow the evolution go as
g — e~ H==t) for time £. We are left with proving that e~*7=:! is a perfect entangler.
Proposition 7.1 There exists a  such that e #==*

local symmetric state

is a perfect entangler transferring the

. 1 1 ®3
Jo = (ﬂ|o> " ﬁm) , (68)

to a state of maximum distributed entanglement 7 = 1.
Proof. The state ¢ in (68) can be written in the form (4) with ¢ = ¢1 = c2 = ¢35 = CNCR
Using the explicit expression of H,, in (54) we have that cg 1 23 vary with time as

Co(t) = Cg(t) = C1 (t) = CQ(t) = . (69)
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Using the formula for the distributed entanglement 7 in (27) together with the expressions of
Xo, X3, Xy in (24) we get Xo = Xy = £(e? — e72), X3 = £(e8" — e72"), and

1 . , ) . 1 , ,
T(t) =4|X5 - 4Xo Xy| = o (0 —e7?)? — 4(e* — 7MY | = o (€% — e7*")? 4+ 16 sin*(21)] .
The function on the right hand side has a maximum equal to 1 at ¢ = 7. Therefore the

proposition holds with t = £. O

8 Conclusions

In this paper, we have given an analysis of the states of a three qubit quantum system under
the action of the Lie group U“3(8) of unitary matrices which commute with the symmet-
ric group of three objects. This is motivated by the controlled dynamics of symmetric spin
networks with three spin % particles, as described in section 7. The Hilbert space of three
qubits splits into subspaces of dimension 4, 2 and 2, which are invariant under the action of
the Lie group U®3(8). The subspace of dimension 4 is uniquely determined and corresponds
to the so called symmetric sector W of states which are invariant under permutation (sym-
metric states). The subspaces of dimension 2 are not uniquely determined although they are
orthogonal to W and orthogonal to each other. We have provided the following results:

We have parametrized all the possible decompositions of the state space in invariant
subspaces under the Lie group U®3(8) (Theorem 1).

For states in the symmetric sector W, we have introduced three quantities Xs, X3, Xy
in (24) which are easily calculated from the expression of the state and have given a
simple criterion of separability (Proposition 4.1).

We have calculated expressions of the distributed entanglement and the pairwise entan-
glement in terms of the quantities X5, X3, Xy (Propositions 4.2, 4.3) and concluded
that the only states on the symmetric sector which have both entanglements equal to
zero are the separable states (Proposition 4.4).

For states in the two dimensional invariant subspaces, we have proven that the dis-
tributed entanglement is always equal to zero (Proposition 5.2) while the pairwise en-
tanglement depends on the subspace considered. We provided a simple formula for it
(formula (42)). States that are in the direct sum of the two, two dimensional, invariant
subspaces, may have distributed entanglement different from zero but always bounded
by 3 (Proposition 5.4).

We have proven that there is no connected Lie subgroup of U93(8) which properly
contains the Lie subgroup of local symmetric transformations and leaves unchanged the
distributed entanglement (Proposition 6.1) or the pairwise entanglement (Proposition
6.2) on the symmetric sector.

We have given a decomposition of any evolution in U?(8) on the symmetric sector into
(local) elements which do not modify the entanglement and factors which modify it
(formulas (55) and (64)).
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We have proven that the free evolution given by a pairwise Ising interaction is a perfect
entangler for distributed entanglement on a symmetric network of three spin (Proposi-
tion 7.1) and used this to prescribe a control law to drive a separable symmetric state
to a state of maximal distributed entanglement.

In future research, it will be of interest to extend the results presented here to states for more
than three qubits. Such extensions depend on and will lead to a better understanding of
multipartite entanglement beyond the three qubits case.
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Appendix A Proofs of Propositions 6.1 and 6.2
We consider a general vector in the symmetric sector

1 1
V3 V3

where, comparing with (4), we have ¢ = \/gcl, é9 = V/3cs.

Y = coppo + ¢1—=01 + Ca—=02 + 393,

Given either a constant ¢ or avector y or a matrix M, we follow the convention of denoting
by cgr and ¢y, yr and y;, Mr and My, their real and imaginary parts respectively. Moreover
given a matrix M, we denote by M, ;, its ¢, j element.

Proof of Proposition 6.1

Proof. Recall, see (27), that the distributed tangle 7 is given by 7 = 4| X3 —4 X5 X,|. Consider
the quantity X3 — 4X, X, written separating its real and imaginary parts as X3 —4X, X, :=
R+l

Then invariance of 7 is equivalent to invariance of the function f := %(R2 +1?%). Rand I
are functions of the complex vector # := (co, é1,é2, c3)? 1= G + ivr, for real vectors g and
¥, where g := (co.r, ¢1.r, Co.r, C3.R)", U1 = (co1,¢1.1,C2.1,c31)T. If F is an element of the
Lie algebra associated to a given Lie subgroup of U(4), under the action of e, ¥ changes as
7 — ef'*7 and therefore f(t) varies as

(R?(e"'0) + I* (")) . (A1)

DN | =

ft) =

Since F' is skew-Hermitian, it can be written as F' = A 4+ iB with A skew symmetric and B

symmetric (with both of them real). Invariance of f = f(t) implies
df ATr — By

= —|t=0 = IvVI - G I A2

0 g lt=0 (RVR+1V )( 7 + Big (A.2)

The idea of the proof is to show that if the matrix F' := A + iB satisfies (A.2) for all

possible vectors ¥, then it must be in the Lie algebra spanned by S . ., plus the ix identity.

To show this, we will first compute (A.2) for special vectors.

Let us consider the case of vectors for which ¢y = 0. A direct calculation using the
definitions (24) shows that I = 0 so that (A.2) simplifies as

f0) = rr () =o. (A3)
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Using the definitions (24) we get
R = X3p— X3 — 4(XorXar — XorXar), (A.4)

and an explicit calculation, using the constraint that v; = 0, gives Xoy = X3; = X4y =0, so
that we have
VR(Ug,0) = 2X3rV X3z —4X4gVXor — 4XorVXyR. (A.5)

Now we specialize further the vector ¢ in (A.3).

1. Set é3 = co = ¢ = ¢ = 0. We have Xo = X4 = 0 and X3r = corcsr. A direct
calculation gives

3 3

CirC2r  CiRC2R
VX3r=V (CORC3R — corc3r + >

Cor  CGIR Car C1r
= C3R7_3a_37COR_C3I73737_COI ’

which, using ¢; = é; = 0 along with cg; = c3; = 0, gives
VXSR = (C3R7 Oa 07 COR; 07 Oa 0? 0) (A6)
Placing this and Xsr = coresgr in (A.3), we have

COR

; 0
J(0) =coresr(csr 0 0 cor)A o | =0 (A7)

C3R

Assume copcsr # 0. Using the fact that A is skew-symmetric, and using 2 # c2p,
this relation implies A; 4 = A4 = 0.

2. Set ¢cp = co = 0. A direct calculation using (24) gives X3 = 0 and (A.4) gives R =
4¢3 pesp. We have, using (A.5) and X5 =0,

VR =—-4X4gVXor —4XorVX4r = —4c1rcsrVXogr + 4C%RVX4R. (Ag)
Now use . . " .
C2R C21  Cgp | G
X, p — =h o2 iR P A9
VXaor V<COR\/§ COI\/§ 3 + 3 ) (A.9)
_ (CZ‘R 2,0 CoR o Cor 200 cot 0)
\/g’ 3 b \/g’ bl \/g? 3 b \/g’ )

and

CiR it Br G
VX4RZV %03]{_ %03[ - T‘F? (AlO)
_ ( GrR 2, GR e 2, Cu)
b \/g’ 3 b \/g? b) \/g’ 3 b \/g b)
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with co = é = 0 and éy7 = c37 = 0, in (A.8). We get

4 CIR
VR=—¢&4 (0, e3r,0, —=,0,0,0,0].
\/§C”"'< R )

Placing this in (A.3) , we get

0

; 16 N ¢

f0) = G &nean (0 esn 0 )AL E | =0, (A.11)
C3R

2
This gives using A1 4 = As1 = 0, (¢35 — C%TR)AgA = 0 which implies Az 4 = 0, if we

choose ¢1p and c3g different from zero.

This shows that every matrix F' = A+iB in the Lie algebra corresponding to the Lie group
which leaves 7 unchanged has to be such that As 4 = A1 4 = Ag2 = A4 1 = 0. Since we assume
that .S, in (47) also belongs to such Lie algebra and [S,, A] is real (and skew-symmetric) while
[Sy, B] is purely imaginary (and symmetric), imposing this condition on [S,, A], shows that
we must have also A;3 = A31 =0and Az 4 = —As3 = §A273. Furthermore, imposing the
condition that the (1,3) component is zero to [Sy, A], we also get A; o = As 4. This shows
that the real part of A+ iB must be a multiple of S, in (47).

Now consider the restrictions on the symmetric matrix B. Since, with S, in (48), [S.,iB]
is real, it must be proportional to S;. From this restriction, it follows that B must be the
sum of a diagonal matrix and a matrix proportional to S, in (46). Then, considering the Lie
bracket [S,iB] which must also be proportional to .S, it follows that the diagonal part of B
must be a linear combination of the identity and S,. This concludes the proof.

O

Proof of Proposition 6.2

Proof. We use the notations of the proof of Proposition 6.1. Let us first consider the function
det(pa) in (30) as we act on the vector ¢ as defined in the previous proof of Proposition 6.1
with ef*. That is, similarly to (A.1), we define a function

g(t) = det(pa) (e"'%) = |X3(6Ft17)|2 +2 |X2(6Ft17)|2 +2 |X4(6Ft17)|2 ) (A.12)

and we calculate %|t:09(t). Notice that this is not set to zero yet. Similarly to what was

done in (A.2), we have

d _ 2 2 2 AUR—B’U[
Zli=0g(t) = (VIXs[* +2V|Xa|* +2V| X, )(MHBUR . (A.13)

Choose now an initial point so that ;7 = 0 which implies that the imaginary parts of X5, X3
and X, are also zero. Therefore (A.13) gives

d AU
ahzog(t) = (2X33VXSR + 4XorVXor + 4X4RVX4R) (Bg§> . (A.14)

We now proceed considering subcases as in Proposition 6.1, in fact, the same subcases.
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1. Set ¢; = é2 = 0. In this case Xy = Xy = 0 and VX3 was already computed in (A.6).
Using this expression and the expression of X3g, which in this case is X3 = corc3r,

we obtain
%|t=09(t) = 2core3r K, (A.15)
where (cf. (A.7))
COR
K:=(csr 0 0 cr)A 8
C3R

With the given definitions, the expression of the pairwise entanglement (31) as a function
of t is

ras(t) = 2 (9() - V27(0))

The condition de’;B lt=0 = 0 gives

1(0)
V2f(0)

which, using (A.15), (A.2), (A.7) and the expression of f(0) = c2pc%y, gives

9(0) -

=0, (A.16)

2coresr|coresr| K — copesrK = 0.
The quantity corcsr can be chosen so that this implies K = 0 and, as in the proof of
Proposition 6.1, this gives A14 = A41 = 0.
2. Set cg = co = 0.

This gives X3 = 0. We also have Xop = —cip = féfTR, X4ir = CIRC3R = %031{. The
quantities VXsp and VX4 in this case were calculated in (A.9) (A.10). These formulas
give, with ¢y = co = 0,

2
VXQR = <Oa _361R;07070a0a050> ) (A17)
VX4R—<OC3ROélROOOO> (A.18)
) \/g’ ) ¢\/§7 Y Y M *
Using these formulas in (A.14), we obtain
d 4. 2, . AT
Zli=09(t) = Zé1r <0,c§R + 3c§R,0,c1RC3R,o,0,0,0> <B£> : (A.19)

In this case, X3—4X2Xy = 4¢3 pesp = 5%033, and therefore f(0) = %|X3—4X2X4|2 =
2 & pc2p. Replacing this in (A.16), together with the expression of f(0) calculated in

(A.11), we get

0 0
4 2 2 2 . C1R 4 é?RCSR C1R CiR _
gclR <07 Cc3p + gclRa 0, ClRCSR> A 0 _g\/§|c?RCSR| (07 3R, 0, ?)A 0 =0.
C3R C3R

(A.20)
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Now choose c3r = ¢1g. Using this in (A.20), we obtain, after simplifications,

(0 5-3vV3 0 3-3)4

= O = O

This, using Ay 4 = As1 =0, implies Ap 4 = A4 2 =0.

The rest of the proof proceeds as the proof of Proposition 6.1.
0



