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We provide a rigorous analysis of the quantum optimal control problem in the setting of a linear combination
s(t)B + (1 — s(t))C of two noncommuting Hamiltonians B and C. This includes both quantum annealing
(QA) and the quantum approximate optimization algorithm (QAOA). The target is to minimize the energy of
the final “problem” Hamiltonian C, for a time-dependent and bounded control schedule s(t) € [0, 1] and
t € T := [0,tf]. It was recently shown, in a purely closed system setting, that the optimal solution to this
problem is a “bang-anneal-bang” schedule, with the bangs characterized by s(¢) = 0 and s(¢) = 1 in finite
subintervals of Z, in particular s(0) = 0 and s(¢;) = 1, in contrast to the standard prescription s(0) = 1 and
s(ty) = 0 of quantum annealing.

Here we extend this result to the open system setting, where the system is described by a density matrix
rather than a pure state. This is the natural setting for experimental realizations of QA and QAOA. For finite-
dimensional environments and without any approximations we identify sufficient conditions ensuring that ei-
ther the bang-anneal, anneal-bang, or bang-anneal-bang schedules are optimal, and recover the optimality of
s(0) = 0 and s(ty) = 1. However, for infinite-dimensional environments and a system described by an adia-
batic Redfield master equation we do not recover the bang-type optimal solution. In fact we can only identify
conditions under which s(¢¢) = 1, and even this result is not recovered in the fully Markovian limit.

The analysis, which we carry out entirely within the geometric framework of Pontryagin Maximum Principle,
simplifies using the density matrix formulation compared to the state vector formulation. This analysis reveals
that the bang-anneal-bang optimality result requires the assumption that the optimal control schedule is such
that it is possible to lower the cost by increasing the total time ¢;. A necessary condition for this is that ¢ is
smaller than the critical time ¢. needed to reach the ground state of C exactly. In previous work this condition
was believed to also be sufficient, but we give a counterexample.

We derive a “switching equation” which describes the behavior of the optimal schedule switches between the
two types of bangs and the anneals, and use it to identify the general features of the optimal control protocols.
As an illustration of the theory, we analyze the simple example of a single spin-1/2, and prove that in this case
the optimal solution in the closed system setting is the bang-bang schedule, switching midway from s = 0 to

s=1.

I. INTRODUCTION

There is a great deal of interest in optimization algorithms
that can be run on today’s noisy intermediate scale quantum
(NISQ) information processors [1]. Two prime examples are
quantum annealing (QA) [2] and the quantum approximate
optimization algorithm (QAOA) [3]. Both algorithms switch
between two non-commuting Hamiltonians: a “driver” (or
“mixer”) B and a “target” (or “problem”) C. The latter en-
codes the solution to the optimization problem as its ground
state. The two algorithms can be viewed as complementary:
QA switches continuously while QAOA switches discretely;
hence they are particularly well suited for analog and gate-
model devices, respectively. In addition, both algorithms are
related to the quantum adiabatic algorithm [4], which is guar-
anteed by the adiabatic theorem [5] to converge to the optimal
solution in the limit of arbitrarily long evolution times [6—8].
QA relaxes the strict adiabaticity condition while retaining
continuity [2], and the adiabatic algorithm becomes an in-
stance of QAOA when the continuous evolution is “Trotter-
ized” (replaced by pulsed segments) [3, Sec. VI]. There have
been numerous studies of the two algorithms, including some

that have compared them, with mixed results [9-12].

In essence, the question of which algorithm performs best —
QA or QAOA - boils down to an optimization of the switching
schedule. Various results have already been established within
the framework of the adiabatic algorithm, QA, or QAOA. For
example, it is well known that the adiabatic algorithm can ben-
efit from schedule optimization, even to an extent that can af-
fect whether it provides a quantum speedup or not, as in the
case of the Grover search problem [13, 14]. It has also been
established that a variational approach can optimize the adi-
abatic switching schedule [15]. Likewise, optimality results
are known for QA [16, 17] and QAOA [18]. A natural ques-
tion is whether one can jointly treat QA and QAOA under
a single schedule optimization framework. The first such at-
tempt was made by Yang et al. [19] using the framework of the
Pontryagin Maximum Principle (PMP) of optimal control [20]
(see also Refs. [21-23]), whose conclusions favoring a strict
QAOA-type schedule were later shown to be overly restric-
tive by Brady et al. [24], who showed that in general a hybrid
discrete-continuous schedule is optimal.

The results of Brady et al. were obtained in a closed sys-
tem setting of purely unitary dynamics. Here, we generalize
the theory to the open system setting, and obtain their closed



system results as a special case. We proceed to first provide
the general background for the problem, after which we out-
line the structure of the rest of the paper.

II. BACKGROUND

The closed system setting involves a system evolving uni-
tarily in a d-dimensional Hilbert space H subject to the
Schrodinger equation:

L) = —HOWE),  WO) =) . D)

The protoypical quantum annealing problem concerns find-
ing the optimal schedule s(¢) € [0, 1] for the time-dependent
Hamiltonian given by’

=st) B+ (1—-s()C, teT (2a)
=C+st)(B-0C). (2b)

H{t)

The control interval is T = [0, t¢]. Often the Hermitian oper-
ator C is an Ising-type Hamiltonian of the form ", h;07 +
ZZ <j Jijo? a- (where h; and J;; are local longitudinal fields
and couphngs, respectively, and o7 is the Pauli matrix acting
on the 7’th qubit), and the Hermitian operator B is a trans-
verse field of the form >, o [2]. For our purposes it only
matters that [B, C] # 0.

The initial state |t)p) is assumed to be the ground state of B,
and in both QA and QAOA the target state is the ground state
of C. A relaxation of this, which we consider as the objective
in the present work, is to minimize the expectation value of C'
at a given final time ¢y, i.e.,

J = () |Cly(ty)) - 3)

Minimizing J is equivalent to minimizing the energy of the
C Hamiltonian, and if the global minimum is found then this
corresponds to finding the ground state of C' (i.e., solving the
optimization problem defined by {h;, J;; } when C is in Ising
form).

It is known in quantum control theory (see, e.g., Ref. [25])

that if £ is the Lie algebra generated by B and C and e* the
corresponding Lie group, assumed to be compact, the set of
states reachable from [t)o) with free final time ¢ is

R = {X|gho) | X € e}, )
so that the absolute minimum of the cost J is

Jmin = ‘imewmw (5)

If the dynamical Lie algebra £ is the whole su(d) then any
state in the Hilbert space can be reached (starting from any

! In the control literature the notation u or u(t) is used to denote the control
function, rather than s or s(t). Here we choose to use the notation that is
more familiar in the quantum computing community.

other state), in particular the ground state of C', in which case
the system is said to be controllable [26]. However, requiring
full controllability may be overly restrictive, as we only need
to reach a particular state. The following is a simple gener-
alization that provides a sufficient condition for reaching the
ground state.

Proposition 1. Suppose [B, Py] = [C, Py] = 0 where Py is
an orthogonal projector. The Hilbert space decomposes ac-
cording to the block structure H = Ran(Py) @ Ker(FPy). The
Lie algebra generated by B and C, £, must have the same
block structure. Suppose that, accordmg 10 this structure, £ =
su(dy) @ £ with unspecified £, and dy = dim(Ran(P,));
then, if the initial state belongs to Ran(FPy), any state in
Ran(Py) can be reached (in finite time).

The proof is self-evident, since the full controllability re-
sult [26] is now applicable in Ran(Py). This generalization
can be applied, for example, in case both B and C' commute
with a third operator, say M, and one knows to which sec-
tor of M the ground state of C' belongs; see Appendix A for
an example. In any case, it is clear that something must be
assumed in order to guarantee the reachability of the ground
state of C. Clearly, a necessary condition is [B, C| # 0, but
even when [B,C] # 0 it is easy to come up with examples
where the ground state of C' cannot be reached; see Appendix
A. In the following we will tacitly assume that conditions are
such that the ground state of C' can be reached.

Brady et al. [24] used optimal control methods to prove that
for the cost as defined as in Eq. (3), the optimal schedule is
one where at the beginning and end of the control interval
s = 0and s = 1, respectively.” From a quantum anneal-
ing perspective this might appear as a counterintuitive result,
since it means that rather than the usual “forward” formula-
tion of quantum annealing [27, 28], where one interpolates
smoothly from H(0) = B to H(ty) = C, the optimal pro-
tocol starts from the system being in the ground state of B
but the initial Hamiltonian is C, and the final Hamiltonian is
not C but rather B. The result, however, can be understood
by noting that in the adiabatic approach, one interpolates so
slowly from H(0) = B to H(t;) = C that the system always
remains in the ground state. Instead, in optimal control, we
optimize over the set of possible states obtained by applying
either C or B to the initial state, in a continuous fashion. In
this sense, applying B at the beginning is a waste of time as it
does not change the initial state. Applying C' at the end, when
the system is supposed to be close to the ground state of C,
is similarly wasteful. This relaxation of the approach of strict
adiabaticity is in line with other alternatives, such as shortcuts
to adiabaticity [29, 30] and diabatic quantum annealing [31].

More precisely, Ref. [24] showed, provided that a certain
condition holds (see below), that the optimal control function
starts (ends) with s = 0 (s = 1) in an interval of positive
measure after £ = 0 (before ¢). Elsewhere the optimal con-
trol s(t) is “singular”, except for possible interruptions by a

2 We use the notation f = c to mean that the function f is “identically” equal
to ¢ in some interval ©, i.e., f = cis equivalent to f(t) = cfort € ©.



sequence of “bang” controls, where s = 0 or s = 1. In con-
trol theory a “singular” interval or arc, is an interval of time
where the PMP control Hamiltonian in Eq. (10) below does
not depend on the control s. The remaining “nonsingular”
arcs give rise to the “bang” controls. In the numerical simula-
tions of Ref. [24], the control appeared to be continuous (even
smooth) on such singular arcs. Hence the term “anneal” was
used in lieu of “singular”, with the intention of stressing the
continuous (or possibly even smooth) nature of the control on
the singular arcs. They suggestively called the resulting opti-
mal control a “bang-anneal-bang” protocol. At present, a rig-
orous proof that the control function is continuous (let alone
smooth) on singular arcs is lacking, and there is some risk
of confusion in interpreting the singular arcs as always be-
ing continuous, or even differentiable as is typically assumed
in QA and adiabatic quantum computing [6, 27]. Nonethe-
less, while keeping these caveats in mind, we shall adopt the
same (numerically supported) terminology as Ref. [24], and
use “continuous (or anneal) = singular” as well as “bang =
nonsingular” interchangeably.

Here, we consider the open system version of the same op-
timal control problem. We reformulate the problem in terms
of the density matrix p, whose dynamics is described by the
following, rather general master equation:”

p = ‘va p(o) = po (6)
where the Liouvillian £ depends linearly on the control s (and
the controlled operators B, C'). Note that the Liouvillian is
not explicitly time-dependent (i.e. ;L = 0, V& € Z) and
depends on time only through the control schedule s(t). This
is an important requirement that will play a crucial role in
our ability to apply the Pontryagin principle in the form we
need, as we discuss in more detail below. Furthermore, to
be physically meaningful, £ must preserve hermiticity, i.e.,
[L(X)]T = L(XT), VX. Instead of Eq. (3), the cost J takes
the form

J = Te[Cp(ty)] = (C.plty) )

where we used the Hilbert-Schmidt scalar product (X,Y) :=
Tr(XTY) for operators X, Y. We shall see that a description
and treatment of the optimal control problem in the setting of
the density matrix is not only more general but also more ele-
gant since the cost J is linear in the state rather than quadratic,
as in Eq. (3). Moreover, we obtain the closed system result
as a special case. Unlike Ref. [24], which used a mixture of
the PMP and a variational (Lagrange multiplier type of) argu-
ment, we use only the PMP, which significantly simplifies the
proof.

3 The form we have assumed is called a time-convolutionless master equa-
tion. The most general master equation is in Nakajima-Zwanzig form and
includes a memory kernel superoperator K(¢, t) acting jointly on the sys-
tem and the environment F, such that (for a factorized initial condition)
p=Trg ](f K(t,t")p(t') ® prdt’, with pg a fixed environment state
and Tr g denoting the partial trace over the environment [32].

The rest of this paper is organized as follows. In Sec. I1I, we
apply general results from optimal control theory and the nec-
essary conditions of the PMP to the problem of minimizing
J [Eq. (7)] for a given final time ¢; and the general dynam-
ical system of the form of Eq. (6). In Sec. IV we specialize
to the case of closed systems, which are described by the von
Neumann equation. In particular, we confirm but also sharpen
the results of Ref. [24]. We also analyze in depth the opti-
mal control problem of a single spin-1/2, and prove that the
optimal schedule is of the bang-bang type. In Sec. V we con-
sider the case of open systems. This includes both the most
general case of a reduced description of quantum system ob-
tained by tracing out the environment it is coupled to, and the
case where the open quantum system is described by adia-
batic master equations, both non-Markovian and Markovian.
In Sec. VI we derive a “switching equation,” which allows us
to provide a general characterization of the switches between
non-singular and singular arcs, and derive conditions for the
presence or absence of singular arcs. We also give a heuris-
tic derivation of the shortening of the length of the arcs be-
tween two switches with increasing system size. We conclude
in Sec. VIL In a series of appendices we provide additional
background on optimal control theory and technical details
and proofs of various results from the main text.

III. STATEMENT OF THE PONTRYAGIN MAXIMUM
PRINCIPLE

We state the PMP as it applies to our problem of interest
(see Appendices B and C):

Theorem 1. Assume that p* and s* are, respectively, an opti-
mal state and control pair for the problem defined by Egs. (6)
and (7) for a fixed final time t f.4 Then there exists a nonzero
n x n Hermitian time-dependent matrix p = p(t) called the
co-state that satisfies’

p=-Lp, )
with the final condition
plty) =—C. ©)
Furthermore, define the PMP control Hamiltonian function
H (p, p, s) := (p, Lp) . (10)

We then have the maximum principle:

H (p(t), p*(t), s* (1)) =vré1[g§]H(p(t),p*(t)vv) , (D

and there exists a real constant \ such that

H (p(t), p*(1),s"(£)) = A (12)

4 We also use an asterisk to denote complex conjugation; the meaning will
always be clear by context.

5.t in Eq. (8) indicates the Hilbert-Schmidt adjoint of £, defined via
(LT(A), B) := (A, L(B)) = Tr[ATL(B)], VA, B; see Appendix C.



A few remarks are in order.

e The PMP control Hamiltonian function (10) is, of
course, different from the Hamiltonian operator (2)
generating the dynamics.

e Since p and p are Hermitian and £ is Hermiticity-
preserving [[£ (X)]" = £ (XT) VX1, “expectation val-
ues” of the form (p, Lp) are real, and hence so is the
PMP control Hamiltonian (10).

The condition 9;£ = 0Vt € Z must be satisfied and is
implicit in Eq. (6). In other words, £ may not depend
explicitly on time. Without this condition Eq. (12) does
not hold with a constant \.

It is worth highlighting that at the final time the co-
state becomes the (negative of the) target Hamiltonian
[Eq. (9)], a fact we use repeatedly in our applications of
the Theorem | below.

As discussed after Theorem 8 in Appendix B, if the op-
timal trajectory is such that the constraint of the final
time ¢ is “active”, i.e., a small perturbation ¢ + ¢ al-
lows us to decrease the cost, then A > 0 in Eq. (12).
This is an important point that will be further discussed
in the next section.

Given that the PMP is formulated in terms of real-
valued quantities in the optimal control literature (see
Appendix B), one must first transform the relevant
equations into real-valued ones. This can easily be done
since the space of n x n Hermitian matrices is isomor-
phic to the space of n? real variables via coordinatiza-
tion. We discuss this in Appendix C.

Since p(t) and p(t) are solution of differential equa-
tions, they are continuous function of time. This im-
plies that expressions of the form (p, Kp) with the su-
peroperator K independent of time (both explicitly and
implicitly), are continuous functions of ¢, a fact which
we repeatedly and implicitly use below.

IV. THE CLOSED SYSTEM CASE

We first consider the closed system case. Let us define the
superoperator

Kx:=—i[X,e] . (13)

Note that Kx is linear with respect to X. For Hermitian X,
K x is anti-Hermitian (see Appendix D):

Kl = —Kxi = —Kx . (14)
The von Neumann equation corresponding to Eq. (1) is

p=Kep+st)(Kgp—Kep), p0)=po, (15)

where henceforth we denote the initial and final conditions of
operators X by X (0) := X and X (t7) := X, respectively.
Le., one has Eq. (6) with

L=Kc+s(t)Kp_c (16)

Since in this case £ = —L£, Eq. (8) tells us that the co-state
matrix p satisfies the same equation as p:

p=Kcp+s(t)Kp_cp, (17)

but with the final condition (9). The PMP control Hamiltonian
reads

A. The “bang-anneal-bang” protocol is optimal

Applying Theorem 1 to the anti-Hermitian superoperator £
of Eq. (16), we obtain the following extension of the result of
Ref. [24] to the density matrix setting:

Theorem 2. (i) Assume s* € [0, 1] is the optimal control in
an interval [0,ts] minimizing the cost (7) for Eq. (15). Then
there exists a nonzero Hermitian matrix solution of Eq. (17)
with terminal condition (9) such that s* = 0 on intervals
where (p,Kp_cp) < 0, and s* = 1 on intervals where
(p,Kp—cp) > 0. On all other intervals (p,Kp_cp) = 0
(these are called singular arcs).

(ii) Assume furthermore that the constraint on the final time
ty is active (so that X > 0). Then s*(t) = 1fort € (ty —e, ty]
for some € > 0. Moreover, if the initial condition pg commutes
with the driver Hamiltonian B, i.e., Kppg = 0, one also has
s*(t) =0 fort € [0, €) for some € > 0.

Before proving this theorem we offer a few remarks.

e Part (i) implies that the optimal control is, in general, an
alternation of “bang” (nonsingular) arcs and “anneal”
(singular) arcs where (p, KCpp) = (p, Ccp). Using the
PMP, this is an immediate consequence of the fact that
the control enters linearly in the equation and it is cou-
pled to the superoperator Kp_c. The latter is what is
“special” about the quantum annealing problem.

Part (ii) implies that under the assumption of an active
time constraint and for a particular initial condition, the
optimal control starts and ends with nonsingular arcs.
In particular, it starts with an arc s = 0 and ends with
anarc s = 1.

In practice, whether there are additional nonsingular
arcs in the middle is problem dependent, and there is
numerical evidence that such optimal scenarios do in-
deed exist [24], but such nonsingular arcs do not exist in
the single qubit example discussed in Subsection [V C.

Assuming that g pg = 0 one can prove A > 0 (see also
Appendix B, Proposition 1), but the condition A > 0 is
more subtle and it must be assumed independently. We
return to this point in the next subsection.



Proof. Part (i): Eq. (18) states that the PMP control
Hamiltonian H depends on the control only via the term
s(t){p, Kp—cp). If (p,Kp_cp) < 0, then to maximize this
term as per Eq. (11) subject to the constraint that s(¢) € [0, 1],
clearly we must set s* = 0. Likewise, if (p, Cp_cp) > 0,
then to maximize this term subject to the same constraint re-
quires s* = 1. This is the case of nonsingular arcs. Con-
versely, if (p, Cp_cp) = 0 (a singular arc), then we cannot
conclude anything about the control from the PMP.

Part (ii)): To investigate the form of the control at
the end of the control interval [0,tf], consider Eq. (12)
with A > 0. Using Eq. (9) we have (py,Kcps) =
<ICTCpf,pf> = (KcC, ps) = 0. This means that H(t;) =
s(tf)(ps, Kppg) = A > 0, which in turn, since s € [0, 1],
implies that (p;,Kpps;) > 0. By continuity there must
exist an interval (t; — €,ty] (for some ¢ > 0) such that
(p(t), Kp—cp(t)) > 0fort € (t; —€,ts], and in this interval
we must have s*(t) = 1 by (i).

The argument for the initial time is similar but instead of
Eq. (9) it uses the extra assumption K pg = 0. Let us evaluate
the control Hamiltonian at £ = 0. Because of the assumption
Kgpo = 0 we have H(t = 0) = (1 — s(0))(po, Kcpo) =
A > 0. Since s € [0, 1] this implies that (pg, Kcpo) > 0 and
(po, K_cpo) < 0. By continuity there must exist an ¢ > 0
such that, for t € [0,€¢'), (p(¢),Kg_cp(t)) < 0 and in this
interval we must have s*(t) = 0 by (i). O

B. The active constraint assumption and a sharpening of the
results of Ref. [24]

The condition A > 0 (that is, an active constraint on the
final time ty) requires some extra discussion. It is a known
fact in the geometric theory of quantum control systems, and it
follows as an application of general results on control systems
on Lie groups (see, e.g., Ref. [26, Th. 7.2]), that there exists
a critical time t. such that, the set of states reachable at time
t, coincides for every ¢ > t.. In other words, the reachable
set does not grow past a certain time ¢.. Therefore, for every
ty > t. the time constraint is never active. The minimum time
tmin to reach the ground state of C'is < ¢.. If the final time ¢
is greater than or equal to t,;,, then again the time constraint
can never be active. In order to avoid this situation, it was
claimed in Ref. [24] that having t; < tuin, is sufficient for
having A > 0 in Eq. (12). Their argument only uses [pg, B] =
0. However, in Sec. [V C below we give an example satisfying
this assumption for which A = 0 for arbitrarily small ¢¢. Thus,
the assumption ¢ < tmi, is certainly necessary for A > 0 but
is in fact not sufficient. Rather, A > 0 is a feature of the
optimal trajectory rather than of the problem itself. This can
be explained more easily geometrically, as we now do.

The optimal cost at time £ is the minimum of a continuous
function on the reachable set of states R, , (see Appendix B).
It is also known, under conditions that apply in our case, that
the reachable set fR; P varies continuously with ¢y [33]. We
can map the space of Hermitian matrices p diffeomorphically

to R (see Appendix C) and consider its reachable set there.
Since the cost function (7) is linear on this set, the minimum

occurs on the boundary. Therefore, the optimal trajectory is a
curve starting from the initial condition py and ending on the
boundary of R;,. At the endpoint, the trajectory will have a
tangent vector which indicates its future direction. Now A > 0
if, going (infinitesimally) in that direction combined with an
increase in the size of the reachable set Ry, 1 for some small
€, will result in a reduced cost, and this is what we mean by the
time constraint being active. If ¢; is such that the reachable
set does not increase at ¢ ¢, for instance if ¢y > ¢, then clearly
this is not possible and we must have A = 0. However, it
is also possible that the reachable set increases but not in a
way to (strictly) decrease the cost, in particular the portion of
the boundary where we landed might not move at all, or it
might move but not in a direction that decreases the cost. This
geometric discussion is illustrated with figures in Appendix E.

The phenomenon that the optimal cost does not decrease
with an increasing final time ¢; may occur even though ¢
is arbitrarily small. Let us denote by Jyin(ts) the minimum
cost (7) as a function of ¢y. The example we provide below
(Sec. TV C) shows that, even assuming [pg, B] = 0, we can
have Juin(t7) = Jmin(0) for t; € [0, €) and some € > 0, that
is, the cost cannot be lowered for some time, independently
of the control. However, under the additional assumption that
po is the nondegenerate ground state of B this does not hap-
pen, and we have the following theorem which we prove in
Appendix F:

Theorem 3. Assume that pg in Eq. (0) is the nondegenerate
ground state of B. Then there exists an ¢ > 0 such that, for
everyty € (0,€), Jmin(tr) < Jmin(0) = Tr(Cpo).

In other words, if we start from the nondegenerate ground
state of B we can always decrease the cost for sufficiently
small ¢£¢. Note that this, however, does not prove that A > 0.
As we have explained, the condition A > 0 is a condition
about the optimal trajectory, and it is an open problem to find
sufficient conditions such that every optimal trajectory satis-
fies the A > 0 requirement for sufficiently small ¢ .

C. Example: optimal control of a spin-1/2 particle

We now give an example showing that without the assump-
tion that pg is the nondegenerate ground state of B, the cost (7)
cannot be lowered even for arbitrarily small ¢’s.

Consider a spin-1/2 particle (qubit) in a magnetic field. The
model is given by Eq. (15) with C' = 16% and B = 10%. As
an orthonormal, Hermitian operator basis we choose F; =
%ai, where we denote the standard Pauli matrices 0* = o0y

2 .
etc.,i.e.:

01 0 —t 1 0
n=(Vo) (1) w=(0h).
(19)
They satisfy the su(2) commutation relations

[0’2,03] = 2i01 .
(20)

We parametrize the density matrix as p = £ (I+v-o),

where v € R3 is the Bloch vector (|v]| < 1) and o =

[01,02] = 2i03, |03,01] = 2i0,



(01,02,03)T. The Bloch vector satisfies Eq. (15) where, us-
ing IC;; = Tr[F;IC(F})] (see Appendix C), we have

00 O 0-10
Kg=[00-1], Ke=(1 0 0 (21)
01 0 0 00
Equivalently, the dynamics are given by the Bloch equation
b= M(s)v (22a)
0 —-(1-s) 0
M(s)=| 1-s 0 —5 (22b)
0 s 0

Geometrically, /C¢ is the infinitesimal generator of a coun-
terclockwise rotation about the vs axis, while KCp is the in-
finitesimal generator of a counterclockwise rotation about the
vy axis. For s € (0,1), M(s) = (1—s)K¢ + sKp generates
a counterclockwise rotation about an intermediate axis in the
(v1,v3) plane. The cost (7) in this case becomes J = %’03,
i.e., it corresponds to the minimization of the vs component.
Furthermore, let us assume for simplicity that the initial state
po is pure (||v|| = 1). There are only two such states compati-
ble with the condition [B, pg] = 0 (equivalently: ICpvy = 0):
the o eigenstates, i.e., vo = (£1,0,0)7.

Now, if the initial state is vo = (1,0, 0)7, i.e., the excited
state of B, then for sufficiently small ¢ we have v3(¢) > 0 in-
dependently of the control s € [0, 1] (see Appendix D). There-
fore, an optimal control in [0, ] for t; small will be s = 0
(which will keep the value of vs at zero). The value of the min-
imum cost Jimin (t5) is equal to J(0) for any arbitrarily small
ty. The constraint on the final time is not active here, even
for arbitrarily small ty. As a consequence, in this case we
cannot draw the conclusions of Theorem 2 following from the
assumption A > 0. On the other hand, for vy = (—1,0,0)7,
which corresponds to the (nondegenerate) ground state, with
sufficiently small ¢y we can lower the cost according to The-
orem 3. We prove in Appendix H that the optimal control in
this case is a simple bang-bang protocol:

Theorem 4. The optimal control for the system of one spin-
1/2 particle considered above, starting from the ground state
and minimizing the cost Tr(osp) in time ty < m, is the se-
quence s* = 0 for time %ffollowed by s* = 1 for time %f (see
Fig. 1).

Here t. = 7, i.e., if ty > 7 one trivially finds the ground
state exactly (by a 7/2 rotation from the —1 eigenstate of o*
to the —1 eigenstate of o¥, followed by another 7 /2 rotation
to the —1 eigenstate of o%) and one cannot do better by in-
creasing t . This optimal bang-bang schedule result for a sin-
gle spin-1/2 joins previous such results for systems as diverse
as pairs of one-dimensional quasicondensates [34] or “gmon”
qubits [35], as well as braiding of Majorana zero modes [36].

V. THE OPEN SYSTEM CASE

In this section we generalize the results for closed sys-
tems to the open system setting. We consider two different

Figure 1. (Color online) Single qubit case. Optimal trajectory on
the Bloch sphere with initial condition vo = (—1,0,0)”. Here t; =
0.957 so the ground state of C', corresponding to the point (0,0, —1),
is not reached exactly.

approaches: an approximation-free treatment of a system +
environment where both are finite-dimensional, and a mas-
ter equation approach subject to a Markovian approximation,
which applies for infinite-dimensional environments [32, 37—
40]. We show that under a number of additional assumptions,
we can (partially) recover the results from the closed system
setting, but that the bangs characterizing the latter are not a
particularly robust feature in the open system setting.

A. Optimal control for the Liouville-von Neumann equation

One approach for extending the closed system results of
the previous section to open systems is to consider the full
dynamics of a jointly evolving system + environment. In this
case p in Eq. (0) is the density matrix of the system and the
environment, with an initial condition which is usually taken
to be of the factorized form p(0) := py ® pg, where now pg
refers to the initial state of the system only. The Liouville-von
Neumann equation is [extending Eq. (15)]:

p=Kup, p0)=po®pe, (23)

where /K is defined in Eq. (13), with the total Hamiltonian
Hiot =Hs®@1p+ Hr +1g® Hg . 24
Here Hj is the interaction between the system and environ-
ment, Hg generates the dynamics of the environment, while
the system Hamiltonian, as before, contains the controllable

part:

Hs(t) = C +s(t) (B—C) . (25)



Finally the cost is given by
J=Tr[(C®1g)p]. (26)

Theorem 1 holds with £ = K, , and the PMP control Hamil-
tonian has the form
+ <pa ICHS®HEP> . (27)

H = (p,Kaseizp0) + (0, K, p)

The treatment of Sec. IV applies, mutatis mutandis. In partic-
ular, condition (9) is replaced by

plt;)=—-Colg. (28)

Remarkably, no additional modifications of the statement of
the PMP Theorem | are needed. Moreover, it is clear from
Egs. (25) and (28) that once again the control enters H only
via the term s(t)(p, K(p_cyg1,p), so that the proof of Part
() of Theorem 2 applies without any change. This shows that:

Corollary 1. In the general open system setting of Eq. (23)
with the cost (26), the optimal control s(t) is an alternation
of bang arcs where s = 0 (when (p,K(p_cygu1p) < 0) or
s = 1 (when (p,K(p_cygup) > 0), and singular arcs where
(p, Kewup) = (p, Kaup)-

Let us consider the generalization of Part (ii) of Theorem 2,
which addresses the characterization of the control function at
the beginning and at the end. We first consider the final arc.
We have the following:

Theorem 5. Assume s* € [0, 1] is the optimal control in an
interval [0, ] minimizing the cost (20) for Eq. (23). Assume
Sfurthermore that [H;,C ® Ig] = 0 and that the final time
constraint is active, i.e, A > 0. Then s*(t) = 1 fort €
(ty — €, ts] for some € > 0.

Note that the assumption [H;,C ® Tg] = 0 implies that
the choice of control s = 0 leaves the cost J = (C' ® T, p)
unchanged since in this case Hi,, commutes with C' ® 1.

Proof. Let us compute the PMP Hamiltonian at ¢ = ¢¢. Note
first that it follows from Eq. (28) that

= <’CTC®11Epfva>
=<ICC®]1EC®][E,pf> =0. 29)

<pfa ’CC®]IEpf>

The other two terms of the PMP control Hamiltonian Eq. (27)
also vanish at ¢ = t¢y: using the same calculation as
in Eq. (29) the second term vanishes because of the as-
sumption [H;,C ® Ig] = 0, and the third term does as
well because [Is ® Hg,C ® Ig] = 0. So we obtain
H = s(ty)(ps,Kpgizpr) = A > 0. This implies
that (ps, Kpgugzpy) > 0 and by continuity there must
exist an interval (t; — €,t;] for some ¢ > 0 such that
(p(t), C(s—cyeuzp(t)) > 0fort € (t; — € ts]. Finally we
must have s* = 1 in this interval by Corollary 1. O

Regarding the arc at the beginning we have instead:

Theorem 6. Assume s € [0,1] is the optimal control in an
interval [0, 1] minimizing the cost Eq. (26) for Eq. (23). As-
sume that [pg, Hg| = 0 and that [Hy, po ® pg] = 0. Assume
furthermore that [B, po] = 0 and that the final time constraint
is active A\ > 0. Then the control satisfies s*(t) = 0 for
t € [0, €) for some € > 0.

Note that the assumption [Hy, pp ® pg] = 0 implies that
the interaction alone does not modify the initial state of the
system.

Proof. We abbreviate the proof since it is very similar to the
ones we presented above in more detail. Using the assumption
[Hr,po ® pr] = 0 and [B, po] = 0, evaluating H(¢ = 0)
we obtain HI(0) = (1 — 5(0)) (p(0), Kcwi,p(0)) = A > 0.
This implies that (p(0), Kcg1,0(0)) > 0 or equivalently that
(p(0), K_ce1,p(0)) < 0. By continuity this in turn implies
that there exist an interval [0, ¢) for some ¢ > 0 such that
(p(t), K(B—cyouzp(t)) < 0fort € [0,¢). Finally we must
have s* = 0 in this interval by Corollary 1. O

We comment on the implications of the additional assump-
tions used in these theorems in Sec. VII.

B. Optimal control for quantum master equation dynamics

The treatment of the open system case in the previous sub-
section did not involve any approximations. On the other
hand, we tacitly assumed that the environment is finite di-
mensional. This was helpful since all the results on optimal
control which we have elaborated upon in Sec. IV and used
so far, are classically stated and proved for finite dimensional
systems. Extending such results, in particular concerning the
PMP and the topology and continuity of the reachable sets
for infinite dimensional systems, is possible and is a current
area of research in control theory (see, e.g., Refs. [20, 41]),
although the results in this area become considerably more
technical. An alternative we discuss in this subsection is to
replace the Liouville-von Neumann equation (23) with an ap-
proximate quantum master equation. This can be viewed as an
investigation of the result of Sec. V A when the environment
dimension is sent to infinity.

Without loss of generality we write H; = Z So ® Ey,
where S, = ST and £, = ET Va. The goal is now to find a
master equation for the dynamlcs of the system density matrix
in the case of a time-dependent system Hamiltonian. After the
Born approximation and tracing out the environment, one ar-
rives at a time dependent Redfield master equation (see, e.g.,
the Schrodinger picture Redfield master equation (SPRME)
derived in Ref. [42]). From this point there are multiple ways
to proceed, e.g., by introducing an additional adiabatic ap-
proximation or an additional Markovian approximation, or
both. These different paths, and exactly how they are taken,
lead to a plethora of different master equations [42-51]. We
next focus on two representative cases of master equations de-
rived from first principles.



1. Adiabatic Redfield Master Equation

The Adiabatic Redfield Master Equation (ARME) is de-
rived in Ref. [42]. It results from assuming that ty > 7p,
where 75 is the environment time scale, and the adiabatic ap-

proximation 7 exp [fi ftt_r Hs(t’)dt’} ~ e st drop-

ping a correction of O ((r/ty)?). The ARME has the form of
Eq. (6) with a time-dependent Redfield generator £ given by

,C:K:HS-F’D

tmax
Dp= Z/O dr Gap(r) [Ss(—7)p, Sa] + h.c., (30b)
of

(30a)

where the system Hamiltonian is as in Eq. (25). G,3(t) is the
environment correlation function

Gap(t) = (Ea(t)Es(0)) = Tr[Ea(t)Ep(0)pe] ,  (31)

where (X)) denotes the environmental thermal average of X.
When Go(r) decays exponentially, the relative error of the
resulting dynamics due to the adiabatic approximation above
is O ((t/ty)?). Finally,

55(77") _ efing(s)Sﬁeing(s) ) (32)
The parameter ?,,x can either be set to ¢y or infinity on ac-
count of the fact that the environment correlation function de-
cays very rapidly. The ARME is not in Gorini-Kossakowski-
Sudarshan-Lindblad (GKSL) form [52-54], hence does not
generate a completely positive map. However, it generates
non-Markovian dynamics, hence has a wider range of appli-
cability than Markovian master equations, within its range of
applicability [46].

Crucially, the generator in Eq. (30) with Egs. (25), (31)
and (32) depends on time only through the control function
s(t). This implies that the PMP control Hamiltonian H =
(p, Lp) is constant and hence the PMP in the form of Theo-
rem | is directly applicable. However, the control now en-
ters nonlinearly in D, in particular in an exponential through
Eq. (32). As a consequence it is not possible to derive the
form of the control on the nonsingular arcs, or even to de-
termine simple equations for the appearance of singular arcs.
One can ask, however, what remains of the results of the pre-
vious subsection. We do not have an analog of Theorem 6
for the initial arc. However, if we again make the assumption
of Theorem 5 that [S,,C] = 0 Va, then the analog of this
theorem for the final arc holds, even when the environment
is infinite-dimensional, and under the approximations used to
derive Eq. (30). However, instead of an arc, we obtain a bang
only at a point:

6 1t can be shown that the conditions of Filippov’s theorem (see Ref. [55,
Th. 2.1]) for the existence of the optimal control solution are satisfied also
in this case.

Theorem 7. Assume s* € [0,1] is the optimal control in an
interval [0,1t7] minimizing the cost Eq. (7) for Eq. (6) with
L given by Eq. (30). Assume further that [S,,C] = 0 Va
and that the final time constraint is active (A > 0). Then the
optimal control satisfies s*(ty) = 1.

Proof. 1t is convenient to write the Redfield dissipator as

Dp =" ([Wapp, Sal + [SaroWls]) (330
o
tmax
Wap(t) = / dr Gag(r) Sg(—r) . (33b)
0

Using Eq. (332a) one obtains, for the adjoint of D:

Dix=%" (Wgﬂ (X, Sal + [Sa, X] Waﬁ) (34
aB

(see Appendix D). From the above expression and the as-
sumption [S,,C] = 0, Ya we obtain DIC' = 0. Using
py = —C we have (p;,Dp;) = —(D'C,p;) = 0. Evalu-
ating the PMP control Hamiltonian at the final time we ob-
tain H(t¢) = s(ty){ps, Kepyr) = XA > 0. This implies that
(ps,Kpps) > 0, and so s(ty) = 1 from the maximum prin-
ciple. O

Since, as argued in Sec. VI B, the size of the bang intervals
is generically expected to shrink when the total system size
increases, this result can be seen as a generalization of Theo-
rem 5 when the environment dimension is sent to infinity and
the bang interval at the end shrinks to a point.

The implications of the additional assumptions used in The-
orem 7 are discussed in Sec. VII.

2. Markovian, completely positive master equations

The most significant drawback of the ARME is the viola-
tion of complete positivity, which means that the density ma-
trix can develop unphysical, negative eigenvalues. Hence we
also consider Markovian, completely positive master equa-
tions. There are a variety of such master equations derived
from first principles under different assumptions. However, in
most cases the generator L is explicitly time-dependent (e.g.,
the coarse-grained master equation (CGME) [46, Eq. (22)],
the master equation of Ref. [47, Eq. (21)], the non-adiabatic
master equation (NAME) [48, Eq. (16)], and the universal
Lindblad equation (ULE) [49, Eq. (27)]) and hence we can-
not apply Theorem 1.

In this subsection we give an example of a Markovian mas-
ter equation derived from first principles where, like in the
ARME case, the generator £ depends on time only through
the schedule s(t). In this case the PMP can be applied in the
simplified form described in Theorem 1.

Consider the ‘“geometric-arithmetic master equation”
(GAME) [50, Eq. (46)], which is claimed there to have a
higher degree of accuracy than all the previous Markovian



master equations. In the adiabatic limit it has the Schrédinger
picture form

L=Ky,+D (35a)

Dp= Z ([La(s)p, LL(s)] + [La(s), pLi(s)]) , (35b)

where L,(s) = S, o y/7¥(s), the circle denotes the
Hadamard (element-wise) product, ~ is the spectral den-
sity matrix [Fourier transform of the environment correlation
function (31)] whose elements .., := v(wnm(s)) depend
on the instantaneous Bohr frequencies wy,(s) = FEn(s) —
E,.(s), where Hg(s)|n(s)) = E,(s)|n(s)), and the depen-
dence on time is only through the schedule s(¢).” The adjoint
dissipator is now:

DX = 37 (8w 0 i) [X, Sa0 A

+[(Sa 0 vA)', X]S0 0 \A) - (36)

Unfortunately, since [S,, C] = 0 % [S4 0 \/7,C] = 0, this
means that even if [S,,,C] = 0, we do not obtain DIC = 0
as in the ARME case, and hence the proof of Theorem 7 does
not carry through.®

While these arguments are not a proof that in general
Markovian dynamics do not admit s(¢;) = 1 as an optimal
control solution, we conjecture that in fact, they do not. It thus
appears that the “counterintuitive” appearance of the driver
Hamiltonian at the end of the control interval is not a feature
of the optimal schedule in the Markovian limit of open quan-
tum systems. We revisit this point in Sec. VII.

VI. SWITCHING OPERATOR AND ANALYSIS OF THE
OPTIMAL CONTROL

In order to study the qualitative behavior of the optimal con-
trol law, in particular its switching properties and the exis-
tence and nature of the singular arcs, it is convenient to intro-
duce one more operator, besides the state p and the co-state p,
which we call the switching operator. The switching operator
determines the behavior of the optimal control, i.e., the points
where there is a switch between s = 0 and s = 1, and where
there is a singular arc. For clarity we focus on the closed sys-
tem case of Sec. I'V but our definitions and treatment naturally
extend with a change of notation to the open system case of
Sec. VA.

7 In writing these expressions we have adapted the results of Ref. [50] to
the adiabatic limit by using the instantaneous eigenbasis of Hg, and also
performed the [ t / ©° approximation” (otherwise v would have a ¢
dependence, which would prevent us from being able to apply Theorem 1);
see Ref. [50] for complete details.

8 Of course [Sa,C] = 0 = [Sq 0 V7, C] = 0 when ypm = ¢ Vn,m,
but this is a highly nongeneric scenario.

A. Switching equation

The switching operator S is the Hermitian operator defined
as

Si=ip,p] - (37)

In the closed system case the Liouvillian has the form £ =
Ky, with the system Hamiltonian of Eq. (2). One has the
following property:

Ku ([X,Y]) = [Ku(X), Y]+ [X,Lu(Y)]  (38)

valid for any operators X, Y, H. Now, differentiating Eq. (37),
we obtain

S=ilp,pl+ilp ) (392)
=i[Kup,p| +ilp,Kup] (39b)
=iKu ([p,p]) = KuS , (39¢)

where in the third equality we used Eq. (38). Thus, S satisfies
the same equation as p and p. To understand why S deter-
mines the optimal control switching times, let us define

zc = (p,Kep) = —iTr (p[C, p]) (40a)
= —iTr (Clp,p]) = Tr (CS) = (C,5),  (40b)

and similarly
Ip = <pa ICBP> = <Ba S> ) 41

so that the PMP control Hamiltonian Eq. (18) can be written
in a form closely resembling the Hamiltonian (2b):

H=xzc+s(xp—zc) . (42)

The quantity x5 — z¢c = (B — C, S), that is, the orthogonal
component of S along B — C, regulates the switches of the
candidate optimal control. By the same PMP argument we
have used repeatedly in our proofs, when zp — x¢c < 0 we
have s = 0, and when x5 — x¢ > 0 we have s = 1. The
switch occurs when zp — x¢ = 0, while a singular arc occurs
when zp — ¢ = 0 for an interval of positive measure.

The initial condition Sy of the switching operator deter-
mines the optimal control candidate s uniquely. This ini-
tial condition is not completely arbitrary. In particular, un-
der the assumptions of Theorem 2 the following holds. Since
5(0) = 0, we have x¢(0) = (C, Sp) = A. Furthermore, since
[B, po] = 0, we have

rp(0) = (B, So) = i Tr(B[po, po])
=i Tr (polpo, B]) =0. (43)

At the final time ¢, since s(ty) = 1, we have from Eq. (42)
xp(ty) = A, while using Eq. (9) we have

zo(ty) = (C,S¢) =i Tr (Clpy, py])
=iTr(ps[C,ps]) =0. (44)



Thus, at t = 0 we have 5(0) = 0 and in the initial arc
s = 0 and z¢ = A by Eq. (42). The next arc can be either
nonsingular with s = 1 (zp > x¢) or a singular arc with
xp = x¢. Either way, at the switching point we must have
xp = A, hence we reach the point (z¢,2p5) = (A, A) at the
end of the first arc. When (x¢,xp) = (A, ) there is either a
switch to an arc with s = 1, or a return to s = 0, or a singular
arc where (z¢, ) = (A, A). On this arc s is unspecified, but
nonetheless certain equations need to be satisfied and they can
be used to obtain information on the dynamics on such singu-
lar arcs (see Appendix G). Note that every switching event,
whether from a bang arc to a singular arc or v.v.., or from a
bang arc to another bang arc, happens at (z¢,z5) = (A, A).
When s = 1, from Eq. (42) we have that x5 is constant, while
z¢ is allowed to change. Therefore the optimal control can be
described schematically as in Fig. 2 in the (z¢, ) plane.

rp—xc >0
LB s=1
0.2 (AN
g —xc <0
s=0
MO g

Figure 2. Switching diagram for optimal control candidates. Start-
ing from the point (A, 0) the dynamics stay on the line zc = A. In
principle even negative values of =g can be attained, but eventually
the point (A, A) must be reached, followed by an alternation of ver-
tical and horizontal lines (where in principle one can also extend to
negative values of z¢) through (A, \) with time intervals where the
dynamics do not move from (A, A), representing the singular arcs. In
the last interval, the dynamics follow a horizontal line (with s = 1)
reaching the point (z¢,x5) = (0, \).

In the case where the final time is not active, i.e., when
we do not have the guarantee A > 0 in Eq. (42), the above
reasoning can still be applied to conclude z5(0) = 0 and
z¢(ty) = 0. Furthermore, if A = 0, from Eq. (42), we obtain
(1—5(0))zc(0) =0and s(tf)zp(ty) = 0, in addition to the
maximization condition Eq. (11).

B. Shortening of nonsingular arcs
1. Dependence onn

Here we give a heuristic argument that explains why the
terminal arcs (s = 0 and s = 1) for the optimal control be-
come shorter as the number n of spins (or qubits) increases. In
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fact the heuristic holds also for intermediate arcs taking place
anywhere along the optimal trajectory.

Consider a bang arc where s(t) = 0 for ¢t € [to,t1]. Equa-
tion (39) for the switching operator in this region is S = K¢S
with the initial condition S(ty) = Sy for some Sy. The solu-
tion in this interval is S(t) = e~ *(t710)C i (=) The co-
ordinate z¢ equals A in the interval: zc = A = (C,S(¢)) =
(C, Sp). The switching happens when xp = ), i.e., at the
first solution ¢1 of (B, S(t1)) = (C, Sp). More explicitly, the
interval of the bang arc At := t; — ty is given by the first
solution of

rp(At) = Tr (Be "€ Ge ) = Tr (CSp) . (45)

Using the spectral resolution C' = ", EjII;, (with eigenval-
ues F and eigenprojectors Il;), the left-hand hand side of
Eq. (45) can be written as

B(AL) =) Mye Bhn (46)
kl

with amplitudes My; := Tr (BII;SoIl;) and Bohr frequen-
cies wx; = Ey — Ej. The function z5(At) is a real trigono-
metric polynomial with O(d?) terms (where d is the Hilbert
space dimension) starting from Tr(BSy) at At = 0, and
reaching A > 0 at At. Now, as the number of qubits n in-
creases, both d = 2" and the frequencies increase. Both of
these facts contribute to making x5 () oscillate faster. As a
consequence, the solution At of Eq. (45) tends to decrease
with n. The same considerations hold for the case of an s = 1
arc with B and C' interchanged. See Appendix I for additional
comments. Note that this heuristic applies both to the initial
and final bang arcs, as well as to possible intermediate bang
arcs if they are present.

2. Dependence on ty

It was concluded in Ref. [24, Sec. S3] that “these bangs
should become smaller and smaller as ¢ ; is increased. Eventu-
ally in the true ¢y — oo adiabatic limit, these bangs disappear
recovering the standard form expected for quantum adiabatic
computing.” However, there is in fact no guarantee that the
optimal control coincides with the adiabatic path even in this
limit, since the adiabatic theorem provides a sufficient, but not
a necessary condition for convergence to the minimum of the
cost function. Indeed, it is easy to construct a counterexample,
as we now do. First note that, as we have seen, when t; < %,
the optimal schedule always starts with a bang s = 0 and ends
with a bang s = 1 (provided the initial state commutes with
B). We have not addressed the question of uniqueness of this
optimal schedule, which we leave for future work. However,
when ¢y > t., the optimal schedule is certainly not unique, as
one has the possibility of “wasting time” by adding a bang
s = 0 at the end (thus applying C' there), or by adding a
bang s = 1 at the beginning (thus applying B there), or both.
The resulting schedules do not resemble the smooth adiabatic
schedule interpolating slowly from s(0) = 1 to s(ty) = 0.



VII. SUMMARY AND DISCUSSION

The quest to discover the optimal schedule for quantum op-
timization algorithms such as QA and QAOA naturally leads
to the use of optimal control theory via Pontryagin’s princi-
ple. Previous work concluded that QAOA is optimal [19], but
a more careful analysis showed that in fact a hybrid bang-
anneal-bang protocol is generally optimal for closed systems
when not enough time is allowed for the desired state to be
reached perfectly [24]. Here we confirmed this result using
a density matrix approach, which both generalizes the anal-
ysis to mixed states and simplifies it since it makes the cost-
function linear in the state. We also showed that the assump-
tion that ¢ is smaller than the critical time ¢, needed to reach
the ground state of C' exactly, is necessary but not sufficient
for the result of Ref. [24], by giving a counterexample to the
latter.

We introduced a switching operator and found its equation
of motion, which characterizes the points at which the opti-
mal schedule switches between the two different types of bang
arcs and the anneal arc. In Theorem 4 we gave the explicit op-
timal schedule for the example of a single spin-1/2 particle,
which consists of two bangs of equal duration.

Using the density matrix formulation we extended the the-
ory to the open system setting, both for the exact reduced
system dynamics in the case of a finite-dimensional environ-
ment, and under the approximation of dynamics governed by
a master equation due to coupling to an infinite-dimensional
environment. We proved that in the first setting, depending
on additional assumptions concerning the initial states of the
system and the environment and their interaction, either an
anneal-bang (Theorem 5) or bang-anneal (Theorem 6) sched-
ule is optimal.

In the second setting (infinite-dimensional environment) we
considered both an adiabatic Redfield equation accounting for
non-Markovian dynamics but without a complete positivity
guarantee, and a completely positive Markovian master equa-
tion. In the former (Redfield) case we could only prove that
the optimal schedule terminates with the driver Hamiltonian,
ie., s(ty) = 1 (Theorem 7). One could interpret this result
as a manifestation of the phenomenon of the shortening of the
nonsingular arcs as the fotal system (i.e., the subsystem plus
its environment) size increases. Indeed, in the Redfield case
the environment Hilbert space dimension is infinite, which is
consistent with the bang arc having shrunk down to a point. In
the fully Markovian case, even this last remnant of the bang-
arc was not recovered, as we found no evidence of natural
conditions under which s(¢;) = 1 holds.

Let us now comment on the differences between these the-
orems and their closed system counterpart, Part (ii) of The-
orem 2. Regarding Theorem 5 concerning the final arc, the
main change is the addition of the assumption that the in-
teraction Hamiltonian commutes with the cost function, i.e.,
[H;,C ® 1g] = 0. Writing the interaction in the general form
Hr =), Sa ® E,, where S, and E, are system and envi-
ronment operators, respectively, the assumption is equivalent
to [Sa, C] = 0 Va, which is the same assumption as in Theo-
rem 7. Thus C' must belong to the commutant of the algebra
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generated by the set {S,}, i.e., C € Alg{S,}.” For exam-
ple, if S, = > | o for a system of n qubits, where o €
{z,y, 2}, i.e., the collective decoherence case [56, 57], then,
if C'is at most a two-body interaction, it follows that it must
be of the Heisenberg interaction form: C' = 3, Jijo; - 0,
where J;; are constants [58]. Or, for a classical target Hamil-
tonian arising in optimization such as the Ising-type Hamilto-
nian mentioned in Sec. I, this means that the interaction must
be of the pure-dephasing type, i.e., S, o o* (or products of
o* over different qubits). This is a realistic model, e.g., for
superconducting qubits undergoing flux noise [59].

Regarding Theorem 6 concerning the initial arc, the main
change is the addition of the two assumptions that (i) the envi-
ronment Hamiltonian commutes with the environment’s ini-
tial state ((Hg, pp] = 0), and (ii) the interaction Hamilto-
nian commutes with the joint system-environment initial state
([Hr, po ® pr] = 0). The first of these is natural and is known
as the stationary environment assumption [32]. It is satisfied,
e.g., if the environment is in thermal equilibrium, i.e., in the
Gibbs state: pgp e BHE where [ is the inverse temper-
ature. The second assumption means that pg € Alg{S,}’
and pg € Alg{E,}’. This assumption is the least natural of
the ones we have encountered so far. E.g., it is clearly vio-
lated in the standard quantum annealing setting where pq is
the ground state of a transverse field — ), o7 and S, o o”.
Even the condition pg € Alg{E,}’ is not very natural. For
example, for a bosonic environment one typically has F, as
the position operator of an oscillator, while Hr might be the
number operator, in which case the Gibbs state pp would not
commute with F,.

We note that while the conditions given in Theorem 6 are
sufficient, we do not know if they are necessary, which we
thus leave as an open problem. We conjecture that the ini-
tial bang does not appear as a feature of optimal schedules for
open systems coupled to an infinite-dimensional environment.
This state of affairs would be reminiscent of the existence of
an arrow of time for open systems, which breaks the symme-
try between the initial and final times (see, e.g., Ref. [42] for a
similar effect in the pure QA setting). On the other hand, given
the naturalness of the sufficient conditions under which a fi-
nal bang arc (Theorem 5) or a schedule terminating with the
driver Hamiltonian (Theorem 7) are optimal, such schedules
may find utility in the design of quantum algorithms for op-
timization problems in the setting of open quantum systems.
This is true in particular for systems that are well described by
the adiabatic Redfield master equation, e.g., superconducting
flux qubits used for quantum annealing [60-63].

However, the conditions under which the adiabatic Red-
field master equations hold need not apply in general, e.g.,
for Hamiltonians that arise naturally in systems such as Ry-
dberg atoms or transmons, which have been used to demon-
strate QAOA [10, 64]. Especially for quantum optical systems
such as Rydberg atoms, the Markovian limit may be more ap-
propriate, and we have not found evidence of the optimality of

9 The commutant of an algebra A = Alg{A} is defined as the set A’ :=
{X|[X,A] =0VA € A}.



an initial or final bang arc in this limit, or even the optimality
of s(t f) =1.

While our analysis does not strictly rule out bang-type
schedules for open systems coupled to infinite-dimensional
environments, we conjecture that they are indeed not a fea-
ture of optimal schedules in this case, primarily due to the
shortening of arcs in the open system setting. If this could be
confirmed, it would mean that after all, continuous annealing-
type schedules are optimal for optimization purposes when
using open quantum systems, which would have implications
for all NISQ-era optimization algorithms.

Finally, we remark that throughout this work we have used
a simplified form of the PMP as described in Theorem 1. A
more general PMP for time-dependent dynamics is described
in Ref. [55]. The main difference is that HH = A [Eq. (12)] is
no longer valid in the given form. This equation is, in fact,
a special case of another one which contains the derivative of
the dynamics with respect to ¢, and this term vanishes when
the dynamics are not explicitly time-dependent, as in our case,
where we considered adiabatic time-dependent master equa-
tions. The time-dependence of the dynamics in typical quan-
tum master equations [42-51] is, however, different from the
one of models usually encountered in classical control theory,
and therefore further study is required before the PMP can be
applied to a broader class of quantum master equations.

ACKNOWLEDGMENTS

LCV’s and DL’s research is based upon work (partially)
supported by the Office of the Director of National Intelli-
gence (ODNI), Intelligence Advanced Research Projects Ac-
tivity (IARPA) and the Defense Advanced Research Projects
Agency (DARPA), via the U.S. Army Research Office con-
tract WO11NF-17-C-0050. DD’s research was supported by
the NSF under Grant ECCS 1710558. DL’s research was
also sponsored by the Army Research Office and was ac-
complished under Grant Number W911NF-20-1-0075. The
views and conclusions contained herein are those of the au-
thors and should not be interpreted as necessarily represent-
ing the official policies or endorsements, either expressed or
implied, of the ODNI, IARPA, DARPA, or the U.S. Govern-
ment. The U.S. Government is authorized to reproduce and
distribute reprints for Governmental purposes notwithstand-
ing any copyright annotation thereon.

Appendix A: Examples of reachability/unreachability of the
ground state of C'

Here we provide two examples, one where Prop. | guaran-
tees reachability of the ground state of C' despite the algebra
generated by B and C' being smaller than the full su(d), an-
other illustrating that [B, C| # 0 is not a sufficient condition.

12
1. First example

Let B=0*Q1 C =0*"Q0c%+0cYQ®c¥+ 0°R® o>
Both B and C commute with M = ¢* @ T+ I ® o*. We
know that the ground state of C' is a singlet %(HT) — 1)
with total spin zero and hence belongs to the sector M = 0.
This statement follows from a theorem of Marshall [65, 66]
and holds for general antiferromagnetic Heisenberg models
defined on a bipartite lattice. In particular, it does not require
knowledge of the ground state. The projector Py is given by

Po = I T+ X (A1)

In Ran(P;) one has:
P,BP, = o* (A2a)
PCPy=—-1+20". (A2b)

Therefore in Ran(P,), B and C' generate the full su(2) alge-
bra and any state in Ran(Fy) can be reached starting from any
state in Ran(Fp), in particular the ground state of C.

2. Second example

It is straightforward to find examples where the ground state
of C cannot be reached even when [B, C] # 0. Consider, e.g.,
B=0c"®@Tand C = 0" ® I+ 1® o”. In this case the
Lie algebra generated by B and C is su(2) ® u(1) # su(4)
and only the first qubit can be fully steered anywhere on the
Bloch sphere. As a consequence, the ground state |}]) of C
cannot be reached unless one starts with a state of the form
po = p @ [LX{ |, with p being an arbitrary single qubit state.

Appendix B: General results on optimal control; the Pontryagin
Maximum Principle

We review here standard results in optimal control theory
emphasizing a geometric viewpoint and the results needed for
the applications in the main body of the paper.

1. Setup

In optimal control theory (see, e.g., Ref. [55]) one considers
a general control system

.f:f(.%‘,s),

with z € RM,'0 the control s with values from a compact
subset S C RM f a smooth map RV x R™ — RY that does

x(0) = o, (B1)

10In our case z is either a wavefunction 1) (N = n) or a density matrix p
(N = n?), after the coordinatization described in Appendix C.



not depend explicitly on time. The terminal cost (of Mayer
type'")

J = o (z(ty))

is to be minimized at the terminal (final) time ¢, where ¢
is a smooth function. In particular, and this is the case that
interests us, one can fix ¢ so that J only depends on the final
state z(t ).

The geometric approach to the necessary condition of op-
timal control (see, e.g., Ref. [67]) is based on the concept of
a reachable set (or attainable set) for Eq. (B1) with values of
the control in S, which we denote by R;. The set fR; is the
set of values for the state = that can be reached (from zg) at
time exactly t for control functions with values in the set S.
With this definition, the minimum of the cost J in Eq. (B2) is
the minimum of the function ¢ over R;,. One also defines
the reachable set R<;, := Up<i<i, MR, and if Ry is non de-
creasing with ¢, Ry, = MR<4,. This is the case for Eq. (15) if
one assumes, as we do, that po commutes with B (in this case
the system can remain in the state pg for an arbitrary length of
time with the choice s = 1). If the set of admissible controls
S is compact (as assumed in the main text) and under general
conditions on the map f in Eq. (B1), which are also satisfied in
our cases, Filippov’s theorem (see, e.g., [67, Th. 10.1]) states
that the reachable sets are compact and this implies the exis-
tence of the minimum of the function ¢ and therefore of the
optimal control.'” The introduction of the concept of a reach-
able set effectively reduces the optimal control problem to a
static optimization problem for the function ¢, where the set
of possible dynamics is described by the reachable set R, that
roughly separates the minimization problem from the analysis
of the dynamics.

(B2)

2. The Pontryagin Maximum Principle (PMP)

The basic necessary conditions of optimality are given by
the Pontryagin Maximum Principle (PMP), which we restate
below in a more general formulation than in the main text, but
in a context relevant for the problem of interest to us, i.e., a
fixed final time and a free final state. Assume that s* = s*(¢)
is the optimal control function and z* = z*(t) the optimal
trajectory. We shall refer to (z*, s*) as an optimal pair. We
have the following.

1 In control theory, problems with a cost that depends only on the final values
ty and x(ty), are called of Meyer type. In our case the cost does not
depend explicitly on time so we simply consider cost of the form ¢(z(t))
to simplify the notation.

12 Filippov’s existence theorem can also be applied in the version of Theo-
rem 2.1 in [55, Ch. III] if we assume [as for Eq. (15)] that f in Eq. (B1) is
linear in both the control s and state z, the cost J in Eq. (7) is smooth, and
the set S is compact. Application of this theorem also takes into account
that p in Eq. (7) is bounded. The only condition that is not directly satisfied
for Theorem 2.1 in [55, Ch. III] is condition (c¢) for which we can, however,
use the alternative (c’) of Corollary 2.2 in [55, Ch. III], i.e., the existence
of a constant 1 such that {z1 | J = ¢(x1) < p1} C R™ is compact.
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Theorem 8. Assume that (x*,s*) is an optimal pair. Then
there exists a nonzero vector of functions p = p(t) € R"
called the co-state that satisfies the terminal problem

5 =" @@, 0), 7 (1) =~ 2 (),

(B3)
with f defined in Eq. (B1) and ¢ defined in Eq. (B2). Further-
more, define the Hamiltonian function

H (p,x,s) ;== p f (2,5) . (B4)
Then we have (maximum principle):
H(p,z*,s") = maxH (p,2*,v) , (B5)
veS
(where S is the set of admissible controls) and
H (p(t), 2" (t), s*(t)) = A, (B6)

for a constant \.

The constant A describes the dependence of the optimal cost
on the terminal time ¢ ;. To see this, given the optimal control
s* defined in [0, %], calculate the variation of the cost with
this control att = ¢y,

91 6w = P f ), s(tp)

= —p" (tg) f (x(ts), s(ts))
=-, B7)
where we used Egs. (B1), (B3) and (B6). In particular, A > 0
indicates that it is possible to lower the cost by increasing the
time or, in other words, the constraint t = t; is active. If
A = 0 the constraint on the final time is not active. If A < 0,
the above calculation shows that the cost is actually increasing
witht att = ;.

If there exists a value s in the admissible control set S
such that f(xg,s9) = 0 in Eq. (B1), we can show that we
must have A > 0. The argument is as follows. Assume A < 0
in Eq. (B7). Since ¢(z(t)) is increasing in ¢, there exists an
€ > O such that ¢(z(ty —€)) < ¢(x(ty)) = J. Now construct
the following control function

n1(t) = {s*ue)

i.e., s1 leaves the cost unchanged in the first interval of time
[0, €] and then follows the optimal schedule shifted by €. Let
us denote by ¢;(t) the cost function at time ¢ obtained with
control sq. Then, by construction, ¢1(t¢) = ¢(z(ty —€)) <
¢(z(ts)), which contradicts the fact that s* is optimal. There-
fore A cannot be negative. Summarizing, we have:

t€10,¢

te (et B8

Proposition 1. Assume there exists a value sg € S such that
f(xo,80) =0inEq. (B1). Then A > 0in Eq. (B6), and \ > 0
if and only if the constraint on the final time 1 is active.



For the problem of interest in the main body of the paper
the above assumption on the existence of the value s € S
is valid in Theorems 2 and 6, since we assume that the ini-
tial condition commutes with the Hamiltonian B (i.e., we can
choose sg = 1). Furthermore, we note, concerning reachable
sets, that (i) because of the existence of such a value sg € S,
we have R<; = Ry; (ii) from standard result in control the-
ory, (e.g., Ref. [33, Th. 1] and references therein) we know
that for the bilinear class of models [such as Eq. (15)], the sets
R<i = Ry are compact and continuous with ¢ with respect to
the Hausdorff metric.

Since the optimal cost J is the minimum of the continuous
function ¢ = ¢(x) on R, ;» it depends continuously on ty,
and since Ry, is nondecreasing with ¢y, the optimal cost is
nonincreasing with ty. That the constraint on the final time
is active means that the cost is actually strictly decreasing.
Notice in particular that the function ¢ = Tr(Cp) giving the
cost in Eq. (7) is linear in the state (p); hence the minimum is
necessarily achieved on the boundary of the reachable set.'?
Therefore A > 0 in Eq. (B6) implies that at the optimal final
point, the boundary of the reachable set R;, “moves” in such
a way so as to make the cost decrease.

Appendix C: Coordinatization in terms of an orthonormal real
matrix basis

The application to quantum systems of the PMP, which is
typically formulated over real vector spaces as in Appendix B,
has to account for the fact that in the quantum case the equa-
tions are complex-valued. To show how this can be done we
start with some basic preliminaries.

We denote the Hilbert-Schmidt scalar product between op-
erators A and B acting on an n-dimensional Hilbert space H
by (A, B) := Tr(A' B). For superoperators £, we denote the
Hilbert-Schmidt adjoint of £ by LT, which is defined via

(LT(A),B) := (A, L(B)) VA,B. (CI)

We now choose an orthonormal basis { F; } for the real vec-
tor space of Hermitian n x n matrices with Hilbert-Schmidt
inner product (A, B) = Tr(AB). Let us “coordinatize”
X =3 ; X ;F; in this basis, where henceforth we use the

notation X = {X;} for the vector of real-valued coordinates
of the operator X. Then:

(A,B) =) A;ByTx(F;F,) =Y A;Bdj
Jk jk
=A"B, (C2)

so that in these coordinates the inner product (A, B) corre-
sponds to the standard inner product in R™. In particular,

13 For a linear function ¢(z) = kT 'z, if the minimum is achieved at an inte-
rior point setting the derivatives equal to zero would imply k£ = 0.
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the Hermitian density operator p = Y. p, F}, is now repre-
sented by a real, n2-dimensional vector p.'* Since the Liou-
villian is Hermitian preserving, i.e., [£ (X)]" = £ (XT)vx,
after coordinatization the operator £ can be seen as an oper-

ator R”* — R"’. Indeed, denoting the corresponding matrix
by £ in the chosen basis, i.e., £;; = Tr (F;L (F})), one has

=T [(RL(F)] =T (1) F)
=Tr (L (F)) Fi) = Lij - (C3)
i.e., the matrix £ is real and defines an operator R™” s R,

Accordingly, Eq. (6) is transformed into a real-valued equa-
tion:

p==Lp, p0)=pg. (C4)
The cost (7) takes the form
J=C"p(ty). (C5)

We are now ready to state the PMP in the standard setting
of real-valued functions, in the form needed for our purposes.
Namely:

Theorem 9. Assume (p*, s*) is an optimal pair for the prob-
lem defined by Eqs. (C4) and (C5) for a fixed final time ts."
Then there exists a co-state vector p that satisfies'’

p'=-p'L, plty)=-C. (C6)
Furthermore, define the PMP control Hamiltonian function
H(p,p,s)=p"Lp. (C7)

We then have the maximum principle:

H(p(t), p*(t),5"(1)) = max H(p(t), p*(t),v) , (C8)

v€e(0,1]
and there exists a real non-negative constant A such that
H (p(t), p*(t),s"(t)) = A (€9)

Theorem 1 is readily obtained applying coordinatization
in reverse. To see that Eq. (C6) corresponds to Eq. (8), let
us write Eq. (C6) explicitly as p, = — Zj Ljip;. Next,
since L is real we have L£;; = (F;,LF;) = (F;,LF;)" =

14 This representation is closely related to the familiar “coherence vector” v,
2
wherein one represents p as p = %(I[—&- Z;L:Il v;Fj), where F, 2 :=1

2
and the other orthonormal basis elements { F; };':I ! are in addition trace-

less; see, e.g., Ref. [68].
15 Recall that here the asterisk denotes optimality, not complex conjugation.
16 In the notation of Appendix B the co-state vector satisfies the adjoint equa-
tion (B3), and in the present case g/ =L

z



(LF;, F;) = (F;, LTF;). Thus

p=Y pFi=-Y LpF (C10a)
1 17
=— Z(Fi,,CTFj)iji (C10b)
ij
=— Z(Fi,ETp>Fi =—Lip. (C10c)

Finally, the correspondence between Eqgs. (C7) and (10) is a
direct consequence of Eq. (C2): {p, Lp) = p Lp.

Appendix D: Proof of various formulas
1. Proof of Eq. (14)

The proof is, for for arbitrary operators A, B, X:

(A, Kk (B)) = (Kx(4), B) (Dla)
= (—i[X, A}, B) = i Tr([X, A]'B)  (DIb)
=iTr(ATXTB — ATBXT) (D1c)
=i Te(A'[XT, B]) = i(4, [x", B]) (Dl1d)
= (4, -Kxi(B)), (Dle)

where we used (X,Y) = Tr[XTY].
2. Proof of Eq. (34)
Let Dp := [Wp, V1] + [W, pVT]. Then:
(X, Dp) = Tr (XT[Wp, VI]+ XT[V, pWT])
=T [(vixtw — xtviw
+WIXTY - WIVXT)p| (D2a)
=T [(WIXV - Wivx
FVIXW - XVTW)Tp} (D2b)
= [(WHX, V] + [V ,X]W)Tp} (D2c)
= (D'X,p), (D2d)

which yields Eq. (34) when we replace W by W,3, V by
Sy = S,L, and sum over «, (3.

3. Proof of v3(t) > 0 for sufficiently small ¢

Let us compute the Dyson series solution of Eq. (22a) to
second order:

w(t) = [1+ / ity M(s(t)+ (D3)

/ dtl/ldtg M(s(t1) M(5(t2)) + O()] v -
0 0
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Using Eq. (22b), for the initial condition vy = (1,0,0)”
there is no contribution from the first (and in fact also
the third) order, while the second order contributes via
[M(s(t1))M(s(t2))]5; = s(t1)(1 — s(t2)) > 0. Hence,
using s(t) € [0,1], v3(t) = [ dty fy" dta s(t:1)(1 — s(t2)) +
O(t*) > 0 for sufficiently small . In contrast, for the initial
condition vy = (—1,0,0)” we have v3(t) < 0 by the same
argument.

Appendix E: Optimal control and the geometry of the reachable
set

The cost considered in this work is linear in the state p,
which after coordinatization we have identified with a point
p in R”z, that is, J = CTp. In R”Z, we also consider the
reachable sets R; at various times ¢. It is of interest to con-
sider the level lines (hyperplanes) CT p = k for various k’s.
If %k is the minimum cost at the final time ¢y, the level line
CTp = k intersects the boundary of the reachable set 91, ;at
the point p(¢s). In our case, the reachable sets 93, are always
nondecreasing with ¢. Figure 3(a) describes the regular situ-
ation of an active time constraint (A > 0 in the main text).
The intersection occurs at a point where the reachable set is
increasing with time. Therefore an increase (decrease) of the
final time ¢ results in a decrease (increase) of the optimal
cost. However, in principle, a different situation may occur
which is described in Fig. 3(b). In this case, the reachable set
R; increases with ¢ but not at the point where the optimum oc-
curs. In this case the final time constraint is not active (A = 0).
Notice that by continuity of the reachable set R; with ¢, the
point p(t;) where the optimum was achieved with the final
time ¢ will give the optimal for ¢¢ + € for sufficiently small
€ > 0. The corresponding control will be a zero control which
keeps the state at the initial value for time e followed by the
same control applied to reach p(ty).

Since we have not claimed uniqueness of the optimal con-
trol, the two situations may occur simultaneously for two dif-
ferent optimal trajectories. For one of them the final time con-
straint is active, while for the other one it is not. Given the
additional structure of our problem, it should be possible to
say more about the geometry of the reachable sets for the sys-
tems of interest here beside what is known from, for instance,
Ref. [33]. However, this is beyond the scope of this work.

Appendix F: Proof of Theorem 3

Proof. Let us denote by J(t;) the cost function obtained
with control § := 5(¢). By definition, the optimal control
satisfies Jmin(ts) < J(t;). Hence, to prove Juin(t;) <
Jmin(0) = (C, po), it suffices to show that there exists a con-
trol 5 for Eq. (6) such that the corresponding cost .J(¢) sat-
isfies j(tf) < Jmin(0). This is the proof strategy we employ
here.

Specifically, we consider a bang-bang control schedule s in
the interval [0, 2¢] and denote the corresponding cost starting



CTp=k <k

(2)
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p(ts)

CTp=k

(b)

Figure 3. (a) Behavior of the optimal cost in the regular case where the reachable set increases with the final time at the optimal point p(ty).
In this case we expect A > 0. (b) Behavior of the optimal cost in the case where the reachable set increases with the final time but not at the

optimal final point p(¢s). In this case we expect A = 0.

from pg by J(2t). We will show that .J(2t) < .J(0) for suffi-
ciently small £, which gives

Jmin(2t) < J(2t) < J(0) = Juin(0) = Tr(Cpo) . (F1)

and this proves the theorem with ¢y = 2¢.

The class of controls we consider is § = 1 [corresponding
to K¢ in Eq. (15)] for an interval of length ¢, followed by
§ = 0 [corresponding to K in Eq. (15)] for a second interval
of length ¢. This gives for J(¢) [Eq. (7)]:

j(2t) =Tr (C’e*iBtefiCtpoeiCteiBt) . (F2)

We work in a basis where B is diagonal with eigenvalues in
decreasing order: B = diag(Ap, Ap—1,...,A1) and Ay <
Aj, for each 7 = 2,3,...,n (nondegeneracy). In this basis
po = diag(0,...,0,1).

In Eq. (F2), the Baker-Campbell-Hausdorff (BCH) formula
yields:

J(2t) =Tr [eiBtCe_ith

t2
(0 —lC, polt = [C,C.p0l) 5 +OE))]  F3)

Applying the BCH formula again, this time to e!?!Ce~tBt,
we obtain:

J(2t) = Tr

(C +1i[B,CJt — B, [B,C]}t;) X

t2
Qrmmwﬁammb)+mﬁ.m>

Expanding, we obtain:

- 2

J(2t) = Tx(Cpo) + i TR([B, Clpo)t — Te((B,[B, Cllpo)
- ZTI'(C[C, PODt +1Tr ([B7 C] [Ov PO]) t2

2
~ TR (G, [Cpol) 5+ O (ES)

Several of the terms in the above equation vanish. In particu-
lar,

Tr([Bvc]pO) :TI“([pO,B]C) =0, (F6)

since B and py commute. Tr([B,[B,C]]po) = 0 for the
same reason. —i Tr(C[C, pg]) = —i Tr(po[C,C]) = 0, and
Tr (C[C, [C, po]]) = Tr([C, po][C,C]) = 0. Therefore we
have

J(2t) = Tr(Cpo) = Tr ([B, C][C, po]) £* + O(#*) . (FT)

Write

_ A 0 _ Cl a
B_<O )\1)’ C_(aT c)’ (F8)

with A = diag(Ap, ..., A2), Cy an (n—1) X (n— 1) Hermi-
tian matrix, ¢ a real number and @ an (n — 1)-th dimensional
complex vector. With these notations, we have

[B,C] = <af([>\/\1’fﬂ A) " OM)G) (F9)

0
[C. po] = (_aT 8) : (F10)
From this we obtain:
’I‘r([B,C][C,po]) :2GT()‘1]I_A)CL7 (F11)



so that we have, from Eq. (F7):

J(2t) = Tr(Cpo) = =2 [ D (N = M)las* | + 0%,
j=2
(F12)
where a; are the components of a. Since A; > A for each j,
we have for sufficiently small ¢:

J(2t) = Tr(Cpo) = J(B) = Juin(0) <0, (F13)
as required. We have assumed here that at least one of the
components of a is nonzero. If that were not the case then
[po, C] = 0 and po would be fixed not just under B but also
under C'. There would then be no dynamics, which is a case

that is naturally excluded. O

Appendix G: Singular arcs

Along singular arcs we have x¢c = zp, i.e.,

(B,S) = (C,S) . (G1)

Differentiating Eq. (G1), using Eq. (39) we find (B, Ky S) =
(C,KyS). Using H = sB+ (1—s)C and the antihermiticity
of Ky we thus obtain:

(K}(B),S) = (K};(C), S) = (G2a)
(1-s)[C,B]",S) = (s[B,C]",S) = (G2b)
—(1—s)([C,B],S) = s(|C,B],S) = (G2c)
([c,B],S)=0. (G2d)

Analogously, differentiating Eq. (G2) and using the antiher-
miticity of K again, setting D := [C, B], we have:

0=(D,S)=(D,Ku(S)) = (K}(D),S) (G3a)
= —(1-s)([C,D]",8) — s([B, D', 5) (G3b)
= (1—s)([C, D], S) + s([B,D)],S) . (G3c)

Conditions (G1)-(G3) have to hold along a singular arc. In
an algorithm to calculate the dynamical Lie algebra for the
controllability of Eq. (15) [25], the matrices B and C are the
matrices of “depth” zero in the calculation via iterated Lie
brackets. The matrix [C, B] is of depth one and the matrices
[[C, B],C] and [[C, B], B] are of depth two. Now, one can
have either (i) {[C, D], S) # ([B, D], S) or (ii) (|C, D], S) =
([B, D], S). In case (i) it follows from Eq. (G3) that
(¢, D], S)

S=1{C.DL.5)_(B.D].9) ©9

(compare with Ref. [24, Eq. (12)]). This shows the continu-
ity of s in the corresponding open set(s). Case (ii) implies
(IC,D],S) = ([B,D],S) = 0 (in some closed set). One
can further differentiate one of these equations and obtain an
analog of Eq. (G3) at a higher order, at which point similar
reasoning can be applied. In principle s can be defined in
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different intervals by equations such as Eq. (G4) or its higher
order generalizations. In each interval s is continuous because
of the continuity of S. We leave a more general proof of conti-
nuity of s on the entire singular arc as an open problem. In any
case, equations (G2)-(G3) provide information on the dynam-
ics along singular arc intervals. They are used in the example
discussed in Appendix H.

Appendix H: Optimal control protocol for the spin-% model

Here we analyze in detail the optimal control problem for
the spin—% model treated in Sec. [V C. Our goal is to give a
simple but explicit example to show how the results developed
in this paper can be used to find the optimal control. We shall
use the same notation as in the example of Sec. IV C. To avoid
the situation of an inactive terminal time constraint described
in the example, we assume that the initial state is the ground
state 29 = (—1,0,0)7, so that we can apply Theorem 3.

1. The global minimum is found using two non-singular arcs
intimet; > 7

Recall that C = ¢*/2 and B = ¢® /2. The global minimum
of the cost (7) is Jmin = Tr[Cpy] = —1/2, achieved when
ps = (I —07)/2, the ground state of C' = o*/2. Given that
our initial condition is py = (I — 0®)/2 (the ground state of
B, corresponding to v = (—1,0,0)7), we can trivially reach
pr = (I — 0%)/2 by applying two consecutive bangs (i.e.,
unitary single-qubit gates): first e=*("/2)¢ (rotation to (I —
o¥)/2) with s = 0, then e=*("/2)B (rotation to (I — 0%)/2)
with s = 1. Each bang lasts for a time %, therefore the total
bang-bang sequence last for a total time of 7. This sequence
presents no singular arcs. For any t; > 7 the constraint on ¢y
becomes inactive, i.e., increasing ¢y cannot further lower the
value of Jyi,. Since we assume that the global ground state
is not reached (recall the discussion in Sec. IV B), henceforth
we assume that ¢y < 7. In principle, this setting could still
allow for the appearance of singular arcs. However, we shall
show that this is not the case.

2. Conditions on the singular arcs for the spin-1/2 model

Let us derive the conditions on the singular arcs in the
present problem, which are a special case of the computa-
tions carried out in Appendix G. Using Eq. (20), we obtain
[Ca B} = in/Q, HO) B],C} = 70—1/2’ [[Oa B]vB] = Jz/2
Using these, Egs. (40b), (41), and (G1) for the switching op-
erator S become:

20 = Tr (So®) = Tr (So®) = 2zp . (H1)
Condition (G2) becomes:
Tr(Se¥) =0, (H2)



and condition (G3) becomes (1 — s) Tr(c®S) — s Tr(c*S) =
0, which using Eq. (H1) gives:

(1-2s)Tr(c”S)=0. (H3)
Thus, either s = 1/2 or Tr(c®.S) = 0. Let assume the latter.
From Egs. (H1) and (H2) we obtain Tr(c*S) = Tr(c¥S) =
0. Since we can expand S = 3 Z?zl Tr(So;)o; (S is trace-
less since it is defined as a commutator), this would then imply
that S = 0 on a singular interval. However, since S satis-
fies the linear equation (39), this would imply S = 0 on the
whole interval [0, /] and, in particular, [po, po] = [py, ps] =
—[C, ps] = 0. This would imply that p; is a linear combi-
nation of eigenprojectors of C, but since py is a pure state it
must in fact be equal to a single eigenprojector. Moreover,
this must be the ground state of C since J(¢) is minimized
att = ty. But, since J(ty) < J(0), the only possibility is
that J = Tr(Cp) reaches its global minimum at ¢z, which
contradicts our assumption that ¢ ¢ is smaller than a value that
would allow the global minimum to be reached. Hence we
conclude that Tr(c®S) # 0in Eq. (H3), which yields s = 1/2
on the singular arcs. However, we shall see in Proposition 3
that singular arcs are in fact not possible in this case.

3. Candidate optimal controls with a singular arc

Using conditions (H1) and (H2) along with Eq. (42)
equated to A\, we have that in the time interval of a singular
arc

S=A(c"+0%) . (H4)
A = 0 is impossible because according to the argument at the
end of the previous subsection S = 0 is to be excluded. Since
A # 0, we can apply all the conclusions of Theorem 2 and
affirm that the optimal control starts with an s = 0 bang arc
and ends with an s = 1 bang arc. Therefore, preceding or
following a singular arc we must have s = 0 or s = 1, respec-
tively. Let us show that after a singular arc we cannot go to a
switching point, i.e., where Eq. (H1) holds [(A, \) in Fig. 2].
(Analogously, changing the sign of time, we can show that a
singular arc cannot be preceded by a switching point.) As-
sume that after the singular arc we have s = 0. The switching
operator S = S(t), with t = 0 at the end of this singular arc,
is then the solution of Eq. (39) with the initial condition (H4),
ie., S(t) = \e 97 /2g%¢7"/2 1 \g*. The minimum time
needed for it to return to a switching point is ¢ = 2m. This
contradicts the fact that £y < 7 and therefore is impossible.
Similar reasoning shows that we cannot go back to a switching
point with s = 1. Therefore, we have learned the following
fact about optimal control in the single-qubit case:

Proposition 2. The optimal control has at most one singular
arc and, if it does, the optimal control is the sequence s = (),
1 .
s=3,s=1
2)

Consider now the initial switching operator Sy, which to-
gether with the differential equation Eq. (39) determines the
control sequence. Since S is traceless, we can write Sy =
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7o - o, but using Eq. (37) and py = (I — ) we see by
expanding p in the Pauli matrix basis that .Sy cannot contain
o”, i.e., we find that S; has the form

So = 10y0Y + 100" . (H5)

In the first interval s = 0 and therefore, from Eq. (39):
S(t) =ro,0° + 7‘0ye*“"z/Qoyei’f"z/2 (H6a)
= 10,0° + roy cos(t)a? — ro, sin(t)o® (H6b)

If there is a singular arc and therefore .S takes the form (H4),
then we must have ¢ = 7 and ro, = —rg, ort = 37” and

roy = Toz. The second case is to be excluded since £y < 7.
After the singular arc we would have s = 1, which, using
Eq. (39) again would give:

7zt0'"/20_zezt0'“/2

S(t) (H7a)

(H7b)

=T10:0" + 1026
= 10,0" + 19, (cos(t)o® — sin(t)o?) .

Since we have to reach the point (z¢,2p) = (0, ) in Fig. 2,
we must have cos (£) = 0, i.e.,t = Z or t = 2, which has to
be added to the time used before the last interval. Therefore
the total time is greater than or equal to 7, which we have
excluded.

In conclusion we have:

Proposition 3. No singular arc exists in the optimal control
for the spin-1/2 example with ty < .

4. Candidate optimal controls without singular arcs

Now we consider the optimal control candidates knowing
that they must be free of singular arcs, i.e., they can con-
sist only of bangs. Since S(¢) is traceless we again use the
parametrization S(t) = r(t) - o. We already know [Eq. (H5)]
that:

r(0) =70 = (0,704, 702)" . (HS8)
We know from Eq. (39) that the vector r evolves according to
Egs. (222)-(22b). More explicitly, let X := Kp and Z :=
Kc. When s = 0, H = C' and r evolves according to etZ,
and likewise when s = 1 it evolves according to e**X, where,
using Eq. (21):

1 0 0
!X = 0 cos(t) —sin(t) (H9a)
0 sin(t) cos(t)
cos(t) —sin(t) 0
e'Z = | sin(t) cos(t) 0 (H9b)
0 0 1

Since we have shown that A > 0, from Theorem 2, the control
law will start with an s = 0 bang arc and end withan s = 1
bang arc. The control law is determined by a sequence of
intervals of lengths {71, 72, ...} where for k odd (even) 7y



marks the switch froms =0tos =1 (s = 1 to s = 0), that
isZ - X (X — Z). Thatis,

TZ
T‘(tk):{ e’k ’!‘(tkfl) k odd

keven ’ (H10)

e X (tp_1)

where t;, = Zle 7; is the total time after k intervals. Note
that in principle there is no guarantee that such a switching
sequence is finite, even if the total control interval is finite;
this is known in the control theory literature as the Fuller phe-
nomenon (see, e.g., Ref. [69]). We shall see in Remark 1 that
this does not happen in our case and we have a finite sequence
of intervals of lengths {71, 72, ..., 75} with N even (accord-
ing to Theorem 2). Given our definitions, t; = Zi\; Tis
where 7y and 7 are the lengths of the initial (Z) and final
(X)) arcs, respectively.

5. Characterization of the switching times

Note that the vector 7 = (r,,7,,7.)T consists of the com-
ponents of S along the Pauli basis, and that r, = zp and
r, = x¢ [Eq. (H1)]. Recall also that, as argued in Sec. VI A
(see Fig. 2), (zc,zp) = (A, A) at every switching point.
Hence r, = r, = ) at every switching point between non-
singular arcs in our discussion below.

The optimal candidate control law is characterized by a
sequence of intervals of length 71, 75, etc. Define the se-
quence {Ay, } recursively from the sequence {75, } via Ag = 0,
Ar =71 — Ap_1,fork=1,2,.... Then:

Lemma 1. Forn = 1,2, ..., except for the n corresponding
to the last control interval

(—1)" sin (A) Toy = T0z, (H11)
[cf- Eq. (H5)] and
T (tn) = (T0z, cos(Ay)Toy, T(Jz)T (H12)

Proof. The proof is by induction on n. For n = 1 we have
Ay = t; = 7. At the end of the first arc we must reach
the point (z¢,zp) = (A, A), which means that r(r) =
(702, %,70-)T. Thus, using Eq. (H10) and €™ in Eq. (H9b),
we obtain Eqgs. (H11) and (H12).

Now assume Eq. (H11) and Eq. (H12) hold forn — 1. If n
is even we have

r(ty) = e Xr (t,_1) . (H13)

Next, use Eq. (H9a), and impose r(t,) = (ros,*,70:)%,
since (x¢,xB) = (A\,A) at every switching
point. Equality of the z component then gives
sin(7,,) cos(Ap—1)roy + cos(7,)ro- = 7ro., and using
Eq. (H11) with n replaced by n — 1, we obtain rg, =
sin(7,,) cos(Ay,—1)roy — cos(1y,) sin(A,,_1)re, = sin(r, —
A,_1)roy = sin(A,)ro,. Calculating the y component of
r(t,), we obtain cos(7,)cos(An_1)roy — sin(r,)ro. =
cos(7y,) cos(Ap—1)roy  +  sin(7,) sin(A,_1)roy =
cos(A,,)roy, using again the inductive assumption Eq. (H11).
A similar calculation with Z replacing X in Eq. (H13) gives
the result when n is odd. O
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6. Determination of the Optimal Control

We now use the formulas in the above Lemma to deter-
mine the optimal control. Define ;1 = arcsin TOZ) and no-

’I”()y
tice that from Eq. (H11) forn = 1 and A; = 71 we have
i = arcsin (—sin (7y)). Since 0 < 7; < w, wehave g = —7y
form € (0,7/2]and p = —7 + 7 for 1y € [7/2,7), and in
particular p < 0.

Let us consider first the possibility that 0 < 73 < 5. We
also have 3 = A; = —pu. If there is more than one switch
(i.e., 72 > 0), then we can derive Ay from Eq. (H11). We
have either Ay = m — pu + 2lw or As = p + 2lx for integer
l. Recalling that 75 = 71 + Ao, in the first case we have
T = m — 2 + 2lm, and in the second case 75 = 2lw. The
second case is not possible because 7 must be in (0, 7). The
first case is not possible either because [ > 0 would contradict
that the total time must be less than 7 while [ < 0 would give
a negative or zero interval 5. Therefore, in the case 0 < 7 <
5 there exists only one switch and the control is simply the
sequence of two bangs, one corresponding to s = 0 followed
by one corresponding to s = 1. Before determining where the
switch must occur, let us consider the case g <7 <m.

Lemma 2. Assume that 7y € (n/2,7) and define ;. =
arcsin (%) < 0. Then A, = 7+ pfor n odd and A,, =
for n even.

Proof. The claim follows by induction from Eq. (H11). Ap-
plying it forn = 1, since Ay = 71, we have Ay = m+pu. Now,
assume that the claim is true for n even. From Eq. (H11) ap-
plied for n even, we obtain A,, = pu+2lmwor A,, = m7—pu+2lmw,
for integer [. Since 7, = A,,_1 + A, using the inductive as-
sumption, we obtain in the two cases, 7, = 7™ + 2u + 2{7 and
T, = 27 + 2lm, respectively. The latter case is impossible
because it would mean that 7,, > w. The first case is only
possible with | = 0, because [ > 0 would imply 7,, > 27
while [ < 0 would give a negative time interval. Since we saw
above that A,, = p + 2i7 for n even, this gives A,, = pu for
such n.

Let us now prove that A,, = m 4+ p for n > 1 and odd.
Again using Eq. (H11) we obtain either A,, = —u + 2l or
A, = m+ p + 2lm. The first case is impossible because
it would mean 7,, = A,,_1 + A,, = 27 (using the inductive
assumption). The second case would give 7, = A, _1+4A, =
7 + 24 + 2lm which is only possible for [ = 0. This gives
A, =7+ . O

Remark 1. One of the consequences of the above lemma is
that the switching sequence is finite, i.e., we do not have inter-
vals between two switches which become arbitrarily small and
hence the Fuller phenomenon [69] is ruled out in our case. In
particular if 0 < 71 < 7 there is only one switch, as we have
seen, while if 5 < 11 < 7 then we have multiple switches with
Tk = Ap + A1 = 7+ 2u, which is a constant independent
of k.

In order to learn more about the optimal control, and rule
out the second case of § < 71 < m, we examine the fi-
nal arc, which is of the form e™¥X (s = 1). Recall that



with the final arc we have to reach the point (x¢,2p5) =
(0, A), which imposes that the final switching operator is of
the form r(tx) = (ro.,*,0)T [see Eq. (H7b) and the dis-
cussion immediately below it]. Thus, using Eq. (H13) with
n = N and Eq. (H9a), we obtain sin(7y) cos(An_1)roy +
cos(tny)ro, = 0. Using Eq. (H11) and ro, # 0, we obtain
sin(7n) cos(An_1) — sin(An_1) cos(ty) = sin(Ay) =0,
where Ay = v — An_1. Therefore Ty = An_1 + I for
[ integer. Now there are two cases: Multiple switches or only
one switch. In the case of multiple switches, we are in the sit-
uation described in Lemma 2. Wehave Ay _1 = Ay = 74 p.
Therefore 7y = 7™ + p + Im. The integer [ must be zero be-
cause if it is positive we have 7y > 7 and if it is negative, we
have a negative interval 7. Therefore 7y = 7 + u. However
ty > 1 + 78 = 2A1 = 2(w + p) > 7 which is impossible.
Therefore the situation 5 < 71 < 7 cannot occur. The only
possibility is the situation with 0 < 71 < 7 with one switch
only. In this case, as above we have 7o = Ay +lr =71 + 7
with [ = 0 since again [ < 0 will give a negative time interval
and [ positive will give total time greater than 7. So 72 = 7|
and the optimal control is the simplest one. This completes
the proof of Proposition 4.

Appendix I: Additional considerations regarding the shortening
of the initial and final arcs

In principle one can be more quantitative about the short-
ening of the arcs discussed in Sec. VI B by repeating the anal-
ysis of Ref. [70] for the quantity z5(At) [Eq. (45)]. The lat-
ter work provided a detailed analysis of the return probabil-

ity F(t) := |(W]e " |y)

2 . L
, where H is a time-independent
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Hamiltonian and |¢)) an initial state. One of the results of
Ref. [70] was an explicit form for the average number of ze-
roes of the equation F(t) = v. Indeed, F is a particular
case of the left-hand side of Eq. (45) and can be written in
that form with B = Sy = [¢}¢|, C = H. Let N, (v) be
the average number of solutions of the equation x5 (t) = v.
The number of zeroes N in a large interval of length 7" turns
out to be proportional to T: N,.(v) = TD,,(v) where
D, can be computed using the methods of Ref. [70]. Then
At ~ T/N,,(\) = 1/D,, (\). Using [70, Eq. (6)], which
applies for the special case mentioned above, we then obtain:

VT L @B) )

At(N) ~ 5 AR Yy € , an
where (zp) = limr_, % fOT xp(t)dt and AF is the stan-
dard deviation of the energies { E};} with respect to the dis-
tribution {px = |[T|)||* /32, T, |0)]|*} (recall that C' =
> i Erll}, is the spectral resolution of C'). The derivation of
Eq. (I1) is subtle and is carried out in Ref. [70]. Since it only
represents a special case in our context, we do not pursue it
further here, and present Eq. (I1) mainly to stimulate the in-
terest of the reader and establish a possible entry point towards
a rigorous treatment of the shortening of the initial and final
arcs.

As a final comment, note that when C is a classical Ising
Hamiltonian of the form C = J Z:L _, 0707, the energies
are integer multiples of J and highly d}:generate (therefore the
spectrum is commensurate: {Ej,} C {0,+J, £2J,...}). This
implies that the function z5(¢) in Eq. (46) is periodic with
period not larger than 27r/J (as opposed to being almost pe-
riodic) and this has implications for D, (), but the general
considerations we have outlined still hold.
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